planner.cpp 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. // Use M203 to override by software
  54. float max_feedrate_normal[NUM_AXIS]; // max speeds for normal mode
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = max_feedrate_normal;
  57. // Use M92 to override by software
  58. float axis_steps_per_unit[NUM_AXIS];
  59. // Use M201 to override by software
  60. unsigned long max_acceleration_units_per_sq_second_normal[NUM_AXIS];
  61. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  62. unsigned long* max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  63. float minimumfeedrate;
  64. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  65. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  66. // Jerk is a maximum immediate velocity change.
  67. float max_jerk[NUM_AXIS];
  68. float mintravelfeedrate;
  69. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  70. #ifdef ENABLE_AUTO_BED_LEVELING
  71. // this holds the required transform to compensate for bed level
  72. matrix_3x3 plan_bed_level_matrix = {
  73. 1.0, 0.0, 0.0,
  74. 0.0, 1.0, 0.0,
  75. 0.0, 0.0, 1.0,
  76. };
  77. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  78. // The current position of the tool in absolute steps
  79. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  80. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  81. static float previous_nominal_speed; // Nominal speed of previous path line segment
  82. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  83. uint8_t maxlimit_status;
  84. #ifdef AUTOTEMP
  85. float autotemp_max=250;
  86. float autotemp_min=210;
  87. float autotemp_factor=0.1;
  88. bool autotemp_enabled=false;
  89. #endif
  90. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  91. //===========================================================================
  92. //=================semi-private variables, used in inline functions =====
  93. //===========================================================================
  94. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  95. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  96. volatile unsigned char block_buffer_tail; // Index of the block to process now
  97. #ifdef PLANNER_DIAGNOSTICS
  98. // Diagnostic function: Minimum number of planned moves since the last
  99. static uint8_t g_cntr_planner_queue_min = 0;
  100. #endif /* PLANNER_DIAGNOSTICS */
  101. //===========================================================================
  102. //=============================private variables ============================
  103. //===========================================================================
  104. #ifdef PREVENT_DANGEROUS_EXTRUDE
  105. float extrude_min_temp=EXTRUDE_MINTEMP;
  106. #endif
  107. #ifdef LIN_ADVANCE
  108. float extruder_advance_k = LIN_ADVANCE_K,
  109. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  110. position_float[NUM_AXIS] = { 0 };
  111. #endif
  112. // Returns the index of the next block in the ring buffer
  113. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  114. static inline int8_t next_block_index(int8_t block_index) {
  115. if (++ block_index == BLOCK_BUFFER_SIZE)
  116. block_index = 0;
  117. return block_index;
  118. }
  119. // Returns the index of the previous block in the ring buffer
  120. static inline int8_t prev_block_index(int8_t block_index) {
  121. if (block_index == 0)
  122. block_index = BLOCK_BUFFER_SIZE;
  123. -- block_index;
  124. return block_index;
  125. }
  126. //===========================================================================
  127. //=============================functions ============================
  128. //===========================================================================
  129. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  130. // given acceleration:
  131. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  132. {
  133. if (acceleration!=0) {
  134. return((target_rate*target_rate-initial_rate*initial_rate)/
  135. (2.0*acceleration));
  136. }
  137. else {
  138. return 0.0; // acceleration was 0, set acceleration distance to 0
  139. }
  140. }
  141. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  142. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  143. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  144. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  145. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  146. {
  147. if (acceleration!=0) {
  148. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  149. (4.0*acceleration) );
  150. }
  151. else {
  152. return 0.0; // acceleration was 0, set intersection distance to 0
  153. }
  154. }
  155. // Minimum stepper rate 120Hz.
  156. #define MINIMAL_STEP_RATE 120
  157. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  158. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  159. {
  160. // These two lines are the only floating point calculations performed in this routine.
  161. // initial_rate, final_rate in Hz.
  162. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  163. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  164. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  165. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  166. // Limit minimal step rate (Otherwise the timer will overflow.)
  167. if (initial_rate < MINIMAL_STEP_RATE)
  168. initial_rate = MINIMAL_STEP_RATE;
  169. if (initial_rate > block->nominal_rate)
  170. initial_rate = block->nominal_rate;
  171. if (final_rate < MINIMAL_STEP_RATE)
  172. final_rate = MINIMAL_STEP_RATE;
  173. if (final_rate > block->nominal_rate)
  174. final_rate = block->nominal_rate;
  175. uint32_t acceleration = block->acceleration_st;
  176. if (acceleration == 0)
  177. // Don't allow zero acceleration.
  178. acceleration = 1;
  179. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  180. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  181. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  182. //FIXME assert that this result fits a 64bit unsigned int.
  183. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  184. uint32_t final_rate_sqr = final_rate*final_rate;
  185. uint32_t acceleration_x2 = acceleration << 1;
  186. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  187. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  188. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  189. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  190. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  191. // Size of Plateau of Nominal Rate.
  192. uint32_t plateau_steps = 0;
  193. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  194. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  195. // in order to reach the final_rate exactly at the end of this block.
  196. if (accel_decel_steps < block->step_event_count.wide) {
  197. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  198. } else {
  199. uint32_t acceleration_x4 = acceleration << 2;
  200. // Avoid negative numbers
  201. if (final_rate_sqr >= initial_rate_sqr) {
  202. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  203. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  204. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  205. #if 0
  206. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  209. if (block->step_event_count.wide & 1)
  210. accelerate_steps += acceleration_x2;
  211. accelerate_steps /= acceleration_x4;
  212. accelerate_steps += (block->step_event_count.wide >> 1);
  213. #endif
  214. if (accelerate_steps > block->step_event_count.wide)
  215. accelerate_steps = block->step_event_count.wide;
  216. } else {
  217. #if 0
  218. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  219. #else
  220. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  221. if (block->step_event_count.wide & 1)
  222. decelerate_steps += acceleration_x2;
  223. decelerate_steps /= acceleration_x4;
  224. decelerate_steps += (block->step_event_count.wide >> 1);
  225. #endif
  226. if (decelerate_steps > block->step_event_count.wide)
  227. decelerate_steps = block->step_event_count.wide;
  228. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  229. }
  230. }
  231. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  232. // This block locks the interrupts globally for 4.38 us,
  233. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  234. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  235. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  236. if (! block->busy) { // Don't update variables if block is busy.
  237. block->accelerate_until = accelerate_steps;
  238. block->decelerate_after = accelerate_steps+plateau_steps;
  239. block->initial_rate = initial_rate;
  240. block->final_rate = final_rate;
  241. }
  242. CRITICAL_SECTION_END;
  243. }
  244. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  245. // decceleration within the allotted distance.
  246. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  247. {
  248. // assert(decceleration < 0);
  249. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  250. }
  251. // Recalculates the motion plan according to the following algorithm:
  252. //
  253. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  254. // so that:
  255. // a. The junction jerk is within the set limit
  256. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  257. // acceleration.
  258. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  259. // a. The speed increase within one block would require faster accelleration than the one, true
  260. // constant acceleration.
  261. //
  262. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  263. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  264. // the set limit. Finally it will:
  265. //
  266. // 3. Recalculate trapezoids for all blocks.
  267. //
  268. //FIXME This routine is called 15x every time a new line is added to the planner,
  269. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  270. // if the CPU is found lacking computational power.
  271. //
  272. // Following sources may be used to optimize the 8-bit AVR code:
  273. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  274. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  275. //
  276. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  277. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  278. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  279. //
  280. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  281. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  282. // https://github.com/rekka/avrmultiplication
  283. //
  284. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  285. // https://courses.cit.cornell.edu/ee476/Math/
  286. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  287. //
  288. void planner_recalculate(const float &safe_final_speed)
  289. {
  290. // Reverse pass
  291. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  292. // by consuming the blocks, therefore shortening the queue.
  293. unsigned char tail = block_buffer_tail;
  294. uint8_t block_index;
  295. block_t *prev, *current, *next;
  296. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  297. // At least three blocks are in the queue?
  298. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  299. if (n_blocks >= 3) {
  300. // Initialize the last tripple of blocks.
  301. block_index = prev_block_index(block_buffer_head);
  302. next = block_buffer + block_index;
  303. current = block_buffer + (block_index = prev_block_index(block_index));
  304. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  305. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  306. // 1) it may already be running at the stepper interrupt,
  307. // 2) there is no way to limit it when going in the forward direction.
  308. while (block_index != tail) {
  309. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  310. // Don't modify the entry velocity of the starting block.
  311. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  312. // for the stepper interrupt routine to use them.
  313. tail = block_index;
  314. // Update the number of blocks to process.
  315. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  316. // SERIAL_ECHOLNPGM("START");
  317. break;
  318. }
  319. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  320. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  321. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  322. if (current->entry_speed != current->max_entry_speed) {
  323. // assert(current->entry_speed < current->max_entry_speed);
  324. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  325. // segment and the maximum acceleration allowed for this segment.
  326. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  327. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  328. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  329. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  330. // together with an assembly 32bit->16bit sqrt function.
  331. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  332. current->max_entry_speed :
  333. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  334. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  335. current->flag |= BLOCK_FLAG_RECALCULATE;
  336. }
  337. next = current;
  338. current = block_buffer + (block_index = prev_block_index(block_index));
  339. }
  340. }
  341. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  342. // Forward pass and recalculate the trapezoids.
  343. if (n_blocks >= 2) {
  344. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  345. block_index = tail;
  346. prev = block_buffer + block_index;
  347. current = block_buffer + (block_index = next_block_index(block_index));
  348. do {
  349. // If the previous block is an acceleration block, but it is not long enough to complete the
  350. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  351. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  352. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  353. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  354. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  355. // Check for junction speed change
  356. if (current->entry_speed != entry_speed) {
  357. current->entry_speed = entry_speed;
  358. current->flag |= BLOCK_FLAG_RECALCULATE;
  359. }
  360. }
  361. // Recalculate if current block entry or exit junction speed has changed.
  362. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  363. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  364. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  365. // Reset current only to ensure next trapezoid is computed.
  366. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  367. }
  368. prev = current;
  369. current = block_buffer + (block_index = next_block_index(block_index));
  370. } while (block_index != block_buffer_head);
  371. }
  372. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  373. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  374. current = block_buffer + prev_block_index(block_buffer_head);
  375. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  376. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  377. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  378. }
  379. void plan_init() {
  380. block_buffer_head = 0;
  381. block_buffer_tail = 0;
  382. memset(position, 0, sizeof(position)); // clear position
  383. #ifdef LIN_ADVANCE
  384. memset(position_float, 0, sizeof(position)); // clear position
  385. #endif
  386. previous_speed[0] = 0.0;
  387. previous_speed[1] = 0.0;
  388. previous_speed[2] = 0.0;
  389. previous_speed[3] = 0.0;
  390. previous_nominal_speed = 0.0;
  391. }
  392. #ifdef AUTOTEMP
  393. void getHighESpeed()
  394. {
  395. static float oldt=0;
  396. if(!autotemp_enabled){
  397. return;
  398. }
  399. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  400. return; //do nothing
  401. }
  402. float high=0.0;
  403. uint8_t block_index = block_buffer_tail;
  404. while(block_index != block_buffer_head) {
  405. if((block_buffer[block_index].steps_x.wide != 0) ||
  406. (block_buffer[block_index].steps_y.wide != 0) ||
  407. (block_buffer[block_index].steps_z.wide != 0)) {
  408. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  409. //se; mm/sec;
  410. if(se>high)
  411. {
  412. high=se;
  413. }
  414. }
  415. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  416. }
  417. float g=autotemp_min+high*autotemp_factor;
  418. float t=g;
  419. if(t<autotemp_min)
  420. t=autotemp_min;
  421. if(t>autotemp_max)
  422. t=autotemp_max;
  423. if(oldt>t)
  424. {
  425. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  426. }
  427. oldt=t;
  428. setTargetHotend0(t);
  429. }
  430. #endif
  431. void check_axes_activity()
  432. {
  433. unsigned char x_active = 0;
  434. unsigned char y_active = 0;
  435. unsigned char z_active = 0;
  436. unsigned char e_active = 0;
  437. unsigned char tail_fan_speed = fanSpeed;
  438. block_t *block;
  439. if(block_buffer_tail != block_buffer_head)
  440. {
  441. uint8_t block_index = block_buffer_tail;
  442. tail_fan_speed = block_buffer[block_index].fan_speed;
  443. while(block_index != block_buffer_head)
  444. {
  445. block = &block_buffer[block_index];
  446. if(block->steps_x.wide != 0) x_active++;
  447. if(block->steps_y.wide != 0) y_active++;
  448. if(block->steps_z.wide != 0) z_active++;
  449. if(block->steps_e.wide != 0) e_active++;
  450. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  451. }
  452. }
  453. if((DISABLE_X) && (x_active == 0)) disable_x();
  454. if((DISABLE_Y) && (y_active == 0)) disable_y();
  455. if((DISABLE_Z) && (z_active == 0)) disable_z();
  456. if((DISABLE_E) && (e_active == 0))
  457. {
  458. disable_e0();
  459. disable_e1();
  460. disable_e2();
  461. }
  462. #if defined(FAN_PIN) && FAN_PIN > -1
  463. #ifdef FAN_KICKSTART_TIME
  464. static unsigned long fan_kick_end;
  465. if (tail_fan_speed) {
  466. if (fan_kick_end == 0) {
  467. // Just starting up fan - run at full power.
  468. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  469. tail_fan_speed = 255;
  470. } else if (fan_kick_end > millis())
  471. // Fan still spinning up.
  472. tail_fan_speed = 255;
  473. } else {
  474. fan_kick_end = 0;
  475. }
  476. #endif//FAN_KICKSTART_TIME
  477. #ifdef FAN_SOFT_PWM
  478. fanSpeedSoftPwm = tail_fan_speed;
  479. #else
  480. analogWrite(FAN_PIN,tail_fan_speed);
  481. #endif//!FAN_SOFT_PWM
  482. #endif//FAN_PIN > -1
  483. #ifdef AUTOTEMP
  484. getHighESpeed();
  485. #endif
  486. }
  487. bool waiting_inside_plan_buffer_line_print_aborted = false;
  488. /*
  489. void planner_abort_soft()
  490. {
  491. // Empty the queue.
  492. while (blocks_queued()) plan_discard_current_block();
  493. // Relay to planner wait routine, that the current line shall be canceled.
  494. waiting_inside_plan_buffer_line_print_aborted = true;
  495. //current_position[i]
  496. }
  497. */
  498. #ifdef PLANNER_DIAGNOSTICS
  499. static inline void planner_update_queue_min_counter()
  500. {
  501. uint8_t new_counter = moves_planned();
  502. if (new_counter < g_cntr_planner_queue_min)
  503. g_cntr_planner_queue_min = new_counter;
  504. }
  505. #endif /* PLANNER_DIAGNOSTICS */
  506. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  507. void planner_abort_hard()
  508. {
  509. // Abort the stepper routine and flush the planner queue.
  510. DISABLE_STEPPER_DRIVER_INTERRUPT();
  511. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  512. // First update the planner's current position in the physical motor steps.
  513. position[X_AXIS] = st_get_position(X_AXIS);
  514. position[Y_AXIS] = st_get_position(Y_AXIS);
  515. position[Z_AXIS] = st_get_position(Z_AXIS);
  516. position[E_AXIS] = st_get_position(E_AXIS);
  517. // Second update the current position of the front end.
  518. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  519. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  520. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  521. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  522. // Apply the mesh bed leveling correction to the Z axis.
  523. #ifdef MESH_BED_LEVELING
  524. if (mbl.active) {
  525. #if 1
  526. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  527. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  528. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  529. #else
  530. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  531. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  532. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  533. else {
  534. float t = float(step_events_completed) / float(current_block->step_event_count);
  535. float vec[3] = {
  536. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  537. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  538. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  539. };
  540. float pos1[3], pos2[3];
  541. for (int8_t i = 0; i < 3; ++ i) {
  542. if (current_block->direction_bits & (1<<i))
  543. vec[i] = - vec[i];
  544. pos1[i] = current_position[i] - vec[i] * t;
  545. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  546. }
  547. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  548. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  549. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  550. }
  551. #endif
  552. }
  553. #endif
  554. // Clear the planner queue, reset and re-enable the stepper timer.
  555. quickStop();
  556. // Apply inverse world correction matrix.
  557. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  558. memcpy(destination, current_position, sizeof(destination));
  559. // Resets planner junction speeds. Assumes start from rest.
  560. previous_nominal_speed = 0.0;
  561. previous_speed[0] = 0.0;
  562. previous_speed[1] = 0.0;
  563. previous_speed[2] = 0.0;
  564. previous_speed[3] = 0.0;
  565. // Relay to planner wait routine, that the current line shall be canceled.
  566. waiting_inside_plan_buffer_line_print_aborted = true;
  567. }
  568. float junction_deviation = 0.1;
  569. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  570. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  571. // calculation the caller must also provide the physical length of the line in millimeters.
  572. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  573. {
  574. // Calculate the buffer head after we push this byte
  575. int next_buffer_head = next_block_index(block_buffer_head);
  576. // If the buffer is full: good! That means we are well ahead of the robot.
  577. // Rest here until there is room in the buffer.
  578. if (block_buffer_tail == next_buffer_head) {
  579. waiting_inside_plan_buffer_line_print_aborted = false;
  580. do {
  581. manage_heater();
  582. // Vojtech: Don't disable motors inside the planner!
  583. manage_inactivity(false);
  584. lcd_update(0);
  585. } while (block_buffer_tail == next_buffer_head);
  586. if (waiting_inside_plan_buffer_line_print_aborted) {
  587. // Inside the lcd_update(0) routine the print has been aborted.
  588. // Cancel the print, do not plan the current line this routine is waiting on.
  589. #ifdef PLANNER_DIAGNOSTICS
  590. planner_update_queue_min_counter();
  591. #endif /* PLANNER_DIAGNOSTICS */
  592. return;
  593. }
  594. }
  595. #ifdef PLANNER_DIAGNOSTICS
  596. planner_update_queue_min_counter();
  597. #endif /* PLANNER_DIAGNOSTICS */
  598. #ifdef ENABLE_AUTO_BED_LEVELING
  599. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  600. #endif // ENABLE_AUTO_BED_LEVELING
  601. // Apply the machine correction matrix.
  602. {
  603. #if 0
  604. SERIAL_ECHOPGM("Planner, current position - servos: ");
  605. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  606. SERIAL_ECHOPGM(", ");
  607. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  608. SERIAL_ECHOPGM(", ");
  609. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  610. SERIAL_ECHOLNPGM("");
  611. SERIAL_ECHOPGM("Planner, target position, initial: ");
  612. MYSERIAL.print(x, 5);
  613. SERIAL_ECHOPGM(", ");
  614. MYSERIAL.print(y, 5);
  615. SERIAL_ECHOLNPGM("");
  616. SERIAL_ECHOPGM("Planner, world2machine: ");
  617. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  618. SERIAL_ECHOPGM(", ");
  619. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  620. SERIAL_ECHOPGM(", ");
  621. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  622. SERIAL_ECHOPGM(", ");
  623. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  624. SERIAL_ECHOLNPGM("");
  625. SERIAL_ECHOPGM("Planner, offset: ");
  626. MYSERIAL.print(world2machine_shift[0], 5);
  627. SERIAL_ECHOPGM(", ");
  628. MYSERIAL.print(world2machine_shift[1], 5);
  629. SERIAL_ECHOLNPGM("");
  630. #endif
  631. world2machine(x, y);
  632. #if 0
  633. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  634. MYSERIAL.print(x, 5);
  635. SERIAL_ECHOPGM(", ");
  636. MYSERIAL.print(y, 5);
  637. SERIAL_ECHOLNPGM("");
  638. #endif
  639. }
  640. // The target position of the tool in absolute steps
  641. // Calculate target position in absolute steps
  642. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  643. long target[4];
  644. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  645. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  646. #ifdef MESH_BED_LEVELING
  647. if (mbl.active){
  648. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  649. }else{
  650. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  651. }
  652. #else
  653. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  654. #endif // ENABLE_MESH_BED_LEVELING
  655. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  656. #ifdef LIN_ADVANCE
  657. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  658. float de_float = e - position_float[E_AXIS];
  659. #endif
  660. #ifdef PREVENT_DANGEROUS_EXTRUDE
  661. if(target[E_AXIS]!=position[E_AXIS])
  662. {
  663. if(degHotend(active_extruder)<extrude_min_temp)
  664. {
  665. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  666. #ifdef LIN_ADVANCE
  667. position_float[E_AXIS] = e;
  668. de_float = 0;
  669. #endif
  670. SERIAL_ECHO_START;
  671. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  672. }
  673. #ifdef PREVENT_LENGTHY_EXTRUDE
  674. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  675. {
  676. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  677. #ifdef LIN_ADVANCE
  678. position_float[E_AXIS] = e;
  679. de_float = 0;
  680. #endif
  681. SERIAL_ECHO_START;
  682. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  683. }
  684. #endif
  685. }
  686. #endif
  687. // Prepare to set up new block
  688. block_t *block = &block_buffer[block_buffer_head];
  689. // Set sdlen for calculating sd position
  690. block->sdlen = 0;
  691. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  692. block->busy = false;
  693. // Number of steps for each axis
  694. #ifndef COREXY
  695. // default non-h-bot planning
  696. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  697. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  698. #else
  699. // corexy planning
  700. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  701. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  702. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  703. #endif
  704. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  705. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  706. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  707. // Bail if this is a zero-length block
  708. if (block->step_event_count.wide <= dropsegments)
  709. {
  710. #ifdef PLANNER_DIAGNOSTICS
  711. planner_update_queue_min_counter();
  712. #endif /* PLANNER_DIAGNOSTICS */
  713. return;
  714. }
  715. block->fan_speed = fanSpeed;
  716. // Compute direction bits for this block
  717. block->direction_bits = 0;
  718. #ifndef COREXY
  719. if (target[X_AXIS] < position[X_AXIS])
  720. {
  721. block->direction_bits |= (1<<X_AXIS);
  722. }
  723. if (target[Y_AXIS] < position[Y_AXIS])
  724. {
  725. block->direction_bits |= (1<<Y_AXIS);
  726. }
  727. #else
  728. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  729. {
  730. block->direction_bits |= (1<<X_AXIS);
  731. }
  732. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  733. {
  734. block->direction_bits |= (1<<Y_AXIS);
  735. }
  736. #endif
  737. if (target[Z_AXIS] < position[Z_AXIS])
  738. {
  739. block->direction_bits |= (1<<Z_AXIS);
  740. }
  741. if (target[E_AXIS] < position[E_AXIS])
  742. {
  743. block->direction_bits |= (1<<E_AXIS);
  744. }
  745. block->active_extruder = extruder;
  746. //enable active axes
  747. #ifdef COREXY
  748. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  749. {
  750. enable_x();
  751. enable_y();
  752. }
  753. #else
  754. if(block->steps_x.wide != 0) enable_x();
  755. if(block->steps_y.wide != 0) enable_y();
  756. #endif
  757. if(block->steps_z.wide != 0) enable_z();
  758. // Enable extruder(s)
  759. if(block->steps_e.wide != 0)
  760. {
  761. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  762. {
  763. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  764. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  765. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  766. switch(extruder)
  767. {
  768. case 0:
  769. enable_e0();
  770. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  771. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  772. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  773. break;
  774. case 1:
  775. enable_e1();
  776. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  777. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  778. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  779. break;
  780. case 2:
  781. enable_e2();
  782. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  783. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  784. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  785. break;
  786. }
  787. }
  788. else //enable all
  789. {
  790. enable_e0();
  791. enable_e1();
  792. enable_e2();
  793. }
  794. }
  795. if (block->steps_e.wide == 0)
  796. {
  797. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  798. }
  799. else
  800. {
  801. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  802. }
  803. /* This part of the code calculates the total length of the movement.
  804. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  805. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  806. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  807. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  808. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  809. */
  810. #ifndef COREXY
  811. float delta_mm[4];
  812. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  813. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  814. #else
  815. float delta_mm[6];
  816. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  817. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  818. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  819. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  820. #endif
  821. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  822. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  823. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  824. {
  825. block->millimeters = fabs(delta_mm[E_AXIS]);
  826. }
  827. else
  828. {
  829. #ifndef COREXY
  830. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  831. #else
  832. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  833. #endif
  834. }
  835. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  836. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  837. float inverse_second = feed_rate * inverse_millimeters;
  838. int moves_queued = moves_planned();
  839. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  840. #ifdef SLOWDOWN
  841. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  842. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  843. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  844. // segment time in micro seconds
  845. unsigned long segment_time = lround(1000000.0/inverse_second);
  846. if (segment_time < minsegmenttime)
  847. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  848. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  849. }
  850. #endif // SLOWDOWN
  851. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  852. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  853. // Calculate and limit speed in mm/sec for each axis
  854. float current_speed[4];
  855. float speed_factor = 1.0; //factor <=1 do decrease speed
  856. // maxlimit_status &= ~0xf;
  857. for(int i=0; i < 4; i++)
  858. {
  859. current_speed[i] = delta_mm[i] * inverse_second;
  860. if(fabs(current_speed[i]) > max_feedrate[i])
  861. {
  862. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  863. maxlimit_status |= (1 << i);
  864. }
  865. }
  866. // Correct the speed
  867. if( speed_factor < 1.0)
  868. {
  869. for(unsigned char i=0; i < 4; i++)
  870. {
  871. current_speed[i] *= speed_factor;
  872. }
  873. block->nominal_speed *= speed_factor;
  874. block->nominal_rate *= speed_factor;
  875. }
  876. // Compute and limit the acceleration rate for the trapezoid generator.
  877. // block->step_event_count ... event count of the fastest axis
  878. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  879. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  880. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  881. {
  882. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  883. }
  884. else
  885. {
  886. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  887. // Limit acceleration per axis
  888. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  889. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  890. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  891. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  892. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  893. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  894. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  895. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  896. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  897. }
  898. // Acceleration of the segment, in mm/sec^2
  899. block->acceleration = block->acceleration_st / steps_per_mm;
  900. #if 0
  901. // Oversample diagonal movements by a power of 2 up to 8x
  902. // to achieve more accurate diagonal movements.
  903. uint8_t bresenham_oversample = 1;
  904. for (uint8_t i = 0; i < 3; ++ i) {
  905. if (block->nominal_rate >= 5000) // 5kHz
  906. break;
  907. block->nominal_rate << 1;
  908. bresenham_oversample << 1;
  909. block->step_event_count << 1;
  910. }
  911. if (bresenham_oversample > 1)
  912. // Lower the acceleration steps/sec^2 to account for the oversampling.
  913. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  914. #endif
  915. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  916. // Start with a safe speed.
  917. // Safe speed is the speed, from which the machine may halt to stop immediately.
  918. float safe_speed = block->nominal_speed;
  919. bool limited = false;
  920. for (uint8_t axis = 0; axis < 4; ++ axis) {
  921. float jerk = fabs(current_speed[axis]);
  922. if (jerk > max_jerk[axis]) {
  923. // The actual jerk is lower, if it has been limited by the XY jerk.
  924. if (limited) {
  925. // Spare one division by a following gymnastics:
  926. // Instead of jerk *= safe_speed / block->nominal_speed,
  927. // multiply max_jerk[axis] by the divisor.
  928. jerk *= safe_speed;
  929. float mjerk = max_jerk[axis] * block->nominal_speed;
  930. if (jerk > mjerk) {
  931. safe_speed *= mjerk / jerk;
  932. limited = true;
  933. }
  934. } else {
  935. safe_speed = max_jerk[axis];
  936. limited = true;
  937. }
  938. }
  939. }
  940. // Reset the block flag.
  941. block->flag = 0;
  942. // Initial limit on the segment entry velocity.
  943. float vmax_junction;
  944. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  945. // Is it because we don't want to tinker with the first buffer line, which
  946. // is likely to be executed by the stepper interrupt routine soon?
  947. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  948. // Estimate a maximum velocity allowed at a joint of two successive segments.
  949. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  950. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  951. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  952. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  953. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  954. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  955. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  956. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  957. float v_factor = 1.f;
  958. limited = false;
  959. // Now limit the jerk in all axes.
  960. for (uint8_t axis = 0; axis < 4; ++ axis) {
  961. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  962. float v_exit = previous_speed[axis];
  963. float v_entry = current_speed [axis];
  964. if (prev_speed_larger)
  965. v_exit *= smaller_speed_factor;
  966. if (limited) {
  967. v_exit *= v_factor;
  968. v_entry *= v_factor;
  969. }
  970. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  971. float jerk =
  972. (v_exit > v_entry) ?
  973. ((v_entry > 0.f || v_exit < 0.f) ?
  974. // coasting
  975. (v_exit - v_entry) :
  976. // axis reversal
  977. max(v_exit, - v_entry)) :
  978. // v_exit <= v_entry
  979. ((v_entry < 0.f || v_exit > 0.f) ?
  980. // coasting
  981. (v_entry - v_exit) :
  982. // axis reversal
  983. max(- v_exit, v_entry));
  984. if (jerk > max_jerk[axis]) {
  985. v_factor *= max_jerk[axis] / jerk;
  986. limited = true;
  987. }
  988. }
  989. if (limited)
  990. vmax_junction *= v_factor;
  991. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  992. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  993. float vmax_junction_threshold = vmax_junction * 0.99f;
  994. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  995. // Not coasting. The machine will stop and start the movements anyway,
  996. // better to start the segment from start.
  997. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  998. vmax_junction = safe_speed;
  999. }
  1000. } else {
  1001. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1002. vmax_junction = safe_speed;
  1003. }
  1004. // Max entry speed of this block equals the max exit speed of the previous block.
  1005. block->max_entry_speed = vmax_junction;
  1006. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1007. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1008. block->entry_speed = min(vmax_junction, v_allowable);
  1009. // Initialize planner efficiency flags
  1010. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1011. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1012. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1013. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1014. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1015. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1016. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1017. // Always calculate trapezoid for new block
  1018. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1019. // Update previous path unit_vector and nominal speed
  1020. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1021. previous_nominal_speed = block->nominal_speed;
  1022. previous_safe_speed = safe_speed;
  1023. #ifdef LIN_ADVANCE
  1024. //
  1025. // Use LIN_ADVANCE for blocks if all these are true:
  1026. //
  1027. // esteps : We have E steps todo (a printing move)
  1028. //
  1029. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1030. //
  1031. // extruder_advance_k : There is an advance factor set.
  1032. //
  1033. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1034. // In that case, the retract and move will be executed together.
  1035. // This leads to too many advance steps due to a huge e_acceleration.
  1036. // The math is good, but we must avoid retract moves with advance!
  1037. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1038. //
  1039. block->use_advance_lead = block->steps_e.wide
  1040. && (block->steps_x.wide || block->steps_y.wide)
  1041. && extruder_advance_k
  1042. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1043. && de_float > 0.0;
  1044. if (block->use_advance_lead)
  1045. block->abs_adv_steps_multiplier8 = lround(
  1046. extruder_advance_k
  1047. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1048. * (block->nominal_speed / (float)block->nominal_rate)
  1049. * axis_steps_per_unit[E_AXIS] * 256.0
  1050. );
  1051. #endif
  1052. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1053. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1054. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1055. if (block->step_event_count.wide <= 32767)
  1056. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1057. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1058. block_buffer_head = next_buffer_head;
  1059. // Update position
  1060. memcpy(position, target, sizeof(target)); // position[] = target[]
  1061. #ifdef LIN_ADVANCE
  1062. position_float[X_AXIS] = x;
  1063. position_float[Y_AXIS] = y;
  1064. position_float[Z_AXIS] = z;
  1065. position_float[E_AXIS] = e;
  1066. #endif
  1067. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1068. // the machine limits (maximum acceleration and maximum jerk).
  1069. // This runs asynchronously with the stepper interrupt controller, which may
  1070. // interfere with the process.
  1071. planner_recalculate(safe_speed);
  1072. // SERIAL_ECHOPGM("Q");
  1073. // SERIAL_ECHO(int(moves_planned()));
  1074. // SERIAL_ECHOLNPGM("");
  1075. #ifdef PLANNER_DIAGNOSTICS
  1076. planner_update_queue_min_counter();
  1077. #endif /* PLANNER_DIAGNOSTIC */
  1078. // The stepper timer interrupt will run continuously from now on.
  1079. // If there are no planner blocks to be executed by the stepper routine,
  1080. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1081. // from the planner queue if available.
  1082. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1083. }
  1084. #ifdef ENABLE_AUTO_BED_LEVELING
  1085. vector_3 plan_get_position() {
  1086. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1087. //position.debug("in plan_get position");
  1088. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1089. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1090. //inverse.debug("in plan_get inverse");
  1091. position.apply_rotation(inverse);
  1092. //position.debug("after rotation");
  1093. return position;
  1094. }
  1095. #endif // ENABLE_AUTO_BED_LEVELING
  1096. void plan_set_position(float x, float y, float z, const float &e)
  1097. {
  1098. #ifdef ENABLE_AUTO_BED_LEVELING
  1099. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1100. #endif // ENABLE_AUTO_BED_LEVELING
  1101. // Apply the machine correction matrix.
  1102. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1103. {
  1104. float tmpx = x;
  1105. float tmpy = y;
  1106. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1107. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1108. }
  1109. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1110. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1111. #ifdef MESH_BED_LEVELING
  1112. position[Z_AXIS] = mbl.active ?
  1113. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1114. lround(z*axis_steps_per_unit[Z_AXIS]);
  1115. #else
  1116. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1117. #endif // ENABLE_MESH_BED_LEVELING
  1118. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1119. #ifdef LIN_ADVANCE
  1120. position_float[X_AXIS] = x;
  1121. position_float[Y_AXIS] = y;
  1122. position_float[Z_AXIS] = z;
  1123. position_float[E_AXIS] = e;
  1124. #endif
  1125. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1126. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1127. previous_speed[0] = 0.0;
  1128. previous_speed[1] = 0.0;
  1129. previous_speed[2] = 0.0;
  1130. previous_speed[3] = 0.0;
  1131. }
  1132. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1133. void plan_set_z_position(const float &z)
  1134. {
  1135. #ifdef LIN_ADVANCE
  1136. position_float[Z_AXIS] = z;
  1137. #endif
  1138. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1139. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1140. }
  1141. void plan_set_e_position(const float &e)
  1142. {
  1143. #ifdef LIN_ADVANCE
  1144. position_float[E_AXIS] = e;
  1145. #endif
  1146. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1147. st_set_e_position(position[E_AXIS]);
  1148. }
  1149. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1150. void set_extrude_min_temp(float temp)
  1151. {
  1152. extrude_min_temp=temp;
  1153. }
  1154. #endif
  1155. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1156. void reset_acceleration_rates()
  1157. {
  1158. for(int8_t i=0; i < NUM_AXIS; i++)
  1159. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1160. }
  1161. #ifdef TMC2130
  1162. void update_mode_profile()
  1163. {
  1164. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1165. {
  1166. max_feedrate = max_feedrate_normal;
  1167. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  1168. }
  1169. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1170. {
  1171. max_feedrate = max_feedrate_silent;
  1172. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1173. }
  1174. reset_acceleration_rates();
  1175. }
  1176. #endif //TMC2130
  1177. unsigned char number_of_blocks()
  1178. {
  1179. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1180. }
  1181. #ifdef PLANNER_DIAGNOSTICS
  1182. uint8_t planner_queue_min()
  1183. {
  1184. return g_cntr_planner_queue_min;
  1185. }
  1186. void planner_queue_min_reset()
  1187. {
  1188. g_cntr_planner_queue_min = moves_planned();
  1189. }
  1190. #endif /* PLANNER_DIAGNOSTICS */
  1191. void planner_add_sd_length(uint16_t sdlen)
  1192. {
  1193. if (block_buffer_head != block_buffer_tail) {
  1194. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1195. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1196. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1197. } else {
  1198. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1199. // at a power panic, so the length of this command may be forgotten.
  1200. }
  1201. }
  1202. uint16_t planner_calc_sd_length()
  1203. {
  1204. unsigned char _block_buffer_head = block_buffer_head;
  1205. unsigned char _block_buffer_tail = block_buffer_tail;
  1206. uint16_t sdlen = 0;
  1207. while (_block_buffer_head != _block_buffer_tail)
  1208. {
  1209. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1210. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1211. }
  1212. return sdlen;
  1213. }