tmc2130.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. #include "Marlin.h"
  2. #ifdef TMC2130
  3. #include "tmc2130.h"
  4. #include "LiquidCrystal_Prusa.h"
  5. #include "ultralcd.h"
  6. #include "language.h"
  7. #include "spi.h"
  8. extern LiquidCrystal_Prusa lcd;
  9. #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
  10. #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
  11. #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
  12. //externals for debuging
  13. extern float current_position[4];
  14. extern void st_get_position_xy(long &x, long &y);
  15. extern long st_get_position(uint8_t axis);
  16. extern void crashdet_stop_and_save_print();
  17. extern void crashdet_stop_and_save_print2();
  18. //mode
  19. uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
  20. //holding currents
  21. uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
  22. //running currents
  23. uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
  24. //running currents for homing
  25. uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
  26. //pwm_ampl
  27. uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E};
  28. //pwm_grad
  29. uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E};
  30. //pwm_auto
  31. uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E};
  32. //pwm_freq
  33. uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E};
  34. uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
  35. uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  36. uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  37. uint8_t tmc2130_sg_homing_axes_mask = 0x00;
  38. uint8_t tmc2130_sg_meassure = 0xff;
  39. uint32_t tmc2130_sg_meassure_cnt = 0;
  40. uint32_t tmc2130_sg_meassure_val = 0;
  41. uint8_t tmc2130_home_enabled = 0;
  42. uint8_t tmc2130_home_origin[2] = {0, 0};
  43. uint8_t tmc2130_home_bsteps[2] = {48, 48};
  44. uint8_t tmc2130_home_fsteps[2] = {48, 48};
  45. uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
  46. bool tmc2130_sg_stop_on_crash = true;
  47. uint8_t tmc2130_sg_diag_mask = 0x00;
  48. uint8_t tmc2130_sg_crash = 0;
  49. uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0};
  50. uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0};
  51. bool tmc2130_sg_change = false;
  52. bool skip_debug_msg = false;
  53. #define DBG(args...) printf_P(args)
  54. #ifndef _n
  55. #define _n PSTR
  56. #endif //_n
  57. #ifndef _i
  58. #define _i PSTR
  59. #endif //_i
  60. //TMC2130 registers
  61. #define TMC2130_REG_GCONF 0x00 // 17 bits
  62. #define TMC2130_REG_GSTAT 0x01 // 3 bits
  63. #define TMC2130_REG_IOIN 0x04 // 8+8 bits
  64. #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
  65. #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
  66. #define TMC2130_REG_TSTEP 0x12 // 20 bits
  67. #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
  68. #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
  69. #define TMC2130_REG_THIGH 0x15 // 20 bits
  70. #define TMC2130_REG_XDIRECT 0x2d // 32 bits
  71. #define TMC2130_REG_VDCMIN 0x33 // 23 bits
  72. #define TMC2130_REG_MSLUT0 0x60 // 32 bits
  73. #define TMC2130_REG_MSLUT1 0x61 // 32 bits
  74. #define TMC2130_REG_MSLUT2 0x62 // 32 bits
  75. #define TMC2130_REG_MSLUT3 0x63 // 32 bits
  76. #define TMC2130_REG_MSLUT4 0x64 // 32 bits
  77. #define TMC2130_REG_MSLUT5 0x65 // 32 bits
  78. #define TMC2130_REG_MSLUT6 0x66 // 32 bits
  79. #define TMC2130_REG_MSLUT7 0x67 // 32 bits
  80. #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
  81. #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
  82. #define TMC2130_REG_MSCNT 0x6a // 10 bits
  83. #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
  84. #define TMC2130_REG_CHOPCONF 0x6c // 32 bits
  85. #define TMC2130_REG_COOLCONF 0x6d // 25 bits
  86. #define TMC2130_REG_DCCTRL 0x6e // 24 bits
  87. #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
  88. #define TMC2130_REG_PWMCONF 0x70 // 22 bits
  89. #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
  90. #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
  91. #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
  92. uint16_t tmc2130_rd_TSTEP(uint8_t axis);
  93. uint16_t tmc2130_rd_MSCNT(uint8_t axis);
  94. uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
  95. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
  96. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
  97. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
  98. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
  99. #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval)
  100. #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, addr | 0x80, wval)
  101. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval);
  102. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval);
  103. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
  104. uint16_t __tcoolthrs(uint8_t axis)
  105. {
  106. switch (axis)
  107. {
  108. case X_AXIS: return TMC2130_TCOOLTHRS_X;
  109. case Y_AXIS: return TMC2130_TCOOLTHRS_Y;
  110. case Z_AXIS: return TMC2130_TCOOLTHRS_Z;
  111. }
  112. return 0;
  113. }
  114. void tmc2130_init()
  115. {
  116. DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
  117. WRITE(X_TMC2130_CS, HIGH);
  118. WRITE(Y_TMC2130_CS, HIGH);
  119. WRITE(Z_TMC2130_CS, HIGH);
  120. WRITE(E0_TMC2130_CS, HIGH);
  121. SET_OUTPUT(X_TMC2130_CS);
  122. SET_OUTPUT(Y_TMC2130_CS);
  123. SET_OUTPUT(Z_TMC2130_CS);
  124. SET_OUTPUT(E0_TMC2130_CS);
  125. SET_INPUT(X_TMC2130_DIAG);
  126. SET_INPUT(Y_TMC2130_DIAG);
  127. SET_INPUT(Z_TMC2130_DIAG);
  128. SET_INPUT(E0_TMC2130_DIAG);
  129. for (int axis = 0; axis < 2; axis++) // X Y axes
  130. {
  131. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  132. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  133. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  134. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  135. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  136. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  137. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  138. //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
  139. }
  140. for (int axis = 2; axis < 3; axis++) // Z axis
  141. {
  142. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  143. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  144. #ifndef TMC2130_STEALTH_Z
  145. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  146. #else //TMC2130_STEALTH_Z
  147. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  148. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  149. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  150. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  151. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  152. #endif //TMC2130_STEALTH_Z
  153. }
  154. for (int axis = 3; axis < 4; axis++) // E axis
  155. {
  156. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  157. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  158. #ifndef TMC2130_STEALTH_E
  159. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  160. #else //TMC2130_STEALTH_E
  161. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  162. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  163. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  164. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  165. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  166. #endif //TMC2130_STEALTH_E
  167. }
  168. tmc2130_sg_err[0] = 0;
  169. tmc2130_sg_err[1] = 0;
  170. tmc2130_sg_err[2] = 0;
  171. tmc2130_sg_err[3] = 0;
  172. tmc2130_sg_cnt[0] = 0;
  173. tmc2130_sg_cnt[1] = 0;
  174. tmc2130_sg_cnt[2] = 0;
  175. tmc2130_sg_cnt[3] = 0;
  176. #ifdef TMC2130_LINEARITY_CORRECTION
  177. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  178. tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
  179. tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
  180. tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
  181. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  182. tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
  183. #endif //TMC2130_LINEARITY_CORRECTION
  184. }
  185. uint8_t tmc2130_sample_diag()
  186. {
  187. uint8_t mask = 0;
  188. if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
  189. if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
  190. // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
  191. // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
  192. return mask;
  193. }
  194. extern bool is_usb_printing;
  195. void tmc2130_st_isr(uint8_t last_step_mask)
  196. {
  197. if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return;
  198. uint8_t crash = 0;
  199. uint8_t diag_mask = tmc2130_sample_diag();
  200. // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++)
  201. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++)
  202. {
  203. uint8_t mask = (X_AXIS_MASK << axis);
  204. if (diag_mask & mask) tmc2130_sg_err[axis]++;
  205. else
  206. if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--;
  207. if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis])
  208. {
  209. tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis];
  210. tmc2130_sg_change = true;
  211. uint8_t sg_thr = 64;
  212. // if (axis == Y_AXIS) sg_thr = 64;
  213. if (tmc2130_sg_err[axis] >= sg_thr)
  214. {
  215. tmc2130_sg_err[axis] = 0;
  216. crash |= mask;
  217. }
  218. }
  219. }
  220. if (tmc2130_sg_homing_axes_mask == 0)
  221. {
  222. if (tmc2130_sg_stop_on_crash && crash)
  223. {
  224. tmc2130_sg_crash = crash;
  225. tmc2130_sg_stop_on_crash = false;
  226. crashdet_stop_and_save_print();
  227. }
  228. }
  229. }
  230. bool tmc2130_update_sg()
  231. {
  232. if (tmc2130_sg_meassure <= E_AXIS)
  233. {
  234. uint32_t val32 = 0;
  235. tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
  236. tmc2130_sg_meassure_val += (val32 & 0x3ff);
  237. tmc2130_sg_meassure_cnt++;
  238. return true;
  239. }
  240. return false;
  241. }
  242. void tmc2130_home_enter(uint8_t axes_mask)
  243. {
  244. printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask);
  245. #ifdef TMC2130_SG_HOMING
  246. if (axes_mask & 0x03) //X or Y
  247. tmc2130_wait_standstill_xy(1000);
  248. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  249. {
  250. uint8_t mask = (X_AXIS_MASK << axis);
  251. if (axes_mask & mask)
  252. {
  253. tmc2130_sg_homing_axes_mask |= mask;
  254. //Configuration to spreadCycle
  255. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  256. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
  257. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  258. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  259. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
  260. if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  261. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
  262. }
  263. }
  264. #endif //TMC2130_SG_HOMING
  265. }
  266. void tmc2130_home_exit()
  267. {
  268. printf_P(PSTR("tmc2130_home_exit tmc2130_sg_homing_axes_mask=0x%02x\n"), tmc2130_sg_homing_axes_mask);
  269. #ifdef TMC2130_SG_HOMING
  270. if (tmc2130_sg_homing_axes_mask & 0x03) //X or Y
  271. tmc2130_wait_standstill_xy(1000);
  272. if (tmc2130_sg_homing_axes_mask)
  273. {
  274. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  275. {
  276. uint8_t mask = (X_AXIS_MASK << axis);
  277. if (tmc2130_sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  278. {
  279. #ifndef TMC2130_STEALTH_Z
  280. if ((tmc2130_mode == TMC2130_MODE_SILENT) && (axis != Z_AXIS))
  281. #else //TMC2130_STEALTH_Z
  282. if (tmc2130_mode == TMC2130_MODE_SILENT)
  283. #endif //TMC2130_STEALTH_Z
  284. {
  285. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
  286. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  287. // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
  288. }
  289. else
  290. {
  291. // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  292. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  293. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  294. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  295. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  296. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  297. }
  298. }
  299. }
  300. tmc2130_sg_homing_axes_mask = 0x00;
  301. }
  302. tmc2130_sg_crash = false;
  303. #endif
  304. }
  305. void tmc2130_sg_meassure_start(uint8_t axis)
  306. {
  307. tmc2130_sg_meassure = axis;
  308. tmc2130_sg_meassure_cnt = 0;
  309. tmc2130_sg_meassure_val = 0;
  310. }
  311. uint16_t tmc2130_sg_meassure_stop()
  312. {
  313. tmc2130_sg_meassure = 0xff;
  314. return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
  315. }
  316. bool tmc2130_wait_standstill_xy(int timeout)
  317. {
  318. // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout);
  319. bool standstill = false;
  320. while (!standstill && (timeout > 0))
  321. {
  322. uint32_t drv_status_x = 0;
  323. uint32_t drv_status_y = 0;
  324. tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
  325. tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
  326. // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
  327. standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
  328. tmc2130_check_overtemp();
  329. timeout--;
  330. }
  331. return standstill;
  332. }
  333. void tmc2130_check_overtemp()
  334. {
  335. static uint32_t checktime = 0;
  336. if (millis() - checktime > 1000 )
  337. {
  338. for (int i = 0; i < 4; i++)
  339. {
  340. uint32_t drv_status = 0;
  341. skip_debug_msg = true;
  342. tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
  343. if (drv_status & ((uint32_t)1 << 26))
  344. { // BIT 26 - over temp prewarning ~120C (+-20C)
  345. SERIAL_ERRORRPGM(MSG_TMC_OVERTEMP);
  346. SERIAL_ECHOLN(i);
  347. for (int j = 0; j < 4; j++)
  348. tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
  349. kill(MSG_TMC_OVERTEMP);
  350. }
  351. }
  352. checktime = millis();
  353. tmc2130_sg_change = true;
  354. }
  355. #ifdef DEBUG_CRASHDET_COUNTERS
  356. if (tmc2130_sg_change)
  357. {
  358. for (int i = 0; i < 4; i++)
  359. {
  360. tmc2130_sg_change = false;
  361. lcd.setCursor(0 + i*4, 3);
  362. lcd.print(itostr3(tmc2130_sg_cnt[i]));
  363. lcd.print(' ');
  364. }
  365. }
  366. #endif //DEBUG_CRASHDET_COUNTERS
  367. }
  368. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
  369. {
  370. uint8_t intpol = 1;
  371. uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz)
  372. uint8_t hstrt = 5; //initial 4, modified to 5
  373. uint8_t hend = 1;
  374. uint8_t fd3 = 0;
  375. uint8_t rndtf = 0; //random off time
  376. uint8_t chm = 0; //spreadCycle
  377. uint8_t tbl = 2; //blanking time
  378. if (axis == E_AXIS)
  379. {
  380. #ifdef TMC2130_CNSTOFF_E
  381. // fd = 0 (slow decay only)
  382. hstrt = 0; //fd0..2
  383. fd3 = 0; //fd3
  384. hend = 0; //sine wave offset
  385. chm = 1; // constant off time mod
  386. #endif //TMC2130_CNSTOFF_E
  387. toff = TMC2130_TOFF_E; // toff = 3-5
  388. // rndtf = 1;
  389. }
  390. if (current_r <= 31)
  391. {
  392. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
  393. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
  394. }
  395. else
  396. {
  397. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
  398. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
  399. }
  400. }
  401. void tmc2130_set_current_h(uint8_t axis, uint8_t current)
  402. {
  403. DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
  404. tmc2130_current_h[axis] = current;
  405. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  406. }
  407. void tmc2130_set_current_r(uint8_t axis, uint8_t current)
  408. {
  409. DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
  410. tmc2130_current_r[axis] = current;
  411. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  412. }
  413. void tmc2130_print_currents()
  414. {
  415. DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
  416. tmc2130_current_h[0], tmc2130_current_r[0],
  417. tmc2130_current_h[1], tmc2130_current_r[1],
  418. tmc2130_current_h[2], tmc2130_current_r[2],
  419. tmc2130_current_h[3], tmc2130_current_r[3]
  420. );
  421. }
  422. void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
  423. {
  424. MYSERIAL.print("tmc2130_set_pwm_ampl ");
  425. MYSERIAL.print((int)axis);
  426. MYSERIAL.print(" ");
  427. MYSERIAL.println((int)pwm_ampl);
  428. tmc2130_pwm_ampl[axis] = pwm_ampl;
  429. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  430. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  431. }
  432. void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
  433. {
  434. MYSERIAL.print("tmc2130_set_pwm_grad ");
  435. MYSERIAL.print((int)axis);
  436. MYSERIAL.print(" ");
  437. MYSERIAL.println((int)pwm_grad);
  438. tmc2130_pwm_grad[axis] = pwm_grad;
  439. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  440. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  441. }
  442. uint16_t tmc2130_rd_TSTEP(uint8_t axis)
  443. {
  444. uint32_t val32 = 0;
  445. tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
  446. if (val32 & 0x000f0000) return 0xffff;
  447. return val32 & 0xffff;
  448. }
  449. uint16_t tmc2130_rd_MSCNT(uint8_t axis)
  450. {
  451. uint32_t val32 = 0;
  452. tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
  453. return val32 & 0x3ff;
  454. }
  455. uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
  456. {
  457. uint32_t val32 = 0;
  458. tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
  459. return val32;
  460. }
  461. void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
  462. {
  463. uint32_t val = 0;
  464. val |= (uint32_t)start_sin;
  465. val |= ((uint32_t)start_sin90) << 16;
  466. tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
  467. //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
  468. }
  469. void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
  470. {
  471. uint32_t val = 0;
  472. val |= ((uint32_t)w0);
  473. val |= ((uint32_t)w1) << 2;
  474. val |= ((uint32_t)w2) << 4;
  475. val |= ((uint32_t)w3) << 6;
  476. val |= ((uint32_t)x1) << 8;
  477. val |= ((uint32_t)x2) << 16;
  478. val |= ((uint32_t)x3) << 24;
  479. tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
  480. //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
  481. }
  482. void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
  483. {
  484. tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
  485. //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
  486. }
  487. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
  488. {
  489. uint32_t val = 0;
  490. val |= (uint32_t)(toff & 15);
  491. val |= (uint32_t)(hstrt & 7) << 4;
  492. val |= (uint32_t)(hend & 15) << 7;
  493. val |= (uint32_t)(fd3 & 1) << 11;
  494. val |= (uint32_t)(disfdcc & 1) << 12;
  495. val |= (uint32_t)(rndtf & 1) << 13;
  496. val |= (uint32_t)(chm & 1) << 14;
  497. val |= (uint32_t)(tbl & 3) << 15;
  498. val |= (uint32_t)(vsense & 1) << 17;
  499. val |= (uint32_t)(vhighfs & 1) << 18;
  500. val |= (uint32_t)(vhighchm & 1) << 19;
  501. val |= (uint32_t)(sync & 15) << 20;
  502. val |= (uint32_t)(mres & 15) << 24;
  503. val |= (uint32_t)(intpol & 1) << 28;
  504. val |= (uint32_t)(dedge & 1) << 29;
  505. val |= (uint32_t)(diss2g & 1) << 30;
  506. tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
  507. }
  508. //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
  509. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
  510. {
  511. uint32_t val = 0;
  512. val |= (uint32_t)(pwm_ampl & 255);
  513. val |= (uint32_t)(pwm_grad & 255) << 8;
  514. val |= (uint32_t)(pwm_freq & 3) << 16;
  515. val |= (uint32_t)(pwm_auto & 1) << 18;
  516. val |= (uint32_t)(pwm_symm & 1) << 19;
  517. val |= (uint32_t)(freewheel & 3) << 20;
  518. tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
  519. // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
  520. }
  521. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
  522. {
  523. tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
  524. }
  525. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
  526. {
  527. tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
  528. }
  529. uint8_t tmc2130_usteps2mres(uint16_t usteps)
  530. {
  531. uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
  532. return mres;
  533. }
  534. inline void tmc2130_cs_low(uint8_t axis)
  535. {
  536. switch (axis)
  537. {
  538. case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
  539. case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
  540. case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
  541. case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
  542. }
  543. }
  544. inline void tmc2130_cs_high(uint8_t axis)
  545. {
  546. switch (axis)
  547. {
  548. case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
  549. case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
  550. case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
  551. case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
  552. }
  553. }
  554. //spi
  555. #define TMC2130_SPI_ENTER() spi_setup(TMC2130_SPCR, TMC2130_SPSR)
  556. #define TMC2130_SPI_TXRX spi_txrx
  557. #define TMC2130_SPI_LEAVE()
  558. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  559. {
  560. //datagram1 - request
  561. TMC2130_SPI_ENTER();
  562. tmc2130_cs_low(axis);
  563. TMC2130_SPI_TXRX(addr); // address
  564. TMC2130_SPI_TXRX((wval >> 24) & 0xff); // MSB
  565. TMC2130_SPI_TXRX((wval >> 16) & 0xff);
  566. TMC2130_SPI_TXRX((wval >> 8) & 0xff);
  567. TMC2130_SPI_TXRX(wval & 0xff); // LSB
  568. tmc2130_cs_high(axis);
  569. TMC2130_SPI_LEAVE();
  570. }
  571. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  572. {
  573. //datagram1 - request
  574. TMC2130_SPI_ENTER();
  575. tmc2130_cs_low(axis);
  576. TMC2130_SPI_TXRX(addr); // address
  577. TMC2130_SPI_TXRX(0); // MSB
  578. TMC2130_SPI_TXRX(0);
  579. TMC2130_SPI_TXRX(0);
  580. TMC2130_SPI_TXRX(0); // LSB
  581. tmc2130_cs_high(axis);
  582. TMC2130_SPI_LEAVE();
  583. //datagram2 - response
  584. TMC2130_SPI_ENTER();
  585. tmc2130_cs_low(axis);
  586. uint8_t stat = TMC2130_SPI_TXRX(0); // status
  587. uint32_t val32 = 0;
  588. val32 = TMC2130_SPI_TXRX(0); // MSB
  589. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  590. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  591. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); // LSB
  592. tmc2130_cs_high(axis);
  593. TMC2130_SPI_LEAVE();
  594. if (rval != 0) *rval = val32;
  595. return stat;
  596. }
  597. void tmc2130_eeprom_load_config()
  598. {
  599. }
  600. void tmc2130_eeprom_save_config()
  601. {
  602. }
  603. #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
  604. #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
  605. #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
  606. #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
  607. #define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
  608. #define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
  609. #define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
  610. #define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
  611. #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
  612. #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
  613. #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
  614. #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
  615. #define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
  616. #define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
  617. #define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
  618. #define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
  619. #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
  620. #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
  621. #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
  622. #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
  623. uint16_t tmc2130_get_res(uint8_t axis)
  624. {
  625. return tmc2130_mres2usteps(tmc2130_mres[axis]);
  626. }
  627. void tmc2130_set_res(uint8_t axis, uint16_t res)
  628. {
  629. tmc2130_mres[axis] = tmc2130_usteps2mres(res);
  630. // uint32_t u = micros();
  631. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  632. // u = micros() - u;
  633. // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
  634. }
  635. uint8_t tmc2130_get_pwr(uint8_t axis)
  636. {
  637. switch (axis)
  638. {
  639. case X_AXIS: return _GET_PWR_X;
  640. case Y_AXIS: return _GET_PWR_Y;
  641. case Z_AXIS: return _GET_PWR_Z;
  642. case E_AXIS: return _GET_PWR_E;
  643. }
  644. return 0;
  645. }
  646. void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
  647. {
  648. switch (axis)
  649. {
  650. case X_AXIS: _SET_PWR_X(pwr); break;
  651. case Y_AXIS: _SET_PWR_Y(pwr); break;
  652. case Z_AXIS: _SET_PWR_Z(pwr); break;
  653. case E_AXIS: _SET_PWR_E(pwr); break;
  654. }
  655. }
  656. uint8_t tmc2130_get_inv(uint8_t axis)
  657. {
  658. switch (axis)
  659. {
  660. case X_AXIS: return INVERT_X_DIR;
  661. case Y_AXIS: return INVERT_Y_DIR;
  662. case Z_AXIS: return INVERT_Z_DIR;
  663. case E_AXIS: return INVERT_E0_DIR;
  664. }
  665. return 0;
  666. }
  667. uint8_t tmc2130_get_dir(uint8_t axis)
  668. {
  669. switch (axis)
  670. {
  671. case X_AXIS: return _GET_DIR_X;
  672. case Y_AXIS: return _GET_DIR_Y;
  673. case Z_AXIS: return _GET_DIR_Z;
  674. case E_AXIS: return _GET_DIR_E;
  675. }
  676. return 0;
  677. }
  678. void tmc2130_set_dir(uint8_t axis, uint8_t dir)
  679. {
  680. switch (axis)
  681. {
  682. case X_AXIS: _SET_DIR_X(dir); break;
  683. case Y_AXIS: _SET_DIR_Y(dir); break;
  684. case Z_AXIS: _SET_DIR_Z(dir); break;
  685. case E_AXIS: _SET_DIR_E(dir); break;
  686. }
  687. }
  688. void tmc2130_do_step(uint8_t axis)
  689. {
  690. switch (axis)
  691. {
  692. case X_AXIS: _DO_STEP_X; break;
  693. case Y_AXIS: _DO_STEP_Y; break;
  694. case Z_AXIS: _DO_STEP_Z; break;
  695. case E_AXIS: _DO_STEP_E; break;
  696. }
  697. }
  698. void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
  699. {
  700. tmc2130_set_dir(axis, dir);
  701. delayMicroseconds(100);
  702. while (steps--)
  703. {
  704. tmc2130_do_step(axis);
  705. delayMicroseconds(delay_us);
  706. }
  707. }
  708. void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
  709. {
  710. printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
  711. uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256 >> shift)) break;
  712. uint16_t cnt = 4 * (1 << (8 - shift));
  713. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  714. if (dir == 2)
  715. {
  716. dir = tmc2130_get_inv(axis)?0:1;
  717. int steps = (int)step - (int)(mscnt >> shift);
  718. if (steps < 0)
  719. {
  720. dir ^= 1;
  721. steps = -steps;
  722. }
  723. if (steps > (cnt / 2))
  724. {
  725. dir ^= 1;
  726. steps = cnt - steps;
  727. }
  728. cnt = steps;
  729. }
  730. tmc2130_set_dir(axis, dir);
  731. delayMicroseconds(100);
  732. mscnt = tmc2130_rd_MSCNT(axis);
  733. while ((cnt--) && ((mscnt >> shift) != step))
  734. {
  735. tmc2130_do_step(axis);
  736. delayMicroseconds(delay_us);
  737. mscnt = tmc2130_rd_MSCNT(axis);
  738. }
  739. }
  740. void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
  741. {
  742. uint8_t pwr = tmc2130_get_pwr(axis);
  743. tmc2130_set_pwr(axis, 0);
  744. tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
  745. tmc2130_goto_step(axis, 0, 2, 100, 256);
  746. tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
  747. for (int i = 0; i <= 255; i++)
  748. {
  749. uint32_t val = tmc2130_rd_MSCURACT(axis);
  750. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  751. int curA = (val & 0xff) | ((val << 7) & 0x8000);
  752. if (stream)
  753. {
  754. if (mscnt == i)
  755. fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
  756. else //TODO - remove this check
  757. fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
  758. }
  759. if (data) *(data++) = curA;
  760. tmc2130_do_step(axis);
  761. delayMicroseconds(100);
  762. }
  763. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  764. }
  765. void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000)
  766. {
  767. // TMC2130 wave compression algorithm
  768. // optimized for minimal memory requirements
  769. printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000);
  770. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  771. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  772. float fac = 0;
  773. if (fac1000) fac = (float)((uint16_t)fac1000 + 1000) / 1000; //correction factor
  774. printf_P(PSTR(" factor: %s\n"), ftostr43(fac));
  775. uint8_t vA = 0; //value of currentA
  776. uint8_t va = 0; //previous vA
  777. uint8_t d0 = 0; //delta0
  778. uint8_t d1 = 1; //delta1
  779. uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
  780. uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
  781. uint8_t s = 0; //current segment
  782. int8_t b; //encoded bit value
  783. uint8_t dA; //delta value
  784. int i; //microstep index
  785. uint32_t reg; //tmc2130 register
  786. tmc2130_wr_MSLUTSTART(axis, 0, amp);
  787. for (i = 0; i < 256; i++)
  788. {
  789. if ((i & 31) == 0)
  790. reg = 0;
  791. // calculate value
  792. if (fac == 0) // default TMC wave
  793. vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
  794. else // corrected wave
  795. vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
  796. dA = vA - va; // calculate delta
  797. va = vA;
  798. b = -1;
  799. if (dA == d0) b = 0; //delta == delta0 => bit=0
  800. else if (dA == d1) b = 1; //delta == delta1 => bit=1
  801. else
  802. {
  803. if (dA < d0) // delta < delta0 => switch wbit down
  804. {
  805. //printf("dn\n");
  806. b = 0;
  807. switch (dA)
  808. {
  809. case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
  810. case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
  811. case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
  812. default: b = -1; break;
  813. }
  814. if (b >= 0) { x[s] = i; s++; }
  815. }
  816. else if (dA > d1) // delta > delta0 => switch wbit up
  817. {
  818. //printf("up\n");
  819. b = 1;
  820. switch (dA)
  821. {
  822. case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
  823. case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
  824. case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
  825. default: b = -1; break;
  826. }
  827. if (b >= 0) { x[s] = i; s++; }
  828. }
  829. }
  830. if (b < 0) break; // delta out of range (<-1 or >3)
  831. if (s > 3) break; // segment out of range (> 3)
  832. //printf("%d\n", vA);
  833. if (b == 1) reg |= 0x80000000;
  834. if ((i & 31) == 31)
  835. tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
  836. else
  837. reg >>= 1;
  838. // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
  839. }
  840. tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
  841. }
  842. void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
  843. {
  844. uint8_t changed = 1;
  845. while (changed)
  846. {
  847. changed = 0;
  848. for (uint8_t i = 0; i < (size - 1); i++)
  849. if (data[i] > data[i+1])
  850. {
  851. uint8_t register d = data[i];
  852. data[i] = data[i+1];
  853. data[i+1] = d;
  854. if (data2)
  855. {
  856. d = data2[i];
  857. data2[i] = data2[i+1];
  858. data2[i+1] = d;
  859. }
  860. changed = 1;
  861. }
  862. }
  863. }
  864. uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
  865. {
  866. uint8_t cnt = 1;
  867. uint16_t sum = data[0];
  868. uint8_t cl = 0;
  869. for (uint8_t i = 1; i < size; i++)
  870. {
  871. uint8_t d = data[i];
  872. uint8_t val = sum / cnt;
  873. uint8_t dif = 0;
  874. if (val > d) dif = val - d;
  875. else dif = d - val;
  876. if (dif <= tol)
  877. {
  878. cnt += 1;
  879. sum += d;
  880. }
  881. else
  882. {
  883. if (ccnt) ccnt[cl] = cnt;
  884. if (cval) cval[cl] = val;
  885. cnt = 1;
  886. sum = d;
  887. cl += 1;
  888. }
  889. }
  890. if (ccnt) ccnt[cl] = cnt;
  891. if (cval) cval[cl] = sum / cnt;
  892. return ++cl;
  893. }
  894. bool tmc2130_home_calibrate(uint8_t axis)
  895. {
  896. uint8_t step[16];
  897. uint8_t cnt[16];
  898. uint8_t val[16];
  899. homeaxis(axis, 16, step);
  900. bubblesort_uint8(step, 16, 0);
  901. printf_P(PSTR("sorted samples:\n"));
  902. for (uint8_t i = 0; i < 16; i++)
  903. printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
  904. uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
  905. printf_P(PSTR("clusters:\n"));
  906. for (uint8_t i = 0; i < cl; i++)
  907. printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
  908. bubblesort_uint8(cnt, cl, val);
  909. tmc2130_home_origin[axis] = val[cl-1];
  910. printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
  911. if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
  912. else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
  913. return true;
  914. }
  915. #endif //TMC2130