mmu.cpp 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. #include "sound.h"
  13. #include "printers.h"
  14. #include <avr/pgmspace.h>
  15. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  16. #define MMU_TODELAY 100
  17. #define MMU_TIMEOUT 10
  18. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  19. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  20. #ifdef MMU_HWRESET
  21. #define MMU_RST_PIN 76
  22. #endif //MMU_HWRESET
  23. bool mmu_enabled = false;
  24. bool mmu_ready = false;
  25. static int8_t mmu_state = 0;
  26. uint8_t mmu_cmd = 0;
  27. uint8_t mmu_extruder = 0;
  28. //! This variable probably has no meaning and is planed to be removed
  29. uint8_t tmp_extruder = 0;
  30. int8_t mmu_finda = -1;
  31. int16_t mmu_version = -1;
  32. int16_t mmu_buildnr = -1;
  33. uint32_t mmu_last_request = 0;
  34. uint32_t mmu_last_response = 0;
  35. //clear rx buffer
  36. void mmu_clr_rx_buf(void)
  37. {
  38. while (fgetc(uart2io) >= 0);
  39. }
  40. //send command - puts
  41. int mmu_puts_P(const char* str)
  42. {
  43. mmu_clr_rx_buf(); //clear rx buffer
  44. int r = fputs_P(str, uart2io); //send command
  45. mmu_last_request = millis();
  46. return r;
  47. }
  48. //send command - printf
  49. int mmu_printf_P(const char* format, ...)
  50. {
  51. va_list args;
  52. va_start(args, format);
  53. mmu_clr_rx_buf(); //clear rx buffer
  54. int r = vfprintf_P(uart2io, format, args); //send command
  55. va_end(args);
  56. mmu_last_request = millis();
  57. return r;
  58. }
  59. //check 'ok' response
  60. int8_t mmu_rx_ok(void)
  61. {
  62. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  63. if (res == 1) mmu_last_response = millis();
  64. return res;
  65. }
  66. //check 'start' response
  67. int8_t mmu_rx_start(void)
  68. {
  69. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  70. if (res == 1) mmu_last_response = millis();
  71. return res;
  72. }
  73. //initialize mmu2 unit - first part - should be done at begining of startup process
  74. void mmu_init(void)
  75. {
  76. #ifdef MMU_HWRESET
  77. digitalWrite(MMU_RST_PIN, HIGH);
  78. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  79. #endif //MMU_HWRESET
  80. uart2_init(); //init uart2
  81. _delay_ms(10); //wait 10ms for sure
  82. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  83. mmu_state = -1;
  84. }
  85. //mmu main loop - state machine processing
  86. void mmu_loop(void)
  87. {
  88. int filament = 0;
  89. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  90. switch (mmu_state)
  91. {
  92. case 0:
  93. return;
  94. case -1:
  95. if (mmu_rx_start() > 0)
  96. {
  97. #ifdef MMU_DEBUG
  98. puts_P(PSTR("MMU => 'start'"));
  99. puts_P(PSTR("MMU <= 'S1'"));
  100. #endif //MMU_DEBUG
  101. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  102. mmu_state = -2;
  103. }
  104. else if (millis() > 30000) //30sec after reset disable mmu
  105. {
  106. puts_P(PSTR("MMU not responding - DISABLED"));
  107. mmu_state = 0;
  108. }
  109. return;
  110. case -2:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  114. #ifdef MMU_DEBUG
  115. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  116. puts_P(PSTR("MMU <= 'S2'"));
  117. #endif //MMU_DEBUG
  118. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  119. mmu_state = -3;
  120. }
  121. return;
  122. case -3:
  123. if (mmu_rx_ok() > 0)
  124. {
  125. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  126. #ifdef MMU_DEBUG
  127. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  128. #endif //MMU_DEBUG
  129. bool version_valid = mmu_check_version();
  130. if (!version_valid) mmu_show_warning();
  131. else puts_P(PSTR("MMU version valid"));
  132. if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
  133. {
  134. #ifdef MMU_DEBUG
  135. puts_P(PSTR("MMU <= 'P0'"));
  136. #endif //MMU_DEBUG
  137. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  138. mmu_state = -4;
  139. }
  140. else
  141. {
  142. #ifdef MMU_DEBUG
  143. puts_P(PSTR("MMU <= 'M1'"));
  144. #endif //MMU_DEBUG
  145. mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
  146. mmu_state = -5;
  147. }
  148. }
  149. return;
  150. case -5:
  151. if (mmu_rx_ok() > 0)
  152. {
  153. #ifdef MMU_DEBUG
  154. puts_P(PSTR("MMU <= 'P0'"));
  155. #endif //MMU_DEBUG
  156. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  157. mmu_state = -4;
  158. }
  159. return;
  160. case -4:
  161. if (mmu_rx_ok() > 0)
  162. {
  163. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  164. #ifdef MMU_DEBUG
  165. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  166. #endif //MMU_DEBUG
  167. puts_P(PSTR("MMU - ENABLED"));
  168. mmu_enabled = true;
  169. mmu_state = 1;
  170. }
  171. return;
  172. case 1:
  173. if (mmu_cmd) //command request ?
  174. {
  175. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  176. {
  177. filament = mmu_cmd - MMU_CMD_T0;
  178. #ifdef MMU_DEBUG
  179. printf_P(PSTR("MMU <= 'T%d'\n"), filament);
  180. #endif //MMU_DEBUG
  181. mmu_printf_P(PSTR("T%d\n"), filament);
  182. mmu_state = 3; // wait for response
  183. }
  184. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  185. {
  186. filament = mmu_cmd - MMU_CMD_L0;
  187. #ifdef MMU_DEBUG
  188. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  189. #endif //MMU_DEBUG
  190. mmu_printf_P(PSTR("L%d\n"), filament);
  191. mmu_state = 3; // wait for response
  192. }
  193. else if (mmu_cmd == MMU_CMD_C0)
  194. {
  195. #ifdef MMU_DEBUG
  196. printf_P(PSTR("MMU <= 'C0'\n"));
  197. #endif //MMU_DEBUG
  198. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  199. mmu_state = 3;
  200. }
  201. else if (mmu_cmd == MMU_CMD_U0)
  202. {
  203. #ifdef MMU_DEBUG
  204. printf_P(PSTR("MMU <= 'U0'\n"));
  205. #endif //MMU_DEBUG
  206. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  207. mmu_state = 3;
  208. }
  209. else if ((mmu_cmd >= MMU_CMD_E0) && (mmu_cmd <= MMU_CMD_E4))
  210. {
  211. int filament = mmu_cmd - MMU_CMD_E0;
  212. #ifdef MMU_DEBUG
  213. printf_P(PSTR("MMU <= 'E%d'\n"), filament);
  214. #endif //MMU_DEBUG
  215. mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
  216. mmu_state = 3; // wait for response
  217. }
  218. else if (mmu_cmd == MMU_CMD_R0)
  219. {
  220. #ifdef MMU_DEBUG
  221. printf_P(PSTR("MMU <= 'R0'\n"));
  222. #endif //MMU_DEBUG
  223. mmu_puts_P(PSTR("R0\n")); //send recover after eject
  224. mmu_state = 3; // wait for response
  225. }
  226. mmu_cmd = 0;
  227. }
  228. else if ((mmu_last_response + 300) < millis()) //request every 300ms
  229. {
  230. #ifdef MMU_DEBUG
  231. puts_P(PSTR("MMU <= 'P0'"));
  232. #endif //MMU_DEBUG
  233. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  234. mmu_state = 2;
  235. }
  236. return;
  237. case 2: //response to command P0
  238. if (mmu_rx_ok() > 0)
  239. {
  240. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  241. #ifdef MMU_DEBUG
  242. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  243. #endif //MMU_DEBUG
  244. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  245. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  246. fsensor_stop_and_save_print();
  247. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  248. if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  249. else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  250. }
  251. mmu_state = 1;
  252. if (mmu_cmd == 0)
  253. mmu_ready = true;
  254. }
  255. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  256. { //resend request after timeout (30s)
  257. mmu_state = 1;
  258. }
  259. return;
  260. case 3: //response to mmu commands
  261. if (mmu_rx_ok() > 0)
  262. {
  263. #ifdef MMU_DEBUG
  264. printf_P(PSTR("MMU => 'ok'\n"));
  265. #endif //MMU_DEBUG
  266. mmu_ready = true;
  267. mmu_state = 1;
  268. }
  269. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  270. { //resend request after timeout (5 min)
  271. mmu_state = 1;
  272. }
  273. return;
  274. }
  275. }
  276. void mmu_reset(void)
  277. {
  278. #ifdef MMU_HWRESET //HW - pulse reset pin
  279. digitalWrite(MMU_RST_PIN, LOW);
  280. _delay_us(100);
  281. digitalWrite(MMU_RST_PIN, HIGH);
  282. #else //SW - send X0 command
  283. mmu_puts_P(PSTR("X0\n"));
  284. #endif
  285. }
  286. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  287. {
  288. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  289. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  290. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  291. while ((mmu_rx_ok() <= 0) && (--timeout))
  292. delay_keep_alive(MMU_TODELAY);
  293. return timeout?1:0;
  294. }
  295. void mmu_command(uint8_t cmd)
  296. {
  297. mmu_cmd = cmd;
  298. mmu_ready = false;
  299. }
  300. bool mmu_get_response(void)
  301. {
  302. // printf_P(PSTR("mmu_get_response - begin\n"));
  303. KEEPALIVE_STATE(IN_PROCESS);
  304. while (mmu_cmd != 0)
  305. {
  306. // mmu_loop();
  307. delay_keep_alive(100);
  308. }
  309. while (!mmu_ready)
  310. {
  311. // mmu_loop();
  312. if (mmu_state != 3)
  313. break;
  314. delay_keep_alive(100);
  315. }
  316. bool ret = mmu_ready;
  317. mmu_ready = false;
  318. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  319. return ret;
  320. /* //waits for "ok" from mmu
  321. //function returns true if "ok" was received
  322. //if timeout is set to true function return false if there is no "ok" received before timeout
  323. bool response = true;
  324. LongTimer mmu_get_reponse_timeout;
  325. KEEPALIVE_STATE(IN_PROCESS);
  326. mmu_get_reponse_timeout.start();
  327. while (mmu_rx_ok() <= 0)
  328. {
  329. delay_keep_alive(100);
  330. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  331. { //5 minutes timeout
  332. response = false;
  333. break;
  334. }
  335. }
  336. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  337. return response;*/
  338. }
  339. void manage_response(bool move_axes, bool turn_off_nozzle)
  340. {
  341. bool response = false;
  342. mmu_print_saved = false;
  343. bool lcd_update_was_enabled = false;
  344. float hotend_temp_bckp = degTargetHotend(active_extruder);
  345. float z_position_bckp = current_position[Z_AXIS];
  346. float x_position_bckp = current_position[X_AXIS];
  347. float y_position_bckp = current_position[Y_AXIS];
  348. while(!response)
  349. {
  350. response = mmu_get_response(); //wait for "ok" from mmu
  351. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  352. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  353. if (lcd_update_enabled) {
  354. lcd_update_was_enabled = true;
  355. lcd_update_enable(false);
  356. }
  357. st_synchronize();
  358. mmu_print_saved = true;
  359. printf_P(PSTR("MMU not responding\n"));
  360. hotend_temp_bckp = degTargetHotend(active_extruder);
  361. if (move_axes) {
  362. z_position_bckp = current_position[Z_AXIS];
  363. x_position_bckp = current_position[X_AXIS];
  364. y_position_bckp = current_position[Y_AXIS];
  365. //lift z
  366. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  367. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  369. st_synchronize();
  370. //Move XY to side
  371. current_position[X_AXIS] = X_PAUSE_POS;
  372. current_position[Y_AXIS] = Y_PAUSE_POS;
  373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  374. st_synchronize();
  375. }
  376. if (turn_off_nozzle) {
  377. //set nozzle target temperature to 0
  378. setAllTargetHotends(0);
  379. }
  380. }
  381. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  382. delay_keep_alive(1000);
  383. }
  384. else if (mmu_print_saved) {
  385. printf_P(PSTR("MMU starts responding\n"));
  386. if (turn_off_nozzle)
  387. {
  388. lcd_clear();
  389. setTargetHotend(hotend_temp_bckp, active_extruder);
  390. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  391. delay_keep_alive(3000);
  392. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  393. {
  394. delay_keep_alive(1000);
  395. lcd_wait_for_heater();
  396. }
  397. }
  398. if (move_axes) {
  399. lcd_clear();
  400. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  401. current_position[X_AXIS] = x_position_bckp;
  402. current_position[Y_AXIS] = y_position_bckp;
  403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  404. st_synchronize();
  405. current_position[Z_AXIS] = z_position_bckp;
  406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  407. st_synchronize();
  408. }
  409. else {
  410. lcd_clear();
  411. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  412. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  413. }
  414. }
  415. }
  416. if (lcd_update_was_enabled) lcd_update_enable(true);
  417. }
  418. //! @brief load filament to nozzle of multimaterial printer
  419. //!
  420. //! This function is used only only after T? (user select filament) and M600 (change filament).
  421. //! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
  422. //! filament to nozzle.
  423. //!
  424. void mmu_load_to_nozzle()
  425. {
  426. st_synchronize();
  427. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  428. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  429. current_position[E_AXIS] += 7.2f;
  430. float feedrate = 562;
  431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  432. st_synchronize();
  433. current_position[E_AXIS] += 14.4f;
  434. feedrate = 871;
  435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  436. st_synchronize();
  437. current_position[E_AXIS] += 36.0f;
  438. feedrate = 1393;
  439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  440. st_synchronize();
  441. current_position[E_AXIS] += 14.4f;
  442. feedrate = 871;
  443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  444. st_synchronize();
  445. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  446. }
  447. void mmu_M600_wait_and_beep() {
  448. //Beep and wait for user to remove old filament and prepare new filament for load
  449. KEEPALIVE_STATE(PAUSED_FOR_USER);
  450. int counterBeep = 0;
  451. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
  452. bool bFirst=true;
  453. while (!lcd_clicked()){
  454. manage_heater();
  455. manage_inactivity(true);
  456. #if BEEPER > 0
  457. if (counterBeep == 500) {
  458. counterBeep = 0;
  459. }
  460. SET_OUTPUT(BEEPER);
  461. if (counterBeep == 0) {
  462. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  463. {
  464. bFirst=false;
  465. WRITE(BEEPER, HIGH);
  466. }
  467. }
  468. if (counterBeep == 20) {
  469. WRITE(BEEPER, LOW);
  470. }
  471. counterBeep++;
  472. #endif //BEEPER > 0
  473. delay_keep_alive(4);
  474. }
  475. WRITE(BEEPER, LOW);
  476. }
  477. void mmu_M600_load_filament(bool automatic)
  478. {
  479. //load filament for mmu v2
  480. tmp_extruder = mmu_extruder;
  481. if (!automatic) {
  482. #ifdef MMU_M600_SWITCH_EXTRUDER
  483. bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  484. if(yes) tmp_extruder = choose_extruder_menu();
  485. #endif //MMU_M600_SWITCH_EXTRUDER
  486. }
  487. else {
  488. tmp_extruder = (tmp_extruder+1)%5;
  489. }
  490. lcd_update_enable(false);
  491. lcd_clear();
  492. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  493. lcd_print(" ");
  494. lcd_print(tmp_extruder + 1);
  495. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  496. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  497. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  498. mmu_command(MMU_CMD_T0 + tmp_extruder);
  499. manage_response(false, true);
  500. mmu_command(MMU_CMD_C0);
  501. mmu_extruder = tmp_extruder; //filament change is finished
  502. mmu_load_to_nozzle();
  503. st_synchronize();
  504. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  506. }
  507. void extr_mov(float shift, float feed_rate)
  508. { //move extruder no matter what the current heater temperature is
  509. set_extrude_min_temp(.0);
  510. current_position[E_AXIS] += shift;
  511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  512. set_extrude_min_temp(EXTRUDE_MINTEMP);
  513. }
  514. void change_extr(int
  515. #ifdef SNMM
  516. extr
  517. #endif //SNMM
  518. ) { //switches multiplexer for extruders
  519. #ifdef SNMM
  520. st_synchronize();
  521. delay(100);
  522. disable_e0();
  523. disable_e1();
  524. disable_e2();
  525. mmu_extruder = extr;
  526. pinMode(E_MUX0_PIN, OUTPUT);
  527. pinMode(E_MUX1_PIN, OUTPUT);
  528. switch (extr) {
  529. case 1:
  530. WRITE(E_MUX0_PIN, HIGH);
  531. WRITE(E_MUX1_PIN, LOW);
  532. break;
  533. case 2:
  534. WRITE(E_MUX0_PIN, LOW);
  535. WRITE(E_MUX1_PIN, HIGH);
  536. break;
  537. case 3:
  538. WRITE(E_MUX0_PIN, HIGH);
  539. WRITE(E_MUX1_PIN, HIGH);
  540. break;
  541. default:
  542. WRITE(E_MUX0_PIN, LOW);
  543. WRITE(E_MUX1_PIN, LOW);
  544. break;
  545. }
  546. delay(100);
  547. #endif
  548. }
  549. int get_ext_nr()
  550. { //reads multiplexer input pins and return current extruder number (counted from 0)
  551. #ifndef SNMM
  552. return(mmu_extruder); //update needed
  553. #else
  554. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  555. #endif
  556. }
  557. void display_loading()
  558. {
  559. switch (mmu_extruder)
  560. {
  561. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  562. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  563. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  564. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  565. }
  566. }
  567. void extr_adj(int extruder) //loading filament for SNMM
  568. {
  569. #ifndef SNMM
  570. uint8_t cmd = MMU_CMD_L0 + extruder;
  571. if (cmd > MMU_CMD_L4)
  572. {
  573. printf_P(PSTR("Filament out of range %d \n"),extruder);
  574. return;
  575. }
  576. mmu_command(cmd);
  577. //show which filament is currently loaded
  578. lcd_update_enable(false);
  579. lcd_clear();
  580. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  581. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  582. //else lcd.print(" ");
  583. lcd_print(" ");
  584. lcd_print(extruder + 1);
  585. // get response
  586. manage_response(false, false);
  587. lcd_update_enable(true);
  588. //lcd_return_to_status();
  589. #else
  590. bool correct;
  591. max_feedrate[E_AXIS] =80;
  592. //max_feedrate[E_AXIS] = 50;
  593. START:
  594. lcd_clear();
  595. lcd_set_cursor(0, 0);
  596. switch (extruder) {
  597. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  598. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  599. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  600. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  601. }
  602. KEEPALIVE_STATE(PAUSED_FOR_USER);
  603. do{
  604. extr_mov(0.001,1000);
  605. delay_keep_alive(2);
  606. } while (!lcd_clicked());
  607. //delay_keep_alive(500);
  608. KEEPALIVE_STATE(IN_HANDLER);
  609. st_synchronize();
  610. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  611. //if (!correct) goto START;
  612. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  613. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  614. extr_mov(bowden_length[extruder], 500);
  615. lcd_clear();
  616. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  617. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  618. else lcd_print(" ");
  619. lcd_print(mmu_extruder + 1);
  620. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  621. st_synchronize();
  622. max_feedrate[E_AXIS] = 50;
  623. lcd_update_enable(true);
  624. lcd_return_to_status();
  625. lcdDrawUpdate = 2;
  626. #endif
  627. }
  628. struct E_step
  629. {
  630. float extrude; //!< extrude distance in mm
  631. float feed_rate; //!< feed rate in mm/s
  632. };
  633. static const E_step ramming_sequence[] PROGMEM =
  634. {
  635. {1.0, 1000.0/60},
  636. {1.0, 1500.0/60},
  637. {2.0, 2000.0/60},
  638. {1.5, 3000.0/60},
  639. {2.5, 4000.0/60},
  640. {-15.0, 5000.0/60},
  641. {-14.0, 1200.0/60},
  642. {-6.0, 600.0/60},
  643. {10.0, 700.0/60},
  644. {-10.0, 400.0/60},
  645. {-50.0, 2000.0/60},
  646. };
  647. //! @brief Unload sequence to optimize shape of the tip of the unloaded filament
  648. static void filament_ramming()
  649. {
  650. for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
  651. {
  652. current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
  653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  654. current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
  655. st_synchronize();
  656. }
  657. }
  658. void extr_unload()
  659. { //unload just current filament for multimaterial printers
  660. #ifdef SNMM
  661. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  662. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  663. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  664. #endif
  665. if (degHotend0() > EXTRUDE_MINTEMP)
  666. {
  667. #ifndef SNMM
  668. st_synchronize();
  669. //show which filament is currently unloaded
  670. lcd_update_enable(false);
  671. lcd_clear();
  672. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  673. lcd_print(" ");
  674. lcd_print(mmu_extruder + 1);
  675. filament_ramming();
  676. mmu_command(MMU_CMD_U0);
  677. // get response
  678. manage_response(false, true);
  679. lcd_update_enable(true);
  680. #else //SNMM
  681. lcd_clear();
  682. lcd_display_message_fullscreen_P(PSTR(""));
  683. max_feedrate[E_AXIS] = 50;
  684. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  685. lcd_print(" ");
  686. lcd_print(mmu_extruder + 1);
  687. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  688. if (current_position[Z_AXIS] < 15) {
  689. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  691. }
  692. current_position[E_AXIS] += 10; //extrusion
  693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  694. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  695. if (current_temperature[0] < 230) { //PLA & all other filaments
  696. current_position[E_AXIS] += 5.4;
  697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  698. current_position[E_AXIS] += 3.2;
  699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  700. current_position[E_AXIS] += 3;
  701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  702. }
  703. else { //ABS
  704. current_position[E_AXIS] += 3.1;
  705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  706. current_position[E_AXIS] += 3.1;
  707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  708. current_position[E_AXIS] += 4;
  709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  710. /*current_position[X_AXIS] += 23; //delay
  711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  712. current_position[X_AXIS] -= 23; //delay
  713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  714. delay_keep_alive(4700);
  715. }
  716. max_feedrate[E_AXIS] = 80;
  717. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  719. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  721. st_synchronize();
  722. //st_current_init();
  723. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  724. else st_current_set(2, tmp_motor_loud[2]);
  725. lcd_update_enable(true);
  726. lcd_return_to_status();
  727. max_feedrate[E_AXIS] = 50;
  728. #endif //SNMM
  729. }
  730. else
  731. {
  732. lcd_clear();
  733. lcd_set_cursor(0, 0);
  734. lcd_puts_P(_T(MSG_ERROR));
  735. lcd_set_cursor(0, 2);
  736. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  737. delay(2000);
  738. lcd_clear();
  739. }
  740. //lcd_return_to_status();
  741. }
  742. //wrapper functions for loading filament
  743. void extr_adj_0()
  744. {
  745. #ifndef SNMM
  746. enquecommand_P(PSTR("M701 E0"));
  747. #else
  748. change_extr(0);
  749. extr_adj(0);
  750. #endif
  751. }
  752. void extr_adj_1()
  753. {
  754. #ifndef SNMM
  755. enquecommand_P(PSTR("M701 E1"));
  756. #else
  757. change_extr(1);
  758. extr_adj(1);
  759. #endif
  760. }
  761. void extr_adj_2()
  762. {
  763. #ifndef SNMM
  764. enquecommand_P(PSTR("M701 E2"));
  765. #else
  766. change_extr(2);
  767. extr_adj(2);
  768. #endif
  769. }
  770. void extr_adj_3()
  771. {
  772. #ifndef SNMM
  773. enquecommand_P(PSTR("M701 E3"));
  774. #else
  775. change_extr(3);
  776. extr_adj(3);
  777. #endif
  778. }
  779. void extr_adj_4()
  780. {
  781. #ifndef SNMM
  782. enquecommand_P(PSTR("M701 E4"));
  783. #else
  784. change_extr(4);
  785. extr_adj(4);
  786. #endif
  787. }
  788. void mmu_eject_fil_0()
  789. {
  790. mmu_eject_filament(0, true);
  791. }
  792. void mmu_eject_fil_1()
  793. {
  794. mmu_eject_filament(1, true);
  795. }
  796. void mmu_eject_fil_2()
  797. {
  798. mmu_eject_filament(2, true);
  799. }
  800. void mmu_eject_fil_3()
  801. {
  802. mmu_eject_filament(3, true);
  803. }
  804. void mmu_eject_fil_4()
  805. {
  806. mmu_eject_filament(4, true);
  807. }
  808. void load_all()
  809. {
  810. #ifndef SNMM
  811. enquecommand_P(PSTR("M701 E0"));
  812. enquecommand_P(PSTR("M701 E1"));
  813. enquecommand_P(PSTR("M701 E2"));
  814. enquecommand_P(PSTR("M701 E3"));
  815. enquecommand_P(PSTR("M701 E4"));
  816. #else
  817. for (int i = 0; i < 4; i++)
  818. {
  819. change_extr(i);
  820. extr_adj(i);
  821. }
  822. #endif
  823. }
  824. //wrapper functions for changing extruders
  825. void extr_change_0()
  826. {
  827. change_extr(0);
  828. lcd_return_to_status();
  829. }
  830. void extr_change_1()
  831. {
  832. change_extr(1);
  833. lcd_return_to_status();
  834. }
  835. void extr_change_2()
  836. {
  837. change_extr(2);
  838. lcd_return_to_status();
  839. }
  840. void extr_change_3()
  841. {
  842. change_extr(3);
  843. lcd_return_to_status();
  844. }
  845. #ifdef SNMM
  846. //wrapper functions for unloading filament
  847. void extr_unload_all()
  848. {
  849. if (degHotend0() > EXTRUDE_MINTEMP)
  850. {
  851. for (int i = 0; i < 4; i++)
  852. {
  853. change_extr(i);
  854. extr_unload();
  855. }
  856. }
  857. else
  858. {
  859. lcd_clear();
  860. lcd_set_cursor(0, 0);
  861. lcd_puts_P(_T(MSG_ERROR));
  862. lcd_set_cursor(0, 2);
  863. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  864. delay(2000);
  865. lcd_clear();
  866. lcd_return_to_status();
  867. }
  868. }
  869. //unloading just used filament (for snmm)
  870. void extr_unload_used()
  871. {
  872. if (degHotend0() > EXTRUDE_MINTEMP) {
  873. for (int i = 0; i < 4; i++) {
  874. if (snmm_filaments_used & (1 << i)) {
  875. change_extr(i);
  876. extr_unload();
  877. }
  878. }
  879. snmm_filaments_used = 0;
  880. }
  881. else {
  882. lcd_clear();
  883. lcd_set_cursor(0, 0);
  884. lcd_puts_P(_T(MSG_ERROR));
  885. lcd_set_cursor(0, 2);
  886. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  887. delay(2000);
  888. lcd_clear();
  889. lcd_return_to_status();
  890. }
  891. }
  892. #endif //SNMM
  893. void extr_unload_0()
  894. {
  895. change_extr(0);
  896. extr_unload();
  897. }
  898. void extr_unload_1()
  899. {
  900. change_extr(1);
  901. extr_unload();
  902. }
  903. void extr_unload_2()
  904. {
  905. change_extr(2);
  906. extr_unload();
  907. }
  908. void extr_unload_3()
  909. {
  910. change_extr(3);
  911. extr_unload();
  912. }
  913. void extr_unload_4()
  914. {
  915. change_extr(4);
  916. extr_unload();
  917. }
  918. bool mmu_check_version()
  919. {
  920. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  921. }
  922. void mmu_show_warning()
  923. {
  924. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  925. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  926. }
  927. void mmu_eject_filament(uint8_t filament, bool recover)
  928. {
  929. if (filament < 5)
  930. {
  931. if (degHotend0() > EXTRUDE_MINTEMP)
  932. {
  933. st_synchronize();
  934. {
  935. LcdUpdateDisabler disableLcdUpdate;
  936. lcd_clear();
  937. lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
  938. current_position[E_AXIS] -= 80;
  939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  940. st_synchronize();
  941. mmu_command(MMU_CMD_E0 + filament);
  942. manage_response(false, false);
  943. if (recover)
  944. {
  945. lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
  946. mmu_command(MMU_CMD_R0);
  947. manage_response(false, false);
  948. }
  949. }
  950. }
  951. else
  952. {
  953. lcd_clear();
  954. lcd_set_cursor(0, 0);
  955. lcd_puts_P(_T(MSG_ERROR));
  956. lcd_set_cursor(0, 2);
  957. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  958. delay(2000);
  959. lcd_clear();
  960. }
  961. }
  962. else
  963. {
  964. puts_P(PSTR("Filament nr out of range!"));
  965. }
  966. }