temperature.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "sound.h"
  27. #include "temperature.h"
  28. #include "cardreader.h"
  29. #include "Sd2PinMap.h"
  30. #include <avr/wdt.h>
  31. #include "adc.h"
  32. #include "ConfigurationStore.h"
  33. #include "messages.h"
  34. #include "Timer.h"
  35. #include "Configuration_prusa.h"
  36. #include "config.h"
  37. //===========================================================================
  38. //=============================public variables============================
  39. //===========================================================================
  40. int target_temperature[EXTRUDERS] = { 0 };
  41. int target_temperature_bed = 0;
  42. int current_temperature_raw[EXTRUDERS] = { 0 };
  43. float current_temperature[EXTRUDERS] = { 0.0 };
  44. #ifdef PINDA_THERMISTOR
  45. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  46. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  47. float current_temperature_pinda = 0.0;
  48. #endif //PINDA_THERMISTOR
  49. #ifdef AMBIENT_THERMISTOR
  50. int current_temperature_raw_ambient = 0 ;
  51. float current_temperature_ambient = 0.0;
  52. #endif //AMBIENT_THERMISTOR
  53. #ifdef VOLT_PWR_PIN
  54. int current_voltage_raw_pwr = 0;
  55. #endif
  56. #ifdef VOLT_BED_PIN
  57. int current_voltage_raw_bed = 0;
  58. #endif
  59. #ifdef IR_SENSOR_ANALOG
  60. uint16_t current_voltage_raw_IR = 0;
  61. #endif //IR_SENSOR_ANALOG
  62. int current_temperature_bed_raw = 0;
  63. float current_temperature_bed = 0.0;
  64. #ifdef PIDTEMP
  65. float _Kp, _Ki, _Kd;
  66. int pid_cycle, pid_number_of_cycles;
  67. bool pid_tuning_finished = false;
  68. #ifdef PID_ADD_EXTRUSION_RATE
  69. float Kc=DEFAULT_Kc;
  70. #endif
  71. #endif //PIDTEMP
  72. #ifdef FAN_SOFT_PWM
  73. unsigned char fanSpeedSoftPwm;
  74. #endif
  75. #ifdef FANCHECK
  76. volatile uint8_t fan_check_error = EFCE_OK;
  77. #endif
  78. unsigned char soft_pwm_bed;
  79. #ifdef BABYSTEPPING
  80. volatile int babystepsTodo[3]={0,0,0};
  81. #endif
  82. //===========================================================================
  83. //=============================private variables============================
  84. //===========================================================================
  85. static volatile bool temp_meas_ready = false;
  86. #ifdef PIDTEMP
  87. //static cannot be external:
  88. static float iState_sum[EXTRUDERS] = { 0 };
  89. static float dState_last[EXTRUDERS] = { 0 };
  90. static float pTerm[EXTRUDERS];
  91. static float iTerm[EXTRUDERS];
  92. static float dTerm[EXTRUDERS];
  93. //int output;
  94. static float pid_error[EXTRUDERS];
  95. static float iState_sum_min[EXTRUDERS];
  96. static float iState_sum_max[EXTRUDERS];
  97. // static float pid_input[EXTRUDERS];
  98. // static float pid_output[EXTRUDERS];
  99. static bool pid_reset[EXTRUDERS];
  100. #endif //PIDTEMP
  101. #ifdef PIDTEMPBED
  102. //static cannot be external:
  103. static float temp_iState_bed = { 0 };
  104. static float temp_dState_bed = { 0 };
  105. static float pTerm_bed;
  106. static float iTerm_bed;
  107. static float dTerm_bed;
  108. //int output;
  109. static float pid_error_bed;
  110. static float temp_iState_min_bed;
  111. static float temp_iState_max_bed;
  112. #else //PIDTEMPBED
  113. static unsigned long previous_millis_bed_heater;
  114. #endif //PIDTEMPBED
  115. static unsigned char soft_pwm[EXTRUDERS];
  116. #ifdef FAN_SOFT_PWM
  117. static unsigned char soft_pwm_fan;
  118. #endif
  119. uint8_t fanSpeedBckp = 255;
  120. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. bool fan_measuring = false;
  123. uint8_t fanState = 0;
  124. #ifdef EXTRUDER_ALTFAN_DETECT
  125. struct
  126. {
  127. uint8_t isAltfan : 1;
  128. uint8_t altfanOverride : 1;
  129. } altfanStatus;
  130. #endif //EXTRUDER_ALTFAN_DETECT
  131. #endif
  132. #if EXTRUDERS > 3
  133. # error Unsupported number of extruders
  134. #elif EXTRUDERS > 2
  135. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  136. #elif EXTRUDERS > 1
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  138. #else
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  140. #endif
  141. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  142. // Init min and max temp with extreme values to prevent false errors during startup
  143. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  144. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  145. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  146. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  147. #ifdef BED_MINTEMP
  148. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  149. #endif
  150. #ifdef BED_MAXTEMP
  151. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  152. #endif
  153. #ifdef AMBIENT_MINTEMP
  154. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  155. #endif
  156. #ifdef AMBIENT_MAXTEMP
  157. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  158. #endif
  159. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  160. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  161. static float analog2temp(int raw, uint8_t e);
  162. static float analog2tempBed(int raw);
  163. static float analog2tempAmbient(int raw);
  164. static void updateTemperaturesFromRawValues();
  165. enum TempRunawayStates
  166. {
  167. TempRunaway_INACTIVE = 0,
  168. TempRunaway_PREHEAT = 1,
  169. TempRunaway_ACTIVE = 2,
  170. };
  171. #ifndef SOFT_PWM_SCALE
  172. #define SOFT_PWM_SCALE 0
  173. #endif
  174. //===========================================================================
  175. //============================= functions ============================
  176. //===========================================================================
  177. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  178. static float temp_runaway_status[4];
  179. static float temp_runaway_target[4];
  180. static float temp_runaway_timer[4];
  181. static int temp_runaway_error_counter[4];
  182. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  183. static void temp_runaway_stop(bool isPreheat, bool isBed);
  184. #endif
  185. #ifdef EXTRUDER_ALTFAN_DETECT
  186. ISR(INT6_vect) {
  187. fan_edge_counter[0]++;
  188. }
  189. bool extruder_altfan_detect()
  190. {
  191. setExtruderAutoFanState(3);
  192. SET_INPUT(TACH_0);
  193. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  194. if (overrideVal == EEPROM_EMPTY_VALUE)
  195. {
  196. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  197. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  198. }
  199. altfanStatus.altfanOverride = overrideVal;
  200. CRITICAL_SECTION_START;
  201. EICRB &= ~(1 << ISC61);
  202. EICRB |= (1 << ISC60);
  203. EIMSK |= (1 << INT6);
  204. fan_edge_counter[0] = 0;
  205. CRITICAL_SECTION_END;
  206. extruder_autofan_last_check = _millis();
  207. _delay(1000);
  208. EIMSK &= ~(1 << INT6);
  209. countFanSpeed();
  210. altfanStatus.isAltfan = fan_speed[0] > 100;
  211. setExtruderAutoFanState(1);
  212. return altfanStatus.isAltfan;
  213. }
  214. void altfanOverride_toggle()
  215. {
  216. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  217. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  218. }
  219. bool altfanOverride_get()
  220. {
  221. return altfanStatus.altfanOverride;
  222. }
  223. #endif //EXTRUDER_ALTFAN_DETECT
  224. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  225. bool checkAllHotends(void)
  226. {
  227. bool result=false;
  228. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  229. return(result);
  230. }
  231. void PID_autotune(float temp, int extruder, int ncycles)
  232. {
  233. pid_number_of_cycles = ncycles;
  234. pid_tuning_finished = false;
  235. float input = 0.0;
  236. pid_cycle=0;
  237. bool heating = true;
  238. unsigned long temp_millis = _millis();
  239. unsigned long t1=temp_millis;
  240. unsigned long t2=temp_millis;
  241. long t_high = 0;
  242. long t_low = 0;
  243. long bias, d;
  244. float Ku, Tu;
  245. float max = 0, min = 10000;
  246. uint8_t safety_check_cycles = 0;
  247. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  248. float temp_ambient;
  249. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  250. unsigned long extruder_autofan_last_check = _millis();
  251. #endif
  252. if ((extruder >= EXTRUDERS)
  253. #if (TEMP_BED_PIN <= -1)
  254. ||(extruder < 0)
  255. #endif
  256. ){
  257. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  258. pid_tuning_finished = true;
  259. pid_cycle = 0;
  260. return;
  261. }
  262. SERIAL_ECHOLN("PID Autotune start");
  263. disable_heater(); // switch off all heaters.
  264. if (extruder<0)
  265. {
  266. soft_pwm_bed = (MAX_BED_POWER)/2;
  267. timer02_set_pwm0(soft_pwm_bed << 1);
  268. bias = d = (MAX_BED_POWER)/2;
  269. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  270. }
  271. else
  272. {
  273. soft_pwm[extruder] = (PID_MAX)/2;
  274. bias = d = (PID_MAX)/2;
  275. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  276. }
  277. for(;;) {
  278. #ifdef WATCHDOG
  279. wdt_reset();
  280. #endif //WATCHDOG
  281. if(temp_meas_ready == true) { // temp sample ready
  282. updateTemperaturesFromRawValues();
  283. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  284. max=max(max,input);
  285. min=min(min,input);
  286. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  287. if(_millis() - extruder_autofan_last_check > 2500) {
  288. checkExtruderAutoFans();
  289. extruder_autofan_last_check = _millis();
  290. }
  291. #endif
  292. if(heating == true && input > temp) {
  293. if(_millis() - t2 > 5000) {
  294. heating=false;
  295. if (extruder<0)
  296. {
  297. soft_pwm_bed = (bias - d) >> 1;
  298. timer02_set_pwm0(soft_pwm_bed << 1);
  299. }
  300. else
  301. soft_pwm[extruder] = (bias - d) >> 1;
  302. t1=_millis();
  303. t_high=t1 - t2;
  304. max=temp;
  305. }
  306. }
  307. if(heating == false && input < temp) {
  308. if(_millis() - t1 > 5000) {
  309. heating=true;
  310. t2=_millis();
  311. t_low=t2 - t1;
  312. if(pid_cycle > 0) {
  313. bias += (d*(t_high - t_low))/(t_low + t_high);
  314. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  315. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  316. else d = bias;
  317. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  318. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  319. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  320. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  321. if(pid_cycle > 2) {
  322. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  323. Tu = ((float)(t_low + t_high)/1000.0);
  324. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  325. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  326. _Kp = 0.6*Ku;
  327. _Ki = 2*_Kp/Tu;
  328. _Kd = _Kp*Tu/8;
  329. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  330. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  331. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  332. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  333. /*
  334. _Kp = 0.33*Ku;
  335. _Ki = _Kp/Tu;
  336. _Kd = _Kp*Tu/3;
  337. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  338. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  339. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  340. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  341. _Kp = 0.2*Ku;
  342. _Ki = 2*_Kp/Tu;
  343. _Kd = _Kp*Tu/3;
  344. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  345. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  346. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  347. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  348. */
  349. }
  350. }
  351. if (extruder<0)
  352. {
  353. soft_pwm_bed = (bias + d) >> 1;
  354. timer02_set_pwm0(soft_pwm_bed << 1);
  355. }
  356. else
  357. soft_pwm[extruder] = (bias + d) >> 1;
  358. pid_cycle++;
  359. min=temp;
  360. }
  361. }
  362. }
  363. if(input > (temp + 20)) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. if(_millis() - temp_millis > 2000) {
  370. int p;
  371. if (extruder<0){
  372. p=soft_pwm_bed;
  373. SERIAL_PROTOCOLPGM("B:");
  374. }else{
  375. p=soft_pwm[extruder];
  376. SERIAL_PROTOCOLPGM("T:");
  377. }
  378. SERIAL_PROTOCOL(input);
  379. SERIAL_PROTOCOLPGM(" @:");
  380. SERIAL_PROTOCOLLN(p);
  381. if (safety_check_cycles == 0) { //save ambient temp
  382. temp_ambient = input;
  383. //SERIAL_ECHOPGM("Ambient T: ");
  384. //MYSERIAL.println(temp_ambient);
  385. safety_check_cycles++;
  386. }
  387. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  391. safety_check_cycles++;
  392. //SERIAL_ECHOPGM("Time from beginning: ");
  393. //MYSERIAL.print(safety_check_cycles_count * 2);
  394. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  395. //MYSERIAL.println(input - temp_ambient);
  396. if (abs(input - temp_ambient) < 5.0) {
  397. temp_runaway_stop(false, (extruder<0));
  398. pid_tuning_finished = true;
  399. return;
  400. }
  401. }
  402. temp_millis = _millis();
  403. }
  404. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  405. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  406. pid_tuning_finished = true;
  407. pid_cycle = 0;
  408. return;
  409. }
  410. if(pid_cycle > ncycles) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. lcd_update(0);
  417. }
  418. }
  419. void updatePID()
  420. {
  421. #ifdef PIDTEMP
  422. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  423. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  424. }
  425. #endif
  426. #ifdef PIDTEMPBED
  427. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  428. #endif
  429. }
  430. int getHeaterPower(int heater) {
  431. if (heater<0)
  432. return soft_pwm_bed;
  433. return soft_pwm[heater];
  434. }
  435. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  436. #if defined(FAN_PIN) && FAN_PIN > -1
  437. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  438. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  439. #endif
  440. #endif
  441. void setExtruderAutoFanState(uint8_t state)
  442. {
  443. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  444. //the fan to either On or Off during certain tests/errors.
  445. fanState = state;
  446. newFanSpeed = 0;
  447. if (fanState & 0x01)
  448. {
  449. #ifdef EXTRUDER_ALTFAN_DETECT
  450. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  451. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  452. #else //EXTRUDER_ALTFAN_DETECT
  453. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  454. #endif //EXTRUDER_ALTFAN_DETECT
  455. }
  456. timer4_set_fan0(newFanSpeed);
  457. }
  458. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  459. void countFanSpeed()
  460. {
  461. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  462. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  463. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  464. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  465. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  466. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  467. SERIAL_ECHOLNPGM(" ");*/
  468. fan_edge_counter[0] = 0;
  469. fan_edge_counter[1] = 0;
  470. }
  471. void checkFanSpeed()
  472. {
  473. uint8_t max_print_fan_errors = 0;
  474. uint8_t max_extruder_fan_errors = 0;
  475. #ifdef FAN_SOFT_PWM
  476. max_print_fan_errors = 3; //15 seconds
  477. max_extruder_fan_errors = 2; //10seconds
  478. #else //FAN_SOFT_PWM
  479. max_print_fan_errors = 15; //15 seconds
  480. max_extruder_fan_errors = 5; //5 seconds
  481. #endif //FAN_SOFT_PWM
  482. if(fans_check_enabled != false)
  483. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  484. static unsigned char fan_speed_errors[2] = { 0,0 };
  485. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  486. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  487. else fan_speed_errors[0] = 0;
  488. #endif
  489. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  490. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  491. else fan_speed_errors[1] = 0;
  492. #endif
  493. // drop the fan_check_error flag when both fans are ok
  494. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  495. // we may even send some info to the LCD from here
  496. fan_check_error = EFCE_FIXED;
  497. }
  498. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  499. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  500. lcd_reset_alert_level(); //for another fan speed error
  501. }
  502. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  503. fan_speed_errors[0] = 0;
  504. fanSpeedError(0); //extruder fan
  505. }
  506. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  507. fan_speed_errors[1] = 0;
  508. fanSpeedError(1); //print fan
  509. }
  510. }
  511. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  512. //! Extracted from fanSpeedError to save some space.
  513. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  514. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  515. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  516. SERIAL_ECHOLNRPGM(serialMsg);
  517. if (get_message_level() == 0) {
  518. Sound_MakeCustom(200,0,true);
  519. LCD_ALERTMESSAGERPGM(lcdMsg);
  520. }
  521. }
  522. void fanSpeedError(unsigned char _fan) {
  523. if (get_message_level() != 0 && isPrintPaused) return;
  524. //to ensure that target temp. is not set to zero in case that we are resuming print
  525. if (card.sdprinting || is_usb_printing) {
  526. if (heating_status != 0) {
  527. lcd_print_stop();
  528. }
  529. else {
  530. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  531. }
  532. }
  533. else {
  534. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  535. setTargetHotend0(0);
  536. heating_status = 0;
  537. fan_check_error = EFCE_REPORTED;
  538. }
  539. switch (_fan) {
  540. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  541. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  542. break;
  543. case 1:
  544. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  545. break;
  546. }
  547. }
  548. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  549. void checkExtruderAutoFans()
  550. {
  551. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  552. if (!(fanState & 0x02))
  553. {
  554. fanState &= ~1;
  555. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  556. }
  557. setExtruderAutoFanState(fanState);
  558. #endif
  559. }
  560. #endif // any extruder auto fan pins set
  561. // ready for eventually parameters adjusting
  562. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  563. //void resetPID(uint8_t extruder)
  564. {
  565. }
  566. void manage_heater()
  567. {
  568. #ifdef WATCHDOG
  569. wdt_reset();
  570. #endif //WATCHDOG
  571. float pid_input;
  572. float pid_output;
  573. if(temp_meas_ready != true) //better readability
  574. return;
  575. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  576. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  577. updateTemperaturesFromRawValues();
  578. check_max_temp();
  579. check_min_temp();
  580. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  581. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  582. #endif
  583. for(int e = 0; e < EXTRUDERS; e++)
  584. {
  585. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  586. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  587. #endif
  588. #ifdef PIDTEMP
  589. pid_input = current_temperature[e];
  590. #ifndef PID_OPENLOOP
  591. if(target_temperature[e] == 0) {
  592. pid_output = 0;
  593. pid_reset[e] = true;
  594. } else {
  595. pid_error[e] = target_temperature[e] - pid_input;
  596. if(pid_reset[e]) {
  597. iState_sum[e] = 0.0;
  598. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  599. pid_reset[e] = false;
  600. }
  601. #ifndef PonM
  602. pTerm[e] = cs.Kp * pid_error[e];
  603. iState_sum[e] += pid_error[e];
  604. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  605. iTerm[e] = cs.Ki * iState_sum[e];
  606. // PID_K1 defined in Configuration.h in the PID settings
  607. #define K2 (1.0-PID_K1)
  608. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  609. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  610. if (pid_output > PID_MAX) {
  611. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  612. pid_output=PID_MAX;
  613. } else if (pid_output < 0) {
  614. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  615. pid_output=0;
  616. }
  617. #else // PonM ("Proportional on Measurement" method)
  618. iState_sum[e] += cs.Ki * pid_error[e];
  619. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  620. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  621. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  622. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  623. pid_output = constrain(pid_output, 0, PID_MAX);
  624. #endif // PonM
  625. }
  626. dState_last[e] = pid_input;
  627. #else
  628. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  629. #endif //PID_OPENLOOP
  630. #ifdef PID_DEBUG
  631. SERIAL_ECHO_START;
  632. SERIAL_ECHO(" PID_DEBUG ");
  633. SERIAL_ECHO(e);
  634. SERIAL_ECHO(": Input ");
  635. SERIAL_ECHO(pid_input);
  636. SERIAL_ECHO(" Output ");
  637. SERIAL_ECHO(pid_output);
  638. SERIAL_ECHO(" pTerm ");
  639. SERIAL_ECHO(pTerm[e]);
  640. SERIAL_ECHO(" iTerm ");
  641. SERIAL_ECHO(iTerm[e]);
  642. SERIAL_ECHO(" dTerm ");
  643. SERIAL_ECHOLN(-dTerm[e]);
  644. #endif //PID_DEBUG
  645. #else /* PID off */
  646. pid_output = 0;
  647. if(current_temperature[e] < target_temperature[e]) {
  648. pid_output = PID_MAX;
  649. }
  650. #endif
  651. // Check if temperature is within the correct range
  652. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  653. {
  654. soft_pwm[e] = (int)pid_output >> 1;
  655. }
  656. else
  657. {
  658. soft_pwm[e] = 0;
  659. }
  660. } // End extruder for loop
  661. #define FAN_CHECK_PERIOD 5000 //5s
  662. #define FAN_CHECK_DURATION 100 //100ms
  663. #ifndef DEBUG_DISABLE_FANCHECK
  664. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  665. #ifdef FAN_SOFT_PWM
  666. #ifdef FANCHECK
  667. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  668. extruder_autofan_last_check = _millis();
  669. fanSpeedBckp = fanSpeedSoftPwm;
  670. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  671. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  672. fanSpeedSoftPwm = 255;
  673. }
  674. fan_measuring = true;
  675. }
  676. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  677. countFanSpeed();
  678. checkFanSpeed();
  679. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  680. fanSpeedSoftPwm = fanSpeedBckp;
  681. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  682. extruder_autofan_last_check = _millis();
  683. fan_measuring = false;
  684. }
  685. #endif //FANCHECK
  686. checkExtruderAutoFans();
  687. #else //FAN_SOFT_PWM
  688. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  689. {
  690. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  691. countFanSpeed();
  692. checkFanSpeed();
  693. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  694. checkExtruderAutoFans();
  695. extruder_autofan_last_check = _millis();
  696. }
  697. #endif //FAN_SOFT_PWM
  698. #endif
  699. #endif //DEBUG_DISABLE_FANCHECK
  700. #ifndef PIDTEMPBED
  701. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  702. return;
  703. previous_millis_bed_heater = _millis();
  704. #endif
  705. #if TEMP_SENSOR_BED != 0
  706. #ifdef PIDTEMPBED
  707. pid_input = current_temperature_bed;
  708. #ifndef PID_OPENLOOP
  709. pid_error_bed = target_temperature_bed - pid_input;
  710. pTerm_bed = cs.bedKp * pid_error_bed;
  711. temp_iState_bed += pid_error_bed;
  712. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  713. iTerm_bed = cs.bedKi * temp_iState_bed;
  714. //PID_K1 defined in Configuration.h in the PID settings
  715. #define K2 (1.0-PID_K1)
  716. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  717. temp_dState_bed = pid_input;
  718. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  719. if (pid_output > MAX_BED_POWER) {
  720. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  721. pid_output=MAX_BED_POWER;
  722. } else if (pid_output < 0){
  723. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  724. pid_output=0;
  725. }
  726. #else
  727. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  728. #endif //PID_OPENLOOP
  729. if(current_temperature_bed < BED_MAXTEMP)
  730. {
  731. soft_pwm_bed = (int)pid_output >> 1;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. }
  734. else {
  735. soft_pwm_bed = 0;
  736. timer02_set_pwm0(soft_pwm_bed << 1);
  737. }
  738. #elif !defined(BED_LIMIT_SWITCHING)
  739. // Check if temperature is within the correct range
  740. if(current_temperature_bed < BED_MAXTEMP)
  741. {
  742. if(current_temperature_bed >= target_temperature_bed)
  743. {
  744. soft_pwm_bed = 0;
  745. timer02_set_pwm0(soft_pwm_bed << 1);
  746. }
  747. else
  748. {
  749. soft_pwm_bed = MAX_BED_POWER>>1;
  750. timer02_set_pwm0(soft_pwm_bed << 1);
  751. }
  752. }
  753. else
  754. {
  755. soft_pwm_bed = 0;
  756. timer02_set_pwm0(soft_pwm_bed << 1);
  757. WRITE(HEATER_BED_PIN,LOW);
  758. }
  759. #else //#ifdef BED_LIMIT_SWITCHING
  760. // Check if temperature is within the correct band
  761. if(current_temperature_bed < BED_MAXTEMP)
  762. {
  763. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  764. {
  765. soft_pwm_bed = 0;
  766. timer02_set_pwm0(soft_pwm_bed << 1);
  767. }
  768. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  769. {
  770. soft_pwm_bed = MAX_BED_POWER>>1;
  771. timer02_set_pwm0(soft_pwm_bed << 1);
  772. }
  773. }
  774. else
  775. {
  776. soft_pwm_bed = 0;
  777. timer02_set_pwm0(soft_pwm_bed << 1);
  778. WRITE(HEATER_BED_PIN,LOW);
  779. }
  780. #endif
  781. if(target_temperature_bed==0)
  782. {
  783. soft_pwm_bed = 0;
  784. timer02_set_pwm0(soft_pwm_bed << 1);
  785. }
  786. #endif
  787. }
  788. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  789. // Derived from RepRap FiveD extruder::getTemperature()
  790. // For hot end temperature measurement.
  791. static float analog2temp(int raw, uint8_t e) {
  792. if(e >= EXTRUDERS)
  793. {
  794. SERIAL_ERROR_START;
  795. SERIAL_ERROR((int)e);
  796. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  797. kill(NULL, 6);
  798. return 0.0;
  799. }
  800. #ifdef HEATER_0_USES_MAX6675
  801. if (e == 0)
  802. {
  803. return 0.25 * raw;
  804. }
  805. #endif
  806. if(heater_ttbl_map[e] != NULL)
  807. {
  808. float celsius = 0;
  809. uint8_t i;
  810. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  811. for (i=1; i<heater_ttbllen_map[e]; i++)
  812. {
  813. if (PGM_RD_W((*tt)[i][0]) > raw)
  814. {
  815. celsius = PGM_RD_W((*tt)[i-1][1]) +
  816. (raw - PGM_RD_W((*tt)[i-1][0])) *
  817. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  818. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  819. break;
  820. }
  821. }
  822. // Overflow: Set to last value in the table
  823. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  824. return celsius;
  825. }
  826. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  827. }
  828. // Derived from RepRap FiveD extruder::getTemperature()
  829. // For bed temperature measurement.
  830. static float analog2tempBed(int raw) {
  831. #ifdef BED_USES_THERMISTOR
  832. float celsius = 0;
  833. byte i;
  834. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  835. {
  836. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  837. {
  838. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  839. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  840. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  841. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  842. break;
  843. }
  844. }
  845. // Overflow: Set to last value in the table
  846. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  847. // temperature offset adjustment
  848. #ifdef BED_OFFSET
  849. float _offset = BED_OFFSET;
  850. float _offset_center = BED_OFFSET_CENTER;
  851. float _offset_start = BED_OFFSET_START;
  852. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  853. float _second_koef = (_offset / 2) / (100 - _offset_center);
  854. if (celsius >= _offset_start && celsius <= _offset_center)
  855. {
  856. celsius = celsius + (_first_koef * (celsius - _offset_start));
  857. }
  858. else if (celsius > _offset_center && celsius <= 100)
  859. {
  860. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  861. }
  862. else if (celsius > 100)
  863. {
  864. celsius = celsius + _offset;
  865. }
  866. #endif
  867. return celsius;
  868. #elif defined BED_USES_AD595
  869. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  870. #else
  871. return 0;
  872. #endif
  873. }
  874. #ifdef AMBIENT_THERMISTOR
  875. static float analog2tempAmbient(int raw)
  876. {
  877. float celsius = 0;
  878. byte i;
  879. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  880. {
  881. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  882. {
  883. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  884. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  885. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  886. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  887. break;
  888. }
  889. }
  890. // Overflow: Set to last value in the table
  891. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  892. return celsius;
  893. }
  894. #endif //AMBIENT_THERMISTOR
  895. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  896. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  897. static void updateTemperaturesFromRawValues()
  898. {
  899. for(uint8_t e=0;e<EXTRUDERS;e++)
  900. {
  901. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  902. }
  903. #ifdef PINDA_THERMISTOR
  904. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  905. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  906. #endif
  907. #ifdef AMBIENT_THERMISTOR
  908. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  909. #endif
  910. #ifdef DEBUG_HEATER_BED_SIM
  911. current_temperature_bed = target_temperature_bed;
  912. #else //DEBUG_HEATER_BED_SIM
  913. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  914. #endif //DEBUG_HEATER_BED_SIM
  915. CRITICAL_SECTION_START;
  916. temp_meas_ready = false;
  917. CRITICAL_SECTION_END;
  918. }
  919. void tp_init()
  920. {
  921. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  922. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  923. MCUCR=(1<<JTD);
  924. MCUCR=(1<<JTD);
  925. #endif
  926. // Finish init of mult extruder arrays
  927. for(int e = 0; e < EXTRUDERS; e++) {
  928. // populate with the first value
  929. maxttemp[e] = maxttemp[0];
  930. #ifdef PIDTEMP
  931. iState_sum_min[e] = 0.0;
  932. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  933. #endif //PIDTEMP
  934. #ifdef PIDTEMPBED
  935. temp_iState_min_bed = 0.0;
  936. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  937. #endif //PIDTEMPBED
  938. }
  939. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  940. SET_OUTPUT(HEATER_0_PIN);
  941. #endif
  942. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  943. SET_OUTPUT(HEATER_1_PIN);
  944. #endif
  945. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  946. SET_OUTPUT(HEATER_2_PIN);
  947. #endif
  948. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  949. SET_OUTPUT(HEATER_BED_PIN);
  950. #endif
  951. #if defined(FAN_PIN) && (FAN_PIN > -1)
  952. SET_OUTPUT(FAN_PIN);
  953. #ifdef FAST_PWM_FAN
  954. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  955. #endif
  956. #ifdef FAN_SOFT_PWM
  957. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  958. #endif
  959. #endif
  960. #ifdef HEATER_0_USES_MAX6675
  961. #ifndef SDSUPPORT
  962. SET_OUTPUT(SCK_PIN);
  963. WRITE(SCK_PIN,0);
  964. SET_OUTPUT(MOSI_PIN);
  965. WRITE(MOSI_PIN,1);
  966. SET_INPUT(MISO_PIN);
  967. WRITE(MISO_PIN,1);
  968. #endif
  969. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  970. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  971. pinMode(SS_PIN, OUTPUT);
  972. digitalWrite(SS_PIN,0);
  973. pinMode(MAX6675_SS, OUTPUT);
  974. digitalWrite(MAX6675_SS,1);
  975. #endif
  976. adc_init();
  977. timer0_init(); //enables the heatbed timer.
  978. // timer2 already enabled earlier in the code
  979. // now enable the COMPB temperature interrupt
  980. OCR2B = 128;
  981. TIMSK2 |= (1<<OCIE2B);
  982. timer4_init(); //for tone and Extruder fan PWM
  983. // Wait for temperature measurement to settle
  984. _delay(250);
  985. #ifdef HEATER_0_MINTEMP
  986. minttemp[0] = HEATER_0_MINTEMP;
  987. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  988. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  989. minttemp_raw[0] += OVERSAMPLENR;
  990. #else
  991. minttemp_raw[0] -= OVERSAMPLENR;
  992. #endif
  993. }
  994. #endif //MINTEMP
  995. #ifdef HEATER_0_MAXTEMP
  996. maxttemp[0] = HEATER_0_MAXTEMP;
  997. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  998. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  999. maxttemp_raw[0] -= OVERSAMPLENR;
  1000. #else
  1001. maxttemp_raw[0] += OVERSAMPLENR;
  1002. #endif
  1003. }
  1004. #endif //MAXTEMP
  1005. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1006. minttemp[1] = HEATER_1_MINTEMP;
  1007. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1008. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1009. minttemp_raw[1] += OVERSAMPLENR;
  1010. #else
  1011. minttemp_raw[1] -= OVERSAMPLENR;
  1012. #endif
  1013. }
  1014. #endif // MINTEMP 1
  1015. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1016. maxttemp[1] = HEATER_1_MAXTEMP;
  1017. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1018. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1019. maxttemp_raw[1] -= OVERSAMPLENR;
  1020. #else
  1021. maxttemp_raw[1] += OVERSAMPLENR;
  1022. #endif
  1023. }
  1024. #endif //MAXTEMP 1
  1025. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1026. minttemp[2] = HEATER_2_MINTEMP;
  1027. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1028. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1029. minttemp_raw[2] += OVERSAMPLENR;
  1030. #else
  1031. minttemp_raw[2] -= OVERSAMPLENR;
  1032. #endif
  1033. }
  1034. #endif //MINTEMP 2
  1035. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1036. maxttemp[2] = HEATER_2_MAXTEMP;
  1037. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1038. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1039. maxttemp_raw[2] -= OVERSAMPLENR;
  1040. #else
  1041. maxttemp_raw[2] += OVERSAMPLENR;
  1042. #endif
  1043. }
  1044. #endif //MAXTEMP 2
  1045. #ifdef BED_MINTEMP
  1046. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1047. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1048. bed_minttemp_raw += OVERSAMPLENR;
  1049. #else
  1050. bed_minttemp_raw -= OVERSAMPLENR;
  1051. #endif
  1052. }
  1053. #endif //BED_MINTEMP
  1054. #ifdef BED_MAXTEMP
  1055. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1056. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1057. bed_maxttemp_raw -= OVERSAMPLENR;
  1058. #else
  1059. bed_maxttemp_raw += OVERSAMPLENR;
  1060. #endif
  1061. }
  1062. #endif //BED_MAXTEMP
  1063. #ifdef AMBIENT_MINTEMP
  1064. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1065. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1066. ambient_minttemp_raw += OVERSAMPLENR;
  1067. #else
  1068. ambient_minttemp_raw -= OVERSAMPLENR;
  1069. #endif
  1070. }
  1071. #endif //AMBIENT_MINTEMP
  1072. #ifdef AMBIENT_MAXTEMP
  1073. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1074. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1075. ambient_maxttemp_raw -= OVERSAMPLENR;
  1076. #else
  1077. ambient_maxttemp_raw += OVERSAMPLENR;
  1078. #endif
  1079. }
  1080. #endif //AMBIENT_MAXTEMP
  1081. }
  1082. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1083. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1084. {
  1085. float __delta;
  1086. float __hysteresis = 0;
  1087. int __timeout = 0;
  1088. bool temp_runaway_check_active = false;
  1089. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1090. static int __preheat_counter[2] = { 0,0};
  1091. static int __preheat_errors[2] = { 0,0};
  1092. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1093. {
  1094. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1095. if (_isbed)
  1096. {
  1097. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1098. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1099. }
  1100. #endif
  1101. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1102. if (!_isbed)
  1103. {
  1104. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1105. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1106. }
  1107. #endif
  1108. temp_runaway_timer[_heater_id] = _millis();
  1109. if (_output == 0)
  1110. {
  1111. temp_runaway_check_active = false;
  1112. temp_runaway_error_counter[_heater_id] = 0;
  1113. }
  1114. if (temp_runaway_target[_heater_id] != _target_temperature)
  1115. {
  1116. if (_target_temperature > 0)
  1117. {
  1118. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1119. temp_runaway_target[_heater_id] = _target_temperature;
  1120. __preheat_start[_heater_id] = _current_temperature;
  1121. __preheat_counter[_heater_id] = 0;
  1122. }
  1123. else
  1124. {
  1125. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1126. temp_runaway_target[_heater_id] = _target_temperature;
  1127. }
  1128. }
  1129. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1130. {
  1131. __preheat_counter[_heater_id]++;
  1132. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1133. {
  1134. /*SERIAL_ECHOPGM("Heater:");
  1135. MYSERIAL.print(_heater_id);
  1136. SERIAL_ECHOPGM(" T:");
  1137. MYSERIAL.print(_current_temperature);
  1138. SERIAL_ECHOPGM(" Tstart:");
  1139. MYSERIAL.print(__preheat_start[_heater_id]);
  1140. SERIAL_ECHOPGM(" delta:");
  1141. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1142. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1143. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1144. __delta=2.0;
  1145. if(_isbed)
  1146. {
  1147. __delta=3.0;
  1148. if(_current_temperature>90.0) __delta=2.0;
  1149. if(_current_temperature>105.0) __delta=0.6;
  1150. }
  1151. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1152. __preheat_errors[_heater_id]++;
  1153. /*SERIAL_ECHOPGM(" Preheat errors:");
  1154. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1155. }
  1156. else {
  1157. //SERIAL_ECHOLNPGM("");
  1158. __preheat_errors[_heater_id] = 0;
  1159. }
  1160. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1161. {
  1162. if (farm_mode) { prusa_statistics(0); }
  1163. temp_runaway_stop(true, _isbed);
  1164. if (farm_mode) { prusa_statistics(91); }
  1165. }
  1166. __preheat_start[_heater_id] = _current_temperature;
  1167. __preheat_counter[_heater_id] = 0;
  1168. }
  1169. }
  1170. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1171. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1172. {
  1173. /*SERIAL_ECHOPGM("Heater:");
  1174. MYSERIAL.print(_heater_id);
  1175. MYSERIAL.println(" ->tempRunaway");*/
  1176. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1177. temp_runaway_check_active = false;
  1178. temp_runaway_error_counter[_heater_id] = 0;
  1179. }
  1180. if (_output > 0)
  1181. {
  1182. temp_runaway_check_active = true;
  1183. }
  1184. if (temp_runaway_check_active)
  1185. {
  1186. // we are in range
  1187. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1188. {
  1189. temp_runaway_check_active = false;
  1190. temp_runaway_error_counter[_heater_id] = 0;
  1191. }
  1192. else
  1193. {
  1194. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1195. {
  1196. temp_runaway_error_counter[_heater_id]++;
  1197. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1198. {
  1199. if (farm_mode) { prusa_statistics(0); }
  1200. temp_runaway_stop(false, _isbed);
  1201. if (farm_mode) { prusa_statistics(90); }
  1202. }
  1203. }
  1204. }
  1205. }
  1206. }
  1207. }
  1208. void temp_runaway_stop(bool isPreheat, bool isBed)
  1209. {
  1210. cancel_heatup = true;
  1211. quickStop();
  1212. if (card.sdprinting)
  1213. {
  1214. card.sdprinting = false;
  1215. card.closefile();
  1216. }
  1217. // Clean the input command queue
  1218. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1219. cmdqueue_reset();
  1220. disable_heater();
  1221. disable_x();
  1222. disable_y();
  1223. disable_e0();
  1224. disable_e1();
  1225. disable_e2();
  1226. manage_heater();
  1227. lcd_update(0);
  1228. Sound_MakeCustom(200,0,true);
  1229. if (isPreheat)
  1230. {
  1231. Stop();
  1232. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1233. SERIAL_ERROR_START;
  1234. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1235. #ifdef EXTRUDER_ALTFAN_DETECT
  1236. altfanStatus.altfanOverride = 1; //full speed
  1237. #endif //EXTRUDER_ALTFAN_DETECT
  1238. setExtruderAutoFanState(3);
  1239. SET_OUTPUT(FAN_PIN);
  1240. #ifdef FAN_SOFT_PWM
  1241. fanSpeedSoftPwm = 255;
  1242. #else //FAN_SOFT_PWM
  1243. analogWrite(FAN_PIN, 255);
  1244. #endif //FAN_SOFT_PWM
  1245. fanSpeed = 255;
  1246. delayMicroseconds(2000);
  1247. }
  1248. else
  1249. {
  1250. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1251. SERIAL_ERROR_START;
  1252. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1253. }
  1254. }
  1255. #endif
  1256. void disable_heater()
  1257. {
  1258. setAllTargetHotends(0);
  1259. setTargetBed(0);
  1260. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1261. target_temperature[0]=0;
  1262. soft_pwm[0]=0;
  1263. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1264. WRITE(HEATER_0_PIN,LOW);
  1265. #endif
  1266. #endif
  1267. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1268. target_temperature[1]=0;
  1269. soft_pwm[1]=0;
  1270. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1271. WRITE(HEATER_1_PIN,LOW);
  1272. #endif
  1273. #endif
  1274. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1275. target_temperature[2]=0;
  1276. soft_pwm[2]=0;
  1277. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1278. WRITE(HEATER_2_PIN,LOW);
  1279. #endif
  1280. #endif
  1281. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1282. target_temperature_bed=0;
  1283. soft_pwm_bed=0;
  1284. timer02_set_pwm0(soft_pwm_bed << 1);
  1285. bedPWMDisabled = 0;
  1286. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1287. //WRITE(HEATER_BED_PIN,LOW);
  1288. #endif
  1289. #endif
  1290. }
  1291. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1292. //! than raw const char * of the messages themselves.
  1293. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1294. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1295. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1296. //! remember the last alert message sent to the LCD
  1297. //! to prevent flicker and improve speed
  1298. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1299. //! update the current temperature error message
  1300. //! @param type short error abbreviation (PROGMEM)
  1301. //! @param func optional lcd update function (lcd_setalertstatus when first setting the error)
  1302. void temp_update_messagepgm(const char* PROGMEM type, void (*func)(const char*) = lcd_updatestatus)
  1303. {
  1304. char msg[LCD_WIDTH];
  1305. strcpy_P(msg, PSTR("Err: "));
  1306. strcat_P(msg, type);
  1307. (*func)(msg);
  1308. }
  1309. //! signal a temperature error on both the lcd and serial
  1310. //! @param type short error abbreviation (PROGMEM)
  1311. //! @param e optional extruder index for hotend errors
  1312. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1313. {
  1314. temp_update_messagepgm(type, lcd_setalertstatus);
  1315. SERIAL_ERROR_START;
  1316. if(e != EXTRUDERS) {
  1317. SERIAL_ERROR((int)e);
  1318. SERIAL_ERRORPGM(": ");
  1319. }
  1320. SERIAL_ERRORPGM("Heaters switched off. ");
  1321. SERIAL_ERRORRPGM(type);
  1322. SERIAL_ERRORLNPGM(" triggered!");
  1323. }
  1324. void max_temp_error(uint8_t e) {
  1325. disable_heater();
  1326. if(IsStopped() == false) {
  1327. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1328. }
  1329. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1330. Stop();
  1331. #endif
  1332. SET_OUTPUT(FAN_PIN);
  1333. SET_OUTPUT(BEEPER);
  1334. WRITE(FAN_PIN, 1);
  1335. WRITE(BEEPER, 1);
  1336. #ifdef EXTRUDER_ALTFAN_DETECT
  1337. altfanStatus.altfanOverride = 1; //full speed
  1338. #endif //EXTRUDER_ALTFAN_DETECT
  1339. setExtruderAutoFanState(3);
  1340. // fanSpeed will consumed by the check_axes_activity() routine.
  1341. fanSpeed=255;
  1342. if (farm_mode) { prusa_statistics(93); }
  1343. }
  1344. void min_temp_error(uint8_t e) {
  1345. #ifdef DEBUG_DISABLE_MINTEMP
  1346. return;
  1347. #endif
  1348. disable_heater();
  1349. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1350. static const char err[] PROGMEM = "MINTEMP";
  1351. if(IsStopped() == false) {
  1352. temp_error_messagepgm(err, e);
  1353. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1354. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1355. // we are already stopped due to some error, only update the status message without flickering
  1356. temp_update_messagepgm(err);
  1357. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1358. }
  1359. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1360. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1361. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1362. // lcd_print_stop();
  1363. // }
  1364. Stop();
  1365. #endif
  1366. if (farm_mode) { prusa_statistics(92); }
  1367. }
  1368. void bed_max_temp_error(void) {
  1369. disable_heater();
  1370. if(IsStopped() == false) {
  1371. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1372. }
  1373. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1374. Stop();
  1375. #endif
  1376. }
  1377. void bed_min_temp_error(void) {
  1378. #ifdef DEBUG_DISABLE_MINTEMP
  1379. return;
  1380. #endif
  1381. disable_heater();
  1382. static const char err[] PROGMEM = "MINTEMP BED";
  1383. if(IsStopped() == false) {
  1384. temp_error_messagepgm(err);
  1385. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1386. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1387. // we are already stopped due to some error, only update the status message without flickering
  1388. temp_update_messagepgm(err);
  1389. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1390. }
  1391. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1392. Stop();
  1393. #endif
  1394. }
  1395. #ifdef AMBIENT_THERMISTOR
  1396. void ambient_max_temp_error(void) {
  1397. disable_heater();
  1398. if(IsStopped() == false) {
  1399. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1400. }
  1401. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1402. Stop();
  1403. #endif
  1404. }
  1405. void ambient_min_temp_error(void) {
  1406. #ifdef DEBUG_DISABLE_MINTEMP
  1407. return;
  1408. #endif
  1409. disable_heater();
  1410. if(IsStopped() == false) {
  1411. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1412. }
  1413. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1414. Stop();
  1415. #endif
  1416. }
  1417. #endif
  1418. #ifdef HEATER_0_USES_MAX6675
  1419. #define MAX6675_HEAT_INTERVAL 250
  1420. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1421. int max6675_temp = 2000;
  1422. int read_max6675()
  1423. {
  1424. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1425. return max6675_temp;
  1426. max6675_previous_millis = _millis();
  1427. max6675_temp = 0;
  1428. #ifdef PRR
  1429. PRR &= ~(1<<PRSPI);
  1430. #elif defined PRR0
  1431. PRR0 &= ~(1<<PRSPI);
  1432. #endif
  1433. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1434. // enable TT_MAX6675
  1435. WRITE(MAX6675_SS, 0);
  1436. // ensure 100ns delay - a bit extra is fine
  1437. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1438. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1439. // read MSB
  1440. SPDR = 0;
  1441. for (;(SPSR & (1<<SPIF)) == 0;);
  1442. max6675_temp = SPDR;
  1443. max6675_temp <<= 8;
  1444. // read LSB
  1445. SPDR = 0;
  1446. for (;(SPSR & (1<<SPIF)) == 0;);
  1447. max6675_temp |= SPDR;
  1448. // disable TT_MAX6675
  1449. WRITE(MAX6675_SS, 1);
  1450. if (max6675_temp & 4)
  1451. {
  1452. // thermocouple open
  1453. max6675_temp = 2000;
  1454. }
  1455. else
  1456. {
  1457. max6675_temp = max6675_temp >> 3;
  1458. }
  1459. return max6675_temp;
  1460. }
  1461. #endif
  1462. extern "C" {
  1463. void adc_ready(void) //callback from adc when sampling finished
  1464. {
  1465. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1466. #ifdef PINDA_THERMISTOR
  1467. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1468. #endif //PINDA_THERMISTOR
  1469. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1470. #ifdef VOLT_PWR_PIN
  1471. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1472. #endif
  1473. #ifdef AMBIENT_THERMISTOR
  1474. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1475. #endif //AMBIENT_THERMISTOR
  1476. #ifdef VOLT_BED_PIN
  1477. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1478. #endif
  1479. #ifdef IR_SENSOR_ANALOG
  1480. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1481. #endif //IR_SENSOR_ANALOG
  1482. temp_meas_ready = true;
  1483. }
  1484. } // extern "C"
  1485. FORCE_INLINE static void temperature_isr()
  1486. {
  1487. if (!temp_meas_ready) adc_cycle();
  1488. lcd_buttons_update();
  1489. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1490. static uint8_t soft_pwm_0;
  1491. #ifdef SLOW_PWM_HEATERS
  1492. static unsigned char slow_pwm_count = 0;
  1493. static unsigned char state_heater_0 = 0;
  1494. static unsigned char state_timer_heater_0 = 0;
  1495. #endif
  1496. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1497. static unsigned char soft_pwm_1;
  1498. #ifdef SLOW_PWM_HEATERS
  1499. static unsigned char state_heater_1 = 0;
  1500. static unsigned char state_timer_heater_1 = 0;
  1501. #endif
  1502. #endif
  1503. #if EXTRUDERS > 2
  1504. static unsigned char soft_pwm_2;
  1505. #ifdef SLOW_PWM_HEATERS
  1506. static unsigned char state_heater_2 = 0;
  1507. static unsigned char state_timer_heater_2 = 0;
  1508. #endif
  1509. #endif
  1510. #if HEATER_BED_PIN > -1
  1511. // @@DR static unsigned char soft_pwm_b;
  1512. #ifdef SLOW_PWM_HEATERS
  1513. static unsigned char state_heater_b = 0;
  1514. static unsigned char state_timer_heater_b = 0;
  1515. #endif
  1516. #endif
  1517. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1518. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1519. #endif
  1520. #ifndef SLOW_PWM_HEATERS
  1521. /*
  1522. * standard PWM modulation
  1523. */
  1524. if (pwm_count == 0)
  1525. {
  1526. soft_pwm_0 = soft_pwm[0];
  1527. if(soft_pwm_0 > 0)
  1528. {
  1529. WRITE(HEATER_0_PIN,1);
  1530. #ifdef HEATERS_PARALLEL
  1531. WRITE(HEATER_1_PIN,1);
  1532. #endif
  1533. } else WRITE(HEATER_0_PIN,0);
  1534. #if EXTRUDERS > 1
  1535. soft_pwm_1 = soft_pwm[1];
  1536. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1537. #endif
  1538. #if EXTRUDERS > 2
  1539. soft_pwm_2 = soft_pwm[2];
  1540. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1541. #endif
  1542. }
  1543. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1544. #if 0 // @@DR vypnuto pro hw pwm bedu
  1545. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1546. // teoreticky by se tato cast uz vubec nemusela poustet
  1547. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1548. {
  1549. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1550. # ifndef SYSTEM_TIMER_2
  1551. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1552. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1553. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1554. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1555. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1556. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1557. # endif //SYSTEM_TIMER_2
  1558. }
  1559. #endif
  1560. #endif
  1561. #ifdef FAN_SOFT_PWM
  1562. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1563. {
  1564. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1565. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1566. }
  1567. #endif
  1568. if(soft_pwm_0 < pwm_count)
  1569. {
  1570. WRITE(HEATER_0_PIN,0);
  1571. #ifdef HEATERS_PARALLEL
  1572. WRITE(HEATER_1_PIN,0);
  1573. #endif
  1574. }
  1575. #if EXTRUDERS > 1
  1576. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1577. #endif
  1578. #if EXTRUDERS > 2
  1579. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1580. #endif
  1581. #if 0 // @@DR
  1582. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1583. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1584. //WRITE(HEATER_BED_PIN,0);
  1585. }
  1586. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1587. #endif
  1588. #endif
  1589. #ifdef FAN_SOFT_PWM
  1590. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1591. #endif
  1592. pwm_count += (1 << SOFT_PWM_SCALE);
  1593. pwm_count &= 0x7f;
  1594. #else //ifndef SLOW_PWM_HEATERS
  1595. /*
  1596. * SLOW PWM HEATERS
  1597. *
  1598. * for heaters drived by relay
  1599. */
  1600. #ifndef MIN_STATE_TIME
  1601. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1602. #endif
  1603. if (slow_pwm_count == 0) {
  1604. // EXTRUDER 0
  1605. soft_pwm_0 = soft_pwm[0];
  1606. if (soft_pwm_0 > 0) {
  1607. // turn ON heather only if the minimum time is up
  1608. if (state_timer_heater_0 == 0) {
  1609. // if change state set timer
  1610. if (state_heater_0 == 0) {
  1611. state_timer_heater_0 = MIN_STATE_TIME;
  1612. }
  1613. state_heater_0 = 1;
  1614. WRITE(HEATER_0_PIN, 1);
  1615. #ifdef HEATERS_PARALLEL
  1616. WRITE(HEATER_1_PIN, 1);
  1617. #endif
  1618. }
  1619. } else {
  1620. // turn OFF heather only if the minimum time is up
  1621. if (state_timer_heater_0 == 0) {
  1622. // if change state set timer
  1623. if (state_heater_0 == 1) {
  1624. state_timer_heater_0 = MIN_STATE_TIME;
  1625. }
  1626. state_heater_0 = 0;
  1627. WRITE(HEATER_0_PIN, 0);
  1628. #ifdef HEATERS_PARALLEL
  1629. WRITE(HEATER_1_PIN, 0);
  1630. #endif
  1631. }
  1632. }
  1633. #if EXTRUDERS > 1
  1634. // EXTRUDER 1
  1635. soft_pwm_1 = soft_pwm[1];
  1636. if (soft_pwm_1 > 0) {
  1637. // turn ON heather only if the minimum time is up
  1638. if (state_timer_heater_1 == 0) {
  1639. // if change state set timer
  1640. if (state_heater_1 == 0) {
  1641. state_timer_heater_1 = MIN_STATE_TIME;
  1642. }
  1643. state_heater_1 = 1;
  1644. WRITE(HEATER_1_PIN, 1);
  1645. }
  1646. } else {
  1647. // turn OFF heather only if the minimum time is up
  1648. if (state_timer_heater_1 == 0) {
  1649. // if change state set timer
  1650. if (state_heater_1 == 1) {
  1651. state_timer_heater_1 = MIN_STATE_TIME;
  1652. }
  1653. state_heater_1 = 0;
  1654. WRITE(HEATER_1_PIN, 0);
  1655. }
  1656. }
  1657. #endif
  1658. #if EXTRUDERS > 2
  1659. // EXTRUDER 2
  1660. soft_pwm_2 = soft_pwm[2];
  1661. if (soft_pwm_2 > 0) {
  1662. // turn ON heather only if the minimum time is up
  1663. if (state_timer_heater_2 == 0) {
  1664. // if change state set timer
  1665. if (state_heater_2 == 0) {
  1666. state_timer_heater_2 = MIN_STATE_TIME;
  1667. }
  1668. state_heater_2 = 1;
  1669. WRITE(HEATER_2_PIN, 1);
  1670. }
  1671. } else {
  1672. // turn OFF heather only if the minimum time is up
  1673. if (state_timer_heater_2 == 0) {
  1674. // if change state set timer
  1675. if (state_heater_2 == 1) {
  1676. state_timer_heater_2 = MIN_STATE_TIME;
  1677. }
  1678. state_heater_2 = 0;
  1679. WRITE(HEATER_2_PIN, 0);
  1680. }
  1681. }
  1682. #endif
  1683. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1684. // BED
  1685. soft_pwm_b = soft_pwm_bed;
  1686. if (soft_pwm_b > 0) {
  1687. // turn ON heather only if the minimum time is up
  1688. if (state_timer_heater_b == 0) {
  1689. // if change state set timer
  1690. if (state_heater_b == 0) {
  1691. state_timer_heater_b = MIN_STATE_TIME;
  1692. }
  1693. state_heater_b = 1;
  1694. //WRITE(HEATER_BED_PIN, 1);
  1695. }
  1696. } else {
  1697. // turn OFF heather only if the minimum time is up
  1698. if (state_timer_heater_b == 0) {
  1699. // if change state set timer
  1700. if (state_heater_b == 1) {
  1701. state_timer_heater_b = MIN_STATE_TIME;
  1702. }
  1703. state_heater_b = 0;
  1704. WRITE(HEATER_BED_PIN, 0);
  1705. }
  1706. }
  1707. #endif
  1708. } // if (slow_pwm_count == 0)
  1709. // EXTRUDER 0
  1710. if (soft_pwm_0 < slow_pwm_count) {
  1711. // turn OFF heather only if the minimum time is up
  1712. if (state_timer_heater_0 == 0) {
  1713. // if change state set timer
  1714. if (state_heater_0 == 1) {
  1715. state_timer_heater_0 = MIN_STATE_TIME;
  1716. }
  1717. state_heater_0 = 0;
  1718. WRITE(HEATER_0_PIN, 0);
  1719. #ifdef HEATERS_PARALLEL
  1720. WRITE(HEATER_1_PIN, 0);
  1721. #endif
  1722. }
  1723. }
  1724. #if EXTRUDERS > 1
  1725. // EXTRUDER 1
  1726. if (soft_pwm_1 < slow_pwm_count) {
  1727. // turn OFF heather only if the minimum time is up
  1728. if (state_timer_heater_1 == 0) {
  1729. // if change state set timer
  1730. if (state_heater_1 == 1) {
  1731. state_timer_heater_1 = MIN_STATE_TIME;
  1732. }
  1733. state_heater_1 = 0;
  1734. WRITE(HEATER_1_PIN, 0);
  1735. }
  1736. }
  1737. #endif
  1738. #if EXTRUDERS > 2
  1739. // EXTRUDER 2
  1740. if (soft_pwm_2 < slow_pwm_count) {
  1741. // turn OFF heather only if the minimum time is up
  1742. if (state_timer_heater_2 == 0) {
  1743. // if change state set timer
  1744. if (state_heater_2 == 1) {
  1745. state_timer_heater_2 = MIN_STATE_TIME;
  1746. }
  1747. state_heater_2 = 0;
  1748. WRITE(HEATER_2_PIN, 0);
  1749. }
  1750. }
  1751. #endif
  1752. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1753. // BED
  1754. if (soft_pwm_b < slow_pwm_count) {
  1755. // turn OFF heather only if the minimum time is up
  1756. if (state_timer_heater_b == 0) {
  1757. // if change state set timer
  1758. if (state_heater_b == 1) {
  1759. state_timer_heater_b = MIN_STATE_TIME;
  1760. }
  1761. state_heater_b = 0;
  1762. WRITE(HEATER_BED_PIN, 0);
  1763. }
  1764. }
  1765. #endif
  1766. #ifdef FAN_SOFT_PWM
  1767. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1768. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1769. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1770. }
  1771. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1772. #endif
  1773. pwm_count += (1 << SOFT_PWM_SCALE);
  1774. pwm_count &= 0x7f;
  1775. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1776. if ((pwm_count % 64) == 0) {
  1777. slow_pwm_count++;
  1778. slow_pwm_count &= 0x7f;
  1779. // Extruder 0
  1780. if (state_timer_heater_0 > 0) {
  1781. state_timer_heater_0--;
  1782. }
  1783. #if EXTRUDERS > 1
  1784. // Extruder 1
  1785. if (state_timer_heater_1 > 0)
  1786. state_timer_heater_1--;
  1787. #endif
  1788. #if EXTRUDERS > 2
  1789. // Extruder 2
  1790. if (state_timer_heater_2 > 0)
  1791. state_timer_heater_2--;
  1792. #endif
  1793. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1794. // Bed
  1795. if (state_timer_heater_b > 0)
  1796. state_timer_heater_b--;
  1797. #endif
  1798. } //if ((pwm_count % 64) == 0) {
  1799. #endif //ifndef SLOW_PWM_HEATERS
  1800. #ifdef BABYSTEPPING
  1801. for(uint8_t axis=0;axis<3;axis++)
  1802. {
  1803. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1804. if(curTodo>0)
  1805. {
  1806. CRITICAL_SECTION_START;
  1807. babystep(axis,/*fwd*/true);
  1808. babystepsTodo[axis]--; //less to do next time
  1809. CRITICAL_SECTION_END;
  1810. }
  1811. else
  1812. if(curTodo<0)
  1813. {
  1814. CRITICAL_SECTION_START;
  1815. babystep(axis,/*fwd*/false);
  1816. babystepsTodo[axis]++; //less to do next time
  1817. CRITICAL_SECTION_END;
  1818. }
  1819. }
  1820. #endif //BABYSTEPPING
  1821. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1822. check_fans();
  1823. #endif //(defined(TACH_0))
  1824. }
  1825. // Timer2 (originaly timer0) is shared with millies
  1826. #ifdef SYSTEM_TIMER_2
  1827. ISR(TIMER2_COMPB_vect)
  1828. #else //SYSTEM_TIMER_2
  1829. ISR(TIMER0_COMPB_vect)
  1830. #endif //SYSTEM_TIMER_2
  1831. {
  1832. static bool _lock = false;
  1833. if (!_lock)
  1834. {
  1835. _lock = true;
  1836. sei();
  1837. temperature_isr();
  1838. cli();
  1839. _lock = false;
  1840. }
  1841. }
  1842. void check_max_temp()
  1843. {
  1844. //heater
  1845. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1846. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1847. #else
  1848. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1849. #endif
  1850. max_temp_error(0);
  1851. }
  1852. //bed
  1853. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1854. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1855. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1856. #else
  1857. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1858. #endif
  1859. bed_max_temp_error();
  1860. }
  1861. #endif
  1862. //ambient
  1863. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1864. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1865. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1866. #else
  1867. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1868. #endif
  1869. ambient_max_temp_error();
  1870. }
  1871. #endif
  1872. }
  1873. //! number of repeating the same state with consecutive step() calls
  1874. //! used to slow down text switching
  1875. struct alert_automaton_mintemp {
  1876. const char *m2;
  1877. alert_automaton_mintemp(const char *m2):m2(m2){}
  1878. private:
  1879. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1880. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1881. States state = States::Init;
  1882. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1883. void substep(States next_state){
  1884. if( repeat == 0 ){
  1885. state = next_state; // advance to the next state
  1886. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1887. } else {
  1888. --repeat;
  1889. }
  1890. }
  1891. public:
  1892. //! brief state automaton step routine
  1893. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1894. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1895. void step(float current_temp, float mintemp){
  1896. static const char m1[] PROGMEM = "Please restart";
  1897. switch(state){
  1898. case States::Init: // initial state - check hysteresis
  1899. if( current_temp > mintemp ){
  1900. state = States::TempAboveMintemp;
  1901. }
  1902. // otherwise keep the Err MINTEMP alert message on the display,
  1903. // i.e. do not transfer to state 1
  1904. break;
  1905. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1906. lcd_setalertstatuspgm(m2);
  1907. substep(States::ShowMintemp);
  1908. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1909. break;
  1910. case States::ShowPleaseRestart: // displaying "Please restart"
  1911. lcd_updatestatuspgm(m1);
  1912. substep(States::ShowMintemp);
  1913. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1914. break;
  1915. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1916. lcd_updatestatuspgm(m2);
  1917. substep(States::ShowPleaseRestart);
  1918. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1919. break;
  1920. }
  1921. }
  1922. };
  1923. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1924. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1925. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1926. void check_min_temp_heater0()
  1927. {
  1928. //heater
  1929. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1930. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1931. #else
  1932. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1933. #endif
  1934. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1935. min_temp_error(0);
  1936. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1937. // no recovery, just force the user to restart the printer
  1938. // which is a safer variant than just continuing printing
  1939. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1940. // we shall signalize, that MINTEMP has been fixed
  1941. // Code notice: normally the alert_automaton instance would have been placed here
  1942. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1943. // due to stupid compiler that takes 16 more bytes.
  1944. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1945. }
  1946. }
  1947. void check_min_temp_bed()
  1948. {
  1949. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1950. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1951. #else
  1952. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1953. #endif
  1954. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1955. bed_min_temp_error();
  1956. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1957. // no recovery, just force the user to restart the printer
  1958. // which is a safer variant than just continuing printing
  1959. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1960. }
  1961. }
  1962. #ifdef AMBIENT_MINTEMP
  1963. void check_min_temp_ambient()
  1964. {
  1965. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1966. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1967. #else
  1968. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1969. #endif
  1970. ambient_min_temp_error();
  1971. }
  1972. }
  1973. #endif
  1974. void check_min_temp()
  1975. {
  1976. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1977. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1978. #ifdef AMBIENT_THERMISTOR
  1979. #ifdef AMBIENT_MINTEMP
  1980. check_min_temp_ambient();
  1981. #endif
  1982. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1983. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1984. #else
  1985. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1986. #endif
  1987. { // ambient temperature is low
  1988. #endif //AMBIENT_THERMISTOR
  1989. // *** 'common' part of code for MK2.5 & MK3
  1990. // * nozzle checking
  1991. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1992. { // ~ nozzle heating is on
  1993. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1994. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1995. {
  1996. bCheckingOnHeater=true; // not necessary
  1997. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1998. }
  1999. }
  2000. else { // ~ nozzle heating is off
  2001. oTimer4minTempHeater.start();
  2002. bCheckingOnHeater=false;
  2003. }
  2004. // * bed checking
  2005. if(target_temperature_bed>BED_MINTEMP)
  2006. { // ~ bed heating is on
  2007. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  2008. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2009. {
  2010. bCheckingOnBed=true; // not necessary
  2011. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2012. }
  2013. }
  2014. else { // ~ bed heating is off
  2015. oTimer4minTempBed.start();
  2016. bCheckingOnBed=false;
  2017. }
  2018. // *** end of 'common' part
  2019. #ifdef AMBIENT_THERMISTOR
  2020. }
  2021. else { // ambient temperature is standard
  2022. check_min_temp_heater0();
  2023. check_min_temp_bed();
  2024. }
  2025. #endif //AMBIENT_THERMISTOR
  2026. }
  2027. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2028. void check_fans() {
  2029. #ifdef FAN_SOFT_PWM
  2030. if (READ(TACH_0) != fan_state[0]) {
  2031. if(fan_measuring) fan_edge_counter[0] ++;
  2032. fan_state[0] = !fan_state[0];
  2033. }
  2034. #else //FAN_SOFT_PWM
  2035. if (READ(TACH_0) != fan_state[0]) {
  2036. fan_edge_counter[0] ++;
  2037. fan_state[0] = !fan_state[0];
  2038. }
  2039. #endif
  2040. //if (READ(TACH_1) != fan_state[1]) {
  2041. // fan_edge_counter[1] ++;
  2042. // fan_state[1] = !fan_state[1];
  2043. //}
  2044. }
  2045. #endif //TACH_0
  2046. #ifdef PIDTEMP
  2047. // Apply the scale factors to the PID values
  2048. float scalePID_i(float i)
  2049. {
  2050. return i*PID_dT;
  2051. }
  2052. float unscalePID_i(float i)
  2053. {
  2054. return i/PID_dT;
  2055. }
  2056. float scalePID_d(float d)
  2057. {
  2058. return d/PID_dT;
  2059. }
  2060. float unscalePID_d(float d)
  2061. {
  2062. return d*PID_dT;
  2063. }
  2064. #endif //PIDTEMP
  2065. #ifdef PINDA_THERMISTOR
  2066. //! @brief PINDA thermistor detected
  2067. //!
  2068. //! @retval true firmware should do temperature compensation and allow calibration
  2069. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2070. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2071. //!
  2072. bool has_temperature_compensation()
  2073. {
  2074. #ifdef SUPERPINDA_SUPPORT
  2075. #ifdef PINDA_TEMP_COMP
  2076. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2077. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2078. {
  2079. #endif //PINDA_TEMP_COMP
  2080. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2081. #ifdef PINDA_TEMP_COMP
  2082. }
  2083. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2084. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2085. #endif //PINDA_TEMP_COMP
  2086. #else
  2087. return true;
  2088. #endif
  2089. }
  2090. #endif //PINDA_THERMISTOR