Marlin_main.cpp 390 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "backlight.h"
  63. #include "planner.h"
  64. #include "stepper.h"
  65. #include "temperature.h"
  66. #include "motion_control.h"
  67. #include "cardreader.h"
  68. #include "ConfigurationStore.h"
  69. #include "language.h"
  70. #include "pins_arduino.h"
  71. #include "math.h"
  72. #include "util.h"
  73. #include "Timer.h"
  74. #include <avr/wdt.h>
  75. #include <avr/pgmspace.h>
  76. #include "Dcodes.h"
  77. #include "AutoDeplete.h"
  78. #ifndef LA_NOCOMPAT
  79. #include "la10compat.h"
  80. #endif
  81. #ifdef SWSPI
  82. #include "swspi.h"
  83. #endif //SWSPI
  84. #include "spi.h"
  85. #ifdef SWI2C
  86. #include "swi2c.h"
  87. #endif //SWI2C
  88. #ifdef FILAMENT_SENSOR
  89. #include "fsensor.h"
  90. #endif //FILAMENT_SENSOR
  91. #ifdef TMC2130
  92. #include "tmc2130.h"
  93. #endif //TMC2130
  94. #ifdef W25X20CL
  95. #include "w25x20cl.h"
  96. #include "optiboot_w25x20cl.h"
  97. #endif //W25X20CL
  98. #ifdef BLINKM
  99. #include "BlinkM.h"
  100. #include "Wire.h"
  101. #endif
  102. #ifdef ULTRALCD
  103. #include "ultralcd.h"
  104. #endif
  105. #if NUM_SERVOS > 0
  106. #include "Servo.h"
  107. #endif
  108. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  109. #include <SPI.h>
  110. #endif
  111. #include "mmu.h"
  112. #define VERSION_STRING "1.0.2"
  113. #include "ultralcd.h"
  114. #include "sound.h"
  115. #include "cmdqueue.h"
  116. #include "io_atmega2560.h"
  117. //Macro for print fan speed
  118. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  119. //filament types
  120. #define FILAMENT_DEFAULT 0
  121. #define FILAMENT_FLEX 1
  122. #define FILAMENT_PVA 2
  123. #define FILAMENT_UNDEFINED 255
  124. //Stepper Movement Variables
  125. //===========================================================================
  126. //=============================imported variables============================
  127. //===========================================================================
  128. //===========================================================================
  129. //=============================public variables=============================
  130. //===========================================================================
  131. #ifdef SDSUPPORT
  132. CardReader card;
  133. #endif
  134. unsigned long PingTime = _millis();
  135. unsigned long NcTime;
  136. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  137. //used for PINDA temp calibration and pause print
  138. #define DEFAULT_RETRACTION 1
  139. #define DEFAULT_RETRACTION_MM 4 //MM
  140. float default_retraction = DEFAULT_RETRACTION;
  141. float homing_feedrate[] = HOMING_FEEDRATE;
  142. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  143. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  144. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  145. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  146. uint8_t axis_relative_modes = 0;
  147. int feedmultiply=100; //100->1 200->2
  148. int extrudemultiply=100; //100->1 200->2
  149. int extruder_multiply[EXTRUDERS] = {100
  150. #if EXTRUDERS > 1
  151. , 100
  152. #if EXTRUDERS > 2
  153. , 100
  154. #endif
  155. #endif
  156. };
  157. int bowden_length[4] = {385, 385, 385, 385};
  158. bool is_usb_printing = false;
  159. bool homing_flag = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  246. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  247. // save/restore printing in case that mmu was not responding
  248. bool mmu_print_saved = false;
  249. // storing estimated time to end of print counted by slicer
  250. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  253. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  254. //===========================================================================
  255. //=============================Private Variables=============================
  256. //===========================================================================
  257. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  258. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  259. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  260. // For tracing an arc
  261. static float offset[3] = {0.0, 0.0, 0.0};
  262. // Current feedrate
  263. float feedrate = 1500.0;
  264. // Feedrate for the next move
  265. static float next_feedrate;
  266. // Original feedrate saved during homing moves
  267. static float saved_feedrate;
  268. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  269. //static float tt = 0;
  270. //static float bt = 0;
  271. //Inactivity shutdown variables
  272. static unsigned long previous_millis_cmd = 0;
  273. unsigned long max_inactive_time = 0;
  274. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  275. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  276. unsigned long starttime=0;
  277. unsigned long stoptime=0;
  278. unsigned long _usb_timer = 0;
  279. bool Stopped=false;
  280. #if NUM_SERVOS > 0
  281. Servo servos[NUM_SERVOS];
  282. #endif
  283. bool target_direction;
  284. //Insert variables if CHDK is defined
  285. #ifdef CHDK
  286. unsigned long chdkHigh = 0;
  287. boolean chdkActive = false;
  288. #endif
  289. //! @name RAM save/restore printing
  290. //! @{
  291. bool saved_printing = false; //!< Print is paused and saved in RAM
  292. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  293. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  294. static float saved_pos[4] = { 0, 0, 0, 0 };
  295. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  296. static int saved_feedmultiply2 = 0;
  297. static uint8_t saved_active_extruder = 0;
  298. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. static void temp_compensation_start();
  312. static void temp_compensation_apply();
  313. uint16_t gcode_in_progress = 0;
  314. uint16_t mcode_in_progress = 0;
  315. void serial_echopair_P(const char *s_P, float v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, double v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, unsigned long v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  322. {
  323. #if 0
  324. char ch=pgm_read_byte(str);
  325. while(ch)
  326. {
  327. MYSERIAL.write(ch);
  328. ch=pgm_read_byte(++str);
  329. }
  330. #else
  331. // hmm, same size as the above version, the compiler did a good job optimizing the above
  332. while( uint8_t ch = pgm_read_byte(str) ){
  333. MYSERIAL.write((char)ch);
  334. ++str;
  335. }
  336. #endif
  337. }
  338. #ifdef SDSUPPORT
  339. #include "SdFatUtil.h"
  340. int freeMemory() { return SdFatUtil::FreeRam(); }
  341. #else
  342. extern "C" {
  343. extern unsigned int __bss_end;
  344. extern unsigned int __heap_start;
  345. extern void *__brkval;
  346. int freeMemory() {
  347. int free_memory;
  348. if ((int)__brkval == 0)
  349. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  350. else
  351. free_memory = ((int)&free_memory) - ((int)__brkval);
  352. return free_memory;
  353. }
  354. }
  355. #endif //!SDSUPPORT
  356. void setup_killpin()
  357. {
  358. #if defined(KILL_PIN) && KILL_PIN > -1
  359. SET_INPUT(KILL_PIN);
  360. WRITE(KILL_PIN,HIGH);
  361. #endif
  362. }
  363. // Set home pin
  364. void setup_homepin(void)
  365. {
  366. #if defined(HOME_PIN) && HOME_PIN > -1
  367. SET_INPUT(HOME_PIN);
  368. WRITE(HOME_PIN,HIGH);
  369. #endif
  370. }
  371. void setup_photpin()
  372. {
  373. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  374. SET_OUTPUT(PHOTOGRAPH_PIN);
  375. WRITE(PHOTOGRAPH_PIN, LOW);
  376. #endif
  377. }
  378. void setup_powerhold()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, HIGH);
  383. #endif
  384. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  385. SET_OUTPUT(PS_ON_PIN);
  386. #if defined(PS_DEFAULT_OFF)
  387. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  388. #else
  389. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  390. #endif
  391. #endif
  392. }
  393. void suicide()
  394. {
  395. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  396. SET_OUTPUT(SUICIDE_PIN);
  397. WRITE(SUICIDE_PIN, LOW);
  398. #endif
  399. }
  400. void servo_init()
  401. {
  402. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  403. servos[0].attach(SERVO0_PIN);
  404. #endif
  405. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  406. servos[1].attach(SERVO1_PIN);
  407. #endif
  408. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  409. servos[2].attach(SERVO2_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  412. servos[3].attach(SERVO3_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 5)
  415. #error "TODO: enter initalisation code for more servos"
  416. #endif
  417. }
  418. bool fans_check_enabled = true;
  419. #ifdef TMC2130
  420. void crashdet_stop_and_save_print()
  421. {
  422. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  423. }
  424. void crashdet_restore_print_and_continue()
  425. {
  426. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  427. // babystep_apply();
  428. }
  429. void crashdet_stop_and_save_print2()
  430. {
  431. cli();
  432. planner_abort_hard(); //abort printing
  433. cmdqueue_reset(); //empty cmdqueue
  434. card.sdprinting = false;
  435. card.closefile();
  436. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  437. st_reset_timer();
  438. sei();
  439. }
  440. void crashdet_detected(uint8_t mask)
  441. {
  442. st_synchronize();
  443. static uint8_t crashDet_counter = 0;
  444. bool automatic_recovery_after_crash = true;
  445. if (crashDet_counter++ == 0) {
  446. crashDetTimer.start();
  447. }
  448. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  453. automatic_recovery_after_crash = false;
  454. crashDetTimer.stop();
  455. crashDet_counter = 0;
  456. }
  457. else {
  458. crashDetTimer.start();
  459. }
  460. lcd_update_enable(true);
  461. lcd_clear();
  462. lcd_update(2);
  463. if (mask & X_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  467. }
  468. if (mask & Y_AXIS_MASK)
  469. {
  470. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  471. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  472. }
  473. lcd_update_enable(true);
  474. lcd_update(2);
  475. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  476. gcode_G28(true, true, false); //home X and Y
  477. st_synchronize();
  478. if (automatic_recovery_after_crash) {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }else{
  481. setTargetHotend(0, active_extruder);
  482. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  483. lcd_update_enable(true);
  484. if (yesno)
  485. {
  486. enquecommand_P(PSTR("CRASH_RECOVER"));
  487. }
  488. else
  489. {
  490. enquecommand_P(PSTR("CRASH_CANCEL"));
  491. }
  492. }
  493. }
  494. void crashdet_recover()
  495. {
  496. crashdet_restore_print_and_continue();
  497. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  498. }
  499. void crashdet_cancel()
  500. {
  501. saved_printing = false;
  502. tmc2130_sg_stop_on_crash = true;
  503. if (saved_printing_type == PRINTING_TYPE_SD) {
  504. lcd_print_stop();
  505. }else if(saved_printing_type == PRINTING_TYPE_USB){
  506. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  507. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  508. }
  509. }
  510. #endif //TMC2130
  511. void failstats_reset_print()
  512. {
  513. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  519. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  520. fsensor_softfail = 0;
  521. #endif
  522. }
  523. void softReset()
  524. {
  525. cli();
  526. wdt_enable(WDTO_15MS);
  527. while(1);
  528. }
  529. #ifdef MESH_BED_LEVELING
  530. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  531. #endif
  532. // Factory reset function
  533. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  534. // Level input parameter sets depth of reset
  535. int er_progress = 0;
  536. static void factory_reset(char level)
  537. {
  538. lcd_clear();
  539. switch (level) {
  540. // Level 0: Language reset
  541. case 0:
  542. Sound_MakeCustom(100,0,false);
  543. lang_reset();
  544. break;
  545. //Level 1: Reset statistics
  546. case 1:
  547. Sound_MakeCustom(100,0,false);
  548. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  549. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  554. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  555. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  556. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  558. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  559. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  560. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  561. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  562. lcd_menu_statistics();
  563. break;
  564. // Level 2: Prepare for shipping
  565. case 2:
  566. //lcd_puts_P(PSTR("Factory RESET"));
  567. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  568. // Force language selection at the next boot up.
  569. lang_reset();
  570. // Force the "Follow calibration flow" message at the next boot up.
  571. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  572. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  573. farm_no = 0;
  574. farm_mode = false;
  575. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  576. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  577. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  578. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  580. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  589. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  590. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  591. #ifdef FILAMENT_SENSOR
  592. fsensor_enable();
  593. fsensor_autoload_set(true);
  594. #endif //FILAMENT_SENSOR
  595. Sound_MakeCustom(100,0,false);
  596. //_delay_ms(2000);
  597. break;
  598. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  599. case 3:
  600. lcd_puts_P(PSTR("Factory RESET"));
  601. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  602. Sound_MakeCustom(100,0,false);
  603. er_progress = 0;
  604. lcd_puts_at_P(3, 3, PSTR(" "));
  605. lcd_set_cursor(3, 3);
  606. lcd_print(er_progress);
  607. // Erase EEPROM
  608. for (int i = 0; i < 4096; i++) {
  609. eeprom_update_byte((uint8_t*)i, 0xFF);
  610. if (i % 41 == 0) {
  611. er_progress++;
  612. lcd_puts_at_P(3, 3, PSTR(" "));
  613. lcd_set_cursor(3, 3);
  614. lcd_print(er_progress);
  615. lcd_puts_P(PSTR("%"));
  616. }
  617. }
  618. softReset();
  619. break;
  620. case 4:
  621. bowden_menu();
  622. break;
  623. default:
  624. break;
  625. }
  626. }
  627. extern "C" {
  628. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  629. }
  630. int uart_putchar(char c, FILE *)
  631. {
  632. MYSERIAL.write(c);
  633. return 0;
  634. }
  635. void lcd_splash()
  636. {
  637. lcd_clear(); // clears display and homes screen
  638. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  639. }
  640. void factory_reset()
  641. {
  642. KEEPALIVE_STATE(PAUSED_FOR_USER);
  643. if (!READ(BTN_ENC))
  644. {
  645. _delay_ms(1000);
  646. if (!READ(BTN_ENC))
  647. {
  648. lcd_clear();
  649. lcd_puts_P(PSTR("Factory RESET"));
  650. SET_OUTPUT(BEEPER);
  651. if(eSoundMode!=e_SOUND_MODE_SILENT)
  652. WRITE(BEEPER, HIGH);
  653. while (!READ(BTN_ENC));
  654. WRITE(BEEPER, LOW);
  655. _delay_ms(2000);
  656. char level = reset_menu();
  657. factory_reset(level);
  658. switch (level) {
  659. case 0: _delay_ms(0); break;
  660. case 1: _delay_ms(0); break;
  661. case 2: _delay_ms(0); break;
  662. case 3: _delay_ms(0); break;
  663. }
  664. }
  665. }
  666. KEEPALIVE_STATE(IN_HANDLER);
  667. }
  668. void show_fw_version_warnings() {
  669. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  670. switch (FW_DEV_VERSION) {
  671. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  672. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  673. case(FW_VERSION_DEVEL):
  674. case(FW_VERSION_DEBUG):
  675. lcd_update_enable(false);
  676. lcd_clear();
  677. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  678. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  679. #else
  680. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  681. #endif
  682. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  683. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  684. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  685. lcd_wait_for_click();
  686. break;
  687. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  688. }
  689. lcd_update_enable(true);
  690. }
  691. //! @brief try to check if firmware is on right type of printer
  692. static void check_if_fw_is_on_right_printer(){
  693. #ifdef FILAMENT_SENSOR
  694. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  695. #ifdef IR_SENSOR
  696. swi2c_init();
  697. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  698. if (pat9125_detected){
  699. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  700. #endif //IR_SENSOR
  701. #ifdef PAT9125
  702. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  703. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  704. if (ir_detected){
  705. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  706. #endif //PAT9125
  707. }
  708. #endif //FILAMENT_SENSOR
  709. }
  710. uint8_t check_printer_version()
  711. {
  712. uint8_t version_changed = 0;
  713. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  714. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  715. if (printer_type != PRINTER_TYPE) {
  716. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  717. else version_changed |= 0b10;
  718. }
  719. if (motherboard != MOTHERBOARD) {
  720. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  721. else version_changed |= 0b01;
  722. }
  723. return version_changed;
  724. }
  725. #ifdef BOOTAPP
  726. #include "bootapp.h" //bootloader support
  727. #endif //BOOTAPP
  728. #if (LANG_MODE != 0) //secondary language support
  729. #ifdef W25X20CL
  730. // language update from external flash
  731. #define LANGBOOT_BLOCKSIZE 0x1000u
  732. #define LANGBOOT_RAMBUFFER 0x0800
  733. void update_sec_lang_from_external_flash()
  734. {
  735. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  736. {
  737. uint8_t lang = boot_reserved >> 4;
  738. uint8_t state = boot_reserved & 0xf;
  739. lang_table_header_t header;
  740. uint32_t src_addr;
  741. if (lang_get_header(lang, &header, &src_addr))
  742. {
  743. lcd_puts_at_P(1,3,PSTR("Language update."));
  744. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  745. _delay(100);
  746. boot_reserved = (state + 1) | (lang << 4);
  747. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  748. {
  749. cli();
  750. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  751. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  752. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  753. if (state == 0)
  754. {
  755. //TODO - check header integrity
  756. }
  757. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  758. }
  759. else
  760. {
  761. //TODO - check sec lang data integrity
  762. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  763. }
  764. }
  765. }
  766. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  767. }
  768. #ifdef DEBUG_W25X20CL
  769. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  770. {
  771. lang_table_header_t header;
  772. uint8_t count = 0;
  773. uint32_t addr = 0x00000;
  774. while (1)
  775. {
  776. printf_P(_n("LANGTABLE%d:"), count);
  777. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  778. if (header.magic != LANG_MAGIC)
  779. {
  780. printf_P(_n("NG!\n"));
  781. break;
  782. }
  783. printf_P(_n("OK\n"));
  784. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  785. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  786. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  787. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  788. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  789. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  790. addr += header.size;
  791. codes[count] = header.code;
  792. count ++;
  793. }
  794. return count;
  795. }
  796. void list_sec_lang_from_external_flash()
  797. {
  798. uint16_t codes[8];
  799. uint8_t count = lang_xflash_enum_codes(codes);
  800. printf_P(_n("XFlash lang count = %hhd\n"), count);
  801. }
  802. #endif //DEBUG_W25X20CL
  803. #endif //W25X20CL
  804. #endif //(LANG_MODE != 0)
  805. static void w25x20cl_err_msg()
  806. {
  807. lcd_clear();
  808. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  809. }
  810. // "Setup" function is called by the Arduino framework on startup.
  811. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  812. // are initialized by the main() routine provided by the Arduino framework.
  813. void setup()
  814. {
  815. mmu_init();
  816. ultralcd_init();
  817. spi_init();
  818. lcd_splash();
  819. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  820. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  821. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  822. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  823. MYSERIAL.begin(BAUDRATE);
  824. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  825. stdout = uartout;
  826. #ifdef W25X20CL
  827. bool w25x20cl_success = w25x20cl_init();
  828. uint8_t optiboot_status = 1;
  829. if (w25x20cl_success)
  830. {
  831. optiboot_status = optiboot_w25x20cl_enter();
  832. #if (LANG_MODE != 0) //secondary language support
  833. update_sec_lang_from_external_flash();
  834. #endif //(LANG_MODE != 0)
  835. }
  836. else
  837. {
  838. w25x20cl_err_msg();
  839. }
  840. #else
  841. const bool w25x20cl_success = true;
  842. #endif //W25X20CL
  843. setup_killpin();
  844. setup_powerhold();
  845. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  846. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  847. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  848. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  849. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  850. if (farm_mode)
  851. {
  852. no_response = true; //we need confirmation by recieving PRUSA thx
  853. important_status = 8;
  854. prusa_statistics(8);
  855. selectedSerialPort = 1;
  856. MYSERIAL.begin(BAUDRATE);
  857. #ifdef TMC2130
  858. //increased extruder current (PFW363)
  859. tmc2130_current_h[E_AXIS] = 36;
  860. tmc2130_current_r[E_AXIS] = 36;
  861. #endif //TMC2130
  862. #ifdef FILAMENT_SENSOR
  863. //disabled filament autoload (PFW360)
  864. fsensor_autoload_set(false);
  865. #endif //FILAMENT_SENSOR
  866. // ~ FanCheck -> on
  867. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  868. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  869. }
  870. #ifndef W25X20CL
  871. SERIAL_PROTOCOLLNPGM("start");
  872. #else
  873. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  874. SERIAL_PROTOCOLLNPGM("start");
  875. #endif
  876. SERIAL_ECHO_START;
  877. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  878. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  879. #ifdef DEBUG_SEC_LANG
  880. lang_table_header_t header;
  881. uint32_t src_addr = 0x00000;
  882. if (lang_get_header(1, &header, &src_addr))
  883. {
  884. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  885. #define LT_PRINT_TEST 2
  886. // flash usage
  887. // total p.test
  888. //0 252718 t+c text code
  889. //1 253142 424 170 254
  890. //2 253040 322 164 158
  891. //3 253248 530 135 395
  892. #if (LT_PRINT_TEST==1) //not optimized printf
  893. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  894. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  895. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  896. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  897. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  898. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  899. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  900. #elif (LT_PRINT_TEST==2) //optimized printf
  901. printf_P(
  902. _n(
  903. " _src_addr = 0x%08lx\n"
  904. " _lt_magic = 0x%08lx %S\n"
  905. " _lt_size = 0x%04x (%d)\n"
  906. " _lt_count = 0x%04x (%d)\n"
  907. " _lt_chsum = 0x%04x\n"
  908. " _lt_code = 0x%04x (%c%c)\n"
  909. " _lt_resv1 = 0x%08lx\n"
  910. ),
  911. src_addr,
  912. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  913. header.size, header.size,
  914. header.count, header.count,
  915. header.checksum,
  916. header.code, header.code >> 8, header.code & 0xff,
  917. header.signature
  918. );
  919. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  920. MYSERIAL.print(" _src_addr = 0x");
  921. MYSERIAL.println(src_addr, 16);
  922. MYSERIAL.print(" _lt_magic = 0x");
  923. MYSERIAL.print(header.magic, 16);
  924. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  925. MYSERIAL.print(" _lt_size = 0x");
  926. MYSERIAL.print(header.size, 16);
  927. MYSERIAL.print(" (");
  928. MYSERIAL.print(header.size, 10);
  929. MYSERIAL.println(")");
  930. MYSERIAL.print(" _lt_count = 0x");
  931. MYSERIAL.print(header.count, 16);
  932. MYSERIAL.print(" (");
  933. MYSERIAL.print(header.count, 10);
  934. MYSERIAL.println(")");
  935. MYSERIAL.print(" _lt_chsum = 0x");
  936. MYSERIAL.println(header.checksum, 16);
  937. MYSERIAL.print(" _lt_code = 0x");
  938. MYSERIAL.print(header.code, 16);
  939. MYSERIAL.print(" (");
  940. MYSERIAL.print((char)(header.code >> 8), 0);
  941. MYSERIAL.print((char)(header.code & 0xff), 0);
  942. MYSERIAL.println(")");
  943. MYSERIAL.print(" _lt_resv1 = 0x");
  944. MYSERIAL.println(header.signature, 16);
  945. #endif //(LT_PRINT_TEST==)
  946. #undef LT_PRINT_TEST
  947. #if 0
  948. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  949. for (uint16_t i = 0; i < 1024; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  952. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. uint16_t sum = 0;
  957. for (uint16_t i = 0; i < header.size; i++)
  958. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  959. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  960. sum -= header.checksum; //subtract checksum
  961. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  962. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  963. if (sum == header.checksum)
  964. printf_P(_n("Checksum OK\n"), sum);
  965. else
  966. printf_P(_n("Checksum NG\n"), sum);
  967. }
  968. else
  969. printf_P(_n("lang_get_header failed!\n"));
  970. #if 0
  971. for (uint16_t i = 0; i < 1024*10; i++)
  972. {
  973. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  974. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  975. if ((i % 16) == 15) putchar('\n');
  976. }
  977. #endif
  978. #if 0
  979. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  980. for (int i = 0; i < 4096; ++i) {
  981. int b = eeprom_read_byte((unsigned char*)i);
  982. if (b != 255) {
  983. SERIAL_ECHO(i);
  984. SERIAL_ECHO(":");
  985. SERIAL_ECHO(b);
  986. SERIAL_ECHOLN("");
  987. }
  988. }
  989. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  990. #endif
  991. #endif //DEBUG_SEC_LANG
  992. // Check startup - does nothing if bootloader sets MCUSR to 0
  993. byte mcu = MCUSR;
  994. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  995. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  996. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  997. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  998. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  999. if (mcu & 1) puts_P(MSG_POWERUP);
  1000. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1001. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1002. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1003. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1004. MCUSR = 0;
  1005. //SERIAL_ECHORPGM(MSG_MARLIN);
  1006. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1007. #ifdef STRING_VERSION_CONFIG_H
  1008. #ifdef STRING_CONFIG_H_AUTHOR
  1009. SERIAL_ECHO_START;
  1010. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1011. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1012. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1013. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1014. SERIAL_ECHOPGM("Compiled: ");
  1015. SERIAL_ECHOLNPGM(__DATE__);
  1016. #endif
  1017. #endif
  1018. SERIAL_ECHO_START;
  1019. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1020. SERIAL_ECHO(freeMemory());
  1021. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1022. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1023. //lcd_update_enable(false); // why do we need this?? - andre
  1024. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1025. bool previous_settings_retrieved = false;
  1026. uint8_t hw_changed = check_printer_version();
  1027. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1028. previous_settings_retrieved = Config_RetrieveSettings();
  1029. }
  1030. else { //printer version was changed so use default settings
  1031. Config_ResetDefault();
  1032. }
  1033. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1034. tp_init(); // Initialize temperature loop
  1035. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1036. else
  1037. {
  1038. w25x20cl_err_msg();
  1039. printf_P(_n("W25X20CL not responding.\n"));
  1040. }
  1041. #ifdef EXTRUDER_ALTFAN_DETECT
  1042. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1043. if (extruder_altfan_detect())
  1044. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1045. else
  1046. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1047. #endif //EXTRUDER_ALTFAN_DETECT
  1048. plan_init(); // Initialize planner;
  1049. factory_reset();
  1050. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1051. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1052. {
  1053. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1054. // where all the EEPROM entries are set to 0x0ff.
  1055. // Once a firmware boots up, it forces at least a language selection, which changes
  1056. // EEPROM_LANG to number lower than 0x0ff.
  1057. // 1) Set a high power mode.
  1058. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1059. #ifdef TMC2130
  1060. tmc2130_mode = TMC2130_MODE_NORMAL;
  1061. #endif //TMC2130
  1062. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1063. }
  1064. lcd_encoder_diff=0;
  1065. #ifdef TMC2130
  1066. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1067. if (silentMode == 0xff) silentMode = 0;
  1068. tmc2130_mode = TMC2130_MODE_NORMAL;
  1069. if (lcd_crash_detect_enabled() && !farm_mode)
  1070. {
  1071. lcd_crash_detect_enable();
  1072. puts_P(_N("CrashDetect ENABLED!"));
  1073. }
  1074. else
  1075. {
  1076. lcd_crash_detect_disable();
  1077. puts_P(_N("CrashDetect DISABLED"));
  1078. }
  1079. #ifdef TMC2130_LINEARITY_CORRECTION
  1080. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1081. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1082. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1083. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1084. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1085. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1086. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1087. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1088. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1089. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1090. #endif //TMC2130_LINEARITY_CORRECTION
  1091. #ifdef TMC2130_VARIABLE_RESOLUTION
  1092. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1093. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1094. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1095. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1096. #else //TMC2130_VARIABLE_RESOLUTION
  1097. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1098. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1099. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1100. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1101. #endif //TMC2130_VARIABLE_RESOLUTION
  1102. #endif //TMC2130
  1103. st_init(); // Initialize stepper, this enables interrupts!
  1104. #ifdef TMC2130
  1105. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1106. update_mode_profile();
  1107. tmc2130_init();
  1108. #endif //TMC2130
  1109. #ifdef PSU_Delta
  1110. init_force_z(); // ! important for correct Z-axis initialization
  1111. #endif // PSU_Delta
  1112. setup_photpin();
  1113. servo_init();
  1114. // Reset the machine correction matrix.
  1115. // It does not make sense to load the correction matrix until the machine is homed.
  1116. world2machine_reset();
  1117. // Initialize current_position accounting for software endstops to
  1118. // avoid unexpected initial shifts on the first move
  1119. clamp_to_software_endstops(current_position);
  1120. plan_set_position_curposXYZE();
  1121. #ifdef FILAMENT_SENSOR
  1122. fsensor_init();
  1123. #endif //FILAMENT_SENSOR
  1124. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1125. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1126. #endif
  1127. setup_homepin();
  1128. #if defined(Z_AXIS_ALWAYS_ON)
  1129. enable_z();
  1130. #endif
  1131. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1132. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1133. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1134. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1135. if (farm_mode)
  1136. {
  1137. prusa_statistics(8);
  1138. }
  1139. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1140. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1141. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1142. // but this times out if a blocking dialog is shown in setup().
  1143. card.initsd();
  1144. #ifdef DEBUG_SD_SPEED_TEST
  1145. if (card.cardOK)
  1146. {
  1147. uint8_t* buff = (uint8_t*)block_buffer;
  1148. uint32_t block = 0;
  1149. uint32_t sumr = 0;
  1150. uint32_t sumw = 0;
  1151. for (int i = 0; i < 1024; i++)
  1152. {
  1153. uint32_t u = _micros();
  1154. bool res = card.card.readBlock(i, buff);
  1155. u = _micros() - u;
  1156. if (res)
  1157. {
  1158. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1159. sumr += u;
  1160. u = _micros();
  1161. res = card.card.writeBlock(i, buff);
  1162. u = _micros() - u;
  1163. if (res)
  1164. {
  1165. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1166. sumw += u;
  1167. }
  1168. else
  1169. {
  1170. printf_P(PSTR("writeBlock %4d error\n"), i);
  1171. break;
  1172. }
  1173. }
  1174. else
  1175. {
  1176. printf_P(PSTR("readBlock %4d error\n"), i);
  1177. break;
  1178. }
  1179. }
  1180. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1181. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1182. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1183. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1184. }
  1185. else
  1186. printf_P(PSTR("Card NG!\n"));
  1187. #endif //DEBUG_SD_SPEED_TEST
  1188. eeprom_init();
  1189. #ifdef SNMM
  1190. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1191. int _z = BOWDEN_LENGTH;
  1192. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1193. }
  1194. #endif
  1195. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1196. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1197. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1198. #if (LANG_MODE != 0) //secondary language support
  1199. #ifdef DEBUG_W25X20CL
  1200. W25X20CL_SPI_ENTER();
  1201. uint8_t uid[8]; // 64bit unique id
  1202. w25x20cl_rd_uid(uid);
  1203. puts_P(_n("W25X20CL UID="));
  1204. for (uint8_t i = 0; i < 8; i ++)
  1205. printf_P(PSTR("%02hhx"), uid[i]);
  1206. putchar('\n');
  1207. list_sec_lang_from_external_flash();
  1208. #endif //DEBUG_W25X20CL
  1209. // lang_reset();
  1210. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1211. lcd_language();
  1212. #ifdef DEBUG_SEC_LANG
  1213. uint16_t sec_lang_code = lang_get_code(1);
  1214. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1215. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1216. lang_print_sec_lang(uartout);
  1217. #endif //DEBUG_SEC_LANG
  1218. #endif //(LANG_MODE != 0)
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1221. }
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1223. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1224. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1225. int16_t z_shift = 0;
  1226. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1227. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1228. }
  1229. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1230. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1231. }
  1232. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1233. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1234. }
  1235. //mbl_mode_init();
  1236. mbl_settings_init();
  1237. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1238. if (SilentModeMenu_MMU == 255) {
  1239. SilentModeMenu_MMU = 1;
  1240. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1241. }
  1242. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1243. setup_fan_interrupt();
  1244. #endif //DEBUG_DISABLE_FANCHECK
  1245. #ifdef PAT9125
  1246. fsensor_setup_interrupt();
  1247. #endif //PAT9125
  1248. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1249. #ifndef DEBUG_DISABLE_STARTMSGS
  1250. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1251. if (!farm_mode) {
  1252. check_if_fw_is_on_right_printer();
  1253. show_fw_version_warnings();
  1254. }
  1255. switch (hw_changed) {
  1256. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1257. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1258. case(0b01):
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1260. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1261. break;
  1262. case(0b10):
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1264. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1265. break;
  1266. case(0b11):
  1267. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1268. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1269. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1270. break;
  1271. default: break; //no change, show no message
  1272. }
  1273. if (!previous_settings_retrieved) {
  1274. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1275. Config_StoreSettings();
  1276. }
  1277. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1278. lcd_wizard(WizState::Run);
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1281. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1282. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1283. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1284. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1285. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1288. }
  1289. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1290. // Show the message.
  1291. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1292. lcd_update_enable(true);
  1293. }
  1294. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1295. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1296. lcd_update_enable(true);
  1297. }
  1298. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1299. // Show the message.
  1300. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1301. }
  1302. }
  1303. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1304. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1305. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1306. update_current_firmware_version_to_eeprom();
  1307. lcd_selftest();
  1308. }
  1309. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1310. KEEPALIVE_STATE(IN_PROCESS);
  1311. #endif //DEBUG_DISABLE_STARTMSGS
  1312. lcd_update_enable(true);
  1313. lcd_clear();
  1314. lcd_update(2);
  1315. // Store the currently running firmware into an eeprom,
  1316. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1317. update_current_firmware_version_to_eeprom();
  1318. #ifdef TMC2130
  1319. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1320. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1321. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1322. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1323. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1324. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1325. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1326. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1327. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1328. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1329. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1330. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1331. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1332. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1333. #endif //TMC2130
  1334. #ifdef UVLO_SUPPORT
  1335. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1336. /*
  1337. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1338. else {
  1339. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1340. lcd_update_enable(true);
  1341. lcd_update(2);
  1342. lcd_setstatuspgm(_T(WELCOME_MSG));
  1343. }
  1344. */
  1345. manage_heater(); // Update temperatures
  1346. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1347. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1348. #endif
  1349. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1350. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1351. puts_P(_N("Automatic recovery!"));
  1352. #endif
  1353. recover_print(1);
  1354. }
  1355. else{
  1356. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1357. puts_P(_N("Normal recovery!"));
  1358. #endif
  1359. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1360. else {
  1361. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1362. lcd_update_enable(true);
  1363. lcd_update(2);
  1364. lcd_setstatuspgm(_T(WELCOME_MSG));
  1365. }
  1366. }
  1367. }
  1368. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1369. // the entire state machine initialized.
  1370. setup_uvlo_interrupt();
  1371. #endif //UVLO_SUPPORT
  1372. fCheckModeInit();
  1373. fSetMmuMode(mmu_enabled);
  1374. KEEPALIVE_STATE(NOT_BUSY);
  1375. #ifdef WATCHDOG
  1376. wdt_enable(WDTO_4S);
  1377. #endif //WATCHDOG
  1378. }
  1379. void trace();
  1380. #define CHUNK_SIZE 64 // bytes
  1381. #define SAFETY_MARGIN 1
  1382. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1383. int chunkHead = 0;
  1384. void serial_read_stream() {
  1385. setAllTargetHotends(0);
  1386. setTargetBed(0);
  1387. lcd_clear();
  1388. lcd_puts_P(PSTR(" Upload in progress"));
  1389. // first wait for how many bytes we will receive
  1390. uint32_t bytesToReceive;
  1391. // receive the four bytes
  1392. char bytesToReceiveBuffer[4];
  1393. for (int i=0; i<4; i++) {
  1394. int data;
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. bytesToReceiveBuffer[i] = data;
  1397. }
  1398. // make it a uint32
  1399. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1400. // we're ready, notify the sender
  1401. MYSERIAL.write('+');
  1402. // lock in the routine
  1403. uint32_t receivedBytes = 0;
  1404. while (prusa_sd_card_upload) {
  1405. int i;
  1406. for (i=0; i<CHUNK_SIZE; i++) {
  1407. int data;
  1408. // check if we're not done
  1409. if (receivedBytes == bytesToReceive) {
  1410. break;
  1411. }
  1412. // read the next byte
  1413. while ((data = MYSERIAL.read()) == -1) {};
  1414. receivedBytes++;
  1415. // save it to the chunk
  1416. chunk[i] = data;
  1417. }
  1418. // write the chunk to SD
  1419. card.write_command_no_newline(&chunk[0]);
  1420. // notify the sender we're ready for more data
  1421. MYSERIAL.write('+');
  1422. // for safety
  1423. manage_heater();
  1424. // check if we're done
  1425. if(receivedBytes == bytesToReceive) {
  1426. trace(); // beep
  1427. card.closefile();
  1428. prusa_sd_card_upload = false;
  1429. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1430. }
  1431. }
  1432. }
  1433. /**
  1434. * Output a "busy" message at regular intervals
  1435. * while the machine is not accepting commands.
  1436. */
  1437. void host_keepalive() {
  1438. #ifndef HOST_KEEPALIVE_FEATURE
  1439. return;
  1440. #endif //HOST_KEEPALIVE_FEATURE
  1441. if (farm_mode) return;
  1442. long ms = _millis();
  1443. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1444. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1445. switch (busy_state) {
  1446. case IN_HANDLER:
  1447. case IN_PROCESS:
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOLNPGM("busy: processing");
  1450. break;
  1451. case PAUSED_FOR_USER:
  1452. SERIAL_ECHO_START;
  1453. SERIAL_ECHOLNPGM("busy: paused for user");
  1454. break;
  1455. case PAUSED_FOR_INPUT:
  1456. SERIAL_ECHO_START;
  1457. SERIAL_ECHOLNPGM("busy: paused for input");
  1458. break;
  1459. default:
  1460. break;
  1461. }
  1462. }
  1463. prev_busy_signal_ms = ms;
  1464. }
  1465. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1466. // Before loop(), the setup() function is called by the main() routine.
  1467. void loop()
  1468. {
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1471. {
  1472. is_usb_printing = true;
  1473. usb_printing_counter--;
  1474. _usb_timer = _millis();
  1475. }
  1476. if (usb_printing_counter == 0)
  1477. {
  1478. is_usb_printing = false;
  1479. }
  1480. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1481. {
  1482. is_usb_printing = true;
  1483. }
  1484. #ifdef FANCHECK
  1485. if (fan_check_error && isPrintPaused)
  1486. {
  1487. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1488. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1489. }
  1490. #endif
  1491. if (prusa_sd_card_upload)
  1492. {
  1493. //we read byte-by byte
  1494. serial_read_stream();
  1495. }
  1496. else
  1497. {
  1498. get_command();
  1499. #ifdef SDSUPPORT
  1500. card.checkautostart(false);
  1501. #endif
  1502. if(buflen)
  1503. {
  1504. cmdbuffer_front_already_processed = false;
  1505. #ifdef SDSUPPORT
  1506. if(card.saving)
  1507. {
  1508. // Saving a G-code file onto an SD-card is in progress.
  1509. // Saving starts with M28, saving until M29 is seen.
  1510. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1511. card.write_command(CMDBUFFER_CURRENT_STRING);
  1512. if(card.logging)
  1513. process_commands();
  1514. else
  1515. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1516. } else {
  1517. card.closefile();
  1518. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1519. }
  1520. } else {
  1521. process_commands();
  1522. }
  1523. #else
  1524. process_commands();
  1525. #endif //SDSUPPORT
  1526. if (! cmdbuffer_front_already_processed && buflen)
  1527. {
  1528. // ptr points to the start of the block currently being processed.
  1529. // The first character in the block is the block type.
  1530. char *ptr = cmdbuffer + bufindr;
  1531. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1532. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1533. union {
  1534. struct {
  1535. char lo;
  1536. char hi;
  1537. } lohi;
  1538. uint16_t value;
  1539. } sdlen;
  1540. sdlen.value = 0;
  1541. {
  1542. // This block locks the interrupts globally for 3.25 us,
  1543. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1544. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1545. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1546. cli();
  1547. // Reset the command to something, which will be ignored by the power panic routine,
  1548. // so this buffer length will not be counted twice.
  1549. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1550. // Extract the current buffer length.
  1551. sdlen.lohi.lo = *ptr ++;
  1552. sdlen.lohi.hi = *ptr;
  1553. // and pass it to the planner queue.
  1554. planner_add_sd_length(sdlen.value);
  1555. sei();
  1556. }
  1557. }
  1558. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1559. cli();
  1560. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1561. // and one for each command to previous block in the planner queue.
  1562. planner_add_sd_length(1);
  1563. sei();
  1564. }
  1565. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1566. // this block's SD card length will not be counted twice as its command type has been replaced
  1567. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1568. cmdqueue_pop_front();
  1569. }
  1570. host_keepalive();
  1571. }
  1572. }
  1573. //check heater every n milliseconds
  1574. manage_heater();
  1575. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1576. checkHitEndstops();
  1577. lcd_update(0);
  1578. #ifdef TMC2130
  1579. tmc2130_check_overtemp();
  1580. if (tmc2130_sg_crash)
  1581. {
  1582. uint8_t crash = tmc2130_sg_crash;
  1583. tmc2130_sg_crash = 0;
  1584. // crashdet_stop_and_save_print();
  1585. switch (crash)
  1586. {
  1587. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1588. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1589. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1590. }
  1591. }
  1592. #endif //TMC2130
  1593. mmu_loop();
  1594. }
  1595. #define DEFINE_PGM_READ_ANY(type, reader) \
  1596. static inline type pgm_read_any(const type *p) \
  1597. { return pgm_read_##reader##_near(p); }
  1598. DEFINE_PGM_READ_ANY(float, float);
  1599. DEFINE_PGM_READ_ANY(signed char, byte);
  1600. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1601. static const PROGMEM type array##_P[3] = \
  1602. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1603. static inline type array(int axis) \
  1604. { return pgm_read_any(&array##_P[axis]); } \
  1605. type array##_ext(int axis) \
  1606. { return pgm_read_any(&array##_P[axis]); }
  1607. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1608. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1609. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1610. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1611. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1612. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1613. static void axis_is_at_home(int axis) {
  1614. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1615. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1616. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1617. }
  1618. //! @return original feedmultiply
  1619. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1620. saved_feedrate = feedrate;
  1621. int l_feedmultiply = feedmultiply;
  1622. feedmultiply = 100;
  1623. previous_millis_cmd = _millis();
  1624. enable_endstops(enable_endstops_now);
  1625. return l_feedmultiply;
  1626. }
  1627. //! @param original_feedmultiply feedmultiply to restore
  1628. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1629. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1630. enable_endstops(false);
  1631. #endif
  1632. feedrate = saved_feedrate;
  1633. feedmultiply = original_feedmultiply;
  1634. previous_millis_cmd = _millis();
  1635. }
  1636. #ifdef ENABLE_AUTO_BED_LEVELING
  1637. #ifdef AUTO_BED_LEVELING_GRID
  1638. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1639. {
  1640. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1641. planeNormal.debug("planeNormal");
  1642. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1643. //bedLevel.debug("bedLevel");
  1644. //plan_bed_level_matrix.debug("bed level before");
  1645. //vector_3 uncorrected_position = plan_get_position_mm();
  1646. //uncorrected_position.debug("position before");
  1647. vector_3 corrected_position = plan_get_position();
  1648. // corrected_position.debug("position after");
  1649. current_position[X_AXIS] = corrected_position.x;
  1650. current_position[Y_AXIS] = corrected_position.y;
  1651. current_position[Z_AXIS] = corrected_position.z;
  1652. // put the bed at 0 so we don't go below it.
  1653. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1654. plan_set_position_curposXYZE();
  1655. }
  1656. #else // not AUTO_BED_LEVELING_GRID
  1657. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1658. plan_bed_level_matrix.set_to_identity();
  1659. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1660. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1661. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1662. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1663. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1664. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1665. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1666. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1667. vector_3 corrected_position = plan_get_position();
  1668. current_position[X_AXIS] = corrected_position.x;
  1669. current_position[Y_AXIS] = corrected_position.y;
  1670. current_position[Z_AXIS] = corrected_position.z;
  1671. // put the bed at 0 so we don't go below it.
  1672. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1673. plan_set_position_curposXYZE();
  1674. }
  1675. #endif // AUTO_BED_LEVELING_GRID
  1676. static void run_z_probe() {
  1677. plan_bed_level_matrix.set_to_identity();
  1678. feedrate = homing_feedrate[Z_AXIS];
  1679. // move down until you find the bed
  1680. float zPosition = -10;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. // we have to let the planner know where we are right now as it is not where we said to go.
  1684. zPosition = st_get_position_mm(Z_AXIS);
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1686. // move up the retract distance
  1687. zPosition += home_retract_mm(Z_AXIS);
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1689. st_synchronize();
  1690. // move back down slowly to find bed
  1691. feedrate = homing_feedrate[Z_AXIS]/4;
  1692. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1694. st_synchronize();
  1695. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1696. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1697. plan_set_position_curposXYZE();
  1698. }
  1699. static void do_blocking_move_to(float x, float y, float z) {
  1700. float oldFeedRate = feedrate;
  1701. feedrate = homing_feedrate[Z_AXIS];
  1702. current_position[Z_AXIS] = z;
  1703. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1704. st_synchronize();
  1705. feedrate = XY_TRAVEL_SPEED;
  1706. current_position[X_AXIS] = x;
  1707. current_position[Y_AXIS] = y;
  1708. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. feedrate = oldFeedRate;
  1711. }
  1712. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1713. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1714. }
  1715. /// Probe bed height at position (x,y), returns the measured z value
  1716. static float probe_pt(float x, float y, float z_before) {
  1717. // move to right place
  1718. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1719. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1720. run_z_probe();
  1721. float measured_z = current_position[Z_AXIS];
  1722. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1723. SERIAL_PROTOCOLPGM(" x: ");
  1724. SERIAL_PROTOCOL(x);
  1725. SERIAL_PROTOCOLPGM(" y: ");
  1726. SERIAL_PROTOCOL(y);
  1727. SERIAL_PROTOCOLPGM(" z: ");
  1728. SERIAL_PROTOCOL(measured_z);
  1729. SERIAL_PROTOCOLPGM("\n");
  1730. return measured_z;
  1731. }
  1732. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1733. #ifdef LIN_ADVANCE
  1734. /**
  1735. * M900: Set and/or Get advance K factor
  1736. *
  1737. * K<factor> Set advance K factor
  1738. */
  1739. inline void gcode_M900() {
  1740. float newK = code_seen('K') ? code_value_float() : -2;
  1741. #ifdef LA_NOCOMPAT
  1742. if (newK >= 0 && newK < LA_K_MAX)
  1743. extruder_advance_K = newK;
  1744. else
  1745. SERIAL_ECHOLNPGM("K out of allowed range!");
  1746. #else
  1747. if (newK == 0)
  1748. {
  1749. extruder_advance_K = 0;
  1750. la10c_reset();
  1751. }
  1752. else
  1753. {
  1754. newK = la10c_value(newK);
  1755. if (newK < 0)
  1756. SERIAL_ECHOLNPGM("K out of allowed range!");
  1757. else
  1758. extruder_advance_K = newK;
  1759. }
  1760. #endif
  1761. SERIAL_ECHO_START;
  1762. SERIAL_ECHOPGM("Advance K=");
  1763. SERIAL_ECHOLN(extruder_advance_K);
  1764. }
  1765. #endif // LIN_ADVANCE
  1766. bool check_commands() {
  1767. bool end_command_found = false;
  1768. while (buflen)
  1769. {
  1770. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1771. if (!cmdbuffer_front_already_processed)
  1772. cmdqueue_pop_front();
  1773. cmdbuffer_front_already_processed = false;
  1774. }
  1775. return end_command_found;
  1776. }
  1777. // raise_z_above: slowly raise Z to the requested height
  1778. //
  1779. // contrarily to a simple move, this function will carefully plan a move
  1780. // when the current Z position is unknown. In such cases, stallguard is
  1781. // enabled and will prevent prolonged pushing against the Z tops
  1782. void raise_z_above(float target, bool plan)
  1783. {
  1784. if (current_position[Z_AXIS] >= target)
  1785. return;
  1786. // Z needs raising
  1787. current_position[Z_AXIS] = target;
  1788. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1789. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1790. #else
  1791. bool z_min_endstop = false;
  1792. #endif
  1793. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1794. {
  1795. // current position is known or very low, it's safe to raise Z
  1796. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1797. return;
  1798. }
  1799. // ensure Z is powered in normal mode to overcome initial load
  1800. enable_z();
  1801. st_synchronize();
  1802. // rely on crashguard to limit damage
  1803. bool z_endstop_enabled = enable_z_endstop(true);
  1804. #ifdef TMC2130
  1805. tmc2130_home_enter(Z_AXIS_MASK);
  1806. #endif //TMC2130
  1807. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1808. st_synchronize();
  1809. #ifdef TMC2130
  1810. if (endstop_z_hit_on_purpose())
  1811. {
  1812. // not necessarily exact, but will avoid further vertical moves
  1813. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1814. plan_set_position_curposXYZE();
  1815. }
  1816. tmc2130_home_exit();
  1817. #endif //TMC2130
  1818. enable_z_endstop(z_endstop_enabled);
  1819. }
  1820. #ifdef TMC2130
  1821. bool calibrate_z_auto()
  1822. {
  1823. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1824. lcd_clear();
  1825. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1826. bool endstops_enabled = enable_endstops(true);
  1827. int axis_up_dir = -home_dir(Z_AXIS);
  1828. tmc2130_home_enter(Z_AXIS_MASK);
  1829. current_position[Z_AXIS] = 0;
  1830. plan_set_position_curposXYZE();
  1831. set_destination_to_current();
  1832. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1833. feedrate = homing_feedrate[Z_AXIS];
  1834. plan_buffer_line_destinationXYZE(feedrate / 60);
  1835. st_synchronize();
  1836. // current_position[axis] = 0;
  1837. // plan_set_position_curposXYZE();
  1838. tmc2130_home_exit();
  1839. enable_endstops(false);
  1840. current_position[Z_AXIS] = 0;
  1841. plan_set_position_curposXYZE();
  1842. set_destination_to_current();
  1843. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1844. feedrate = homing_feedrate[Z_AXIS] / 2;
  1845. plan_buffer_line_destinationXYZE(feedrate / 60);
  1846. st_synchronize();
  1847. enable_endstops(endstops_enabled);
  1848. if (PRINTER_TYPE == PRINTER_MK3) {
  1849. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1850. }
  1851. else {
  1852. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1853. }
  1854. plan_set_position_curposXYZE();
  1855. return true;
  1856. }
  1857. #endif //TMC2130
  1858. #ifdef TMC2130
  1859. static void check_Z_crash(void)
  1860. {
  1861. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1862. FORCE_HIGH_POWER_END;
  1863. current_position[Z_AXIS] = 0;
  1864. plan_set_position_curposXYZE();
  1865. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1866. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1867. st_synchronize();
  1868. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1869. }
  1870. }
  1871. #endif //TMC2130
  1872. #ifdef TMC2130
  1873. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1874. #else
  1875. void homeaxis(int axis, uint8_t cnt)
  1876. #endif //TMC2130
  1877. {
  1878. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1879. #define HOMEAXIS_DO(LETTER) \
  1880. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1881. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1882. {
  1883. int axis_home_dir = home_dir(axis);
  1884. feedrate = homing_feedrate[axis];
  1885. #ifdef TMC2130
  1886. tmc2130_home_enter(X_AXIS_MASK << axis);
  1887. #endif //TMC2130
  1888. // Move away a bit, so that the print head does not touch the end position,
  1889. // and the following movement to endstop has a chance to achieve the required velocity
  1890. // for the stall guard to work.
  1891. current_position[axis] = 0;
  1892. plan_set_position_curposXYZE();
  1893. set_destination_to_current();
  1894. // destination[axis] = 11.f;
  1895. destination[axis] = -3.f * axis_home_dir;
  1896. plan_buffer_line_destinationXYZE(feedrate/60);
  1897. st_synchronize();
  1898. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1899. endstops_hit_on_purpose();
  1900. enable_endstops(false);
  1901. current_position[axis] = 0;
  1902. plan_set_position_curposXYZE();
  1903. destination[axis] = 1. * axis_home_dir;
  1904. plan_buffer_line_destinationXYZE(feedrate/60);
  1905. st_synchronize();
  1906. // Now continue to move up to the left end stop with the collision detection enabled.
  1907. enable_endstops(true);
  1908. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1909. plan_buffer_line_destinationXYZE(feedrate/60);
  1910. st_synchronize();
  1911. for (uint8_t i = 0; i < cnt; i++)
  1912. {
  1913. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1914. endstops_hit_on_purpose();
  1915. enable_endstops(false);
  1916. current_position[axis] = 0;
  1917. plan_set_position_curposXYZE();
  1918. destination[axis] = -10.f * axis_home_dir;
  1919. plan_buffer_line_destinationXYZE(feedrate/60);
  1920. st_synchronize();
  1921. endstops_hit_on_purpose();
  1922. // Now move left up to the collision, this time with a repeatable velocity.
  1923. enable_endstops(true);
  1924. destination[axis] = 11.f * axis_home_dir;
  1925. #ifdef TMC2130
  1926. feedrate = homing_feedrate[axis];
  1927. #else //TMC2130
  1928. feedrate = homing_feedrate[axis] / 2;
  1929. #endif //TMC2130
  1930. plan_buffer_line_destinationXYZE(feedrate/60);
  1931. st_synchronize();
  1932. #ifdef TMC2130
  1933. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1934. if (pstep) pstep[i] = mscnt >> 4;
  1935. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1936. #endif //TMC2130
  1937. }
  1938. endstops_hit_on_purpose();
  1939. enable_endstops(false);
  1940. #ifdef TMC2130
  1941. uint8_t orig = tmc2130_home_origin[axis];
  1942. uint8_t back = tmc2130_home_bsteps[axis];
  1943. if (tmc2130_home_enabled && (orig <= 63))
  1944. {
  1945. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1946. if (back > 0)
  1947. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1948. }
  1949. else
  1950. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1951. tmc2130_home_exit();
  1952. #endif //TMC2130
  1953. axis_is_at_home(axis);
  1954. axis_known_position[axis] = true;
  1955. // Move from minimum
  1956. #ifdef TMC2130
  1957. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1958. #else //TMC2130
  1959. float dist = - axis_home_dir * 0.01f * 64;
  1960. #endif //TMC2130
  1961. current_position[axis] -= dist;
  1962. plan_set_position_curposXYZE();
  1963. current_position[axis] += dist;
  1964. destination[axis] = current_position[axis];
  1965. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  1966. st_synchronize();
  1967. feedrate = 0.0;
  1968. }
  1969. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1970. {
  1971. #ifdef TMC2130
  1972. FORCE_HIGH_POWER_START;
  1973. #endif
  1974. int axis_home_dir = home_dir(axis);
  1975. current_position[axis] = 0;
  1976. plan_set_position_curposXYZE();
  1977. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1978. feedrate = homing_feedrate[axis];
  1979. plan_buffer_line_destinationXYZE(feedrate/60);
  1980. st_synchronize();
  1981. #ifdef TMC2130
  1982. check_Z_crash();
  1983. #endif //TMC2130
  1984. current_position[axis] = 0;
  1985. plan_set_position_curposXYZE();
  1986. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1987. plan_buffer_line_destinationXYZE(feedrate/60);
  1988. st_synchronize();
  1989. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1990. feedrate = homing_feedrate[axis]/2 ;
  1991. plan_buffer_line_destinationXYZE(feedrate/60);
  1992. st_synchronize();
  1993. #ifdef TMC2130
  1994. check_Z_crash();
  1995. #endif //TMC2130
  1996. axis_is_at_home(axis);
  1997. destination[axis] = current_position[axis];
  1998. feedrate = 0.0;
  1999. endstops_hit_on_purpose();
  2000. axis_known_position[axis] = true;
  2001. #ifdef TMC2130
  2002. FORCE_HIGH_POWER_END;
  2003. #endif
  2004. }
  2005. enable_endstops(endstops_enabled);
  2006. }
  2007. /**/
  2008. void home_xy()
  2009. {
  2010. set_destination_to_current();
  2011. homeaxis(X_AXIS);
  2012. homeaxis(Y_AXIS);
  2013. plan_set_position_curposXYZE();
  2014. endstops_hit_on_purpose();
  2015. }
  2016. void refresh_cmd_timeout(void)
  2017. {
  2018. previous_millis_cmd = _millis();
  2019. }
  2020. #ifdef FWRETRACT
  2021. void retract(bool retracting, bool swapretract = false) {
  2022. if(retracting && !retracted[active_extruder]) {
  2023. destination[X_AXIS]=current_position[X_AXIS];
  2024. destination[Y_AXIS]=current_position[Y_AXIS];
  2025. destination[Z_AXIS]=current_position[Z_AXIS];
  2026. destination[E_AXIS]=current_position[E_AXIS];
  2027. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2028. plan_set_e_position(current_position[E_AXIS]);
  2029. float oldFeedrate = feedrate;
  2030. feedrate=cs.retract_feedrate*60;
  2031. retracted[active_extruder]=true;
  2032. prepare_move();
  2033. current_position[Z_AXIS]-=cs.retract_zlift;
  2034. plan_set_position_curposXYZE();
  2035. prepare_move();
  2036. feedrate = oldFeedrate;
  2037. } else if(!retracting && retracted[active_extruder]) {
  2038. destination[X_AXIS]=current_position[X_AXIS];
  2039. destination[Y_AXIS]=current_position[Y_AXIS];
  2040. destination[Z_AXIS]=current_position[Z_AXIS];
  2041. destination[E_AXIS]=current_position[E_AXIS];
  2042. current_position[Z_AXIS]+=cs.retract_zlift;
  2043. plan_set_position_curposXYZE();
  2044. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2045. plan_set_e_position(current_position[E_AXIS]);
  2046. float oldFeedrate = feedrate;
  2047. feedrate=cs.retract_recover_feedrate*60;
  2048. retracted[active_extruder]=false;
  2049. prepare_move();
  2050. feedrate = oldFeedrate;
  2051. }
  2052. } //retract
  2053. #endif //FWRETRACT
  2054. void trace() {
  2055. Sound_MakeCustom(25,440,true);
  2056. }
  2057. /*
  2058. void ramming() {
  2059. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2060. if (current_temperature[0] < 230) {
  2061. //PLA
  2062. max_feedrate[E_AXIS] = 50;
  2063. //current_position[E_AXIS] -= 8;
  2064. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2065. //current_position[E_AXIS] += 8;
  2066. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2067. current_position[E_AXIS] += 5.4;
  2068. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2069. current_position[E_AXIS] += 3.2;
  2070. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2071. current_position[E_AXIS] += 3;
  2072. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2073. st_synchronize();
  2074. max_feedrate[E_AXIS] = 80;
  2075. current_position[E_AXIS] -= 82;
  2076. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2077. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2078. current_position[E_AXIS] -= 20;
  2079. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2080. current_position[E_AXIS] += 5;
  2081. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2082. current_position[E_AXIS] += 5;
  2083. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2084. current_position[E_AXIS] -= 10;
  2085. st_synchronize();
  2086. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2087. current_position[E_AXIS] += 10;
  2088. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2089. current_position[E_AXIS] -= 10;
  2090. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2091. current_position[E_AXIS] += 10;
  2092. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2093. current_position[E_AXIS] -= 10;
  2094. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2095. st_synchronize();
  2096. }
  2097. else {
  2098. //ABS
  2099. max_feedrate[E_AXIS] = 50;
  2100. //current_position[E_AXIS] -= 8;
  2101. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2102. //current_position[E_AXIS] += 8;
  2103. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2104. current_position[E_AXIS] += 3.1;
  2105. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2106. current_position[E_AXIS] += 3.1;
  2107. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2108. current_position[E_AXIS] += 4;
  2109. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2110. st_synchronize();
  2111. //current_position[X_AXIS] += 23; //delay
  2112. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2113. //current_position[X_AXIS] -= 23; //delay
  2114. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2115. _delay(4700);
  2116. max_feedrate[E_AXIS] = 80;
  2117. current_position[E_AXIS] -= 92;
  2118. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2119. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2120. current_position[E_AXIS] -= 5;
  2121. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2122. current_position[E_AXIS] += 5;
  2123. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2124. current_position[E_AXIS] -= 5;
  2125. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2126. st_synchronize();
  2127. current_position[E_AXIS] += 5;
  2128. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2129. current_position[E_AXIS] -= 5;
  2130. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2131. current_position[E_AXIS] += 5;
  2132. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2133. current_position[E_AXIS] -= 5;
  2134. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2135. st_synchronize();
  2136. }
  2137. }
  2138. */
  2139. #ifdef TMC2130
  2140. void force_high_power_mode(bool start_high_power_section) {
  2141. #ifdef PSU_Delta
  2142. if (start_high_power_section == true) enable_force_z();
  2143. #endif //PSU_Delta
  2144. uint8_t silent;
  2145. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2146. if (silent == 1) {
  2147. //we are in silent mode, set to normal mode to enable crash detection
  2148. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2149. st_synchronize();
  2150. cli();
  2151. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2152. update_mode_profile();
  2153. tmc2130_init();
  2154. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2155. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2156. st_reset_timer();
  2157. sei();
  2158. }
  2159. }
  2160. #endif //TMC2130
  2161. #ifdef TMC2130
  2162. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2163. #else
  2164. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2165. #endif //TMC2130
  2166. {
  2167. st_synchronize();
  2168. #if 0
  2169. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2170. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2171. #endif
  2172. // Flag for the display update routine and to disable the print cancelation during homing.
  2173. homing_flag = true;
  2174. // Which axes should be homed?
  2175. bool home_x = home_x_axis;
  2176. bool home_y = home_y_axis;
  2177. bool home_z = home_z_axis;
  2178. // Either all X,Y,Z codes are present, or none of them.
  2179. bool home_all_axes = home_x == home_y && home_x == home_z;
  2180. if (home_all_axes)
  2181. // No X/Y/Z code provided means to home all axes.
  2182. home_x = home_y = home_z = true;
  2183. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2184. if (home_all_axes) {
  2185. raise_z_above(MESH_HOME_Z_SEARCH);
  2186. st_synchronize();
  2187. }
  2188. #ifdef ENABLE_AUTO_BED_LEVELING
  2189. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2190. #endif //ENABLE_AUTO_BED_LEVELING
  2191. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2192. // the planner will not perform any adjustments in the XY plane.
  2193. // Wait for the motors to stop and update the current position with the absolute values.
  2194. world2machine_revert_to_uncorrected();
  2195. // For mesh bed leveling deactivate the matrix temporarily.
  2196. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2197. // in a single axis only.
  2198. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2199. #ifdef MESH_BED_LEVELING
  2200. uint8_t mbl_was_active = mbl.active;
  2201. mbl.active = 0;
  2202. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2203. #endif
  2204. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2205. // consumed during the first movements following this statement.
  2206. if (home_z)
  2207. babystep_undo();
  2208. saved_feedrate = feedrate;
  2209. int l_feedmultiply = feedmultiply;
  2210. feedmultiply = 100;
  2211. previous_millis_cmd = _millis();
  2212. enable_endstops(true);
  2213. memcpy(destination, current_position, sizeof(destination));
  2214. feedrate = 0.0;
  2215. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2216. if(home_z)
  2217. homeaxis(Z_AXIS);
  2218. #endif
  2219. #ifdef QUICK_HOME
  2220. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2221. if(home_x && home_y) //first diagonal move
  2222. {
  2223. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2224. int x_axis_home_dir = home_dir(X_AXIS);
  2225. plan_set_position_curposXYZE();
  2226. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2227. feedrate = homing_feedrate[X_AXIS];
  2228. if(homing_feedrate[Y_AXIS]<feedrate)
  2229. feedrate = homing_feedrate[Y_AXIS];
  2230. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2231. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2232. } else {
  2233. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2234. }
  2235. plan_buffer_line_destinationXYZE(feedrate/60);
  2236. st_synchronize();
  2237. axis_is_at_home(X_AXIS);
  2238. axis_is_at_home(Y_AXIS);
  2239. plan_set_position_curposXYZE();
  2240. destination[X_AXIS] = current_position[X_AXIS];
  2241. destination[Y_AXIS] = current_position[Y_AXIS];
  2242. plan_buffer_line_destinationXYZE(feedrate/60);
  2243. feedrate = 0.0;
  2244. st_synchronize();
  2245. endstops_hit_on_purpose();
  2246. current_position[X_AXIS] = destination[X_AXIS];
  2247. current_position[Y_AXIS] = destination[Y_AXIS];
  2248. current_position[Z_AXIS] = destination[Z_AXIS];
  2249. }
  2250. #endif /* QUICK_HOME */
  2251. #ifdef TMC2130
  2252. if(home_x)
  2253. {
  2254. if (!calib)
  2255. homeaxis(X_AXIS);
  2256. else
  2257. tmc2130_home_calibrate(X_AXIS);
  2258. }
  2259. if(home_y)
  2260. {
  2261. if (!calib)
  2262. homeaxis(Y_AXIS);
  2263. else
  2264. tmc2130_home_calibrate(Y_AXIS);
  2265. }
  2266. #else //TMC2130
  2267. if(home_x) homeaxis(X_AXIS);
  2268. if(home_y) homeaxis(Y_AXIS);
  2269. #endif //TMC2130
  2270. if(home_x_axis && home_x_value != 0)
  2271. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2272. if(home_y_axis && home_y_value != 0)
  2273. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2274. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2275. #ifndef Z_SAFE_HOMING
  2276. if(home_z) {
  2277. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2278. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2279. st_synchronize();
  2280. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2281. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2282. raise_z_above(MESH_HOME_Z_SEARCH);
  2283. st_synchronize();
  2284. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2285. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2286. // 1st mesh bed leveling measurement point, corrected.
  2287. world2machine_initialize();
  2288. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2289. world2machine_reset();
  2290. if (destination[Y_AXIS] < Y_MIN_POS)
  2291. destination[Y_AXIS] = Y_MIN_POS;
  2292. feedrate = homing_feedrate[X_AXIS] / 20;
  2293. enable_endstops(false);
  2294. #ifdef DEBUG_BUILD
  2295. SERIAL_ECHOLNPGM("plan_set_position()");
  2296. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2297. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2298. #endif
  2299. plan_set_position_curposXYZE();
  2300. #ifdef DEBUG_BUILD
  2301. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2302. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2303. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2304. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2305. #endif
  2306. plan_buffer_line_destinationXYZE(feedrate);
  2307. st_synchronize();
  2308. current_position[X_AXIS] = destination[X_AXIS];
  2309. current_position[Y_AXIS] = destination[Y_AXIS];
  2310. enable_endstops(true);
  2311. endstops_hit_on_purpose();
  2312. homeaxis(Z_AXIS);
  2313. #else // MESH_BED_LEVELING
  2314. homeaxis(Z_AXIS);
  2315. #endif // MESH_BED_LEVELING
  2316. }
  2317. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2318. if(home_all_axes) {
  2319. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2320. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2321. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2322. feedrate = XY_TRAVEL_SPEED/60;
  2323. current_position[Z_AXIS] = 0;
  2324. plan_set_position_curposXYZE();
  2325. plan_buffer_line_destinationXYZE(feedrate);
  2326. st_synchronize();
  2327. current_position[X_AXIS] = destination[X_AXIS];
  2328. current_position[Y_AXIS] = destination[Y_AXIS];
  2329. homeaxis(Z_AXIS);
  2330. }
  2331. // Let's see if X and Y are homed and probe is inside bed area.
  2332. if(home_z) {
  2333. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2334. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2335. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2336. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2337. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2338. current_position[Z_AXIS] = 0;
  2339. plan_set_position_curposXYZE();
  2340. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2341. feedrate = max_feedrate[Z_AXIS];
  2342. plan_buffer_line_destinationXYZE(feedrate);
  2343. st_synchronize();
  2344. homeaxis(Z_AXIS);
  2345. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2346. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2347. SERIAL_ECHO_START;
  2348. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2349. } else {
  2350. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2351. SERIAL_ECHO_START;
  2352. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2353. }
  2354. }
  2355. #endif // Z_SAFE_HOMING
  2356. #endif // Z_HOME_DIR < 0
  2357. if(home_z_axis && home_z_value != 0)
  2358. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2359. #ifdef ENABLE_AUTO_BED_LEVELING
  2360. if(home_z)
  2361. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2362. #endif
  2363. // Set the planner and stepper routine positions.
  2364. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2365. // contains the machine coordinates.
  2366. plan_set_position_curposXYZE();
  2367. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2368. enable_endstops(false);
  2369. #endif
  2370. feedrate = saved_feedrate;
  2371. feedmultiply = l_feedmultiply;
  2372. previous_millis_cmd = _millis();
  2373. endstops_hit_on_purpose();
  2374. #ifndef MESH_BED_LEVELING
  2375. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2376. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2377. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2378. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2379. lcd_adjust_z();
  2380. #endif
  2381. // Load the machine correction matrix
  2382. world2machine_initialize();
  2383. // and correct the current_position XY axes to match the transformed coordinate system.
  2384. world2machine_update_current();
  2385. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2386. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2387. {
  2388. if (! home_z && mbl_was_active) {
  2389. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2390. mbl.active = true;
  2391. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2392. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2393. }
  2394. }
  2395. else
  2396. {
  2397. st_synchronize();
  2398. homing_flag = false;
  2399. }
  2400. #endif
  2401. if (farm_mode) { prusa_statistics(20); };
  2402. homing_flag = false;
  2403. #if 0
  2404. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2405. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2406. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2407. #endif
  2408. }
  2409. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2410. {
  2411. #ifdef TMC2130
  2412. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2413. #else
  2414. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2415. #endif //TMC2130
  2416. }
  2417. void adjust_bed_reset()
  2418. {
  2419. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2420. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2421. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2422. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2423. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2424. }
  2425. //! @brief Calibrate XYZ
  2426. //! @param onlyZ if true, calibrate only Z axis
  2427. //! @param verbosity_level
  2428. //! @retval true Succeeded
  2429. //! @retval false Failed
  2430. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2431. {
  2432. bool final_result = false;
  2433. #ifdef TMC2130
  2434. FORCE_HIGH_POWER_START;
  2435. #endif // TMC2130
  2436. FORCE_BL_ON_START;
  2437. // Only Z calibration?
  2438. if (!onlyZ)
  2439. {
  2440. setTargetBed(0);
  2441. setAllTargetHotends(0);
  2442. adjust_bed_reset(); //reset bed level correction
  2443. }
  2444. // Disable the default update procedure of the display. We will do a modal dialog.
  2445. lcd_update_enable(false);
  2446. // Let the planner use the uncorrected coordinates.
  2447. mbl.reset();
  2448. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2449. // the planner will not perform any adjustments in the XY plane.
  2450. // Wait for the motors to stop and update the current position with the absolute values.
  2451. world2machine_revert_to_uncorrected();
  2452. // Reset the baby step value applied without moving the axes.
  2453. babystep_reset();
  2454. // Mark all axes as in a need for homing.
  2455. memset(axis_known_position, 0, sizeof(axis_known_position));
  2456. // Home in the XY plane.
  2457. //set_destination_to_current();
  2458. int l_feedmultiply = setup_for_endstop_move();
  2459. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2460. home_xy();
  2461. enable_endstops(false);
  2462. current_position[X_AXIS] += 5;
  2463. current_position[Y_AXIS] += 5;
  2464. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2465. st_synchronize();
  2466. // Let the user move the Z axes up to the end stoppers.
  2467. #ifdef TMC2130
  2468. if (calibrate_z_auto())
  2469. {
  2470. #else //TMC2130
  2471. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2472. {
  2473. #endif //TMC2130
  2474. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2475. if(onlyZ){
  2476. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2477. lcd_set_cursor(0, 3);
  2478. lcd_print(1);
  2479. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2480. }else{
  2481. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2482. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2483. lcd_set_cursor(0, 2);
  2484. lcd_print(1);
  2485. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2486. }
  2487. refresh_cmd_timeout();
  2488. #ifndef STEEL_SHEET
  2489. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2490. {
  2491. lcd_wait_for_cool_down();
  2492. }
  2493. #endif //STEEL_SHEET
  2494. if(!onlyZ)
  2495. {
  2496. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2497. #ifdef STEEL_SHEET
  2498. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2499. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2500. #endif //STEEL_SHEET
  2501. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2502. KEEPALIVE_STATE(IN_HANDLER);
  2503. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2504. lcd_set_cursor(0, 2);
  2505. lcd_print(1);
  2506. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2507. }
  2508. bool endstops_enabled = enable_endstops(false);
  2509. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2510. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2511. st_synchronize();
  2512. // Move the print head close to the bed.
  2513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2514. enable_endstops(true);
  2515. #ifdef TMC2130
  2516. tmc2130_home_enter(Z_AXIS_MASK);
  2517. #endif //TMC2130
  2518. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2519. st_synchronize();
  2520. #ifdef TMC2130
  2521. tmc2130_home_exit();
  2522. #endif //TMC2130
  2523. enable_endstops(endstops_enabled);
  2524. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2525. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2526. {
  2527. if (onlyZ)
  2528. {
  2529. clean_up_after_endstop_move(l_feedmultiply);
  2530. // Z only calibration.
  2531. // Load the machine correction matrix
  2532. world2machine_initialize();
  2533. // and correct the current_position to match the transformed coordinate system.
  2534. world2machine_update_current();
  2535. //FIXME
  2536. bool result = sample_mesh_and_store_reference();
  2537. if (result)
  2538. {
  2539. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2540. // Shipped, the nozzle height has been set already. The user can start printing now.
  2541. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2542. final_result = true;
  2543. // babystep_apply();
  2544. }
  2545. }
  2546. else
  2547. {
  2548. // Reset the baby step value and the baby step applied flag.
  2549. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2550. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2551. // Complete XYZ calibration.
  2552. uint8_t point_too_far_mask = 0;
  2553. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2554. clean_up_after_endstop_move(l_feedmultiply);
  2555. // Print head up.
  2556. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2557. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2558. st_synchronize();
  2559. //#ifndef NEW_XYZCAL
  2560. if (result >= 0)
  2561. {
  2562. #ifdef HEATBED_V2
  2563. sample_z();
  2564. #else //HEATBED_V2
  2565. point_too_far_mask = 0;
  2566. // Second half: The fine adjustment.
  2567. // Let the planner use the uncorrected coordinates.
  2568. mbl.reset();
  2569. world2machine_reset();
  2570. // Home in the XY plane.
  2571. int l_feedmultiply = setup_for_endstop_move();
  2572. home_xy();
  2573. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2574. clean_up_after_endstop_move(l_feedmultiply);
  2575. // Print head up.
  2576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2577. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2578. st_synchronize();
  2579. // if (result >= 0) babystep_apply();
  2580. #endif //HEATBED_V2
  2581. }
  2582. //#endif //NEW_XYZCAL
  2583. lcd_update_enable(true);
  2584. lcd_update(2);
  2585. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2586. if (result >= 0)
  2587. {
  2588. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2589. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2590. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2591. final_result = true;
  2592. }
  2593. }
  2594. #ifdef TMC2130
  2595. tmc2130_home_exit();
  2596. #endif
  2597. }
  2598. else
  2599. {
  2600. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2601. final_result = false;
  2602. }
  2603. }
  2604. else
  2605. {
  2606. // Timeouted.
  2607. }
  2608. lcd_update_enable(true);
  2609. #ifdef TMC2130
  2610. FORCE_HIGH_POWER_END;
  2611. #endif // TMC2130
  2612. FORCE_BL_ON_END;
  2613. return final_result;
  2614. }
  2615. void gcode_M114()
  2616. {
  2617. SERIAL_PROTOCOLPGM("X:");
  2618. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" Y:");
  2620. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2621. SERIAL_PROTOCOLPGM(" Z:");
  2622. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2623. SERIAL_PROTOCOLPGM(" E:");
  2624. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2625. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2626. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" Y:");
  2628. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Z:");
  2630. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" E:");
  2632. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2633. SERIAL_PROTOCOLLN("");
  2634. }
  2635. //! extracted code to compute z_shift for M600 in case of filament change operation
  2636. //! requested from fsensors.
  2637. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2638. //! unlike the previous implementation, which was adding 25mm even when the head was
  2639. //! printing at e.g. 24mm height.
  2640. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2641. //! the printout.
  2642. //! This function is templated to enable fast change of computation data type.
  2643. //! @return new z_shift value
  2644. template<typename T>
  2645. static T gcode_M600_filament_change_z_shift()
  2646. {
  2647. #ifdef FILAMENTCHANGE_ZADD
  2648. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2649. // avoid floating point arithmetics when not necessary - results in shorter code
  2650. T ztmp = T( current_position[Z_AXIS] );
  2651. T z_shift = 0;
  2652. if(ztmp < T(25)){
  2653. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2654. }
  2655. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2656. #else
  2657. return T(0);
  2658. #endif
  2659. }
  2660. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2661. {
  2662. st_synchronize();
  2663. float lastpos[4];
  2664. if (farm_mode)
  2665. {
  2666. prusa_statistics(22);
  2667. }
  2668. //First backup current position and settings
  2669. int feedmultiplyBckp = feedmultiply;
  2670. float HotendTempBckp = degTargetHotend(active_extruder);
  2671. int fanSpeedBckp = fanSpeed;
  2672. lastpos[X_AXIS] = current_position[X_AXIS];
  2673. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2674. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2675. lastpos[E_AXIS] = current_position[E_AXIS];
  2676. //Retract E
  2677. current_position[E_AXIS] += e_shift;
  2678. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2679. st_synchronize();
  2680. //Lift Z
  2681. current_position[Z_AXIS] += z_shift;
  2682. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2683. st_synchronize();
  2684. //Move XY to side
  2685. current_position[X_AXIS] = x_position;
  2686. current_position[Y_AXIS] = y_position;
  2687. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2688. st_synchronize();
  2689. //Beep, manage nozzle heater and wait for user to start unload filament
  2690. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2691. lcd_change_fil_state = 0;
  2692. // Unload filament
  2693. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2694. else unload_filament(); //unload filament for single material (used also in M702)
  2695. //finish moves
  2696. st_synchronize();
  2697. if (!mmu_enabled)
  2698. {
  2699. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2700. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2701. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2702. if (lcd_change_fil_state == 0)
  2703. {
  2704. lcd_clear();
  2705. lcd_set_cursor(0, 2);
  2706. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2707. current_position[X_AXIS] -= 100;
  2708. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2709. st_synchronize();
  2710. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2711. }
  2712. }
  2713. if (mmu_enabled)
  2714. {
  2715. if (!automatic) {
  2716. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2717. mmu_M600_wait_and_beep();
  2718. if (saved_printing) {
  2719. lcd_clear();
  2720. lcd_set_cursor(0, 2);
  2721. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2722. mmu_command(MmuCmd::R0);
  2723. manage_response(false, false);
  2724. }
  2725. }
  2726. mmu_M600_load_filament(automatic, HotendTempBckp);
  2727. }
  2728. else
  2729. M600_load_filament();
  2730. if (!automatic) M600_check_state(HotendTempBckp);
  2731. lcd_update_enable(true);
  2732. //Not let's go back to print
  2733. fanSpeed = fanSpeedBckp;
  2734. //Feed a little of filament to stabilize pressure
  2735. if (!automatic)
  2736. {
  2737. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2738. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  2739. }
  2740. //Move XY back
  2741. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2742. FILAMENTCHANGE_XYFEED, active_extruder);
  2743. st_synchronize();
  2744. //Move Z back
  2745. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2746. FILAMENTCHANGE_ZFEED, active_extruder);
  2747. st_synchronize();
  2748. //Set E position to original
  2749. plan_set_e_position(lastpos[E_AXIS]);
  2750. memcpy(current_position, lastpos, sizeof(lastpos));
  2751. memcpy(destination, current_position, sizeof(current_position));
  2752. //Recover feed rate
  2753. feedmultiply = feedmultiplyBckp;
  2754. char cmd[9];
  2755. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2756. enquecommand(cmd);
  2757. #ifdef IR_SENSOR
  2758. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2759. fsensor_check_autoload();
  2760. #endif //IR_SENSOR
  2761. lcd_setstatuspgm(_T(WELCOME_MSG));
  2762. custom_message_type = CustomMsg::Status;
  2763. }
  2764. void gcode_M701()
  2765. {
  2766. printf_P(PSTR("gcode_M701 begin\n"));
  2767. if (farm_mode)
  2768. {
  2769. prusa_statistics(22);
  2770. }
  2771. if (mmu_enabled)
  2772. {
  2773. extr_adj(tmp_extruder);//loads current extruder
  2774. mmu_extruder = tmp_extruder;
  2775. }
  2776. else
  2777. {
  2778. enable_z();
  2779. custom_message_type = CustomMsg::FilamentLoading;
  2780. #ifdef FSENSOR_QUALITY
  2781. fsensor_oq_meassure_start(40);
  2782. #endif //FSENSOR_QUALITY
  2783. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2784. current_position[E_AXIS] += 40;
  2785. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2786. st_synchronize();
  2787. raise_z_above(MIN_Z_FOR_LOAD, false);
  2788. current_position[E_AXIS] += 30;
  2789. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2790. load_filament_final_feed(); //slow sequence
  2791. st_synchronize();
  2792. Sound_MakeCustom(50,500,false);
  2793. if (!farm_mode && loading_flag) {
  2794. lcd_load_filament_color_check();
  2795. }
  2796. lcd_update_enable(true);
  2797. lcd_update(2);
  2798. lcd_setstatuspgm(_T(WELCOME_MSG));
  2799. disable_z();
  2800. loading_flag = false;
  2801. custom_message_type = CustomMsg::Status;
  2802. #ifdef FSENSOR_QUALITY
  2803. fsensor_oq_meassure_stop();
  2804. if (!fsensor_oq_result())
  2805. {
  2806. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2807. lcd_update_enable(true);
  2808. lcd_update(2);
  2809. if (disable)
  2810. fsensor_disable();
  2811. }
  2812. #endif //FSENSOR_QUALITY
  2813. }
  2814. }
  2815. /**
  2816. * @brief Get serial number from 32U2 processor
  2817. *
  2818. * Typical format of S/N is:CZPX0917X003XC13518
  2819. *
  2820. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2821. *
  2822. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2823. * reply is transmitted to serial port 1 character by character.
  2824. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2825. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2826. * in any case.
  2827. */
  2828. static void gcode_PRUSA_SN()
  2829. {
  2830. uint8_t selectedSerialPort_bak = selectedSerialPort;
  2831. char SN[20];
  2832. selectedSerialPort = 0;
  2833. SERIAL_ECHOLNRPGM(PSTR(";S"));
  2834. uint8_t numbersRead = 0;
  2835. ShortTimer timeout;
  2836. timeout.start();
  2837. while (numbersRead < (sizeof(SN) - 1)) {
  2838. if (MSerial.available() > 0) {
  2839. SN[numbersRead] = MSerial.read();
  2840. numbersRead++;
  2841. }
  2842. if (timeout.expired(100u)) break;
  2843. }
  2844. SN[numbersRead] = 0;
  2845. selectedSerialPort = selectedSerialPort_bak;
  2846. SERIAL_ECHOLN(SN);
  2847. }
  2848. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2849. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2850. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2851. //! it may even interfere with other functions of the printer! You have been warned!
  2852. //! The test idea is to measure the time necessary to charge the capacitor.
  2853. //! So the algorithm is as follows:
  2854. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2855. //! 2. Wait a few ms
  2856. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2857. //! Repeat 1.-3. several times
  2858. //! Good RAMBo's times are in the range of approx. 260-320 us
  2859. //! Bad RAMBo's times are approx. 260-1200 us
  2860. //! So basically we are interested in maximum time, the minima are mostly the same.
  2861. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2862. static void gcode_PRUSA_BadRAMBoFanTest(){
  2863. //printf_P(PSTR("Enter fan pin test\n"));
  2864. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2865. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2866. unsigned long tach1max = 0;
  2867. uint8_t tach1cntr = 0;
  2868. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2869. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2870. SET_OUTPUT(TACH_1);
  2871. WRITE(TACH_1, LOW);
  2872. _delay(20); // the delay may be lower
  2873. unsigned long tachMeasure = _micros();
  2874. cli();
  2875. SET_INPUT(TACH_1);
  2876. // just wait brutally in an endless cycle until we reach HIGH
  2877. // if this becomes a problem it may be improved to non-endless cycle
  2878. while( READ(TACH_1) == 0 ) ;
  2879. sei();
  2880. tachMeasure = _micros() - tachMeasure;
  2881. if( tach1max < tachMeasure )
  2882. tach1max = tachMeasure;
  2883. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2884. }
  2885. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2886. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2887. if( tach1max > 500 ){
  2888. // bad RAMBo
  2889. SERIAL_PROTOCOLLNPGM("BAD");
  2890. } else {
  2891. SERIAL_PROTOCOLLNPGM("OK");
  2892. }
  2893. // cleanup after the test function
  2894. SET_INPUT(TACH_1);
  2895. WRITE(TACH_1, HIGH);
  2896. #endif
  2897. }
  2898. // G92 - Set current position to coordinates given
  2899. static void gcode_G92()
  2900. {
  2901. bool codes[NUM_AXIS];
  2902. float values[NUM_AXIS];
  2903. // Check which axes need to be set
  2904. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  2905. {
  2906. codes[i] = code_seen(axis_codes[i]);
  2907. if(codes[i])
  2908. values[i] = code_value();
  2909. }
  2910. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  2911. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  2912. {
  2913. // As a special optimization, when _just_ clearing the E position
  2914. // we schedule a flag asynchronously along with the next block to
  2915. // reset the starting E position instead of stopping the planner
  2916. current_position[E_AXIS] = 0;
  2917. plan_reset_next_e();
  2918. }
  2919. else
  2920. {
  2921. // In any other case we're forced to synchronize
  2922. st_synchronize();
  2923. for(uint8_t i = 0; i < 3; ++i)
  2924. {
  2925. if(codes[i])
  2926. current_position[i] = values[i] + cs.add_homing[i];
  2927. }
  2928. if(codes[E_AXIS])
  2929. current_position[E_AXIS] = values[E_AXIS];
  2930. // Set all at once
  2931. plan_set_position_curposXYZE();
  2932. }
  2933. }
  2934. #ifdef EXTENDED_CAPABILITIES_REPORT
  2935. static void cap_line(const char* name, bool ena = false) {
  2936. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  2937. }
  2938. static void extended_capabilities_report()
  2939. {
  2940. //@todo
  2941. }
  2942. #endif //EXTENDED_CAPABILITIES_REPORT
  2943. #ifdef BACKLASH_X
  2944. extern uint8_t st_backlash_x;
  2945. #endif //BACKLASH_X
  2946. #ifdef BACKLASH_Y
  2947. extern uint8_t st_backlash_y;
  2948. #endif //BACKLASH_Y
  2949. //! \ingroup marlin_main
  2950. //! @brief Parse and process commands
  2951. //!
  2952. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2953. //!
  2954. //!
  2955. //! Implemented Codes
  2956. //! -------------------
  2957. //!
  2958. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2959. //!
  2960. //!@n PRUSA CODES
  2961. //!@n P F - Returns FW versions
  2962. //!@n P R - Returns revision of printer
  2963. //!
  2964. //!@n G0 -> G1
  2965. //!@n G1 - Coordinated Movement X Y Z E
  2966. //!@n G2 - CW ARC
  2967. //!@n G3 - CCW ARC
  2968. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2969. //!@n G10 - retract filament according to settings of M207
  2970. //!@n G11 - retract recover filament according to settings of M208
  2971. //!@n G28 - Home all Axes
  2972. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2973. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2974. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2975. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2976. //!@n G80 - Automatic mesh bed leveling
  2977. //!@n G81 - Print bed profile
  2978. //!@n G90 - Use Absolute Coordinates
  2979. //!@n G91 - Use Relative Coordinates
  2980. //!@n G92 - Set current position to coordinates given
  2981. //!
  2982. //!@n M Codes
  2983. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2984. //!@n M1 - Same as M0
  2985. //!@n M17 - Enable/Power all stepper motors
  2986. //!@n M18 - Disable all stepper motors; same as M84
  2987. //!@n M20 - List SD card
  2988. //!@n M21 - Init SD card
  2989. //!@n M22 - Release SD card
  2990. //!@n M23 - Select SD file (M23 filename.g)
  2991. //!@n M24 - Start/resume SD print
  2992. //!@n M25 - Pause SD print
  2993. //!@n M26 - Set SD position in bytes (M26 S12345)
  2994. //!@n M27 - Report SD print status
  2995. //!@n M28 - Start SD write (M28 filename.g)
  2996. //!@n M29 - Stop SD write
  2997. //!@n M30 - Delete file from SD (M30 filename.g)
  2998. //!@n M31 - Output time since last M109 or SD card start to serial
  2999. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3000. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3001. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3002. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3003. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3004. //!@n M73 - Show percent done and print time remaining
  3005. //!@n M80 - Turn on Power Supply
  3006. //!@n M81 - Turn off Power Supply
  3007. //!@n M82 - Set E codes absolute (default)
  3008. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3009. //!@n M84 - Disable steppers until next move,
  3010. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3011. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3012. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3013. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3014. //!@n M104 - Set extruder target temp
  3015. //!@n M105 - Read current temp
  3016. //!@n M106 - Fan on
  3017. //!@n M107 - Fan off
  3018. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3019. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3020. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3021. //!@n M112 - Emergency stop
  3022. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3023. //!@n M114 - Output current position to serial port
  3024. //!@n M115 - Capabilities string
  3025. //!@n M117 - display message
  3026. //!@n M119 - Output Endstop status to serial port
  3027. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3028. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3029. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3030. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3031. //!@n M140 - Set bed target temp
  3032. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3033. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3034. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3035. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3036. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3037. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3038. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3039. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3040. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3041. //!@n M206 - set additional homing offset
  3042. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3043. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3044. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3045. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3046. //!@n M220 S<factor in percent>- set speed factor override percentage
  3047. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3048. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3049. //!@n M240 - Trigger a camera to take a photograph
  3050. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3051. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3052. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3053. //!@n M301 - Set PID parameters P I and D
  3054. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3055. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3056. //!@n M304 - Set bed PID parameters P I and D
  3057. //!@n M400 - Finish all moves
  3058. //!@n M401 - Lower z-probe if present
  3059. //!@n M402 - Raise z-probe if present
  3060. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3061. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3062. //!@n M406 - Turn off Filament Sensor extrusion control
  3063. //!@n M407 - Displays measured filament diameter
  3064. //!@n M500 - stores parameters in EEPROM
  3065. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3066. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3067. //!@n M503 - print the current settings (from memory not from EEPROM)
  3068. //!@n M509 - force language selection on next restart
  3069. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3070. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3071. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3072. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3073. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3074. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3075. //!@n M907 - Set digital trimpot motor current using axis codes.
  3076. //!@n M908 - Control digital trimpot directly.
  3077. //!@n M350 - Set microstepping mode.
  3078. //!@n M351 - Toggle MS1 MS2 pins directly.
  3079. //!
  3080. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3081. //!@n M999 - Restart after being stopped by error
  3082. //! <br><br>
  3083. /** @defgroup marlin_main Marlin main */
  3084. /** \ingroup GCodes */
  3085. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3086. /**
  3087. They are shown in order of appearance in the code.
  3088. There are reasons why some G Codes aren't in numerical order.
  3089. */
  3090. void process_commands()
  3091. {
  3092. #ifdef FANCHECK
  3093. if(fan_check_error){
  3094. if(fan_check_error == EFCE_DETECTED){
  3095. fan_check_error = EFCE_REPORTED;
  3096. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3097. lcd_pause_print();
  3098. } // otherwise it has already been reported, so just ignore further processing
  3099. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3100. }
  3101. #endif
  3102. if (!buflen) return; //empty command
  3103. #ifdef FILAMENT_RUNOUT_SUPPORT
  3104. SET_INPUT(FR_SENS);
  3105. #endif
  3106. #ifdef CMDBUFFER_DEBUG
  3107. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3108. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3109. SERIAL_ECHOLNPGM("");
  3110. SERIAL_ECHOPGM("In cmdqueue: ");
  3111. SERIAL_ECHO(buflen);
  3112. SERIAL_ECHOLNPGM("");
  3113. #endif /* CMDBUFFER_DEBUG */
  3114. unsigned long codenum; //throw away variable
  3115. char *starpos = NULL;
  3116. #ifdef ENABLE_AUTO_BED_LEVELING
  3117. float x_tmp, y_tmp, z_tmp, real_z;
  3118. #endif
  3119. // PRUSA GCODES
  3120. KEEPALIVE_STATE(IN_HANDLER);
  3121. #ifdef SNMM
  3122. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3123. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3124. int8_t SilentMode;
  3125. #endif
  3126. /*!
  3127. ---------------------------------------------------------------------------------
  3128. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3129. This causes the given message to be shown in the status line on an attached LCD.
  3130. It is processed early as to allow printing messages that contain G, M, N or T.
  3131. ---------------------------------------------------------------------------------
  3132. ### Special internal commands
  3133. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3134. They are processed early as the commands are complex (strings).
  3135. These are only available on the MK3(S) as these require TMC2130 drivers:
  3136. - CRASH DETECTED
  3137. - CRASH RECOVER
  3138. - CRASH_CANCEL
  3139. - TMC_SET_WAVE
  3140. - TMC_SET_STEP
  3141. - TMC_SET_CHOP
  3142. */
  3143. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3144. starpos = (strchr(strchr_pointer + 5, '*'));
  3145. if (starpos != NULL)
  3146. *(starpos) = '\0';
  3147. lcd_setstatus(strchr_pointer + 5);
  3148. }
  3149. #ifdef TMC2130
  3150. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3151. {
  3152. // ### CRASH_DETECTED - TMC2130
  3153. // ---------------------------------
  3154. if(code_seen("CRASH_DETECTED"))
  3155. {
  3156. uint8_t mask = 0;
  3157. if (code_seen('X')) mask |= X_AXIS_MASK;
  3158. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3159. crashdet_detected(mask);
  3160. }
  3161. // ### CRASH_RECOVER - TMC2130
  3162. // ----------------------------------
  3163. else if(code_seen("CRASH_RECOVER"))
  3164. crashdet_recover();
  3165. // ### CRASH_CANCEL - TMC2130
  3166. // ----------------------------------
  3167. else if(code_seen("CRASH_CANCEL"))
  3168. crashdet_cancel();
  3169. }
  3170. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3171. {
  3172. // ### TMC_SET_WAVE_
  3173. // --------------------
  3174. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3175. {
  3176. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3177. axis = (axis == 'E')?3:(axis - 'X');
  3178. if (axis < 4)
  3179. {
  3180. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3181. tmc2130_set_wave(axis, 247, fac);
  3182. }
  3183. }
  3184. // ### TMC_SET_STEP_
  3185. // ------------------
  3186. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3187. {
  3188. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3189. axis = (axis == 'E')?3:(axis - 'X');
  3190. if (axis < 4)
  3191. {
  3192. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3193. uint16_t res = tmc2130_get_res(axis);
  3194. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3195. }
  3196. }
  3197. // ### TMC_SET_CHOP_
  3198. // -------------------
  3199. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3200. {
  3201. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3202. axis = (axis == 'E')?3:(axis - 'X');
  3203. if (axis < 4)
  3204. {
  3205. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3206. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3207. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3208. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3209. char* str_end = 0;
  3210. if (CMDBUFFER_CURRENT_STRING[14])
  3211. {
  3212. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3213. if (str_end && *str_end)
  3214. {
  3215. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3216. if (str_end && *str_end)
  3217. {
  3218. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3219. if (str_end && *str_end)
  3220. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3221. }
  3222. }
  3223. }
  3224. tmc2130_chopper_config[axis].toff = chop0;
  3225. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3226. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3227. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3228. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3229. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3230. }
  3231. }
  3232. }
  3233. #ifdef BACKLASH_X
  3234. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3235. {
  3236. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3237. st_backlash_x = bl;
  3238. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3239. }
  3240. #endif //BACKLASH_X
  3241. #ifdef BACKLASH_Y
  3242. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3243. {
  3244. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3245. st_backlash_y = bl;
  3246. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3247. }
  3248. #endif //BACKLASH_Y
  3249. #endif //TMC2130
  3250. else if(code_seen("PRUSA")){
  3251. /*!
  3252. ---------------------------------------------------------------------------------
  3253. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3254. Set of internal PRUSA commands
  3255. #### Usage
  3256. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3257. #### Parameters
  3258. - `Ping`
  3259. - `PRN` - Prints revision of the printer
  3260. - `FAN` - Prints fan details
  3261. - `fn` - Prints farm no.
  3262. - `thx`
  3263. - `uvlo`
  3264. - `MMURES` - Reset MMU
  3265. - `RESET` - (Careful!)
  3266. - `fv` - ?
  3267. - `M28`
  3268. - `SN`
  3269. - `Fir` - Prints firmware version
  3270. - `Rev`- Prints filament size, elelectronics, nozzle type
  3271. - `Lang` - Reset the language
  3272. - `Lz`
  3273. - `Beat` - Kick farm link timer
  3274. - `FR` - Full factory reset
  3275. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3276. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3277. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3278. */
  3279. if (code_seen("Ping")) { // PRUSA Ping
  3280. if (farm_mode) {
  3281. PingTime = _millis();
  3282. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3283. }
  3284. }
  3285. else if (code_seen("PRN")) { // PRUSA PRN
  3286. printf_P(_N("%d"), status_number);
  3287. } else if( code_seen("FANPINTST") ){
  3288. gcode_PRUSA_BadRAMBoFanTest();
  3289. }else if (code_seen("FAN")) { // PRUSA FAN
  3290. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3291. }else if (code_seen("fn")) { // PRUSA fn
  3292. if (farm_mode) {
  3293. printf_P(_N("%d"), farm_no);
  3294. }
  3295. else {
  3296. puts_P(_N("Not in farm mode."));
  3297. }
  3298. }
  3299. else if (code_seen("thx")) // PRUSA thx
  3300. {
  3301. no_response = false;
  3302. }
  3303. else if (code_seen("uvlo")) // PRUSA uvlo
  3304. {
  3305. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3306. enquecommand_P(PSTR("M24"));
  3307. }
  3308. else if (code_seen("MMURES")) // PRUSA MMURES
  3309. {
  3310. mmu_reset();
  3311. }
  3312. else if (code_seen("RESET")) { // PRUSA RESET
  3313. // careful!
  3314. if (farm_mode) {
  3315. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3316. boot_app_magic = BOOT_APP_MAGIC;
  3317. boot_app_flags = BOOT_APP_FLG_RUN;
  3318. softReset();
  3319. #else //WATCHDOG
  3320. asm volatile("jmp 0x3E000");
  3321. #endif //WATCHDOG
  3322. }
  3323. else {
  3324. MYSERIAL.println("Not in farm mode.");
  3325. }
  3326. }else if (code_seen("fv")) { // PRUSA fv
  3327. // get file version
  3328. #ifdef SDSUPPORT
  3329. card.openFile(strchr_pointer + 3,true);
  3330. while (true) {
  3331. uint16_t readByte = card.get();
  3332. MYSERIAL.write(readByte);
  3333. if (readByte=='\n') {
  3334. break;
  3335. }
  3336. }
  3337. card.closefile();
  3338. #endif // SDSUPPORT
  3339. } else if (code_seen("M28")) { // PRUSA M28
  3340. trace();
  3341. prusa_sd_card_upload = true;
  3342. card.openFile(strchr_pointer+4,false);
  3343. } else if (code_seen("SN")) { // PRUSA SN
  3344. gcode_PRUSA_SN();
  3345. } else if(code_seen("Fir")){ // PRUSA Fir
  3346. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3347. } else if(code_seen("Rev")){ // PRUSA Rev
  3348. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3349. } else if(code_seen("Lang")) { // PRUSA Lang
  3350. lang_reset();
  3351. } else if(code_seen("Lz")) { // PRUSA Lz
  3352. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3353. } else if(code_seen("Beat")) { // PRUSA Beat
  3354. // Kick farm link timer
  3355. kicktime = _millis();
  3356. } else if(code_seen("FR")) { // PRUSA FR
  3357. // Factory full reset
  3358. factory_reset(0);
  3359. } else if(code_seen("MBL")) { // PRUSA MBL
  3360. // Change the MBL status without changing the logical Z position.
  3361. if(code_seen("V")) {
  3362. bool value = code_value_short();
  3363. st_synchronize();
  3364. if(value != mbl.active) {
  3365. mbl.active = value;
  3366. // Use plan_set_z_position to reset the physical values
  3367. plan_set_z_position(current_position[Z_AXIS]);
  3368. }
  3369. }
  3370. //-//
  3371. /*
  3372. } else if(code_seen("rrr")) {
  3373. MYSERIAL.println("=== checking ===");
  3374. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3375. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3376. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3377. MYSERIAL.println(farm_mode,DEC);
  3378. MYSERIAL.println(eCheckMode,DEC);
  3379. } else if(code_seen("www")) {
  3380. MYSERIAL.println("=== @ FF ===");
  3381. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3382. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3383. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3384. */
  3385. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3386. uint16_t nDiameter;
  3387. if(code_seen('D'))
  3388. {
  3389. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3390. nozzle_diameter_check(nDiameter);
  3391. }
  3392. else if(code_seen("set") && farm_mode)
  3393. {
  3394. strchr_pointer++; // skip 1st char (~ 's')
  3395. strchr_pointer++; // skip 2nd char (~ 'e')
  3396. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3397. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3398. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3399. }
  3400. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3401. //-// !!! SupportMenu
  3402. /*
  3403. // musi byt PRED "PRUSA model"
  3404. } else if (code_seen("smodel")) { //! PRUSA smodel
  3405. size_t nOffset;
  3406. // ! -> "l"
  3407. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3408. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3409. if(*(strchr_pointer+1+nOffset))
  3410. printer_smodel_check(strchr_pointer);
  3411. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3412. } else if (code_seen("model")) { //! PRUSA model
  3413. uint16_t nPrinterModel;
  3414. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3415. nPrinterModel=(uint16_t)code_value_long();
  3416. if(nPrinterModel!=0)
  3417. printer_model_check(nPrinterModel);
  3418. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3419. } else if (code_seen("version")) { //! PRUSA version
  3420. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3421. while(*strchr_pointer==' ') // skip leading spaces
  3422. strchr_pointer++;
  3423. if(*strchr_pointer!=0)
  3424. fw_version_check(strchr_pointer);
  3425. else SERIAL_PROTOCOLLN(FW_VERSION);
  3426. } else if (code_seen("gcode")) { //! PRUSA gcode
  3427. uint16_t nGcodeLevel;
  3428. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3429. nGcodeLevel=(uint16_t)code_value_long();
  3430. if(nGcodeLevel!=0)
  3431. gcode_level_check(nGcodeLevel);
  3432. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3433. */
  3434. }
  3435. //else if (code_seen('Cal')) {
  3436. // lcd_calibration();
  3437. // }
  3438. }
  3439. // This prevents reading files with "^" in their names.
  3440. // Since it is unclear, if there is some usage of this construct,
  3441. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3442. // else if (code_seen('^')) {
  3443. // // nothing, this is a version line
  3444. // }
  3445. else if(code_seen('G'))
  3446. {
  3447. gcode_in_progress = (int)code_value();
  3448. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3449. switch (gcode_in_progress)
  3450. {
  3451. /*!
  3452. ---------------------------------------------------------------------------------
  3453. # G Codes
  3454. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3455. In Prusa Firmware G0 and G1 are the same.
  3456. #### Usage
  3457. G0 [ X | Y | Z | E | F | S ]
  3458. G1 [ X | Y | Z | E | F | S ]
  3459. #### Parameters
  3460. - `X` - The position to move to on the X axis
  3461. - `Y` - The position to move to on the Y axis
  3462. - `Z` - The position to move to on the Z axis
  3463. - `E` - The amount to extrude between the starting point and ending point
  3464. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3465. */
  3466. case 0: // G0 -> G1
  3467. case 1: // G1
  3468. if(Stopped == false) {
  3469. #ifdef FILAMENT_RUNOUT_SUPPORT
  3470. if(READ(FR_SENS)){
  3471. int feedmultiplyBckp=feedmultiply;
  3472. float target[4];
  3473. float lastpos[4];
  3474. target[X_AXIS]=current_position[X_AXIS];
  3475. target[Y_AXIS]=current_position[Y_AXIS];
  3476. target[Z_AXIS]=current_position[Z_AXIS];
  3477. target[E_AXIS]=current_position[E_AXIS];
  3478. lastpos[X_AXIS]=current_position[X_AXIS];
  3479. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3480. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3481. lastpos[E_AXIS]=current_position[E_AXIS];
  3482. //retract by E
  3483. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3485. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3487. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3488. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3490. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3492. //finish moves
  3493. st_synchronize();
  3494. //disable extruder steppers so filament can be removed
  3495. disable_e0();
  3496. disable_e1();
  3497. disable_e2();
  3498. _delay(100);
  3499. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3500. uint8_t cnt=0;
  3501. int counterBeep = 0;
  3502. lcd_wait_interact();
  3503. while(!lcd_clicked()){
  3504. cnt++;
  3505. manage_heater();
  3506. manage_inactivity(true);
  3507. //lcd_update(0);
  3508. if(cnt==0)
  3509. {
  3510. #if BEEPER > 0
  3511. if (counterBeep== 500){
  3512. counterBeep = 0;
  3513. }
  3514. SET_OUTPUT(BEEPER);
  3515. if (counterBeep== 0){
  3516. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3517. WRITE(BEEPER,HIGH);
  3518. }
  3519. if (counterBeep== 20){
  3520. WRITE(BEEPER,LOW);
  3521. }
  3522. counterBeep++;
  3523. #else
  3524. #endif
  3525. }
  3526. }
  3527. WRITE(BEEPER,LOW);
  3528. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3529. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3530. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3531. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3532. lcd_change_fil_state = 0;
  3533. lcd_loading_filament();
  3534. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3535. lcd_change_fil_state = 0;
  3536. lcd_alright();
  3537. switch(lcd_change_fil_state){
  3538. case 2:
  3539. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3541. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3543. lcd_loading_filament();
  3544. break;
  3545. case 3:
  3546. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3548. lcd_loading_color();
  3549. break;
  3550. default:
  3551. lcd_change_success();
  3552. break;
  3553. }
  3554. }
  3555. target[E_AXIS]+= 5;
  3556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3557. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3558. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3559. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3560. //plan_set_e_position(current_position[E_AXIS]);
  3561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3562. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3563. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3564. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3565. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3566. plan_set_e_position(lastpos[E_AXIS]);
  3567. feedmultiply=feedmultiplyBckp;
  3568. char cmd[9];
  3569. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3570. enquecommand(cmd);
  3571. }
  3572. #endif
  3573. get_coordinates(); // For X Y Z E F
  3574. // When recovering from a previous print move, restore the originally
  3575. // calculated target position on the first USB/SD command. This accounts
  3576. // properly for relative moves
  3577. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3578. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3579. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3580. {
  3581. memcpy(destination, saved_target, sizeof(destination));
  3582. saved_target[0] = SAVED_TARGET_UNSET;
  3583. }
  3584. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3585. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3586. }
  3587. #ifdef FWRETRACT
  3588. if(cs.autoretract_enabled)
  3589. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3590. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3591. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3592. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3593. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3594. retract(!retracted[active_extruder]);
  3595. return;
  3596. }
  3597. }
  3598. #endif //FWRETRACT
  3599. prepare_move();
  3600. //ClearToSend();
  3601. }
  3602. break;
  3603. /*!
  3604. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3605. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3606. #### Usage
  3607. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3608. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3609. #### Parameters
  3610. - `X` - The position to move to on the X axis
  3611. - `Y` - The position to move to on the Y axis
  3612. - `I` - The point in X space from the current X position to maintain a constant distance from
  3613. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3614. - `E` - The amount to extrude between the starting point and ending point
  3615. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3616. */
  3617. case 2:
  3618. if(Stopped == false) {
  3619. get_arc_coordinates();
  3620. prepare_arc_move(true);
  3621. }
  3622. break;
  3623. // -------------------------------
  3624. case 3:
  3625. if(Stopped == false) {
  3626. get_arc_coordinates();
  3627. prepare_arc_move(false);
  3628. }
  3629. break;
  3630. /*!
  3631. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3632. Pause the machine for a period of time.
  3633. #### Usage
  3634. G4 [ P | S ]
  3635. #### Parameters
  3636. - `P` - Time to wait, in milliseconds
  3637. - `S` - Time to wait, in seconds
  3638. */
  3639. case 4:
  3640. codenum = 0;
  3641. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3642. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3643. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3644. st_synchronize();
  3645. codenum += _millis(); // keep track of when we started waiting
  3646. previous_millis_cmd = _millis();
  3647. while(_millis() < codenum) {
  3648. manage_heater();
  3649. manage_inactivity();
  3650. lcd_update(0);
  3651. }
  3652. break;
  3653. #ifdef FWRETRACT
  3654. /*!
  3655. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3656. Retracts filament according to settings of `M207`
  3657. */
  3658. case 10:
  3659. #if EXTRUDERS > 1
  3660. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3661. retract(true,retracted_swap[active_extruder]);
  3662. #else
  3663. retract(true);
  3664. #endif
  3665. break;
  3666. /*!
  3667. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3668. Unretracts/recovers filament according to settings of `M208`
  3669. */
  3670. case 11:
  3671. #if EXTRUDERS > 1
  3672. retract(false,retracted_swap[active_extruder]);
  3673. #else
  3674. retract(false);
  3675. #endif
  3676. break;
  3677. #endif //FWRETRACT
  3678. /*!
  3679. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  3680. Units are in millimeters. Prusa doesn't support inches.
  3681. */
  3682. case 21:
  3683. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  3684. /*!
  3685. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3686. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3687. #### Usage
  3688. G28 [ X | Y | Z | W | C ]
  3689. #### Parameters
  3690. - `X` - Flag to go back to the X axis origin
  3691. - `Y` - Flag to go back to the Y axis origin
  3692. - `Z` - Flag to go back to the Z axis origin
  3693. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3694. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3695. */
  3696. case 28:
  3697. {
  3698. long home_x_value = 0;
  3699. long home_y_value = 0;
  3700. long home_z_value = 0;
  3701. // Which axes should be homed?
  3702. bool home_x = code_seen(axis_codes[X_AXIS]);
  3703. home_x_value = code_value_long();
  3704. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3705. home_y_value = code_value_long();
  3706. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3707. home_z_value = code_value_long();
  3708. bool without_mbl = code_seen('W');
  3709. // calibrate?
  3710. #ifdef TMC2130
  3711. bool calib = code_seen('C');
  3712. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3713. #else
  3714. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3715. #endif //TMC2130
  3716. if ((home_x || home_y || without_mbl || home_z) == false) {
  3717. // Push the commands to the front of the message queue in the reverse order!
  3718. // There shall be always enough space reserved for these commands.
  3719. goto case_G80;
  3720. }
  3721. break;
  3722. }
  3723. #ifdef ENABLE_AUTO_BED_LEVELING
  3724. /*!
  3725. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3726. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3727. See `G81`
  3728. */
  3729. case 29:
  3730. {
  3731. #if Z_MIN_PIN == -1
  3732. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3733. #endif
  3734. // Prevent user from running a G29 without first homing in X and Y
  3735. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3736. {
  3737. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3738. SERIAL_ECHO_START;
  3739. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3740. break; // abort G29, since we don't know where we are
  3741. }
  3742. st_synchronize();
  3743. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3744. //vector_3 corrected_position = plan_get_position_mm();
  3745. //corrected_position.debug("position before G29");
  3746. plan_bed_level_matrix.set_to_identity();
  3747. vector_3 uncorrected_position = plan_get_position();
  3748. //uncorrected_position.debug("position durring G29");
  3749. current_position[X_AXIS] = uncorrected_position.x;
  3750. current_position[Y_AXIS] = uncorrected_position.y;
  3751. current_position[Z_AXIS] = uncorrected_position.z;
  3752. plan_set_position_curposXYZE();
  3753. int l_feedmultiply = setup_for_endstop_move();
  3754. feedrate = homing_feedrate[Z_AXIS];
  3755. #ifdef AUTO_BED_LEVELING_GRID
  3756. // probe at the points of a lattice grid
  3757. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3758. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3759. // solve the plane equation ax + by + d = z
  3760. // A is the matrix with rows [x y 1] for all the probed points
  3761. // B is the vector of the Z positions
  3762. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3763. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3764. // "A" matrix of the linear system of equations
  3765. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3766. // "B" vector of Z points
  3767. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3768. int probePointCounter = 0;
  3769. bool zig = true;
  3770. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3771. {
  3772. int xProbe, xInc;
  3773. if (zig)
  3774. {
  3775. xProbe = LEFT_PROBE_BED_POSITION;
  3776. //xEnd = RIGHT_PROBE_BED_POSITION;
  3777. xInc = xGridSpacing;
  3778. zig = false;
  3779. } else // zag
  3780. {
  3781. xProbe = RIGHT_PROBE_BED_POSITION;
  3782. //xEnd = LEFT_PROBE_BED_POSITION;
  3783. xInc = -xGridSpacing;
  3784. zig = true;
  3785. }
  3786. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3787. {
  3788. float z_before;
  3789. if (probePointCounter == 0)
  3790. {
  3791. // raise before probing
  3792. z_before = Z_RAISE_BEFORE_PROBING;
  3793. } else
  3794. {
  3795. // raise extruder
  3796. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3797. }
  3798. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3799. eqnBVector[probePointCounter] = measured_z;
  3800. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3801. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3802. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3803. probePointCounter++;
  3804. xProbe += xInc;
  3805. }
  3806. }
  3807. clean_up_after_endstop_move(l_feedmultiply);
  3808. // solve lsq problem
  3809. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3810. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3811. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3812. SERIAL_PROTOCOLPGM(" b: ");
  3813. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3814. SERIAL_PROTOCOLPGM(" d: ");
  3815. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3816. set_bed_level_equation_lsq(plane_equation_coefficients);
  3817. free(plane_equation_coefficients);
  3818. #else // AUTO_BED_LEVELING_GRID not defined
  3819. // Probe at 3 arbitrary points
  3820. // probe 1
  3821. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3822. // probe 2
  3823. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3824. // probe 3
  3825. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3826. clean_up_after_endstop_move(l_feedmultiply);
  3827. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3828. #endif // AUTO_BED_LEVELING_GRID
  3829. st_synchronize();
  3830. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3831. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3832. // When the bed is uneven, this height must be corrected.
  3833. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3834. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3835. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3836. z_tmp = current_position[Z_AXIS];
  3837. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3838. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3839. plan_set_position_curposXYZE();
  3840. }
  3841. break;
  3842. #ifndef Z_PROBE_SLED
  3843. /*!
  3844. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3845. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3846. */
  3847. case 30:
  3848. {
  3849. st_synchronize();
  3850. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3851. int l_feedmultiply = setup_for_endstop_move();
  3852. feedrate = homing_feedrate[Z_AXIS];
  3853. run_z_probe();
  3854. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3855. SERIAL_PROTOCOLPGM(" X: ");
  3856. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3857. SERIAL_PROTOCOLPGM(" Y: ");
  3858. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3859. SERIAL_PROTOCOLPGM(" Z: ");
  3860. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3861. SERIAL_PROTOCOLPGM("\n");
  3862. clean_up_after_endstop_move(l_feedmultiply);
  3863. }
  3864. break;
  3865. #else
  3866. /*!
  3867. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3868. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3869. */
  3870. case 31:
  3871. dock_sled(true);
  3872. break;
  3873. /*!
  3874. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3875. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3876. */
  3877. case 32:
  3878. dock_sled(false);
  3879. break;
  3880. #endif // Z_PROBE_SLED
  3881. #endif // ENABLE_AUTO_BED_LEVELING
  3882. #ifdef MESH_BED_LEVELING
  3883. /*!
  3884. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3885. Sensor must be over the bed.
  3886. The maximum travel distance before an error is triggered is 10mm.
  3887. */
  3888. case 30:
  3889. {
  3890. st_synchronize();
  3891. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3892. int l_feedmultiply = setup_for_endstop_move();
  3893. feedrate = homing_feedrate[Z_AXIS];
  3894. find_bed_induction_sensor_point_z(-10.f, 3);
  3895. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3896. clean_up_after_endstop_move(l_feedmultiply);
  3897. }
  3898. break;
  3899. /*!
  3900. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3901. Show/print PINDA temperature interpolating.
  3902. */
  3903. case 75:
  3904. {
  3905. for (int i = 40; i <= 110; i++)
  3906. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3907. }
  3908. break;
  3909. /*!
  3910. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3911. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3912. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3913. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3914. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  3915. If PINDA_THERMISTOR and DETECT_SUPERPINDA is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  3916. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  3917. #### Example
  3918. ```
  3919. G76
  3920. echo PINDA probe calibration start
  3921. echo start temperature: 35.0°
  3922. echo ...
  3923. echo PINDA temperature -- Z shift (mm): 0.---
  3924. ```
  3925. */
  3926. case 76:
  3927. {
  3928. #ifdef PINDA_THERMISTOR
  3929. if (!has_temperature_compensation())
  3930. {
  3931. SERIAL_ECHOLNPGM("No PINDA thermistor");
  3932. break;
  3933. }
  3934. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3935. //we need to know accurate position of first calibration point
  3936. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3937. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3938. break;
  3939. }
  3940. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3941. {
  3942. // We don't know where we are! HOME!
  3943. // Push the commands to the front of the message queue in the reverse order!
  3944. // There shall be always enough space reserved for these commands.
  3945. repeatcommand_front(); // repeat G76 with all its parameters
  3946. enquecommand_front_P((PSTR("G28 W0")));
  3947. break;
  3948. }
  3949. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3950. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3951. if (result)
  3952. {
  3953. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3954. plan_buffer_line_curposXYZE(3000 / 60);
  3955. current_position[Z_AXIS] = 50;
  3956. current_position[Y_AXIS] = 180;
  3957. plan_buffer_line_curposXYZE(3000 / 60);
  3958. st_synchronize();
  3959. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3960. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3961. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3962. plan_buffer_line_curposXYZE(3000 / 60);
  3963. st_synchronize();
  3964. gcode_G28(false, false, true);
  3965. }
  3966. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3967. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3968. current_position[Z_AXIS] = 100;
  3969. plan_buffer_line_curposXYZE(3000 / 60);
  3970. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3971. lcd_temp_cal_show_result(false);
  3972. break;
  3973. }
  3974. }
  3975. lcd_update_enable(true);
  3976. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3977. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3978. float zero_z;
  3979. int z_shift = 0; //unit: steps
  3980. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3981. if (start_temp < 35) start_temp = 35;
  3982. if (start_temp < current_temperature_pinda) start_temp += 5;
  3983. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3984. // setTargetHotend(200, 0);
  3985. setTargetBed(70 + (start_temp - 30));
  3986. custom_message_type = CustomMsg::TempCal;
  3987. custom_message_state = 1;
  3988. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3989. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3990. plan_buffer_line_curposXYZE(3000 / 60);
  3991. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3992. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3993. plan_buffer_line_curposXYZE(3000 / 60);
  3994. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3995. plan_buffer_line_curposXYZE(3000 / 60);
  3996. st_synchronize();
  3997. while (current_temperature_pinda < start_temp)
  3998. {
  3999. delay_keep_alive(1000);
  4000. serialecho_temperatures();
  4001. }
  4002. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4003. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4004. plan_buffer_line_curposXYZE(3000 / 60);
  4005. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4006. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4007. plan_buffer_line_curposXYZE(3000 / 60);
  4008. st_synchronize();
  4009. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4010. if (find_z_result == false) {
  4011. lcd_temp_cal_show_result(find_z_result);
  4012. break;
  4013. }
  4014. zero_z = current_position[Z_AXIS];
  4015. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4016. int i = -1; for (; i < 5; i++)
  4017. {
  4018. float temp = (40 + i * 5);
  4019. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4020. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4021. if (start_temp <= temp) break;
  4022. }
  4023. for (i++; i < 5; i++)
  4024. {
  4025. float temp = (40 + i * 5);
  4026. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4027. custom_message_state = i + 2;
  4028. setTargetBed(50 + 10 * (temp - 30) / 5);
  4029. // setTargetHotend(255, 0);
  4030. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4031. plan_buffer_line_curposXYZE(3000 / 60);
  4032. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4033. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4034. plan_buffer_line_curposXYZE(3000 / 60);
  4035. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4036. plan_buffer_line_curposXYZE(3000 / 60);
  4037. st_synchronize();
  4038. while (current_temperature_pinda < temp)
  4039. {
  4040. delay_keep_alive(1000);
  4041. serialecho_temperatures();
  4042. }
  4043. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4044. plan_buffer_line_curposXYZE(3000 / 60);
  4045. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4046. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4047. plan_buffer_line_curposXYZE(3000 / 60);
  4048. st_synchronize();
  4049. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4050. if (find_z_result == false) {
  4051. lcd_temp_cal_show_result(find_z_result);
  4052. break;
  4053. }
  4054. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4055. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4056. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4057. }
  4058. lcd_temp_cal_show_result(true);
  4059. #else //PINDA_THERMISTOR
  4060. setTargetBed(PINDA_MIN_T);
  4061. float zero_z;
  4062. int z_shift = 0; //unit: steps
  4063. int t_c; // temperature
  4064. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4065. // We don't know where we are! HOME!
  4066. // Push the commands to the front of the message queue in the reverse order!
  4067. // There shall be always enough space reserved for these commands.
  4068. repeatcommand_front(); // repeat G76 with all its parameters
  4069. enquecommand_front_P((PSTR("G28 W0")));
  4070. break;
  4071. }
  4072. puts_P(_N("PINDA probe calibration start"));
  4073. custom_message_type = CustomMsg::TempCal;
  4074. custom_message_state = 1;
  4075. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4076. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4077. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4078. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4079. plan_buffer_line_curposXYZE(3000 / 60);
  4080. st_synchronize();
  4081. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4082. delay_keep_alive(1000);
  4083. serialecho_temperatures();
  4084. }
  4085. //enquecommand_P(PSTR("M190 S50"));
  4086. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4087. delay_keep_alive(1000);
  4088. serialecho_temperatures();
  4089. }
  4090. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4091. current_position[Z_AXIS] = 5;
  4092. plan_buffer_line_curposXYZE(3000 / 60);
  4093. current_position[X_AXIS] = BED_X0;
  4094. current_position[Y_AXIS] = BED_Y0;
  4095. plan_buffer_line_curposXYZE(3000 / 60);
  4096. st_synchronize();
  4097. find_bed_induction_sensor_point_z(-1.f);
  4098. zero_z = current_position[Z_AXIS];
  4099. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4100. for (int i = 0; i<5; i++) {
  4101. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4102. custom_message_state = i + 2;
  4103. t_c = 60 + i * 10;
  4104. setTargetBed(t_c);
  4105. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4106. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4107. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4108. plan_buffer_line_curposXYZE(3000 / 60);
  4109. st_synchronize();
  4110. while (degBed() < t_c) {
  4111. delay_keep_alive(1000);
  4112. serialecho_temperatures();
  4113. }
  4114. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4115. delay_keep_alive(1000);
  4116. serialecho_temperatures();
  4117. }
  4118. current_position[Z_AXIS] = 5;
  4119. plan_buffer_line_curposXYZE(3000 / 60);
  4120. current_position[X_AXIS] = BED_X0;
  4121. current_position[Y_AXIS] = BED_Y0;
  4122. plan_buffer_line_curposXYZE(3000 / 60);
  4123. st_synchronize();
  4124. find_bed_induction_sensor_point_z(-1.f);
  4125. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4126. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4127. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4128. }
  4129. custom_message_type = CustomMsg::Status;
  4130. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4131. puts_P(_N("Temperature calibration done."));
  4132. disable_x();
  4133. disable_y();
  4134. disable_z();
  4135. disable_e0();
  4136. disable_e1();
  4137. disable_e2();
  4138. setTargetBed(0); //set bed target temperature back to 0
  4139. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4140. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4141. lcd_update_enable(true);
  4142. lcd_update(2);
  4143. #endif //PINDA_THERMISTOR
  4144. }
  4145. break;
  4146. /*!
  4147. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4148. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4149. #### Usage
  4150. G80 [ N | R | V | L | R | F | B ]
  4151. #### Parameters
  4152. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4153. - `R` - Probe retries. Default 3 max. 10
  4154. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4155. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4156. #### Additional Parameters
  4157. - `L` - Left Bed Level correct value in um.
  4158. - `R` - Right Bed Level correct value in um.
  4159. - `F` - Front Bed Level correct value in um.
  4160. - `B` - Back Bed Level correct value in um.
  4161. */
  4162. /*
  4163. * Probes a grid and produces a mesh to compensate for variable bed height
  4164. * The S0 report the points as below
  4165. * +----> X-axis
  4166. * |
  4167. * |
  4168. * v Y-axis
  4169. */
  4170. case 80:
  4171. #ifdef MK1BP
  4172. break;
  4173. #endif //MK1BP
  4174. case_G80:
  4175. {
  4176. mesh_bed_leveling_flag = true;
  4177. #ifndef PINDA_THERMISTOR
  4178. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4179. #endif // ndef PINDA_THERMISTOR
  4180. #ifdef SUPPORT_VERBOSITY
  4181. int8_t verbosity_level = 0;
  4182. if (code_seen('V')) {
  4183. // Just 'V' without a number counts as V1.
  4184. char c = strchr_pointer[1];
  4185. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4186. }
  4187. #endif //SUPPORT_VERBOSITY
  4188. // Firstly check if we know where we are
  4189. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4190. // We don't know where we are! HOME!
  4191. // Push the commands to the front of the message queue in the reverse order!
  4192. // There shall be always enough space reserved for these commands.
  4193. repeatcommand_front(); // repeat G80 with all its parameters
  4194. enquecommand_front_P((PSTR("G28 W0")));
  4195. break;
  4196. }
  4197. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4198. if (code_seen('N')) {
  4199. nMeasPoints = code_value_uint8();
  4200. if (nMeasPoints != 7) {
  4201. nMeasPoints = 3;
  4202. }
  4203. }
  4204. else {
  4205. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4206. }
  4207. uint8_t nProbeRetry = 3;
  4208. if (code_seen('R')) {
  4209. nProbeRetry = code_value_uint8();
  4210. if (nProbeRetry > 10) {
  4211. nProbeRetry = 10;
  4212. }
  4213. }
  4214. else {
  4215. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4216. }
  4217. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4218. #ifndef PINDA_THERMISTOR
  4219. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4220. {
  4221. temp_compensation_start();
  4222. run = true;
  4223. repeatcommand_front(); // repeat G80 with all its parameters
  4224. enquecommand_front_P((PSTR("G28 W0")));
  4225. break;
  4226. }
  4227. run = false;
  4228. #endif //PINDA_THERMISTOR
  4229. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4230. CustomMsg custom_message_type_old = custom_message_type;
  4231. unsigned int custom_message_state_old = custom_message_state;
  4232. custom_message_type = CustomMsg::MeshBedLeveling;
  4233. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4234. lcd_update(1);
  4235. mbl.reset(); //reset mesh bed leveling
  4236. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4237. // consumed during the first movements following this statement.
  4238. babystep_undo();
  4239. // Cycle through all points and probe them
  4240. // First move up. During this first movement, the babystepping will be reverted.
  4241. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4242. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4243. // The move to the first calibration point.
  4244. current_position[X_AXIS] = BED_X0;
  4245. current_position[Y_AXIS] = BED_Y0;
  4246. #ifdef SUPPORT_VERBOSITY
  4247. if (verbosity_level >= 1)
  4248. {
  4249. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4250. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4251. }
  4252. #else //SUPPORT_VERBOSITY
  4253. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4254. #endif //SUPPORT_VERBOSITY
  4255. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4256. // Wait until the move is finished.
  4257. st_synchronize();
  4258. uint8_t mesh_point = 0; //index number of calibration point
  4259. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4260. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4261. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4262. #ifdef SUPPORT_VERBOSITY
  4263. if (verbosity_level >= 1) {
  4264. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4265. }
  4266. #endif // SUPPORT_VERBOSITY
  4267. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4268. while (mesh_point != nMeasPoints * nMeasPoints) {
  4269. // Get coords of a measuring point.
  4270. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4271. uint8_t iy = mesh_point / nMeasPoints;
  4272. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4273. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4274. custom_message_state--;
  4275. mesh_point++;
  4276. continue; //skip
  4277. }*/
  4278. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4279. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4280. {
  4281. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4282. }
  4283. float z0 = 0.f;
  4284. if (has_z && (mesh_point > 0)) {
  4285. uint16_t z_offset_u = 0;
  4286. if (nMeasPoints == 7) {
  4287. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4288. }
  4289. else {
  4290. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4291. }
  4292. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4293. #ifdef SUPPORT_VERBOSITY
  4294. if (verbosity_level >= 1) {
  4295. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4296. }
  4297. #endif // SUPPORT_VERBOSITY
  4298. }
  4299. // Move Z up to MESH_HOME_Z_SEARCH.
  4300. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4301. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4302. float init_z_bckp = current_position[Z_AXIS];
  4303. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4304. st_synchronize();
  4305. // Move to XY position of the sensor point.
  4306. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4307. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4308. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4309. #ifdef SUPPORT_VERBOSITY
  4310. if (verbosity_level >= 1) {
  4311. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4312. SERIAL_PROTOCOL(mesh_point);
  4313. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4314. }
  4315. #else //SUPPORT_VERBOSITY
  4316. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4317. #endif // SUPPORT_VERBOSITY
  4318. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4319. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4320. st_synchronize();
  4321. // Go down until endstop is hit
  4322. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4323. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4324. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4325. break;
  4326. }
  4327. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4328. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4329. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4330. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4331. st_synchronize();
  4332. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4333. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4334. break;
  4335. }
  4336. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4337. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4338. break;
  4339. }
  4340. }
  4341. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4342. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4343. break;
  4344. }
  4345. #ifdef SUPPORT_VERBOSITY
  4346. if (verbosity_level >= 10) {
  4347. SERIAL_ECHOPGM("X: ");
  4348. MYSERIAL.print(current_position[X_AXIS], 5);
  4349. SERIAL_ECHOLNPGM("");
  4350. SERIAL_ECHOPGM("Y: ");
  4351. MYSERIAL.print(current_position[Y_AXIS], 5);
  4352. SERIAL_PROTOCOLPGM("\n");
  4353. }
  4354. #endif // SUPPORT_VERBOSITY
  4355. float offset_z = 0;
  4356. #ifdef PINDA_THERMISTOR
  4357. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4358. #endif //PINDA_THERMISTOR
  4359. // #ifdef SUPPORT_VERBOSITY
  4360. /* if (verbosity_level >= 1)
  4361. {
  4362. SERIAL_ECHOPGM("mesh bed leveling: ");
  4363. MYSERIAL.print(current_position[Z_AXIS], 5);
  4364. SERIAL_ECHOPGM(" offset: ");
  4365. MYSERIAL.print(offset_z, 5);
  4366. SERIAL_ECHOLNPGM("");
  4367. }*/
  4368. // #endif // SUPPORT_VERBOSITY
  4369. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4370. custom_message_state--;
  4371. mesh_point++;
  4372. lcd_update(1);
  4373. }
  4374. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4375. #ifdef SUPPORT_VERBOSITY
  4376. if (verbosity_level >= 20) {
  4377. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4378. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4379. MYSERIAL.print(current_position[Z_AXIS], 5);
  4380. }
  4381. #endif // SUPPORT_VERBOSITY
  4382. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4383. st_synchronize();
  4384. if (mesh_point != nMeasPoints * nMeasPoints) {
  4385. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4386. bool bState;
  4387. do { // repeat until Z-leveling o.k.
  4388. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4389. #ifdef TMC2130
  4390. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4391. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4392. #else // TMC2130
  4393. lcd_wait_for_click_delay(0); // ~ no timeout
  4394. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4395. #endif // TMC2130
  4396. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4397. bState=enable_z_endstop(false);
  4398. current_position[Z_AXIS] -= 1;
  4399. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4400. st_synchronize();
  4401. enable_z_endstop(true);
  4402. #ifdef TMC2130
  4403. tmc2130_home_enter(Z_AXIS_MASK);
  4404. #endif // TMC2130
  4405. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4406. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4407. st_synchronize();
  4408. #ifdef TMC2130
  4409. tmc2130_home_exit();
  4410. #endif // TMC2130
  4411. enable_z_endstop(bState);
  4412. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4413. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4414. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4415. lcd_update_enable(true); // display / status-line recovery
  4416. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4417. repeatcommand_front(); // re-run (i.e. of "G80")
  4418. break;
  4419. }
  4420. clean_up_after_endstop_move(l_feedmultiply);
  4421. // SERIAL_ECHOLNPGM("clean up finished ");
  4422. #ifndef PINDA_THERMISTOR
  4423. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4424. #endif
  4425. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4426. // SERIAL_ECHOLNPGM("babystep applied");
  4427. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4428. #ifdef SUPPORT_VERBOSITY
  4429. if (verbosity_level >= 1) {
  4430. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4431. }
  4432. #endif // SUPPORT_VERBOSITY
  4433. for (uint8_t i = 0; i < 4; ++i) {
  4434. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4435. long correction = 0;
  4436. if (code_seen(codes[i]))
  4437. correction = code_value_long();
  4438. else if (eeprom_bed_correction_valid) {
  4439. unsigned char *addr = (i < 2) ?
  4440. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4441. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4442. correction = eeprom_read_int8(addr);
  4443. }
  4444. if (correction == 0)
  4445. continue;
  4446. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4447. SERIAL_ERROR_START;
  4448. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4449. SERIAL_ECHO(correction);
  4450. SERIAL_ECHOLNPGM(" microns");
  4451. }
  4452. else {
  4453. float offset = float(correction) * 0.001f;
  4454. switch (i) {
  4455. case 0:
  4456. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4457. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4458. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4459. }
  4460. }
  4461. break;
  4462. case 1:
  4463. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4464. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4465. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4466. }
  4467. }
  4468. break;
  4469. case 2:
  4470. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4471. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4472. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4473. }
  4474. }
  4475. break;
  4476. case 3:
  4477. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4478. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4479. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4480. }
  4481. }
  4482. break;
  4483. }
  4484. }
  4485. }
  4486. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4487. if (nMeasPoints == 3) {
  4488. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4489. }
  4490. /*
  4491. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4492. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4493. SERIAL_PROTOCOLPGM(",");
  4494. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4495. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4496. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4497. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4498. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4499. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4500. SERIAL_PROTOCOLPGM(" ");
  4501. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4502. }
  4503. SERIAL_PROTOCOLPGM("\n");
  4504. }
  4505. */
  4506. if (nMeasPoints == 7 && magnet_elimination) {
  4507. mbl_interpolation(nMeasPoints);
  4508. }
  4509. /*
  4510. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4511. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4512. SERIAL_PROTOCOLPGM(",");
  4513. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4514. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4515. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4516. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4517. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4518. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4519. SERIAL_PROTOCOLPGM(" ");
  4520. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4521. }
  4522. SERIAL_PROTOCOLPGM("\n");
  4523. }
  4524. */
  4525. // SERIAL_ECHOLNPGM("Upsample finished");
  4526. mbl.active = 1; //activate mesh bed leveling
  4527. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4528. go_home_with_z_lift();
  4529. // SERIAL_ECHOLNPGM("Go home finished");
  4530. //unretract (after PINDA preheat retraction)
  4531. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  4532. current_position[E_AXIS] += default_retraction;
  4533. plan_buffer_line_curposXYZE(400);
  4534. }
  4535. KEEPALIVE_STATE(NOT_BUSY);
  4536. // Restore custom message state
  4537. lcd_setstatuspgm(_T(WELCOME_MSG));
  4538. custom_message_type = custom_message_type_old;
  4539. custom_message_state = custom_message_state_old;
  4540. mesh_bed_leveling_flag = false;
  4541. mesh_bed_run_from_menu = false;
  4542. lcd_update(2);
  4543. }
  4544. break;
  4545. /*!
  4546. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4547. Prints mesh bed leveling status and bed profile if activated.
  4548. */
  4549. case 81:
  4550. if (mbl.active) {
  4551. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4552. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4553. SERIAL_PROTOCOL(',');
  4554. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4555. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4556. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4557. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4558. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4559. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4560. SERIAL_PROTOCOLPGM(" ");
  4561. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4562. }
  4563. SERIAL_PROTOCOLLN();
  4564. }
  4565. }
  4566. else
  4567. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4568. break;
  4569. #if 0
  4570. /*!
  4571. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4572. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4573. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4574. */
  4575. case 82:
  4576. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4577. int l_feedmultiply = setup_for_endstop_move();
  4578. find_bed_induction_sensor_point_z();
  4579. clean_up_after_endstop_move(l_feedmultiply);
  4580. SERIAL_PROTOCOLPGM("Bed found at: ");
  4581. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4582. SERIAL_PROTOCOLPGM("\n");
  4583. break;
  4584. /*!
  4585. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4586. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4587. */
  4588. case 83:
  4589. {
  4590. int babystepz = code_seen('S') ? code_value() : 0;
  4591. int BabyPosition = code_seen('P') ? code_value() : 0;
  4592. if (babystepz != 0) {
  4593. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4594. // Is the axis indexed starting with zero or one?
  4595. if (BabyPosition > 4) {
  4596. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4597. }else{
  4598. // Save it to the eeprom
  4599. babystepLoadZ = babystepz;
  4600. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4601. // adjust the Z
  4602. babystepsTodoZadd(babystepLoadZ);
  4603. }
  4604. }
  4605. }
  4606. break;
  4607. /*!
  4608. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4609. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4610. */
  4611. case 84:
  4612. babystepsTodoZsubtract(babystepLoadZ);
  4613. // babystepLoadZ = 0;
  4614. break;
  4615. /*!
  4616. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4617. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4618. */
  4619. case 85:
  4620. lcd_pick_babystep();
  4621. break;
  4622. #endif
  4623. /*!
  4624. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4625. This G-code will be performed at the start of a calibration script.
  4626. (Prusa3D specific)
  4627. */
  4628. case 86:
  4629. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4630. break;
  4631. /*!
  4632. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4633. This G-code will be performed at the end of a calibration script.
  4634. (Prusa3D specific)
  4635. */
  4636. case 87:
  4637. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4638. break;
  4639. /*!
  4640. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4641. Currently has no effect.
  4642. */
  4643. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4644. case 88:
  4645. break;
  4646. #endif // ENABLE_MESH_BED_LEVELING
  4647. /*!
  4648. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4649. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4650. */
  4651. case 90: {
  4652. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4653. }
  4654. break;
  4655. /*!
  4656. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4657. All coordinates from now on are relative to the last position. E axis is left intact.
  4658. */
  4659. case 91: {
  4660. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4661. }
  4662. break;
  4663. /*!
  4664. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4665. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4666. If a parameter is omitted, that axis will not be affected.
  4667. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4668. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4669. #### Usage
  4670. G92 [ X | Y | Z | E ]
  4671. #### Parameters
  4672. - `X` - new X axis position
  4673. - `Y` - new Y axis position
  4674. - `Z` - new Z axis position
  4675. - `E` - new extruder position
  4676. */
  4677. case 92: {
  4678. gcode_G92();
  4679. }
  4680. break;
  4681. /*!
  4682. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4683. Enable Prusa-specific Farm functions and g-code.
  4684. See Internal Prusa commands.
  4685. */
  4686. case 98:
  4687. farm_mode = 1;
  4688. PingTime = _millis();
  4689. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4690. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4691. SilentModeMenu = SILENT_MODE_OFF;
  4692. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4693. fCheckModeInit(); // alternatively invoke printer reset
  4694. break;
  4695. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4696. Disables Prusa-specific Farm functions and g-code.
  4697. */
  4698. case 99:
  4699. farm_mode = 0;
  4700. lcd_printer_connected();
  4701. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4702. lcd_update(2);
  4703. fCheckModeInit(); // alternatively invoke printer reset
  4704. break;
  4705. default:
  4706. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4707. }
  4708. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4709. gcode_in_progress = 0;
  4710. } // end if(code_seen('G'))
  4711. /*!
  4712. ### End of G-Codes
  4713. */
  4714. /*!
  4715. ---------------------------------------------------------------------------------
  4716. # M Commands
  4717. */
  4718. else if(code_seen('M'))
  4719. {
  4720. int index;
  4721. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4722. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4723. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4724. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4725. } else
  4726. {
  4727. mcode_in_progress = (int)code_value();
  4728. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4729. switch(mcode_in_progress)
  4730. {
  4731. /*!
  4732. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4733. */
  4734. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4735. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4736. {
  4737. char *src = strchr_pointer + 2;
  4738. codenum = 0;
  4739. bool hasP = false, hasS = false;
  4740. if (code_seen('P')) {
  4741. codenum = code_value(); // milliseconds to wait
  4742. hasP = codenum > 0;
  4743. }
  4744. if (code_seen('S')) {
  4745. codenum = code_value() * 1000; // seconds to wait
  4746. hasS = codenum > 0;
  4747. }
  4748. starpos = strchr(src, '*');
  4749. if (starpos != NULL) *(starpos) = '\0';
  4750. while (*src == ' ') ++src;
  4751. if (!hasP && !hasS && *src != '\0') {
  4752. lcd_setstatus(src);
  4753. } else {
  4754. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4755. }
  4756. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4757. st_synchronize();
  4758. previous_millis_cmd = _millis();
  4759. if (codenum > 0){
  4760. codenum += _millis(); // keep track of when we started waiting
  4761. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4762. while(_millis() < codenum && !lcd_clicked()){
  4763. manage_heater();
  4764. manage_inactivity(true);
  4765. lcd_update(0);
  4766. }
  4767. KEEPALIVE_STATE(IN_HANDLER);
  4768. lcd_ignore_click(false);
  4769. }else{
  4770. marlin_wait_for_click();
  4771. }
  4772. if (IS_SD_PRINTING)
  4773. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4774. else
  4775. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4776. }
  4777. break;
  4778. /*!
  4779. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4780. */
  4781. case 17:
  4782. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4783. enable_x();
  4784. enable_y();
  4785. enable_z();
  4786. enable_e0();
  4787. enable_e1();
  4788. enable_e2();
  4789. break;
  4790. #ifdef SDSUPPORT
  4791. /*!
  4792. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4793. */
  4794. case 20:
  4795. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4796. card.ls();
  4797. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4798. break;
  4799. /*!
  4800. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4801. */
  4802. case 21:
  4803. card.initsd();
  4804. break;
  4805. /*!
  4806. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4807. */
  4808. case 22:
  4809. card.release();
  4810. break;
  4811. /*!
  4812. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4813. #### Usage
  4814. M23 [filename]
  4815. */
  4816. case 23:
  4817. starpos = (strchr(strchr_pointer + 4,'*'));
  4818. if(starpos!=NULL)
  4819. *(starpos)='\0';
  4820. card.openFile(strchr_pointer + 4,true);
  4821. break;
  4822. /*!
  4823. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4824. */
  4825. case 24:
  4826. if (isPrintPaused)
  4827. lcd_resume_print();
  4828. else
  4829. {
  4830. if (!card.get_sdpos())
  4831. {
  4832. // A new print has started from scratch, reset stats
  4833. failstats_reset_print();
  4834. #ifndef LA_NOCOMPAT
  4835. la10c_reset();
  4836. #endif
  4837. }
  4838. card.startFileprint();
  4839. starttime=_millis();
  4840. }
  4841. break;
  4842. /*!
  4843. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4844. Set position in SD card file to index in bytes.
  4845. This command is expected to be called after M23 and before M24.
  4846. Otherwise effect of this command is undefined.
  4847. #### Usage
  4848. M26 [ S ]
  4849. #### Parameters
  4850. - `S` - Index in bytes
  4851. */
  4852. case 26:
  4853. if(card.cardOK && code_seen('S')) {
  4854. long index = code_value_long();
  4855. card.setIndex(index);
  4856. // We don't disable interrupt during update of sdpos_atomic
  4857. // as we expect, that SD card print is not active in this moment
  4858. sdpos_atomic = index;
  4859. }
  4860. break;
  4861. /*!
  4862. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4863. */
  4864. case 27:
  4865. card.getStatus();
  4866. break;
  4867. /*!
  4868. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4869. */
  4870. case 28:
  4871. starpos = (strchr(strchr_pointer + 4,'*'));
  4872. if(starpos != NULL){
  4873. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4874. strchr_pointer = strchr(npos,' ') + 1;
  4875. *(starpos) = '\0';
  4876. }
  4877. card.openFile(strchr_pointer+4,false);
  4878. break;
  4879. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4880. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4881. */
  4882. case 29:
  4883. //processed in write to file routine above
  4884. //card,saving = false;
  4885. break;
  4886. /*!
  4887. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4888. #### Usage
  4889. M30 [filename]
  4890. */
  4891. case 30:
  4892. if (card.cardOK){
  4893. card.closefile();
  4894. starpos = (strchr(strchr_pointer + 4,'*'));
  4895. if(starpos != NULL){
  4896. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4897. strchr_pointer = strchr(npos,' ') + 1;
  4898. *(starpos) = '\0';
  4899. }
  4900. card.removeFile(strchr_pointer + 4);
  4901. }
  4902. break;
  4903. /*!
  4904. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4905. @todo What are the parameters P and S for in M32?
  4906. */
  4907. case 32:
  4908. {
  4909. if(card.sdprinting) {
  4910. st_synchronize();
  4911. }
  4912. starpos = (strchr(strchr_pointer + 4,'*'));
  4913. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4914. if(namestartpos==NULL)
  4915. {
  4916. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4917. }
  4918. else
  4919. namestartpos++; //to skip the '!'
  4920. if(starpos!=NULL)
  4921. *(starpos)='\0';
  4922. bool call_procedure=(code_seen('P'));
  4923. if(strchr_pointer>namestartpos)
  4924. call_procedure=false; //false alert, 'P' found within filename
  4925. if( card.cardOK )
  4926. {
  4927. card.openFile(namestartpos,true,!call_procedure);
  4928. if(code_seen('S'))
  4929. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4930. card.setIndex(code_value_long());
  4931. card.startFileprint();
  4932. if(!call_procedure)
  4933. {
  4934. if(!card.get_sdpos())
  4935. {
  4936. // A new print has started from scratch, reset stats
  4937. failstats_reset_print();
  4938. #ifndef LA_NOCOMPAT
  4939. la10c_reset();
  4940. #endif
  4941. }
  4942. starttime=_millis(); // procedure calls count as normal print time.
  4943. }
  4944. }
  4945. } break;
  4946. /*!
  4947. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4948. #### Usage
  4949. M928 [filename]
  4950. */
  4951. case 928:
  4952. starpos = (strchr(strchr_pointer + 5,'*'));
  4953. if(starpos != NULL){
  4954. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4955. strchr_pointer = strchr(npos,' ') + 1;
  4956. *(starpos) = '\0';
  4957. }
  4958. card.openLogFile(strchr_pointer+5);
  4959. break;
  4960. #endif //SDSUPPORT
  4961. /*!
  4962. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4963. */
  4964. case 31: //M31 take time since the start of the SD print or an M109 command
  4965. {
  4966. stoptime=_millis();
  4967. char time[30];
  4968. unsigned long t=(stoptime-starttime)/1000;
  4969. int sec,min;
  4970. min=t/60;
  4971. sec=t%60;
  4972. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4973. SERIAL_ECHO_START;
  4974. SERIAL_ECHOLN(time);
  4975. lcd_setstatus(time);
  4976. autotempShutdown();
  4977. }
  4978. break;
  4979. /*!
  4980. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4981. #### Usage
  4982. M42 [ P | S ]
  4983. #### Parameters
  4984. - `P` - Pin number.
  4985. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  4986. */
  4987. case 42:
  4988. if (code_seen('S'))
  4989. {
  4990. int pin_status = code_value();
  4991. int pin_number = LED_PIN;
  4992. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4993. pin_number = code_value();
  4994. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4995. {
  4996. if (sensitive_pins[i] == pin_number)
  4997. {
  4998. pin_number = -1;
  4999. break;
  5000. }
  5001. }
  5002. #if defined(FAN_PIN) && FAN_PIN > -1
  5003. if (pin_number == FAN_PIN)
  5004. fanSpeed = pin_status;
  5005. #endif
  5006. if (pin_number > -1)
  5007. {
  5008. pinMode(pin_number, OUTPUT);
  5009. digitalWrite(pin_number, pin_status);
  5010. analogWrite(pin_number, pin_status);
  5011. }
  5012. }
  5013. break;
  5014. /*!
  5015. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5016. */
  5017. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5018. // Reset the baby step value and the baby step applied flag.
  5019. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5020. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5021. // Reset the skew and offset in both RAM and EEPROM.
  5022. reset_bed_offset_and_skew();
  5023. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5024. // the planner will not perform any adjustments in the XY plane.
  5025. // Wait for the motors to stop and update the current position with the absolute values.
  5026. world2machine_revert_to_uncorrected();
  5027. break;
  5028. /*!
  5029. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5030. #### Usage
  5031. M45 [ V ]
  5032. #### Parameters
  5033. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5034. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5035. */
  5036. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5037. {
  5038. int8_t verbosity_level = 0;
  5039. bool only_Z = code_seen('Z');
  5040. #ifdef SUPPORT_VERBOSITY
  5041. if (code_seen('V'))
  5042. {
  5043. // Just 'V' without a number counts as V1.
  5044. char c = strchr_pointer[1];
  5045. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5046. }
  5047. #endif //SUPPORT_VERBOSITY
  5048. gcode_M45(only_Z, verbosity_level);
  5049. }
  5050. break;
  5051. /*!
  5052. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5053. */
  5054. /*
  5055. case 46:
  5056. {
  5057. // M46: Prusa3D: Show the assigned IP address.
  5058. uint8_t ip[4];
  5059. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  5060. if (hasIP) {
  5061. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  5062. SERIAL_ECHO(int(ip[0]));
  5063. SERIAL_ECHOPGM(".");
  5064. SERIAL_ECHO(int(ip[1]));
  5065. SERIAL_ECHOPGM(".");
  5066. SERIAL_ECHO(int(ip[2]));
  5067. SERIAL_ECHOPGM(".");
  5068. SERIAL_ECHO(int(ip[3]));
  5069. SERIAL_ECHOLNPGM("");
  5070. } else {
  5071. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5072. }
  5073. break;
  5074. }
  5075. */
  5076. /*!
  5077. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5078. */
  5079. case 47:
  5080. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5081. lcd_diag_show_end_stops();
  5082. KEEPALIVE_STATE(IN_HANDLER);
  5083. break;
  5084. #if 0
  5085. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5086. {
  5087. // Disable the default update procedure of the display. We will do a modal dialog.
  5088. lcd_update_enable(false);
  5089. // Let the planner use the uncorrected coordinates.
  5090. mbl.reset();
  5091. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5092. // the planner will not perform any adjustments in the XY plane.
  5093. // Wait for the motors to stop and update the current position with the absolute values.
  5094. world2machine_revert_to_uncorrected();
  5095. // Move the print head close to the bed.
  5096. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5098. st_synchronize();
  5099. // Home in the XY plane.
  5100. set_destination_to_current();
  5101. int l_feedmultiply = setup_for_endstop_move();
  5102. home_xy();
  5103. int8_t verbosity_level = 0;
  5104. if (code_seen('V')) {
  5105. // Just 'V' without a number counts as V1.
  5106. char c = strchr_pointer[1];
  5107. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5108. }
  5109. bool success = scan_bed_induction_points(verbosity_level);
  5110. clean_up_after_endstop_move(l_feedmultiply);
  5111. // Print head up.
  5112. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5114. st_synchronize();
  5115. lcd_update_enable(true);
  5116. break;
  5117. }
  5118. #endif
  5119. #ifdef ENABLE_AUTO_BED_LEVELING
  5120. #ifdef Z_PROBE_REPEATABILITY_TEST
  5121. /*!
  5122. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5123. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5124. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5125. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5126. #### Usage
  5127. M48 [ n | X | Y | V | L ]
  5128. #### Parameters
  5129. - `n` - Number of samples. Valid values 4-50
  5130. - `X` - X position for samples
  5131. - `Y` - Y position for samples
  5132. - `V` - Verbose level. Valid values 1-4
  5133. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5134. */
  5135. case 48: // M48 Z-Probe repeatability
  5136. {
  5137. #if Z_MIN_PIN == -1
  5138. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5139. #endif
  5140. double sum=0.0;
  5141. double mean=0.0;
  5142. double sigma=0.0;
  5143. double sample_set[50];
  5144. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5145. double X_current, Y_current, Z_current;
  5146. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5147. if (code_seen('V') || code_seen('v')) {
  5148. verbose_level = code_value();
  5149. if (verbose_level<0 || verbose_level>4 ) {
  5150. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5151. goto Sigma_Exit;
  5152. }
  5153. }
  5154. if (verbose_level > 0) {
  5155. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5156. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5157. }
  5158. if (code_seen('n')) {
  5159. n_samples = code_value();
  5160. if (n_samples<4 || n_samples>50 ) {
  5161. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5162. goto Sigma_Exit;
  5163. }
  5164. }
  5165. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5166. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5167. Z_current = st_get_position_mm(Z_AXIS);
  5168. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5169. ext_position = st_get_position_mm(E_AXIS);
  5170. if (code_seen('X') || code_seen('x') ) {
  5171. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5172. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5173. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5174. goto Sigma_Exit;
  5175. }
  5176. }
  5177. if (code_seen('Y') || code_seen('y') ) {
  5178. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5179. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5180. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5181. goto Sigma_Exit;
  5182. }
  5183. }
  5184. if (code_seen('L') || code_seen('l') ) {
  5185. n_legs = code_value();
  5186. if ( n_legs==1 )
  5187. n_legs = 2;
  5188. if ( n_legs<0 || n_legs>15 ) {
  5189. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5190. goto Sigma_Exit;
  5191. }
  5192. }
  5193. //
  5194. // Do all the preliminary setup work. First raise the probe.
  5195. //
  5196. st_synchronize();
  5197. plan_bed_level_matrix.set_to_identity();
  5198. plan_buffer_line( X_current, Y_current, Z_start_location,
  5199. ext_position,
  5200. homing_feedrate[Z_AXIS]/60,
  5201. active_extruder);
  5202. st_synchronize();
  5203. //
  5204. // Now get everything to the specified probe point So we can safely do a probe to
  5205. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5206. // use that as a starting point for each probe.
  5207. //
  5208. if (verbose_level > 2)
  5209. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5210. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5211. ext_position,
  5212. homing_feedrate[X_AXIS]/60,
  5213. active_extruder);
  5214. st_synchronize();
  5215. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5216. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5217. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5218. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5219. //
  5220. // OK, do the inital probe to get us close to the bed.
  5221. // Then retrace the right amount and use that in subsequent probes
  5222. //
  5223. int l_feedmultiply = setup_for_endstop_move();
  5224. run_z_probe();
  5225. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5226. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5227. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5228. ext_position,
  5229. homing_feedrate[X_AXIS]/60,
  5230. active_extruder);
  5231. st_synchronize();
  5232. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5233. for( n=0; n<n_samples; n++) {
  5234. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5235. if ( n_legs) {
  5236. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5237. int rotational_direction, l;
  5238. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5239. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5240. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5241. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5242. //SERIAL_ECHOPAIR(" theta: ",theta);
  5243. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5244. //SERIAL_PROTOCOLLNPGM("");
  5245. for( l=0; l<n_legs-1; l++) {
  5246. if (rotational_direction==1)
  5247. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5248. else
  5249. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5250. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5251. if ( radius<0.0 )
  5252. radius = -radius;
  5253. X_current = X_probe_location + cos(theta) * radius;
  5254. Y_current = Y_probe_location + sin(theta) * radius;
  5255. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5256. X_current = X_MIN_POS;
  5257. if ( X_current>X_MAX_POS)
  5258. X_current = X_MAX_POS;
  5259. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5260. Y_current = Y_MIN_POS;
  5261. if ( Y_current>Y_MAX_POS)
  5262. Y_current = Y_MAX_POS;
  5263. if (verbose_level>3 ) {
  5264. SERIAL_ECHOPAIR("x: ", X_current);
  5265. SERIAL_ECHOPAIR("y: ", Y_current);
  5266. SERIAL_PROTOCOLLNPGM("");
  5267. }
  5268. do_blocking_move_to( X_current, Y_current, Z_current );
  5269. }
  5270. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5271. }
  5272. int l_feedmultiply = setup_for_endstop_move();
  5273. run_z_probe();
  5274. sample_set[n] = current_position[Z_AXIS];
  5275. //
  5276. // Get the current mean for the data points we have so far
  5277. //
  5278. sum=0.0;
  5279. for( j=0; j<=n; j++) {
  5280. sum = sum + sample_set[j];
  5281. }
  5282. mean = sum / (double (n+1));
  5283. //
  5284. // Now, use that mean to calculate the standard deviation for the
  5285. // data points we have so far
  5286. //
  5287. sum=0.0;
  5288. for( j=0; j<=n; j++) {
  5289. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5290. }
  5291. sigma = sqrt( sum / (double (n+1)) );
  5292. if (verbose_level > 1) {
  5293. SERIAL_PROTOCOL(n+1);
  5294. SERIAL_PROTOCOL(" of ");
  5295. SERIAL_PROTOCOL(n_samples);
  5296. SERIAL_PROTOCOLPGM(" z: ");
  5297. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5298. }
  5299. if (verbose_level > 2) {
  5300. SERIAL_PROTOCOL(" mean: ");
  5301. SERIAL_PROTOCOL_F(mean,6);
  5302. SERIAL_PROTOCOL(" sigma: ");
  5303. SERIAL_PROTOCOL_F(sigma,6);
  5304. }
  5305. if (verbose_level > 0)
  5306. SERIAL_PROTOCOLPGM("\n");
  5307. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5308. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5309. st_synchronize();
  5310. }
  5311. _delay(1000);
  5312. clean_up_after_endstop_move(l_feedmultiply);
  5313. // enable_endstops(true);
  5314. if (verbose_level > 0) {
  5315. SERIAL_PROTOCOLPGM("Mean: ");
  5316. SERIAL_PROTOCOL_F(mean, 6);
  5317. SERIAL_PROTOCOLPGM("\n");
  5318. }
  5319. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5320. SERIAL_PROTOCOL_F(sigma, 6);
  5321. SERIAL_PROTOCOLPGM("\n\n");
  5322. Sigma_Exit:
  5323. break;
  5324. }
  5325. #endif // Z_PROBE_REPEATABILITY_TEST
  5326. #endif // ENABLE_AUTO_BED_LEVELING
  5327. /*!
  5328. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5329. #### Usage
  5330. M73 [ P | R | Q | S ]
  5331. #### Parameters
  5332. - `P` - Percent in normal mode
  5333. - `R` - Time remaining in normal mode
  5334. - `Q` - Percent in silent mode
  5335. - `S` - Time in silent mode
  5336. */
  5337. case 73: //M73 show percent done and time remaining
  5338. if(code_seen('P')) print_percent_done_normal = code_value();
  5339. if(code_seen('R')) print_time_remaining_normal = code_value();
  5340. if(code_seen('Q')) print_percent_done_silent = code_value();
  5341. if(code_seen('S')) print_time_remaining_silent = code_value();
  5342. {
  5343. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5344. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5345. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5346. }
  5347. break;
  5348. /*!
  5349. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5350. #### Usage
  5351. M104 [ S ]
  5352. #### Parameters
  5353. - `S` - Target temperature
  5354. */
  5355. case 104: // M104
  5356. {
  5357. uint8_t extruder;
  5358. if(setTargetedHotend(104,extruder)){
  5359. break;
  5360. }
  5361. if (code_seen('S'))
  5362. {
  5363. setTargetHotendSafe(code_value(), extruder);
  5364. }
  5365. break;
  5366. }
  5367. /*!
  5368. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5369. It is processed much earlier as to bypass the cmdqueue.
  5370. */
  5371. case 112:
  5372. kill(MSG_M112_KILL, 3);
  5373. break;
  5374. /*!
  5375. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5376. #### Usage
  5377. M140 [ S ]
  5378. #### Parameters
  5379. - `S` - Target temperature
  5380. */
  5381. case 140:
  5382. if (code_seen('S')) setTargetBed(code_value());
  5383. break;
  5384. /*!
  5385. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5386. Prints temperatures:
  5387. - `T:` - Hotend (actual / target)
  5388. - `B:` - Bed (actual / target)
  5389. - `Tx:` - x Tool (actual / target)
  5390. - `@:` - Hotend power
  5391. - `B@:` - Bed power
  5392. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5393. - `A:` - Ambient actual (only MK3/s)
  5394. _Example:_
  5395. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5396. */
  5397. case 105:
  5398. {
  5399. uint8_t extruder;
  5400. if(setTargetedHotend(105, extruder)){
  5401. break;
  5402. }
  5403. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5404. SERIAL_PROTOCOLPGM("ok T:");
  5405. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5406. SERIAL_PROTOCOLPGM(" /");
  5407. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5408. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5409. SERIAL_PROTOCOLPGM(" B:");
  5410. SERIAL_PROTOCOL_F(degBed(),1);
  5411. SERIAL_PROTOCOLPGM(" /");
  5412. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5413. #endif //TEMP_BED_PIN
  5414. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5415. SERIAL_PROTOCOLPGM(" T");
  5416. SERIAL_PROTOCOL(cur_extruder);
  5417. SERIAL_PROTOCOL(':');
  5418. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5419. SERIAL_PROTOCOLPGM(" /");
  5420. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5421. }
  5422. #else
  5423. SERIAL_ERROR_START;
  5424. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5425. #endif
  5426. SERIAL_PROTOCOLPGM(" @:");
  5427. #ifdef EXTRUDER_WATTS
  5428. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5429. SERIAL_PROTOCOLPGM("W");
  5430. #else
  5431. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5432. #endif
  5433. SERIAL_PROTOCOLPGM(" B@:");
  5434. #ifdef BED_WATTS
  5435. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5436. SERIAL_PROTOCOLPGM("W");
  5437. #else
  5438. SERIAL_PROTOCOL(getHeaterPower(-1));
  5439. #endif
  5440. #ifdef PINDA_THERMISTOR
  5441. SERIAL_PROTOCOLPGM(" P:");
  5442. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5443. #endif //PINDA_THERMISTOR
  5444. #ifdef AMBIENT_THERMISTOR
  5445. SERIAL_PROTOCOLPGM(" A:");
  5446. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5447. #endif //AMBIENT_THERMISTOR
  5448. #ifdef SHOW_TEMP_ADC_VALUES
  5449. {float raw = 0.0;
  5450. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5451. SERIAL_PROTOCOLPGM(" ADC B:");
  5452. SERIAL_PROTOCOL_F(degBed(),1);
  5453. SERIAL_PROTOCOLPGM("C->");
  5454. raw = rawBedTemp();
  5455. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5456. SERIAL_PROTOCOLPGM(" Rb->");
  5457. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5458. SERIAL_PROTOCOLPGM(" Rxb->");
  5459. SERIAL_PROTOCOL_F(raw, 5);
  5460. #endif
  5461. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5462. SERIAL_PROTOCOLPGM(" T");
  5463. SERIAL_PROTOCOL(cur_extruder);
  5464. SERIAL_PROTOCOLPGM(":");
  5465. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5466. SERIAL_PROTOCOLPGM("C->");
  5467. raw = rawHotendTemp(cur_extruder);
  5468. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5469. SERIAL_PROTOCOLPGM(" Rt");
  5470. SERIAL_PROTOCOL(cur_extruder);
  5471. SERIAL_PROTOCOLPGM("->");
  5472. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5473. SERIAL_PROTOCOLPGM(" Rx");
  5474. SERIAL_PROTOCOL(cur_extruder);
  5475. SERIAL_PROTOCOLPGM("->");
  5476. SERIAL_PROTOCOL_F(raw, 5);
  5477. }}
  5478. #endif
  5479. SERIAL_PROTOCOLLN("");
  5480. KEEPALIVE_STATE(NOT_BUSY);
  5481. return;
  5482. break;
  5483. }
  5484. /*!
  5485. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5486. #### Usage
  5487. M104 [ B | R | S ]
  5488. #### Parameters (not mandatory)
  5489. - `S` - Set extruder temperature
  5490. - `R` - Set extruder temperature
  5491. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5492. Parameters S and R are treated identically.
  5493. Command always waits for both cool down and heat up.
  5494. If no parameters are supplied waits for previously set extruder temperature.
  5495. */
  5496. case 109:
  5497. {
  5498. uint8_t extruder;
  5499. if(setTargetedHotend(109, extruder)){
  5500. break;
  5501. }
  5502. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5503. heating_status = 1;
  5504. if (farm_mode) { prusa_statistics(1); };
  5505. #ifdef AUTOTEMP
  5506. autotemp_enabled=false;
  5507. #endif
  5508. if (code_seen('S')) {
  5509. setTargetHotendSafe(code_value(), extruder);
  5510. } else if (code_seen('R')) {
  5511. setTargetHotendSafe(code_value(), extruder);
  5512. }
  5513. #ifdef AUTOTEMP
  5514. if (code_seen('S')) autotemp_min=code_value();
  5515. if (code_seen('B')) autotemp_max=code_value();
  5516. if (code_seen('F'))
  5517. {
  5518. autotemp_factor=code_value();
  5519. autotemp_enabled=true;
  5520. }
  5521. #endif
  5522. codenum = _millis();
  5523. /* See if we are heating up or cooling down */
  5524. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5525. KEEPALIVE_STATE(NOT_BUSY);
  5526. cancel_heatup = false;
  5527. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5528. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5529. KEEPALIVE_STATE(IN_HANDLER);
  5530. heating_status = 2;
  5531. if (farm_mode) { prusa_statistics(2); };
  5532. //starttime=_millis();
  5533. previous_millis_cmd = _millis();
  5534. }
  5535. break;
  5536. /*!
  5537. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5538. #### Usage
  5539. M190 [ R | S ]
  5540. #### Parameters (not mandatory)
  5541. - `S` - Set extruder temperature and wait for heating
  5542. - `R` - Set extruder temperature and wait for heating or cooling
  5543. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5544. */
  5545. case 190:
  5546. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5547. {
  5548. bool CooldownNoWait = false;
  5549. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5550. heating_status = 3;
  5551. if (farm_mode) { prusa_statistics(1); };
  5552. if (code_seen('S'))
  5553. {
  5554. setTargetBed(code_value());
  5555. CooldownNoWait = true;
  5556. }
  5557. else if (code_seen('R'))
  5558. {
  5559. setTargetBed(code_value());
  5560. }
  5561. codenum = _millis();
  5562. cancel_heatup = false;
  5563. target_direction = isHeatingBed(); // true if heating, false if cooling
  5564. KEEPALIVE_STATE(NOT_BUSY);
  5565. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5566. {
  5567. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5568. {
  5569. if (!farm_mode) {
  5570. float tt = degHotend(active_extruder);
  5571. SERIAL_PROTOCOLPGM("T:");
  5572. SERIAL_PROTOCOL(tt);
  5573. SERIAL_PROTOCOLPGM(" E:");
  5574. SERIAL_PROTOCOL((int)active_extruder);
  5575. SERIAL_PROTOCOLPGM(" B:");
  5576. SERIAL_PROTOCOL_F(degBed(), 1);
  5577. SERIAL_PROTOCOLLN("");
  5578. }
  5579. codenum = _millis();
  5580. }
  5581. manage_heater();
  5582. manage_inactivity();
  5583. lcd_update(0);
  5584. }
  5585. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5586. KEEPALIVE_STATE(IN_HANDLER);
  5587. heating_status = 4;
  5588. previous_millis_cmd = _millis();
  5589. }
  5590. #endif
  5591. break;
  5592. #if defined(FAN_PIN) && FAN_PIN > -1
  5593. /*!
  5594. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5595. #### Usage
  5596. M106 [ S ]
  5597. #### Parameters
  5598. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5599. */
  5600. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5601. if (code_seen('S')){
  5602. fanSpeed=constrain(code_value(),0,255);
  5603. }
  5604. else {
  5605. fanSpeed=255;
  5606. }
  5607. break;
  5608. /*!
  5609. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5610. */
  5611. case 107:
  5612. fanSpeed = 0;
  5613. break;
  5614. #endif //FAN_PIN
  5615. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5616. /*!
  5617. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5618. Only works if the firmware is compiled with PS_ON_PIN defined.
  5619. */
  5620. case 80:
  5621. SET_OUTPUT(PS_ON_PIN); //GND
  5622. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5623. // If you have a switch on suicide pin, this is useful
  5624. // if you want to start another print with suicide feature after
  5625. // a print without suicide...
  5626. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5627. SET_OUTPUT(SUICIDE_PIN);
  5628. WRITE(SUICIDE_PIN, HIGH);
  5629. #endif
  5630. powersupply = true;
  5631. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5632. lcd_update(0);
  5633. break;
  5634. /*!
  5635. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5636. Only works if the firmware is compiled with PS_ON_PIN defined.
  5637. */
  5638. case 81:
  5639. disable_heater();
  5640. st_synchronize();
  5641. disable_e0();
  5642. disable_e1();
  5643. disable_e2();
  5644. finishAndDisableSteppers();
  5645. fanSpeed = 0;
  5646. _delay(1000); // Wait a little before to switch off
  5647. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5648. st_synchronize();
  5649. suicide();
  5650. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5651. SET_OUTPUT(PS_ON_PIN);
  5652. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5653. #endif
  5654. powersupply = false;
  5655. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5656. lcd_update(0);
  5657. break;
  5658. #endif
  5659. /*!
  5660. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5661. Makes the extruder interpret extrusion as absolute positions.
  5662. */
  5663. case 82:
  5664. axis_relative_modes &= ~E_AXIS_MASK;
  5665. break;
  5666. /*!
  5667. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5668. Makes the extruder interpret extrusion values as relative positions.
  5669. */
  5670. case 83:
  5671. axis_relative_modes |= E_AXIS_MASK;
  5672. break;
  5673. /*!
  5674. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5675. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5676. This command can be used without any additional parameters. In that case all steppers are disabled.
  5677. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5678. M84 [ S | X | Y | Z | E ]
  5679. - `S` - Seconds
  5680. - `X` - X axis
  5681. - `Y` - Y axis
  5682. - `Z` - Z axis
  5683. - `E` - Exruder
  5684. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5685. Equal to M84 (compatibility)
  5686. */
  5687. case 18: //compatibility
  5688. case 84: // M84
  5689. if(code_seen('S')){
  5690. stepper_inactive_time = code_value() * 1000;
  5691. }
  5692. else
  5693. {
  5694. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5695. if(all_axis)
  5696. {
  5697. st_synchronize();
  5698. disable_e0();
  5699. disable_e1();
  5700. disable_e2();
  5701. finishAndDisableSteppers();
  5702. }
  5703. else
  5704. {
  5705. st_synchronize();
  5706. if (code_seen('X')) disable_x();
  5707. if (code_seen('Y')) disable_y();
  5708. if (code_seen('Z')) disable_z();
  5709. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5710. if (code_seen('E')) {
  5711. disable_e0();
  5712. disable_e1();
  5713. disable_e2();
  5714. }
  5715. #endif
  5716. }
  5717. }
  5718. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5719. print_time_remaining_init();
  5720. snmm_filaments_used = 0;
  5721. break;
  5722. /*!
  5723. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5724. #### Usage
  5725. M85 [ S ]
  5726. #### Parameters
  5727. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5728. */
  5729. case 85: // M85
  5730. if(code_seen('S')) {
  5731. max_inactive_time = code_value() * 1000;
  5732. }
  5733. break;
  5734. #ifdef SAFETYTIMER
  5735. /*!
  5736. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5737. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5738. #### Usage
  5739. M86 [ S ]
  5740. #### Parameters
  5741. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5742. */
  5743. case 86:
  5744. if (code_seen('S')) {
  5745. safetytimer_inactive_time = code_value() * 1000;
  5746. safetyTimer.start();
  5747. }
  5748. break;
  5749. #endif
  5750. /*!
  5751. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5752. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5753. #### Usage
  5754. M92 [ X | Y | Z | E ]
  5755. #### Parameters
  5756. - `X` - Steps per unit for the X drive
  5757. - `Y` - Steps per unit for the Y drive
  5758. - `Z` - Steps per unit for the Z drive
  5759. - `E` - Steps per unit for the extruder drive
  5760. */
  5761. case 92:
  5762. for(int8_t i=0; i < NUM_AXIS; i++)
  5763. {
  5764. if(code_seen(axis_codes[i]))
  5765. {
  5766. if(i == E_AXIS) { // E
  5767. float value = code_value();
  5768. if(value < 20.0) {
  5769. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5770. cs.max_jerk[E_AXIS] *= factor;
  5771. max_feedrate[i] *= factor;
  5772. axis_steps_per_sqr_second[i] *= factor;
  5773. }
  5774. cs.axis_steps_per_unit[i] = value;
  5775. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5776. fsensor_set_axis_steps_per_unit(value);
  5777. #endif
  5778. }
  5779. else {
  5780. cs.axis_steps_per_unit[i] = code_value();
  5781. }
  5782. }
  5783. }
  5784. break;
  5785. /*!
  5786. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5787. Sets the line number in G-code
  5788. #### Usage
  5789. M110 [ N ]
  5790. #### Parameters
  5791. - `N` - Line number
  5792. */
  5793. case 110:
  5794. if (code_seen('N'))
  5795. gcode_LastN = code_value_long();
  5796. break;
  5797. /*!
  5798. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5799. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5800. #### Usage
  5801. M113 [ S ]
  5802. #### Parameters
  5803. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5804. */
  5805. case 113:
  5806. if (code_seen('S')) {
  5807. host_keepalive_interval = (uint8_t)code_value_short();
  5808. // NOMORE(host_keepalive_interval, 60);
  5809. }
  5810. else {
  5811. SERIAL_ECHO_START;
  5812. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5813. SERIAL_PROTOCOLLN("");
  5814. }
  5815. break;
  5816. /*!
  5817. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5818. Print the firmware info and capabilities
  5819. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5820. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5821. _Examples:_
  5822. `M115` results:
  5823. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5824. `M115 V` results:
  5825. `3.8.1`
  5826. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5827. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5828. #### Usage
  5829. M115 [ V | U ]
  5830. #### Parameters
  5831. - V - Report current installed firmware version
  5832. - U - Firmware version provided by G-code to be compared to current one.
  5833. */
  5834. case 115: // M115
  5835. if (code_seen('V')) {
  5836. // Report the Prusa version number.
  5837. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5838. } else if (code_seen('U')) {
  5839. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5840. // pause the print for 30s and ask the user to upgrade the firmware.
  5841. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5842. } else {
  5843. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5844. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5845. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5846. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5847. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5848. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5849. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5850. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5851. SERIAL_ECHOPGM(" UUID:");
  5852. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5853. }
  5854. #ifdef EXTENDED_CAPABILITIES_REPORT
  5855. extended_capabilities_report();
  5856. #endif //EXTENDED_CAPABILITIES_REPORT
  5857. break;
  5858. /*!
  5859. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5860. */
  5861. case 114:
  5862. gcode_M114();
  5863. break;
  5864. /*
  5865. M117 moved up to get the high priority
  5866. case 117: // M117 display message
  5867. starpos = (strchr(strchr_pointer + 5,'*'));
  5868. if(starpos!=NULL)
  5869. *(starpos)='\0';
  5870. lcd_setstatus(strchr_pointer + 5);
  5871. break;*/
  5872. /*!
  5873. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5874. */
  5875. case 120:
  5876. enable_endstops(false) ;
  5877. break;
  5878. /*!
  5879. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5880. */
  5881. case 121:
  5882. enable_endstops(true) ;
  5883. break;
  5884. /*!
  5885. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5886. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5887. */
  5888. case 119:
  5889. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5890. SERIAL_PROTOCOLLN("");
  5891. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5892. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5893. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5894. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5895. }else{
  5896. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5897. }
  5898. SERIAL_PROTOCOLLN("");
  5899. #endif
  5900. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5901. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5902. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5903. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5904. }else{
  5905. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5906. }
  5907. SERIAL_PROTOCOLLN("");
  5908. #endif
  5909. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5910. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5911. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5912. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5913. }else{
  5914. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5915. }
  5916. SERIAL_PROTOCOLLN("");
  5917. #endif
  5918. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5919. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5920. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5921. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5922. }else{
  5923. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5924. }
  5925. SERIAL_PROTOCOLLN("");
  5926. #endif
  5927. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5928. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5929. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5930. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5931. }else{
  5932. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5933. }
  5934. SERIAL_PROTOCOLLN("");
  5935. #endif
  5936. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5937. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5938. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5939. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5940. }else{
  5941. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5942. }
  5943. SERIAL_PROTOCOLLN("");
  5944. #endif
  5945. break;
  5946. //!@todo update for all axes, use for loop
  5947. #ifdef BLINKM
  5948. /*!
  5949. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5950. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5951. #### Usage
  5952. M150 [ R | U | B ]
  5953. #### Parameters
  5954. - `R` - Red color value
  5955. - `U` - Green color value. It is NOT `G`!
  5956. - `B` - Blue color value
  5957. */
  5958. case 150:
  5959. {
  5960. byte red;
  5961. byte grn;
  5962. byte blu;
  5963. if(code_seen('R')) red = code_value();
  5964. if(code_seen('U')) grn = code_value();
  5965. if(code_seen('B')) blu = code_value();
  5966. SendColors(red,grn,blu);
  5967. }
  5968. break;
  5969. #endif //BLINKM
  5970. /*!
  5971. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5972. #### Usage
  5973. M200 [ D | T ]
  5974. #### Parameters
  5975. - `D` - Diameter in mm
  5976. - `T` - Number of extruder (MMUs)
  5977. */
  5978. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5979. {
  5980. uint8_t extruder = active_extruder;
  5981. if(code_seen('T')) {
  5982. extruder = code_value();
  5983. if(extruder >= EXTRUDERS) {
  5984. SERIAL_ECHO_START;
  5985. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5986. break;
  5987. }
  5988. }
  5989. if(code_seen('D')) {
  5990. float diameter = (float)code_value();
  5991. if (diameter == 0.0) {
  5992. // setting any extruder filament size disables volumetric on the assumption that
  5993. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5994. // for all extruders
  5995. cs.volumetric_enabled = false;
  5996. } else {
  5997. cs.filament_size[extruder] = (float)code_value();
  5998. // make sure all extruders have some sane value for the filament size
  5999. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6000. #if EXTRUDERS > 1
  6001. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6002. #if EXTRUDERS > 2
  6003. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6004. #endif
  6005. #endif
  6006. cs.volumetric_enabled = true;
  6007. }
  6008. } else {
  6009. //reserved for setting filament diameter via UFID or filament measuring device
  6010. break;
  6011. }
  6012. calculate_extruder_multipliers();
  6013. }
  6014. break;
  6015. /*!
  6016. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6017. For each axis individually.
  6018. */
  6019. case 201:
  6020. for (int8_t i = 0; i < NUM_AXIS; i++)
  6021. {
  6022. if (code_seen(axis_codes[i]))
  6023. {
  6024. unsigned long val = code_value();
  6025. #ifdef TMC2130
  6026. unsigned long val_silent = val;
  6027. if ((i == X_AXIS) || (i == Y_AXIS))
  6028. {
  6029. if (val > NORMAL_MAX_ACCEL_XY)
  6030. val = NORMAL_MAX_ACCEL_XY;
  6031. if (val_silent > SILENT_MAX_ACCEL_XY)
  6032. val_silent = SILENT_MAX_ACCEL_XY;
  6033. }
  6034. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6035. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6036. #else //TMC2130
  6037. max_acceleration_units_per_sq_second[i] = val;
  6038. #endif //TMC2130
  6039. }
  6040. }
  6041. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6042. reset_acceleration_rates();
  6043. break;
  6044. #if 0 // Not used for Sprinter/grbl gen6
  6045. case 202: // M202
  6046. for(int8_t i=0; i < NUM_AXIS; i++) {
  6047. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6048. }
  6049. break;
  6050. #endif
  6051. /*!
  6052. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6053. For each axis individually.
  6054. */
  6055. case 203: // M203 max feedrate mm/sec
  6056. for (int8_t i = 0; i < NUM_AXIS; i++)
  6057. {
  6058. if (code_seen(axis_codes[i]))
  6059. {
  6060. float val = code_value();
  6061. #ifdef TMC2130
  6062. float val_silent = val;
  6063. if ((i == X_AXIS) || (i == Y_AXIS))
  6064. {
  6065. if (val > NORMAL_MAX_FEEDRATE_XY)
  6066. val = NORMAL_MAX_FEEDRATE_XY;
  6067. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6068. val_silent = SILENT_MAX_FEEDRATE_XY;
  6069. }
  6070. cs.max_feedrate_normal[i] = val;
  6071. cs.max_feedrate_silent[i] = val_silent;
  6072. #else //TMC2130
  6073. max_feedrate[i] = val;
  6074. #endif //TMC2130
  6075. }
  6076. }
  6077. break;
  6078. /*!
  6079. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6080. #### Old format:
  6081. ##### Usage
  6082. M204 [ S | T ]
  6083. ##### Parameters
  6084. - `S` - normal moves
  6085. - `T` - filmanent only moves
  6086. #### New format:
  6087. ##### Usage
  6088. M204 [ P | R | T ]
  6089. ##### Parameters
  6090. - `P` - printing moves
  6091. - `R` - filmanent only moves
  6092. - `T` - travel moves (as of now T is ignored)
  6093. */
  6094. case 204:
  6095. {
  6096. if(code_seen('S')) {
  6097. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6098. // and it is also generated by Slic3r to control acceleration per extrusion type
  6099. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6100. cs.acceleration = code_value();
  6101. // Interpret the T value as retract acceleration in the old Marlin format.
  6102. if(code_seen('T'))
  6103. cs.retract_acceleration = code_value();
  6104. } else {
  6105. // New acceleration format, compatible with the upstream Marlin.
  6106. if(code_seen('P'))
  6107. cs.acceleration = code_value();
  6108. if(code_seen('R'))
  6109. cs.retract_acceleration = code_value();
  6110. if(code_seen('T')) {
  6111. // Interpret the T value as the travel acceleration in the new Marlin format.
  6112. /*!
  6113. @todo Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  6114. */
  6115. // travel_acceleration = code_value();
  6116. }
  6117. }
  6118. }
  6119. break;
  6120. /*!
  6121. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6122. Set some advanced settings related to movement.
  6123. #### Usage
  6124. M205 [ S | T | B | X | Y | Z | E ]
  6125. #### Parameters
  6126. - `S` - Minimum feedrate for print moves (unit/s)
  6127. - `T` - Minimum feedrate for travel moves (units/s)
  6128. - `B` - Minimum segment time (us)
  6129. - `X` - Maximum X jerk (units/s)
  6130. - `Y` - Maximum Y jerk (units/s)
  6131. - `Z` - Maximum Z jerk (units/s)
  6132. - `E` - Maximum E jerk (units/s)
  6133. */
  6134. case 205:
  6135. {
  6136. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6137. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6138. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6139. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6140. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6141. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6142. if(code_seen('E'))
  6143. {
  6144. float e = code_value();
  6145. #ifndef LA_NOCOMPAT
  6146. e = la10c_jerk(e);
  6147. #endif
  6148. cs.max_jerk[E_AXIS] = e;
  6149. }
  6150. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6151. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6152. }
  6153. break;
  6154. /*!
  6155. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6156. #### Usage
  6157. M206 [ X | Y | Z ]
  6158. #### Parameters
  6159. - `X` - X axis offset
  6160. - `Y` - Y axis offset
  6161. - `Z` - Z axis offset
  6162. */
  6163. case 206:
  6164. for(int8_t i=0; i < 3; i++)
  6165. {
  6166. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6167. }
  6168. break;
  6169. #ifdef FWRETRACT
  6170. /*!
  6171. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6172. #### Usage
  6173. M207 [ S | F | Z ]
  6174. #### Parameters
  6175. - `S` - positive length to retract, in mm
  6176. - `F` - retraction feedrate, in mm/min
  6177. - `Z` - additional zlift/hop
  6178. */
  6179. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6180. {
  6181. if(code_seen('S'))
  6182. {
  6183. cs.retract_length = code_value() ;
  6184. }
  6185. if(code_seen('F'))
  6186. {
  6187. cs.retract_feedrate = code_value()/60 ;
  6188. }
  6189. if(code_seen('Z'))
  6190. {
  6191. cs.retract_zlift = code_value() ;
  6192. }
  6193. }break;
  6194. /*!
  6195. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6196. #### Usage
  6197. M208 [ S | F ]
  6198. #### Parameters
  6199. - `S` - positive length surplus to the M207 Snnn, in mm
  6200. - `F` - feedrate, in mm/sec
  6201. */
  6202. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6203. {
  6204. if(code_seen('S'))
  6205. {
  6206. cs.retract_recover_length = code_value() ;
  6207. }
  6208. if(code_seen('F'))
  6209. {
  6210. cs.retract_recover_feedrate = code_value()/60 ;
  6211. }
  6212. }break;
  6213. /*!
  6214. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6215. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6216. #### Usage
  6217. M209 [ S ]
  6218. #### Parameters
  6219. - `S` - 1=true or 0=false
  6220. */
  6221. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6222. {
  6223. if(code_seen('S'))
  6224. {
  6225. int t= code_value() ;
  6226. switch(t)
  6227. {
  6228. case 0:
  6229. {
  6230. cs.autoretract_enabled=false;
  6231. retracted[0]=false;
  6232. #if EXTRUDERS > 1
  6233. retracted[1]=false;
  6234. #endif
  6235. #if EXTRUDERS > 2
  6236. retracted[2]=false;
  6237. #endif
  6238. }break;
  6239. case 1:
  6240. {
  6241. cs.autoretract_enabled=true;
  6242. retracted[0]=false;
  6243. #if EXTRUDERS > 1
  6244. retracted[1]=false;
  6245. #endif
  6246. #if EXTRUDERS > 2
  6247. retracted[2]=false;
  6248. #endif
  6249. }break;
  6250. default:
  6251. SERIAL_ECHO_START;
  6252. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6253. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6254. SERIAL_ECHOLNPGM("\"(1)");
  6255. }
  6256. }
  6257. }break;
  6258. #endif // FWRETRACT
  6259. #if EXTRUDERS > 1
  6260. /*!
  6261. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6262. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6263. #### Usage
  6264. M218 [ X | Y ]
  6265. #### Parameters
  6266. - `X` - X offset
  6267. - `Y` - Y offset
  6268. */
  6269. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6270. {
  6271. uint8_t extruder;
  6272. if(setTargetedHotend(218, extruder)){
  6273. break;
  6274. }
  6275. if(code_seen('X'))
  6276. {
  6277. extruder_offset[X_AXIS][extruder] = code_value();
  6278. }
  6279. if(code_seen('Y'))
  6280. {
  6281. extruder_offset[Y_AXIS][extruder] = code_value();
  6282. }
  6283. SERIAL_ECHO_START;
  6284. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6285. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6286. {
  6287. SERIAL_ECHO(" ");
  6288. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6289. SERIAL_ECHO(",");
  6290. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6291. }
  6292. SERIAL_ECHOLN("");
  6293. }break;
  6294. #endif
  6295. /*!
  6296. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6297. #### Usage
  6298. M220 [ B | S | R ]
  6299. #### Parameters
  6300. - `B` - Backup current speed factor
  6301. - `S` - Speed factor override percentage (0..100 or higher)
  6302. - `R` - Restore previous speed factor
  6303. */
  6304. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6305. {
  6306. bool codesWereSeen = false;
  6307. if (code_seen('B')) //backup current speed factor
  6308. {
  6309. saved_feedmultiply_mm = feedmultiply;
  6310. codesWereSeen = true;
  6311. }
  6312. if (code_seen('S'))
  6313. {
  6314. feedmultiply = code_value();
  6315. codesWereSeen = true;
  6316. }
  6317. if (code_seen('R')) //restore previous feedmultiply
  6318. {
  6319. feedmultiply = saved_feedmultiply_mm;
  6320. codesWereSeen = true;
  6321. }
  6322. if (!codesWereSeen)
  6323. {
  6324. printf_P(PSTR("%i%%\n"), feedmultiply);
  6325. }
  6326. }
  6327. break;
  6328. /*!
  6329. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6330. #### Usage
  6331. M221 [ S | T ]
  6332. #### Parameters
  6333. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6334. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6335. */
  6336. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6337. {
  6338. if (code_seen('S'))
  6339. {
  6340. int tmp_code = code_value();
  6341. if (code_seen('T'))
  6342. {
  6343. uint8_t extruder;
  6344. if (setTargetedHotend(221, extruder))
  6345. break;
  6346. extruder_multiply[extruder] = tmp_code;
  6347. }
  6348. else
  6349. {
  6350. extrudemultiply = tmp_code ;
  6351. }
  6352. }
  6353. else
  6354. {
  6355. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6356. }
  6357. calculate_extruder_multipliers();
  6358. }
  6359. break;
  6360. /*!
  6361. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6362. Wait until the specified pin reaches the state required
  6363. #### Usage
  6364. M226 [ P | S ]
  6365. #### Parameters
  6366. - `P` - pin number
  6367. - `S` - pin state
  6368. */
  6369. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6370. {
  6371. if(code_seen('P')){
  6372. int pin_number = code_value(); // pin number
  6373. int pin_state = -1; // required pin state - default is inverted
  6374. if(code_seen('S')) pin_state = code_value(); // required pin state
  6375. if(pin_state >= -1 && pin_state <= 1){
  6376. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6377. {
  6378. if (sensitive_pins[i] == pin_number)
  6379. {
  6380. pin_number = -1;
  6381. break;
  6382. }
  6383. }
  6384. if (pin_number > -1)
  6385. {
  6386. int target = LOW;
  6387. st_synchronize();
  6388. pinMode(pin_number, INPUT);
  6389. switch(pin_state){
  6390. case 1:
  6391. target = HIGH;
  6392. break;
  6393. case 0:
  6394. target = LOW;
  6395. break;
  6396. case -1:
  6397. target = !digitalRead(pin_number);
  6398. break;
  6399. }
  6400. while(digitalRead(pin_number) != target){
  6401. manage_heater();
  6402. manage_inactivity();
  6403. lcd_update(0);
  6404. }
  6405. }
  6406. }
  6407. }
  6408. }
  6409. break;
  6410. #if NUM_SERVOS > 0
  6411. /*!
  6412. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6413. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6414. #### Usage
  6415. M280 [ P | S ]
  6416. #### Parameters
  6417. - `P` - Servo index (id)
  6418. - `S` - Target position
  6419. */
  6420. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6421. {
  6422. int servo_index = -1;
  6423. int servo_position = 0;
  6424. if (code_seen('P'))
  6425. servo_index = code_value();
  6426. if (code_seen('S')) {
  6427. servo_position = code_value();
  6428. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6429. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6430. servos[servo_index].attach(0);
  6431. #endif
  6432. servos[servo_index].write(servo_position);
  6433. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6434. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6435. servos[servo_index].detach();
  6436. #endif
  6437. }
  6438. else {
  6439. SERIAL_ECHO_START;
  6440. SERIAL_ECHO("Servo ");
  6441. SERIAL_ECHO(servo_index);
  6442. SERIAL_ECHOLN(" out of range");
  6443. }
  6444. }
  6445. else if (servo_index >= 0) {
  6446. SERIAL_PROTOCOL(MSG_OK);
  6447. SERIAL_PROTOCOL(" Servo ");
  6448. SERIAL_PROTOCOL(servo_index);
  6449. SERIAL_PROTOCOL(": ");
  6450. SERIAL_PROTOCOL(servos[servo_index].read());
  6451. SERIAL_PROTOCOLLN("");
  6452. }
  6453. }
  6454. break;
  6455. #endif // NUM_SERVOS > 0
  6456. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6457. /*!
  6458. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6459. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6460. #### Usage
  6461. M300 [ S | P ]
  6462. #### Parameters
  6463. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6464. - `P` - duration in milliseconds
  6465. */
  6466. case 300: // M300
  6467. {
  6468. int beepS = code_seen('S') ? code_value() : 110;
  6469. int beepP = code_seen('P') ? code_value() : 1000;
  6470. if (beepS > 0)
  6471. {
  6472. #if BEEPER > 0
  6473. Sound_MakeCustom(beepP,beepS,false);
  6474. #endif
  6475. }
  6476. else
  6477. {
  6478. _delay(beepP);
  6479. }
  6480. }
  6481. break;
  6482. #endif // M300
  6483. #ifdef PIDTEMP
  6484. /*!
  6485. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6486. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6487. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6488. #### Usage
  6489. M301 [ P | I | D | C ]
  6490. #### Parameters
  6491. - `P` - proportional (Kp)
  6492. - `I` - integral (Ki)
  6493. - `D` - derivative (Kd)
  6494. - `C` - heating power=Kc*(e_speed0)
  6495. */
  6496. case 301:
  6497. {
  6498. if(code_seen('P')) cs.Kp = code_value();
  6499. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6500. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6501. #ifdef PID_ADD_EXTRUSION_RATE
  6502. if(code_seen('C')) Kc = code_value();
  6503. #endif
  6504. updatePID();
  6505. SERIAL_PROTOCOLRPGM(MSG_OK);
  6506. SERIAL_PROTOCOL(" p:");
  6507. SERIAL_PROTOCOL(cs.Kp);
  6508. SERIAL_PROTOCOL(" i:");
  6509. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6510. SERIAL_PROTOCOL(" d:");
  6511. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6512. #ifdef PID_ADD_EXTRUSION_RATE
  6513. SERIAL_PROTOCOL(" c:");
  6514. //Kc does not have scaling applied above, or in resetting defaults
  6515. SERIAL_PROTOCOL(Kc);
  6516. #endif
  6517. SERIAL_PROTOCOLLN("");
  6518. }
  6519. break;
  6520. #endif //PIDTEMP
  6521. #ifdef PIDTEMPBED
  6522. /*!
  6523. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6524. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6525. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6526. #### Usage
  6527. M304 [ P | I | D ]
  6528. #### Parameters
  6529. - `P` - proportional (Kp)
  6530. - `I` - integral (Ki)
  6531. - `D` - derivative (Kd)
  6532. */
  6533. case 304:
  6534. {
  6535. if(code_seen('P')) cs.bedKp = code_value();
  6536. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6537. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6538. updatePID();
  6539. SERIAL_PROTOCOLRPGM(MSG_OK);
  6540. SERIAL_PROTOCOL(" p:");
  6541. SERIAL_PROTOCOL(cs.bedKp);
  6542. SERIAL_PROTOCOL(" i:");
  6543. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6544. SERIAL_PROTOCOL(" d:");
  6545. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6546. SERIAL_PROTOCOLLN("");
  6547. }
  6548. break;
  6549. #endif //PIDTEMP
  6550. /*!
  6551. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6552. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6553. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6554. */
  6555. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6556. {
  6557. #ifdef CHDK
  6558. SET_OUTPUT(CHDK);
  6559. WRITE(CHDK, HIGH);
  6560. chdkHigh = _millis();
  6561. chdkActive = true;
  6562. #else
  6563. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6564. const uint8_t NUM_PULSES=16;
  6565. const float PULSE_LENGTH=0.01524;
  6566. for(int i=0; i < NUM_PULSES; i++) {
  6567. WRITE(PHOTOGRAPH_PIN, HIGH);
  6568. _delay_ms(PULSE_LENGTH);
  6569. WRITE(PHOTOGRAPH_PIN, LOW);
  6570. _delay_ms(PULSE_LENGTH);
  6571. }
  6572. _delay(7.33);
  6573. for(int i=0; i < NUM_PULSES; i++) {
  6574. WRITE(PHOTOGRAPH_PIN, HIGH);
  6575. _delay_ms(PULSE_LENGTH);
  6576. WRITE(PHOTOGRAPH_PIN, LOW);
  6577. _delay_ms(PULSE_LENGTH);
  6578. }
  6579. #endif
  6580. #endif //chdk end if
  6581. }
  6582. break;
  6583. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6584. /*!
  6585. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6586. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6587. #### Usage
  6588. M302 [ S ]
  6589. #### Parameters
  6590. - `S` - Cold extrude minimum temperature
  6591. */
  6592. case 302:
  6593. {
  6594. float temp = .0;
  6595. if (code_seen('S')) temp=code_value();
  6596. set_extrude_min_temp(temp);
  6597. }
  6598. break;
  6599. #endif
  6600. /*!
  6601. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6602. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6603. #### Usage
  6604. M303 [ E | S | C ]
  6605. #### Parameters
  6606. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6607. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6608. - `C` - Cycles, default `5`
  6609. */
  6610. case 303:
  6611. {
  6612. float temp = 150.0;
  6613. int e=0;
  6614. int c=5;
  6615. if (code_seen('E')) e=code_value();
  6616. if (e<0)
  6617. temp=70;
  6618. if (code_seen('S')) temp=code_value();
  6619. if (code_seen('C')) c=code_value();
  6620. PID_autotune(temp, e, c);
  6621. }
  6622. break;
  6623. /*!
  6624. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6625. Finishes all current moves and and thus clears the buffer.
  6626. Equivalent to `G4` with no parameters.
  6627. */
  6628. case 400:
  6629. {
  6630. st_synchronize();
  6631. }
  6632. break;
  6633. /*!
  6634. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6635. Currently three different materials are needed (default, flex and PVA).
  6636. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6637. #### Usage
  6638. M403 [ E | F ]
  6639. #### Parameters
  6640. - `E` - Extruder number. 0-indexed.
  6641. - `F` - Filament type
  6642. */
  6643. case 403:
  6644. {
  6645. // currently three different materials are needed (default, flex and PVA)
  6646. // add storing this information for different load/unload profiles etc. in the future
  6647. // firmware does not wait for "ok" from mmu
  6648. if (mmu_enabled)
  6649. {
  6650. uint8_t extruder = 255;
  6651. uint8_t filament = FILAMENT_UNDEFINED;
  6652. if(code_seen('E')) extruder = code_value();
  6653. if(code_seen('F')) filament = code_value();
  6654. mmu_set_filament_type(extruder, filament);
  6655. }
  6656. }
  6657. break;
  6658. /*!
  6659. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6660. Save current parameters to EEPROM.
  6661. */
  6662. case 500:
  6663. {
  6664. Config_StoreSettings();
  6665. }
  6666. break;
  6667. /*!
  6668. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6669. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6670. */
  6671. case 501:
  6672. {
  6673. Config_RetrieveSettings();
  6674. }
  6675. break;
  6676. /*!
  6677. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6678. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6679. */
  6680. case 502:
  6681. {
  6682. Config_ResetDefault();
  6683. }
  6684. break;
  6685. /*!
  6686. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6687. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6688. */
  6689. case 503:
  6690. {
  6691. Config_PrintSettings();
  6692. }
  6693. break;
  6694. /*!
  6695. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6696. Resets the language to English.
  6697. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6698. */
  6699. case 509:
  6700. {
  6701. lang_reset();
  6702. SERIAL_ECHO_START;
  6703. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6704. }
  6705. break;
  6706. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6707. /*!
  6708. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6709. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6710. #### Usage
  6711. M540 [ S ]
  6712. #### Parameters
  6713. - `S` - disabled=0, enabled=1
  6714. */
  6715. case 540:
  6716. {
  6717. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6718. }
  6719. break;
  6720. #endif
  6721. /*!
  6722. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6723. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6724. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6725. #### Usage
  6726. M851 [ Z ]
  6727. #### Parameters
  6728. - `Z` - Z offset probe to nozzle.
  6729. */
  6730. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6731. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6732. {
  6733. float value;
  6734. if (code_seen('Z'))
  6735. {
  6736. value = code_value();
  6737. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6738. {
  6739. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6740. SERIAL_ECHO_START;
  6741. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6742. SERIAL_PROTOCOLLN("");
  6743. }
  6744. else
  6745. {
  6746. SERIAL_ECHO_START;
  6747. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6748. SERIAL_ECHORPGM(MSG_Z_MIN);
  6749. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6750. SERIAL_ECHORPGM(MSG_Z_MAX);
  6751. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6752. SERIAL_PROTOCOLLN("");
  6753. }
  6754. }
  6755. else
  6756. {
  6757. SERIAL_ECHO_START;
  6758. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6759. SERIAL_ECHO(-cs.zprobe_zoffset);
  6760. SERIAL_PROTOCOLLN("");
  6761. }
  6762. break;
  6763. }
  6764. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6765. #ifdef FILAMENTCHANGEENABLE
  6766. /*!
  6767. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6768. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6769. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6770. #### Usage
  6771. M600 [ X | Y | Z | E | L | AUTO ]
  6772. - `X` - X position, default 211
  6773. - `Y` - Y position, default 0
  6774. - `Z` - relative lift Z, default 2.
  6775. - `E` - initial retract, default -2
  6776. - `L` - later retract distance for removal, default -80
  6777. - `AUTO` - Automatically (only with MMU)
  6778. */
  6779. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6780. {
  6781. st_synchronize();
  6782. float x_position = current_position[X_AXIS];
  6783. float y_position = current_position[Y_AXIS];
  6784. float z_shift = 0; // is it necessary to be a float?
  6785. float e_shift_init = 0;
  6786. float e_shift_late = 0;
  6787. bool automatic = false;
  6788. //Retract extruder
  6789. if(code_seen('E'))
  6790. {
  6791. e_shift_init = code_value();
  6792. }
  6793. else
  6794. {
  6795. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6796. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6797. #endif
  6798. }
  6799. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6800. if (code_seen('L'))
  6801. {
  6802. e_shift_late = code_value();
  6803. }
  6804. else
  6805. {
  6806. #ifdef FILAMENTCHANGE_FINALRETRACT
  6807. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6808. #endif
  6809. }
  6810. //Lift Z
  6811. if(code_seen('Z'))
  6812. {
  6813. z_shift = code_value();
  6814. }
  6815. else
  6816. {
  6817. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6818. }
  6819. //Move XY to side
  6820. if(code_seen('X'))
  6821. {
  6822. x_position = code_value();
  6823. }
  6824. else
  6825. {
  6826. #ifdef FILAMENTCHANGE_XPOS
  6827. x_position = FILAMENTCHANGE_XPOS;
  6828. #endif
  6829. }
  6830. if(code_seen('Y'))
  6831. {
  6832. y_position = code_value();
  6833. }
  6834. else
  6835. {
  6836. #ifdef FILAMENTCHANGE_YPOS
  6837. y_position = FILAMENTCHANGE_YPOS ;
  6838. #endif
  6839. }
  6840. if (mmu_enabled && code_seen("AUTO"))
  6841. automatic = true;
  6842. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6843. }
  6844. break;
  6845. #endif //FILAMENTCHANGEENABLE
  6846. /*!
  6847. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6848. */
  6849. /*!
  6850. ### M125 - Pause print (TODO: not implemented)
  6851. */
  6852. /*!
  6853. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6854. */
  6855. case 25:
  6856. case 601:
  6857. {
  6858. if (!isPrintPaused)
  6859. {
  6860. st_synchronize();
  6861. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6862. lcd_pause_print();
  6863. }
  6864. }
  6865. break;
  6866. /*!
  6867. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6868. */
  6869. case 602: {
  6870. if (isPrintPaused)
  6871. lcd_resume_print();
  6872. }
  6873. break;
  6874. /*!
  6875. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6876. */
  6877. case 603: {
  6878. lcd_print_stop();
  6879. }
  6880. break;
  6881. #ifdef PINDA_THERMISTOR
  6882. /*!
  6883. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6884. Wait for PINDA thermistor to reach target temperature
  6885. #### Usage
  6886. M860 [ S ]
  6887. #### Parameters
  6888. - `S` - Target temperature
  6889. */
  6890. case 860:
  6891. {
  6892. int set_target_pinda = 0;
  6893. if (code_seen('S')) {
  6894. set_target_pinda = code_value();
  6895. }
  6896. else {
  6897. break;
  6898. }
  6899. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6900. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6901. SERIAL_PROTOCOL(set_target_pinda);
  6902. SERIAL_PROTOCOLLN("");
  6903. codenum = _millis();
  6904. cancel_heatup = false;
  6905. bool is_pinda_cooling = false;
  6906. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6907. is_pinda_cooling = true;
  6908. }
  6909. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6910. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6911. {
  6912. SERIAL_PROTOCOLPGM("P:");
  6913. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6914. SERIAL_PROTOCOL('/');
  6915. SERIAL_PROTOCOLLN(set_target_pinda);
  6916. codenum = _millis();
  6917. }
  6918. manage_heater();
  6919. manage_inactivity();
  6920. lcd_update(0);
  6921. }
  6922. LCD_MESSAGERPGM(MSG_OK);
  6923. break;
  6924. }
  6925. /*!
  6926. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6927. Set compensation ustep value `S` for compensation table index `I`.
  6928. #### Usage
  6929. M861 [ ? | ! | Z | S | I ]
  6930. #### Parameters
  6931. - `?` - Print current EEPROM offset values
  6932. - `!` - Set factory default values
  6933. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6934. - `S` - Microsteps
  6935. - `I` - Table index
  6936. */
  6937. case 861:
  6938. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6939. uint8_t cal_status = calibration_status_pinda();
  6940. int16_t usteps = 0;
  6941. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6942. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6943. for (uint8_t i = 0; i < 6; i++)
  6944. {
  6945. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6946. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6947. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6948. SERIAL_PROTOCOLPGM(", ");
  6949. SERIAL_PROTOCOL(35 + (i * 5));
  6950. SERIAL_PROTOCOLPGM(", ");
  6951. SERIAL_PROTOCOL(usteps);
  6952. SERIAL_PROTOCOLPGM(", ");
  6953. SERIAL_PROTOCOL(mm * 1000);
  6954. SERIAL_PROTOCOLLN("");
  6955. }
  6956. }
  6957. else if (code_seen('!')) { // ! - Set factory default values
  6958. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6959. int16_t z_shift = 8; //40C - 20um - 8usteps
  6960. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6961. z_shift = 24; //45C - 60um - 24usteps
  6962. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6963. z_shift = 48; //50C - 120um - 48usteps
  6964. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6965. z_shift = 80; //55C - 200um - 80usteps
  6966. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6967. z_shift = 120; //60C - 300um - 120usteps
  6968. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6969. SERIAL_PROTOCOLLN("factory restored");
  6970. }
  6971. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6972. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6973. int16_t z_shift = 0;
  6974. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6975. SERIAL_PROTOCOLLN("zerorized");
  6976. }
  6977. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6978. int16_t usteps = code_value();
  6979. if (code_seen('I')) {
  6980. uint8_t index = code_value();
  6981. if (index < 5) {
  6982. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6983. SERIAL_PROTOCOLLN("OK");
  6984. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6985. for (uint8_t i = 0; i < 6; i++)
  6986. {
  6987. usteps = 0;
  6988. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6989. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6990. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6991. SERIAL_PROTOCOLPGM(", ");
  6992. SERIAL_PROTOCOL(35 + (i * 5));
  6993. SERIAL_PROTOCOLPGM(", ");
  6994. SERIAL_PROTOCOL(usteps);
  6995. SERIAL_PROTOCOLPGM(", ");
  6996. SERIAL_PROTOCOL(mm * 1000);
  6997. SERIAL_PROTOCOLLN("");
  6998. }
  6999. }
  7000. }
  7001. }
  7002. else {
  7003. SERIAL_PROTOCOLPGM("no valid command");
  7004. }
  7005. break;
  7006. #endif //PINDA_THERMISTOR
  7007. /*!
  7008. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7009. Checks the parameters of the printer and gcode and performs compatibility check
  7010. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7011. - M862.2 { P<model_code> | Q }
  7012. - M862.3 { P"<model_name>" | Q }
  7013. - M862.4 { P<fw_version> | Q }
  7014. - M862.5 { P<gcode_level> | Q }
  7015. When run with P<> argument, the check is performed against the input value.
  7016. When run with Q argument, the current value is shown.
  7017. M862.3 accepts text identifiers of printer types too.
  7018. The syntax of M862.3 is (note the quotes around the type):
  7019. M862.3 P "MK3S"
  7020. Accepted printer type identifiers and their numeric counterparts:
  7021. - MK1 (100)
  7022. - MK2 (200)
  7023. - MK2MM (201)
  7024. - MK2S (202)
  7025. - MK2SMM (203)
  7026. - MK2.5 (250)
  7027. - MK2.5MMU2 (20250)
  7028. - MK2.5S (252)
  7029. - MK2.5SMMU2S (20252)
  7030. - MK3 (300)
  7031. - MK3MMU2 (20300)
  7032. - MK3S (302)
  7033. - MK3SMMU2S (20302)
  7034. */
  7035. case 862: // M862: print checking
  7036. float nDummy;
  7037. uint8_t nCommand;
  7038. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7039. switch((ClPrintChecking)nCommand)
  7040. {
  7041. case ClPrintChecking::_Nozzle: // ~ .1
  7042. uint16_t nDiameter;
  7043. if(code_seen('P'))
  7044. {
  7045. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7046. nozzle_diameter_check(nDiameter);
  7047. }
  7048. /*
  7049. else if(code_seen('S')&&farm_mode)
  7050. {
  7051. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7052. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7053. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7054. }
  7055. */
  7056. else if(code_seen('Q'))
  7057. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7058. break;
  7059. case ClPrintChecking::_Model: // ~ .2
  7060. if(code_seen('P'))
  7061. {
  7062. uint16_t nPrinterModel;
  7063. nPrinterModel=(uint16_t)code_value_long();
  7064. printer_model_check(nPrinterModel);
  7065. }
  7066. else if(code_seen('Q'))
  7067. SERIAL_PROTOCOLLN(nPrinterType);
  7068. break;
  7069. case ClPrintChecking::_Smodel: // ~ .3
  7070. if(code_seen('P'))
  7071. printer_smodel_check(strchr_pointer);
  7072. else if(code_seen('Q'))
  7073. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7074. break;
  7075. case ClPrintChecking::_Version: // ~ .4
  7076. if(code_seen('P'))
  7077. fw_version_check(++strchr_pointer);
  7078. else if(code_seen('Q'))
  7079. SERIAL_PROTOCOLLN(FW_VERSION);
  7080. break;
  7081. case ClPrintChecking::_Gcode: // ~ .5
  7082. if(code_seen('P'))
  7083. {
  7084. uint16_t nGcodeLevel;
  7085. nGcodeLevel=(uint16_t)code_value_long();
  7086. gcode_level_check(nGcodeLevel);
  7087. }
  7088. else if(code_seen('Q'))
  7089. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7090. break;
  7091. }
  7092. break;
  7093. #ifdef LIN_ADVANCE
  7094. /*!
  7095. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7096. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7097. #### Usage
  7098. M900 [ K | R | W | H | D]
  7099. #### Parameters
  7100. - `K` - Advance K factor
  7101. - `R` - Set ratio directly (overrides WH/D)
  7102. - `W` - Width
  7103. - `H` - Height
  7104. - `D` - Diameter Set ratio from WH/D
  7105. */
  7106. case 900:
  7107. gcode_M900();
  7108. break;
  7109. #endif
  7110. /*!
  7111. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7112. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7113. #### Usage
  7114. M907 [ X | Y | Z | E | B | S ]
  7115. #### Parameters
  7116. - `X` - X motor driver
  7117. - `Y` - Y motor driver
  7118. - `Z` - Z motor driver
  7119. - `E` - Extruder motor driver
  7120. - `B` - Second Extruder motor driver
  7121. - `S` - All motors
  7122. */
  7123. case 907:
  7124. {
  7125. #ifdef TMC2130
  7126. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7127. for (int i = 0; i < NUM_AXIS; i++)
  7128. if(code_seen(axis_codes[i]))
  7129. {
  7130. long cur_mA = code_value_long();
  7131. uint8_t val = tmc2130_cur2val(cur_mA);
  7132. tmc2130_set_current_h(i, val);
  7133. tmc2130_set_current_r(i, val);
  7134. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7135. }
  7136. #else //TMC2130
  7137. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7138. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7139. if(code_seen('B')) st_current_set(4,code_value());
  7140. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7141. #endif
  7142. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7143. if(code_seen('X')) st_current_set(0, code_value());
  7144. #endif
  7145. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7146. if(code_seen('Z')) st_current_set(1, code_value());
  7147. #endif
  7148. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7149. if(code_seen('E')) st_current_set(2, code_value());
  7150. #endif
  7151. #endif //TMC2130
  7152. }
  7153. break;
  7154. /*!
  7155. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7156. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7157. #### Usage
  7158. M908 [ P | S ]
  7159. #### Parameters
  7160. - `P` - channel
  7161. - `S` - current
  7162. */
  7163. case 908:
  7164. {
  7165. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7166. uint8_t channel,current;
  7167. if(code_seen('P')) channel=code_value();
  7168. if(code_seen('S')) current=code_value();
  7169. digitalPotWrite(channel, current);
  7170. #endif
  7171. }
  7172. break;
  7173. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7174. /*!
  7175. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7176. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7177. */
  7178. case 910:
  7179. {
  7180. tmc2130_init();
  7181. }
  7182. break;
  7183. /*!
  7184. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7185. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7186. #### Usage
  7187. M911 [ X | Y | Z | E ]
  7188. #### Parameters
  7189. - `X` - X stepper driver holding current value
  7190. - `Y` - Y stepper driver holding current value
  7191. - `Z` - Z stepper driver holding current value
  7192. - `E` - Extruder stepper driver holding current value
  7193. */
  7194. case 911:
  7195. {
  7196. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7197. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7198. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7199. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7200. }
  7201. break;
  7202. /*!
  7203. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7204. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7205. #### Usage
  7206. M912 [ X | Y | Z | E ]
  7207. #### Parameters
  7208. - `X` - X stepper driver running current value
  7209. - `Y` - Y stepper driver running current value
  7210. - `Z` - Z stepper driver running current value
  7211. - `E` - Extruder stepper driver running current value
  7212. */
  7213. case 912:
  7214. {
  7215. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7216. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7217. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7218. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7219. }
  7220. break;
  7221. /*!
  7222. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7223. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7224. Shows TMC2130 currents.
  7225. */
  7226. case 913:
  7227. {
  7228. tmc2130_print_currents();
  7229. }
  7230. break;
  7231. /*!
  7232. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7233. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7234. */
  7235. case 914:
  7236. {
  7237. tmc2130_mode = TMC2130_MODE_NORMAL;
  7238. update_mode_profile();
  7239. tmc2130_init();
  7240. }
  7241. break;
  7242. /*!
  7243. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7244. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7245. */
  7246. case 915:
  7247. {
  7248. tmc2130_mode = TMC2130_MODE_SILENT;
  7249. update_mode_profile();
  7250. tmc2130_init();
  7251. }
  7252. break;
  7253. /*!
  7254. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7255. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7256. #### Usage
  7257. M916 [ X | Y | Z | E ]
  7258. #### Parameters
  7259. - `X` - X stepper driver stallguard sensitivity threshold value
  7260. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7261. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7262. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7263. */
  7264. case 916:
  7265. {
  7266. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7267. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7268. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7269. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7270. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7271. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7272. }
  7273. break;
  7274. /*!
  7275. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7276. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7277. #### Usage
  7278. M917 [ X | Y | Z | E ]
  7279. #### Parameters
  7280. - `X` - X stepper driver PWM amplitude offset value
  7281. - `Y` - Y stepper driver PWM amplitude offset value
  7282. - `Z` - Z stepper driver PWM amplitude offset value
  7283. - `E` - Extruder stepper driver PWM amplitude offset value
  7284. */
  7285. case 917:
  7286. {
  7287. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7288. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7289. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7290. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7291. }
  7292. break;
  7293. /*!
  7294. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7295. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7296. #### Usage
  7297. M918 [ X | Y | Z | E ]
  7298. #### Parameters
  7299. - `X` - X stepper driver PWM amplitude gradient value
  7300. - `Y` - Y stepper driver PWM amplitude gradient value
  7301. - `Z` - Z stepper driver PWM amplitude gradient value
  7302. - `E` - Extruder stepper driver PWM amplitude gradient value
  7303. */
  7304. case 918:
  7305. {
  7306. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7307. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7308. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7309. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7310. }
  7311. break;
  7312. #endif //TMC2130_SERVICE_CODES_M910_M918
  7313. /*!
  7314. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7315. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7316. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7317. #### Usage
  7318. M350 [ X | Y | Z | E | B | S ]
  7319. #### Parameters
  7320. - `X` - X new resolution
  7321. - `Y` - Y new resolution
  7322. - `Z` - Z new resolution
  7323. - `E` - E new resolution
  7324. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7325. - `B` - Second extruder new resolution
  7326. - `S` - All axes new resolution
  7327. */
  7328. case 350:
  7329. {
  7330. #ifdef TMC2130
  7331. for (int i=0; i<NUM_AXIS; i++)
  7332. {
  7333. if(code_seen(axis_codes[i]))
  7334. {
  7335. uint16_t res_new = code_value();
  7336. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7337. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7338. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7339. if (res_valid)
  7340. {
  7341. st_synchronize();
  7342. uint16_t res = tmc2130_get_res(i);
  7343. tmc2130_set_res(i, res_new);
  7344. cs.axis_ustep_resolution[i] = res_new;
  7345. if (res_new > res)
  7346. {
  7347. uint16_t fac = (res_new / res);
  7348. cs.axis_steps_per_unit[i] *= fac;
  7349. position[i] *= fac;
  7350. }
  7351. else
  7352. {
  7353. uint16_t fac = (res / res_new);
  7354. cs.axis_steps_per_unit[i] /= fac;
  7355. position[i] /= fac;
  7356. }
  7357. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7358. if (i == E_AXIS)
  7359. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7360. #endif
  7361. }
  7362. }
  7363. }
  7364. #else //TMC2130
  7365. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7366. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7367. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7368. if(code_seen('B')) microstep_mode(4,code_value());
  7369. microstep_readings();
  7370. #endif
  7371. #endif //TMC2130
  7372. }
  7373. break;
  7374. /*!
  7375. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7376. Toggle MS1 MS2 pins directly.
  7377. #### Usage
  7378. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7379. #### Parameters
  7380. - `X` - Update X axis
  7381. - `Y` - Update Y axis
  7382. - `Z` - Update Z axis
  7383. - `E` - Update E axis
  7384. - `S` - which MSx pin to toggle
  7385. - `B` - new pin value
  7386. */
  7387. case 351:
  7388. {
  7389. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7390. if(code_seen('S')) switch((int)code_value())
  7391. {
  7392. case 1:
  7393. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7394. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7395. break;
  7396. case 2:
  7397. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7398. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7399. break;
  7400. }
  7401. microstep_readings();
  7402. #endif
  7403. }
  7404. break;
  7405. /*!
  7406. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7407. */
  7408. case 701:
  7409. {
  7410. if (mmu_enabled && code_seen('E'))
  7411. tmp_extruder = code_value();
  7412. gcode_M701();
  7413. }
  7414. break;
  7415. /*!
  7416. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7417. #### Usage
  7418. M702 [ U | C ]
  7419. #### Parameters
  7420. - `U` - Unload all filaments used in current print
  7421. - `C` - Unload just current filament
  7422. - without any parameters unload all filaments
  7423. */
  7424. case 702:
  7425. {
  7426. #ifdef SNMM
  7427. if (code_seen('U'))
  7428. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7429. else if (code_seen('C'))
  7430. extr_unload(); //! if "C" unload just current filament
  7431. else
  7432. extr_unload_all(); //! otherwise unload all filaments
  7433. #else
  7434. if (code_seen('C')) {
  7435. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7436. }
  7437. else {
  7438. if(mmu_enabled) extr_unload(); //! unload current filament
  7439. else unload_filament();
  7440. }
  7441. #endif //SNMM
  7442. }
  7443. break;
  7444. /*!
  7445. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7446. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7447. */
  7448. case 999:
  7449. Stopped = false;
  7450. lcd_reset_alert_level();
  7451. gcode_LastN = Stopped_gcode_LastN;
  7452. FlushSerialRequestResend();
  7453. break;
  7454. /*!
  7455. #### End of M-Commands
  7456. */
  7457. default:
  7458. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7459. }
  7460. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7461. mcode_in_progress = 0;
  7462. }
  7463. }
  7464. // end if(code_seen('M')) (end of M codes)
  7465. /*!
  7466. -----------------------------------------------------------------------------------------
  7467. # T Codes
  7468. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7469. #### For MMU_V2:
  7470. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7471. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7472. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7473. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7474. */
  7475. else if(code_seen('T'))
  7476. {
  7477. int index;
  7478. bool load_to_nozzle = false;
  7479. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7480. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7481. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7482. SERIAL_ECHOLNPGM("Invalid T code.");
  7483. }
  7484. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7485. if (mmu_enabled)
  7486. {
  7487. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7488. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7489. {
  7490. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7491. }
  7492. else
  7493. {
  7494. st_synchronize();
  7495. mmu_command(MmuCmd::T0 + tmp_extruder);
  7496. manage_response(true, true, MMU_TCODE_MOVE);
  7497. }
  7498. }
  7499. }
  7500. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7501. if (mmu_enabled)
  7502. {
  7503. st_synchronize();
  7504. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7505. mmu_extruder = tmp_extruder; //filament change is finished
  7506. mmu_load_to_nozzle();
  7507. }
  7508. }
  7509. else {
  7510. if (*(strchr_pointer + index) == '?')
  7511. {
  7512. if(mmu_enabled)
  7513. {
  7514. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7515. load_to_nozzle = true;
  7516. } else
  7517. {
  7518. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7519. }
  7520. }
  7521. else {
  7522. tmp_extruder = code_value();
  7523. if (mmu_enabled && lcd_autoDepleteEnabled())
  7524. {
  7525. tmp_extruder = ad_getAlternative(tmp_extruder);
  7526. }
  7527. }
  7528. st_synchronize();
  7529. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7530. if (mmu_enabled)
  7531. {
  7532. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7533. {
  7534. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7535. }
  7536. else
  7537. {
  7538. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7539. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7540. {
  7541. mmu_command(MmuCmd::K0 + tmp_extruder);
  7542. manage_response(true, true, MMU_UNLOAD_MOVE);
  7543. }
  7544. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7545. mmu_command(MmuCmd::T0 + tmp_extruder);
  7546. manage_response(true, true, MMU_TCODE_MOVE);
  7547. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7548. mmu_extruder = tmp_extruder; //filament change is finished
  7549. if (load_to_nozzle)// for single material usage with mmu
  7550. {
  7551. mmu_load_to_nozzle();
  7552. }
  7553. }
  7554. }
  7555. else
  7556. {
  7557. #ifdef SNMM
  7558. mmu_extruder = tmp_extruder;
  7559. _delay(100);
  7560. disable_e0();
  7561. disable_e1();
  7562. disable_e2();
  7563. pinMode(E_MUX0_PIN, OUTPUT);
  7564. pinMode(E_MUX1_PIN, OUTPUT);
  7565. _delay(100);
  7566. SERIAL_ECHO_START;
  7567. SERIAL_ECHO("T:");
  7568. SERIAL_ECHOLN((int)tmp_extruder);
  7569. switch (tmp_extruder) {
  7570. case 1:
  7571. WRITE(E_MUX0_PIN, HIGH);
  7572. WRITE(E_MUX1_PIN, LOW);
  7573. break;
  7574. case 2:
  7575. WRITE(E_MUX0_PIN, LOW);
  7576. WRITE(E_MUX1_PIN, HIGH);
  7577. break;
  7578. case 3:
  7579. WRITE(E_MUX0_PIN, HIGH);
  7580. WRITE(E_MUX1_PIN, HIGH);
  7581. break;
  7582. default:
  7583. WRITE(E_MUX0_PIN, LOW);
  7584. WRITE(E_MUX1_PIN, LOW);
  7585. break;
  7586. }
  7587. _delay(100);
  7588. #else //SNMM
  7589. if (tmp_extruder >= EXTRUDERS) {
  7590. SERIAL_ECHO_START;
  7591. SERIAL_ECHO('T');
  7592. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7593. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7594. }
  7595. else {
  7596. #if EXTRUDERS > 1
  7597. boolean make_move = false;
  7598. #endif
  7599. if (code_seen('F')) {
  7600. #if EXTRUDERS > 1
  7601. make_move = true;
  7602. #endif
  7603. next_feedrate = code_value();
  7604. if (next_feedrate > 0.0) {
  7605. feedrate = next_feedrate;
  7606. }
  7607. }
  7608. #if EXTRUDERS > 1
  7609. if (tmp_extruder != active_extruder) {
  7610. // Save current position to return to after applying extruder offset
  7611. memcpy(destination, current_position, sizeof(destination));
  7612. // Offset extruder (only by XY)
  7613. int i;
  7614. for (i = 0; i < 2; i++) {
  7615. current_position[i] = current_position[i] -
  7616. extruder_offset[i][active_extruder] +
  7617. extruder_offset[i][tmp_extruder];
  7618. }
  7619. // Set the new active extruder and position
  7620. active_extruder = tmp_extruder;
  7621. plan_set_position_curposXYZE();
  7622. // Move to the old position if 'F' was in the parameters
  7623. if (make_move && Stopped == false) {
  7624. prepare_move();
  7625. }
  7626. }
  7627. #endif
  7628. SERIAL_ECHO_START;
  7629. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7630. SERIAL_PROTOCOLLN((int)active_extruder);
  7631. }
  7632. #endif //SNMM
  7633. }
  7634. }
  7635. } // end if(code_seen('T')) (end of T codes)
  7636. /*!
  7637. #### End of T-Codes
  7638. */
  7639. /**
  7640. *---------------------------------------------------------------------------------
  7641. *# D codes
  7642. */
  7643. else if (code_seen('D')) // D codes (debug)
  7644. {
  7645. switch((int)code_value())
  7646. {
  7647. /*!
  7648. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7649. */
  7650. case -1:
  7651. dcode__1(); break;
  7652. #ifdef DEBUG_DCODES
  7653. /*!
  7654. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7655. #### Usage
  7656. D0 [ B ]
  7657. #### Parameters
  7658. - `B` - Bootloader
  7659. */
  7660. case 0:
  7661. dcode_0(); break;
  7662. /*!
  7663. *
  7664. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7665. D1
  7666. *
  7667. */
  7668. case 1:
  7669. dcode_1(); break;
  7670. /*!
  7671. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7672. This command can be used without any additional parameters. It will read the entire RAM.
  7673. #### Usage
  7674. D2 [ A | C | X ]
  7675. #### Parameters
  7676. - `A` - Address (x0000-x1fff)
  7677. - `C` - Count (1-8192)
  7678. - `X` - Data
  7679. #### Notes
  7680. - The hex address needs to be lowercase without the 0 before the x
  7681. - Count is decimal
  7682. - The hex data needs to be lowercase
  7683. */
  7684. case 2:
  7685. dcode_2(); break;
  7686. #endif //DEBUG_DCODES
  7687. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7688. /*!
  7689. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7690. This command can be used without any additional parameters. It will read the entire eeprom.
  7691. #### Usage
  7692. D3 [ A | C | X ]
  7693. #### Parameters
  7694. - `A` - Address (x0000-x0fff)
  7695. - `C` - Count (1-4096)
  7696. - `X` - Data (hex)
  7697. #### Notes
  7698. - The hex address needs to be lowercase without the 0 before the x
  7699. - Count is decimal
  7700. - The hex data needs to be lowercase
  7701. */
  7702. case 3:
  7703. dcode_3(); break;
  7704. #endif //DEBUG_DCODE3
  7705. #ifdef DEBUG_DCODES
  7706. /*!
  7707. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7708. To read the digital value of a pin you need only to define the pin number.
  7709. #### Usage
  7710. D4 [ P | F | V ]
  7711. #### Parameters
  7712. - `P` - Pin (0-255)
  7713. - `F` - Function in/out (0/1)
  7714. - `V` - Value (0/1)
  7715. */
  7716. case 4:
  7717. dcode_4(); break;
  7718. #endif //DEBUG_DCODES
  7719. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7720. /*!
  7721. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7722. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7723. #### Usage
  7724. D5 [ A | C | X | E ]
  7725. #### Parameters
  7726. - `A` - Address (x00000-x3ffff)
  7727. - `C` - Count (1-8192)
  7728. - `X` - Data (hex)
  7729. - `E` - Erase
  7730. #### Notes
  7731. - The hex address needs to be lowercase without the 0 before the x
  7732. - Count is decimal
  7733. - The hex data needs to be lowercase
  7734. */
  7735. case 5:
  7736. dcode_5(); break;
  7737. #endif //DEBUG_DCODE5
  7738. #ifdef DEBUG_DCODES
  7739. /*!
  7740. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7741. Reserved
  7742. */
  7743. case 6:
  7744. dcode_6(); break;
  7745. /*!
  7746. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7747. Reserved
  7748. */
  7749. case 7:
  7750. dcode_7(); break;
  7751. /*!
  7752. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7753. #### Usage
  7754. D8 [ ? | ! | P | Z ]
  7755. #### Parameters
  7756. - `?` - Read PINDA temperature shift values
  7757. - `!` - Reset PINDA temperature shift values to default
  7758. - `P` - Pinda temperature [C]
  7759. - `Z` - Z Offset [mm]
  7760. */
  7761. case 8:
  7762. dcode_8(); break;
  7763. /*!
  7764. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7765. #### Usage
  7766. D9 [ I | V ]
  7767. #### Parameters
  7768. - `I` - ADC channel index
  7769. - `0` - Heater 0 temperature
  7770. - `1` - Heater 1 temperature
  7771. - `2` - Bed temperature
  7772. - `3` - PINDA temperature
  7773. - `4` - PWR voltage
  7774. - `5` - Ambient temperature
  7775. - `6` - BED voltage
  7776. - `V` Value to be written as simulated
  7777. */
  7778. case 9:
  7779. dcode_9(); break;
  7780. /*!
  7781. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7782. */
  7783. case 10:
  7784. dcode_10(); break;
  7785. /*!
  7786. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7787. Writes the current time in the log file.
  7788. */
  7789. #endif //DEBUG_DCODES
  7790. #ifdef HEATBED_ANALYSIS
  7791. /*!
  7792. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7793. This command will log data to SD card file "mesh.txt".
  7794. #### Usage
  7795. D80 [ E | F | G | H | I | J ]
  7796. #### Parameters
  7797. - `E` - Dimension X (default 40)
  7798. - `F` - Dimention Y (default 40)
  7799. - `G` - Points X (default 40)
  7800. - `H` - Points Y (default 40)
  7801. - `I` - Offset X (default 74)
  7802. - `J` - Offset Y (default 34)
  7803. */
  7804. case 80:
  7805. dcode_80(); break;
  7806. /*!
  7807. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7808. This command will log data to SD card file "wldsd.txt".
  7809. #### Usage
  7810. D81 [ E | F | G | H | I | J ]
  7811. #### Parameters
  7812. - `E` - Dimension X (default 40)
  7813. - `F` - Dimention Y (default 40)
  7814. - `G` - Points X (default 40)
  7815. - `H` - Points Y (default 40)
  7816. - `I` - Offset X (default 74)
  7817. - `J` - Offset Y (default 34)
  7818. */
  7819. case 81:
  7820. dcode_81(); break;
  7821. #endif //HEATBED_ANALYSIS
  7822. #ifdef DEBUG_DCODES
  7823. /*!
  7824. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7825. */
  7826. case 106:
  7827. dcode_106(); break;
  7828. #ifdef TMC2130
  7829. /*!
  7830. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7831. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7832. #### Usage
  7833. D2130 [ Axis | Command | Subcommand | Value ]
  7834. #### Parameters
  7835. - Axis
  7836. - `X` - X stepper driver
  7837. - `Y` - Y stepper driver
  7838. - `Z` - Z stepper driver
  7839. - `E` - Extruder stepper driver
  7840. - Commands
  7841. - `0` - Current off
  7842. - `1` - Current on
  7843. - `+` - Single step
  7844. - `-` - Single step oposite direction
  7845. - `NNN` - Value sereval steps
  7846. - `?` - Read register
  7847. - Subcommands for read register
  7848. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7849. - `step` - Step
  7850. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7851. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7852. - `wave` - Microstep linearity compensation curve
  7853. - `!` - Set register
  7854. - Subcommands for set register
  7855. - `mres` - Micro step resolution
  7856. - `step` - Step
  7857. - `wave` - Microstep linearity compensation curve
  7858. - Values for set register
  7859. - `0, 180 --> 250` - Off
  7860. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7861. - `@` - Home calibrate axis
  7862. Examples:
  7863. D2130E?wave
  7864. Print extruder microstep linearity compensation curve
  7865. D2130E!wave0
  7866. Disable extruder linearity compensation curve, (sine curve is used)
  7867. D2130E!wave220
  7868. (sin(x))^1.1 extruder microstep compensation curve used
  7869. Notes:
  7870. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7871. *
  7872. */
  7873. case 2130:
  7874. dcode_2130(); break;
  7875. #endif //TMC2130
  7876. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7877. /*!
  7878. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7879. #### Usage
  7880. D9125 [ ? | ! | R | X | Y | L ]
  7881. #### Parameters
  7882. - `?` - Print values
  7883. - `!` - Print values
  7884. - `R` - Resolution. Not active in code
  7885. - `X` - X values
  7886. - `Y` - Y values
  7887. - `L` - Activate filament sensor log
  7888. */
  7889. case 9125:
  7890. dcode_9125(); break;
  7891. #endif //FILAMENT_SENSOR
  7892. #endif //DEBUG_DCODES
  7893. }
  7894. }
  7895. else
  7896. {
  7897. SERIAL_ECHO_START;
  7898. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7899. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7900. SERIAL_ECHOLNPGM("\"(2)");
  7901. }
  7902. KEEPALIVE_STATE(NOT_BUSY);
  7903. ClearToSend();
  7904. }
  7905. /*!
  7906. #### End of D-Codes
  7907. */
  7908. /** @defgroup GCodes G-Code List
  7909. */
  7910. // ---------------------------------------------------
  7911. void FlushSerialRequestResend()
  7912. {
  7913. //char cmdbuffer[bufindr][100]="Resend:";
  7914. MYSERIAL.flush();
  7915. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7916. }
  7917. // Confirm the execution of a command, if sent from a serial line.
  7918. // Execution of a command from a SD card will not be confirmed.
  7919. void ClearToSend()
  7920. {
  7921. previous_millis_cmd = _millis();
  7922. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7923. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7924. }
  7925. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7926. void update_currents() {
  7927. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7928. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7929. float tmp_motor[3];
  7930. //SERIAL_ECHOLNPGM("Currents updated: ");
  7931. if (destination[Z_AXIS] < Z_SILENT) {
  7932. //SERIAL_ECHOLNPGM("LOW");
  7933. for (uint8_t i = 0; i < 3; i++) {
  7934. st_current_set(i, current_low[i]);
  7935. /*MYSERIAL.print(int(i));
  7936. SERIAL_ECHOPGM(": ");
  7937. MYSERIAL.println(current_low[i]);*/
  7938. }
  7939. }
  7940. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7941. //SERIAL_ECHOLNPGM("HIGH");
  7942. for (uint8_t i = 0; i < 3; i++) {
  7943. st_current_set(i, current_high[i]);
  7944. /*MYSERIAL.print(int(i));
  7945. SERIAL_ECHOPGM(": ");
  7946. MYSERIAL.println(current_high[i]);*/
  7947. }
  7948. }
  7949. else {
  7950. for (uint8_t i = 0; i < 3; i++) {
  7951. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7952. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7953. st_current_set(i, tmp_motor[i]);
  7954. /*MYSERIAL.print(int(i));
  7955. SERIAL_ECHOPGM(": ");
  7956. MYSERIAL.println(tmp_motor[i]);*/
  7957. }
  7958. }
  7959. }
  7960. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7961. void get_coordinates()
  7962. {
  7963. bool seen[4]={false,false,false,false};
  7964. for(int8_t i=0; i < NUM_AXIS; i++) {
  7965. if(code_seen(axis_codes[i]))
  7966. {
  7967. bool relative = axis_relative_modes & (1 << i);
  7968. destination[i] = (float)code_value();
  7969. if (i == E_AXIS) {
  7970. float emult = extruder_multiplier[active_extruder];
  7971. if (emult != 1.) {
  7972. if (! relative) {
  7973. destination[i] -= current_position[i];
  7974. relative = true;
  7975. }
  7976. destination[i] *= emult;
  7977. }
  7978. }
  7979. if (relative)
  7980. destination[i] += current_position[i];
  7981. seen[i]=true;
  7982. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7983. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7984. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7985. }
  7986. else destination[i] = current_position[i]; //Are these else lines really needed?
  7987. }
  7988. if(code_seen('F')) {
  7989. next_feedrate = code_value();
  7990. #ifdef MAX_SILENT_FEEDRATE
  7991. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7992. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7993. #endif //MAX_SILENT_FEEDRATE
  7994. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7995. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7996. {
  7997. // float e_max_speed =
  7998. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7999. }
  8000. }
  8001. }
  8002. void get_arc_coordinates()
  8003. {
  8004. #ifdef SF_ARC_FIX
  8005. bool relative_mode_backup = relative_mode;
  8006. relative_mode = true;
  8007. #endif
  8008. get_coordinates();
  8009. #ifdef SF_ARC_FIX
  8010. relative_mode=relative_mode_backup;
  8011. #endif
  8012. if(code_seen('I')) {
  8013. offset[0] = code_value();
  8014. }
  8015. else {
  8016. offset[0] = 0.0;
  8017. }
  8018. if(code_seen('J')) {
  8019. offset[1] = code_value();
  8020. }
  8021. else {
  8022. offset[1] = 0.0;
  8023. }
  8024. }
  8025. void clamp_to_software_endstops(float target[3])
  8026. {
  8027. #ifdef DEBUG_DISABLE_SWLIMITS
  8028. return;
  8029. #endif //DEBUG_DISABLE_SWLIMITS
  8030. world2machine_clamp(target[0], target[1]);
  8031. // Clamp the Z coordinate.
  8032. if (min_software_endstops) {
  8033. float negative_z_offset = 0;
  8034. #ifdef ENABLE_AUTO_BED_LEVELING
  8035. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8036. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8037. #endif
  8038. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8039. }
  8040. if (max_software_endstops) {
  8041. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8042. }
  8043. }
  8044. #ifdef MESH_BED_LEVELING
  8045. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8046. float dx = x - current_position[X_AXIS];
  8047. float dy = y - current_position[Y_AXIS];
  8048. int n_segments = 0;
  8049. if (mbl.active) {
  8050. float len = abs(dx) + abs(dy);
  8051. if (len > 0)
  8052. // Split to 3cm segments or shorter.
  8053. n_segments = int(ceil(len / 30.f));
  8054. }
  8055. if (n_segments > 1) {
  8056. // In a multi-segment move explicitly set the final target in the plan
  8057. // as the move will be recalculated in it's entirety
  8058. float gcode_target[NUM_AXIS];
  8059. gcode_target[X_AXIS] = x;
  8060. gcode_target[Y_AXIS] = y;
  8061. gcode_target[Z_AXIS] = z;
  8062. gcode_target[E_AXIS] = e;
  8063. float dz = z - current_position[Z_AXIS];
  8064. float de = e - current_position[E_AXIS];
  8065. for (int i = 1; i < n_segments; ++ i) {
  8066. float t = float(i) / float(n_segments);
  8067. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8068. current_position[Y_AXIS] + t * dy,
  8069. current_position[Z_AXIS] + t * dz,
  8070. current_position[E_AXIS] + t * de,
  8071. feed_rate, extruder, gcode_target);
  8072. if (waiting_inside_plan_buffer_line_print_aborted)
  8073. return;
  8074. }
  8075. }
  8076. // The rest of the path.
  8077. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8078. }
  8079. #endif // MESH_BED_LEVELING
  8080. void prepare_move()
  8081. {
  8082. clamp_to_software_endstops(destination);
  8083. previous_millis_cmd = _millis();
  8084. // Do not use feedmultiply for E or Z only moves
  8085. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8086. plan_buffer_line_destinationXYZE(feedrate/60);
  8087. }
  8088. else {
  8089. #ifdef MESH_BED_LEVELING
  8090. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8091. #else
  8092. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8093. #endif
  8094. }
  8095. set_current_to_destination();
  8096. }
  8097. void prepare_arc_move(char isclockwise) {
  8098. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8099. // Trace the arc
  8100. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8101. // As far as the parser is concerned, the position is now == target. In reality the
  8102. // motion control system might still be processing the action and the real tool position
  8103. // in any intermediate location.
  8104. for(int8_t i=0; i < NUM_AXIS; i++) {
  8105. current_position[i] = destination[i];
  8106. }
  8107. previous_millis_cmd = _millis();
  8108. }
  8109. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8110. #if defined(FAN_PIN)
  8111. #if CONTROLLERFAN_PIN == FAN_PIN
  8112. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8113. #endif
  8114. #endif
  8115. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8116. unsigned long lastMotorCheck = 0;
  8117. void controllerFan()
  8118. {
  8119. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8120. {
  8121. lastMotorCheck = _millis();
  8122. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8123. #if EXTRUDERS > 2
  8124. || !READ(E2_ENABLE_PIN)
  8125. #endif
  8126. #if EXTRUDER > 1
  8127. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8128. || !READ(X2_ENABLE_PIN)
  8129. #endif
  8130. || !READ(E1_ENABLE_PIN)
  8131. #endif
  8132. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8133. {
  8134. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8135. }
  8136. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8137. {
  8138. digitalWrite(CONTROLLERFAN_PIN, 0);
  8139. analogWrite(CONTROLLERFAN_PIN, 0);
  8140. }
  8141. else
  8142. {
  8143. // allows digital or PWM fan output to be used (see M42 handling)
  8144. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8145. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8146. }
  8147. }
  8148. }
  8149. #endif
  8150. #ifdef TEMP_STAT_LEDS
  8151. static bool blue_led = false;
  8152. static bool red_led = false;
  8153. static uint32_t stat_update = 0;
  8154. void handle_status_leds(void) {
  8155. float max_temp = 0.0;
  8156. if(_millis() > stat_update) {
  8157. stat_update += 500; // Update every 0.5s
  8158. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8159. max_temp = max(max_temp, degHotend(cur_extruder));
  8160. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8161. }
  8162. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8163. max_temp = max(max_temp, degTargetBed());
  8164. max_temp = max(max_temp, degBed());
  8165. #endif
  8166. if((max_temp > 55.0) && (red_led == false)) {
  8167. digitalWrite(STAT_LED_RED, 1);
  8168. digitalWrite(STAT_LED_BLUE, 0);
  8169. red_led = true;
  8170. blue_led = false;
  8171. }
  8172. if((max_temp < 54.0) && (blue_led == false)) {
  8173. digitalWrite(STAT_LED_RED, 0);
  8174. digitalWrite(STAT_LED_BLUE, 1);
  8175. red_led = false;
  8176. blue_led = true;
  8177. }
  8178. }
  8179. }
  8180. #endif
  8181. #ifdef SAFETYTIMER
  8182. /**
  8183. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8184. *
  8185. * Full screen blocking notification message is shown after heater turning off.
  8186. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8187. * damage print.
  8188. *
  8189. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8190. */
  8191. static void handleSafetyTimer()
  8192. {
  8193. #if (EXTRUDERS > 1)
  8194. #error Implemented only for one extruder.
  8195. #endif //(EXTRUDERS > 1)
  8196. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8197. {
  8198. safetyTimer.stop();
  8199. }
  8200. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8201. {
  8202. safetyTimer.start();
  8203. }
  8204. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8205. {
  8206. setTargetBed(0);
  8207. setAllTargetHotends(0);
  8208. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8209. }
  8210. }
  8211. #endif //SAFETYTIMER
  8212. #ifdef IR_SENSOR_ANALOG
  8213. #define FS_CHECK_COUNT 16
  8214. /// Switching mechanism of the fsensor type.
  8215. /// Called from 2 spots which have a very similar behavior
  8216. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8217. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8218. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8219. bool bTemp = (!CHECK_ALL_HEATERS);
  8220. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8221. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8222. bTemp = bTemp && fsensor_enabled;
  8223. if (bTemp) {
  8224. nFSCheckCount++;
  8225. if (nFSCheckCount > FS_CHECK_COUNT) {
  8226. nFSCheckCount = 0; // not necessary
  8227. oFsensorPCB = switchTo;
  8228. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8229. printf_IRSensorAnalogBoardChange();
  8230. lcd_setstatuspgm(statusLineTxt_P);
  8231. }
  8232. } else {
  8233. nFSCheckCount = 0;
  8234. }
  8235. }
  8236. #endif
  8237. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8238. {
  8239. #ifdef FILAMENT_SENSOR
  8240. bool bInhibitFlag;
  8241. #ifdef IR_SENSOR_ANALOG
  8242. static uint16_t nFSCheckCount=0;
  8243. #endif // IR_SENSOR_ANALOG
  8244. if (mmu_enabled == false)
  8245. {
  8246. //-// if (mcode_in_progress != 600) //M600 not in progress
  8247. #ifdef PAT9125
  8248. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8249. #endif // PAT9125
  8250. #ifdef IR_SENSOR
  8251. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8252. #ifdef IR_SENSOR_ANALOG
  8253. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Settings::HWsetup::FSdetect menu active
  8254. #endif // IR_SENSOR_ANALOG
  8255. #endif // IR_SENSOR
  8256. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8257. {
  8258. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8259. {
  8260. #ifdef IR_SENSOR_ANALOG
  8261. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8262. // detect min-max, some long term sliding window for filtration may be added
  8263. // avoiding floating point operations, thus computing in raw
  8264. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8265. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8266. #if 0 // Start: IR Sensor debug info
  8267. { // debug print
  8268. static uint16_t lastVolt = ~0U;
  8269. if( current_voltage_raw_IR != lastVolt ){
  8270. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8271. lastVolt = current_voltage_raw_IR;
  8272. }
  8273. }
  8274. #endif // End: IR Sensor debug info
  8275. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8276. //! to be detected as the new fsensor
  8277. //! We can either fake it by extending the detection window to a looooong time
  8278. //! or do some other countermeasures
  8279. //! what we want to detect:
  8280. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8281. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8282. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8283. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8284. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8285. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8286. ){
  8287. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8288. }
  8289. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8290. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8291. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8292. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8293. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8294. ){
  8295. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8296. }
  8297. #endif // IR_SENSOR_ANALOG
  8298. if (fsensor_check_autoload())
  8299. {
  8300. #ifdef PAT9125
  8301. fsensor_autoload_check_stop();
  8302. #endif //PAT9125
  8303. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8304. if(0)
  8305. {
  8306. Sound_MakeCustom(50,1000,false);
  8307. loading_flag = true;
  8308. enquecommand_front_P((PSTR("M701")));
  8309. }
  8310. else
  8311. {
  8312. /*
  8313. lcd_update_enable(false);
  8314. show_preheat_nozzle_warning();
  8315. lcd_update_enable(true);
  8316. */
  8317. eFilamentAction=FilamentAction::AutoLoad;
  8318. bFilamentFirstRun=false;
  8319. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8320. bFilamentPreheatState=true;
  8321. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8322. menu_submenu(mFilamentItemForce);
  8323. } else {
  8324. menu_submenu(lcd_generic_preheat_menu);
  8325. lcd_timeoutToStatus.start();
  8326. }
  8327. }
  8328. }
  8329. }
  8330. else
  8331. {
  8332. #ifdef PAT9125
  8333. fsensor_autoload_check_stop();
  8334. #endif //PAT9125
  8335. if (fsensor_enabled && !saved_printing)
  8336. fsensor_update();
  8337. }
  8338. }
  8339. }
  8340. #endif //FILAMENT_SENSOR
  8341. #ifdef SAFETYTIMER
  8342. handleSafetyTimer();
  8343. #endif //SAFETYTIMER
  8344. #if defined(KILL_PIN) && KILL_PIN > -1
  8345. static int killCount = 0; // make the inactivity button a bit less responsive
  8346. const int KILL_DELAY = 10000;
  8347. #endif
  8348. if(buflen < (BUFSIZE-1)){
  8349. get_command();
  8350. }
  8351. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8352. if(max_inactive_time)
  8353. kill(_n("Inactivity Shutdown"), 4);
  8354. if(stepper_inactive_time) {
  8355. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8356. {
  8357. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8358. disable_x();
  8359. disable_y();
  8360. disable_z();
  8361. disable_e0();
  8362. disable_e1();
  8363. disable_e2();
  8364. }
  8365. }
  8366. }
  8367. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8368. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8369. {
  8370. chdkActive = false;
  8371. WRITE(CHDK, LOW);
  8372. }
  8373. #endif
  8374. #if defined(KILL_PIN) && KILL_PIN > -1
  8375. // Check if the kill button was pressed and wait just in case it was an accidental
  8376. // key kill key press
  8377. // -------------------------------------------------------------------------------
  8378. if( 0 == READ(KILL_PIN) )
  8379. {
  8380. killCount++;
  8381. }
  8382. else if (killCount > 0)
  8383. {
  8384. killCount--;
  8385. }
  8386. // Exceeded threshold and we can confirm that it was not accidental
  8387. // KILL the machine
  8388. // ----------------------------------------------------------------
  8389. if ( killCount >= KILL_DELAY)
  8390. {
  8391. kill(NULL, 5);
  8392. }
  8393. #endif
  8394. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8395. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8396. #endif
  8397. #ifdef EXTRUDER_RUNOUT_PREVENT
  8398. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8399. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8400. {
  8401. bool oldstatus=READ(E0_ENABLE_PIN);
  8402. enable_e0();
  8403. float oldepos=current_position[E_AXIS];
  8404. float oldedes=destination[E_AXIS];
  8405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8406. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8407. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8408. current_position[E_AXIS]=oldepos;
  8409. destination[E_AXIS]=oldedes;
  8410. plan_set_e_position(oldepos);
  8411. previous_millis_cmd=_millis();
  8412. st_synchronize();
  8413. WRITE(E0_ENABLE_PIN,oldstatus);
  8414. }
  8415. #endif
  8416. #ifdef TEMP_STAT_LEDS
  8417. handle_status_leds();
  8418. #endif
  8419. check_axes_activity();
  8420. mmu_loop();
  8421. }
  8422. void kill(const char *full_screen_message, unsigned char id)
  8423. {
  8424. printf_P(_N("KILL: %d\n"), id);
  8425. //return;
  8426. cli(); // Stop interrupts
  8427. disable_heater();
  8428. disable_x();
  8429. // SERIAL_ECHOLNPGM("kill - disable Y");
  8430. disable_y();
  8431. poweroff_z();
  8432. disable_e0();
  8433. disable_e1();
  8434. disable_e2();
  8435. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8436. pinMode(PS_ON_PIN,INPUT);
  8437. #endif
  8438. SERIAL_ERROR_START;
  8439. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8440. if (full_screen_message != NULL) {
  8441. SERIAL_ERRORLNRPGM(full_screen_message);
  8442. lcd_display_message_fullscreen_P(full_screen_message);
  8443. } else {
  8444. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8445. }
  8446. // FMC small patch to update the LCD before ending
  8447. sei(); // enable interrupts
  8448. for ( int i=5; i--; lcd_update(0))
  8449. {
  8450. _delay(200);
  8451. }
  8452. cli(); // disable interrupts
  8453. suicide();
  8454. while(1)
  8455. {
  8456. #ifdef WATCHDOG
  8457. wdt_reset();
  8458. #endif //WATCHDOG
  8459. /* Intentionally left empty */
  8460. } // Wait for reset
  8461. }
  8462. // Stop: Emergency stop used by overtemp functions which allows recovery
  8463. //
  8464. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8465. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8466. // manually started from scratch with the LCD.
  8467. //
  8468. // Note that the current instruction is completely discarded, so resuming from Stop()
  8469. // will introduce either over/under extrusion on the current segment, and will not
  8470. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8471. // the addition of disabling the headers) could allow true recovery in the future.
  8472. void Stop()
  8473. {
  8474. disable_heater();
  8475. if(Stopped == false) {
  8476. Stopped = true;
  8477. lcd_print_stop();
  8478. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8479. SERIAL_ERROR_START;
  8480. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8481. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8482. }
  8483. }
  8484. bool IsStopped() { return Stopped; };
  8485. void finishAndDisableSteppers()
  8486. {
  8487. st_synchronize();
  8488. disable_x();
  8489. disable_y();
  8490. disable_z();
  8491. disable_e0();
  8492. disable_e1();
  8493. disable_e2();
  8494. #ifndef LA_NOCOMPAT
  8495. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8496. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8497. // state for the next print.
  8498. la10c_reset();
  8499. #endif
  8500. }
  8501. #ifdef FAST_PWM_FAN
  8502. void setPwmFrequency(uint8_t pin, int val)
  8503. {
  8504. val &= 0x07;
  8505. switch(digitalPinToTimer(pin))
  8506. {
  8507. #if defined(TCCR0A)
  8508. case TIMER0A:
  8509. case TIMER0B:
  8510. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8511. // TCCR0B |= val;
  8512. break;
  8513. #endif
  8514. #if defined(TCCR1A)
  8515. case TIMER1A:
  8516. case TIMER1B:
  8517. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8518. // TCCR1B |= val;
  8519. break;
  8520. #endif
  8521. #if defined(TCCR2)
  8522. case TIMER2:
  8523. case TIMER2:
  8524. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8525. TCCR2 |= val;
  8526. break;
  8527. #endif
  8528. #if defined(TCCR2A)
  8529. case TIMER2A:
  8530. case TIMER2B:
  8531. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8532. TCCR2B |= val;
  8533. break;
  8534. #endif
  8535. #if defined(TCCR3A)
  8536. case TIMER3A:
  8537. case TIMER3B:
  8538. case TIMER3C:
  8539. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8540. TCCR3B |= val;
  8541. break;
  8542. #endif
  8543. #if defined(TCCR4A)
  8544. case TIMER4A:
  8545. case TIMER4B:
  8546. case TIMER4C:
  8547. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8548. TCCR4B |= val;
  8549. break;
  8550. #endif
  8551. #if defined(TCCR5A)
  8552. case TIMER5A:
  8553. case TIMER5B:
  8554. case TIMER5C:
  8555. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8556. TCCR5B |= val;
  8557. break;
  8558. #endif
  8559. }
  8560. }
  8561. #endif //FAST_PWM_FAN
  8562. //! @brief Get and validate extruder number
  8563. //!
  8564. //! If it is not specified, active_extruder is returned in parameter extruder.
  8565. //! @param [in] code M code number
  8566. //! @param [out] extruder
  8567. //! @return error
  8568. //! @retval true Invalid extruder specified in T code
  8569. //! @retval false Valid extruder specified in T code, or not specifiead
  8570. bool setTargetedHotend(int code, uint8_t &extruder)
  8571. {
  8572. extruder = active_extruder;
  8573. if(code_seen('T')) {
  8574. extruder = code_value();
  8575. if(extruder >= EXTRUDERS) {
  8576. SERIAL_ECHO_START;
  8577. switch(code){
  8578. case 104:
  8579. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8580. break;
  8581. case 105:
  8582. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8583. break;
  8584. case 109:
  8585. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8586. break;
  8587. case 218:
  8588. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8589. break;
  8590. case 221:
  8591. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8592. break;
  8593. }
  8594. SERIAL_PROTOCOLLN((int)extruder);
  8595. return true;
  8596. }
  8597. }
  8598. return false;
  8599. }
  8600. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8601. {
  8602. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8603. {
  8604. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8605. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8606. }
  8607. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8608. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8609. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8610. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8611. total_filament_used = 0;
  8612. }
  8613. float calculate_extruder_multiplier(float diameter) {
  8614. float out = 1.f;
  8615. if (cs.volumetric_enabled && diameter > 0.f) {
  8616. float area = M_PI * diameter * diameter * 0.25;
  8617. out = 1.f / area;
  8618. }
  8619. if (extrudemultiply != 100)
  8620. out *= float(extrudemultiply) * 0.01f;
  8621. return out;
  8622. }
  8623. void calculate_extruder_multipliers() {
  8624. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8625. #if EXTRUDERS > 1
  8626. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8627. #if EXTRUDERS > 2
  8628. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8629. #endif
  8630. #endif
  8631. }
  8632. void delay_keep_alive(unsigned int ms)
  8633. {
  8634. for (;;) {
  8635. manage_heater();
  8636. // Manage inactivity, but don't disable steppers on timeout.
  8637. manage_inactivity(true);
  8638. lcd_update(0);
  8639. if (ms == 0)
  8640. break;
  8641. else if (ms >= 50) {
  8642. _delay(50);
  8643. ms -= 50;
  8644. } else {
  8645. _delay(ms);
  8646. ms = 0;
  8647. }
  8648. }
  8649. }
  8650. static void wait_for_heater(long codenum, uint8_t extruder) {
  8651. if (!degTargetHotend(extruder))
  8652. return;
  8653. #ifdef TEMP_RESIDENCY_TIME
  8654. long residencyStart;
  8655. residencyStart = -1;
  8656. /* continue to loop until we have reached the target temp
  8657. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8658. cancel_heatup = false;
  8659. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8660. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8661. #else
  8662. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8663. #endif //TEMP_RESIDENCY_TIME
  8664. if ((_millis() - codenum) > 1000UL)
  8665. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8666. if (!farm_mode) {
  8667. SERIAL_PROTOCOLPGM("T:");
  8668. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8669. SERIAL_PROTOCOLPGM(" E:");
  8670. SERIAL_PROTOCOL((int)extruder);
  8671. #ifdef TEMP_RESIDENCY_TIME
  8672. SERIAL_PROTOCOLPGM(" W:");
  8673. if (residencyStart > -1)
  8674. {
  8675. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8676. SERIAL_PROTOCOLLN(codenum);
  8677. }
  8678. else
  8679. {
  8680. SERIAL_PROTOCOLLN('?');
  8681. }
  8682. }
  8683. #else
  8684. SERIAL_PROTOCOLLN("");
  8685. #endif
  8686. codenum = _millis();
  8687. }
  8688. manage_heater();
  8689. manage_inactivity(true); //do not disable steppers
  8690. lcd_update(0);
  8691. #ifdef TEMP_RESIDENCY_TIME
  8692. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8693. or when current temp falls outside the hysteresis after target temp was reached */
  8694. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8695. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8696. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8697. {
  8698. residencyStart = _millis();
  8699. }
  8700. #endif //TEMP_RESIDENCY_TIME
  8701. }
  8702. }
  8703. void check_babystep()
  8704. {
  8705. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8706. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8707. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8708. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8709. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8710. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8711. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8712. babystep_z);
  8713. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8714. lcd_update_enable(true);
  8715. }
  8716. }
  8717. #ifdef HEATBED_ANALYSIS
  8718. void d_setup()
  8719. {
  8720. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8721. pinMode(D_DATA, INPUT_PULLUP);
  8722. pinMode(D_REQUIRE, OUTPUT);
  8723. digitalWrite(D_REQUIRE, HIGH);
  8724. }
  8725. float d_ReadData()
  8726. {
  8727. int digit[13];
  8728. String mergeOutput;
  8729. float output;
  8730. digitalWrite(D_REQUIRE, HIGH);
  8731. for (int i = 0; i<13; i++)
  8732. {
  8733. for (int j = 0; j < 4; j++)
  8734. {
  8735. while (digitalRead(D_DATACLOCK) == LOW) {}
  8736. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8737. bitWrite(digit[i], j, digitalRead(D_DATA));
  8738. }
  8739. }
  8740. digitalWrite(D_REQUIRE, LOW);
  8741. mergeOutput = "";
  8742. output = 0;
  8743. for (int r = 5; r <= 10; r++) //Merge digits
  8744. {
  8745. mergeOutput += digit[r];
  8746. }
  8747. output = mergeOutput.toFloat();
  8748. if (digit[4] == 8) //Handle sign
  8749. {
  8750. output *= -1;
  8751. }
  8752. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8753. {
  8754. output /= 10;
  8755. }
  8756. return output;
  8757. }
  8758. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8759. int t1 = 0;
  8760. int t_delay = 0;
  8761. int digit[13];
  8762. int m;
  8763. char str[3];
  8764. //String mergeOutput;
  8765. char mergeOutput[15];
  8766. float output;
  8767. int mesh_point = 0; //index number of calibration point
  8768. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8769. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8770. float mesh_home_z_search = 4;
  8771. float measure_z_height = 0.2f;
  8772. float row[x_points_num];
  8773. int ix = 0;
  8774. int iy = 0;
  8775. const char* filename_wldsd = "mesh.txt";
  8776. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8777. char numb_wldsd[8]; // (" -A.BCD" + null)
  8778. #ifdef MICROMETER_LOGGING
  8779. d_setup();
  8780. #endif //MICROMETER_LOGGING
  8781. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8782. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8783. unsigned int custom_message_type_old = custom_message_type;
  8784. unsigned int custom_message_state_old = custom_message_state;
  8785. custom_message_type = CustomMsg::MeshBedLeveling;
  8786. custom_message_state = (x_points_num * y_points_num) + 10;
  8787. lcd_update(1);
  8788. //mbl.reset();
  8789. babystep_undo();
  8790. card.openFile(filename_wldsd, false);
  8791. /*destination[Z_AXIS] = mesh_home_z_search;
  8792. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8793. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8794. for(int8_t i=0; i < NUM_AXIS; i++) {
  8795. current_position[i] = destination[i];
  8796. }
  8797. st_synchronize();
  8798. */
  8799. destination[Z_AXIS] = measure_z_height;
  8800. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8801. for(int8_t i=0; i < NUM_AXIS; i++) {
  8802. current_position[i] = destination[i];
  8803. }
  8804. st_synchronize();
  8805. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8806. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8807. SERIAL_PROTOCOL(x_points_num);
  8808. SERIAL_PROTOCOLPGM(",");
  8809. SERIAL_PROTOCOL(y_points_num);
  8810. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8811. SERIAL_PROTOCOL(mesh_home_z_search);
  8812. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8813. SERIAL_PROTOCOL(x_dimension);
  8814. SERIAL_PROTOCOLPGM(",");
  8815. SERIAL_PROTOCOL(y_dimension);
  8816. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8817. while (mesh_point != x_points_num * y_points_num) {
  8818. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8819. iy = mesh_point / x_points_num;
  8820. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8821. float z0 = 0.f;
  8822. /*destination[Z_AXIS] = mesh_home_z_search;
  8823. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8824. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8825. for(int8_t i=0; i < NUM_AXIS; i++) {
  8826. current_position[i] = destination[i];
  8827. }
  8828. st_synchronize();*/
  8829. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8830. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8831. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8832. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8833. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8834. set_current_to_destination();
  8835. st_synchronize();
  8836. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8837. delay_keep_alive(1000);
  8838. #ifdef MICROMETER_LOGGING
  8839. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8840. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8841. //strcat(data_wldsd, numb_wldsd);
  8842. //MYSERIAL.println(data_wldsd);
  8843. //delay(1000);
  8844. //delay(3000);
  8845. //t1 = millis();
  8846. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8847. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8848. memset(digit, 0, sizeof(digit));
  8849. //cli();
  8850. digitalWrite(D_REQUIRE, LOW);
  8851. for (int i = 0; i<13; i++)
  8852. {
  8853. //t1 = millis();
  8854. for (int j = 0; j < 4; j++)
  8855. {
  8856. while (digitalRead(D_DATACLOCK) == LOW) {}
  8857. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8858. //printf_P(PSTR("Done %d\n"), j);
  8859. bitWrite(digit[i], j, digitalRead(D_DATA));
  8860. }
  8861. //t_delay = (millis() - t1);
  8862. //SERIAL_PROTOCOLPGM(" ");
  8863. //SERIAL_PROTOCOL_F(t_delay, 5);
  8864. //SERIAL_PROTOCOLPGM(" ");
  8865. }
  8866. //sei();
  8867. digitalWrite(D_REQUIRE, HIGH);
  8868. mergeOutput[0] = '\0';
  8869. output = 0;
  8870. for (int r = 5; r <= 10; r++) //Merge digits
  8871. {
  8872. sprintf(str, "%d", digit[r]);
  8873. strcat(mergeOutput, str);
  8874. }
  8875. output = atof(mergeOutput);
  8876. if (digit[4] == 8) //Handle sign
  8877. {
  8878. output *= -1;
  8879. }
  8880. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8881. {
  8882. output *= 0.1;
  8883. }
  8884. //output = d_ReadData();
  8885. //row[ix] = current_position[Z_AXIS];
  8886. //row[ix] = d_ReadData();
  8887. row[ix] = output;
  8888. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8889. memset(data_wldsd, 0, sizeof(data_wldsd));
  8890. for (int i = 0; i < x_points_num; i++) {
  8891. SERIAL_PROTOCOLPGM(" ");
  8892. SERIAL_PROTOCOL_F(row[i], 5);
  8893. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8894. dtostrf(row[i], 7, 3, numb_wldsd);
  8895. strcat(data_wldsd, numb_wldsd);
  8896. }
  8897. card.write_command(data_wldsd);
  8898. SERIAL_PROTOCOLPGM("\n");
  8899. }
  8900. custom_message_state--;
  8901. mesh_point++;
  8902. lcd_update(1);
  8903. }
  8904. #endif //MICROMETER_LOGGING
  8905. card.closefile();
  8906. //clean_up_after_endstop_move(l_feedmultiply);
  8907. }
  8908. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8909. int t1 = 0;
  8910. int t_delay = 0;
  8911. int digit[13];
  8912. int m;
  8913. char str[3];
  8914. //String mergeOutput;
  8915. char mergeOutput[15];
  8916. float output;
  8917. int mesh_point = 0; //index number of calibration point
  8918. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8919. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8920. float mesh_home_z_search = 4;
  8921. float row[x_points_num];
  8922. int ix = 0;
  8923. int iy = 0;
  8924. const char* filename_wldsd = "wldsd.txt";
  8925. char data_wldsd[70];
  8926. char numb_wldsd[10];
  8927. d_setup();
  8928. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8929. // We don't know where we are! HOME!
  8930. // Push the commands to the front of the message queue in the reverse order!
  8931. // There shall be always enough space reserved for these commands.
  8932. repeatcommand_front(); // repeat G80 with all its parameters
  8933. enquecommand_front_P((PSTR("G28 W0")));
  8934. enquecommand_front_P((PSTR("G1 Z5")));
  8935. return;
  8936. }
  8937. unsigned int custom_message_type_old = custom_message_type;
  8938. unsigned int custom_message_state_old = custom_message_state;
  8939. custom_message_type = CustomMsg::MeshBedLeveling;
  8940. custom_message_state = (x_points_num * y_points_num) + 10;
  8941. lcd_update(1);
  8942. mbl.reset();
  8943. babystep_undo();
  8944. card.openFile(filename_wldsd, false);
  8945. current_position[Z_AXIS] = mesh_home_z_search;
  8946. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8947. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8948. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8949. int l_feedmultiply = setup_for_endstop_move(false);
  8950. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8951. SERIAL_PROTOCOL(x_points_num);
  8952. SERIAL_PROTOCOLPGM(",");
  8953. SERIAL_PROTOCOL(y_points_num);
  8954. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8955. SERIAL_PROTOCOL(mesh_home_z_search);
  8956. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8957. SERIAL_PROTOCOL(x_dimension);
  8958. SERIAL_PROTOCOLPGM(",");
  8959. SERIAL_PROTOCOL(y_dimension);
  8960. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8961. while (mesh_point != x_points_num * y_points_num) {
  8962. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8963. iy = mesh_point / x_points_num;
  8964. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8965. float z0 = 0.f;
  8966. current_position[Z_AXIS] = mesh_home_z_search;
  8967. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8968. st_synchronize();
  8969. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8970. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8971. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8972. st_synchronize();
  8973. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8974. break;
  8975. card.closefile();
  8976. }
  8977. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8978. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8979. //strcat(data_wldsd, numb_wldsd);
  8980. //MYSERIAL.println(data_wldsd);
  8981. //_delay(1000);
  8982. //_delay(3000);
  8983. //t1 = _millis();
  8984. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8985. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8986. memset(digit, 0, sizeof(digit));
  8987. //cli();
  8988. digitalWrite(D_REQUIRE, LOW);
  8989. for (int i = 0; i<13; i++)
  8990. {
  8991. //t1 = _millis();
  8992. for (int j = 0; j < 4; j++)
  8993. {
  8994. while (digitalRead(D_DATACLOCK) == LOW) {}
  8995. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8996. bitWrite(digit[i], j, digitalRead(D_DATA));
  8997. }
  8998. //t_delay = (_millis() - t1);
  8999. //SERIAL_PROTOCOLPGM(" ");
  9000. //SERIAL_PROTOCOL_F(t_delay, 5);
  9001. //SERIAL_PROTOCOLPGM(" ");
  9002. }
  9003. //sei();
  9004. digitalWrite(D_REQUIRE, HIGH);
  9005. mergeOutput[0] = '\0';
  9006. output = 0;
  9007. for (int r = 5; r <= 10; r++) //Merge digits
  9008. {
  9009. sprintf(str, "%d", digit[r]);
  9010. strcat(mergeOutput, str);
  9011. }
  9012. output = atof(mergeOutput);
  9013. if (digit[4] == 8) //Handle sign
  9014. {
  9015. output *= -1;
  9016. }
  9017. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9018. {
  9019. output *= 0.1;
  9020. }
  9021. //output = d_ReadData();
  9022. //row[ix] = current_position[Z_AXIS];
  9023. memset(data_wldsd, 0, sizeof(data_wldsd));
  9024. for (int i = 0; i <3; i++) {
  9025. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9026. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9027. strcat(data_wldsd, numb_wldsd);
  9028. strcat(data_wldsd, ";");
  9029. }
  9030. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9031. dtostrf(output, 8, 5, numb_wldsd);
  9032. strcat(data_wldsd, numb_wldsd);
  9033. //strcat(data_wldsd, ";");
  9034. card.write_command(data_wldsd);
  9035. //row[ix] = d_ReadData();
  9036. row[ix] = output; // current_position[Z_AXIS];
  9037. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9038. for (int i = 0; i < x_points_num; i++) {
  9039. SERIAL_PROTOCOLPGM(" ");
  9040. SERIAL_PROTOCOL_F(row[i], 5);
  9041. }
  9042. SERIAL_PROTOCOLPGM("\n");
  9043. }
  9044. custom_message_state--;
  9045. mesh_point++;
  9046. lcd_update(1);
  9047. }
  9048. card.closefile();
  9049. clean_up_after_endstop_move(l_feedmultiply);
  9050. }
  9051. #endif //HEATBED_ANALYSIS
  9052. #ifndef PINDA_THERMISTOR
  9053. static void temp_compensation_start() {
  9054. custom_message_type = CustomMsg::TempCompPreheat;
  9055. custom_message_state = PINDA_HEAT_T + 1;
  9056. lcd_update(2);
  9057. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9058. current_position[E_AXIS] -= default_retraction;
  9059. }
  9060. plan_buffer_line_curposXYZE(400, active_extruder);
  9061. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9062. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9063. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9064. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9065. st_synchronize();
  9066. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9067. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9068. delay_keep_alive(1000);
  9069. custom_message_state = PINDA_HEAT_T - i;
  9070. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9071. else lcd_update(1);
  9072. }
  9073. custom_message_type = CustomMsg::Status;
  9074. custom_message_state = 0;
  9075. }
  9076. static void temp_compensation_apply() {
  9077. int i_add;
  9078. int z_shift = 0;
  9079. float z_shift_mm;
  9080. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9081. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9082. i_add = (target_temperature_bed - 60) / 10;
  9083. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9084. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9085. }else {
  9086. //interpolation
  9087. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9088. }
  9089. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9091. st_synchronize();
  9092. plan_set_z_position(current_position[Z_AXIS]);
  9093. }
  9094. else {
  9095. //we have no temp compensation data
  9096. }
  9097. }
  9098. #endif //ndef PINDA_THERMISTOR
  9099. float temp_comp_interpolation(float inp_temperature) {
  9100. //cubic spline interpolation
  9101. int n, i, j;
  9102. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9103. int shift[10];
  9104. int temp_C[10];
  9105. n = 6; //number of measured points
  9106. shift[0] = 0;
  9107. for (i = 0; i < n; i++) {
  9108. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9109. temp_C[i] = 50 + i * 10; //temperature in C
  9110. #ifdef PINDA_THERMISTOR
  9111. constexpr int start_compensating_temp = 35;
  9112. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9113. #ifdef DETECT_SUPERPINDA
  9114. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9115. #endif //DETECT_SUPERPINDA
  9116. #else
  9117. temp_C[i] = 50 + i * 10; //temperature in C
  9118. #endif
  9119. x[i] = (float)temp_C[i];
  9120. f[i] = (float)shift[i];
  9121. }
  9122. if (inp_temperature < x[0]) return 0;
  9123. for (i = n - 1; i>0; i--) {
  9124. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9125. h[i - 1] = x[i] - x[i - 1];
  9126. }
  9127. //*********** formation of h, s , f matrix **************
  9128. for (i = 1; i<n - 1; i++) {
  9129. m[i][i] = 2 * (h[i - 1] + h[i]);
  9130. if (i != 1) {
  9131. m[i][i - 1] = h[i - 1];
  9132. m[i - 1][i] = h[i - 1];
  9133. }
  9134. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9135. }
  9136. //*********** forward elimination **************
  9137. for (i = 1; i<n - 2; i++) {
  9138. temp = (m[i + 1][i] / m[i][i]);
  9139. for (j = 1; j <= n - 1; j++)
  9140. m[i + 1][j] -= temp*m[i][j];
  9141. }
  9142. //*********** backward substitution *********
  9143. for (i = n - 2; i>0; i--) {
  9144. sum = 0;
  9145. for (j = i; j <= n - 2; j++)
  9146. sum += m[i][j] * s[j];
  9147. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9148. }
  9149. for (i = 0; i<n - 1; i++)
  9150. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9151. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9152. b = s[i] / 2;
  9153. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9154. d = f[i];
  9155. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9156. }
  9157. return sum;
  9158. }
  9159. #ifdef PINDA_THERMISTOR
  9160. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9161. {
  9162. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9163. if (!calibration_status_pinda()) return 0;
  9164. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9165. }
  9166. #endif //PINDA_THERMISTOR
  9167. void long_pause() //long pause print
  9168. {
  9169. st_synchronize();
  9170. start_pause_print = _millis();
  9171. // Stop heaters
  9172. setAllTargetHotends(0);
  9173. //lift z
  9174. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9175. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9176. plan_buffer_line_curposXYZE(15);
  9177. //Move XY to side
  9178. current_position[X_AXIS] = X_PAUSE_POS;
  9179. current_position[Y_AXIS] = Y_PAUSE_POS;
  9180. plan_buffer_line_curposXYZE(50);
  9181. // Turn off the print fan
  9182. fanSpeed = 0;
  9183. }
  9184. void serialecho_temperatures() {
  9185. float tt = degHotend(active_extruder);
  9186. SERIAL_PROTOCOLPGM("T:");
  9187. SERIAL_PROTOCOL(tt);
  9188. SERIAL_PROTOCOLPGM(" E:");
  9189. SERIAL_PROTOCOL((int)active_extruder);
  9190. SERIAL_PROTOCOLPGM(" B:");
  9191. SERIAL_PROTOCOL_F(degBed(), 1);
  9192. SERIAL_PROTOCOLLN("");
  9193. }
  9194. #ifdef UVLO_SUPPORT
  9195. void uvlo_drain_reset()
  9196. {
  9197. // burn all that residual power
  9198. wdt_enable(WDTO_1S);
  9199. WRITE(BEEPER,HIGH);
  9200. lcd_clear();
  9201. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9202. while(1);
  9203. }
  9204. void uvlo_()
  9205. {
  9206. unsigned long time_start = _millis();
  9207. bool sd_print = card.sdprinting;
  9208. // Conserve power as soon as possible.
  9209. #ifdef LCD_BL_PIN
  9210. backlightMode = BACKLIGHT_MODE_DIM;
  9211. backlightLevel_LOW = 0;
  9212. backlight_update();
  9213. #endif //LCD_BL_PIN
  9214. disable_x();
  9215. disable_y();
  9216. #ifdef TMC2130
  9217. tmc2130_set_current_h(Z_AXIS, 20);
  9218. tmc2130_set_current_r(Z_AXIS, 20);
  9219. tmc2130_set_current_h(E_AXIS, 20);
  9220. tmc2130_set_current_r(E_AXIS, 20);
  9221. #endif //TMC2130
  9222. // Stop all heaters
  9223. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9224. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9225. setAllTargetHotends(0);
  9226. setTargetBed(0);
  9227. // Calculate the file position, from which to resume this print.
  9228. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9229. {
  9230. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9231. sd_position -= sdlen_planner;
  9232. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9233. sd_position -= sdlen_cmdqueue;
  9234. if (sd_position < 0) sd_position = 0;
  9235. }
  9236. // save the global state at planning time
  9237. uint16_t feedrate_bckp;
  9238. if (current_block)
  9239. {
  9240. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9241. feedrate_bckp = current_block->gcode_feedrate;
  9242. }
  9243. else
  9244. {
  9245. saved_target[0] = SAVED_TARGET_UNSET;
  9246. feedrate_bckp = feedrate;
  9247. }
  9248. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9249. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9250. // get the physical Z for further manipulation.
  9251. bool mbl_was_active = mbl.active;
  9252. mbl.active = false;
  9253. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9254. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9255. // are in action.
  9256. planner_abort_hard();
  9257. // Store the print logical Z position, which we need to recover (a slight error here would be
  9258. // recovered on the next Gcode instruction, while a physical location error would not)
  9259. float logical_z = current_position[Z_AXIS];
  9260. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9261. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9262. // Store the print E position before we lose track
  9263. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9264. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9265. // Clean the input command queue, inhibit serial processing using saved_printing
  9266. cmdqueue_reset();
  9267. card.sdprinting = false;
  9268. saved_printing = true;
  9269. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9270. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9271. sei();
  9272. // Retract
  9273. current_position[E_AXIS] -= default_retraction;
  9274. plan_buffer_line_curposXYZE(95);
  9275. st_synchronize();
  9276. disable_e0();
  9277. // Read out the current Z motor microstep counter to move the axis up towards
  9278. // a full step before powering off. NOTE: we need to ensure to schedule more
  9279. // than "dropsegments" steps in order to move (this is always the case here
  9280. // due to UVLO_Z_AXIS_SHIFT being used)
  9281. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9282. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9283. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9284. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9285. + UVLO_Z_AXIS_SHIFT;
  9286. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9287. st_synchronize();
  9288. poweroff_z();
  9289. // Write the file position.
  9290. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9291. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9292. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9293. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9294. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9295. // Scale the z value to 1u resolution.
  9296. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9297. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9298. }
  9299. // Write the _final_ Z position and motor microstep counter (unused).
  9300. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9301. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9302. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9303. // Store the current position.
  9304. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9305. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9306. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9307. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9308. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9309. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9310. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9311. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9312. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9313. #if EXTRUDERS > 1
  9314. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9315. #if EXTRUDERS > 2
  9316. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9317. #endif
  9318. #endif
  9319. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9320. // Store the saved target
  9321. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9322. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9323. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9324. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9325. #ifdef LIN_ADVANCE
  9326. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9327. #endif
  9328. // Finaly store the "power outage" flag.
  9329. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9330. // Increment power failure counter
  9331. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9332. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9333. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9334. WRITE(BEEPER,HIGH);
  9335. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9336. poweron_z();
  9337. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9338. plan_buffer_line_curposXYZE(500);
  9339. st_synchronize();
  9340. wdt_enable(WDTO_1S);
  9341. while(1);
  9342. }
  9343. void uvlo_tiny()
  9344. {
  9345. unsigned long time_start = _millis();
  9346. // Conserve power as soon as possible.
  9347. disable_x();
  9348. disable_y();
  9349. disable_e0();
  9350. #ifdef TMC2130
  9351. tmc2130_set_current_h(Z_AXIS, 20);
  9352. tmc2130_set_current_r(Z_AXIS, 20);
  9353. #endif //TMC2130
  9354. // Stop all heaters
  9355. setAllTargetHotends(0);
  9356. setTargetBed(0);
  9357. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9358. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9359. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9360. // Disable MBL (if not already) to work with physical coordinates.
  9361. mbl.active = false;
  9362. planner_abort_hard();
  9363. // Allow for small roundoffs to be ignored
  9364. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9365. {
  9366. // Clean the input command queue, inhibit serial processing using saved_printing
  9367. cmdqueue_reset();
  9368. card.sdprinting = false;
  9369. saved_printing = true;
  9370. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9371. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9372. sei();
  9373. // The axis was moved: adjust Z as done on a regular UVLO.
  9374. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9375. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9376. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9377. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9378. + UVLO_TINY_Z_AXIS_SHIFT;
  9379. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9380. st_synchronize();
  9381. poweroff_z();
  9382. // Update Z position
  9383. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9384. // Update the _final_ Z motor microstep counter (unused).
  9385. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9386. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9387. }
  9388. // Update the the "power outage" flag.
  9389. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9390. // Increment power failure counter
  9391. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9392. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9393. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9394. uvlo_drain_reset();
  9395. }
  9396. #endif //UVLO_SUPPORT
  9397. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9398. void setup_fan_interrupt() {
  9399. //INT7
  9400. DDRE &= ~(1 << 7); //input pin
  9401. PORTE &= ~(1 << 7); //no internal pull-up
  9402. //start with sensing rising edge
  9403. EICRB &= ~(1 << 6);
  9404. EICRB |= (1 << 7);
  9405. //enable INT7 interrupt
  9406. EIMSK |= (1 << 7);
  9407. }
  9408. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9409. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9410. ISR(INT7_vect) {
  9411. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9412. #ifdef FAN_SOFT_PWM
  9413. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9414. #else //FAN_SOFT_PWM
  9415. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9416. #endif //FAN_SOFT_PWM
  9417. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9418. t_fan_rising_edge = millis_nc();
  9419. }
  9420. else { //interrupt was triggered by falling edge
  9421. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9422. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9423. }
  9424. }
  9425. EICRB ^= (1 << 6); //change edge
  9426. }
  9427. #endif
  9428. #ifdef UVLO_SUPPORT
  9429. void setup_uvlo_interrupt() {
  9430. DDRE &= ~(1 << 4); //input pin
  9431. PORTE &= ~(1 << 4); //no internal pull-up
  9432. // sensing falling edge
  9433. EICRB |= (1 << 0);
  9434. EICRB &= ~(1 << 1);
  9435. // enable INT4 interrupt
  9436. EIMSK |= (1 << 4);
  9437. // check if power was lost before we armed the interrupt
  9438. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9439. {
  9440. SERIAL_ECHOLNPGM("INT4");
  9441. uvlo_drain_reset();
  9442. }
  9443. }
  9444. ISR(INT4_vect) {
  9445. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9446. SERIAL_ECHOLNPGM("INT4");
  9447. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9448. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9449. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9450. }
  9451. void recover_print(uint8_t automatic) {
  9452. char cmd[30];
  9453. lcd_update_enable(true);
  9454. lcd_update(2);
  9455. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9456. // Recover position, temperatures and extrude_multipliers
  9457. bool mbl_was_active = recover_machine_state_after_power_panic();
  9458. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9459. // and second also so one may remove the excess priming material.
  9460. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9461. {
  9462. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9463. enquecommand(cmd);
  9464. }
  9465. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9466. // transformation status. G28 will not touch Z when MBL is off.
  9467. enquecommand_P(PSTR("G28 X Y"));
  9468. // Set the target bed and nozzle temperatures and wait.
  9469. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9470. enquecommand(cmd);
  9471. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9472. enquecommand(cmd);
  9473. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9474. enquecommand(cmd);
  9475. enquecommand_P(PSTR("M83")); //E axis relative mode
  9476. // If not automatically recoreverd (long power loss)
  9477. if(automatic == 0){
  9478. //Extrude some filament to stabilize the pressure
  9479. enquecommand_P(PSTR("G1 E5 F120"));
  9480. // Retract to be consistent with a short pause
  9481. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9482. enquecommand(cmd);
  9483. }
  9484. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9485. // Restart the print.
  9486. restore_print_from_eeprom(mbl_was_active);
  9487. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9488. }
  9489. bool recover_machine_state_after_power_panic()
  9490. {
  9491. // 1) Preset some dummy values for the XY axes
  9492. current_position[X_AXIS] = 0;
  9493. current_position[Y_AXIS] = 0;
  9494. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9495. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9496. bool mbl_was_active = false;
  9497. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9498. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9499. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9500. // Scale the z value to 10u resolution.
  9501. int16_t v;
  9502. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9503. if (v != 0)
  9504. mbl_was_active = true;
  9505. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9506. }
  9507. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9508. // The current position after power panic is moved to the next closest 0th full step.
  9509. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9510. // Recover last E axis position
  9511. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9512. memcpy(destination, current_position, sizeof(destination));
  9513. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9514. print_world_coordinates();
  9515. // 3) Initialize the logical to physical coordinate system transformation.
  9516. world2machine_initialize();
  9517. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9518. // print_mesh_bed_leveling_table();
  9519. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9520. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9521. babystep_load();
  9522. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9523. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9524. plan_set_position_curposXYZE();
  9525. // 6) Power up the Z motors, mark their positions as known.
  9526. axis_known_position[Z_AXIS] = true;
  9527. enable_z();
  9528. // 7) Recover the target temperatures.
  9529. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9530. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9531. // 8) Recover extruder multipilers
  9532. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9533. #if EXTRUDERS > 1
  9534. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9535. #if EXTRUDERS > 2
  9536. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9537. #endif
  9538. #endif
  9539. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9540. // 9) Recover the saved target
  9541. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9542. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9543. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9544. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9545. #ifdef LIN_ADVANCE
  9546. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9547. #endif
  9548. return mbl_was_active;
  9549. }
  9550. void restore_print_from_eeprom(bool mbl_was_active) {
  9551. int feedrate_rec;
  9552. int feedmultiply_rec;
  9553. uint8_t fan_speed_rec;
  9554. char cmd[30];
  9555. char filename[13];
  9556. uint8_t depth = 0;
  9557. char dir_name[9];
  9558. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9559. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9560. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9561. SERIAL_ECHOPGM("Feedrate:");
  9562. MYSERIAL.print(feedrate_rec);
  9563. SERIAL_ECHOPGM(", feedmultiply:");
  9564. MYSERIAL.println(feedmultiply_rec);
  9565. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9566. MYSERIAL.println(int(depth));
  9567. for (int i = 0; i < depth; i++) {
  9568. for (int j = 0; j < 8; j++) {
  9569. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9570. }
  9571. dir_name[8] = '\0';
  9572. MYSERIAL.println(dir_name);
  9573. strcpy(dir_names[i], dir_name);
  9574. card.chdir(dir_name);
  9575. }
  9576. for (int i = 0; i < 8; i++) {
  9577. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9578. }
  9579. filename[8] = '\0';
  9580. MYSERIAL.print(filename);
  9581. strcat_P(filename, PSTR(".gco"));
  9582. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9583. enquecommand(cmd);
  9584. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9585. SERIAL_ECHOPGM("Position read from eeprom:");
  9586. MYSERIAL.println(position);
  9587. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9588. // without shifting Z along the way. This requires performing the move without mbl.
  9589. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9590. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9591. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9592. enquecommand(cmd);
  9593. // Enable MBL and switch to logical positioning
  9594. if (mbl_was_active)
  9595. enquecommand_P(PSTR("PRUSA MBL V1"));
  9596. // Move the Z axis down to the print, in logical coordinates.
  9597. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9598. enquecommand(cmd);
  9599. // Unretract.
  9600. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9601. enquecommand(cmd);
  9602. // Recover final E axis position and mode
  9603. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9604. sprintf_P(cmd, PSTR("G92 E"));
  9605. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9606. enquecommand(cmd);
  9607. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9608. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9609. // Set the feedrates saved at the power panic.
  9610. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9611. enquecommand(cmd);
  9612. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9613. enquecommand(cmd);
  9614. // Set the fan speed saved at the power panic.
  9615. strcpy_P(cmd, PSTR("M106 S"));
  9616. strcat(cmd, itostr3(int(fan_speed_rec)));
  9617. enquecommand(cmd);
  9618. // Set a position in the file.
  9619. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9620. enquecommand(cmd);
  9621. enquecommand_P(PSTR("G4 S0"));
  9622. enquecommand_P(PSTR("PRUSA uvlo"));
  9623. }
  9624. #endif //UVLO_SUPPORT
  9625. //! @brief Immediately stop print moves
  9626. //!
  9627. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9628. //! If printing from sd card, position in file is saved.
  9629. //! If printing from USB, line number is saved.
  9630. //!
  9631. //! @param z_move
  9632. //! @param e_move
  9633. void stop_and_save_print_to_ram(float z_move, float e_move)
  9634. {
  9635. if (saved_printing) return;
  9636. #if 0
  9637. unsigned char nplanner_blocks;
  9638. #endif
  9639. unsigned char nlines;
  9640. uint16_t sdlen_planner;
  9641. uint16_t sdlen_cmdqueue;
  9642. cli();
  9643. if (card.sdprinting) {
  9644. #if 0
  9645. nplanner_blocks = number_of_blocks();
  9646. #endif
  9647. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9648. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9649. saved_sdpos -= sdlen_planner;
  9650. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9651. saved_sdpos -= sdlen_cmdqueue;
  9652. saved_printing_type = PRINTING_TYPE_SD;
  9653. }
  9654. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9655. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9656. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9657. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9658. saved_sdpos -= nlines;
  9659. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9660. saved_printing_type = PRINTING_TYPE_USB;
  9661. }
  9662. else {
  9663. saved_printing_type = PRINTING_TYPE_NONE;
  9664. //not sd printing nor usb printing
  9665. }
  9666. #if 0
  9667. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9668. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9669. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9670. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9671. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9672. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9673. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9674. {
  9675. card.setIndex(saved_sdpos);
  9676. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9677. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9678. MYSERIAL.print(char(card.get()));
  9679. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9680. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9681. MYSERIAL.print(char(card.get()));
  9682. SERIAL_ECHOLNPGM("End of command buffer");
  9683. }
  9684. {
  9685. // Print the content of the planner buffer, line by line:
  9686. card.setIndex(saved_sdpos);
  9687. int8_t iline = 0;
  9688. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9689. SERIAL_ECHOPGM("Planner line (from file): ");
  9690. MYSERIAL.print(int(iline), DEC);
  9691. SERIAL_ECHOPGM(", length: ");
  9692. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9693. SERIAL_ECHOPGM(", steps: (");
  9694. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9695. SERIAL_ECHOPGM(",");
  9696. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9697. SERIAL_ECHOPGM(",");
  9698. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9699. SERIAL_ECHOPGM(",");
  9700. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9701. SERIAL_ECHOPGM("), events: ");
  9702. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9703. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9704. MYSERIAL.print(char(card.get()));
  9705. }
  9706. }
  9707. {
  9708. // Print the content of the command buffer, line by line:
  9709. int8_t iline = 0;
  9710. union {
  9711. struct {
  9712. char lo;
  9713. char hi;
  9714. } lohi;
  9715. uint16_t value;
  9716. } sdlen_single;
  9717. int _bufindr = bufindr;
  9718. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9719. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9720. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9721. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9722. }
  9723. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9724. MYSERIAL.print(int(iline), DEC);
  9725. SERIAL_ECHOPGM(", type: ");
  9726. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9727. SERIAL_ECHOPGM(", len: ");
  9728. MYSERIAL.println(sdlen_single.value, DEC);
  9729. // Print the content of the buffer line.
  9730. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9731. SERIAL_ECHOPGM("Buffer line (from file): ");
  9732. MYSERIAL.println(int(iline), DEC);
  9733. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9734. MYSERIAL.print(char(card.get()));
  9735. if (-- _buflen == 0)
  9736. break;
  9737. // First skip the current command ID and iterate up to the end of the string.
  9738. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9739. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9740. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9741. // If the end of the buffer was empty,
  9742. if (_bufindr == sizeof(cmdbuffer)) {
  9743. // skip to the start and find the nonzero command.
  9744. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9745. }
  9746. }
  9747. }
  9748. #endif
  9749. // save the global state at planning time
  9750. if (current_block)
  9751. {
  9752. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9753. saved_feedrate2 = current_block->gcode_feedrate;
  9754. }
  9755. else
  9756. {
  9757. saved_target[0] = SAVED_TARGET_UNSET;
  9758. saved_feedrate2 = feedrate;
  9759. }
  9760. planner_abort_hard(); //abort printing
  9761. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9762. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9763. saved_active_extruder = active_extruder; //save active_extruder
  9764. saved_extruder_temperature = degTargetHotend(active_extruder);
  9765. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9766. saved_fanSpeed = fanSpeed;
  9767. cmdqueue_reset(); //empty cmdqueue
  9768. card.sdprinting = false;
  9769. // card.closefile();
  9770. saved_printing = true;
  9771. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9772. st_reset_timer();
  9773. sei();
  9774. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9775. #if 1
  9776. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9777. // the caller can continue processing. This is used during powerpanic to save the state as we
  9778. // move away from the print.
  9779. char buf[48];
  9780. if(e_move)
  9781. {
  9782. // First unretract (relative extrusion)
  9783. if(!saved_extruder_relative_mode){
  9784. enquecommand(PSTR("M83"), true);
  9785. }
  9786. //retract 45mm/s
  9787. // A single sprintf may not be faster, but is definitely 20B shorter
  9788. // than a sequence of commands building the string piece by piece
  9789. // A snprintf would have been a safer call, but since it is not used
  9790. // in the whole program, its implementation would bring more bytes to the total size
  9791. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9792. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9793. enquecommand(buf, false);
  9794. }
  9795. if(z_move)
  9796. {
  9797. // Then lift Z axis
  9798. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9799. enquecommand(buf, false);
  9800. }
  9801. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9802. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9803. repeatcommand_front();
  9804. #else
  9805. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9806. st_synchronize(); //wait moving
  9807. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9808. memcpy(destination, current_position, sizeof(destination));
  9809. #endif
  9810. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9811. }
  9812. }
  9813. //! @brief Restore print from ram
  9814. //!
  9815. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9816. //! print fan speed, waits for extruder temperature restore, then restores
  9817. //! position and continues print moves.
  9818. //!
  9819. //! Internally lcd_update() is called by wait_for_heater().
  9820. //!
  9821. //! @param e_move
  9822. void restore_print_from_ram_and_continue(float e_move)
  9823. {
  9824. if (!saved_printing) return;
  9825. #ifdef FANCHECK
  9826. // Do not allow resume printing if fans are still not ok
  9827. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9828. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9829. #endif
  9830. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9831. // current_position[axis] = st_get_position_mm(axis);
  9832. active_extruder = saved_active_extruder; //restore active_extruder
  9833. fanSpeed = saved_fanSpeed;
  9834. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9835. {
  9836. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9837. heating_status = 1;
  9838. wait_for_heater(_millis(), saved_active_extruder);
  9839. heating_status = 2;
  9840. }
  9841. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  9842. float e = saved_pos[E_AXIS] - e_move;
  9843. plan_set_e_position(e);
  9844. #ifdef FANCHECK
  9845. fans_check_enabled = false;
  9846. #endif
  9847. //first move print head in XY to the saved position:
  9848. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9849. //then move Z
  9850. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9851. //and finaly unretract (35mm/s)
  9852. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9853. st_synchronize();
  9854. #ifdef FANCHECK
  9855. fans_check_enabled = true;
  9856. #endif
  9857. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9858. feedrate = saved_feedrate2;
  9859. feedmultiply = saved_feedmultiply2;
  9860. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9861. memcpy(destination, current_position, sizeof(destination));
  9862. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9863. card.setIndex(saved_sdpos);
  9864. sdpos_atomic = saved_sdpos;
  9865. card.sdprinting = true;
  9866. }
  9867. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9868. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9869. serial_count = 0;
  9870. FlushSerialRequestResend();
  9871. }
  9872. else {
  9873. //not sd printing nor usb printing
  9874. }
  9875. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9876. lcd_setstatuspgm(_T(WELCOME_MSG));
  9877. saved_printing_type = PRINTING_TYPE_NONE;
  9878. saved_printing = false;
  9879. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9880. }
  9881. // Cancel the state related to a currently saved print
  9882. void cancel_saved_printing()
  9883. {
  9884. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  9885. saved_target[0] = SAVED_TARGET_UNSET;
  9886. saved_printing_type = PRINTING_TYPE_NONE;
  9887. saved_printing = false;
  9888. }
  9889. void print_world_coordinates()
  9890. {
  9891. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9892. }
  9893. void print_physical_coordinates()
  9894. {
  9895. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9896. }
  9897. void print_mesh_bed_leveling_table()
  9898. {
  9899. SERIAL_ECHOPGM("mesh bed leveling: ");
  9900. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9901. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9902. MYSERIAL.print(mbl.z_values[y][x], 3);
  9903. SERIAL_ECHO(' ');
  9904. }
  9905. SERIAL_ECHOLN();
  9906. }
  9907. uint16_t print_time_remaining() {
  9908. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9909. #ifdef TMC2130
  9910. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9911. else print_t = print_time_remaining_silent;
  9912. #else
  9913. print_t = print_time_remaining_normal;
  9914. #endif //TMC2130
  9915. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9916. return print_t;
  9917. }
  9918. uint8_t calc_percent_done()
  9919. {
  9920. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9921. uint8_t percent_done = 0;
  9922. #ifdef TMC2130
  9923. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9924. percent_done = print_percent_done_normal;
  9925. }
  9926. else if (print_percent_done_silent <= 100) {
  9927. percent_done = print_percent_done_silent;
  9928. }
  9929. #else
  9930. if (print_percent_done_normal <= 100) {
  9931. percent_done = print_percent_done_normal;
  9932. }
  9933. #endif //TMC2130
  9934. else {
  9935. percent_done = card.percentDone();
  9936. }
  9937. return percent_done;
  9938. }
  9939. static void print_time_remaining_init()
  9940. {
  9941. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9942. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9943. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9944. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9945. }
  9946. void load_filament_final_feed()
  9947. {
  9948. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9949. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  9950. }
  9951. //! @brief Wait for user to check the state
  9952. //! @par nozzle_temp nozzle temperature to load filament
  9953. void M600_check_state(float nozzle_temp)
  9954. {
  9955. lcd_change_fil_state = 0;
  9956. while (lcd_change_fil_state != 1)
  9957. {
  9958. lcd_change_fil_state = 0;
  9959. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9960. lcd_alright();
  9961. KEEPALIVE_STATE(IN_HANDLER);
  9962. switch(lcd_change_fil_state)
  9963. {
  9964. // Filament failed to load so load it again
  9965. case 2:
  9966. if (mmu_enabled)
  9967. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9968. else
  9969. M600_load_filament_movements();
  9970. break;
  9971. // Filament loaded properly but color is not clear
  9972. case 3:
  9973. st_synchronize();
  9974. load_filament_final_feed();
  9975. lcd_loading_color();
  9976. st_synchronize();
  9977. break;
  9978. // Everything good
  9979. default:
  9980. lcd_change_success();
  9981. break;
  9982. }
  9983. }
  9984. }
  9985. //! @brief Wait for user action
  9986. //!
  9987. //! Beep, manage nozzle heater and wait for user to start unload filament
  9988. //! If times out, active extruder temperature is set to 0.
  9989. //!
  9990. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9991. void M600_wait_for_user(float HotendTempBckp) {
  9992. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9993. int counterBeep = 0;
  9994. unsigned long waiting_start_time = _millis();
  9995. uint8_t wait_for_user_state = 0;
  9996. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9997. bool bFirst=true;
  9998. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9999. manage_heater();
  10000. manage_inactivity(true);
  10001. #if BEEPER > 0
  10002. if (counterBeep == 500) {
  10003. counterBeep = 0;
  10004. }
  10005. SET_OUTPUT(BEEPER);
  10006. if (counterBeep == 0) {
  10007. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10008. {
  10009. bFirst=false;
  10010. WRITE(BEEPER, HIGH);
  10011. }
  10012. }
  10013. if (counterBeep == 20) {
  10014. WRITE(BEEPER, LOW);
  10015. }
  10016. counterBeep++;
  10017. #endif //BEEPER > 0
  10018. switch (wait_for_user_state) {
  10019. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10020. delay_keep_alive(4);
  10021. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10022. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10023. wait_for_user_state = 1;
  10024. setAllTargetHotends(0);
  10025. st_synchronize();
  10026. disable_e0();
  10027. disable_e1();
  10028. disable_e2();
  10029. }
  10030. break;
  10031. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10032. delay_keep_alive(4);
  10033. if (lcd_clicked()) {
  10034. setTargetHotend(HotendTempBckp, active_extruder);
  10035. lcd_wait_for_heater();
  10036. wait_for_user_state = 2;
  10037. }
  10038. break;
  10039. case 2: //waiting for nozzle to reach target temperature
  10040. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10041. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10042. waiting_start_time = _millis();
  10043. wait_for_user_state = 0;
  10044. }
  10045. else {
  10046. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10047. lcd_set_cursor(1, 4);
  10048. lcd_print(ftostr3(degHotend(active_extruder)));
  10049. }
  10050. break;
  10051. }
  10052. }
  10053. WRITE(BEEPER, LOW);
  10054. }
  10055. void M600_load_filament_movements()
  10056. {
  10057. #ifdef SNMM
  10058. display_loading();
  10059. do
  10060. {
  10061. current_position[E_AXIS] += 0.002;
  10062. plan_buffer_line_curposXYZE(500, active_extruder);
  10063. delay_keep_alive(2);
  10064. }
  10065. while (!lcd_clicked());
  10066. st_synchronize();
  10067. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10068. plan_buffer_line_curposXYZE(3000, active_extruder);
  10069. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10070. plan_buffer_line_curposXYZE(1400, active_extruder);
  10071. current_position[E_AXIS] += 40;
  10072. plan_buffer_line_curposXYZE(400, active_extruder);
  10073. current_position[E_AXIS] += 10;
  10074. plan_buffer_line_curposXYZE(50, active_extruder);
  10075. #else
  10076. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10077. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10078. #endif
  10079. load_filament_final_feed();
  10080. lcd_loading_filament();
  10081. st_synchronize();
  10082. }
  10083. void M600_load_filament() {
  10084. //load filament for single material and SNMM
  10085. lcd_wait_interact();
  10086. //load_filament_time = _millis();
  10087. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10088. #ifdef PAT9125
  10089. fsensor_autoload_check_start();
  10090. #endif //PAT9125
  10091. while(!lcd_clicked())
  10092. {
  10093. manage_heater();
  10094. manage_inactivity(true);
  10095. #ifdef FILAMENT_SENSOR
  10096. if (fsensor_check_autoload())
  10097. {
  10098. Sound_MakeCustom(50,1000,false);
  10099. break;
  10100. }
  10101. #endif //FILAMENT_SENSOR
  10102. }
  10103. #ifdef PAT9125
  10104. fsensor_autoload_check_stop();
  10105. #endif //PAT9125
  10106. KEEPALIVE_STATE(IN_HANDLER);
  10107. #ifdef FSENSOR_QUALITY
  10108. fsensor_oq_meassure_start(70);
  10109. #endif //FSENSOR_QUALITY
  10110. M600_load_filament_movements();
  10111. Sound_MakeCustom(50,1000,false);
  10112. #ifdef FSENSOR_QUALITY
  10113. fsensor_oq_meassure_stop();
  10114. if (!fsensor_oq_result())
  10115. {
  10116. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10117. lcd_update_enable(true);
  10118. lcd_update(2);
  10119. if (disable)
  10120. fsensor_disable();
  10121. }
  10122. #endif //FSENSOR_QUALITY
  10123. lcd_update_enable(false);
  10124. }
  10125. //! @brief Wait for click
  10126. //!
  10127. //! Set
  10128. void marlin_wait_for_click()
  10129. {
  10130. int8_t busy_state_backup = busy_state;
  10131. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10132. lcd_consume_click();
  10133. while(!lcd_clicked())
  10134. {
  10135. manage_heater();
  10136. manage_inactivity(true);
  10137. lcd_update(0);
  10138. }
  10139. KEEPALIVE_STATE(busy_state_backup);
  10140. }
  10141. #define FIL_LOAD_LENGTH 60
  10142. #ifdef PSU_Delta
  10143. bool bEnableForce_z;
  10144. void init_force_z()
  10145. {
  10146. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10147. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10148. disable_force_z();
  10149. }
  10150. void check_force_z()
  10151. {
  10152. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10153. init_force_z(); // causes enforced switching into disable-state
  10154. }
  10155. void disable_force_z()
  10156. {
  10157. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10158. bEnableForce_z=false;
  10159. // switching to silent mode
  10160. #ifdef TMC2130
  10161. tmc2130_mode=TMC2130_MODE_SILENT;
  10162. update_mode_profile();
  10163. tmc2130_init(true);
  10164. #endif // TMC2130
  10165. }
  10166. void enable_force_z()
  10167. {
  10168. if(bEnableForce_z)
  10169. return; // motor already enabled (may be ;-p )
  10170. bEnableForce_z=true;
  10171. // mode recovering
  10172. #ifdef TMC2130
  10173. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10174. update_mode_profile();
  10175. tmc2130_init(true);
  10176. #endif // TMC2130
  10177. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10178. }
  10179. #endif // PSU_Delta