planner.cpp 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. //===========================================================================
  47. //=============================public variables ============================
  48. //===========================================================================
  49. unsigned long minsegmenttime;
  50. float max_feedrate[NUM_AXIS]; // set the max speeds
  51. float axis_steps_per_unit[NUM_AXIS];
  52. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  53. float minimumfeedrate;
  54. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  55. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  56. // Jerk is a maximum immediate velocity change.
  57. float max_jerk[NUM_AXIS];
  58. float mintravelfeedrate;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. float extrude_min_temp=EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef FILAMENT_SENSOR
  97. static char meas_sample; //temporary variable to hold filament measurement sample
  98. #endif
  99. #ifdef LIN_ADVANCE
  100. float extruder_advance_k = LIN_ADVANCE_K,
  101. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  102. position_float[NUM_AXIS] = { 0 };
  103. #endif
  104. // Returns the index of the next block in the ring buffer
  105. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  106. static inline int8_t next_block_index(int8_t block_index) {
  107. if (++ block_index == BLOCK_BUFFER_SIZE)
  108. block_index = 0;
  109. return block_index;
  110. }
  111. // Returns the index of the previous block in the ring buffer
  112. static inline int8_t prev_block_index(int8_t block_index) {
  113. if (block_index == 0)
  114. block_index = BLOCK_BUFFER_SIZE;
  115. -- block_index;
  116. return block_index;
  117. }
  118. //===========================================================================
  119. //=============================functions ============================
  120. //===========================================================================
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  124. {
  125. if (acceleration!=0) {
  126. return((target_rate*target_rate-initial_rate*initial_rate)/
  127. (2.0*acceleration));
  128. }
  129. else {
  130. return 0.0; // acceleration was 0, set acceleration distance to 0
  131. }
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  138. {
  139. if (acceleration!=0) {
  140. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  141. (4.0*acceleration) );
  142. }
  143. else {
  144. return 0.0; // acceleration was 0, set intersection distance to 0
  145. }
  146. }
  147. #define MINIMAL_STEP_RATE 120
  148. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  149. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  150. {
  151. // These two lines are the only floating point calculations performed in this routine.
  152. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  153. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  154. // Limit minimal step rate (Otherwise the timer will overflow.)
  155. if (initial_rate < MINIMAL_STEP_RATE)
  156. initial_rate = MINIMAL_STEP_RATE;
  157. if (initial_rate > block->nominal_rate)
  158. initial_rate = block->nominal_rate;
  159. if (final_rate < MINIMAL_STEP_RATE)
  160. final_rate = MINIMAL_STEP_RATE;
  161. if (final_rate > block->nominal_rate)
  162. final_rate = block->nominal_rate;
  163. uint32_t acceleration = block->acceleration_st;
  164. if (acceleration == 0)
  165. // Don't allow zero acceleration.
  166. acceleration = 1;
  167. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  168. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  169. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  170. //FIXME assert that this result fits a 64bit unsigned int.
  171. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  172. uint32_t final_rate_sqr = final_rate*final_rate;
  173. uint32_t acceleration_x2 = acceleration << 1;
  174. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  175. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  176. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  177. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  178. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  179. // Size of Plateau of Nominal Rate.
  180. uint32_t plateau_steps = 0;
  181. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  182. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  183. // in order to reach the final_rate exactly at the end of this block.
  184. if (accel_decel_steps < block->step_event_count) {
  185. plateau_steps = block->step_event_count - accel_decel_steps;
  186. } else {
  187. uint32_t acceleration_x4 = acceleration << 2;
  188. // Avoid negative numbers
  189. if (final_rate_sqr >= initial_rate_sqr) {
  190. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  191. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  192. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  193. #if 0
  194. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  195. #else
  196. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  197. if (block->step_event_count & 1)
  198. accelerate_steps += acceleration_x2;
  199. accelerate_steps /= acceleration_x4;
  200. accelerate_steps += (block->step_event_count >> 1);
  201. #endif
  202. if (accelerate_steps > block->step_event_count)
  203. accelerate_steps = block->step_event_count;
  204. } else {
  205. #if 0
  206. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  209. if (block->step_event_count & 1)
  210. decelerate_steps += acceleration_x2;
  211. decelerate_steps /= acceleration_x4;
  212. decelerate_steps += (block->step_event_count >> 1);
  213. #endif
  214. if (decelerate_steps > block->step_event_count)
  215. decelerate_steps = block->step_event_count;
  216. accelerate_steps = block->step_event_count - decelerate_steps;
  217. }
  218. }
  219. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  220. if (! block->busy) { // Don't update variables if block is busy.
  221. block->accelerate_until = accelerate_steps;
  222. block->decelerate_after = accelerate_steps+plateau_steps;
  223. block->initial_rate = initial_rate;
  224. block->final_rate = final_rate;
  225. }
  226. CRITICAL_SECTION_END;
  227. }
  228. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  229. // decceleration within the allotted distance.
  230. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  231. {
  232. // assert(decceleration < 0);
  233. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  234. }
  235. // Recalculates the motion plan according to the following algorithm:
  236. //
  237. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  238. // so that:
  239. // a. The junction jerk is within the set limit
  240. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  241. // acceleration.
  242. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  243. // a. The speed increase within one block would require faster accelleration than the one, true
  244. // constant acceleration.
  245. //
  246. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  247. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  248. // the set limit. Finally it will:
  249. //
  250. // 3. Recalculate trapezoids for all blocks.
  251. //
  252. //FIXME This routine is called 15x every time a new line is added to the planner,
  253. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  254. // if the CPU is found lacking computational power.
  255. //
  256. // Following sources may be used to optimize the 8-bit AVR code:
  257. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  258. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  259. //
  260. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  261. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  262. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  263. //
  264. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  265. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  266. // https://github.com/rekka/avrmultiplication
  267. //
  268. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  269. // https://courses.cit.cornell.edu/ee476/Math/
  270. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  271. //
  272. void planner_recalculate(const float &safe_final_speed)
  273. {
  274. // Reverse pass
  275. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  276. // by consuming the blocks, therefore shortening the queue.
  277. unsigned char tail = block_buffer_tail;
  278. uint8_t block_index;
  279. block_t *prev, *current, *next;
  280. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  281. // At least three blocks are in the queue?
  282. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  283. if (n_blocks >= 3) {
  284. // Initialize the last tripple of blocks.
  285. block_index = prev_block_index(block_buffer_head);
  286. next = block_buffer + block_index;
  287. current = block_buffer + (block_index = prev_block_index(block_index));
  288. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  289. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  290. // 1) it may already be running at the stepper interrupt,
  291. // 2) there is no way to limit it when going in the forward direction.
  292. while (block_index != tail) {
  293. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  294. // Don't modify the entry velocity of the starting block.
  295. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  296. // for the stepper interrupt routine to use them.
  297. tail = block_index;
  298. // Update the number of blocks to process.
  299. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  300. // SERIAL_ECHOLNPGM("START");
  301. break;
  302. }
  303. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  304. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  305. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  306. if (current->entry_speed != current->max_entry_speed) {
  307. // assert(current->entry_speed < current->max_entry_speed);
  308. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  309. // segment and the maximum acceleration allowed for this segment.
  310. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  311. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  312. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  313. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  314. // together with an assembly 32bit->16bit sqrt function.
  315. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  316. current->max_entry_speed :
  317. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  318. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  319. current->flag |= BLOCK_FLAG_RECALCULATE;
  320. }
  321. next = current;
  322. current = block_buffer + (block_index = prev_block_index(block_index));
  323. }
  324. }
  325. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  326. // Forward pass and recalculate the trapezoids.
  327. if (n_blocks >= 2) {
  328. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  329. block_index = tail;
  330. prev = block_buffer + block_index;
  331. current = block_buffer + (block_index = next_block_index(block_index));
  332. do {
  333. // If the previous block is an acceleration block, but it is not long enough to complete the
  334. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  335. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  336. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  337. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  338. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  339. // Check for junction speed change
  340. if (current->entry_speed != entry_speed) {
  341. current->entry_speed = entry_speed;
  342. current->flag |= BLOCK_FLAG_RECALCULATE;
  343. }
  344. }
  345. // Recalculate if current block entry or exit junction speed has changed.
  346. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  347. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  348. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  349. // Reset current only to ensure next trapezoid is computed.
  350. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  351. }
  352. prev = current;
  353. current = block_buffer + (block_index = next_block_index(block_index));
  354. } while (block_index != block_buffer_head);
  355. }
  356. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  357. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  358. current = block_buffer + prev_block_index(block_buffer_head);
  359. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  360. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  361. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  362. }
  363. void plan_init() {
  364. block_buffer_head = 0;
  365. block_buffer_tail = 0;
  366. memset(position, 0, sizeof(position)); // clear position
  367. #ifdef LIN_ADVANCE
  368. memset(position_float, 0, sizeof(position)); // clear position
  369. #endif
  370. previous_speed[0] = 0.0;
  371. previous_speed[1] = 0.0;
  372. previous_speed[2] = 0.0;
  373. previous_speed[3] = 0.0;
  374. previous_nominal_speed = 0.0;
  375. }
  376. #ifdef AUTOTEMP
  377. void getHighESpeed()
  378. {
  379. static float oldt=0;
  380. if(!autotemp_enabled){
  381. return;
  382. }
  383. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  384. return; //do nothing
  385. }
  386. float high=0.0;
  387. uint8_t block_index = block_buffer_tail;
  388. while(block_index != block_buffer_head) {
  389. if((block_buffer[block_index].steps_x != 0) ||
  390. (block_buffer[block_index].steps_y != 0) ||
  391. (block_buffer[block_index].steps_z != 0)) {
  392. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  393. //se; mm/sec;
  394. if(se>high)
  395. {
  396. high=se;
  397. }
  398. }
  399. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  400. }
  401. float g=autotemp_min+high*autotemp_factor;
  402. float t=g;
  403. if(t<autotemp_min)
  404. t=autotemp_min;
  405. if(t>autotemp_max)
  406. t=autotemp_max;
  407. if(oldt>t)
  408. {
  409. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  410. }
  411. oldt=t;
  412. setTargetHotend0(t);
  413. }
  414. #endif
  415. void check_axes_activity()
  416. {
  417. unsigned char x_active = 0;
  418. unsigned char y_active = 0;
  419. unsigned char z_active = 0;
  420. unsigned char e_active = 0;
  421. unsigned char tail_fan_speed = fanSpeed;
  422. block_t *block;
  423. if(block_buffer_tail != block_buffer_head)
  424. {
  425. uint8_t block_index = block_buffer_tail;
  426. tail_fan_speed = block_buffer[block_index].fan_speed;
  427. while(block_index != block_buffer_head)
  428. {
  429. block = &block_buffer[block_index];
  430. if(block->steps_x != 0) x_active++;
  431. if(block->steps_y != 0) y_active++;
  432. if(block->steps_z != 0) z_active++;
  433. if(block->steps_e != 0) e_active++;
  434. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  435. }
  436. }
  437. if((DISABLE_X) && (x_active == 0)) disable_x();
  438. if((DISABLE_Y) && (y_active == 0)) disable_y();
  439. if((DISABLE_Z) && (z_active == 0)) disable_z();
  440. if((DISABLE_E) && (e_active == 0))
  441. {
  442. disable_e0();
  443. disable_e1();
  444. disable_e2();
  445. }
  446. #if defined(FAN_PIN) && FAN_PIN > -1
  447. #ifdef FAN_KICKSTART_TIME
  448. static unsigned long fan_kick_end;
  449. if (tail_fan_speed) {
  450. if (fan_kick_end == 0) {
  451. // Just starting up fan - run at full power.
  452. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  453. tail_fan_speed = 255;
  454. } else if (fan_kick_end > millis())
  455. // Fan still spinning up.
  456. tail_fan_speed = 255;
  457. } else {
  458. fan_kick_end = 0;
  459. }
  460. #endif//FAN_KICKSTART_TIME
  461. #ifdef FAN_SOFT_PWM
  462. fanSpeedSoftPwm = tail_fan_speed;
  463. #else
  464. analogWrite(FAN_PIN,tail_fan_speed);
  465. #endif//!FAN_SOFT_PWM
  466. #endif//FAN_PIN > -1
  467. #ifdef AUTOTEMP
  468. getHighESpeed();
  469. #endif
  470. }
  471. bool waiting_inside_plan_buffer_line_print_aborted = false;
  472. /*
  473. void planner_abort_soft()
  474. {
  475. // Empty the queue.
  476. while (blocks_queued()) plan_discard_current_block();
  477. // Relay to planner wait routine, that the current line shall be canceled.
  478. waiting_inside_plan_buffer_line_print_aborted = true;
  479. //current_position[i]
  480. }
  481. */
  482. #ifdef PLANNER_DIAGNOSTICS
  483. static inline void planner_update_queue_min_counter()
  484. {
  485. uint8_t new_counter = moves_planned();
  486. if (new_counter < g_cntr_planner_queue_min)
  487. g_cntr_planner_queue_min = new_counter;
  488. }
  489. #endif /* PLANNER_DIAGNOSTICS */
  490. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  491. void planner_abort_hard()
  492. {
  493. // Abort the stepper routine and flush the planner queue.
  494. // DISABLE_STEPPER_DRIVER_INTERRUPT
  495. TIMSK1 &= ~(1<<OCIE1A);
  496. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  497. // First update the planner's current position in the physical motor steps.
  498. position[X_AXIS] = st_get_position(X_AXIS);
  499. position[Y_AXIS] = st_get_position(Y_AXIS);
  500. position[Z_AXIS] = st_get_position(Z_AXIS);
  501. position[E_AXIS] = st_get_position(E_AXIS);
  502. // Second update the current position of the front end.
  503. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  504. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  505. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  506. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  507. // Apply the mesh bed leveling correction to the Z axis.
  508. #ifdef MESH_BED_LEVELING
  509. if (mbl.active) {
  510. #if 1
  511. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  512. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  513. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  514. #else
  515. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  516. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  517. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  518. else {
  519. float t = float(step_events_completed) / float(current_block->step_event_count);
  520. float vec[3] = {
  521. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  522. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  523. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  524. };
  525. float pos1[3], pos2[3];
  526. for (int8_t i = 0; i < 3; ++ i) {
  527. if (current_block->direction_bits & (1<<i))
  528. vec[i] = - vec[i];
  529. pos1[i] = current_position[i] - vec[i] * t;
  530. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  531. }
  532. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  533. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  534. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  535. }
  536. #endif
  537. }
  538. #endif
  539. // Clear the planner queue.
  540. quickStop();
  541. // Apply inverse world correction matrix.
  542. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  543. memcpy(destination, current_position, sizeof(destination));
  544. // Resets planner junction speeds. Assumes start from rest.
  545. previous_nominal_speed = 0.0;
  546. previous_speed[0] = 0.0;
  547. previous_speed[1] = 0.0;
  548. previous_speed[2] = 0.0;
  549. previous_speed[3] = 0.0;
  550. // Relay to planner wait routine, that the current line shall be canceled.
  551. waiting_inside_plan_buffer_line_print_aborted = true;
  552. }
  553. float junction_deviation = 0.1;
  554. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  555. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  556. // calculation the caller must also provide the physical length of the line in millimeters.
  557. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  558. {
  559. // Calculate the buffer head after we push this byte
  560. int next_buffer_head = next_block_index(block_buffer_head);
  561. // If the buffer is full: good! That means we are well ahead of the robot.
  562. // Rest here until there is room in the buffer.
  563. if (block_buffer_tail == next_buffer_head) {
  564. waiting_inside_plan_buffer_line_print_aborted = false;
  565. do {
  566. manage_heater();
  567. // Vojtech: Don't disable motors inside the planner!
  568. manage_inactivity(false);
  569. lcd_update();
  570. } while (block_buffer_tail == next_buffer_head);
  571. if (waiting_inside_plan_buffer_line_print_aborted) {
  572. // Inside the lcd_update() routine the print has been aborted.
  573. // Cancel the print, do not plan the current line this routine is waiting on.
  574. #ifdef PLANNER_DIAGNOSTICS
  575. planner_update_queue_min_counter();
  576. #endif /* PLANNER_DIAGNOSTICS */
  577. return;
  578. }
  579. }
  580. #ifdef PLANNER_DIAGNOSTICS
  581. planner_update_queue_min_counter();
  582. #endif /* PLANNER_DIAGNOSTICS */
  583. #ifdef ENABLE_AUTO_BED_LEVELING
  584. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  585. #endif // ENABLE_AUTO_BED_LEVELING
  586. // Apply the machine correction matrix.
  587. {
  588. #if 0
  589. SERIAL_ECHOPGM("Planner, current position - servos: ");
  590. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  591. SERIAL_ECHOPGM(", ");
  592. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  593. SERIAL_ECHOPGM(", ");
  594. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  595. SERIAL_ECHOLNPGM("");
  596. SERIAL_ECHOPGM("Planner, target position, initial: ");
  597. MYSERIAL.print(x, 5);
  598. SERIAL_ECHOPGM(", ");
  599. MYSERIAL.print(y, 5);
  600. SERIAL_ECHOLNPGM("");
  601. SERIAL_ECHOPGM("Planner, world2machine: ");
  602. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  603. SERIAL_ECHOPGM(", ");
  604. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  605. SERIAL_ECHOPGM(", ");
  606. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  607. SERIAL_ECHOPGM(", ");
  608. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  609. SERIAL_ECHOLNPGM("");
  610. SERIAL_ECHOPGM("Planner, offset: ");
  611. MYSERIAL.print(world2machine_shift[0], 5);
  612. SERIAL_ECHOPGM(", ");
  613. MYSERIAL.print(world2machine_shift[1], 5);
  614. SERIAL_ECHOLNPGM("");
  615. #endif
  616. world2machine(x, y);
  617. #if 0
  618. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  619. MYSERIAL.print(x, 5);
  620. SERIAL_ECHOPGM(", ");
  621. MYSERIAL.print(y, 5);
  622. SERIAL_ECHOLNPGM("");
  623. #endif
  624. }
  625. // The target position of the tool in absolute steps
  626. // Calculate target position in absolute steps
  627. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  628. long target[4];
  629. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  630. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  631. #ifdef MESH_BED_LEVELING
  632. if (mbl.active){
  633. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  634. }else{
  635. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  636. }
  637. #else
  638. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  639. #endif // ENABLE_MESH_BED_LEVELING
  640. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  641. #ifdef LIN_ADVANCE
  642. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  643. float de_float = e - position_float[E_AXIS];
  644. #endif
  645. #ifdef PREVENT_DANGEROUS_EXTRUDE
  646. if(target[E_AXIS]!=position[E_AXIS])
  647. {
  648. if(degHotend(active_extruder)<extrude_min_temp)
  649. {
  650. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  651. #ifdef LIN_ADVANCE
  652. position_float[E_AXIS] = e;
  653. de_float = 0;
  654. #endif
  655. SERIAL_ECHO_START;
  656. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  657. }
  658. #ifdef PREVENT_LENGTHY_EXTRUDE
  659. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  660. {
  661. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  662. #ifdef LIN_ADVANCE
  663. position_float[E_AXIS] = e;
  664. de_float = 0;
  665. #endif
  666. SERIAL_ECHO_START;
  667. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  668. }
  669. #endif
  670. }
  671. #endif
  672. // Prepare to set up new block
  673. block_t *block = &block_buffer[block_buffer_head];
  674. // Set sdlen for calculating sd position
  675. block->sdlen = 0;
  676. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  677. block->busy = false;
  678. // Number of steps for each axis
  679. #ifndef COREXY
  680. // default non-h-bot planning
  681. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  682. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  683. #else
  684. // corexy planning
  685. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  686. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  687. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  688. #endif
  689. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  690. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  691. if (volumetric_multiplier[active_extruder] != 1.f)
  692. block->steps_e *= volumetric_multiplier[active_extruder];
  693. if (extrudemultiply != 100) {
  694. block->steps_e *= extrudemultiply;
  695. block->steps_e /= 100;
  696. }
  697. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  698. // Bail if this is a zero-length block
  699. if (block->step_event_count <= dropsegments)
  700. {
  701. #ifdef PLANNER_DIAGNOSTICS
  702. planner_update_queue_min_counter();
  703. #endif /* PLANNER_DIAGNOSTICS */
  704. return;
  705. }
  706. block->fan_speed = fanSpeed;
  707. // Compute direction bits for this block
  708. block->direction_bits = 0;
  709. #ifndef COREXY
  710. if (target[X_AXIS] < position[X_AXIS])
  711. {
  712. block->direction_bits |= (1<<X_AXIS);
  713. }
  714. if (target[Y_AXIS] < position[Y_AXIS])
  715. {
  716. block->direction_bits |= (1<<Y_AXIS);
  717. }
  718. #else
  719. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  720. {
  721. block->direction_bits |= (1<<X_AXIS);
  722. }
  723. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  724. {
  725. block->direction_bits |= (1<<Y_AXIS);
  726. }
  727. #endif
  728. if (target[Z_AXIS] < position[Z_AXIS])
  729. {
  730. block->direction_bits |= (1<<Z_AXIS);
  731. }
  732. if (target[E_AXIS] < position[E_AXIS])
  733. {
  734. block->direction_bits |= (1<<E_AXIS);
  735. }
  736. block->active_extruder = extruder;
  737. //enable active axes
  738. #ifdef COREXY
  739. if((block->steps_x != 0) || (block->steps_y != 0))
  740. {
  741. enable_x();
  742. enable_y();
  743. }
  744. #else
  745. if(block->steps_x != 0) enable_x();
  746. if(block->steps_y != 0) enable_y();
  747. #endif
  748. #ifndef Z_LATE_ENABLE
  749. if(block->steps_z != 0) enable_z();
  750. #endif
  751. // Enable extruder(s)
  752. if(block->steps_e != 0)
  753. {
  754. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  755. {
  756. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  757. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  758. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  759. switch(extruder)
  760. {
  761. case 0:
  762. enable_e0();
  763. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  764. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  765. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  766. break;
  767. case 1:
  768. enable_e1();
  769. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  770. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  771. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  772. break;
  773. case 2:
  774. enable_e2();
  775. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  776. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  777. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  778. break;
  779. }
  780. }
  781. else //enable all
  782. {
  783. enable_e0();
  784. enable_e1();
  785. enable_e2();
  786. }
  787. }
  788. if (block->steps_e == 0)
  789. {
  790. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  791. }
  792. else
  793. {
  794. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  795. }
  796. /* This part of the code calculates the total length of the movement.
  797. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  798. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  799. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  800. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  801. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  802. */
  803. #ifndef COREXY
  804. float delta_mm[4];
  805. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  806. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  807. #else
  808. float delta_mm[6];
  809. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  810. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  811. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  812. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  813. #endif
  814. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  815. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  816. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  817. {
  818. block->millimeters = fabs(delta_mm[E_AXIS]);
  819. }
  820. else
  821. {
  822. #ifndef COREXY
  823. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  824. #else
  825. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  826. #endif
  827. }
  828. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  829. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  830. float inverse_second = feed_rate * inverse_millimeters;
  831. int moves_queued = moves_planned();
  832. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  833. #ifdef SLOWDOWN
  834. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  835. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  836. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  837. // segment time in micro seconds
  838. unsigned long segment_time = lround(1000000.0/inverse_second);
  839. if (segment_time < minsegmenttime)
  840. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  841. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  842. }
  843. #endif // SLOWDOWN
  844. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  845. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  846. #ifdef FILAMENT_SENSOR
  847. //FMM update ring buffer used for delay with filament measurements
  848. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  849. {
  850. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  851. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  852. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  853. while (delay_dist<0)
  854. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  855. delay_index1=delay_dist/10.0; //calculate index
  856. //ensure the number is within range of the array after converting from floating point
  857. if(delay_index1<0)
  858. delay_index1=0;
  859. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  860. delay_index1=MAX_MEASUREMENT_DELAY;
  861. if(delay_index1 != delay_index2) //moved index
  862. {
  863. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  864. }
  865. while( delay_index1 != delay_index2)
  866. {
  867. delay_index2 = delay_index2 + 1;
  868. if(delay_index2>MAX_MEASUREMENT_DELAY)
  869. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  870. if(delay_index2<0)
  871. delay_index2=0;
  872. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  873. delay_index2=MAX_MEASUREMENT_DELAY;
  874. measurement_delay[delay_index2]=meas_sample;
  875. }
  876. }
  877. #endif
  878. // Calculate and limit speed in mm/sec for each axis
  879. float current_speed[4];
  880. float speed_factor = 1.0; //factor <=1 do decrease speed
  881. for(int i=0; i < 4; i++)
  882. {
  883. current_speed[i] = delta_mm[i] * inverse_second;
  884. if(fabs(current_speed[i]) > max_feedrate[i])
  885. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  886. }
  887. // Correct the speed
  888. if( speed_factor < 1.0)
  889. {
  890. for(unsigned char i=0; i < 4; i++)
  891. {
  892. current_speed[i] *= speed_factor;
  893. }
  894. block->nominal_speed *= speed_factor;
  895. block->nominal_rate *= speed_factor;
  896. }
  897. // Compute and limit the acceleration rate for the trapezoid generator.
  898. // block->step_event_count ... event count of the fastest axis
  899. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  900. float steps_per_mm = block->step_event_count/block->millimeters;
  901. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  902. {
  903. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  904. }
  905. else
  906. {
  907. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  908. // Limit acceleration per axis
  909. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  910. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  911. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  912. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  913. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  914. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  915. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  916. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  917. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  918. }
  919. // Acceleration of the segment, in mm/sec^2
  920. block->acceleration = block->acceleration_st / steps_per_mm;
  921. #if 0
  922. // Oversample diagonal movements by a power of 2 up to 8x
  923. // to achieve more accurate diagonal movements.
  924. uint8_t bresenham_oversample = 1;
  925. for (uint8_t i = 0; i < 3; ++ i) {
  926. if (block->nominal_rate >= 5000) // 5kHz
  927. break;
  928. block->nominal_rate << 1;
  929. bresenham_oversample << 1;
  930. block->step_event_count << 1;
  931. }
  932. if (bresenham_oversample > 1)
  933. // Lower the acceleration steps/sec^2 to account for the oversampling.
  934. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  935. #endif
  936. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  937. // Start with a safe speed.
  938. // Safe speed is the speed, from which the machine may halt to stop immediately.
  939. float safe_speed = block->nominal_speed;
  940. bool limited = false;
  941. for (uint8_t axis = 0; axis < 4; ++ axis) {
  942. float jerk = fabs(current_speed[axis]);
  943. if (jerk > max_jerk[axis]) {
  944. // The actual jerk is lower, if it has been limited by the XY jerk.
  945. if (limited) {
  946. // Spare one division by a following gymnastics:
  947. // Instead of jerk *= safe_speed / block->nominal_speed,
  948. // multiply max_jerk[axis] by the divisor.
  949. jerk *= safe_speed;
  950. float mjerk = max_jerk[axis] * block->nominal_speed;
  951. if (jerk > mjerk) {
  952. safe_speed *= mjerk / jerk;
  953. limited = true;
  954. }
  955. } else {
  956. safe_speed = max_jerk[axis];
  957. limited = true;
  958. }
  959. }
  960. }
  961. // Reset the block flag.
  962. block->flag = 0;
  963. // Initial limit on the segment entry velocity.
  964. float vmax_junction;
  965. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  966. // Is it because we don't want to tinker with the first buffer line, which
  967. // is likely to be executed by the stepper interrupt routine soon?
  968. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  969. // Estimate a maximum velocity allowed at a joint of two successive segments.
  970. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  971. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  972. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  973. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  974. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  975. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  976. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  977. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  978. float v_factor = 1.f;
  979. limited = false;
  980. // Now limit the jerk in all axes.
  981. for (uint8_t axis = 0; axis < 4; ++ axis) {
  982. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  983. float v_exit = previous_speed[axis];
  984. float v_entry = current_speed [axis];
  985. if (prev_speed_larger)
  986. v_exit *= smaller_speed_factor;
  987. if (limited) {
  988. v_exit *= v_factor;
  989. v_entry *= v_factor;
  990. }
  991. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  992. float jerk =
  993. (v_exit > v_entry) ?
  994. ((v_entry > 0.f || v_exit < 0.f) ?
  995. // coasting
  996. (v_exit - v_entry) :
  997. // axis reversal
  998. max(v_exit, - v_entry)) :
  999. // v_exit <= v_entry
  1000. ((v_entry < 0.f || v_exit > 0.f) ?
  1001. // coasting
  1002. (v_entry - v_exit) :
  1003. // axis reversal
  1004. max(- v_exit, v_entry));
  1005. if (jerk > max_jerk[axis]) {
  1006. v_factor *= max_jerk[axis] / jerk;
  1007. limited = true;
  1008. }
  1009. }
  1010. if (limited)
  1011. vmax_junction *= v_factor;
  1012. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1013. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1014. float vmax_junction_threshold = vmax_junction * 0.99f;
  1015. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1016. // Not coasting. The machine will stop and start the movements anyway,
  1017. // better to start the segment from start.
  1018. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1019. vmax_junction = safe_speed;
  1020. }
  1021. } else {
  1022. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1023. vmax_junction = safe_speed;
  1024. }
  1025. // Max entry speed of this block equals the max exit speed of the previous block.
  1026. block->max_entry_speed = vmax_junction;
  1027. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1028. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1029. block->entry_speed = min(vmax_junction, v_allowable);
  1030. // Initialize planner efficiency flags
  1031. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1032. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1033. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1034. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1035. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1036. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1037. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1038. // Always calculate trapezoid for new block
  1039. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1040. // Update previous path unit_vector and nominal speed
  1041. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1042. previous_nominal_speed = block->nominal_speed;
  1043. previous_safe_speed = safe_speed;
  1044. #ifdef LIN_ADVANCE
  1045. //
  1046. // Use LIN_ADVANCE for blocks if all these are true:
  1047. //
  1048. // esteps : We have E steps todo (a printing move)
  1049. //
  1050. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1051. //
  1052. // extruder_advance_k : There is an advance factor set.
  1053. //
  1054. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1055. // In that case, the retract and move will be executed together.
  1056. // This leads to too many advance steps due to a huge e_acceleration.
  1057. // The math is good, but we must avoid retract moves with advance!
  1058. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1059. //
  1060. block->use_advance_lead = block->steps_e
  1061. && (block->steps_x || block->steps_y)
  1062. && extruder_advance_k
  1063. && (uint32_t)block->steps_e != block->step_event_count
  1064. && de_float > 0.0;
  1065. if (block->use_advance_lead)
  1066. block->abs_adv_steps_multiplier8 = lround(
  1067. extruder_advance_k
  1068. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1069. * (block->nominal_speed / (float)block->nominal_rate)
  1070. * axis_steps_per_unit[E_AXIS] * 256.0
  1071. );
  1072. #endif
  1073. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1074. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1075. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1076. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1077. block_buffer_head = next_buffer_head;
  1078. // Update position
  1079. memcpy(position, target, sizeof(target)); // position[] = target[]
  1080. #ifdef LIN_ADVANCE
  1081. position_float[X_AXIS] = x;
  1082. position_float[Y_AXIS] = y;
  1083. position_float[Z_AXIS] = z;
  1084. position_float[E_AXIS] = e;
  1085. #endif
  1086. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1087. // the machine limits (maximum acceleration and maximum jerk).
  1088. // This runs asynchronously with the stepper interrupt controller, which may
  1089. // interfere with the process.
  1090. planner_recalculate(safe_speed);
  1091. // SERIAL_ECHOPGM("Q");
  1092. // SERIAL_ECHO(int(moves_planned()));
  1093. // SERIAL_ECHOLNPGM("");
  1094. #ifdef PLANNER_DIAGNOSTICS
  1095. planner_update_queue_min_counter();
  1096. #endif /* PLANNER_DIAGNOSTIC */
  1097. st_wake_up();
  1098. }
  1099. #ifdef ENABLE_AUTO_BED_LEVELING
  1100. vector_3 plan_get_position() {
  1101. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1102. //position.debug("in plan_get position");
  1103. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1104. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1105. //inverse.debug("in plan_get inverse");
  1106. position.apply_rotation(inverse);
  1107. //position.debug("after rotation");
  1108. return position;
  1109. }
  1110. #endif // ENABLE_AUTO_BED_LEVELING
  1111. void plan_set_position(float x, float y, float z, const float &e)
  1112. {
  1113. #ifdef ENABLE_AUTO_BED_LEVELING
  1114. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1115. #endif // ENABLE_AUTO_BED_LEVELING
  1116. // Apply the machine correction matrix.
  1117. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1118. {
  1119. float tmpx = x;
  1120. float tmpy = y;
  1121. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1122. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1123. }
  1124. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1125. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1126. #ifdef MESH_BED_LEVELING
  1127. position[Z_AXIS] = mbl.active ?
  1128. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1129. lround(z*axis_steps_per_unit[Z_AXIS]);
  1130. #else
  1131. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1132. #endif // ENABLE_MESH_BED_LEVELING
  1133. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1134. #ifdef LIN_ADVANCE
  1135. position_float[X_AXIS] = x;
  1136. position_float[Y_AXIS] = y;
  1137. position_float[Z_AXIS] = z;
  1138. position_float[E_AXIS] = e;
  1139. #endif
  1140. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1141. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1142. previous_speed[0] = 0.0;
  1143. previous_speed[1] = 0.0;
  1144. previous_speed[2] = 0.0;
  1145. previous_speed[3] = 0.0;
  1146. }
  1147. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1148. void plan_set_z_position(const float &z)
  1149. {
  1150. #ifdef LIN_ADVANCE
  1151. position_float[Z_AXIS] = z;
  1152. #endif
  1153. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1154. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1155. }
  1156. void plan_set_e_position(const float &e)
  1157. {
  1158. #ifdef LIN_ADVANCE
  1159. position_float[E_AXIS] = e;
  1160. #endif
  1161. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1162. st_set_e_position(position[E_AXIS]);
  1163. }
  1164. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1165. void set_extrude_min_temp(float temp)
  1166. {
  1167. extrude_min_temp=temp;
  1168. }
  1169. #endif
  1170. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1171. void reset_acceleration_rates()
  1172. {
  1173. for(int8_t i=0; i < NUM_AXIS; i++)
  1174. {
  1175. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1176. }
  1177. }
  1178. unsigned char number_of_blocks() {
  1179. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1180. }
  1181. #ifdef PLANNER_DIAGNOSTICS
  1182. uint8_t planner_queue_min()
  1183. {
  1184. return g_cntr_planner_queue_min;
  1185. }
  1186. void planner_queue_min_reset()
  1187. {
  1188. g_cntr_planner_queue_min = moves_planned();
  1189. }
  1190. #endif /* PLANNER_DIAGNOSTICS */
  1191. void planner_add_sd_length(uint16_t sdlen)
  1192. {
  1193. if (block_buffer_head != block_buffer_tail) {
  1194. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1195. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1196. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1197. } else {
  1198. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1199. // at a power panic, so the length of this command may be forgotten.
  1200. }
  1201. }
  1202. uint16_t planner_calc_sd_length()
  1203. {
  1204. unsigned char _block_buffer_head = block_buffer_head;
  1205. unsigned char _block_buffer_tail = block_buffer_tail;
  1206. uint16_t sdlen = 0;
  1207. while (_block_buffer_head != _block_buffer_tail)
  1208. {
  1209. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1210. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1211. }
  1212. return sdlen;
  1213. }