LiquidCrystal_Prusa.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. #include "LiquidCrystal_Prusa.h"
  2. #include <stdio.h>
  3. #include <string.h>
  4. #include <inttypes.h>
  5. #include "Arduino.h"
  6. // When the display powers up, it is configured as follows:
  7. //
  8. // 1. Display clear
  9. // 2. Function set:
  10. // DL = 1; 8-bit interface data
  11. // N = 0; 1-line display
  12. // F = 0; 5x8 dot character font
  13. // 3. Display on/off control:
  14. // D = 0; Display off
  15. // C = 0; Cursor off
  16. // B = 0; Blinking off
  17. // 4. Entry mode set:
  18. // I/D = 1; Increment by 1
  19. // S = 0; No shift
  20. //
  21. // Note, however, that resetting the Arduino doesn't reset the LCD, so we
  22. // can't assume that it's in that state when a sketch starts (and the
  23. // LiquidCrystal_Prusa constructor is called).
  24. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
  25. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  26. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  27. {
  28. init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);
  29. }
  30. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
  31. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  32. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  33. {
  34. init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7);
  35. }
  36. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
  37. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
  38. {
  39. init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0);
  40. }
  41. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
  42. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
  43. {
  44. init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
  45. }
  46. void LiquidCrystal_Prusa::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
  47. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  48. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  49. {
  50. _rs_pin = rs;
  51. _rw_pin = rw;
  52. _enable_pin = enable;
  53. _data_pins[0] = d0;
  54. _data_pins[1] = d1;
  55. _data_pins[2] = d2;
  56. _data_pins[3] = d3;
  57. _data_pins[4] = d4;
  58. _data_pins[5] = d5;
  59. _data_pins[6] = d6;
  60. _data_pins[7] = d7;
  61. pinMode(_rs_pin, OUTPUT);
  62. // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
  63. if (_rw_pin != 255) {
  64. pinMode(_rw_pin, OUTPUT);
  65. }
  66. pinMode(_enable_pin, OUTPUT);
  67. if (fourbitmode)
  68. _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
  69. else
  70. _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
  71. begin(16, 1);
  72. }
  73. void LiquidCrystal_Prusa::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
  74. if (lines > 1) {
  75. _displayfunction |= LCD_2LINE;
  76. }
  77. _numlines = lines;
  78. _currline = 0;
  79. // for some 1 line displays you can select a 10 pixel high font
  80. if ((dotsize != 0) && (lines == 1)) {
  81. _displayfunction |= LCD_5x10DOTS;
  82. }
  83. // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
  84. // according to datasheet, we need at least 40ms after power rises above 2.7V
  85. // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
  86. delayMicroseconds(50000);
  87. // Now we pull both RS and R/W low to begin commands
  88. digitalWrite(_rs_pin, LOW);
  89. digitalWrite(_enable_pin, LOW);
  90. if (_rw_pin != 255) {
  91. digitalWrite(_rw_pin, LOW);
  92. }
  93. //put the LCD into 4 bit or 8 bit mode
  94. if (! (_displayfunction & LCD_8BITMODE)) {
  95. // this is according to the hitachi HD44780 datasheet
  96. // figure 24, pg 46
  97. // we start in 8bit mode, try to set 4 bit mode
  98. write4bits(0x03);
  99. delayMicroseconds(4500); // wait min 4.1ms
  100. // second try
  101. write4bits(0x03);
  102. delayMicroseconds(4500); // wait min 4.1ms
  103. // third go!
  104. write4bits(0x03);
  105. delayMicroseconds(150);
  106. // finally, set to 4-bit interface
  107. write4bits(0x02);
  108. } else {
  109. // this is according to the hitachi HD44780 datasheet
  110. // page 45 figure 23
  111. // Send function set command sequence
  112. command(LCD_FUNCTIONSET | _displayfunction);
  113. delayMicroseconds(4500); // wait more than 4.1ms
  114. // second try
  115. command(LCD_FUNCTIONSET | _displayfunction);
  116. delayMicroseconds(150);
  117. // third go
  118. command(LCD_FUNCTIONSET | _displayfunction);
  119. }
  120. // finally, set # lines, font size, etc.
  121. command(LCD_FUNCTIONSET | _displayfunction);
  122. delayMicroseconds(60);
  123. // turn the display on with no cursor or blinking default
  124. _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
  125. display();
  126. delayMicroseconds(60);
  127. // clear it off
  128. clear();
  129. delayMicroseconds(3000);
  130. // Initialize to default text direction (for romance languages)
  131. _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
  132. // set the entry mode
  133. command(LCD_ENTRYMODESET | _displaymode);
  134. delayMicroseconds(60);
  135. _escape[0] = 0;
  136. }
  137. void LiquidCrystal_Prusa::begin_noclear(uint8_t cols, uint8_t lines, uint8_t dotsize) {
  138. if (lines > 1) {
  139. _displayfunction |= LCD_2LINE;
  140. }
  141. _numlines = lines;
  142. _currline = 0;
  143. // for some 1 line displays you can select a 10 pixel high font
  144. if ((dotsize != 0) && (lines == 1)) {
  145. _displayfunction |= LCD_5x10DOTS;
  146. }
  147. // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
  148. // according to datasheet, we need at least 40ms after power rises above 2.7V
  149. // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
  150. delayMicroseconds(50000);
  151. // Now we pull both RS and R/W low to begin commands
  152. digitalWrite(_rs_pin, LOW);
  153. digitalWrite(_enable_pin, LOW);
  154. if (_rw_pin != 255) {
  155. digitalWrite(_rw_pin, LOW);
  156. }
  157. //put the LCD into 4 bit or 8 bit mode
  158. if (! (_displayfunction & LCD_8BITMODE)) {
  159. // this is according to the hitachi HD44780 datasheet
  160. // figure 24, pg 46
  161. // we start in 8bit mode, try to set 4 bit mode
  162. write4bits(0x03);
  163. delayMicroseconds(4500); // wait min 4.1ms
  164. // second try
  165. write4bits(0x03);
  166. delayMicroseconds(4500); // wait min 4.1ms
  167. // third go!
  168. write4bits(0x03);
  169. delayMicroseconds(150);
  170. // finally, set to 4-bit interface
  171. write4bits(0x02);
  172. } else {
  173. // this is according to the hitachi HD44780 datasheet
  174. // page 45 figure 23
  175. // Send function set command sequence
  176. command(LCD_FUNCTIONSET | _displayfunction);
  177. delayMicroseconds(4500); // wait more than 4.1ms
  178. // second try
  179. command(LCD_FUNCTIONSET | _displayfunction);
  180. delayMicroseconds(150);
  181. // third go
  182. command(LCD_FUNCTIONSET | _displayfunction);
  183. }
  184. // finally, set # lines, font size, etc.
  185. command(LCD_FUNCTIONSET | _displayfunction);
  186. delayMicroseconds(60);
  187. // turn the display on with no cursor or blinking default
  188. _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
  189. display();
  190. delayMicroseconds(60);
  191. // clear it off
  192. //clear();
  193. home();
  194. delayMicroseconds(1600);
  195. // Initialize to default text direction (for romance languages)
  196. _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
  197. // set the entry mode
  198. command(LCD_ENTRYMODESET | _displaymode);
  199. delayMicroseconds(60);
  200. setCursor(8,0);
  201. print(" ");
  202. setCursor(8,1);
  203. print(" ");
  204. setCursor(6,2);
  205. print(" ");
  206. }
  207. /********** high level commands, for the user! */
  208. void LiquidCrystal_Prusa::clear()
  209. {
  210. command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
  211. delayMicroseconds(1600); // this command takes a long time
  212. }
  213. void LiquidCrystal_Prusa::home()
  214. {
  215. command(LCD_RETURNHOME); // set cursor position to zero
  216. delayMicroseconds(1600); // this command takes a long time!
  217. }
  218. void LiquidCrystal_Prusa::setCursor(uint8_t col, uint8_t row)
  219. {
  220. int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
  221. if ( row >= _numlines ) {
  222. row = _numlines-1; // we count rows starting w/0
  223. }
  224. command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
  225. }
  226. // Turn the display on/off (quickly)
  227. void LiquidCrystal_Prusa::noDisplay() {
  228. _displaycontrol &= ~LCD_DISPLAYON;
  229. command(LCD_DISPLAYCONTROL | _displaycontrol);
  230. }
  231. void LiquidCrystal_Prusa::display() {
  232. _displaycontrol |= LCD_DISPLAYON;
  233. command(LCD_DISPLAYCONTROL | _displaycontrol);
  234. }
  235. // Turns the underline cursor on/off
  236. void LiquidCrystal_Prusa::noCursor() {
  237. _displaycontrol &= ~LCD_CURSORON;
  238. command(LCD_DISPLAYCONTROL | _displaycontrol);
  239. }
  240. void LiquidCrystal_Prusa::cursor() {
  241. _displaycontrol |= LCD_CURSORON;
  242. command(LCD_DISPLAYCONTROL | _displaycontrol);
  243. }
  244. // Turn on and off the blinking cursor
  245. void LiquidCrystal_Prusa::noBlink() {
  246. _displaycontrol &= ~LCD_BLINKON;
  247. command(LCD_DISPLAYCONTROL | _displaycontrol);
  248. }
  249. void LiquidCrystal_Prusa::blink() {
  250. _displaycontrol |= LCD_BLINKON;
  251. command(LCD_DISPLAYCONTROL | _displaycontrol);
  252. }
  253. // These commands scroll the display without changing the RAM
  254. void LiquidCrystal_Prusa::scrollDisplayLeft(void) {
  255. command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
  256. }
  257. void LiquidCrystal_Prusa::scrollDisplayRight(void) {
  258. command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
  259. }
  260. // This is for text that flows Left to Right
  261. void LiquidCrystal_Prusa::leftToRight(void) {
  262. _displaymode |= LCD_ENTRYLEFT;
  263. command(LCD_ENTRYMODESET | _displaymode);
  264. }
  265. // This is for text that flows Right to Left
  266. void LiquidCrystal_Prusa::rightToLeft(void) {
  267. _displaymode &= ~LCD_ENTRYLEFT;
  268. command(LCD_ENTRYMODESET | _displaymode);
  269. }
  270. // This will 'right justify' text from the cursor
  271. void LiquidCrystal_Prusa::autoscroll(void) {
  272. _displaymode |= LCD_ENTRYSHIFTINCREMENT;
  273. command(LCD_ENTRYMODESET | _displaymode);
  274. }
  275. // This will 'left justify' text from the cursor
  276. void LiquidCrystal_Prusa::noAutoscroll(void) {
  277. _displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
  278. command(LCD_ENTRYMODESET | _displaymode);
  279. }
  280. // Allows us to fill the first 8 CGRAM locations
  281. // with custom characters
  282. void LiquidCrystal_Prusa::createChar(uint8_t location, uint8_t charmap[]) {
  283. location &= 0x7; // we only have 8 locations 0-7
  284. command(LCD_SETCGRAMADDR | (location << 3));
  285. for (int i=0; i<8; i++) {
  286. write(charmap[i]);
  287. }
  288. }
  289. /*********** mid level commands, for sending data/cmds */
  290. inline void LiquidCrystal_Prusa::command(uint8_t value) {
  291. send(value, LOW);
  292. }
  293. inline size_t LiquidCrystal_Prusa::write(uint8_t value) {
  294. if (_escape[0] || (value == 0x1b))
  295. return escape_write(value);
  296. send(value, HIGH);
  297. return 1; // assume sucess
  298. }
  299. //Supported VT100 escape codes:
  300. //EraseScreen "\x1b[2J"
  301. //CursorHome "\x1b[%d;%dH"
  302. //CursorShow "\x1b[?25h"
  303. //CursorHide "\x1b[?25l"
  304. inline size_t LiquidCrystal_Prusa::escape_write(uint8_t chr)
  305. {
  306. #define escape_cnt (_escape[0]) //escape character counter
  307. #define is_num_msk (_escape[1]) //numeric character bit mask
  308. #define chr_is_num (is_num_msk & 0x01) //current character is numeric
  309. #define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric
  310. #define e_3_is_num (is_num_msk & 0x08) //...
  311. #define e_4_is_num (is_num_msk & 0x10)
  312. #define e_5_is_num (is_num_msk & 0x20)
  313. #define e_6_is_num (is_num_msk & 0x40)
  314. #define e_7_is_num (is_num_msk & 0x80)
  315. #define e2_num (_escape[2] - '0') //number from character 2
  316. #define e3_num (_escape[3] - '0') //number from character 3
  317. #define e23_num (10*e2_num+e3_num) //number from characters 2 and 3
  318. #define e4_num (_escape[4] - '0') //number from character 4
  319. #define e5_num (_escape[5] - '0') //number from character 5
  320. #define e45_num (10*e4_num+e5_num) //number from characters 4 and 5
  321. #define e6_num (_escape[6] - '0') //number from character 6
  322. #define e56_num (10*e5_num+e6_num) //number from characters 5 and 6
  323. if (escape_cnt > 1) // escape length > 1 = "\x1b["
  324. {
  325. _escape[escape_cnt] = chr; // store current char
  326. if ((chr >= '0') && (chr <= '9')) // char is numeric
  327. is_num_msk |= (1 | (1 << escape_cnt)); //set mask
  328. else
  329. is_num_msk &= ~1; //clear mask
  330. }
  331. switch (escape_cnt++)
  332. {
  333. case 0:
  334. if (chr == 0x1b) return 1; // escape = "\x1b"
  335. break;
  336. case 1:
  337. is_num_msk = 0x00; // reset 'is number' bit mask
  338. if (chr == '[') return 1; // escape = "\x1b["
  339. break;
  340. case 2:
  341. switch (chr)
  342. {
  343. case '2': return 1; // escape = "\x1b[2"
  344. case '?': return 1; // escape = "\x1b[?"
  345. default:
  346. if (chr_is_num) return 1; // escape = "\x1b[%1d"
  347. }
  348. break;
  349. case 3:
  350. switch (_escape[2])
  351. {
  352. case '?': // escape = "\x1b[?"
  353. if (chr == '2') return 1; // escape = "\x1b[?2"
  354. break;
  355. case '2':
  356. if (chr == 'J') // escape = "\x1b[2J"
  357. { clear(); break; } // EraseScreen
  358. default:
  359. if (e_2_is_num && // escape = "\x1b[%1d"
  360. ((chr == ';') || // escape = "\x1b[%1d;"
  361. chr_is_num)) // escape = "\x1b[%2d"
  362. return 1;
  363. }
  364. break;
  365. case 4:
  366. switch (_escape[2])
  367. {
  368. case '?': // "\x1b[?"
  369. if ((_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25"
  370. break;
  371. default:
  372. if (e_2_is_num) // escape = "\x1b[%1d"
  373. {
  374. if ((_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d"
  375. else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;"
  376. }
  377. }
  378. break;
  379. case 5:
  380. switch (_escape[2])
  381. {
  382. case '?':
  383. if ((_escape[3] == '2') && (_escape[4] == '5')) // escape = "\x1b[?25"
  384. switch (chr)
  385. {
  386. case 'h': // escape = "\x1b[?25h"
  387. void cursor(); // CursorShow
  388. break;
  389. case 'l': // escape = "\x1b[?25l"
  390. noCursor(); // CursorHide
  391. break;
  392. }
  393. break;
  394. default:
  395. if (e_2_is_num) // escape = "\x1b[%1d"
  396. {
  397. if ((_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH"
  398. {
  399. if (chr == 'H') // escape = "\x1b%1d;%1dH"
  400. setCursor(e4_num, e2_num); // CursorHome
  401. else if (chr_is_num)
  402. return 1; // escape = "\x1b%1d;%2d"
  403. }
  404. else if (e_3_is_num && (_escape[4] == ';') && chr_is_num)
  405. return 1; // escape = "\x1b%2d;%1d"
  406. }
  407. }
  408. break;
  409. case 6:
  410. if (e_2_is_num) // escape = "\x1b[%1d"
  411. {
  412. if ((_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH"
  413. setCursor(e45_num, e2_num); // CursorHome
  414. else if (e_3_is_num && (_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d"
  415. {
  416. if (chr == 'H') // escape = "\x1b%2d;%1dH"
  417. setCursor(e5_num, e23_num); // CursorHome
  418. else if (chr_is_num) // "\x1b%2d;%2d"
  419. return 1;
  420. }
  421. }
  422. break;
  423. case 7:
  424. if (e_2_is_num && e_3_is_num && (_escape[4] == ';')) // "\x1b[%2d;"
  425. if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH"
  426. setCursor(e56_num, e23_num); // CursorHome
  427. break;
  428. }
  429. escape_cnt = 0; // reset escape
  430. end:
  431. return 1; // assume sucess
  432. }
  433. /************ low level data pushing commands **********/
  434. // write either command or data, with automatic 4/8-bit selection
  435. void LiquidCrystal_Prusa::send(uint8_t value, uint8_t mode) {
  436. digitalWrite(_rs_pin, mode);
  437. // if there is a RW pin indicated, set it low to Write
  438. if (_rw_pin != 255) {
  439. digitalWrite(_rw_pin, LOW);
  440. }
  441. if (_displayfunction & LCD_8BITMODE) {
  442. write8bits(value);
  443. } else {
  444. write4bits(value>>4);
  445. write4bits(value);
  446. }
  447. }
  448. void LiquidCrystal_Prusa::pulseEnable(void) {
  449. digitalWrite(_enable_pin, LOW);
  450. delayMicroseconds(1);
  451. digitalWrite(_enable_pin, HIGH);
  452. delayMicroseconds(1); // enable pulse must be >450ns
  453. digitalWrite(_enable_pin, LOW);
  454. delayMicroseconds(100); // commands need > 37us to settle
  455. }
  456. void LiquidCrystal_Prusa::write4bits(uint8_t value) {
  457. for (int i = 0; i < 4; i++) {
  458. pinMode(_data_pins[i], OUTPUT);
  459. digitalWrite(_data_pins[i], (value >> i) & 0x01);
  460. }
  461. pulseEnable();
  462. }
  463. void LiquidCrystal_Prusa::write8bits(uint8_t value) {
  464. for (int i = 0; i < 8; i++) {
  465. pinMode(_data_pins[i], OUTPUT);
  466. digitalWrite(_data_pins[i], (value >> i) & 0x01);
  467. }
  468. pulseEnable();
  469. }
  470. void LiquidCrystal_Prusa::print(const char* s)
  471. {
  472. while (*s) write(*(s++));
  473. }
  474. void LiquidCrystal_Prusa::print(char c, int base)
  475. {
  476. print((long) c, base);
  477. }
  478. void LiquidCrystal_Prusa::print(unsigned char b, int base)
  479. {
  480. print((unsigned long) b, base);
  481. }
  482. void LiquidCrystal_Prusa::print(int n, int base)
  483. {
  484. print((long) n, base);
  485. }
  486. void LiquidCrystal_Prusa::print(unsigned int n, int base)
  487. {
  488. print((unsigned long) n, base);
  489. }
  490. void LiquidCrystal_Prusa::print(long n, int base)
  491. {
  492. if (base == 0) {
  493. write(n);
  494. } else if (base == 10) {
  495. if (n < 0) {
  496. print('-');
  497. n = -n;
  498. }
  499. printNumber(n, 10);
  500. } else {
  501. printNumber(n, base);
  502. }
  503. }
  504. void LiquidCrystal_Prusa::print(unsigned long n, int base)
  505. {
  506. if (base == 0) write(n);
  507. else printNumber(n, base);
  508. }
  509. void LiquidCrystal_Prusa::print(double n, int digits)
  510. {
  511. printFloat(n, digits);
  512. }
  513. void LiquidCrystal_Prusa::println(void)
  514. {
  515. print('\r');
  516. print('\n');
  517. }
  518. /*void LiquidCrystal_Prusa::println(const String &s)
  519. {
  520. print(s);
  521. println();
  522. }*/
  523. void LiquidCrystal_Prusa::println(const char c[])
  524. {
  525. print(c);
  526. println();
  527. }
  528. void LiquidCrystal_Prusa::println(char c, int base)
  529. {
  530. print(c, base);
  531. println();
  532. }
  533. void LiquidCrystal_Prusa::println(unsigned char b, int base)
  534. {
  535. print(b, base);
  536. println();
  537. }
  538. void LiquidCrystal_Prusa::println(int n, int base)
  539. {
  540. print(n, base);
  541. println();
  542. }
  543. void LiquidCrystal_Prusa::println(unsigned int n, int base)
  544. {
  545. print(n, base);
  546. println();
  547. }
  548. void LiquidCrystal_Prusa::println(long n, int base)
  549. {
  550. print(n, base);
  551. println();
  552. }
  553. void LiquidCrystal_Prusa::println(unsigned long n, int base)
  554. {
  555. print(n, base);
  556. println();
  557. }
  558. void LiquidCrystal_Prusa::println(double n, int digits)
  559. {
  560. print(n, digits);
  561. println();
  562. }
  563. void LiquidCrystal_Prusa::printNumber(unsigned long n, uint8_t base)
  564. {
  565. unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
  566. unsigned long i = 0;
  567. if (n == 0) {
  568. print('0');
  569. return;
  570. }
  571. while (n > 0) {
  572. buf[i++] = n % base;
  573. n /= base;
  574. }
  575. for (; i > 0; i--)
  576. print((char) (buf[i - 1] < 10 ?
  577. '0' + buf[i - 1] :
  578. 'A' + buf[i - 1] - 10));
  579. }
  580. void LiquidCrystal_Prusa::printFloat(double number, uint8_t digits)
  581. {
  582. // Handle negative numbers
  583. if (number < 0.0)
  584. {
  585. print('-');
  586. number = -number;
  587. }
  588. // Round correctly so that print(1.999, 2) prints as "2.00"
  589. double rounding = 0.5;
  590. for (uint8_t i=0; i<digits; ++i)
  591. rounding /= 10.0;
  592. number += rounding;
  593. // Extract the integer part of the number and print it
  594. unsigned long int_part = (unsigned long)number;
  595. double remainder = number - (double)int_part;
  596. print(int_part);
  597. // Print the decimal point, but only if there are digits beyond
  598. if (digits > 0)
  599. print(".");
  600. // Extract digits from the remainder one at a time
  601. while (digits-- > 0)
  602. {
  603. remainder *= 10.0;
  604. int toPrint = int(remainder);
  605. print(toPrint);
  606. remainder -= toPrint;
  607. }
  608. }