123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189 |
- #include "Marlin.h"
- #include "Configuration.h"
- #include "ConfigurationStore.h"
- #include "language.h"
- #include "mesh_bed_calibration.h"
- #include "mesh_bed_leveling.h"
- #include "stepper.h"
- #include "ultralcd.h"
- #ifdef TMC2130
- #include "tmc2130.h"
- #endif //TMC2130
- uint8_t world2machine_correction_mode;
- float world2machine_rotation_and_skew[2][2];
- float world2machine_rotation_and_skew_inv[2][2];
- float world2machine_shift[2];
- // Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
- // Only used for the first row of the points, which may not befully in reach of the sensor.
- #define WEIGHT_FIRST_ROW_X_HIGH (1.f)
- #define WEIGHT_FIRST_ROW_X_LOW (0.35f)
- #define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
- #define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
- // Scaling of the real machine axes against the programmed dimensions in the firmware.
- // The correction is tiny, here around 0.5mm on 250mm length.
- //#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
- //#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
- #define MACHINE_AXIS_SCALE_X 1.f
- #define MACHINE_AXIS_SCALE_Y 1.f
- #define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
- #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
- #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
- #define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
- //#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
- #define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
- // Distances toward the print bed edge may not be accurate.
- #define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
- // When the measured point center is out of reach of the sensor, Y coordinate will be ignored
- // by the Least Squares fitting and the X coordinate will be weighted low.
- #define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
- // 0.12 degrees equals to an offset of 0.5mm on 250mm length.
- const float bed_skew_angle_mild = (0.12f * M_PI / 180.f);
- // 0.25 degrees equals to an offset of 1.1mm on 250mm length.
- const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
- // The points are ordered in a zig-zag fashion to speed up the calibration.
- #ifdef HEATBED_V2
- /**
- * [0,0] bed print area point X coordinate in bed coordinates ver. 05d/24V
- */
- #define BED_PRINT_ZERO_REF_X 2.f
- /**
- * [0,0] bed print area point Y coordinate in bed coordinates ver. 05d/24V
- */
- #define BED_PRINT_ZERO_REF_Y 9.4f
- /**
- * @brief Positions of the bed reference points in print area coordinates. ver. 05d/24V
- *
- * Numeral constants are in bed coordinates, subtracting macro defined values converts it to print area coordinates.
- *
- * The points are the following:
- * MK2: center front, center right, center rear, center left.
- * MK25 and MK3: front left, front right, rear right, rear left
- */
- const float bed_ref_points_4[] PROGMEM = {
- 37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
- 18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
- 245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
- 18.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
- 245.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
- 210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y,
- 37.f - BED_PRINT_ZERO_REF_X - X_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_X,
- 210.4f - BED_PRINT_ZERO_REF_Y - Y_PROBE_OFFSET_FROM_EXTRUDER - SHEET_PRINT_ZERO_REF_Y
- };
- #else
- // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
- // The points are the following: center front, center right, center rear, center left.
- const float bed_ref_points_4[] PROGMEM = {
- 115.f - BED_ZERO_REF_X, 8.4f - BED_ZERO_REF_Y,
- 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
- 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
- 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
- };
- #endif //not HEATBED_V2
- static inline float sqr(float x) { return x * x; }
- #ifdef HEATBED_V2
- static inline bool point_on_1st_row(const uint8_t /*i*/)
- {
- return false;
- }
- #else //HEATBED_V2
- static inline bool point_on_1st_row(const uint8_t i)
- {
- return (i < 3);
- }
- #endif //HEATBED_V2
- // Weight of a point coordinate in a least squares optimization.
- // The first row of points may not be fully reachable
- // and the y values may be shortened a bit by the bed carriage
- // pulling the belt up.
- static inline float point_weight_x(const uint8_t i, const float &y)
- {
- float w = 1.f;
- if (point_on_1st_row(i)) {
- if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
- w = WEIGHT_FIRST_ROW_X_HIGH;
- } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
- // If the point is fully outside, give it some weight.
- w = WEIGHT_FIRST_ROW_X_LOW;
- } else {
- // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
- float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
- w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
- }
- }
- return w;
- }
- // Weight of a point coordinate in a least squares optimization.
- // The first row of points may not be fully reachable
- // and the y values may be shortened a bit by the bed carriage
- // pulling the belt up.
- static inline float point_weight_y(const uint8_t i, const float &y)
- {
- float w = 1.f;
- if (point_on_1st_row(i)) {
- if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
- w = WEIGHT_FIRST_ROW_Y_HIGH;
- } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
- // If the point is fully outside, give it some weight.
- w = WEIGHT_FIRST_ROW_Y_LOW;
- } else {
- // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
- float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
- w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
- }
- }
- return w;
- }
- /**
- * @brief Calculate machine skew and offset
- *
- * Non-Linear Least Squares fitting of the bed to the measured induction points
- * using the Gauss-Newton method.
- * This method will maintain a unity length of the machine axes,
- * which is the correct approach if the sensor points are not measured precisely.
- * @param measured_pts Matrix of 2D points (maximum 18 floats)
- * @param npts Number of points (maximum 9)
- * @param true_pts
- * @param [out] vec_x Resulting correction matrix. X axis vector
- * @param [out] vec_y Resulting correction matrix. Y axis vector
- * @param [out] cntr Resulting correction matrix. [0;0] pont offset
- * @param verbosity_level
- * @return BedSkewOffsetDetectionResultType
- */
- BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
- const float *measured_pts,
- uint8_t npts,
- const float *true_pts,
- float *vec_x,
- float *vec_y,
- float *cntr,
- int8_t
- #ifdef SUPPORT_VERBOSITY
- verbosity_level
- #endif //SUPPORT_VERBOSITY
- )
- {
- float angleDiff;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) {
- SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
- // Show the initial state, before the fitting.
- SERIAL_ECHOPGM("X vector, initial: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, initial: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, initial: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- for (uint8_t i = 0; i < npts; ++i) {
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM(" measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(
- sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
- sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- #endif // SUPPORT_VERBOSITY
- // Run some iterations of the Gauss-Newton method of non-linear least squares.
- // Initial set of parameters:
- // X,Y offset
- cntr[0] = 0.f;
- cntr[1] = 0.f;
- // Rotation of the machine X axis from the bed X axis.
- float a1 = 0;
- // Rotation of the machine Y axis from the bed Y axis.
- float a2 = 0;
- for (int8_t iter = 0; iter < 100; ++iter) {
- float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
- float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
- float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
- float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
- // Prepare the Normal equation for the Gauss-Newton method.
- float A[4][4] = { 0.f };
- float b[4] = { 0.f };
- float acc;
- delay_keep_alive(0); //manage heater, reset watchdog, manage inactivity
- for (uint8_t r = 0; r < 4; ++r) {
- for (uint8_t c = 0; c < 4; ++c) {
- acc = 0;
- // J^T times J
- for (uint8_t i = 0; i < npts; ++i) {
- // First for the residuum in the x axis:
- if (r != 1 && c != 1) {
- float a =
- (r == 0) ? 1.f :
- ((r == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1]));
- float b =
- (c == 0) ? 1.f :
- ((c == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1]));
- float w = point_weight_x(i, measured_pts[2 * i + 1]);
- acc += a * b * w;
- }
- // Second for the residuum in the y axis.
- // The first row of the points have a low weight, because their position may not be known
- // with a sufficient accuracy.
- if (r != 0 && c != 0) {
- float a =
- (r == 1) ? 1.f :
- ((r == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1]));
- float b =
- (c == 1) ? 1.f :
- ((c == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1]));
- float w = point_weight_y(i, measured_pts[2 * i + 1]);
- acc += a * b * w;
- }
- }
- A[r][c] = acc;
- }
- // J^T times f(x)
- acc = 0.f;
- for (uint8_t i = 0; i < npts; ++i) {
- {
- float j =
- (r == 0) ? 1.f :
- ((r == 1) ? 0.f :
- ((r == 2) ? (-s1 * measured_pts[2 * i]) :
- (-c2 * measured_pts[2 * i + 1])));
- float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
- float w = point_weight_x(i, measured_pts[2 * i + 1]);
- acc += j * fx * w;
- }
- {
- float j =
- (r == 0) ? 0.f :
- ((r == 1) ? 1.f :
- ((r == 2) ? ( c1 * measured_pts[2 * i]) :
- (-s2 * measured_pts[2 * i + 1])));
- float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
- float w = point_weight_y(i, measured_pts[2 * i + 1]);
- acc += j * fy * w;
- }
- }
- b[r] = -acc;
- }
- // Solve for h by a Gauss iteration method.
- float h[4] = { 0.f };
- for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
- h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
- h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
- h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
- h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
- }
- // and update the current position with h.
- // It may be better to use the Levenberg-Marquart method here,
- // but because we are very close to the solution alread,
- // the simple Gauss-Newton non-linear Least Squares method works well enough.
- cntr[0] += h[0];
- cntr[1] += h[1];
- a1 += h[2];
- a2 += h[3];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("iteration: ");
- MYSERIAL.print(int(iter));
- SERIAL_ECHOPGM("; correction vector: ");
- MYSERIAL.print(h[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[1], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(h[3], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("corrected x/y: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("corrected angles: ");
- MYSERIAL.print(180.f * a1 / M_PI, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(180.f * a2 / M_PI, 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
- vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
- vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
- vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
- BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
- {
- angleDiff = fabs(a2 - a1);
- eeprom_update_float((float*)(EEPROM_XYZ_CAL_SKEW), angleDiff); //storing xyz cal. skew to be able to show in support menu later
- if (angleDiff > bed_skew_angle_mild)
- result = (angleDiff > bed_skew_angle_extreme) ?
- BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
- BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
- if (fabs(a1) > bed_skew_angle_extreme ||
- fabs(a2) > bed_skew_angle_extreme)
- result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 1) {
- SERIAL_ECHOPGM("correction angles: ");
- MYSERIAL.print(180.f * a1 / M_PI, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(180.f * a2 / M_PI, 5);
- SERIAL_ECHOLNPGM("");
- }
- if (verbosity_level >= 10) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector new, inverted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector new, inverted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center new, inverted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- SERIAL_ECHOLNPGM("Error after correction: ");
- }
- #endif // SUPPORT_VERBOSITY
- // Measure the error after correction.
- for (uint8_t i = 0; i < npts; ++i) {
- float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
- float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
- float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
- float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
- float err = sqrt(errX + errY);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) {
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOLNPGM(":");
- }
- #endif // SUPPORT_VERBOSITY
- if (point_on_1st_row(i)) {
- #ifdef SUPPORT_VERBOSITY
- if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
- #endif // SUPPORT_VERBOSITY
- float w = point_weight_y(i, measured_pts[2 * i + 1]);
- if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
- (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {
- result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM(", weigth Y: ");
- MYSERIAL.print(w);
- if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");
- if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");
- }
- #endif // SUPPORT_VERBOSITY
- }
- }
- else {
- #ifdef SUPPORT_VERBOSITY
- if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
- #endif // SUPPORT_VERBOSITY
- if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {
- result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
- #ifdef SUPPORT_VERBOSITY
- if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian");
- #endif // SUPPORT_VERBOSITY
- }
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOLNPGM(")");
- SERIAL_ECHOPGM("error: ");
- MYSERIAL.print(err);
- SERIAL_ECHOPGM(", error X: ");
- MYSERIAL.print(sqrt(errX));
- SERIAL_ECHOPGM(", error Y: ");
- MYSERIAL.print(sqrt(errY));
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("Max. errors:");
- SERIAL_ECHOPGM("Max. error X:");
- MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X);
- SERIAL_ECHOPGM("Max. error Y:");
- MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y);
- SERIAL_ECHOPGM("Max. error euclidian:");
- MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- #if 0
- if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level > 0)
- SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
- #endif // SUPPORT_VERBOSITY
- // Just disable the skew correction.
- vec_x[0] = MACHINE_AXIS_SCALE_X;
- vec_x[1] = 0.f;
- vec_y[0] = 0.f;
- vec_y[1] = MACHINE_AXIS_SCALE_Y;
- }
- #else
- if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level > 0)
- SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
- #endif // SUPPORT_VERBOSITY
- // Orthogonalize the axes.
- a1 = 0.5f * (a1 + a2);
- vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
- vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
- vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
- vec_y[1] = cos(a1) * MACHINE_AXIS_SCALE_Y;
- // Refresh the offset.
- cntr[0] = 0.f;
- cntr[1] = 0.f;
- float wx = 0.f;
- float wy = 0.f;
- for (int8_t i = 0; i < npts; ++ i) {
- float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
- float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
- float w = point_weight_x(i, y);
- cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
- wx += w;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- MYSERIAL.print(i);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("Weight_x:");
- MYSERIAL.print(w);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("cntr[0]:");
- MYSERIAL.print(cntr[0]);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("wx:");
- MYSERIAL.print(wx);
- }
- #endif // SUPPORT_VERBOSITY
- w = point_weight_y(i, y);
- cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
- wy += w;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("Weight_y:");
- MYSERIAL.print(w);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("cntr[1]:");
- MYSERIAL.print(cntr[1]);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("wy:");
- MYSERIAL.print(wy);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- cntr[0] /= wx;
- cntr[1] /= wy;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("Final cntr values:");
- SERIAL_ECHOLNPGM("cntr[0]:");
- MYSERIAL.print(cntr[0]);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("cntr[1]:");
- MYSERIAL.print(cntr[1]);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- #endif
- // Invert the transformation matrix made of vec_x, vec_y and cntr.
- {
- float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
- float Ainv[2][2] = {
- { vec_y[1] / d, -vec_y[0] / d },
- { -vec_x[1] / d, vec_x[0] / d }
- };
- float cntrInv[2] = {
- -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
- -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
- };
- vec_x[0] = Ainv[0][0];
- vec_x[1] = Ainv[1][0];
- vec_y[0] = Ainv[0][1];
- vec_y[1] = Ainv[1][1];
- cntr[0] = cntrInv[0];
- cntr[1] = cntrInv[1];
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 1) {
- // Show the adjusted state, before the fitting.
- SERIAL_ECHOPGM("X vector, adjusted: ");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Y vector, adjusted: ");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("center, adjusted: ");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- delay_keep_alive(100);
- }
- if (verbosity_level >= 2) {
- SERIAL_ECHOLNPGM("Difference after correction: ");
- for (uint8_t i = 0; i < npts; ++i) {
- float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
- float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
- SERIAL_ECHOPGM("point #");
- MYSERIAL.print(int(i));
- SERIAL_ECHOPGM("measured: (");
- MYSERIAL.print(measured_pts[i * 2], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(measured_pts[i * 2 + 1], 5);
- SERIAL_ECHOPGM("); measured-corrected: (");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM("); target: (");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
- SERIAL_ECHOPGM("), error: ");
- MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
- SERIAL_ECHOLNPGM("");
- }
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("Calculate offset and skew returning result:");
- MYSERIAL.print(int(result));
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOLNPGM("");
- }
- delay_keep_alive(100);
- }
- #endif // SUPPORT_VERBOSITY
- return result;
- }
- /**
- * @brief Erase calibration data stored in EEPROM
- */
- void reset_bed_offset_and_skew()
- {
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
- // Reset the 8 16bit offsets.
- for (int8_t i = 0; i < 4; ++ i)
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
- }
- bool is_bed_z_jitter_data_valid()
- // offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
- // if at least one 16bit integer has different value then -1 (0x0FFFF), data are considered valid and function returns true, otherwise it returns false
- {
- bool data_valid = false;
- for (int8_t i = 0; i < 8; ++i) {
- if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + i * 2)) != 0x0FFFF) data_valid = true;
- }
- return data_valid;
- }
- static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
- {
- world2machine_rotation_and_skew[0][0] = vec_x[0];
- world2machine_rotation_and_skew[1][0] = vec_x[1];
- world2machine_rotation_and_skew[0][1] = vec_y[0];
- world2machine_rotation_and_skew[1][1] = vec_y[1];
- world2machine_shift[0] = cntr[0];
- world2machine_shift[1] = cntr[1];
- // No correction.
- world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
- if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
- // Shift correction.
- world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
- if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
- world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
- // Rotation & skew correction.
- world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
- // Invert the world2machine matrix.
- float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
- world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
- world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
- world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
- world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
- } else {
- world2machine_rotation_and_skew_inv[0][0] = 1.f;
- world2machine_rotation_and_skew_inv[0][1] = 0.f;
- world2machine_rotation_and_skew_inv[1][0] = 0.f;
- world2machine_rotation_and_skew_inv[1][1] = 1.f;
- }
- }
- /**
- * @brief Set calibration matrix to identity
- *
- * In contrast with world2machine_revert_to_uncorrected(), it doesn't wait for finishing moves
- * nor updates the current position with the absolute values.
- */
- void world2machine_reset()
- {
- const float vx[] = { 1.f, 0.f };
- const float vy[] = { 0.f, 1.f };
- const float cntr[] = { 0.f, 0.f };
- world2machine_update(vx, vy, cntr);
- }
- /**
- * @brief Get calibration matrix default value
- *
- * This is used if no valid calibration data can be read from EEPROM.
- * @param [out] vec_x axis x vector
- * @param [out] vec_y axis y vector
- * @param [out] cntr offset vector
- */
- static void world2machine_default(float vec_x[2], float vec_y[2], float cntr[2])
- {
- vec_x[0] = 1.f;
- vec_x[1] = 0.f;
- vec_y[0] = 0.f;
- vec_y[1] = 1.f;
- cntr[0] = 0.f;
- #ifdef DEFAULT_Y_OFFSET
- cntr[1] = DEFAULT_Y_OFFSET;
- #else
- cntr[1] = 0.f;
- #endif
- }
- /**
- * @brief Set calibration matrix to identity and update current position with absolute position
- *
- * Wait for the motors to stop and then update the current position with the absolute values.
- */
- void world2machine_revert_to_uncorrected()
- {
- if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
- world2machine_reset();
- st_synchronize();
- current_position[X_AXIS] = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
- }
- }
- static inline bool vec_undef(const float v[2])
- {
- const uint32_t *vx = (const uint32_t*)v;
- return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
- }
- /**
- * @brief Read calibration data from EEPROM
- *
- * If no calibration data has been stored in EEPROM or invalid,
- * world2machine_default() is used.
- *
- * If stored calibration data is invalid, EEPROM storage is cleared.
- * @param [out] vec_x axis x vector
- * @param [out] vec_y axis y vector
- * @param [out] cntr offset vector
- */
- void world2machine_read_valid(float vec_x[2], float vec_y[2], float cntr[2])
- {
- vec_x[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0));
- vec_x[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4));
- vec_y[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0));
- vec_y[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4));
- cntr[0] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0));
- cntr[1] = eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4));
- bool reset = false;
- if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y))
- {
- #if 0
- SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
- #endif
- reset = true;
- }
- else
- {
- // Length of the vec_x shall be close to unity.
- float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
- if (l < 0.9 || l > 1.1)
- {
- #if 0
- SERIAL_ECHOLNPGM("X vector length:");
- MYSERIAL.println(l);
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
- #endif
- reset = true;
- }
- // Length of the vec_y shall be close to unity.
- l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
- if (l < 0.9 || l > 1.1)
- {
- #if 0
- SERIAL_ECHOLNPGM("Y vector length:");
- MYSERIAL.println(l);
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
- #endif
- reset = true;
- }
- // Correction of the zero point shall be reasonably small.
- l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
- if (l > 15.f)
- {
- #if 0
- SERIAL_ECHOLNPGM("Zero point correction:");
- MYSERIAL.println(l);
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
- #endif
- reset = true;
- }
- // vec_x and vec_y shall be nearly perpendicular.
- l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
- if (fabs(l) > 0.1f)
- {
- #if 0
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
- #endif
- reset = true;
- }
- }
- if (reset)
- {
- #if 0
- SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
- #endif
- reset_bed_offset_and_skew();
- world2machine_default(vec_x, vec_y, cntr);
- }
- }
- /**
- * @brief Read and apply validated calibration data from EEPROM
- */
- void world2machine_initialize()
- {
- #if 0
- SERIAL_ECHOLNPGM("world2machine_initialize");
- #endif
- float vec_x[2];
- float vec_y[2];
- float cntr[2];
- world2machine_read_valid(vec_x, vec_y, cntr);
- world2machine_update(vec_x, vec_y, cntr);
- #if 0
- SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
- MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
- SERIAL_ECHOPGM(", offset ");
- MYSERIAL.print(world2machine_shift[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_shift[1], 5);
- SERIAL_ECHOLNPGM("");
- #endif
- }
- /**
- * @brief Update current position after switching to corrected coordinates
- *
- * When switching from absolute to corrected coordinates,
- * this will get the absolute coordinates from the servos,
- * applies the inverse world2machine transformation
- * and stores the result into current_position[x,y].
- */
- void world2machine_update_current()
- {
- float x = current_position[X_AXIS] - world2machine_shift[0];
- float y = current_position[Y_AXIS] - world2machine_shift[1];
- current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
- current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
- }
- static inline void go_xyz(float x, float y, float z, float fr)
- {
- plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_xy(float x, float y, float fr)
- {
- plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_to_current(float fr)
- {
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void update_current_position_xyz()
- {
- current_position[X_AXIS] = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- }
- static inline void update_current_position_z()
- {
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- plan_set_z_position(current_position[Z_AXIS]);
- }
- // At the current position, find the Z stop.
- inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int
- #ifdef SUPPORT_VERBOSITY
- verbosity_level
- #endif //SUPPORT_VERBOSITY
- )
- {
- bool high_deviation_occured = false;
- #ifdef TMC2130
- FORCE_HIGH_POWER_START;
- #endif
- //printf_P(PSTR("Min. Z: %f\n"), minimum_z);
- #ifdef SUPPORT_VERBOSITY
- if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
- #endif // SUPPORT_VERBOSITY
- bool endstops_enabled = enable_endstops(true);
- bool endstop_z_enabled = enable_z_endstop(false);
- float z = 0.f;
- endstop_z_hit_on_purpose();
- // move down until you find the bed
- current_position[Z_AXIS] = minimum_z;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_z();
- if (! endstop_z_hit_on_purpose())
- {
- //printf_P(PSTR("endstop not hit 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
- goto error;
- }
- #ifdef TMC2130
- if (READ(Z_TMC2130_DIAG) != 0)
- {
- //printf_P(PSTR("crash detected 1, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
- goto error; //crash Z detected
- }
- #endif //TMC2130
- for (uint8_t i = 0; i < n_iter; ++ i)
- {
-
- current_position[Z_AXIS] += high_deviation_occured ? 0.5 : 0.2;
- float z_bckp = current_position[Z_AXIS];
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Move back down slowly to find bed.
- current_position[Z_AXIS] = minimum_z;
- //printf_P(PSTR("init Z = %f, min_z = %f, i = %d\n"), z_bckp, minimum_z, i);
- go_to_current(homing_feedrate[Z_AXIS]/(4*60));
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_z();
- //printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
- if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
- //printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n"));
- current_position[Z_AXIS] += 0.5;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- current_position[Z_AXIS] = minimum_z;
- go_to_current(homing_feedrate[Z_AXIS]/(4*60));
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_z();
- }
- if (!endstop_z_hit_on_purpose())
- {
- //printf_P(PSTR("i = %d, endstop not hit 2, current_pos[Z]: %f \n"), i, current_position[Z_AXIS]);
- goto error;
- }
- #ifdef TMC2130
- if (READ(Z_TMC2130_DIAG) != 0) {
- //printf_P(PSTR("crash detected 2, current_pos[Z]: %f \n"), current_position[Z_AXIS]);
- goto error; //crash Z detected
- }
- #endif //TMC2130
- // SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
- // MYSERIAL.print(current_position[Z_AXIS], 5);
- // SERIAL_ECHOLNPGM("");
- float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
- z += current_position[Z_AXIS];
- //printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
- //printf_P(PSTR("Z- measurement deviation from avg value %f um\n"), dz);
- if (dz > 0.05) { //deviation > 50um
- if (high_deviation_occured == false) { //first occurence may be caused in some cases by mechanic resonance probably especially if printer is placed on unstable surface
- //printf_P(PSTR("high dev. first occurence\n"));
- delay_keep_alive(500); //damping
- //start measurement from the begining, but this time with higher movements in Z axis which should help to reduce mechanical resonance
- high_deviation_occured = true;
- i = -1;
- z = 0;
- }
- else {
- goto error;
- }
- }
- //printf_P(PSTR("PINDA triggered at %f\n"), current_position[Z_AXIS]);
- }
- current_position[Z_AXIS] = z;
- if (n_iter > 1)
- current_position[Z_AXIS] /= float(n_iter);
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- // SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
- #ifdef TMC2130
- FORCE_HIGH_POWER_END;
- #endif
- return true;
- error:
- // SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- #ifdef TMC2130
- FORCE_HIGH_POWER_END;
- #endif
- return false;
- }
- #ifdef NEW_XYZCAL
- extern bool xyzcal_find_bed_induction_sensor_point_xy();
- #endif //NEW_XYZCAL
- // Search around the current_position[X,Y],
- // look for the induction sensor response.
- // Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
- #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (4.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
- #ifdef HEATBED_V2
- #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (2.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR (0.03f)
- #else //HEATBED_V2
- #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
- #endif //HEATBED_V2
- #ifdef HEATBED_V2
- inline bool find_bed_induction_sensor_point_xy(int
- #if !defined (NEW_XYZCAL) && defined (SUPPORT_VERBOSITY)
- verbosity_level
- #endif
- )
- {
- #ifdef NEW_XYZCAL
- return xyzcal_find_bed_induction_sensor_point_xy();
- #else //NEW_XYZCAL
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
- #endif // SUPPORT_VERBOSITY
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- bool found = false;
- {
- float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- uint8_t nsteps_y;
- uint8_t i;
- if (x0 < X_MIN_POS) {
- x0 = X_MIN_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (x1 > X_MAX_POS) {
- x1 = X_MAX_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (y1 > Y_MAX_POS) {
- y1 = Y_MAX_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
- enable_endstops(false);
- bool dir_positive = true;
- float z_error = 2 * FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;
- float find_bed_induction_sensor_point_z_step = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP;
- float initial_z_position = current_position[Z_AXIS];
- // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
- // Continously lower the Z axis.
- endstops_hit_on_purpose();
- enable_z_endstop(true);
- bool direction = false;
- while (current_position[Z_AXIS] > -10.f && z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
- // Do nsteps_y zig-zag movements.
- SERIAL_ECHOPGM("z_error: ");
- MYSERIAL.println(z_error);
- current_position[Y_AXIS] = direction ? y1 : y0;
- initial_z_position = current_position[Z_AXIS];
- for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)), ++i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = !dir_positive;
- if (endstop_z_hit_on_purpose()) {
- update_current_position_xyz();
- z_error = initial_z_position - current_position[Z_AXIS] + find_bed_induction_sensor_point_z_step;
- if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
- find_bed_induction_sensor_point_z_step = z_error / 2;
- current_position[Z_AXIS] += z_error;
- enable_z_endstop(false);
- (direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);
- enable_z_endstop(true);
- }
- goto endloop;
- }
- }
- for (i = 0; i < (nsteps_y - 1); (direction == false) ? (current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1)) : (current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1)), ++i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= find_bed_induction_sensor_point_z_step / float(nsteps_y - 1);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = !dir_positive;
- if (endstop_z_hit_on_purpose()) {
- update_current_position_xyz();
- z_error = initial_z_position - current_position[Z_AXIS];
- if (z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR) {
- find_bed_induction_sensor_point_z_step = z_error / 2;
- current_position[Z_AXIS] += z_error;
- enable_z_endstop(false);
- direction = !direction;
- (direction == false) ? go_xyz(x0, y0, current_position[Z_AXIS], feedrate) : go_xyz(x0, y1, current_position[Z_AXIS], feedrate);
- enable_z_endstop(true);
- }
- goto endloop;
- }
- }
- endloop:;
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHO("First hit");
- SERIAL_ECHO("- X: ");
- MYSERIAL.print(current_position[X_AXIS]);
- SERIAL_ECHO("; Y: ");
- MYSERIAL.print(current_position[Y_AXIS]);
- SERIAL_ECHO("; Z: ");
- MYSERIAL.println(current_position[Z_AXIS]);
- }
- #endif //SUPPORT_VERBOSITY
- //lcd_show_fullscreen_message_and_wait_P(PSTR("First hit"));
- //lcd_update_enable(true);
- float init_x_position = current_position[X_AXIS];
- float init_y_position = current_position[Y_AXIS];
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- enable_z_endstop(false);
-
- for (int8_t iter = 0; iter < 2; ++iter) {
- /*SERIAL_ECHOPGM("iter: ");
- MYSERIAL.println(iter);
- SERIAL_ECHOPGM("1 - current_position[Z_AXIS]: ");
- MYSERIAL.println(current_position[Z_AXIS]);*/
- // Slightly lower the Z axis to get a reliable trigger.
- current_position[Z_AXIS] -= 0.1f;
- go_xyz(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], homing_feedrate[Z_AXIS] / (60 * 10));
- SERIAL_ECHOPGM("2 - current_position[Z_AXIS]: ");
- MYSERIAL.println(current_position[Z_AXIS]);
- // Do nsteps_y zig-zag movements.
- float a, b;
- float avg[2] = { 0,0 };
- invert_z_endstop(true);
- for (int iteration = 0; iteration < 8; iteration++) {
- found = false;
- enable_z_endstop(true);
- go_xy(init_x_position + 16.0f, current_position[Y_AXIS], feedrate / 5);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 0 - found");
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(init_x_position, current_position[Y_AXIS], feedrate / 5);
- enable_z_endstop(true);
- go_xy(init_x_position - 16.0f, current_position[Y_AXIS], feedrate / 5);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 1 - found");
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);
- found = true;
-
- // Search in the Y direction along a cross.
- found = false;
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], init_y_position + 16.0f, feedrate / 5);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 0 - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], init_y_position, feedrate / 5);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], init_y_position - 16.0f, feedrate / 5);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 1 - found");
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate / 5);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("ITERATION: ");
- MYSERIAL.println(iteration);
- SERIAL_ECHOPGM("CURRENT POSITION X: ");
- MYSERIAL.println(current_position[X_AXIS]);
- SERIAL_ECHOPGM("CURRENT POSITION Y: ");
- MYSERIAL.println(current_position[Y_AXIS]);
- }
- #endif //SUPPORT_VERBOSITY
- if (iteration > 0) {
- // Average the last 7 measurements.
- avg[X_AXIS] += current_position[X_AXIS];
- avg[Y_AXIS] += current_position[Y_AXIS];
- }
- init_x_position = current_position[X_AXIS];
- init_y_position = current_position[Y_AXIS];
- found = true;
- }
- invert_z_endstop(false);
- avg[X_AXIS] *= (1.f / 7.f);
- avg[Y_AXIS] *= (1.f / 7.f);
- current_position[X_AXIS] = avg[X_AXIS];
- current_position[Y_AXIS] = avg[Y_AXIS];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("AVG CURRENT POSITION X: ");
- MYSERIAL.println(current_position[X_AXIS]);
- SERIAL_ECHOPGM("AVG CURRENT POSITION Y: ");
- MYSERIAL.println(current_position[Y_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- lcd_show_fullscreen_message_and_wait_P(PSTR("Final position"));
- lcd_update_enable(true);
- }
- #endif //SUPPORT_VERBOSITY
- break;
- }
- }
-
- enable_z_endstop(false);
- invert_z_endstop(false);
- return found;
- #endif //NEW_XYZCAL
- }
- #else //HEATBED_V2
- inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
- {
- #ifdef NEW_XYZCAL
- return xyzcal_find_bed_induction_sensor_point_xy();
- #else //NEW_XYZCAL
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
- #endif // SUPPORT_VERBOSITY
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- bool found = false;
- {
- float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- uint8_t nsteps_y;
- uint8_t i;
- if (x0 < X_MIN_POS) {
- x0 = X_MIN_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (x1 > X_MAX_POS) {
- x1 = X_MAX_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- if (y1 > Y_MAX_POS) {
- y1 = Y_MAX_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
- #endif // SUPPORT_VERBOSITY
- }
- nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
- enable_endstops(false);
- bool dir_positive = true;
- // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
- // Continously lower the Z axis.
- endstops_hit_on_purpose();
- enable_z_endstop(true);
- while (current_position[Z_AXIS] > -10.f) {
- // Do nsteps_y zig-zag movements.
- current_position[Y_AXIS] = y0;
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = !dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = !dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- }
- endloop:
- // SERIAL_ECHOLN("First hit");
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
- for (int8_t iter = 0; iter < 3; ++iter) {
- if (iter > 0) {
- // Slightly lower the Z axis to get a reliable trigger.
- current_position[Z_AXIS] -= 0.02f;
- go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS] / 60);
- }
- // Do nsteps_y zig-zag movements.
- float a, b;
- enable_endstops(false);
- enable_z_endstop(false);
- current_position[Y_AXIS] = y0;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (!found) {
- // SERIAL_ECHOLN("Search in Y - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- current_position[Y_AXIS] = y1;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++i, dir_positive = !dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (!found) {
- // SERIAL_ECHOLN("Search in Y2 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y2 - found");
- b = current_position[Y_AXIS];
- current_position[Y_AXIS] = 0.5f * (a + b);
- // Search in the X direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 0 - found");
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 1 - found");
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #if 1
- // Search in the Y direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, feedrate);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 0 - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, feedrate);
- update_current_position_xyz();
- if (!endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 1 - found");
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #endif
- break;
- }
- }
- enable_z_endstop(false);
- return found;
- #endif //NEW_XYZCAL
- }
- #endif //HEATBED_V2
- #ifndef NEW_XYZCAL
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- inline bool improve_bed_induction_sensor_point()
- {
- static const float search_radius = 8.f;
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- bool found = false;
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float center_x = 0.f;
- float center_y = 0.f;
- for (uint8_t iter = 0; iter < 4; ++ iter) {
- switch (iter) {
- case 0:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 1:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- case 2:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 3:
- default:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- }
- // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
- float vx = destination[X_AXIS] - center_old_x;
- float vy = destination[Y_AXIS] - center_old_y;
- float l = sqrt(vx*vx+vy*vy);
- float t;
- if (destination[X_AXIS] < X_MIN_POS) {
- // Exiting the bed at xmin.
- t = (center_x - X_MIN_POS) / l;
- destination[X_AXIS] = X_MIN_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- } else if (destination[X_AXIS] > X_MAX_POS) {
- // Exiting the bed at xmax.
- t = (X_MAX_POS - center_x) / l;
- destination[X_AXIS] = X_MAX_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- }
- if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
- // Exiting the bed at ymin.
- t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- } else if (destination[Y_AXIS] > Y_MAX_POS) {
- // Exiting the bed at xmax.
- t = (Y_MAX_POS - center_y) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MAX_POS;
- }
- // Move away from the measurement point.
- enable_endstops(false);
- go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
- // Move towards the measurement point, until the induction sensor triggers.
- enable_endstops(true);
- go_xy(center_old_x, center_old_y, feedrate);
- update_current_position_xyz();
- // if (! endstop_z_hit_on_purpose()) return false;
- center_x += current_position[X_AXIS];
- center_y += current_position[Y_AXIS];
- }
- // Calculate the new center, move to the new center.
- center_x /= 4.f;
- center_y /= 4.f;
- current_position[X_AXIS] = center_x;
- current_position[Y_AXIS] = center_y;
- enable_endstops(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return found;
- }
- #endif //NEW_XYZCAL
- #ifndef NEW_XYZCAL
- static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
- {
- SERIAL_ECHOPGM("Measured ");
- SERIAL_ECHORPGM(type);
- SERIAL_ECHOPGM(" ");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(z, 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif //NEW_XYZCAL
- #ifndef NEW_XYZCAL
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
- inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float a, b;
- bool point_small = false;
- enable_endstops(false);
- {
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- // Search in the X direction along a cross.
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- }
- b = current_position[X_AXIS];
- if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- SERIAL_ECHOPGM("Point width too small: ");
- SERIAL_ECHO(b - a);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
- if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- // Don't use the new X value.
- current_position[X_AXIS] = center_old_x;
- goto canceled;
- } else {
- // Use the new value, but force the Z axis to go a bit lower.
- point_small = true;
- }
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
- debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- {
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- // Search in the Y direction along a cross.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- if (lift_z_on_min_y) {
- // The first row of points are very close to the end stop.
- // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
- // and go back.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
- }
- if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
- // Already triggering before we started the move.
- // Shift the trigger point slightly outwards.
- // a = current_position[Y_AXIS] - 1.5f;
- a = current_position[Y_AXIS];
- } else {
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- a = current_position[Y_AXIS];
- }
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- b = current_position[Y_AXIS];
- if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- SERIAL_ECHOPGM("Point height too small: ");
- SERIAL_ECHO(b - a);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- // Don't use the new Y value.
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- } else {
- // Use the new value, but force the Z axis to go a bit lower.
- point_small = true;
- }
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
- debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- // If point is small but not too small, then force the Z axis to be lowered a bit,
- // but use the new value. This is important when the initial position was off in one axis,
- // for example if the initial calibration was shifted in the Y axis systematically.
- // Then this first step will center.
- return ! point_small;
- canceled:
- // Go back to the center.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- return false;
- }
- #endif //NEW_XYZCAL
- #ifndef NEW_XYZCAL
- // Searching the front points, where one cannot move the sensor head in front of the sensor point.
- // Searching in a zig-zag movement in a plane for the maximum width of the response.
- // This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
- // If this function failed, the Y coordinate will never be outside the working space.
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (8.f)
- #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
- inline bool improve_bed_induction_sensor_point3(int verbosity_level)
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float a, b;
- bool result = true;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");
- #endif // SUPPORT_VERBOSITY
- // Was the sensor point detected too far in the minus Y axis?
- // If yes, the center of the induction point cannot be reached by the machine.
- {
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y = y0;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("Initial position: ");
- SERIAL_ECHO(center_old_x);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO(center_old_y);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- // Search in the positive Y direction, until a maximum diameter is found.
- // (the next diameter is smaller than the current one.)
- float dmax = 0.f;
- float xmax1 = 0.f;
- float xmax2 = 0.f;
- for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- // SERIAL_PROTOCOLPGM("Failed 1\n");
- // current_position[X_AXIS] = center_old_x;
- // goto canceled;
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- // SERIAL_PROTOCOLPGM("Failed 2\n");
- // current_position[X_AXIS] = center_old_x;
- // goto canceled;
- }
- b = current_position[X_AXIS];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
- debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- float d = b - a;
- if (d > dmax) {
- xmax1 = 0.5f * (a + b);
- dmax = d;
- } else if (dmax > 0.) {
- y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
- break;
- }
- }
- if (dmax == 0.) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level > 0)
- SERIAL_PROTOCOLPGM("failed - not found\n");
- #endif // SUPPORT_VERBOSITY
- current_position[X_AXIS] = center_old_x;
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- {
- // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
- enable_z_endstop(false);
- go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5)
- debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- #endif // SUPPORT_VERBOSITY
- y1 = current_position[Y_AXIS];
- }
- if (y1 <= y0) {
- // Either the induction sensor is too high, or the induction sensor target is out of reach.
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- // Search in the negative Y direction, until a maximum diameter is found.
- dmax = 0.f;
- // if (y0 + 1.f < y1)
- // y1 = y0 + 1.f;
- for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 3\n");
- goto canceled;
- */
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 4\n");
- goto canceled;
- */
- }
- b = current_position[X_AXIS];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
- debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- float d = b - a;
- if (d > dmax) {
- xmax2 = 0.5f * (a + b);
- dmax = d;
- } else if (dmax > 0.) {
- y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
- break;
- }
- }
- float xmax, ymax;
- if (dmax == 0.f) {
- // Only the hit in the positive direction found.
- xmax = xmax1;
- ymax = y0;
- } else {
- // Both positive and negative directions found.
- xmax = xmax2;
- ymax = 0.5f * (y0 + y1);
- for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 3\n");
- goto canceled;
- */
- }
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- continue;
- /*
- current_position[X_AXIS] = center_old_x;
- SERIAL_PROTOCOLPGM("Failed 4\n");
- goto canceled;
- */
- }
- b = current_position[X_AXIS];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
- debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- float d = b - a;
- if (d > dmax) {
- xmax = 0.5f * (a + b);
- ymax = y;
- dmax = d;
- }
- }
- }
- {
- // Compare the distance in the Y+ direction with the diameter in the X direction.
- // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
- enable_z_endstop(false);
- go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- current_position[Y_AXIS] = center_old_y;
- goto canceled;
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5)
- debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- #endif // SUPPORT_VERBOSITY
- if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
- // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
- // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
- if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- SERIAL_ECHOPGM("Partial point diameter too small: ");
- SERIAL_ECHO(dmax);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- result = false;
- } else {
- // Estimate the circle radius from the maximum diameter and height:
- float h = current_position[Y_AXIS] - ymax;
- float r = dmax * dmax / (8.f * h) + 0.5f * h;
- if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- SERIAL_ECHOPGM("Partial point estimated radius too small: ");
- SERIAL_ECHO(r);
- SERIAL_ECHOPGM(", dmax:");
- SERIAL_ECHO(dmax);
- SERIAL_ECHOPGM(", h:");
- SERIAL_ECHO(h);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- result = false;
- } else {
- // The point may end up outside of the machine working space.
- // That is all right as it helps to improve the accuracy of the measurement point
- // due to averaging.
- // For the y correction, use an average of dmax/2 and the estimated radius.
- r = 0.5f * (0.5f * dmax + r);
- ymax = current_position[Y_AXIS] - r;
- }
- }
- } else {
- // If the diameter of the detected spot was smaller than a minimum allowed,
- // the induction sensor is probably too high. Returning false will force
- // the sensor to be lowered a tiny bit.
- result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
- if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
- // Only in case both left and right y tangents are known, use them.
- // If y0 is close to the bed edge, it may not be symmetric to the right tangent.
- ymax = 0.5f * ymax + 0.25f * (y0 + y1);
- }
- }
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = xmax;
- current_position[Y_AXIS] = ymax;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("Adjusted position: ");
- SERIAL_ECHO(current_position[X_AXIS]);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO(current_position[Y_AXIS]);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
- // Only clamp the coordinate to go.
- go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
- // delay_keep_alive(3000);
- }
- if (result)
- return true;
- // otherwise clamp the Y coordinate
- canceled:
- // Go back to the center.
- enable_z_endstop(false);
- if (current_position[Y_AXIS] < Y_MIN_POS)
- current_position[Y_AXIS] = Y_MIN_POS;
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- return false;
- }
- #endif //NEW_XYZCAL
- #ifndef NEW_XYZCAL
- // Scan the mesh bed induction points one by one by a left-right zig-zag movement,
- // write the trigger coordinates to the serial line.
- // Useful for visualizing the behavior of the bed induction detector.
- inline void scan_bed_induction_sensor_point()
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
- float y = y0;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
- y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
- enable_z_endstop(false);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (endstop_z_hit_on_purpose())
- debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- enable_z_endstop(false);
- go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (endstop_z_hit_on_purpose())
- debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- }
- enable_z_endstop(false);
- current_position[X_AXIS] = center_old_x;
- current_position[Y_AXIS] = center_old_y;
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- #endif //NEW_XYZCAL
- #define MESH_BED_CALIBRATION_SHOW_LCD
- BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 4;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- uint8_t iteration = 0;
- BedSkewOffsetDetectionResultType result;
- // SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
- // SERIAL_ECHO(int(verbosity_level));
- // SERIAL_ECHOPGM("");
-
- #ifdef NEW_XYZCAL
- {
- #else //NEW_XYZCAL
- while (iteration < 3) {
- #endif //NEW_XYZCAL
- SERIAL_ECHOPGM("Iteration: ");
- MYSERIAL.println(int(iteration + 1));
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("Vectors: ");
-
- SERIAL_ECHOPGM("vec_x[0]:");
- MYSERIAL.print(vec_x[0], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("vec_x[1]:");
- MYSERIAL.print(vec_x[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("vec_y[0]:");
- MYSERIAL.print(vec_y[0], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("vec_y[1]:");
- MYSERIAL.print(vec_y[1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("cntr[0]:");
- MYSERIAL.print(cntr[0], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("cntr[1]:");
- MYSERIAL.print(cntr[1], 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- uint8_t next_line;
- lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1), next_line);
- if (next_line > 3)
- next_line = 3;
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect the rear 2x3 points.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
- for (int k = 0; k < 4; ++k) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_set_cursor(0, next_line);
- lcd_print(k + 1);
- lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
- if (iteration > 0) {
- lcd_puts_at_P(0, next_line + 1, _i("Iteration "));////MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION c=20
- lcd_print(int(iteration + 1));
- }
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- float *pt = pts + k * 2;
- // Go up to z_initial.
- go_to_current(homing_feedrate[Z_AXIS] / 60.f);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- // Go to Y0, wait, then go to Y-4.
- current_position[Y_AXIS] = 0.f;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y0");
- delay_keep_alive(5000);
- current_position[Y_AXIS] = Y_MIN_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y-4");
- delay_keep_alive(5000);
- }
- #endif // SUPPORT_VERBOSITY
- // Go to the measurement point position.
- //if (iteration == 0) {
- current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);
- /*}
- else {
- // if first iteration failed, count corrected point coordinates as initial
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
-
- current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];
- current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];
- // The calibration points are very close to the min Y.
- if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
- current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- }*/
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("current_position[X_AXIS]:");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("current_position[Y_AXIS]:");
- MYSERIAL.print(current_position[Y_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("current_position[Z_AXIS]:");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- #endif // SUPPORT_VERBOSITY
- if (!find_bed_induction_sensor_point_xy(verbosity_level))
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
- #ifndef NEW_XYZCAL
- #ifndef HEATBED_V2
-
- if (k == 0 || k == 1) {
- // Improve the position of the 1st row sensor points by a zig-zag movement.
- find_bed_induction_sensor_point_z();
- int8_t i = 4;
- for (;;) {
- if (improve_bed_induction_sensor_point3(verbosity_level))
- break;
- if (--i == 0)
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.025f;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]);
- }
- if (i == 0)
- // not found
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
- }
- #endif //HEATBED_V2
- #endif
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- #endif // SUPPORT_VERBOSITY
- // Save the detected point position and then clamp the Y coordinate, which may have been estimated
- // to lie outside the machine working space.
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("Measured:");
- MYSERIAL.println(current_position[X_AXIS]);
- MYSERIAL.println(current_position[Y_AXIS]);
- }
- #endif // SUPPORT_VERBOSITY
- pt[0] = (pt[0] * iteration) / (iteration + 1);
- pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
- pt[1] = (pt[1] * iteration) / (iteration + 1);
- pt[1] += (current_position[Y_AXIS] / (iteration + 1));
-
-
- //pt[0] += current_position[X_AXIS];
- //if(iteration > 0) pt[0] = pt[0] / 2;
-
- //pt[1] += current_position[Y_AXIS];
- //if (iteration > 0) pt[1] = pt[1] / 2;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("pt[0]:");
- MYSERIAL.println(pt[0]);
- SERIAL_ECHOPGM("pt[1]:");
- MYSERIAL.println(pt[1]);
- }
- #endif // SUPPORT_VERBOSITY
- if (current_position[Y_AXIS] < Y_MIN_POS)
- current_position[Y_AXIS] = Y_MIN_POS;
- // Start searching for the other points at 3mm above the last point.
- current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
- //cntr[0] += pt[0];
- //cntr[1] += pt[1];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10 && k == 0) {
- // Show the zero. Test, whether the Y motor skipped steps.
- current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- delay_keep_alive(3000);
- }
- #endif // SUPPORT_VERBOSITY
- }
- delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
-
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pts[mesh_point * 2];
- current_position[Y_AXIS] = pts[mesh_point * 2 + 1];
- go_to_current(homing_feedrate[X_AXIS] / 60);
- delay_keep_alive(3000);
- }
- }
- #endif // SUPPORT_VERBOSITY
- if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
- too_far_mask |= 1 << 1; //front center point is out of reach
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("WARNING: Front point not reachable. Y coordinate:");
- MYSERIAL.print(pts[1]);
- SERIAL_ECHOPGM(" < ");
- MYSERIAL.println(Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
- }
- result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
- delay_keep_alive(0); //manage_heater, reset watchdog, manage inactivity
-
- if (result >= 0) {
- world2machine_update(vec_x, vec_y, cntr);
- #if 1
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
- #endif
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) {
- // Length of the vec_x
- float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
- SERIAL_ECHOLNPGM("X vector length:");
- MYSERIAL.println(l);
- // Length of the vec_y
- l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
- SERIAL_ECHOLNPGM("Y vector length:");
- MYSERIAL.println(l);
- // Zero point correction
- l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
- SERIAL_ECHOLNPGM("Zero point correction:");
- MYSERIAL.println(l);
- // vec_x and vec_y shall be nearly perpendicular.
- l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
- SERIAL_ECHOLNPGM("Perpendicularity");
- MYSERIAL.println(fabs(l));
- SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
- }
- #endif // SUPPORT_VERBOSITY
- // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
- world2machine_update_current();
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix;
- current_position[X_AXIS] = BED_X(ix, MESH_MEAS_NUM_X_POINTS);
- current_position[Y_AXIS] = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);
- go_to_current(homing_feedrate[X_AXIS] / 60);
- delay_keep_alive(3000);
- }
- }
- #endif // SUPPORT_VERBOSITY
- return result;
- }
- if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user
- iteration++;
- }
- return result;
- }
- #ifndef NEW_XYZCAL
- BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Mask of the first three points. Are they too far?
- too_far_mask = 0;
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 9;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");
- #endif // SUPPORT_VERBOSITY
- // Cache the current correction matrix.
- world2machine_initialize();
- vec_x[0] = world2machine_rotation_and_skew[0][0];
- vec_x[1] = world2machine_rotation_and_skew[1][0];
- vec_y[0] = world2machine_rotation_and_skew[0][1];
- vec_y[1] = world2machine_rotation_and_skew[1][1];
- cntr[0] = world2machine_shift[0];
- cntr[1] = world2machine_shift[1];
- // and reset the correction matrix, so the planner will not do anything.
- world2machine_reset();
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- uint8_t next_line;
- lcd_display_message_fullscreen_P(_i("Improving bed calibration point"), next_line);////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 c=60
- if (next_line > 3)
- next_line = 3;
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect a matrix of 9x9 points.
- BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
- for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Print the decrasing ID of the measurement point.
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_set_cursor(0, next_line);
- lcd_print(mesh_point+1);
- lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));////MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 c=14
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Move up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]/60);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- // Go to Y0, wait, then go to Y-4.
- current_position[Y_AXIS] = 0.f;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y0");
- delay_keep_alive(5000);
- current_position[Y_AXIS] = Y_MIN_POS;
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- SERIAL_ECHOLNPGM("At Y_MIN_POS");
- delay_keep_alive(5000);
- }
- #endif // SUPPORT_VERBOSITY
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[0];
- current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
- // The calibration points are very close to the min Y.
- if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
- current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOPGM("Calibration point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- go_to_current(homing_feedrate[X_AXIS]/60);
- // Find its Z position by running the normal vertical search.
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- #endif // SUPPORT_VERBOSITY
- find_bed_induction_sensor_point_z();
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- #endif // SUPPORT_VERBOSITY
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.025f;
- // Improve the point position by searching its center in a current plane.
- int8_t n_errors = 3;
- for (int8_t iter = 0; iter < 8; ) {
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level > 20) {
- SERIAL_ECHOPGM("Improving bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(", iteration ");
- SERIAL_ECHO(iter);
- SERIAL_ECHOPGM(", z");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- bool found = false;
- if (mesh_point < 2) {
- // Because the sensor cannot move in front of the first row
- // of the sensor points, the y position cannot be measured
- // by a cross center method.
- // Use a zig-zag search for the first row of the points.
- found = improve_bed_induction_sensor_point3(verbosity_level);
- } else {
- switch (method) {
- case 0: found = improve_bed_induction_sensor_point(); break;
- case 1: found = improve_bed_induction_sensor_point2(mesh_point < 2, verbosity_level); break;
- default: break;
- }
- }
- if (found) {
- if (iter > 3) {
- // Average the last 4 measurements.
- pts[mesh_point*2 ] += current_position[X_AXIS];
- pts[mesh_point*2+1] += current_position[Y_AXIS];
- }
- if (current_position[Y_AXIS] < Y_MIN_POS)
- current_position[Y_AXIS] = Y_MIN_POS;
- ++ iter;
- } else if (n_errors -- == 0) {
- // Give up.
- result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
- goto canceled;
- } else {
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.05f;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- SERIAL_ECHOPGM("Improving bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(", iteration ");
- SERIAL_ECHO(iter);
- SERIAL_ECHOPGM(" failed. Lowering z to ");
- MYSERIAL.print(current_position[Z_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- }
- }
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 10)
- delay_keep_alive(3000);
- #endif // SUPPORT_VERBOSITY
- }
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Average the last 4 measurements.
- for (int8_t i = 0; i < 8; ++ i)
- pts[i] *= (1.f/4.f);
- enable_endstops(false);
- enable_z_endstop(false);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- // Test the positions. Are the positions reproducible?
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pts[mesh_point*2];
- current_position[Y_AXIS] = pts[mesh_point*2+1];
- if (verbosity_level >= 10) {
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- }
- SERIAL_ECHOPGM("Final measured bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(": ");
- MYSERIAL.print(current_position[X_AXIS], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(current_position[Y_AXIS], 5);
- SERIAL_ECHOLNPGM("");
- }
- }
- #endif // SUPPORT_VERBOSITY
- {
- // First fill in the too_far_mask from the measured points.
- for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point)
- if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
- too_far_mask |= 1 << mesh_point;
- result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
- if (result < 0) {
- SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
- goto canceled;
- }
- // In case of success, update the too_far_mask from the calculated points.
- for (uint8_t mesh_point = 0; mesh_point < 2; ++ mesh_point) {
- float y = vec_x[1] * pgm_read_float(bed_ref_points_4+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points_4+mesh_point*2+1) + cntr[1];
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 20) {
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Distance from min:");
- MYSERIAL.print(y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("y:");
- MYSERIAL.print(y);
- SERIAL_ECHOLNPGM("");
- }
- #endif // SUPPORT_VERBOSITY
- if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
- too_far_mask |= 1 << mesh_point;
- }
- }
- world2machine_update(vec_x, vec_y, cntr);
- #if 1
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
- #endif
- // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
- world2machine_update_current();
- enable_endstops(false);
- enable_z_endstop(false);
- #ifdef SUPPORT_VERBOSITY
- if (verbosity_level >= 5) {
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
- delay_keep_alive(3000);
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2);
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+mesh_point*2+1);
- if (verbosity_level >= 10) {
- go_to_current(homing_feedrate[X_AXIS]/60);
- delay_keep_alive(3000);
- }
- {
- float x, y;
- world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
- SERIAL_ECHOPGM("Final calculated bed point ");
- SERIAL_ECHO(mesh_point);
- SERIAL_ECHOPGM(": ");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOLNPGM("");
- }
- }
- }
- #endif // SUPPORT_VERBOSITY
- if(!sample_z())
- goto canceled;
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- return result;
- canceled:
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Print head up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Store the identity matrix to EEPROM.
- reset_bed_offset_and_skew();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return result;
- }
- #endif //NEW_XYZCAL
- bool sample_z() {
- bool sampled = true;
- //make space
- current_position[Z_AXIS] += 150;
- go_to_current(homing_feedrate[Z_AXIS] / 60);
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder););
- lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET));
- // Sample Z heights for the mesh bed leveling.
- // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
- if (!sample_mesh_and_store_reference()) sampled = false;
- return sampled;
- }
- void go_home_with_z_lift()
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Go home.
- // First move up to a safe height.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Second move to XY [0, 0].
- current_position[X_AXIS] = X_MIN_POS+0.2;
- current_position[Y_AXIS] = Y_MIN_POS+0.2;
- // Clamp to the physical coordinates.
- world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
- go_to_current(homing_feedrate[X_AXIS]/20);
- // Third move up to a safe height.
- current_position[Z_AXIS] = Z_MIN_POS;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- }
- // Sample the 9 points of the bed and store them into the EEPROM as a reference.
- // When calling this function, the X, Y, Z axes should be already homed,
- // and the world2machine correction matrix should be active.
- // Returns false if the reference values are more than 3mm far away.
- bool sample_mesh_and_store_reference()
- {
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- uint8_t next_line;
- lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1), next_line);
- if (next_line > 3)
- next_line = 3;
- // display "point xx of yy"
- lcd_set_cursor(0, next_line);
- lcd_print(1);
- lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Sample Z heights for the mesh bed leveling.
- // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
- {
- // The first point defines the reference.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- current_position[X_AXIS] = BED_X0;
- current_position[Y_AXIS] = BED_Y0;
- world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
- go_to_current(homing_feedrate[X_AXIS]/60);
- memcpy(destination, current_position, sizeof(destination));
- enable_endstops(true);
- homeaxis(Z_AXIS);
- #ifdef TMC2130
- if (!axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0)) //Z crash
- {
- kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
- return false;
- }
- #endif //TMC2130
- enable_endstops(false);
- if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
- {
- kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
- return false;
- }
- mbl.set_z(0, 0, current_position[Z_AXIS]);
- }
- for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Print the decrasing ID of the measurement point.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
- int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
- current_position[X_AXIS] = BED_X(ix, MESH_MEAS_NUM_X_POINTS);
- current_position[Y_AXIS] = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);
- world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
- go_to_current(homing_feedrate[X_AXIS]/60);
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- // display "point xx of yy"
- lcd_set_cursor(0, next_line);
- lcd_print(mesh_point+1);
- lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- if (!find_bed_induction_sensor_point_z()) //Z crash or deviation > 50um
- {
- kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
- return false;
- }
- // Get cords of measuring point
-
- mbl.set_z(ix, iy, current_position[Z_AXIS]);
- }
- {
- // Verify the span of the Z values.
- float zmin = mbl.z_values[0][0];
- float zmax = zmin;
- for (int8_t j = 0; j < 3; ++ j)
- for (int8_t i = 0; i < 3; ++ i) {
- zmin = min(zmin, mbl.z_values[j][i]);
- zmax = max(zmax, mbl.z_values[j][i]);
- }
- if (zmax - zmin > 3.f) {
- // The span of the Z offsets is extreme. Give up.
- // Homing failed on some of the points.
- SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
- return false;
- }
- }
- // Store the correction values to EEPROM.
- // Offsets of the Z heiths of the calibration points from the first point.
- // The offsets are saved as 16bit signed int, scaled to tenths of microns.
- {
- uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
- for (int8_t j = 0; j < 3; ++ j)
- for (int8_t i = 0; i < 3; ++ i) {
- if (i == 0 && j == 0)
- continue;
- float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
- int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
- eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
- #if 0
- {
- uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
- float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
- SERIAL_ECHOPGM("Bed point ");
- SERIAL_ECHO(i);
- SERIAL_ECHOPGM(",");
- SERIAL_ECHO(j);
- SERIAL_ECHOPGM(", differences: written ");
- MYSERIAL.print(dif, 5);
- SERIAL_ECHOPGM(", read: ");
- MYSERIAL.print(dif2, 5);
- SERIAL_ECHOLNPGM("");
- }
- #endif
- addr += 2;
- }
- }
- mbl.upsample_3x3();
- mbl.active = true;
- go_home_with_z_lift();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return true;
- }
- #ifndef NEW_XYZCAL
- bool scan_bed_induction_points(int8_t verbosity_level)
- {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 9;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- // Cache the current correction matrix.
- world2machine_initialize();
- vec_x[0] = world2machine_rotation_and_skew[0][0];
- vec_x[1] = world2machine_rotation_and_skew[1][0];
- vec_y[0] = world2machine_rotation_and_skew[0][1];
- vec_y[1] = world2machine_rotation_and_skew[1][1];
- cntr[0] = world2machine_shift[0];
- cntr[1] = world2machine_shift[1];
- // and reset the correction matrix, so the planner will not do anything.
- world2machine_reset();
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- // Collect a matrix of 9x9 points.
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- // Move up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix;
- float bedX = BED_X(ix, MESH_MEAS_NUM_X_POINTS);
- float bedY = BED_Y(iy, MESH_MEAS_NUM_Y_POINTS);
- current_position[X_AXIS] = vec_x[0] * bedX + vec_y[0] * bedY + cntr[0];
- current_position[Y_AXIS] = vec_x[1] * bedX + vec_y[1] * bedY + cntr[1];
- // The calibration points are very close to the min Y.
- if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
- current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
- go_to_current(homing_feedrate[X_AXIS]/60);
- find_bed_induction_sensor_point_z();
- scan_bed_induction_sensor_point();
- }
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- enable_endstops(false);
- enable_z_endstop(false);
- // Don't let the manage_inactivity() function remove power from the motors.
- refresh_cmd_timeout();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return true;
- }
- #endif //NEW_XYZCAL
- // Shift a Z axis by a given delta.
- // To replace loading of the babystep correction.
- static void shift_z(float delta)
- {
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
- st_synchronize();
- plan_set_z_position(current_position[Z_AXIS]);
- }
- #define BABYSTEP_LOADZ_BY_PLANNER
- // Number of baby steps applied
- static int babystepLoadZ = 0;
- void babystep_load()
- {
- babystepLoadZ = 0;
- // Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
- if (calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)
- {
- check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0
-
- // End of G80: Apply the baby stepping value.
- EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
-
- #if 0
- SERIAL_ECHO("Z baby step: ");
- SERIAL_ECHO(babystepLoadZ);
- SERIAL_ECHO(", current Z: ");
- SERIAL_ECHO(current_position[Z_AXIS]);
- SERIAL_ECHO("correction: ");
- SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
- SERIAL_ECHOLN("");
- #endif
- }
- }
- void babystep_apply()
- {
- babystep_load();
- #ifdef BABYSTEP_LOADZ_BY_PLANNER
- shift_z(- float(babystepLoadZ) / float(cs.axis_steps_per_unit[Z_AXIS]));
- #else
- babystepsTodoZadd(babystepLoadZ);
- #endif /* BABYSTEP_LOADZ_BY_PLANNER */
- }
- void babystep_undo()
- {
- #ifdef BABYSTEP_LOADZ_BY_PLANNER
- shift_z(float(babystepLoadZ) / float(cs.axis_steps_per_unit[Z_AXIS]));
- #else
- babystepsTodoZsubtract(babystepLoadZ);
- #endif /* BABYSTEP_LOADZ_BY_PLANNER */
- babystepLoadZ = 0;
- }
- void babystep_reset()
- {
- babystepLoadZ = 0;
- }
- void count_xyz_details(float (&distanceMin)[2]) {
- float cntr[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))
- };
- float vec_x[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4))
- };
- float vec_y[2] = {
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),
- eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))
- };
- #if 0
- a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);
- a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);
- angleDiff = fabs(a2 - a1);
- #endif
- for (uint8_t mesh_point = 0; mesh_point < 2; ++mesh_point) {
- float y = vec_x[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + mesh_point * 2 + 1) + cntr[1];
- distanceMin[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
- }
- }
- /*
- e_MBL_TYPE e_mbl_type = e_MBL_OPTIMAL;
- void mbl_mode_set() {
- switch (e_mbl_type) {
- case e_MBL_OPTIMAL: e_mbl_type = e_MBL_PREC; break;
- case e_MBL_PREC: e_mbl_type = e_MBL_FAST; break;
- case e_MBL_FAST: e_mbl_type = e_MBL_OPTIMAL; break;
- default: e_mbl_type = e_MBL_OPTIMAL; break;
- }
- eeprom_update_byte((uint8_t*)EEPROM_MBL_TYPE,(uint8_t)e_mbl_type);
- }
- void mbl_mode_init() {
- uint8_t mbl_type = eeprom_read_byte((uint8_t*)EEPROM_MBL_TYPE);
- if (mbl_type == 0xFF) e_mbl_type = e_MBL_OPTIMAL;
- else e_mbl_type = mbl_type;
- }
- */
- void mbl_settings_init() {
- //3x3 mesh; 3 Z-probes on each point, magnet elimination on
- //magnet elimination: use aaproximate Z-coordinate instead of measured values for points which are near magnets
- if (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) == 0xFF) {
- eeprom_update_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION, 1);
- }
- if (eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR) == 0xFF) {
- eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, 3);
- }
- mbl_z_probe_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
- if (mbl_z_probe_nr == 0xFF) {
- mbl_z_probe_nr = 3;
- eeprom_update_byte((uint8_t*)EEPROM_MBL_PROBE_NR, mbl_z_probe_nr);
- }
- }
- //parameter ix: index of mesh bed leveling point in X-axis (for meas_points == 7 is valid range from 0 to 6; for meas_points == 3 is valid range from 0 to 2 )
- //parameter iy: index of mesh bed leveling point in Y-axis (for meas_points == 7 is valid range from 0 to 6; for meas_points == 3 is valid range from 0 to 2 )
- //parameter meas_points: number of mesh bed leveling points in one axis; currently designed and tested for values 3 and 7
- //parameter zigzag: false if ix is considered 0 on left side of bed and ix rises with rising X coordinate; true if ix is considered 0 on the right side of heatbed for odd iy values (zig zag mesh bed leveling movements)
- //function returns true if point is considered valid (typicaly in safe distance from magnet or another object which inflences PINDA measurements)
- bool mbl_point_measurement_valid(uint8_t ix, uint8_t iy, uint8_t meas_points, bool zigzag) {
- //"human readable" heatbed plan
- //magnet proximity influence Z coordinate measurements significantly (40 - 100 um)
- //0 - measurement point is above magnet and Z coordinate can be influenced negatively
- //1 - we should be in safe distance from magnets, measurement should be accurate
- if ((ix >= meas_points) || (iy >= meas_points)) return false;
- uint8_t valid_points_mask[7] = {
- //[X_MAX,Y_MAX]
- //0123456
- 0b1111111,//6
- 0b1111111,//5
- 0b1110111,//4
- 0b1111011,//3
- 0b1110111,//2
- 0b1111111,//1
- 0b1111111,//0
- //[0,0]
- };
- if (meas_points == 3) {
- ix *= 3;
- iy *= 3;
- }
- if (zigzag) {
- if ((iy % 2) == 0) return (valid_points_mask[6 - iy] & (1 << (6 - ix)));
- else return (valid_points_mask[6 - iy] & (1 << ix));
- }
- else {
- return (valid_points_mask[6 - iy] & (1 << (6 - ix)));
- }
- }
- void mbl_single_point_interpolation(uint8_t x, uint8_t y, uint8_t meas_points) {
- //printf_P(PSTR("x = %d; y = %d \n"), x, y);
- uint8_t count = 0;
- float z = 0;
- if (mbl_point_measurement_valid(x, y + 1, meas_points, false)) { z += mbl.z_values[y + 1][x]; /*printf_P(PSTR("x; y+1: Z = %f \n"), mbl.z_values[y + 1][x]);*/ count++; }
- if (mbl_point_measurement_valid(x, y - 1, meas_points, false)) { z += mbl.z_values[y - 1][x]; /*printf_P(PSTR("x; y-1: Z = %f \n"), mbl.z_values[y - 1][x]);*/ count++; }
- if (mbl_point_measurement_valid(x + 1, y, meas_points, false)) { z += mbl.z_values[y][x + 1]; /*printf_P(PSTR("x+1; y: Z = %f \n"), mbl.z_values[y][x + 1]);*/ count++; }
- if (mbl_point_measurement_valid(x - 1, y, meas_points, false)) { z += mbl.z_values[y][x - 1]; /*printf_P(PSTR("x-1; y: Z = %f \n"), mbl.z_values[y][x - 1]);*/ count++; }
- if(count != 0) mbl.z_values[y][x] = z / count; //if we have at least one valid point in surrounding area use average value, otherwise use inaccurately measured Z-coordinate
- //printf_P(PSTR("result: Z = %f \n\n"), mbl.z_values[y][x]);
- }
- void mbl_interpolation(uint8_t meas_points) {
- for (uint8_t x = 0; x < meas_points; x++) {
- for (uint8_t y = 0; y < meas_points; y++) {
- if (!mbl_point_measurement_valid(x, y, meas_points, false)) {
- mbl_single_point_interpolation(x, y, meas_points);
- }
- }
- }
- }
|