temperature.cpp 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile bool fan_check_error = false;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(int e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. void checkFanSpeed()
  424. {
  425. uint8_t max_print_fan_errors = 0;
  426. uint8_t max_extruder_fan_errors = 0;
  427. #ifdef FAN_SOFT_PWM
  428. max_print_fan_errors = 3; //15 seconds
  429. max_extruder_fan_errors = 2; //10seconds
  430. #else //FAN_SOFT_PWM
  431. max_print_fan_errors = 15; //15 seconds
  432. max_extruder_fan_errors = 5; //5 seconds
  433. #endif //FAN_SOFT_PWM
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  438. else fan_speed_errors[0] = 0;
  439. #endif
  440. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  441. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  442. else fan_speed_errors[1] = 0;
  443. #endif
  444. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  445. fan_speed_errors[0] = 0;
  446. fanSpeedError(0); //extruder fan
  447. }
  448. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  449. fan_speed_errors[1] = 0;
  450. fanSpeedError(1); //print fan
  451. }
  452. }
  453. void fanSpeedError(unsigned char _fan) {
  454. if (get_message_level() != 0 && isPrintPaused) return;
  455. //to ensure that target temp. is not set to zero in case taht we are resuming print
  456. if (card.sdprinting) {
  457. if (heating_status != 0) {
  458. lcd_print_stop();
  459. }
  460. else {
  461. fan_check_error = true;
  462. }
  463. }
  464. else {
  465. setTargetHotend0(0);
  466. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  467. }
  468. switch (_fan) {
  469. case 0:
  470. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  471. if (get_message_level() == 0) {
  472. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  473. WRITE(BEEPER, HIGH);
  474. delayMicroseconds(200);
  475. WRITE(BEEPER, LOW);
  476. delayMicroseconds(100);
  477. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  478. }
  479. break;
  480. case 1:
  481. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  482. if (get_message_level() == 0) {
  483. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  484. WRITE(BEEPER, HIGH);
  485. delayMicroseconds(200);
  486. WRITE(BEEPER, LOW);
  487. delayMicroseconds(100);
  488. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  489. }
  490. break;
  491. }
  492. }
  493. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  494. void checkExtruderAutoFans()
  495. {
  496. uint8_t fanState = 0;
  497. // which fan pins need to be turned on?
  498. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  499. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  500. fanState |= 1;
  501. #endif
  502. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  503. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  504. {
  505. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  506. fanState |= 1;
  507. else
  508. fanState |= 2;
  509. }
  510. #endif
  511. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  512. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  513. {
  514. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  515. fanState |= 1;
  516. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  517. fanState |= 2;
  518. else
  519. fanState |= 4;
  520. }
  521. #endif
  522. // update extruder auto fan states
  523. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  524. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  525. #endif
  526. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  527. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  529. #endif
  530. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  531. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  532. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  533. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  534. #endif
  535. }
  536. #endif // any extruder auto fan pins set
  537. // ready for eventually parameters adjusting
  538. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  539. //void resetPID(uint8_t extruder)
  540. {
  541. }
  542. void manage_heater()
  543. {
  544. #ifdef WATCHDOG
  545. wdt_reset();
  546. #endif //WATCHDOG
  547. float pid_input;
  548. float pid_output;
  549. if(temp_meas_ready != true) //better readability
  550. return;
  551. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  552. updateTemperaturesFromRawValues();
  553. check_max_temp();
  554. check_min_temp();
  555. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  556. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  557. #endif
  558. for(int e = 0; e < EXTRUDERS; e++)
  559. {
  560. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  561. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  562. #endif
  563. #ifdef PIDTEMP
  564. pid_input = current_temperature[e];
  565. #ifndef PID_OPENLOOP
  566. if(target_temperature[e] == 0) {
  567. pid_output = 0;
  568. pid_reset[e] = true;
  569. } else {
  570. pid_error[e] = target_temperature[e] - pid_input;
  571. if(pid_reset[e]) {
  572. iState_sum[e] = 0.0;
  573. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  574. pid_reset[e] = false;
  575. }
  576. #ifndef PonM
  577. pTerm[e] = cs.Kp * pid_error[e];
  578. iState_sum[e] += pid_error[e];
  579. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  580. iTerm[e] = cs.Ki * iState_sum[e];
  581. // PID_K1 defined in Configuration.h in the PID settings
  582. #define K2 (1.0-PID_K1)
  583. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  584. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  585. if (pid_output > PID_MAX) {
  586. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  587. pid_output=PID_MAX;
  588. } else if (pid_output < 0) {
  589. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  590. pid_output=0;
  591. }
  592. #else // PonM ("Proportional on Measurement" method)
  593. iState_sum[e] += cs.Ki * pid_error[e];
  594. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  595. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  596. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  597. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  598. pid_output = constrain(pid_output, 0, PID_MAX);
  599. #endif // PonM
  600. }
  601. dState_last[e] = pid_input;
  602. #else
  603. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  604. #endif //PID_OPENLOOP
  605. #ifdef PID_DEBUG
  606. SERIAL_ECHO_START;
  607. SERIAL_ECHO(" PID_DEBUG ");
  608. SERIAL_ECHO(e);
  609. SERIAL_ECHO(": Input ");
  610. SERIAL_ECHO(pid_input);
  611. SERIAL_ECHO(" Output ");
  612. SERIAL_ECHO(pid_output);
  613. SERIAL_ECHO(" pTerm ");
  614. SERIAL_ECHO(pTerm[e]);
  615. SERIAL_ECHO(" iTerm ");
  616. SERIAL_ECHO(iTerm[e]);
  617. SERIAL_ECHO(" dTerm ");
  618. SERIAL_ECHOLN(-dTerm[e]);
  619. #endif //PID_DEBUG
  620. #else /* PID off */
  621. pid_output = 0;
  622. if(current_temperature[e] < target_temperature[e]) {
  623. pid_output = PID_MAX;
  624. }
  625. #endif
  626. // Check if temperature is within the correct range
  627. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  628. {
  629. soft_pwm[e] = (int)pid_output >> 1;
  630. }
  631. else
  632. {
  633. soft_pwm[e] = 0;
  634. }
  635. #ifdef WATCH_TEMP_PERIOD
  636. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  637. {
  638. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  639. {
  640. setTargetHotend(0, e);
  641. LCD_MESSAGEPGM("Heating failed");
  642. SERIAL_ECHO_START;
  643. SERIAL_ECHOLN("Heating failed");
  644. }else{
  645. watchmillis[e] = 0;
  646. }
  647. }
  648. #endif
  649. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  650. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  651. disable_heater();
  652. if(IsStopped() == false) {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  655. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  656. }
  657. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  658. Stop();
  659. #endif
  660. }
  661. #endif
  662. } // End extruder for loop
  663. #define FAN_CHECK_PERIOD 5000 //5s
  664. #define FAN_CHECK_DURATION 100 //100ms
  665. #ifndef DEBUG_DISABLE_FANCHECK
  666. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  667. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  668. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  669. #ifdef FAN_SOFT_PWM
  670. #ifdef FANCHECK
  671. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  672. extruder_autofan_last_check = _millis();
  673. fanSpeedBckp = fanSpeedSoftPwm;
  674. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  675. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  676. fanSpeedSoftPwm = 255;
  677. }
  678. fan_measuring = true;
  679. }
  680. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  681. countFanSpeed();
  682. checkFanSpeed();
  683. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  684. fanSpeedSoftPwm = fanSpeedBckp;
  685. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  686. extruder_autofan_last_check = _millis();
  687. fan_measuring = false;
  688. }
  689. #endif //FANCHECK
  690. checkExtruderAutoFans();
  691. #else //FAN_SOFT_PWM
  692. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  693. {
  694. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  695. countFanSpeed();
  696. checkFanSpeed();
  697. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  698. checkExtruderAutoFans();
  699. extruder_autofan_last_check = _millis();
  700. }
  701. #endif //FAN_SOFT_PWM
  702. #endif
  703. #endif //DEBUG_DISABLE_FANCHECK
  704. #ifndef PIDTEMPBED
  705. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  706. return;
  707. previous_millis_bed_heater = _millis();
  708. #endif
  709. #if TEMP_SENSOR_BED != 0
  710. #ifdef PIDTEMPBED
  711. pid_input = current_temperature_bed;
  712. #ifndef PID_OPENLOOP
  713. pid_error_bed = target_temperature_bed - pid_input;
  714. pTerm_bed = cs.bedKp * pid_error_bed;
  715. temp_iState_bed += pid_error_bed;
  716. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  717. iTerm_bed = cs.bedKi * temp_iState_bed;
  718. //PID_K1 defined in Configuration.h in the PID settings
  719. #define K2 (1.0-PID_K1)
  720. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  721. temp_dState_bed = pid_input;
  722. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  723. if (pid_output > MAX_BED_POWER) {
  724. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  725. pid_output=MAX_BED_POWER;
  726. } else if (pid_output < 0){
  727. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  728. pid_output=0;
  729. }
  730. #else
  731. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  732. #endif //PID_OPENLOOP
  733. if(current_temperature_bed < BED_MAXTEMP)
  734. {
  735. soft_pwm_bed = (int)pid_output >> 1;
  736. timer02_set_pwm0(soft_pwm_bed << 1);
  737. }
  738. else {
  739. soft_pwm_bed = 0;
  740. timer02_set_pwm0(soft_pwm_bed << 1);
  741. }
  742. #elif !defined(BED_LIMIT_SWITCHING)
  743. // Check if temperature is within the correct range
  744. if(current_temperature_bed < BED_MAXTEMP)
  745. {
  746. if(current_temperature_bed >= target_temperature_bed)
  747. {
  748. soft_pwm_bed = 0;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. else
  752. {
  753. soft_pwm_bed = MAX_BED_POWER>>1;
  754. timer02_set_pwm0(soft_pwm_bed << 1);
  755. }
  756. }
  757. else
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. WRITE(HEATER_BED_PIN,LOW);
  762. }
  763. #else //#ifdef BED_LIMIT_SWITCHING
  764. // Check if temperature is within the correct band
  765. if(current_temperature_bed < BED_MAXTEMP)
  766. {
  767. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  768. {
  769. soft_pwm_bed = 0;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  773. {
  774. soft_pwm_bed = MAX_BED_POWER>>1;
  775. timer02_set_pwm0(soft_pwm_bed << 1);
  776. }
  777. }
  778. else
  779. {
  780. soft_pwm_bed = 0;
  781. timer02_set_pwm0(soft_pwm_bed << 1);
  782. WRITE(HEATER_BED_PIN,LOW);
  783. }
  784. #endif
  785. if(target_temperature_bed==0)
  786. {
  787. soft_pwm_bed = 0;
  788. timer02_set_pwm0(soft_pwm_bed << 1);
  789. }
  790. #endif
  791. host_keepalive();
  792. }
  793. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  794. // Derived from RepRap FiveD extruder::getTemperature()
  795. // For hot end temperature measurement.
  796. static float analog2temp(int raw, uint8_t e) {
  797. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  798. if(e > EXTRUDERS)
  799. #else
  800. if(e >= EXTRUDERS)
  801. #endif
  802. {
  803. SERIAL_ERROR_START;
  804. SERIAL_ERROR((int)e);
  805. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  806. kill(PSTR(""), 6);
  807. return 0.0;
  808. }
  809. #ifdef HEATER_0_USES_MAX6675
  810. if (e == 0)
  811. {
  812. return 0.25 * raw;
  813. }
  814. #endif
  815. if(heater_ttbl_map[e] != NULL)
  816. {
  817. float celsius = 0;
  818. uint8_t i;
  819. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  820. for (i=1; i<heater_ttbllen_map[e]; i++)
  821. {
  822. if (PGM_RD_W((*tt)[i][0]) > raw)
  823. {
  824. celsius = PGM_RD_W((*tt)[i-1][1]) +
  825. (raw - PGM_RD_W((*tt)[i-1][0])) *
  826. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  827. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  828. break;
  829. }
  830. }
  831. // Overflow: Set to last value in the table
  832. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  833. return celsius;
  834. }
  835. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  836. }
  837. // Derived from RepRap FiveD extruder::getTemperature()
  838. // For bed temperature measurement.
  839. static float analog2tempBed(int raw) {
  840. #ifdef BED_USES_THERMISTOR
  841. float celsius = 0;
  842. byte i;
  843. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  844. {
  845. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  846. {
  847. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  848. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  849. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  850. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  851. break;
  852. }
  853. }
  854. // Overflow: Set to last value in the table
  855. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  856. // temperature offset adjustment
  857. #ifdef BED_OFFSET
  858. float _offset = BED_OFFSET;
  859. float _offset_center = BED_OFFSET_CENTER;
  860. float _offset_start = BED_OFFSET_START;
  861. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  862. float _second_koef = (_offset / 2) / (100 - _offset_center);
  863. if (celsius >= _offset_start && celsius <= _offset_center)
  864. {
  865. celsius = celsius + (_first_koef * (celsius - _offset_start));
  866. }
  867. else if (celsius > _offset_center && celsius <= 100)
  868. {
  869. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  870. }
  871. else if (celsius > 100)
  872. {
  873. celsius = celsius + _offset;
  874. }
  875. #endif
  876. return celsius;
  877. #elif defined BED_USES_AD595
  878. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  879. #else
  880. return 0;
  881. #endif
  882. }
  883. #ifdef AMBIENT_THERMISTOR
  884. static float analog2tempAmbient(int raw)
  885. {
  886. float celsius = 0;
  887. byte i;
  888. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  889. {
  890. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  891. {
  892. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  893. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  894. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  895. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  896. break;
  897. }
  898. }
  899. // Overflow: Set to last value in the table
  900. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  901. return celsius;
  902. }
  903. #endif //AMBIENT_THERMISTOR
  904. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  905. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  906. static void updateTemperaturesFromRawValues()
  907. {
  908. for(uint8_t e=0;e<EXTRUDERS;e++)
  909. {
  910. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  911. }
  912. #ifdef PINDA_THERMISTOR
  913. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  914. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  915. #endif
  916. #ifdef AMBIENT_THERMISTOR
  917. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  918. #endif
  919. #ifdef DEBUG_HEATER_BED_SIM
  920. current_temperature_bed = target_temperature_bed;
  921. #else //DEBUG_HEATER_BED_SIM
  922. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  923. #endif //DEBUG_HEATER_BED_SIM
  924. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  925. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  926. #endif
  927. CRITICAL_SECTION_START;
  928. temp_meas_ready = false;
  929. CRITICAL_SECTION_END;
  930. }
  931. void tp_init()
  932. {
  933. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  934. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  935. MCUCR=(1<<JTD);
  936. MCUCR=(1<<JTD);
  937. #endif
  938. // Finish init of mult extruder arrays
  939. for(int e = 0; e < EXTRUDERS; e++) {
  940. // populate with the first value
  941. maxttemp[e] = maxttemp[0];
  942. #ifdef PIDTEMP
  943. iState_sum_min[e] = 0.0;
  944. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  945. #endif //PIDTEMP
  946. #ifdef PIDTEMPBED
  947. temp_iState_min_bed = 0.0;
  948. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  949. #endif //PIDTEMPBED
  950. }
  951. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  952. SET_OUTPUT(HEATER_0_PIN);
  953. #endif
  954. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  955. SET_OUTPUT(HEATER_1_PIN);
  956. #endif
  957. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  958. SET_OUTPUT(HEATER_2_PIN);
  959. #endif
  960. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  961. SET_OUTPUT(HEATER_BED_PIN);
  962. #endif
  963. #if defined(FAN_PIN) && (FAN_PIN > -1)
  964. SET_OUTPUT(FAN_PIN);
  965. #ifdef FAST_PWM_FAN
  966. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  967. #endif
  968. #ifdef FAN_SOFT_PWM
  969. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  970. #endif
  971. #endif
  972. #ifdef HEATER_0_USES_MAX6675
  973. #ifndef SDSUPPORT
  974. SET_OUTPUT(SCK_PIN);
  975. WRITE(SCK_PIN,0);
  976. SET_OUTPUT(MOSI_PIN);
  977. WRITE(MOSI_PIN,1);
  978. SET_INPUT(MISO_PIN);
  979. WRITE(MISO_PIN,1);
  980. #endif
  981. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  982. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  983. pinMode(SS_PIN, OUTPUT);
  984. digitalWrite(SS_PIN,0);
  985. pinMode(MAX6675_SS, OUTPUT);
  986. digitalWrite(MAX6675_SS,1);
  987. #endif
  988. adc_init();
  989. #ifdef SYSTEM_TIMER_2
  990. timer02_init();
  991. OCR2B = 128;
  992. TIMSK2 |= (1<<OCIE2B);
  993. #else //SYSTEM_TIMER_2
  994. // Use timer0 for temperature measurement
  995. // Interleave temperature interrupt with millies interrupt
  996. OCR0B = 128;
  997. TIMSK0 |= (1<<OCIE0B);
  998. #endif //SYSTEM_TIMER_2
  999. // Wait for temperature measurement to settle
  1000. _delay(250);
  1001. #ifdef HEATER_0_MINTEMP
  1002. minttemp[0] = HEATER_0_MINTEMP;
  1003. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1004. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1005. minttemp_raw[0] += OVERSAMPLENR;
  1006. #else
  1007. minttemp_raw[0] -= OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MINTEMP
  1011. #ifdef HEATER_0_MAXTEMP
  1012. maxttemp[0] = HEATER_0_MAXTEMP;
  1013. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1014. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1015. maxttemp_raw[0] -= OVERSAMPLENR;
  1016. #else
  1017. maxttemp_raw[0] += OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif //MAXTEMP
  1021. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1022. minttemp[1] = HEATER_1_MINTEMP;
  1023. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1024. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1025. minttemp_raw[1] += OVERSAMPLENR;
  1026. #else
  1027. minttemp_raw[1] -= OVERSAMPLENR;
  1028. #endif
  1029. }
  1030. #endif // MINTEMP 1
  1031. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1032. maxttemp[1] = HEATER_1_MAXTEMP;
  1033. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1034. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1035. maxttemp_raw[1] -= OVERSAMPLENR;
  1036. #else
  1037. maxttemp_raw[1] += OVERSAMPLENR;
  1038. #endif
  1039. }
  1040. #endif //MAXTEMP 1
  1041. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1042. minttemp[2] = HEATER_2_MINTEMP;
  1043. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1044. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1045. minttemp_raw[2] += OVERSAMPLENR;
  1046. #else
  1047. minttemp_raw[2] -= OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //MINTEMP 2
  1051. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1052. maxttemp[2] = HEATER_2_MAXTEMP;
  1053. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1054. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1055. maxttemp_raw[2] -= OVERSAMPLENR;
  1056. #else
  1057. maxttemp_raw[2] += OVERSAMPLENR;
  1058. #endif
  1059. }
  1060. #endif //MAXTEMP 2
  1061. #ifdef BED_MINTEMP
  1062. /* No bed MINTEMP error implemented?!? */
  1063. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1064. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1065. bed_minttemp_raw += OVERSAMPLENR;
  1066. #else
  1067. bed_minttemp_raw -= OVERSAMPLENR;
  1068. #endif
  1069. }
  1070. #endif //BED_MINTEMP
  1071. #ifdef BED_MAXTEMP
  1072. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1073. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1074. bed_maxttemp_raw -= OVERSAMPLENR;
  1075. #else
  1076. bed_maxttemp_raw += OVERSAMPLENR;
  1077. #endif
  1078. }
  1079. #endif //BED_MAXTEMP
  1080. }
  1081. void setWatch()
  1082. {
  1083. #ifdef WATCH_TEMP_PERIOD
  1084. for (int e = 0; e < EXTRUDERS; e++)
  1085. {
  1086. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1087. {
  1088. watch_start_temp[e] = degHotend(e);
  1089. watchmillis[e] = _millis();
  1090. }
  1091. }
  1092. #endif
  1093. }
  1094. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1095. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1096. {
  1097. float __delta;
  1098. float __hysteresis = 0;
  1099. int __timeout = 0;
  1100. bool temp_runaway_check_active = false;
  1101. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1102. static int __preheat_counter[2] = { 0,0};
  1103. static int __preheat_errors[2] = { 0,0};
  1104. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1105. {
  1106. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1107. if (_isbed)
  1108. {
  1109. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1110. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1111. }
  1112. #endif
  1113. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1114. if (!_isbed)
  1115. {
  1116. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1117. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1118. }
  1119. #endif
  1120. temp_runaway_timer[_heater_id] = _millis();
  1121. if (_output == 0)
  1122. {
  1123. temp_runaway_check_active = false;
  1124. temp_runaway_error_counter[_heater_id] = 0;
  1125. }
  1126. if (temp_runaway_target[_heater_id] != _target_temperature)
  1127. {
  1128. if (_target_temperature > 0)
  1129. {
  1130. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1131. temp_runaway_target[_heater_id] = _target_temperature;
  1132. __preheat_start[_heater_id] = _current_temperature;
  1133. __preheat_counter[_heater_id] = 0;
  1134. }
  1135. else
  1136. {
  1137. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1138. temp_runaway_target[_heater_id] = _target_temperature;
  1139. }
  1140. }
  1141. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1142. {
  1143. __preheat_counter[_heater_id]++;
  1144. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1145. {
  1146. /*SERIAL_ECHOPGM("Heater:");
  1147. MYSERIAL.print(_heater_id);
  1148. SERIAL_ECHOPGM(" T:");
  1149. MYSERIAL.print(_current_temperature);
  1150. SERIAL_ECHOPGM(" Tstart:");
  1151. MYSERIAL.print(__preheat_start[_heater_id]);
  1152. SERIAL_ECHOPGM(" delta:");
  1153. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1154. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1155. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1156. __delta=2.0;
  1157. if(_isbed)
  1158. {
  1159. __delta=3.0;
  1160. if(_current_temperature>90.0) __delta=2.0;
  1161. if(_current_temperature>105.0) __delta=0.6;
  1162. }
  1163. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1164. __preheat_errors[_heater_id]++;
  1165. /*SERIAL_ECHOPGM(" Preheat errors:");
  1166. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1167. }
  1168. else {
  1169. //SERIAL_ECHOLNPGM("");
  1170. __preheat_errors[_heater_id] = 0;
  1171. }
  1172. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1173. {
  1174. if (farm_mode) { prusa_statistics(0); }
  1175. temp_runaway_stop(true, _isbed);
  1176. if (farm_mode) { prusa_statistics(91); }
  1177. }
  1178. __preheat_start[_heater_id] = _current_temperature;
  1179. __preheat_counter[_heater_id] = 0;
  1180. }
  1181. }
  1182. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1183. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1184. {
  1185. /*SERIAL_ECHOPGM("Heater:");
  1186. MYSERIAL.print(_heater_id);
  1187. MYSERIAL.println(" ->tempRunaway");*/
  1188. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1189. temp_runaway_check_active = false;
  1190. temp_runaway_error_counter[_heater_id] = 0;
  1191. }
  1192. if (_output > 0)
  1193. {
  1194. temp_runaway_check_active = true;
  1195. }
  1196. if (temp_runaway_check_active)
  1197. {
  1198. // we are in range
  1199. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1200. {
  1201. temp_runaway_check_active = false;
  1202. temp_runaway_error_counter[_heater_id] = 0;
  1203. }
  1204. else
  1205. {
  1206. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1207. {
  1208. temp_runaway_error_counter[_heater_id]++;
  1209. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1210. {
  1211. if (farm_mode) { prusa_statistics(0); }
  1212. temp_runaway_stop(false, _isbed);
  1213. if (farm_mode) { prusa_statistics(90); }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. }
  1219. }
  1220. void temp_runaway_stop(bool isPreheat, bool isBed)
  1221. {
  1222. cancel_heatup = true;
  1223. quickStop();
  1224. if (card.sdprinting)
  1225. {
  1226. card.sdprinting = false;
  1227. card.closefile();
  1228. }
  1229. // Clean the input command queue
  1230. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1231. cmdqueue_reset();
  1232. disable_heater();
  1233. disable_x();
  1234. disable_y();
  1235. disable_e0();
  1236. disable_e1();
  1237. disable_e2();
  1238. manage_heater();
  1239. lcd_update(0);
  1240. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1241. WRITE(BEEPER, HIGH);
  1242. delayMicroseconds(500);
  1243. WRITE(BEEPER, LOW);
  1244. delayMicroseconds(100);
  1245. if (isPreheat)
  1246. {
  1247. Stop();
  1248. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1249. SERIAL_ERROR_START;
  1250. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1251. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1252. SET_OUTPUT(FAN_PIN);
  1253. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1254. #ifdef FAN_SOFT_PWM
  1255. fanSpeedSoftPwm = 255;
  1256. #else //FAN_SOFT_PWM
  1257. analogWrite(FAN_PIN, 255);
  1258. #endif //FAN_SOFT_PWM
  1259. fanSpeed = 255;
  1260. delayMicroseconds(2000);
  1261. }
  1262. else
  1263. {
  1264. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1265. SERIAL_ERROR_START;
  1266. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1267. }
  1268. }
  1269. #endif
  1270. void disable_heater()
  1271. {
  1272. setAllTargetHotends(0);
  1273. setTargetBed(0);
  1274. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1275. target_temperature[0]=0;
  1276. soft_pwm[0]=0;
  1277. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1278. WRITE(HEATER_0_PIN,LOW);
  1279. #endif
  1280. #endif
  1281. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1282. target_temperature[1]=0;
  1283. soft_pwm[1]=0;
  1284. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1285. WRITE(HEATER_1_PIN,LOW);
  1286. #endif
  1287. #endif
  1288. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1289. target_temperature[2]=0;
  1290. soft_pwm[2]=0;
  1291. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1292. WRITE(HEATER_2_PIN,LOW);
  1293. #endif
  1294. #endif
  1295. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1296. target_temperature_bed=0;
  1297. soft_pwm_bed=0;
  1298. timer02_set_pwm0(soft_pwm_bed << 1);
  1299. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1300. WRITE(HEATER_BED_PIN,LOW);
  1301. #endif
  1302. #endif
  1303. }
  1304. void max_temp_error(uint8_t e) {
  1305. disable_heater();
  1306. if(IsStopped() == false) {
  1307. SERIAL_ERROR_START;
  1308. SERIAL_ERRORLN((int)e);
  1309. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1310. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1311. }
  1312. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1313. Stop();
  1314. #endif
  1315. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1316. SET_OUTPUT(FAN_PIN);
  1317. SET_OUTPUT(BEEPER);
  1318. WRITE(FAN_PIN, 1);
  1319. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1320. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1321. WRITE(BEEPER, 1);
  1322. // fanSpeed will consumed by the check_axes_activity() routine.
  1323. fanSpeed=255;
  1324. if (farm_mode) { prusa_statistics(93); }
  1325. }
  1326. void min_temp_error(uint8_t e) {
  1327. #ifdef DEBUG_DISABLE_MINTEMP
  1328. return;
  1329. #endif
  1330. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1331. disable_heater();
  1332. if(IsStopped() == false) {
  1333. SERIAL_ERROR_START;
  1334. SERIAL_ERRORLN((int)e);
  1335. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1336. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1337. }
  1338. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1339. Stop();
  1340. #endif
  1341. if (farm_mode) { prusa_statistics(92); }
  1342. }
  1343. void bed_max_temp_error(void) {
  1344. #if HEATER_BED_PIN > -1
  1345. WRITE(HEATER_BED_PIN, 0);
  1346. #endif
  1347. if(IsStopped() == false) {
  1348. SERIAL_ERROR_START;
  1349. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1350. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1351. }
  1352. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1353. Stop();
  1354. #endif
  1355. }
  1356. void bed_min_temp_error(void) {
  1357. #ifdef DEBUG_DISABLE_MINTEMP
  1358. return;
  1359. #endif
  1360. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1361. #if HEATER_BED_PIN > -1
  1362. WRITE(HEATER_BED_PIN, 0);
  1363. #endif
  1364. if(IsStopped() == false) {
  1365. SERIAL_ERROR_START;
  1366. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1367. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1368. }
  1369. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1370. Stop();
  1371. #endif
  1372. }
  1373. #ifdef HEATER_0_USES_MAX6675
  1374. #define MAX6675_HEAT_INTERVAL 250
  1375. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1376. int max6675_temp = 2000;
  1377. int read_max6675()
  1378. {
  1379. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1380. return max6675_temp;
  1381. max6675_previous_millis = _millis();
  1382. max6675_temp = 0;
  1383. #ifdef PRR
  1384. PRR &= ~(1<<PRSPI);
  1385. #elif defined PRR0
  1386. PRR0 &= ~(1<<PRSPI);
  1387. #endif
  1388. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1389. // enable TT_MAX6675
  1390. WRITE(MAX6675_SS, 0);
  1391. // ensure 100ns delay - a bit extra is fine
  1392. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1393. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1394. // read MSB
  1395. SPDR = 0;
  1396. for (;(SPSR & (1<<SPIF)) == 0;);
  1397. max6675_temp = SPDR;
  1398. max6675_temp <<= 8;
  1399. // read LSB
  1400. SPDR = 0;
  1401. for (;(SPSR & (1<<SPIF)) == 0;);
  1402. max6675_temp |= SPDR;
  1403. // disable TT_MAX6675
  1404. WRITE(MAX6675_SS, 1);
  1405. if (max6675_temp & 4)
  1406. {
  1407. // thermocouple open
  1408. max6675_temp = 2000;
  1409. }
  1410. else
  1411. {
  1412. max6675_temp = max6675_temp >> 3;
  1413. }
  1414. return max6675_temp;
  1415. }
  1416. #endif
  1417. extern "C" {
  1418. void adc_ready(void) //callback from adc when sampling finished
  1419. {
  1420. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1421. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1422. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1423. #ifdef VOLT_PWR_PIN
  1424. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1425. #endif
  1426. #ifdef AMBIENT_THERMISTOR
  1427. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1428. #endif //AMBIENT_THERMISTOR
  1429. #ifdef VOLT_BED_PIN
  1430. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1431. #endif
  1432. temp_meas_ready = true;
  1433. }
  1434. } // extern "C"
  1435. // Timer2 (originaly timer0) is shared with millies
  1436. #ifdef SYSTEM_TIMER_2
  1437. ISR(TIMER2_COMPB_vect)
  1438. #else //SYSTEM_TIMER_2
  1439. ISR(TIMER0_COMPB_vect)
  1440. #endif //SYSTEM_TIMER_2
  1441. {
  1442. static bool _lock = false;
  1443. if (_lock) return;
  1444. _lock = true;
  1445. asm("sei");
  1446. if (!temp_meas_ready) adc_cycle();
  1447. lcd_buttons_update();
  1448. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1449. static unsigned char soft_pwm_0;
  1450. #ifdef SLOW_PWM_HEATERS
  1451. static unsigned char slow_pwm_count = 0;
  1452. static unsigned char state_heater_0 = 0;
  1453. static unsigned char state_timer_heater_0 = 0;
  1454. #endif
  1455. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1456. static unsigned char soft_pwm_1;
  1457. #ifdef SLOW_PWM_HEATERS
  1458. static unsigned char state_heater_1 = 0;
  1459. static unsigned char state_timer_heater_1 = 0;
  1460. #endif
  1461. #endif
  1462. #if EXTRUDERS > 2
  1463. static unsigned char soft_pwm_2;
  1464. #ifdef SLOW_PWM_HEATERS
  1465. static unsigned char state_heater_2 = 0;
  1466. static unsigned char state_timer_heater_2 = 0;
  1467. #endif
  1468. #endif
  1469. #if HEATER_BED_PIN > -1
  1470. static unsigned char soft_pwm_b;
  1471. #ifdef SLOW_PWM_HEATERS
  1472. static unsigned char state_heater_b = 0;
  1473. static unsigned char state_timer_heater_b = 0;
  1474. #endif
  1475. #endif
  1476. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1477. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1478. #endif
  1479. #ifndef SLOW_PWM_HEATERS
  1480. /*
  1481. * standard PWM modulation
  1482. */
  1483. if (pwm_count == 0)
  1484. {
  1485. soft_pwm_0 = soft_pwm[0];
  1486. if(soft_pwm_0 > 0)
  1487. {
  1488. WRITE(HEATER_0_PIN,1);
  1489. #ifdef HEATERS_PARALLEL
  1490. WRITE(HEATER_1_PIN,1);
  1491. #endif
  1492. } else WRITE(HEATER_0_PIN,0);
  1493. #if EXTRUDERS > 1
  1494. soft_pwm_1 = soft_pwm[1];
  1495. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1496. #endif
  1497. #if EXTRUDERS > 2
  1498. soft_pwm_2 = soft_pwm[2];
  1499. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1500. #endif
  1501. }
  1502. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1503. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1504. {
  1505. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1506. #ifndef SYSTEM_TIMER_2
  1507. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1508. #endif //SYSTEM_TIMER_2
  1509. }
  1510. #endif
  1511. #ifdef FAN_SOFT_PWM
  1512. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1513. {
  1514. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1515. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1516. }
  1517. #endif
  1518. if(soft_pwm_0 < pwm_count)
  1519. {
  1520. WRITE(HEATER_0_PIN,0);
  1521. #ifdef HEATERS_PARALLEL
  1522. WRITE(HEATER_1_PIN,0);
  1523. #endif
  1524. }
  1525. #if EXTRUDERS > 1
  1526. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1527. #endif
  1528. #if EXTRUDERS > 2
  1529. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1530. #endif
  1531. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1532. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1533. #endif
  1534. #ifdef FAN_SOFT_PWM
  1535. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1536. #endif
  1537. pwm_count += (1 << SOFT_PWM_SCALE);
  1538. pwm_count &= 0x7f;
  1539. #else //ifndef SLOW_PWM_HEATERS
  1540. /*
  1541. * SLOW PWM HEATERS
  1542. *
  1543. * for heaters drived by relay
  1544. */
  1545. #ifndef MIN_STATE_TIME
  1546. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1547. #endif
  1548. if (slow_pwm_count == 0) {
  1549. // EXTRUDER 0
  1550. soft_pwm_0 = soft_pwm[0];
  1551. if (soft_pwm_0 > 0) {
  1552. // turn ON heather only if the minimum time is up
  1553. if (state_timer_heater_0 == 0) {
  1554. // if change state set timer
  1555. if (state_heater_0 == 0) {
  1556. state_timer_heater_0 = MIN_STATE_TIME;
  1557. }
  1558. state_heater_0 = 1;
  1559. WRITE(HEATER_0_PIN, 1);
  1560. #ifdef HEATERS_PARALLEL
  1561. WRITE(HEATER_1_PIN, 1);
  1562. #endif
  1563. }
  1564. } else {
  1565. // turn OFF heather only if the minimum time is up
  1566. if (state_timer_heater_0 == 0) {
  1567. // if change state set timer
  1568. if (state_heater_0 == 1) {
  1569. state_timer_heater_0 = MIN_STATE_TIME;
  1570. }
  1571. state_heater_0 = 0;
  1572. WRITE(HEATER_0_PIN, 0);
  1573. #ifdef HEATERS_PARALLEL
  1574. WRITE(HEATER_1_PIN, 0);
  1575. #endif
  1576. }
  1577. }
  1578. #if EXTRUDERS > 1
  1579. // EXTRUDER 1
  1580. soft_pwm_1 = soft_pwm[1];
  1581. if (soft_pwm_1 > 0) {
  1582. // turn ON heather only if the minimum time is up
  1583. if (state_timer_heater_1 == 0) {
  1584. // if change state set timer
  1585. if (state_heater_1 == 0) {
  1586. state_timer_heater_1 = MIN_STATE_TIME;
  1587. }
  1588. state_heater_1 = 1;
  1589. WRITE(HEATER_1_PIN, 1);
  1590. }
  1591. } else {
  1592. // turn OFF heather only if the minimum time is up
  1593. if (state_timer_heater_1 == 0) {
  1594. // if change state set timer
  1595. if (state_heater_1 == 1) {
  1596. state_timer_heater_1 = MIN_STATE_TIME;
  1597. }
  1598. state_heater_1 = 0;
  1599. WRITE(HEATER_1_PIN, 0);
  1600. }
  1601. }
  1602. #endif
  1603. #if EXTRUDERS > 2
  1604. // EXTRUDER 2
  1605. soft_pwm_2 = soft_pwm[2];
  1606. if (soft_pwm_2 > 0) {
  1607. // turn ON heather only if the minimum time is up
  1608. if (state_timer_heater_2 == 0) {
  1609. // if change state set timer
  1610. if (state_heater_2 == 0) {
  1611. state_timer_heater_2 = MIN_STATE_TIME;
  1612. }
  1613. state_heater_2 = 1;
  1614. WRITE(HEATER_2_PIN, 1);
  1615. }
  1616. } else {
  1617. // turn OFF heather only if the minimum time is up
  1618. if (state_timer_heater_2 == 0) {
  1619. // if change state set timer
  1620. if (state_heater_2 == 1) {
  1621. state_timer_heater_2 = MIN_STATE_TIME;
  1622. }
  1623. state_heater_2 = 0;
  1624. WRITE(HEATER_2_PIN, 0);
  1625. }
  1626. }
  1627. #endif
  1628. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1629. // BED
  1630. soft_pwm_b = soft_pwm_bed;
  1631. if (soft_pwm_b > 0) {
  1632. // turn ON heather only if the minimum time is up
  1633. if (state_timer_heater_b == 0) {
  1634. // if change state set timer
  1635. if (state_heater_b == 0) {
  1636. state_timer_heater_b = MIN_STATE_TIME;
  1637. }
  1638. state_heater_b = 1;
  1639. //WRITE(HEATER_BED_PIN, 1);
  1640. }
  1641. } else {
  1642. // turn OFF heather only if the minimum time is up
  1643. if (state_timer_heater_b == 0) {
  1644. // if change state set timer
  1645. if (state_heater_b == 1) {
  1646. state_timer_heater_b = MIN_STATE_TIME;
  1647. }
  1648. state_heater_b = 0;
  1649. WRITE(HEATER_BED_PIN, 0);
  1650. }
  1651. }
  1652. #endif
  1653. } // if (slow_pwm_count == 0)
  1654. // EXTRUDER 0
  1655. if (soft_pwm_0 < slow_pwm_count) {
  1656. // turn OFF heather only if the minimum time is up
  1657. if (state_timer_heater_0 == 0) {
  1658. // if change state set timer
  1659. if (state_heater_0 == 1) {
  1660. state_timer_heater_0 = MIN_STATE_TIME;
  1661. }
  1662. state_heater_0 = 0;
  1663. WRITE(HEATER_0_PIN, 0);
  1664. #ifdef HEATERS_PARALLEL
  1665. WRITE(HEATER_1_PIN, 0);
  1666. #endif
  1667. }
  1668. }
  1669. #if EXTRUDERS > 1
  1670. // EXTRUDER 1
  1671. if (soft_pwm_1 < slow_pwm_count) {
  1672. // turn OFF heather only if the minimum time is up
  1673. if (state_timer_heater_1 == 0) {
  1674. // if change state set timer
  1675. if (state_heater_1 == 1) {
  1676. state_timer_heater_1 = MIN_STATE_TIME;
  1677. }
  1678. state_heater_1 = 0;
  1679. WRITE(HEATER_1_PIN, 0);
  1680. }
  1681. }
  1682. #endif
  1683. #if EXTRUDERS > 2
  1684. // EXTRUDER 2
  1685. if (soft_pwm_2 < slow_pwm_count) {
  1686. // turn OFF heather only if the minimum time is up
  1687. if (state_timer_heater_2 == 0) {
  1688. // if change state set timer
  1689. if (state_heater_2 == 1) {
  1690. state_timer_heater_2 = MIN_STATE_TIME;
  1691. }
  1692. state_heater_2 = 0;
  1693. WRITE(HEATER_2_PIN, 0);
  1694. }
  1695. }
  1696. #endif
  1697. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1698. // BED
  1699. if (soft_pwm_b < slow_pwm_count) {
  1700. // turn OFF heather only if the minimum time is up
  1701. if (state_timer_heater_b == 0) {
  1702. // if change state set timer
  1703. if (state_heater_b == 1) {
  1704. state_timer_heater_b = MIN_STATE_TIME;
  1705. }
  1706. state_heater_b = 0;
  1707. WRITE(HEATER_BED_PIN, 0);
  1708. }
  1709. }
  1710. #endif
  1711. #ifdef FAN_SOFT_PWM
  1712. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1713. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1714. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1715. }
  1716. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1717. #endif
  1718. pwm_count += (1 << SOFT_PWM_SCALE);
  1719. pwm_count &= 0x7f;
  1720. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1721. if ((pwm_count % 64) == 0) {
  1722. slow_pwm_count++;
  1723. slow_pwm_count &= 0x7f;
  1724. // Extruder 0
  1725. if (state_timer_heater_0 > 0) {
  1726. state_timer_heater_0--;
  1727. }
  1728. #if EXTRUDERS > 1
  1729. // Extruder 1
  1730. if (state_timer_heater_1 > 0)
  1731. state_timer_heater_1--;
  1732. #endif
  1733. #if EXTRUDERS > 2
  1734. // Extruder 2
  1735. if (state_timer_heater_2 > 0)
  1736. state_timer_heater_2--;
  1737. #endif
  1738. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1739. // Bed
  1740. if (state_timer_heater_b > 0)
  1741. state_timer_heater_b--;
  1742. #endif
  1743. } //if ((pwm_count % 64) == 0) {
  1744. #endif //ifndef SLOW_PWM_HEATERS
  1745. #ifdef BABYSTEPPING
  1746. for(uint8_t axis=0;axis<3;axis++)
  1747. {
  1748. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1749. if(curTodo>0)
  1750. {
  1751. asm("cli");
  1752. babystep(axis,/*fwd*/true);
  1753. babystepsTodo[axis]--; //less to do next time
  1754. asm("sei");
  1755. }
  1756. else
  1757. if(curTodo<0)
  1758. {
  1759. asm("cli");
  1760. babystep(axis,/*fwd*/false);
  1761. babystepsTodo[axis]++; //less to do next time
  1762. asm("sei");
  1763. }
  1764. }
  1765. #endif //BABYSTEPPING
  1766. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1767. check_fans();
  1768. #endif //(defined(TACH_0))
  1769. _lock = false;
  1770. }
  1771. void check_max_temp()
  1772. {
  1773. //heater
  1774. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1775. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1776. #else
  1777. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1778. #endif
  1779. max_temp_error(0);
  1780. }
  1781. //bed
  1782. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1783. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1784. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1785. #else
  1786. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1787. #endif
  1788. target_temperature_bed = 0;
  1789. bed_max_temp_error();
  1790. }
  1791. #endif
  1792. }
  1793. void check_min_temp_heater0()
  1794. {
  1795. //heater
  1796. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1797. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1798. #else
  1799. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1800. #endif
  1801. min_temp_error(0);
  1802. }
  1803. }
  1804. void check_min_temp_bed()
  1805. {
  1806. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1807. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1808. #else
  1809. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1810. #endif
  1811. bed_min_temp_error();
  1812. }
  1813. }
  1814. void check_min_temp()
  1815. {
  1816. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1817. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1818. #ifdef AMBIENT_THERMISTOR
  1819. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1820. { // ambient temperature is low
  1821. #endif //AMBIENT_THERMISTOR
  1822. // *** 'common' part of code for MK2.5 & MK3
  1823. // * nozzle checking
  1824. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1825. { // ~ nozzle heating is on
  1826. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1827. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1828. {
  1829. bCheckingOnHeater=true; // not necessary
  1830. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1831. }
  1832. }
  1833. else { // ~ nozzle heating is off
  1834. oTimer4minTempHeater.start();
  1835. bCheckingOnHeater=false;
  1836. }
  1837. // * bed checking
  1838. if(target_temperature_bed>BED_MINTEMP)
  1839. { // ~ bed heating is on
  1840. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1841. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1842. {
  1843. bCheckingOnBed=true; // not necessary
  1844. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1845. }
  1846. }
  1847. else { // ~ bed heating is off
  1848. oTimer4minTempBed.start();
  1849. bCheckingOnBed=false;
  1850. }
  1851. // *** end of 'common' part
  1852. #ifdef AMBIENT_THERMISTOR
  1853. }
  1854. else { // ambient temperature is standard
  1855. check_min_temp_heater0();
  1856. check_min_temp_bed();
  1857. }
  1858. #endif //AMBIENT_THERMISTOR
  1859. }
  1860. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1861. void check_fans() {
  1862. #ifdef FAN_SOFT_PWM
  1863. if (READ(TACH_0) != fan_state[0]) {
  1864. if(fan_measuring) fan_edge_counter[0] ++;
  1865. fan_state[0] = !fan_state[0];
  1866. }
  1867. #else //FAN_SOFT_PWM
  1868. if (READ(TACH_0) != fan_state[0]) {
  1869. fan_edge_counter[0] ++;
  1870. fan_state[0] = !fan_state[0];
  1871. }
  1872. #endif
  1873. //if (READ(TACH_1) != fan_state[1]) {
  1874. // fan_edge_counter[1] ++;
  1875. // fan_state[1] = !fan_state[1];
  1876. //}
  1877. }
  1878. #endif //TACH_0
  1879. #ifdef PIDTEMP
  1880. // Apply the scale factors to the PID values
  1881. float scalePID_i(float i)
  1882. {
  1883. return i*PID_dT;
  1884. }
  1885. float unscalePID_i(float i)
  1886. {
  1887. return i/PID_dT;
  1888. }
  1889. float scalePID_d(float d)
  1890. {
  1891. return d/PID_dT;
  1892. }
  1893. float unscalePID_d(float d)
  1894. {
  1895. return d*PID_dT;
  1896. }
  1897. #endif //PIDTEMP