temperature.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. #ifdef FILAMENT_SENSOR
  82. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float temp_iState[EXTRUDERS] = { 0 };
  91. static float temp_dState[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float temp_iState_min[EXTRUDERS];
  98. static float temp_iState_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  122. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  123. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  124. static unsigned long extruder_autofan_last_check;
  125. #endif
  126. #if EXTRUDERS > 3
  127. # error Unsupported number of extruders
  128. #elif EXTRUDERS > 2
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  130. #elif EXTRUDERS > 1
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  132. #else
  133. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  134. #endif
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  147. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  148. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  149. #else
  150. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  151. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  152. #endif
  153. static float analog2temp(int raw, uint8_t e);
  154. static float analog2tempBed(int raw);
  155. static float analog2tempAmbient(int raw);
  156. static void updateTemperaturesFromRawValues();
  157. enum TempRunawayStates
  158. {
  159. TempRunaway_INACTIVE = 0,
  160. TempRunaway_PREHEAT = 1,
  161. TempRunaway_ACTIVE = 2,
  162. };
  163. #ifdef WATCH_TEMP_PERIOD
  164. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  166. #endif //WATCH_TEMP_PERIOD
  167. #ifndef SOFT_PWM_SCALE
  168. #define SOFT_PWM_SCALE 0
  169. #endif
  170. #ifdef FILAMENT_SENSOR
  171. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  172. #endif
  173. //===========================================================================
  174. //============================= functions ============================
  175. //===========================================================================
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. bias = d = (MAX_BED_POWER)/2;
  215. }
  216. else
  217. {
  218. soft_pwm[extruder] = (PID_MAX)/2;
  219. bias = d = (PID_MAX)/2;
  220. }
  221. for(;;) {
  222. wdt_reset();
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update();
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if defined(TACH_0) && TACH_0 >-1
  414. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if defined(TACH_1) && TACH_1 >-1
  418. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  422. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  423. }
  424. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  425. extern void restore_print_from_ram_and_continue(float e_move);
  426. void fanSpeedError(unsigned char _fan) {
  427. if (get_message_level() != 0 && isPrintPaused) return;
  428. //to ensure that target temp. is not set to zero in case taht we are resuming print
  429. if (card.sdprinting) {
  430. if (heating_status != 0) {
  431. lcd_print_stop();
  432. }
  433. else {
  434. isPrintPaused = true;
  435. lcd_sdcard_pause();
  436. }
  437. }
  438. else {
  439. setTargetHotend0(0);
  440. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  441. }
  442. switch (_fan) {
  443. case 0:
  444. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  445. if (get_message_level() == 0) {
  446. WRITE(BEEPER, HIGH);
  447. delayMicroseconds(200);
  448. WRITE(BEEPER, LOW);
  449. delayMicroseconds(100);
  450. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  451. }
  452. break;
  453. case 1:
  454. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  455. if (get_message_level() == 0) {
  456. WRITE(BEEPER, HIGH);
  457. delayMicroseconds(200);
  458. WRITE(BEEPER, LOW);
  459. delayMicroseconds(100);
  460. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  461. }
  462. break;
  463. }
  464. }
  465. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  466. void checkExtruderAutoFans()
  467. {
  468. uint8_t fanState = 0;
  469. // which fan pins need to be turned on?
  470. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  471. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  472. fanState |= 1;
  473. #endif
  474. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  475. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  476. {
  477. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  478. fanState |= 1;
  479. else
  480. fanState |= 2;
  481. }
  482. #endif
  483. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  484. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  485. {
  486. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  487. fanState |= 1;
  488. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  489. fanState |= 2;
  490. else
  491. fanState |= 4;
  492. }
  493. #endif
  494. // update extruder auto fan states
  495. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  496. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  497. #endif
  498. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  499. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  500. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  501. #endif
  502. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  503. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  504. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  506. #endif
  507. }
  508. #endif // any extruder auto fan pins set
  509. void manage_heater()
  510. {
  511. wdt_reset();
  512. float pid_input;
  513. float pid_output;
  514. if(temp_meas_ready != true) //better readability
  515. return;
  516. updateTemperaturesFromRawValues();
  517. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  518. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  519. #endif
  520. for(int e = 0; e < EXTRUDERS; e++)
  521. {
  522. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  523. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  524. #endif
  525. #ifdef PIDTEMP
  526. pid_input = current_temperature[e];
  527. #ifndef PID_OPENLOOP
  528. pid_error[e] = target_temperature[e] - pid_input;
  529. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  530. pid_output = BANG_MAX;
  531. pid_reset[e] = true;
  532. }
  533. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  534. pid_output = 0;
  535. pid_reset[e] = true;
  536. }
  537. else {
  538. if(pid_reset[e] == true) {
  539. temp_iState[e] = 0.0;
  540. pid_reset[e] = false;
  541. }
  542. pTerm[e] = Kp * pid_error[e];
  543. temp_iState[e] += pid_error[e];
  544. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  545. iTerm[e] = Ki * temp_iState[e];
  546. //K1 defined in Configuration.h in the PID settings
  547. #define K2 (1.0-K1)
  548. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  549. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  550. if (pid_output > PID_MAX) {
  551. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  552. pid_output=PID_MAX;
  553. } else if (pid_output < 0){
  554. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  555. pid_output=0;
  556. }
  557. }
  558. temp_dState[e] = pid_input;
  559. #else
  560. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  561. #endif //PID_OPENLOOP
  562. #ifdef PID_DEBUG
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHO(" PID_DEBUG ");
  565. SERIAL_ECHO(e);
  566. SERIAL_ECHO(": Input ");
  567. SERIAL_ECHO(pid_input);
  568. SERIAL_ECHO(" Output ");
  569. SERIAL_ECHO(pid_output);
  570. SERIAL_ECHO(" pTerm ");
  571. SERIAL_ECHO(pTerm[e]);
  572. SERIAL_ECHO(" iTerm ");
  573. SERIAL_ECHO(iTerm[e]);
  574. SERIAL_ECHO(" dTerm ");
  575. SERIAL_ECHOLN(dTerm[e]);
  576. #endif //PID_DEBUG
  577. #else /* PID off */
  578. pid_output = 0;
  579. if(current_temperature[e] < target_temperature[e]) {
  580. pid_output = PID_MAX;
  581. }
  582. #endif
  583. // Check if temperature is within the correct range
  584. #ifdef AMBIENT_THERMISTOR
  585. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  586. #else //AMBIENT_THERMISTOR
  587. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  588. #endif //AMBIENT_THERMISTOR
  589. {
  590. soft_pwm[e] = (int)pid_output >> 1;
  591. }
  592. else
  593. {
  594. soft_pwm[e] = 0;
  595. }
  596. #ifdef WATCH_TEMP_PERIOD
  597. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  598. {
  599. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  600. {
  601. setTargetHotend(0, e);
  602. LCD_MESSAGEPGM("Heating failed");
  603. SERIAL_ECHO_START;
  604. SERIAL_ECHOLN("Heating failed");
  605. }else{
  606. watchmillis[e] = 0;
  607. }
  608. }
  609. #endif
  610. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  611. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  612. disable_heater();
  613. if(IsStopped() == false) {
  614. SERIAL_ERROR_START;
  615. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  616. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  617. }
  618. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  619. Stop();
  620. #endif
  621. }
  622. #endif
  623. } // End extruder for loop
  624. #ifndef DEBUG_DISABLE_FANCHECK
  625. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  626. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  627. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  628. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  629. {
  630. #if (defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  631. countFanSpeed();
  632. checkFanSpeed();
  633. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  634. checkExtruderAutoFans();
  635. extruder_autofan_last_check = millis();
  636. }
  637. #endif
  638. #endif //DEBUG_DISABLE_FANCHECK
  639. #ifndef PIDTEMPBED
  640. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  641. return;
  642. previous_millis_bed_heater = millis();
  643. #endif
  644. #if TEMP_SENSOR_BED != 0
  645. #ifdef PIDTEMPBED
  646. pid_input = current_temperature_bed;
  647. #ifndef PID_OPENLOOP
  648. pid_error_bed = target_temperature_bed - pid_input;
  649. pTerm_bed = bedKp * pid_error_bed;
  650. temp_iState_bed += pid_error_bed;
  651. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  652. iTerm_bed = bedKi * temp_iState_bed;
  653. //K1 defined in Configuration.h in the PID settings
  654. #define K2 (1.0-K1)
  655. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  656. temp_dState_bed = pid_input;
  657. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  658. if (pid_output > MAX_BED_POWER) {
  659. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  660. pid_output=MAX_BED_POWER;
  661. } else if (pid_output < 0){
  662. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  663. pid_output=0;
  664. }
  665. #else
  666. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  667. #endif //PID_OPENLOOP
  668. #ifdef AMBIENT_THERMISTOR
  669. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  670. #else //AMBIENT_THERMISTOR
  671. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  672. #endif //AMBIENT_THERMISTOR
  673. {
  674. soft_pwm_bed = (int)pid_output >> 1;
  675. }
  676. else {
  677. soft_pwm_bed = 0;
  678. }
  679. #elif !defined(BED_LIMIT_SWITCHING)
  680. // Check if temperature is within the correct range
  681. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  682. {
  683. if(current_temperature_bed >= target_temperature_bed)
  684. {
  685. soft_pwm_bed = 0;
  686. }
  687. else
  688. {
  689. soft_pwm_bed = MAX_BED_POWER>>1;
  690. }
  691. }
  692. else
  693. {
  694. soft_pwm_bed = 0;
  695. WRITE(HEATER_BED_PIN,LOW);
  696. }
  697. #else //#ifdef BED_LIMIT_SWITCHING
  698. // Check if temperature is within the correct band
  699. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  700. {
  701. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  702. {
  703. soft_pwm_bed = 0;
  704. }
  705. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  706. {
  707. soft_pwm_bed = MAX_BED_POWER>>1;
  708. }
  709. }
  710. else
  711. {
  712. soft_pwm_bed = 0;
  713. WRITE(HEATER_BED_PIN,LOW);
  714. }
  715. #endif
  716. #endif
  717. //code for controlling the extruder rate based on the width sensor
  718. #ifdef FILAMENT_SENSOR
  719. if(filament_sensor)
  720. {
  721. meas_shift_index=delay_index1-meas_delay_cm;
  722. if(meas_shift_index<0)
  723. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  724. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  725. //then square it to get an area
  726. if(meas_shift_index<0)
  727. meas_shift_index=0;
  728. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  729. meas_shift_index=MAX_MEASUREMENT_DELAY;
  730. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  731. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  732. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  733. }
  734. #endif
  735. #ifdef HOST_KEEPALIVE_FEATURE
  736. host_keepalive();
  737. #endif
  738. }
  739. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  740. // Derived from RepRap FiveD extruder::getTemperature()
  741. // For hot end temperature measurement.
  742. static float analog2temp(int raw, uint8_t e) {
  743. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  744. if(e > EXTRUDERS)
  745. #else
  746. if(e >= EXTRUDERS)
  747. #endif
  748. {
  749. SERIAL_ERROR_START;
  750. SERIAL_ERROR((int)e);
  751. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  752. kill("", 6);
  753. return 0.0;
  754. }
  755. #ifdef HEATER_0_USES_MAX6675
  756. if (e == 0)
  757. {
  758. return 0.25 * raw;
  759. }
  760. #endif
  761. if(heater_ttbl_map[e] != NULL)
  762. {
  763. float celsius = 0;
  764. uint8_t i;
  765. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  766. for (i=1; i<heater_ttbllen_map[e]; i++)
  767. {
  768. if (PGM_RD_W((*tt)[i][0]) > raw)
  769. {
  770. celsius = PGM_RD_W((*tt)[i-1][1]) +
  771. (raw - PGM_RD_W((*tt)[i-1][0])) *
  772. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  773. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  774. break;
  775. }
  776. }
  777. // Overflow: Set to last value in the table
  778. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  779. return celsius;
  780. }
  781. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  782. }
  783. // Derived from RepRap FiveD extruder::getTemperature()
  784. // For bed temperature measurement.
  785. static float analog2tempBed(int raw) {
  786. #ifdef BED_USES_THERMISTOR
  787. float celsius = 0;
  788. byte i;
  789. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  790. {
  791. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  792. {
  793. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  794. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  795. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  796. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  797. break;
  798. }
  799. }
  800. // Overflow: Set to last value in the table
  801. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  802. // temperature offset adjustment
  803. #ifdef BED_OFFSET
  804. float _offset = BED_OFFSET;
  805. float _offset_center = BED_OFFSET_CENTER;
  806. float _offset_start = BED_OFFSET_START;
  807. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  808. float _second_koef = (_offset / 2) / (100 - _offset_center);
  809. if (celsius >= _offset_start && celsius <= _offset_center)
  810. {
  811. celsius = celsius + (_first_koef * (celsius - _offset_start));
  812. }
  813. else if (celsius > _offset_center && celsius <= 100)
  814. {
  815. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  816. }
  817. else if (celsius > 100)
  818. {
  819. celsius = celsius + _offset;
  820. }
  821. #endif
  822. return celsius;
  823. #elif defined BED_USES_AD595
  824. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  825. #else
  826. return 0;
  827. #endif
  828. }
  829. #ifdef AMBIENT_THERMISTOR
  830. static float analog2tempAmbient(int raw)
  831. {
  832. float celsius = 0;
  833. byte i;
  834. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  835. {
  836. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  837. {
  838. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  839. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  840. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  841. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  842. break;
  843. }
  844. }
  845. // Overflow: Set to last value in the table
  846. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  847. return celsius;
  848. }
  849. #endif //AMBIENT_THERMISTOR
  850. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  851. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  852. static void updateTemperaturesFromRawValues()
  853. {
  854. for(uint8_t e=0;e<EXTRUDERS;e++)
  855. {
  856. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  857. }
  858. #ifdef PINDA_THERMISTOR
  859. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  860. #endif
  861. #ifdef AMBIENT_THERMISTOR
  862. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  863. #endif
  864. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  865. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  866. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  867. #endif
  868. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  869. filament_width_meas = analog2widthFil();
  870. #endif
  871. //Reset the watchdog after we know we have a temperature measurement.
  872. watchdog_reset();
  873. CRITICAL_SECTION_START;
  874. temp_meas_ready = false;
  875. CRITICAL_SECTION_END;
  876. }
  877. // For converting raw Filament Width to milimeters
  878. #ifdef FILAMENT_SENSOR
  879. float analog2widthFil() {
  880. return current_raw_filwidth/16383.0*5.0;
  881. //return current_raw_filwidth;
  882. }
  883. // For converting raw Filament Width to a ratio
  884. int widthFil_to_size_ratio() {
  885. float temp;
  886. temp=filament_width_meas;
  887. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  888. temp=filament_width_nominal; //assume sensor cut out
  889. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  890. temp= MEASURED_UPPER_LIMIT;
  891. return(filament_width_nominal/temp*100);
  892. }
  893. #endif
  894. void tp_init()
  895. {
  896. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  897. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  898. MCUCR=(1<<JTD);
  899. MCUCR=(1<<JTD);
  900. #endif
  901. // Finish init of mult extruder arrays
  902. for(int e = 0; e < EXTRUDERS; e++) {
  903. // populate with the first value
  904. maxttemp[e] = maxttemp[0];
  905. #ifdef PIDTEMP
  906. temp_iState_min[e] = 0.0;
  907. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  908. #endif //PIDTEMP
  909. #ifdef PIDTEMPBED
  910. temp_iState_min_bed = 0.0;
  911. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  912. #endif //PIDTEMPBED
  913. }
  914. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  915. SET_OUTPUT(HEATER_0_PIN);
  916. #endif
  917. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  918. SET_OUTPUT(HEATER_1_PIN);
  919. #endif
  920. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  921. SET_OUTPUT(HEATER_2_PIN);
  922. #endif
  923. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  924. SET_OUTPUT(HEATER_BED_PIN);
  925. #endif
  926. #if defined(FAN_PIN) && (FAN_PIN > -1)
  927. SET_OUTPUT(FAN_PIN);
  928. #ifdef FAST_PWM_FAN
  929. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  930. #endif
  931. #ifdef FAN_SOFT_PWM
  932. soft_pwm_fan = fanSpeedSoftPwm / 2;
  933. #endif
  934. #endif
  935. #ifdef HEATER_0_USES_MAX6675
  936. #ifndef SDSUPPORT
  937. SET_OUTPUT(SCK_PIN);
  938. WRITE(SCK_PIN,0);
  939. SET_OUTPUT(MOSI_PIN);
  940. WRITE(MOSI_PIN,1);
  941. SET_INPUT(MISO_PIN);
  942. WRITE(MISO_PIN,1);
  943. #endif
  944. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  945. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  946. pinMode(SS_PIN, OUTPUT);
  947. digitalWrite(SS_PIN,0);
  948. pinMode(MAX6675_SS, OUTPUT);
  949. digitalWrite(MAX6675_SS,1);
  950. #endif
  951. adc_init();
  952. // Use timer0 for temperature measurement
  953. // Interleave temperature interrupt with millies interrupt
  954. OCR0B = 128;
  955. TIMSK0 |= (1<<OCIE0B);
  956. // Wait for temperature measurement to settle
  957. delay(250);
  958. #ifdef HEATER_0_MINTEMP
  959. minttemp[0] = HEATER_0_MINTEMP;
  960. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  961. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  962. minttemp_raw[0] += OVERSAMPLENR;
  963. #else
  964. minttemp_raw[0] -= OVERSAMPLENR;
  965. #endif
  966. }
  967. #endif //MINTEMP
  968. #ifdef HEATER_0_MAXTEMP
  969. maxttemp[0] = HEATER_0_MAXTEMP;
  970. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  971. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  972. maxttemp_raw[0] -= OVERSAMPLENR;
  973. #else
  974. maxttemp_raw[0] += OVERSAMPLENR;
  975. #endif
  976. }
  977. #endif //MAXTEMP
  978. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  979. minttemp[1] = HEATER_1_MINTEMP;
  980. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  981. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  982. minttemp_raw[1] += OVERSAMPLENR;
  983. #else
  984. minttemp_raw[1] -= OVERSAMPLENR;
  985. #endif
  986. }
  987. #endif // MINTEMP 1
  988. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  989. maxttemp[1] = HEATER_1_MAXTEMP;
  990. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  991. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  992. maxttemp_raw[1] -= OVERSAMPLENR;
  993. #else
  994. maxttemp_raw[1] += OVERSAMPLENR;
  995. #endif
  996. }
  997. #endif //MAXTEMP 1
  998. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  999. minttemp[2] = HEATER_2_MINTEMP;
  1000. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1001. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1002. minttemp_raw[2] += OVERSAMPLENR;
  1003. #else
  1004. minttemp_raw[2] -= OVERSAMPLENR;
  1005. #endif
  1006. }
  1007. #endif //MINTEMP 2
  1008. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1009. maxttemp[2] = HEATER_2_MAXTEMP;
  1010. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1011. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1012. maxttemp_raw[2] -= OVERSAMPLENR;
  1013. #else
  1014. maxttemp_raw[2] += OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif //MAXTEMP 2
  1018. #ifdef BED_MINTEMP
  1019. /* No bed MINTEMP error implemented?!? */
  1020. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1021. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1022. bed_minttemp_raw += OVERSAMPLENR;
  1023. #else
  1024. bed_minttemp_raw -= OVERSAMPLENR;
  1025. #endif
  1026. }
  1027. #endif //BED_MINTEMP
  1028. #ifdef BED_MAXTEMP
  1029. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1030. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1031. bed_maxttemp_raw -= OVERSAMPLENR;
  1032. #else
  1033. bed_maxttemp_raw += OVERSAMPLENR;
  1034. #endif
  1035. }
  1036. #endif //BED_MAXTEMP
  1037. }
  1038. void setWatch()
  1039. {
  1040. #ifdef WATCH_TEMP_PERIOD
  1041. for (int e = 0; e < EXTRUDERS; e++)
  1042. {
  1043. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1044. {
  1045. watch_start_temp[e] = degHotend(e);
  1046. watchmillis[e] = millis();
  1047. }
  1048. }
  1049. #endif
  1050. }
  1051. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1052. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1053. {
  1054. float __hysteresis = 0;
  1055. int __timeout = 0;
  1056. bool temp_runaway_check_active = false;
  1057. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1058. static int __preheat_counter[2] = { 0,0};
  1059. static int __preheat_errors[2] = { 0,0};
  1060. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1061. if (_isbed)
  1062. {
  1063. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1064. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1065. }
  1066. #endif
  1067. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1068. if (!_isbed)
  1069. {
  1070. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1071. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1072. }
  1073. #endif
  1074. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1075. {
  1076. temp_runaway_timer[_heater_id] = millis();
  1077. if (_output == 0)
  1078. {
  1079. temp_runaway_check_active = false;
  1080. temp_runaway_error_counter[_heater_id] = 0;
  1081. }
  1082. if (temp_runaway_target[_heater_id] != _target_temperature)
  1083. {
  1084. if (_target_temperature > 0)
  1085. {
  1086. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1087. temp_runaway_target[_heater_id] = _target_temperature;
  1088. __preheat_start[_heater_id] = _current_temperature;
  1089. __preheat_counter[_heater_id] = 0;
  1090. }
  1091. else
  1092. {
  1093. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1094. temp_runaway_target[_heater_id] = _target_temperature;
  1095. }
  1096. }
  1097. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1098. {
  1099. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1100. {
  1101. __preheat_counter[_heater_id]++;
  1102. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1103. {
  1104. /*SERIAL_ECHOPGM("Heater:");
  1105. MYSERIAL.print(_heater_id);
  1106. SERIAL_ECHOPGM(" T:");
  1107. MYSERIAL.print(_current_temperature);
  1108. SERIAL_ECHOPGM(" Tstart:");
  1109. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1110. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1111. __preheat_errors[_heater_id]++;
  1112. /*SERIAL_ECHOPGM(" Preheat errors:");
  1113. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1114. }
  1115. else {
  1116. //SERIAL_ECHOLNPGM("");
  1117. __preheat_errors[_heater_id] = 0;
  1118. }
  1119. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1120. {
  1121. if (farm_mode) { prusa_statistics(0); }
  1122. temp_runaway_stop(true, _isbed);
  1123. if (farm_mode) { prusa_statistics(91); }
  1124. }
  1125. __preheat_start[_heater_id] = _current_temperature;
  1126. __preheat_counter[_heater_id] = 0;
  1127. }
  1128. }
  1129. }
  1130. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1131. {
  1132. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1133. temp_runaway_check_active = false;
  1134. }
  1135. if (!temp_runaway_check_active && _output > 0)
  1136. {
  1137. temp_runaway_check_active = true;
  1138. }
  1139. if (temp_runaway_check_active)
  1140. {
  1141. // we are in range
  1142. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1143. {
  1144. temp_runaway_check_active = false;
  1145. temp_runaway_error_counter[_heater_id] = 0;
  1146. }
  1147. else
  1148. {
  1149. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1150. {
  1151. temp_runaway_error_counter[_heater_id]++;
  1152. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1153. {
  1154. if (farm_mode) { prusa_statistics(0); }
  1155. temp_runaway_stop(false, _isbed);
  1156. if (farm_mode) { prusa_statistics(90); }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. }
  1162. }
  1163. void temp_runaway_stop(bool isPreheat, bool isBed)
  1164. {
  1165. cancel_heatup = true;
  1166. quickStop();
  1167. if (card.sdprinting)
  1168. {
  1169. card.sdprinting = false;
  1170. card.closefile();
  1171. }
  1172. // Clean the input command queue
  1173. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1174. cmdqueue_reset();
  1175. disable_heater();
  1176. disable_x();
  1177. disable_y();
  1178. disable_e0();
  1179. disable_e1();
  1180. disable_e2();
  1181. manage_heater();
  1182. lcd_update();
  1183. WRITE(BEEPER, HIGH);
  1184. delayMicroseconds(500);
  1185. WRITE(BEEPER, LOW);
  1186. delayMicroseconds(100);
  1187. if (isPreheat)
  1188. {
  1189. Stop();
  1190. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1191. SERIAL_ERROR_START;
  1192. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1193. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1194. SET_OUTPUT(FAN_PIN);
  1195. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1196. analogWrite(FAN_PIN, 255);
  1197. fanSpeed = 255;
  1198. delayMicroseconds(2000);
  1199. }
  1200. else
  1201. {
  1202. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1203. SERIAL_ERROR_START;
  1204. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1205. }
  1206. }
  1207. #endif
  1208. void disable_heater()
  1209. {
  1210. for(int i=0;i<EXTRUDERS;i++)
  1211. setTargetHotend(0,i);
  1212. setTargetBed(0);
  1213. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1214. target_temperature[0]=0;
  1215. soft_pwm[0]=0;
  1216. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1217. WRITE(HEATER_0_PIN,LOW);
  1218. #endif
  1219. #endif
  1220. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1221. target_temperature[1]=0;
  1222. soft_pwm[1]=0;
  1223. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1224. WRITE(HEATER_1_PIN,LOW);
  1225. #endif
  1226. #endif
  1227. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1228. target_temperature[2]=0;
  1229. soft_pwm[2]=0;
  1230. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1231. WRITE(HEATER_2_PIN,LOW);
  1232. #endif
  1233. #endif
  1234. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1235. target_temperature_bed=0;
  1236. soft_pwm_bed=0;
  1237. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1238. WRITE(HEATER_BED_PIN,LOW);
  1239. #endif
  1240. #endif
  1241. }
  1242. void max_temp_error(uint8_t e) {
  1243. disable_heater();
  1244. if(IsStopped() == false) {
  1245. SERIAL_ERROR_START;
  1246. SERIAL_ERRORLN((int)e);
  1247. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1248. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1249. }
  1250. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1251. Stop();
  1252. #endif
  1253. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1254. SET_OUTPUT(FAN_PIN);
  1255. SET_OUTPUT(BEEPER);
  1256. WRITE(FAN_PIN, 1);
  1257. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1258. WRITE(BEEPER, 1);
  1259. // fanSpeed will consumed by the check_axes_activity() routine.
  1260. fanSpeed=255;
  1261. if (farm_mode) { prusa_statistics(93); }
  1262. }
  1263. void min_temp_error(uint8_t e) {
  1264. #ifdef DEBUG_DISABLE_MINTEMP
  1265. return;
  1266. #endif
  1267. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1268. disable_heater();
  1269. if(IsStopped() == false) {
  1270. SERIAL_ERROR_START;
  1271. SERIAL_ERRORLN((int)e);
  1272. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1273. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1274. }
  1275. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1276. Stop();
  1277. #endif
  1278. if (farm_mode) { prusa_statistics(92); }
  1279. }
  1280. void bed_max_temp_error(void) {
  1281. #if HEATER_BED_PIN > -1
  1282. WRITE(HEATER_BED_PIN, 0);
  1283. #endif
  1284. if(IsStopped() == false) {
  1285. SERIAL_ERROR_START;
  1286. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1287. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1288. }
  1289. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1290. Stop();
  1291. #endif
  1292. }
  1293. void bed_min_temp_error(void) {
  1294. #ifdef DEBUG_DISABLE_MINTEMP
  1295. return;
  1296. #endif
  1297. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1298. #if HEATER_BED_PIN > -1
  1299. WRITE(HEATER_BED_PIN, 0);
  1300. #endif
  1301. if(IsStopped() == false) {
  1302. SERIAL_ERROR_START;
  1303. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1304. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1305. }
  1306. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1307. Stop();
  1308. #endif*/
  1309. }
  1310. #ifdef HEATER_0_USES_MAX6675
  1311. #define MAX6675_HEAT_INTERVAL 250
  1312. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1313. int max6675_temp = 2000;
  1314. int read_max6675()
  1315. {
  1316. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1317. return max6675_temp;
  1318. max6675_previous_millis = millis();
  1319. max6675_temp = 0;
  1320. #ifdef PRR
  1321. PRR &= ~(1<<PRSPI);
  1322. #elif defined PRR0
  1323. PRR0 &= ~(1<<PRSPI);
  1324. #endif
  1325. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1326. // enable TT_MAX6675
  1327. WRITE(MAX6675_SS, 0);
  1328. // ensure 100ns delay - a bit extra is fine
  1329. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1330. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1331. // read MSB
  1332. SPDR = 0;
  1333. for (;(SPSR & (1<<SPIF)) == 0;);
  1334. max6675_temp = SPDR;
  1335. max6675_temp <<= 8;
  1336. // read LSB
  1337. SPDR = 0;
  1338. for (;(SPSR & (1<<SPIF)) == 0;);
  1339. max6675_temp |= SPDR;
  1340. // disable TT_MAX6675
  1341. WRITE(MAX6675_SS, 1);
  1342. if (max6675_temp & 4)
  1343. {
  1344. // thermocouple open
  1345. max6675_temp = 2000;
  1346. }
  1347. else
  1348. {
  1349. max6675_temp = max6675_temp >> 3;
  1350. }
  1351. return max6675_temp;
  1352. }
  1353. #endif
  1354. extern "C" {
  1355. void adc_ready(void) //callback from adc when sampling finished
  1356. {
  1357. current_temperature_raw[0] = adc_values[0];
  1358. current_temperature_bed_raw = adc_values[2];
  1359. current_temperature_raw_pinda = adc_values[3];
  1360. current_voltage_raw_pwr = adc_values[4];
  1361. #ifdef AMBIENT_THERMISTOR
  1362. current_temperature_raw_ambient = adc_values[5];
  1363. #endif //AMBIENT_THERMISTOR
  1364. current_voltage_raw_bed = adc_values[6];
  1365. temp_meas_ready = true;
  1366. }
  1367. } // extern "C"
  1368. // Timer 0 is shared with millies
  1369. ISR(TIMER0_COMPB_vect)
  1370. {
  1371. static bool _lock = false;
  1372. if (_lock) return;
  1373. _lock = true;
  1374. asm("sei");
  1375. if (!temp_meas_ready) adc_cycle();
  1376. else
  1377. {
  1378. check_max_temp();
  1379. check_min_temp();
  1380. }
  1381. lcd_buttons_update();
  1382. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1383. static unsigned char soft_pwm_0;
  1384. #ifdef SLOW_PWM_HEATERS
  1385. static unsigned char slow_pwm_count = 0;
  1386. static unsigned char state_heater_0 = 0;
  1387. static unsigned char state_timer_heater_0 = 0;
  1388. #endif
  1389. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1390. static unsigned char soft_pwm_1;
  1391. #ifdef SLOW_PWM_HEATERS
  1392. static unsigned char state_heater_1 = 0;
  1393. static unsigned char state_timer_heater_1 = 0;
  1394. #endif
  1395. #endif
  1396. #if EXTRUDERS > 2
  1397. static unsigned char soft_pwm_2;
  1398. #ifdef SLOW_PWM_HEATERS
  1399. static unsigned char state_heater_2 = 0;
  1400. static unsigned char state_timer_heater_2 = 0;
  1401. #endif
  1402. #endif
  1403. #if HEATER_BED_PIN > -1
  1404. static unsigned char soft_pwm_b;
  1405. #ifdef SLOW_PWM_HEATERS
  1406. static unsigned char state_heater_b = 0;
  1407. static unsigned char state_timer_heater_b = 0;
  1408. #endif
  1409. #endif
  1410. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1411. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1412. #endif
  1413. #ifndef SLOW_PWM_HEATERS
  1414. /*
  1415. * standard PWM modulation
  1416. */
  1417. if (pwm_count == 0)
  1418. {
  1419. soft_pwm_0 = soft_pwm[0];
  1420. if(soft_pwm_0 > 0)
  1421. {
  1422. WRITE(HEATER_0_PIN,1);
  1423. #ifdef HEATERS_PARALLEL
  1424. WRITE(HEATER_1_PIN,1);
  1425. #endif
  1426. } else WRITE(HEATER_0_PIN,0);
  1427. #if EXTRUDERS > 1
  1428. soft_pwm_1 = soft_pwm[1];
  1429. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1430. #endif
  1431. #if EXTRUDERS > 2
  1432. soft_pwm_2 = soft_pwm[2];
  1433. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1434. #endif
  1435. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1436. soft_pwm_b = soft_pwm_bed;
  1437. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1438. #endif
  1439. #ifdef FAN_SOFT_PWM
  1440. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1441. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1442. #endif
  1443. }
  1444. if(soft_pwm_0 < pwm_count)
  1445. {
  1446. WRITE(HEATER_0_PIN,0);
  1447. #ifdef HEATERS_PARALLEL
  1448. WRITE(HEATER_1_PIN,0);
  1449. #endif
  1450. }
  1451. #if EXTRUDERS > 1
  1452. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1453. #endif
  1454. #if EXTRUDERS > 2
  1455. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1456. #endif
  1457. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1458. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1459. #endif
  1460. #ifdef FAN_SOFT_PWM
  1461. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1462. #endif
  1463. pwm_count += (1 << SOFT_PWM_SCALE);
  1464. pwm_count &= 0x7f;
  1465. #else //ifndef SLOW_PWM_HEATERS
  1466. /*
  1467. * SLOW PWM HEATERS
  1468. *
  1469. * for heaters drived by relay
  1470. */
  1471. #ifndef MIN_STATE_TIME
  1472. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1473. #endif
  1474. if (slow_pwm_count == 0) {
  1475. // EXTRUDER 0
  1476. soft_pwm_0 = soft_pwm[0];
  1477. if (soft_pwm_0 > 0) {
  1478. // turn ON heather only if the minimum time is up
  1479. if (state_timer_heater_0 == 0) {
  1480. // if change state set timer
  1481. if (state_heater_0 == 0) {
  1482. state_timer_heater_0 = MIN_STATE_TIME;
  1483. }
  1484. state_heater_0 = 1;
  1485. WRITE(HEATER_0_PIN, 1);
  1486. #ifdef HEATERS_PARALLEL
  1487. WRITE(HEATER_1_PIN, 1);
  1488. #endif
  1489. }
  1490. } else {
  1491. // turn OFF heather only if the minimum time is up
  1492. if (state_timer_heater_0 == 0) {
  1493. // if change state set timer
  1494. if (state_heater_0 == 1) {
  1495. state_timer_heater_0 = MIN_STATE_TIME;
  1496. }
  1497. state_heater_0 = 0;
  1498. WRITE(HEATER_0_PIN, 0);
  1499. #ifdef HEATERS_PARALLEL
  1500. WRITE(HEATER_1_PIN, 0);
  1501. #endif
  1502. }
  1503. }
  1504. #if EXTRUDERS > 1
  1505. // EXTRUDER 1
  1506. soft_pwm_1 = soft_pwm[1];
  1507. if (soft_pwm_1 > 0) {
  1508. // turn ON heather only if the minimum time is up
  1509. if (state_timer_heater_1 == 0) {
  1510. // if change state set timer
  1511. if (state_heater_1 == 0) {
  1512. state_timer_heater_1 = MIN_STATE_TIME;
  1513. }
  1514. state_heater_1 = 1;
  1515. WRITE(HEATER_1_PIN, 1);
  1516. }
  1517. } else {
  1518. // turn OFF heather only if the minimum time is up
  1519. if (state_timer_heater_1 == 0) {
  1520. // if change state set timer
  1521. if (state_heater_1 == 1) {
  1522. state_timer_heater_1 = MIN_STATE_TIME;
  1523. }
  1524. state_heater_1 = 0;
  1525. WRITE(HEATER_1_PIN, 0);
  1526. }
  1527. }
  1528. #endif
  1529. #if EXTRUDERS > 2
  1530. // EXTRUDER 2
  1531. soft_pwm_2 = soft_pwm[2];
  1532. if (soft_pwm_2 > 0) {
  1533. // turn ON heather only if the minimum time is up
  1534. if (state_timer_heater_2 == 0) {
  1535. // if change state set timer
  1536. if (state_heater_2 == 0) {
  1537. state_timer_heater_2 = MIN_STATE_TIME;
  1538. }
  1539. state_heater_2 = 1;
  1540. WRITE(HEATER_2_PIN, 1);
  1541. }
  1542. } else {
  1543. // turn OFF heather only if the minimum time is up
  1544. if (state_timer_heater_2 == 0) {
  1545. // if change state set timer
  1546. if (state_heater_2 == 1) {
  1547. state_timer_heater_2 = MIN_STATE_TIME;
  1548. }
  1549. state_heater_2 = 0;
  1550. WRITE(HEATER_2_PIN, 0);
  1551. }
  1552. }
  1553. #endif
  1554. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1555. // BED
  1556. soft_pwm_b = soft_pwm_bed;
  1557. if (soft_pwm_b > 0) {
  1558. // turn ON heather only if the minimum time is up
  1559. if (state_timer_heater_b == 0) {
  1560. // if change state set timer
  1561. if (state_heater_b == 0) {
  1562. state_timer_heater_b = MIN_STATE_TIME;
  1563. }
  1564. state_heater_b = 1;
  1565. WRITE(HEATER_BED_PIN, 1);
  1566. }
  1567. } else {
  1568. // turn OFF heather only if the minimum time is up
  1569. if (state_timer_heater_b == 0) {
  1570. // if change state set timer
  1571. if (state_heater_b == 1) {
  1572. state_timer_heater_b = MIN_STATE_TIME;
  1573. }
  1574. state_heater_b = 0;
  1575. WRITE(HEATER_BED_PIN, 0);
  1576. }
  1577. }
  1578. #endif
  1579. } // if (slow_pwm_count == 0)
  1580. // EXTRUDER 0
  1581. if (soft_pwm_0 < slow_pwm_count) {
  1582. // turn OFF heather only if the minimum time is up
  1583. if (state_timer_heater_0 == 0) {
  1584. // if change state set timer
  1585. if (state_heater_0 == 1) {
  1586. state_timer_heater_0 = MIN_STATE_TIME;
  1587. }
  1588. state_heater_0 = 0;
  1589. WRITE(HEATER_0_PIN, 0);
  1590. #ifdef HEATERS_PARALLEL
  1591. WRITE(HEATER_1_PIN, 0);
  1592. #endif
  1593. }
  1594. }
  1595. #if EXTRUDERS > 1
  1596. // EXTRUDER 1
  1597. if (soft_pwm_1 < slow_pwm_count) {
  1598. // turn OFF heather only if the minimum time is up
  1599. if (state_timer_heater_1 == 0) {
  1600. // if change state set timer
  1601. if (state_heater_1 == 1) {
  1602. state_timer_heater_1 = MIN_STATE_TIME;
  1603. }
  1604. state_heater_1 = 0;
  1605. WRITE(HEATER_1_PIN, 0);
  1606. }
  1607. }
  1608. #endif
  1609. #if EXTRUDERS > 2
  1610. // EXTRUDER 2
  1611. if (soft_pwm_2 < slow_pwm_count) {
  1612. // turn OFF heather only if the minimum time is up
  1613. if (state_timer_heater_2 == 0) {
  1614. // if change state set timer
  1615. if (state_heater_2 == 1) {
  1616. state_timer_heater_2 = MIN_STATE_TIME;
  1617. }
  1618. state_heater_2 = 0;
  1619. WRITE(HEATER_2_PIN, 0);
  1620. }
  1621. }
  1622. #endif
  1623. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1624. // BED
  1625. if (soft_pwm_b < slow_pwm_count) {
  1626. // turn OFF heather only if the minimum time is up
  1627. if (state_timer_heater_b == 0) {
  1628. // if change state set timer
  1629. if (state_heater_b == 1) {
  1630. state_timer_heater_b = MIN_STATE_TIME;
  1631. }
  1632. state_heater_b = 0;
  1633. WRITE(HEATER_BED_PIN, 0);
  1634. }
  1635. }
  1636. #endif
  1637. #ifdef FAN_SOFT_PWM
  1638. if (pwm_count == 0){
  1639. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1640. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1641. }
  1642. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1643. #endif
  1644. pwm_count += (1 << SOFT_PWM_SCALE);
  1645. pwm_count &= 0x7f;
  1646. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1647. if ((pwm_count % 64) == 0) {
  1648. slow_pwm_count++;
  1649. slow_pwm_count &= 0x7f;
  1650. // Extruder 0
  1651. if (state_timer_heater_0 > 0) {
  1652. state_timer_heater_0--;
  1653. }
  1654. #if EXTRUDERS > 1
  1655. // Extruder 1
  1656. if (state_timer_heater_1 > 0)
  1657. state_timer_heater_1--;
  1658. #endif
  1659. #if EXTRUDERS > 2
  1660. // Extruder 2
  1661. if (state_timer_heater_2 > 0)
  1662. state_timer_heater_2--;
  1663. #endif
  1664. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1665. // Bed
  1666. if (state_timer_heater_b > 0)
  1667. state_timer_heater_b--;
  1668. #endif
  1669. } //if ((pwm_count % 64) == 0) {
  1670. #endif //ifndef SLOW_PWM_HEATERS
  1671. #ifdef BABYSTEPPING
  1672. for(uint8_t axis=0;axis<3;axis++)
  1673. {
  1674. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1675. if(curTodo>0)
  1676. {
  1677. asm("cli");
  1678. babystep(axis,/*fwd*/true);
  1679. babystepsTodo[axis]--; //less to do next time
  1680. asm("sei");
  1681. }
  1682. else
  1683. if(curTodo<0)
  1684. {
  1685. asm("cli");
  1686. babystep(axis,/*fwd*/false);
  1687. babystepsTodo[axis]++; //less to do next time
  1688. asm("sei");
  1689. }
  1690. }
  1691. #endif //BABYSTEPPING
  1692. #if (defined(TACH_0) && TACH_0 > -1)
  1693. check_fans();
  1694. #endif //(defined(TACH_0))
  1695. _lock = false;
  1696. }
  1697. void check_max_temp()
  1698. {
  1699. //heater
  1700. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1701. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1702. #else
  1703. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1704. #endif
  1705. max_temp_error(0);
  1706. }
  1707. //bed
  1708. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1709. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1710. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1711. #else
  1712. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1713. #endif
  1714. target_temperature_bed = 0;
  1715. bed_max_temp_error();
  1716. }
  1717. #endif
  1718. }
  1719. void check_min_temp_heater0()
  1720. {
  1721. //heater
  1722. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1723. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1724. #else
  1725. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1726. #endif
  1727. min_temp_error(0);
  1728. }
  1729. }
  1730. void check_min_temp_bed()
  1731. {
  1732. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1733. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1734. #else
  1735. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1736. #endif
  1737. bed_min_temp_error();
  1738. }
  1739. }
  1740. void check_min_temp()
  1741. {
  1742. #ifdef AMBIENT_THERMISTOR
  1743. static uint8_t heat_cycles = 0;
  1744. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1745. {
  1746. if (READ(HEATER_0_PIN) == HIGH)
  1747. {
  1748. // if ((heat_cycles % 10) == 0)
  1749. // printf_P(PSTR("X%d\n"), heat_cycles);
  1750. if (heat_cycles > 50) //reaction time 5-10s
  1751. check_min_temp_heater0();
  1752. else
  1753. heat_cycles++;
  1754. }
  1755. else
  1756. heat_cycles = 0;
  1757. return;
  1758. }
  1759. #endif //AMBIENT_THERMISTOR
  1760. check_min_temp_heater0();
  1761. check_min_temp_bed();
  1762. }
  1763. #if (defined(TACH_0) && TACH_0 > -1)
  1764. void check_fans() {
  1765. if (READ(TACH_0) != fan_state[0]) {
  1766. fan_edge_counter[0] ++;
  1767. fan_state[0] = !fan_state[0];
  1768. }
  1769. //if (READ(TACH_1) != fan_state[1]) {
  1770. // fan_edge_counter[1] ++;
  1771. // fan_state[1] = !fan_state[1];
  1772. //}
  1773. }
  1774. #endif //TACH_0
  1775. #ifdef PIDTEMP
  1776. // Apply the scale factors to the PID values
  1777. float scalePID_i(float i)
  1778. {
  1779. return i*PID_dT;
  1780. }
  1781. float unscalePID_i(float i)
  1782. {
  1783. return i/PID_dT;
  1784. }
  1785. float scalePID_d(float d)
  1786. {
  1787. return d/PID_dT;
  1788. }
  1789. float unscalePID_d(float d)
  1790. {
  1791. return d*PID_dT;
  1792. }
  1793. #endif //PIDTEMP