Marlin_main.cpp 328 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int8_t busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. //try to check if firmware is on right type of printer
  688. void check_if_fw_is_on_right_printer(){
  689. #ifdef FILAMENT_SENSOR
  690. swi2c_init();
  691. uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  692. uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN)); //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  693. #ifdef IR_SENSOR
  694. if (pat9125_detected){
  695. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  696. #endif
  697. #ifdef PAT9125
  698. if (ir_detected){
  699. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  700. #endif
  701. #endif
  702. }
  703. uint8_t check_printer_version()
  704. {
  705. uint8_t version_changed = 0;
  706. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  707. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  708. if (printer_type != PRINTER_TYPE) {
  709. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  710. else version_changed |= 0b10;
  711. }
  712. if (motherboard != MOTHERBOARD) {
  713. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  714. else version_changed |= 0b01;
  715. }
  716. return version_changed;
  717. }
  718. #ifdef BOOTAPP
  719. #include "bootapp.h" //bootloader support
  720. #endif //BOOTAPP
  721. #if (LANG_MODE != 0) //secondary language support
  722. #ifdef W25X20CL
  723. // language update from external flash
  724. #define LANGBOOT_BLOCKSIZE 0x1000u
  725. #define LANGBOOT_RAMBUFFER 0x0800
  726. void update_sec_lang_from_external_flash()
  727. {
  728. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  729. {
  730. uint8_t lang = boot_reserved >> 4;
  731. uint8_t state = boot_reserved & 0xf;
  732. lang_table_header_t header;
  733. uint32_t src_addr;
  734. if (lang_get_header(lang, &header, &src_addr))
  735. {
  736. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  737. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  738. _delay(100);
  739. boot_reserved = (state + 1) | (lang << 4);
  740. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  741. {
  742. cli();
  743. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  744. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  745. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  746. if (state == 0)
  747. {
  748. //TODO - check header integrity
  749. }
  750. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  751. }
  752. else
  753. {
  754. //TODO - check sec lang data integrity
  755. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  756. }
  757. }
  758. }
  759. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  760. }
  761. #ifdef DEBUG_W25X20CL
  762. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  763. {
  764. lang_table_header_t header;
  765. uint8_t count = 0;
  766. uint32_t addr = 0x00000;
  767. while (1)
  768. {
  769. printf_P(_n("LANGTABLE%d:"), count);
  770. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  771. if (header.magic != LANG_MAGIC)
  772. {
  773. printf_P(_n("NG!\n"));
  774. break;
  775. }
  776. printf_P(_n("OK\n"));
  777. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  778. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  779. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  780. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  781. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  782. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  783. addr += header.size;
  784. codes[count] = header.code;
  785. count ++;
  786. }
  787. return count;
  788. }
  789. void list_sec_lang_from_external_flash()
  790. {
  791. uint16_t codes[8];
  792. uint8_t count = lang_xflash_enum_codes(codes);
  793. printf_P(_n("XFlash lang count = %hhd\n"), count);
  794. }
  795. #endif //DEBUG_W25X20CL
  796. #endif //W25X20CL
  797. #endif //(LANG_MODE != 0)
  798. static void w25x20cl_err_msg()
  799. {
  800. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  801. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  802. }
  803. // "Setup" function is called by the Arduino framework on startup.
  804. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  805. // are initialized by the main() routine provided by the Arduino framework.
  806. void setup()
  807. {
  808. mmu_init();
  809. ultralcd_init();
  810. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  811. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  812. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  813. spi_init();
  814. lcd_splash();
  815. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  816. #ifdef W25X20CL
  817. bool w25x20cl_success = w25x20cl_init();
  818. if (w25x20cl_success)
  819. {
  820. optiboot_w25x20cl_enter();
  821. #if (LANG_MODE != 0) //secondary language support
  822. update_sec_lang_from_external_flash();
  823. #endif //(LANG_MODE != 0)
  824. }
  825. else
  826. {
  827. w25x20cl_err_msg();
  828. }
  829. #else
  830. const bool w25x20cl_success = true;
  831. #endif //W25X20CL
  832. setup_killpin();
  833. setup_powerhold();
  834. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  835. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  836. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  837. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  838. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  839. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  840. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  841. if (farm_mode)
  842. {
  843. no_response = true; //we need confirmation by recieving PRUSA thx
  844. important_status = 8;
  845. prusa_statistics(8);
  846. selectedSerialPort = 1;
  847. #ifdef TMC2130
  848. //increased extruder current (PFW363)
  849. tmc2130_current_h[E_AXIS] = 36;
  850. tmc2130_current_r[E_AXIS] = 36;
  851. #endif //TMC2130
  852. #ifdef FILAMENT_SENSOR
  853. //disabled filament autoload (PFW360)
  854. fsensor_autoload_set(false);
  855. #endif //FILAMENT_SENSOR
  856. }
  857. MYSERIAL.begin(BAUDRATE);
  858. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  859. #ifndef W25X20CL
  860. SERIAL_PROTOCOLLNPGM("start");
  861. #endif //W25X20CL
  862. stdout = uartout;
  863. SERIAL_ECHO_START;
  864. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  865. #ifdef DEBUG_SEC_LANG
  866. lang_table_header_t header;
  867. uint32_t src_addr = 0x00000;
  868. if (lang_get_header(1, &header, &src_addr))
  869. {
  870. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  871. #define LT_PRINT_TEST 2
  872. // flash usage
  873. // total p.test
  874. //0 252718 t+c text code
  875. //1 253142 424 170 254
  876. //2 253040 322 164 158
  877. //3 253248 530 135 395
  878. #if (LT_PRINT_TEST==1) //not optimized printf
  879. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  880. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  881. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  882. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  883. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  884. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  885. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  886. #elif (LT_PRINT_TEST==2) //optimized printf
  887. printf_P(
  888. _n(
  889. " _src_addr = 0x%08lx\n"
  890. " _lt_magic = 0x%08lx %S\n"
  891. " _lt_size = 0x%04x (%d)\n"
  892. " _lt_count = 0x%04x (%d)\n"
  893. " _lt_chsum = 0x%04x\n"
  894. " _lt_code = 0x%04x (%c%c)\n"
  895. " _lt_resv1 = 0x%08lx\n"
  896. ),
  897. src_addr,
  898. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  899. header.size, header.size,
  900. header.count, header.count,
  901. header.checksum,
  902. header.code, header.code >> 8, header.code & 0xff,
  903. header.signature
  904. );
  905. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  906. MYSERIAL.print(" _src_addr = 0x");
  907. MYSERIAL.println(src_addr, 16);
  908. MYSERIAL.print(" _lt_magic = 0x");
  909. MYSERIAL.print(header.magic, 16);
  910. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  911. MYSERIAL.print(" _lt_size = 0x");
  912. MYSERIAL.print(header.size, 16);
  913. MYSERIAL.print(" (");
  914. MYSERIAL.print(header.size, 10);
  915. MYSERIAL.println(")");
  916. MYSERIAL.print(" _lt_count = 0x");
  917. MYSERIAL.print(header.count, 16);
  918. MYSERIAL.print(" (");
  919. MYSERIAL.print(header.count, 10);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_chsum = 0x");
  922. MYSERIAL.println(header.checksum, 16);
  923. MYSERIAL.print(" _lt_code = 0x");
  924. MYSERIAL.print(header.code, 16);
  925. MYSERIAL.print(" (");
  926. MYSERIAL.print((char)(header.code >> 8), 0);
  927. MYSERIAL.print((char)(header.code & 0xff), 0);
  928. MYSERIAL.println(")");
  929. MYSERIAL.print(" _lt_resv1 = 0x");
  930. MYSERIAL.println(header.signature, 16);
  931. #endif //(LT_PRINT_TEST==)
  932. #undef LT_PRINT_TEST
  933. #if 0
  934. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  935. for (uint16_t i = 0; i < 1024; i++)
  936. {
  937. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  938. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  939. if ((i % 16) == 15) putchar('\n');
  940. }
  941. #endif
  942. uint16_t sum = 0;
  943. for (uint16_t i = 0; i < header.size; i++)
  944. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  945. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  946. sum -= header.checksum; //subtract checksum
  947. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  948. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  949. if (sum == header.checksum)
  950. printf_P(_n("Checksum OK\n"), sum);
  951. else
  952. printf_P(_n("Checksum NG\n"), sum);
  953. }
  954. else
  955. printf_P(_n("lang_get_header failed!\n"));
  956. #if 0
  957. for (uint16_t i = 0; i < 1024*10; i++)
  958. {
  959. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  960. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  961. if ((i % 16) == 15) putchar('\n');
  962. }
  963. #endif
  964. #if 0
  965. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  966. for (int i = 0; i < 4096; ++i) {
  967. int b = eeprom_read_byte((unsigned char*)i);
  968. if (b != 255) {
  969. SERIAL_ECHO(i);
  970. SERIAL_ECHO(":");
  971. SERIAL_ECHO(b);
  972. SERIAL_ECHOLN("");
  973. }
  974. }
  975. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  976. #endif
  977. #endif //DEBUG_SEC_LANG
  978. // Check startup - does nothing if bootloader sets MCUSR to 0
  979. byte mcu = MCUSR;
  980. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  981. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  982. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  983. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  984. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  985. if (mcu & 1) puts_P(MSG_POWERUP);
  986. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  987. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  988. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  989. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  990. MCUSR = 0;
  991. //SERIAL_ECHORPGM(MSG_MARLIN);
  992. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  993. #ifdef STRING_VERSION_CONFIG_H
  994. #ifdef STRING_CONFIG_H_AUTHOR
  995. SERIAL_ECHO_START;
  996. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  997. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  998. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  999. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1000. SERIAL_ECHOPGM("Compiled: ");
  1001. SERIAL_ECHOLNPGM(__DATE__);
  1002. #endif
  1003. #endif
  1004. SERIAL_ECHO_START;
  1005. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1006. SERIAL_ECHO(freeMemory());
  1007. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1008. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1009. //lcd_update_enable(false); // why do we need this?? - andre
  1010. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1011. bool previous_settings_retrieved = false;
  1012. uint8_t hw_changed = check_printer_version();
  1013. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1014. previous_settings_retrieved = Config_RetrieveSettings();
  1015. }
  1016. else { //printer version was changed so use default settings
  1017. Config_ResetDefault();
  1018. }
  1019. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1020. tp_init(); // Initialize temperature loop
  1021. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1022. else
  1023. {
  1024. w25x20cl_err_msg();
  1025. printf_P(_n("W25X20CL not responding.\n"));
  1026. }
  1027. plan_init(); // Initialize planner;
  1028. factory_reset();
  1029. lcd_encoder_diff=0;
  1030. #ifdef TMC2130
  1031. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1032. if (silentMode == 0xff) silentMode = 0;
  1033. tmc2130_mode = TMC2130_MODE_NORMAL;
  1034. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1035. if (crashdet && !farm_mode)
  1036. {
  1037. crashdet_enable();
  1038. puts_P(_N("CrashDetect ENABLED!"));
  1039. }
  1040. else
  1041. {
  1042. crashdet_disable();
  1043. puts_P(_N("CrashDetect DISABLED"));
  1044. }
  1045. #ifdef TMC2130_LINEARITY_CORRECTION
  1046. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1047. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1048. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1049. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1050. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1051. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1052. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1053. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1054. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1055. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1056. #endif //TMC2130_LINEARITY_CORRECTION
  1057. #ifdef TMC2130_VARIABLE_RESOLUTION
  1058. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1059. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1060. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1061. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1062. #else //TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1067. #endif //TMC2130_VARIABLE_RESOLUTION
  1068. #endif //TMC2130
  1069. st_init(); // Initialize stepper, this enables interrupts!
  1070. #ifdef TMC2130
  1071. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1072. update_mode_profile();
  1073. tmc2130_init();
  1074. #endif //TMC2130
  1075. setup_photpin();
  1076. servo_init();
  1077. // Reset the machine correction matrix.
  1078. // It does not make sense to load the correction matrix until the machine is homed.
  1079. world2machine_reset();
  1080. #ifdef FILAMENT_SENSOR
  1081. fsensor_init();
  1082. #endif //FILAMENT_SENSOR
  1083. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1084. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1085. #endif
  1086. setup_homepin();
  1087. #ifdef TMC2130
  1088. if (1) {
  1089. // try to run to zero phase before powering the Z motor.
  1090. // Move in negative direction
  1091. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1092. // Round the current micro-micro steps to micro steps.
  1093. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1094. // Until the phase counter is reset to zero.
  1095. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1096. _delay(2);
  1097. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1098. _delay(2);
  1099. }
  1100. }
  1101. #endif //TMC2130
  1102. #if defined(Z_AXIS_ALWAYS_ON)
  1103. enable_z();
  1104. #endif
  1105. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1106. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1107. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1108. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1109. if (farm_mode)
  1110. {
  1111. prusa_statistics(8);
  1112. }
  1113. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1114. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1115. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1116. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1117. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1118. // where all the EEPROM entries are set to 0x0ff.
  1119. // Once a firmware boots up, it forces at least a language selection, which changes
  1120. // EEPROM_LANG to number lower than 0x0ff.
  1121. // 1) Set a high power mode.
  1122. #ifdef TMC2130
  1123. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1124. tmc2130_mode = TMC2130_MODE_NORMAL;
  1125. #endif //TMC2130
  1126. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1127. }
  1128. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1129. // but this times out if a blocking dialog is shown in setup().
  1130. card.initsd();
  1131. #ifdef DEBUG_SD_SPEED_TEST
  1132. if (card.cardOK)
  1133. {
  1134. uint8_t* buff = (uint8_t*)block_buffer;
  1135. uint32_t block = 0;
  1136. uint32_t sumr = 0;
  1137. uint32_t sumw = 0;
  1138. for (int i = 0; i < 1024; i++)
  1139. {
  1140. uint32_t u = _micros();
  1141. bool res = card.card.readBlock(i, buff);
  1142. u = _micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumr += u;
  1147. u = _micros();
  1148. res = card.card.writeBlock(i, buff);
  1149. u = _micros() - u;
  1150. if (res)
  1151. {
  1152. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1153. sumw += u;
  1154. }
  1155. else
  1156. {
  1157. printf_P(PSTR("writeBlock %4d error\n"), i);
  1158. break;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("readBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1168. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1169. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1170. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1171. }
  1172. else
  1173. printf_P(PSTR("Card NG!\n"));
  1174. #endif //DEBUG_SD_SPEED_TEST
  1175. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1177. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1179. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1180. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1181. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1182. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1183. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1184. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1185. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1187. #ifdef SNMM
  1188. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1189. int _z = BOWDEN_LENGTH;
  1190. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1191. }
  1192. #endif
  1193. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1194. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1195. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1196. #if (LANG_MODE != 0) //secondary language support
  1197. #ifdef DEBUG_W25X20CL
  1198. W25X20CL_SPI_ENTER();
  1199. uint8_t uid[8]; // 64bit unique id
  1200. w25x20cl_rd_uid(uid);
  1201. puts_P(_n("W25X20CL UID="));
  1202. for (uint8_t i = 0; i < 8; i ++)
  1203. printf_P(PSTR("%02hhx"), uid[i]);
  1204. putchar('\n');
  1205. list_sec_lang_from_external_flash();
  1206. #endif //DEBUG_W25X20CL
  1207. // lang_reset();
  1208. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1209. lcd_language();
  1210. #ifdef DEBUG_SEC_LANG
  1211. uint16_t sec_lang_code = lang_get_code(1);
  1212. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1213. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1214. lang_print_sec_lang(uartout);
  1215. #endif //DEBUG_SEC_LANG
  1216. #endif //(LANG_MODE != 0)
  1217. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1218. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1219. temp_cal_active = false;
  1220. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1222. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1223. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1224. int16_t z_shift = 0;
  1225. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1226. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1227. temp_cal_active = false;
  1228. }
  1229. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1230. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1231. }
  1232. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1233. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1234. }
  1235. //mbl_mode_init();
  1236. mbl_settings_init();
  1237. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1238. if (SilentModeMenu_MMU == 255) {
  1239. SilentModeMenu_MMU = 1;
  1240. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1241. }
  1242. check_babystep(); //checking if Z babystep is in allowed range
  1243. #ifdef UVLO_SUPPORT
  1244. setup_uvlo_interrupt();
  1245. #endif //UVLO_SUPPORT
  1246. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1247. setup_fan_interrupt();
  1248. #endif //DEBUG_DISABLE_FANCHECK
  1249. #ifdef PAT9125
  1250. fsensor_setup_interrupt();
  1251. #endif //PAT9125
  1252. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1253. #ifndef DEBUG_DISABLE_STARTMSGS
  1254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1255. check_if_fw_is_on_right_printer();
  1256. show_fw_version_warnings();
  1257. switch (hw_changed) {
  1258. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1259. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1260. case(0b01):
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1262. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1263. break;
  1264. case(0b10):
  1265. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1266. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1267. break;
  1268. case(0b11):
  1269. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1270. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1271. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1272. break;
  1273. default: break; //no change, show no message
  1274. }
  1275. if (!previous_settings_retrieved) {
  1276. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1277. Config_StoreSettings();
  1278. }
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1280. lcd_wizard(WizState::Run);
  1281. }
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1283. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1284. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1285. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1286. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1287. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1290. }
  1291. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1292. // Show the message.
  1293. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1294. lcd_update_enable(true);
  1295. }
  1296. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1297. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1298. lcd_update_enable(true);
  1299. }
  1300. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1301. // Show the message.
  1302. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1303. }
  1304. }
  1305. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1306. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1307. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1308. update_current_firmware_version_to_eeprom();
  1309. lcd_selftest();
  1310. }
  1311. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1312. KEEPALIVE_STATE(IN_PROCESS);
  1313. #endif //DEBUG_DISABLE_STARTMSGS
  1314. lcd_update_enable(true);
  1315. lcd_clear();
  1316. lcd_update(2);
  1317. // Store the currently running firmware into an eeprom,
  1318. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1319. update_current_firmware_version_to_eeprom();
  1320. #ifdef TMC2130
  1321. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1322. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1323. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1324. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1325. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1326. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1327. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1328. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1329. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1330. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1331. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1332. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1333. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1334. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1335. #endif //TMC2130
  1336. #ifdef UVLO_SUPPORT
  1337. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1338. /*
  1339. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1340. else {
  1341. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1342. lcd_update_enable(true);
  1343. lcd_update(2);
  1344. lcd_setstatuspgm(_T(WELCOME_MSG));
  1345. }
  1346. */
  1347. manage_heater(); // Update temperatures
  1348. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1349. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1350. #endif
  1351. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1352. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1353. puts_P(_N("Automatic recovery!"));
  1354. #endif
  1355. recover_print(1);
  1356. }
  1357. else{
  1358. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1359. puts_P(_N("Normal recovery!"));
  1360. #endif
  1361. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1362. else {
  1363. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1364. lcd_update_enable(true);
  1365. lcd_update(2);
  1366. lcd_setstatuspgm(_T(WELCOME_MSG));
  1367. }
  1368. }
  1369. }
  1370. #endif //UVLO_SUPPORT
  1371. KEEPALIVE_STATE(NOT_BUSY);
  1372. #ifdef WATCHDOG
  1373. wdt_enable(WDTO_4S);
  1374. #endif //WATCHDOG
  1375. }
  1376. void trace();
  1377. #define CHUNK_SIZE 64 // bytes
  1378. #define SAFETY_MARGIN 1
  1379. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1380. int chunkHead = 0;
  1381. void serial_read_stream() {
  1382. setAllTargetHotends(0);
  1383. setTargetBed(0);
  1384. lcd_clear();
  1385. lcd_puts_P(PSTR(" Upload in progress"));
  1386. // first wait for how many bytes we will receive
  1387. uint32_t bytesToReceive;
  1388. // receive the four bytes
  1389. char bytesToReceiveBuffer[4];
  1390. for (int i=0; i<4; i++) {
  1391. int data;
  1392. while ((data = MYSERIAL.read()) == -1) {};
  1393. bytesToReceiveBuffer[i] = data;
  1394. }
  1395. // make it a uint32
  1396. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1397. // we're ready, notify the sender
  1398. MYSERIAL.write('+');
  1399. // lock in the routine
  1400. uint32_t receivedBytes = 0;
  1401. while (prusa_sd_card_upload) {
  1402. int i;
  1403. for (i=0; i<CHUNK_SIZE; i++) {
  1404. int data;
  1405. // check if we're not done
  1406. if (receivedBytes == bytesToReceive) {
  1407. break;
  1408. }
  1409. // read the next byte
  1410. while ((data = MYSERIAL.read()) == -1) {};
  1411. receivedBytes++;
  1412. // save it to the chunk
  1413. chunk[i] = data;
  1414. }
  1415. // write the chunk to SD
  1416. card.write_command_no_newline(&chunk[0]);
  1417. // notify the sender we're ready for more data
  1418. MYSERIAL.write('+');
  1419. // for safety
  1420. manage_heater();
  1421. // check if we're done
  1422. if(receivedBytes == bytesToReceive) {
  1423. trace(); // beep
  1424. card.closefile();
  1425. prusa_sd_card_upload = false;
  1426. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1427. }
  1428. }
  1429. }
  1430. /**
  1431. * Output a "busy" message at regular intervals
  1432. * while the machine is not accepting commands.
  1433. */
  1434. void host_keepalive() {
  1435. #ifndef HOST_KEEPALIVE_FEATURE
  1436. return;
  1437. #endif //HOST_KEEPALIVE_FEATURE
  1438. if (farm_mode) return;
  1439. long ms = _millis();
  1440. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1441. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1442. switch (busy_state) {
  1443. case IN_HANDLER:
  1444. case IN_PROCESS:
  1445. SERIAL_ECHO_START;
  1446. SERIAL_ECHOLNPGM("busy: processing");
  1447. break;
  1448. case PAUSED_FOR_USER:
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLNPGM("busy: paused for user");
  1451. break;
  1452. case PAUSED_FOR_INPUT:
  1453. SERIAL_ECHO_START;
  1454. SERIAL_ECHOLNPGM("busy: paused for input");
  1455. break;
  1456. default:
  1457. break;
  1458. }
  1459. }
  1460. prev_busy_signal_ms = ms;
  1461. }
  1462. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1463. // Before loop(), the setup() function is called by the main() routine.
  1464. void loop()
  1465. {
  1466. KEEPALIVE_STATE(NOT_BUSY);
  1467. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1468. {
  1469. is_usb_printing = true;
  1470. usb_printing_counter--;
  1471. _usb_timer = _millis();
  1472. }
  1473. if (usb_printing_counter == 0)
  1474. {
  1475. is_usb_printing = false;
  1476. }
  1477. if (prusa_sd_card_upload)
  1478. {
  1479. //we read byte-by byte
  1480. serial_read_stream();
  1481. } else
  1482. {
  1483. get_command();
  1484. #ifdef SDSUPPORT
  1485. card.checkautostart(false);
  1486. #endif
  1487. if(buflen)
  1488. {
  1489. cmdbuffer_front_already_processed = false;
  1490. #ifdef SDSUPPORT
  1491. if(card.saving)
  1492. {
  1493. // Saving a G-code file onto an SD-card is in progress.
  1494. // Saving starts with M28, saving until M29 is seen.
  1495. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1496. card.write_command(CMDBUFFER_CURRENT_STRING);
  1497. if(card.logging)
  1498. process_commands();
  1499. else
  1500. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1501. } else {
  1502. card.closefile();
  1503. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1504. }
  1505. } else {
  1506. process_commands();
  1507. }
  1508. #else
  1509. process_commands();
  1510. #endif //SDSUPPORT
  1511. if (! cmdbuffer_front_already_processed && buflen)
  1512. {
  1513. // ptr points to the start of the block currently being processed.
  1514. // The first character in the block is the block type.
  1515. char *ptr = cmdbuffer + bufindr;
  1516. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1517. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1518. union {
  1519. struct {
  1520. char lo;
  1521. char hi;
  1522. } lohi;
  1523. uint16_t value;
  1524. } sdlen;
  1525. sdlen.value = 0;
  1526. {
  1527. // This block locks the interrupts globally for 3.25 us,
  1528. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1529. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1530. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1531. cli();
  1532. // Reset the command to something, which will be ignored by the power panic routine,
  1533. // so this buffer length will not be counted twice.
  1534. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1535. // Extract the current buffer length.
  1536. sdlen.lohi.lo = *ptr ++;
  1537. sdlen.lohi.hi = *ptr;
  1538. // and pass it to the planner queue.
  1539. planner_add_sd_length(sdlen.value);
  1540. sei();
  1541. }
  1542. }
  1543. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1544. cli();
  1545. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1546. // and one for each command to previous block in the planner queue.
  1547. planner_add_sd_length(1);
  1548. sei();
  1549. }
  1550. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1551. // this block's SD card length will not be counted twice as its command type has been replaced
  1552. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1553. cmdqueue_pop_front();
  1554. }
  1555. host_keepalive();
  1556. }
  1557. }
  1558. //check heater every n milliseconds
  1559. manage_heater();
  1560. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1561. checkHitEndstops();
  1562. lcd_update(0);
  1563. #ifdef TMC2130
  1564. tmc2130_check_overtemp();
  1565. if (tmc2130_sg_crash)
  1566. {
  1567. uint8_t crash = tmc2130_sg_crash;
  1568. tmc2130_sg_crash = 0;
  1569. // crashdet_stop_and_save_print();
  1570. switch (crash)
  1571. {
  1572. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1573. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1574. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1575. }
  1576. }
  1577. #endif //TMC2130
  1578. mmu_loop();
  1579. }
  1580. #define DEFINE_PGM_READ_ANY(type, reader) \
  1581. static inline type pgm_read_any(const type *p) \
  1582. { return pgm_read_##reader##_near(p); }
  1583. DEFINE_PGM_READ_ANY(float, float);
  1584. DEFINE_PGM_READ_ANY(signed char, byte);
  1585. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1586. static const PROGMEM type array##_P[3] = \
  1587. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1588. static inline type array(int axis) \
  1589. { return pgm_read_any(&array##_P[axis]); } \
  1590. type array##_ext(int axis) \
  1591. { return pgm_read_any(&array##_P[axis]); }
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1596. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1597. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1598. static void axis_is_at_home(int axis) {
  1599. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1600. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1601. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1602. }
  1603. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1604. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1605. //! @return original feedmultiply
  1606. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1607. saved_feedrate = feedrate;
  1608. int l_feedmultiply = feedmultiply;
  1609. feedmultiply = 100;
  1610. previous_millis_cmd = _millis();
  1611. enable_endstops(enable_endstops_now);
  1612. return l_feedmultiply;
  1613. }
  1614. //! @param original_feedmultiply feedmultiply to restore
  1615. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1616. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1617. enable_endstops(false);
  1618. #endif
  1619. feedrate = saved_feedrate;
  1620. feedmultiply = original_feedmultiply;
  1621. previous_millis_cmd = _millis();
  1622. }
  1623. #ifdef ENABLE_AUTO_BED_LEVELING
  1624. #ifdef AUTO_BED_LEVELING_GRID
  1625. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1626. {
  1627. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1628. planeNormal.debug("planeNormal");
  1629. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1630. //bedLevel.debug("bedLevel");
  1631. //plan_bed_level_matrix.debug("bed level before");
  1632. //vector_3 uncorrected_position = plan_get_position_mm();
  1633. //uncorrected_position.debug("position before");
  1634. vector_3 corrected_position = plan_get_position();
  1635. // corrected_position.debug("position after");
  1636. current_position[X_AXIS] = corrected_position.x;
  1637. current_position[Y_AXIS] = corrected_position.y;
  1638. current_position[Z_AXIS] = corrected_position.z;
  1639. // put the bed at 0 so we don't go below it.
  1640. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. }
  1643. #else // not AUTO_BED_LEVELING_GRID
  1644. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1645. plan_bed_level_matrix.set_to_identity();
  1646. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1647. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1648. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1649. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1650. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1651. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1652. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1653. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1654. vector_3 corrected_position = plan_get_position();
  1655. current_position[X_AXIS] = corrected_position.x;
  1656. current_position[Y_AXIS] = corrected_position.y;
  1657. current_position[Z_AXIS] = corrected_position.z;
  1658. // put the bed at 0 so we don't go below it.
  1659. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1661. }
  1662. #endif // AUTO_BED_LEVELING_GRID
  1663. static void run_z_probe() {
  1664. plan_bed_level_matrix.set_to_identity();
  1665. feedrate = homing_feedrate[Z_AXIS];
  1666. // move down until you find the bed
  1667. float zPosition = -10;
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1669. st_synchronize();
  1670. // we have to let the planner know where we are right now as it is not where we said to go.
  1671. zPosition = st_get_position_mm(Z_AXIS);
  1672. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1673. // move up the retract distance
  1674. zPosition += home_retract_mm(Z_AXIS);
  1675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1676. st_synchronize();
  1677. // move back down slowly to find bed
  1678. feedrate = homing_feedrate[Z_AXIS]/4;
  1679. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1683. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. }
  1686. static void do_blocking_move_to(float x, float y, float z) {
  1687. float oldFeedRate = feedrate;
  1688. feedrate = homing_feedrate[Z_AXIS];
  1689. current_position[Z_AXIS] = z;
  1690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1691. st_synchronize();
  1692. feedrate = XY_TRAVEL_SPEED;
  1693. current_position[X_AXIS] = x;
  1694. current_position[Y_AXIS] = y;
  1695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1696. st_synchronize();
  1697. feedrate = oldFeedRate;
  1698. }
  1699. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1700. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1701. }
  1702. /// Probe bed height at position (x,y), returns the measured z value
  1703. static float probe_pt(float x, float y, float z_before) {
  1704. // move to right place
  1705. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1706. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1707. run_z_probe();
  1708. float measured_z = current_position[Z_AXIS];
  1709. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1710. SERIAL_PROTOCOLPGM(" x: ");
  1711. SERIAL_PROTOCOL(x);
  1712. SERIAL_PROTOCOLPGM(" y: ");
  1713. SERIAL_PROTOCOL(y);
  1714. SERIAL_PROTOCOLPGM(" z: ");
  1715. SERIAL_PROTOCOL(measured_z);
  1716. SERIAL_PROTOCOLPGM("\n");
  1717. return measured_z;
  1718. }
  1719. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1720. #ifdef LIN_ADVANCE
  1721. /**
  1722. * M900: Set and/or Get advance K factor and WH/D ratio
  1723. *
  1724. * K<factor> Set advance K factor
  1725. * R<ratio> Set ratio directly (overrides WH/D)
  1726. * W<width> H<height> D<diam> Set ratio from WH/D
  1727. */
  1728. inline void gcode_M900() {
  1729. st_synchronize();
  1730. const float newK = code_seen('K') ? code_value_float() : -1;
  1731. if (newK >= 0) extruder_advance_k = newK;
  1732. float newR = code_seen('R') ? code_value_float() : -1;
  1733. if (newR < 0) {
  1734. const float newD = code_seen('D') ? code_value_float() : -1,
  1735. newW = code_seen('W') ? code_value_float() : -1,
  1736. newH = code_seen('H') ? code_value_float() : -1;
  1737. if (newD >= 0 && newW >= 0 && newH >= 0)
  1738. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1739. }
  1740. if (newR >= 0) advance_ed_ratio = newR;
  1741. SERIAL_ECHO_START;
  1742. SERIAL_ECHOPGM("Advance K=");
  1743. SERIAL_ECHOLN(extruder_advance_k);
  1744. SERIAL_ECHOPGM(" E/D=");
  1745. const float ratio = advance_ed_ratio;
  1746. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1747. }
  1748. #endif // LIN_ADVANCE
  1749. bool check_commands() {
  1750. bool end_command_found = false;
  1751. while (buflen)
  1752. {
  1753. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1754. if (!cmdbuffer_front_already_processed)
  1755. cmdqueue_pop_front();
  1756. cmdbuffer_front_already_processed = false;
  1757. }
  1758. return end_command_found;
  1759. }
  1760. #ifdef TMC2130
  1761. bool calibrate_z_auto()
  1762. {
  1763. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1764. lcd_clear();
  1765. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1766. bool endstops_enabled = enable_endstops(true);
  1767. int axis_up_dir = -home_dir(Z_AXIS);
  1768. tmc2130_home_enter(Z_AXIS_MASK);
  1769. current_position[Z_AXIS] = 0;
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. set_destination_to_current();
  1772. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1773. feedrate = homing_feedrate[Z_AXIS];
  1774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1775. st_synchronize();
  1776. // current_position[axis] = 0;
  1777. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. tmc2130_home_exit();
  1779. enable_endstops(false);
  1780. current_position[Z_AXIS] = 0;
  1781. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1782. set_destination_to_current();
  1783. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1784. feedrate = homing_feedrate[Z_AXIS] / 2;
  1785. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1786. st_synchronize();
  1787. enable_endstops(endstops_enabled);
  1788. if (PRINTER_TYPE == PRINTER_MK3) {
  1789. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1790. }
  1791. else {
  1792. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1793. }
  1794. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1795. return true;
  1796. }
  1797. #endif //TMC2130
  1798. #ifdef TMC2130
  1799. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1800. #else
  1801. void homeaxis(int axis, uint8_t cnt)
  1802. #endif //TMC2130
  1803. {
  1804. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1805. #define HOMEAXIS_DO(LETTER) \
  1806. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1807. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1808. {
  1809. int axis_home_dir = home_dir(axis);
  1810. feedrate = homing_feedrate[axis];
  1811. #ifdef TMC2130
  1812. tmc2130_home_enter(X_AXIS_MASK << axis);
  1813. #endif //TMC2130
  1814. // Move away a bit, so that the print head does not touch the end position,
  1815. // and the following movement to endstop has a chance to achieve the required velocity
  1816. // for the stall guard to work.
  1817. current_position[axis] = 0;
  1818. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1819. set_destination_to_current();
  1820. // destination[axis] = 11.f;
  1821. destination[axis] = -3.f * axis_home_dir;
  1822. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1823. st_synchronize();
  1824. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1825. endstops_hit_on_purpose();
  1826. enable_endstops(false);
  1827. current_position[axis] = 0;
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1829. destination[axis] = 1. * axis_home_dir;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. // Now continue to move up to the left end stop with the collision detection enabled.
  1833. enable_endstops(true);
  1834. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1835. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1836. st_synchronize();
  1837. for (uint8_t i = 0; i < cnt; i++)
  1838. {
  1839. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1840. endstops_hit_on_purpose();
  1841. enable_endstops(false);
  1842. current_position[axis] = 0;
  1843. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1844. destination[axis] = -10.f * axis_home_dir;
  1845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. endstops_hit_on_purpose();
  1848. // Now move left up to the collision, this time with a repeatable velocity.
  1849. enable_endstops(true);
  1850. destination[axis] = 11.f * axis_home_dir;
  1851. #ifdef TMC2130
  1852. feedrate = homing_feedrate[axis];
  1853. #else //TMC2130
  1854. feedrate = homing_feedrate[axis] / 2;
  1855. #endif //TMC2130
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1857. st_synchronize();
  1858. #ifdef TMC2130
  1859. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1860. if (pstep) pstep[i] = mscnt >> 4;
  1861. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1862. #endif //TMC2130
  1863. }
  1864. endstops_hit_on_purpose();
  1865. enable_endstops(false);
  1866. #ifdef TMC2130
  1867. uint8_t orig = tmc2130_home_origin[axis];
  1868. uint8_t back = tmc2130_home_bsteps[axis];
  1869. if (tmc2130_home_enabled && (orig <= 63))
  1870. {
  1871. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1872. if (back > 0)
  1873. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1874. }
  1875. else
  1876. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1877. tmc2130_home_exit();
  1878. #endif //TMC2130
  1879. axis_is_at_home(axis);
  1880. axis_known_position[axis] = true;
  1881. // Move from minimum
  1882. #ifdef TMC2130
  1883. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1884. #else //TMC2130
  1885. float dist = - axis_home_dir * 0.01f * 64;
  1886. #endif //TMC2130
  1887. current_position[axis] -= dist;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. current_position[axis] += dist;
  1890. destination[axis] = current_position[axis];
  1891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1892. st_synchronize();
  1893. feedrate = 0.0;
  1894. }
  1895. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1896. {
  1897. #ifdef TMC2130
  1898. FORCE_HIGH_POWER_START;
  1899. #endif
  1900. int axis_home_dir = home_dir(axis);
  1901. current_position[axis] = 0;
  1902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1903. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1904. feedrate = homing_feedrate[axis];
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1906. st_synchronize();
  1907. #ifdef TMC2130
  1908. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1909. FORCE_HIGH_POWER_END;
  1910. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1911. return;
  1912. }
  1913. #endif //TMC2130
  1914. current_position[axis] = 0;
  1915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1916. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1917. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1918. st_synchronize();
  1919. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1920. feedrate = homing_feedrate[axis]/2 ;
  1921. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1922. st_synchronize();
  1923. #ifdef TMC2130
  1924. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1925. FORCE_HIGH_POWER_END;
  1926. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1927. return;
  1928. }
  1929. #endif //TMC2130
  1930. axis_is_at_home(axis);
  1931. destination[axis] = current_position[axis];
  1932. feedrate = 0.0;
  1933. endstops_hit_on_purpose();
  1934. axis_known_position[axis] = true;
  1935. #ifdef TMC2130
  1936. FORCE_HIGH_POWER_END;
  1937. #endif
  1938. }
  1939. enable_endstops(endstops_enabled);
  1940. }
  1941. /**/
  1942. void home_xy()
  1943. {
  1944. set_destination_to_current();
  1945. homeaxis(X_AXIS);
  1946. homeaxis(Y_AXIS);
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. endstops_hit_on_purpose();
  1949. }
  1950. void refresh_cmd_timeout(void)
  1951. {
  1952. previous_millis_cmd = _millis();
  1953. }
  1954. #ifdef FWRETRACT
  1955. void retract(bool retracting, bool swapretract = false) {
  1956. if(retracting && !retracted[active_extruder]) {
  1957. destination[X_AXIS]=current_position[X_AXIS];
  1958. destination[Y_AXIS]=current_position[Y_AXIS];
  1959. destination[Z_AXIS]=current_position[Z_AXIS];
  1960. destination[E_AXIS]=current_position[E_AXIS];
  1961. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1962. plan_set_e_position(current_position[E_AXIS]);
  1963. float oldFeedrate = feedrate;
  1964. feedrate=cs.retract_feedrate*60;
  1965. retracted[active_extruder]=true;
  1966. prepare_move();
  1967. current_position[Z_AXIS]-=cs.retract_zlift;
  1968. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1969. prepare_move();
  1970. feedrate = oldFeedrate;
  1971. } else if(!retracting && retracted[active_extruder]) {
  1972. destination[X_AXIS]=current_position[X_AXIS];
  1973. destination[Y_AXIS]=current_position[Y_AXIS];
  1974. destination[Z_AXIS]=current_position[Z_AXIS];
  1975. destination[E_AXIS]=current_position[E_AXIS];
  1976. current_position[Z_AXIS]+=cs.retract_zlift;
  1977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1978. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1979. plan_set_e_position(current_position[E_AXIS]);
  1980. float oldFeedrate = feedrate;
  1981. feedrate=cs.retract_recover_feedrate*60;
  1982. retracted[active_extruder]=false;
  1983. prepare_move();
  1984. feedrate = oldFeedrate;
  1985. }
  1986. } //retract
  1987. #endif //FWRETRACT
  1988. void trace() {
  1989. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1990. _tone(BEEPER, 440);
  1991. _delay(25);
  1992. _noTone(BEEPER);
  1993. _delay(20);
  1994. }
  1995. /*
  1996. void ramming() {
  1997. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1998. if (current_temperature[0] < 230) {
  1999. //PLA
  2000. max_feedrate[E_AXIS] = 50;
  2001. //current_position[E_AXIS] -= 8;
  2002. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2003. //current_position[E_AXIS] += 8;
  2004. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2005. current_position[E_AXIS] += 5.4;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2007. current_position[E_AXIS] += 3.2;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2009. current_position[E_AXIS] += 3;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2011. st_synchronize();
  2012. max_feedrate[E_AXIS] = 80;
  2013. current_position[E_AXIS] -= 82;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2015. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2016. current_position[E_AXIS] -= 20;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2018. current_position[E_AXIS] += 5;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2020. current_position[E_AXIS] += 5;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2022. current_position[E_AXIS] -= 10;
  2023. st_synchronize();
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2025. current_position[E_AXIS] += 10;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2027. current_position[E_AXIS] -= 10;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2029. current_position[E_AXIS] += 10;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2031. current_position[E_AXIS] -= 10;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2033. st_synchronize();
  2034. }
  2035. else {
  2036. //ABS
  2037. max_feedrate[E_AXIS] = 50;
  2038. //current_position[E_AXIS] -= 8;
  2039. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2040. //current_position[E_AXIS] += 8;
  2041. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2042. current_position[E_AXIS] += 3.1;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2044. current_position[E_AXIS] += 3.1;
  2045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2046. current_position[E_AXIS] += 4;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2048. st_synchronize();
  2049. //current_position[X_AXIS] += 23; //delay
  2050. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2051. //current_position[X_AXIS] -= 23; //delay
  2052. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2053. _delay(4700);
  2054. max_feedrate[E_AXIS] = 80;
  2055. current_position[E_AXIS] -= 92;
  2056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2057. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2058. current_position[E_AXIS] -= 5;
  2059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2060. current_position[E_AXIS] += 5;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2062. current_position[E_AXIS] -= 5;
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2064. st_synchronize();
  2065. current_position[E_AXIS] += 5;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2067. current_position[E_AXIS] -= 5;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2069. current_position[E_AXIS] += 5;
  2070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2071. current_position[E_AXIS] -= 5;
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2073. st_synchronize();
  2074. }
  2075. }
  2076. */
  2077. #ifdef TMC2130
  2078. void force_high_power_mode(bool start_high_power_section) {
  2079. uint8_t silent;
  2080. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2081. if (silent == 1) {
  2082. //we are in silent mode, set to normal mode to enable crash detection
  2083. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2084. st_synchronize();
  2085. cli();
  2086. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2087. update_mode_profile();
  2088. tmc2130_init();
  2089. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2090. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2091. st_reset_timer();
  2092. sei();
  2093. }
  2094. }
  2095. #endif //TMC2130
  2096. #ifdef TMC2130
  2097. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2098. #else
  2099. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2100. #endif //TMC2130
  2101. {
  2102. st_synchronize();
  2103. #if 0
  2104. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2105. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2106. #endif
  2107. // Flag for the display update routine and to disable the print cancelation during homing.
  2108. homing_flag = true;
  2109. // Which axes should be homed?
  2110. bool home_x = home_x_axis;
  2111. bool home_y = home_y_axis;
  2112. bool home_z = home_z_axis;
  2113. // Either all X,Y,Z codes are present, or none of them.
  2114. bool home_all_axes = home_x == home_y && home_x == home_z;
  2115. if (home_all_axes)
  2116. // No X/Y/Z code provided means to home all axes.
  2117. home_x = home_y = home_z = true;
  2118. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2119. if (home_all_axes) {
  2120. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2121. feedrate = homing_feedrate[Z_AXIS];
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2123. st_synchronize();
  2124. }
  2125. #ifdef ENABLE_AUTO_BED_LEVELING
  2126. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2127. #endif //ENABLE_AUTO_BED_LEVELING
  2128. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2129. // the planner will not perform any adjustments in the XY plane.
  2130. // Wait for the motors to stop and update the current position with the absolute values.
  2131. world2machine_revert_to_uncorrected();
  2132. // For mesh bed leveling deactivate the matrix temporarily.
  2133. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2134. // in a single axis only.
  2135. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2136. #ifdef MESH_BED_LEVELING
  2137. uint8_t mbl_was_active = mbl.active;
  2138. mbl.active = 0;
  2139. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2140. #endif
  2141. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2142. // consumed during the first movements following this statement.
  2143. if (home_z)
  2144. babystep_undo();
  2145. saved_feedrate = feedrate;
  2146. int l_feedmultiply = feedmultiply;
  2147. feedmultiply = 100;
  2148. previous_millis_cmd = _millis();
  2149. enable_endstops(true);
  2150. memcpy(destination, current_position, sizeof(destination));
  2151. feedrate = 0.0;
  2152. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2153. if(home_z)
  2154. homeaxis(Z_AXIS);
  2155. #endif
  2156. #ifdef QUICK_HOME
  2157. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2158. if(home_x && home_y) //first diagonal move
  2159. {
  2160. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2161. int x_axis_home_dir = home_dir(X_AXIS);
  2162. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2163. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2164. feedrate = homing_feedrate[X_AXIS];
  2165. if(homing_feedrate[Y_AXIS]<feedrate)
  2166. feedrate = homing_feedrate[Y_AXIS];
  2167. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2168. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2169. } else {
  2170. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2171. }
  2172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2173. st_synchronize();
  2174. axis_is_at_home(X_AXIS);
  2175. axis_is_at_home(Y_AXIS);
  2176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2177. destination[X_AXIS] = current_position[X_AXIS];
  2178. destination[Y_AXIS] = current_position[Y_AXIS];
  2179. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2180. feedrate = 0.0;
  2181. st_synchronize();
  2182. endstops_hit_on_purpose();
  2183. current_position[X_AXIS] = destination[X_AXIS];
  2184. current_position[Y_AXIS] = destination[Y_AXIS];
  2185. current_position[Z_AXIS] = destination[Z_AXIS];
  2186. }
  2187. #endif /* QUICK_HOME */
  2188. #ifdef TMC2130
  2189. if(home_x)
  2190. {
  2191. if (!calib)
  2192. homeaxis(X_AXIS);
  2193. else
  2194. tmc2130_home_calibrate(X_AXIS);
  2195. }
  2196. if(home_y)
  2197. {
  2198. if (!calib)
  2199. homeaxis(Y_AXIS);
  2200. else
  2201. tmc2130_home_calibrate(Y_AXIS);
  2202. }
  2203. #else //TMC2130
  2204. if(home_x) homeaxis(X_AXIS);
  2205. if(home_y) homeaxis(Y_AXIS);
  2206. #endif //TMC2130
  2207. if(home_x_axis && home_x_value != 0)
  2208. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2209. if(home_y_axis && home_y_value != 0)
  2210. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2211. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2212. #ifndef Z_SAFE_HOMING
  2213. if(home_z) {
  2214. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2215. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2216. feedrate = max_feedrate[Z_AXIS];
  2217. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2218. st_synchronize();
  2219. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2220. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2221. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2222. {
  2223. homeaxis(X_AXIS);
  2224. homeaxis(Y_AXIS);
  2225. }
  2226. // 1st mesh bed leveling measurement point, corrected.
  2227. world2machine_initialize();
  2228. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2229. world2machine_reset();
  2230. if (destination[Y_AXIS] < Y_MIN_POS)
  2231. destination[Y_AXIS] = Y_MIN_POS;
  2232. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2233. feedrate = homing_feedrate[Z_AXIS]/10;
  2234. current_position[Z_AXIS] = 0;
  2235. enable_endstops(false);
  2236. #ifdef DEBUG_BUILD
  2237. SERIAL_ECHOLNPGM("plan_set_position()");
  2238. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2239. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2240. #endif
  2241. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2242. #ifdef DEBUG_BUILD
  2243. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2244. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2245. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2246. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2247. #endif
  2248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2249. st_synchronize();
  2250. current_position[X_AXIS] = destination[X_AXIS];
  2251. current_position[Y_AXIS] = destination[Y_AXIS];
  2252. enable_endstops(true);
  2253. endstops_hit_on_purpose();
  2254. homeaxis(Z_AXIS);
  2255. #else // MESH_BED_LEVELING
  2256. homeaxis(Z_AXIS);
  2257. #endif // MESH_BED_LEVELING
  2258. }
  2259. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2260. if(home_all_axes) {
  2261. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2262. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2263. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2264. feedrate = XY_TRAVEL_SPEED/60;
  2265. current_position[Z_AXIS] = 0;
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2268. st_synchronize();
  2269. current_position[X_AXIS] = destination[X_AXIS];
  2270. current_position[Y_AXIS] = destination[Y_AXIS];
  2271. homeaxis(Z_AXIS);
  2272. }
  2273. // Let's see if X and Y are homed and probe is inside bed area.
  2274. if(home_z) {
  2275. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2276. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2277. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2278. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2279. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2280. current_position[Z_AXIS] = 0;
  2281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2282. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2283. feedrate = max_feedrate[Z_AXIS];
  2284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2285. st_synchronize();
  2286. homeaxis(Z_AXIS);
  2287. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2288. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2289. SERIAL_ECHO_START;
  2290. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2291. } else {
  2292. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2293. SERIAL_ECHO_START;
  2294. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2295. }
  2296. }
  2297. #endif // Z_SAFE_HOMING
  2298. #endif // Z_HOME_DIR < 0
  2299. if(home_z_axis && home_z_value != 0)
  2300. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2301. #ifdef ENABLE_AUTO_BED_LEVELING
  2302. if(home_z)
  2303. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2304. #endif
  2305. // Set the planner and stepper routine positions.
  2306. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2307. // contains the machine coordinates.
  2308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2309. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2310. enable_endstops(false);
  2311. #endif
  2312. feedrate = saved_feedrate;
  2313. feedmultiply = l_feedmultiply;
  2314. previous_millis_cmd = _millis();
  2315. endstops_hit_on_purpose();
  2316. #ifndef MESH_BED_LEVELING
  2317. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2318. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2319. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2320. lcd_adjust_z();
  2321. #endif
  2322. // Load the machine correction matrix
  2323. world2machine_initialize();
  2324. // and correct the current_position XY axes to match the transformed coordinate system.
  2325. world2machine_update_current();
  2326. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2327. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2328. {
  2329. if (! home_z && mbl_was_active) {
  2330. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2331. mbl.active = true;
  2332. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2333. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2334. }
  2335. }
  2336. else
  2337. {
  2338. st_synchronize();
  2339. homing_flag = false;
  2340. }
  2341. #endif
  2342. if (farm_mode) { prusa_statistics(20); };
  2343. homing_flag = false;
  2344. #if 0
  2345. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2346. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2347. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2348. #endif
  2349. }
  2350. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2351. {
  2352. #ifdef TMC2130
  2353. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2354. #else
  2355. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2356. #endif //TMC2130
  2357. }
  2358. void adjust_bed_reset()
  2359. {
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2364. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2365. }
  2366. //! @brief Calibrate XYZ
  2367. //! @param onlyZ if true, calibrate only Z axis
  2368. //! @param verbosity_level
  2369. //! @retval true Succeeded
  2370. //! @retval false Failed
  2371. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2372. {
  2373. bool final_result = false;
  2374. #ifdef TMC2130
  2375. FORCE_HIGH_POWER_START;
  2376. #endif // TMC2130
  2377. // Only Z calibration?
  2378. if (!onlyZ)
  2379. {
  2380. setTargetBed(0);
  2381. setAllTargetHotends(0);
  2382. adjust_bed_reset(); //reset bed level correction
  2383. }
  2384. // Disable the default update procedure of the display. We will do a modal dialog.
  2385. lcd_update_enable(false);
  2386. // Let the planner use the uncorrected coordinates.
  2387. mbl.reset();
  2388. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2389. // the planner will not perform any adjustments in the XY plane.
  2390. // Wait for the motors to stop and update the current position with the absolute values.
  2391. world2machine_revert_to_uncorrected();
  2392. // Reset the baby step value applied without moving the axes.
  2393. babystep_reset();
  2394. // Mark all axes as in a need for homing.
  2395. memset(axis_known_position, 0, sizeof(axis_known_position));
  2396. // Home in the XY plane.
  2397. //set_destination_to_current();
  2398. int l_feedmultiply = setup_for_endstop_move();
  2399. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2400. home_xy();
  2401. enable_endstops(false);
  2402. current_position[X_AXIS] += 5;
  2403. current_position[Y_AXIS] += 5;
  2404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2405. st_synchronize();
  2406. // Let the user move the Z axes up to the end stoppers.
  2407. #ifdef TMC2130
  2408. if (calibrate_z_auto())
  2409. {
  2410. #else //TMC2130
  2411. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2412. {
  2413. #endif //TMC2130
  2414. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2415. if(onlyZ){
  2416. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2417. lcd_set_cursor(0, 3);
  2418. lcd_print(1);
  2419. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2420. }else{
  2421. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2422. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2423. lcd_set_cursor(0, 2);
  2424. lcd_print(1);
  2425. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2426. }
  2427. refresh_cmd_timeout();
  2428. #ifndef STEEL_SHEET
  2429. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2430. {
  2431. lcd_wait_for_cool_down();
  2432. }
  2433. #endif //STEEL_SHEET
  2434. if(!onlyZ)
  2435. {
  2436. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2437. #ifdef STEEL_SHEET
  2438. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2439. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2440. #endif //STEEL_SHEET
  2441. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2442. KEEPALIVE_STATE(IN_HANDLER);
  2443. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2444. lcd_set_cursor(0, 2);
  2445. lcd_print(1);
  2446. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2447. }
  2448. bool endstops_enabled = enable_endstops(false);
  2449. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2451. st_synchronize();
  2452. // Move the print head close to the bed.
  2453. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2454. enable_endstops(true);
  2455. #ifdef TMC2130
  2456. tmc2130_home_enter(Z_AXIS_MASK);
  2457. #endif //TMC2130
  2458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2459. st_synchronize();
  2460. #ifdef TMC2130
  2461. tmc2130_home_exit();
  2462. #endif //TMC2130
  2463. enable_endstops(endstops_enabled);
  2464. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2465. {
  2466. if (onlyZ)
  2467. {
  2468. clean_up_after_endstop_move(l_feedmultiply);
  2469. // Z only calibration.
  2470. // Load the machine correction matrix
  2471. world2machine_initialize();
  2472. // and correct the current_position to match the transformed coordinate system.
  2473. world2machine_update_current();
  2474. //FIXME
  2475. bool result = sample_mesh_and_store_reference();
  2476. if (result)
  2477. {
  2478. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2479. // Shipped, the nozzle height has been set already. The user can start printing now.
  2480. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2481. final_result = true;
  2482. // babystep_apply();
  2483. }
  2484. }
  2485. else
  2486. {
  2487. // Reset the baby step value and the baby step applied flag.
  2488. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2489. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2490. // Complete XYZ calibration.
  2491. uint8_t point_too_far_mask = 0;
  2492. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2493. clean_up_after_endstop_move(l_feedmultiply);
  2494. // Print head up.
  2495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. //#ifndef NEW_XYZCAL
  2499. if (result >= 0)
  2500. {
  2501. #ifdef HEATBED_V2
  2502. sample_z();
  2503. #else //HEATBED_V2
  2504. point_too_far_mask = 0;
  2505. // Second half: The fine adjustment.
  2506. // Let the planner use the uncorrected coordinates.
  2507. mbl.reset();
  2508. world2machine_reset();
  2509. // Home in the XY plane.
  2510. int l_feedmultiply = setup_for_endstop_move();
  2511. home_xy();
  2512. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2513. clean_up_after_endstop_move(l_feedmultiply);
  2514. // Print head up.
  2515. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2517. st_synchronize();
  2518. // if (result >= 0) babystep_apply();
  2519. #endif //HEATBED_V2
  2520. }
  2521. //#endif //NEW_XYZCAL
  2522. lcd_update_enable(true);
  2523. lcd_update(2);
  2524. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2525. if (result >= 0)
  2526. {
  2527. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2528. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2529. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2530. final_result = true;
  2531. }
  2532. }
  2533. #ifdef TMC2130
  2534. tmc2130_home_exit();
  2535. #endif
  2536. }
  2537. else
  2538. {
  2539. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2540. final_result = false;
  2541. }
  2542. }
  2543. else
  2544. {
  2545. // Timeouted.
  2546. }
  2547. lcd_update_enable(true);
  2548. #ifdef TMC2130
  2549. FORCE_HIGH_POWER_END;
  2550. #endif // TMC2130
  2551. return final_result;
  2552. }
  2553. void gcode_M114()
  2554. {
  2555. SERIAL_PROTOCOLPGM("X:");
  2556. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" Y:");
  2558. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2559. SERIAL_PROTOCOLPGM(" Z:");
  2560. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2561. SERIAL_PROTOCOLPGM(" E:");
  2562. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2563. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2564. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Y:");
  2566. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" Z:");
  2568. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2569. SERIAL_PROTOCOLPGM(" E:");
  2570. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2571. SERIAL_PROTOCOLLN("");
  2572. }
  2573. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2574. {
  2575. st_synchronize();
  2576. float lastpos[4];
  2577. if (farm_mode)
  2578. {
  2579. prusa_statistics(22);
  2580. }
  2581. //First backup current position and settings
  2582. int feedmultiplyBckp = feedmultiply;
  2583. float HotendTempBckp = degTargetHotend(active_extruder);
  2584. int fanSpeedBckp = fanSpeed;
  2585. lastpos[X_AXIS] = current_position[X_AXIS];
  2586. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2587. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2588. lastpos[E_AXIS] = current_position[E_AXIS];
  2589. //Retract E
  2590. current_position[E_AXIS] += e_shift;
  2591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2592. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2593. st_synchronize();
  2594. //Lift Z
  2595. current_position[Z_AXIS] += z_shift;
  2596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2597. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2598. st_synchronize();
  2599. //Move XY to side
  2600. current_position[X_AXIS] = x_position;
  2601. current_position[Y_AXIS] = y_position;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2603. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2604. st_synchronize();
  2605. //Beep, manage nozzle heater and wait for user to start unload filament
  2606. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2607. lcd_change_fil_state = 0;
  2608. // Unload filament
  2609. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2610. else unload_filament(); //unload filament for single material (used also in M702)
  2611. //finish moves
  2612. st_synchronize();
  2613. if (!mmu_enabled)
  2614. {
  2615. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2616. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2617. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2618. if (lcd_change_fil_state == 0)
  2619. {
  2620. lcd_clear();
  2621. lcd_set_cursor(0, 2);
  2622. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2623. current_position[X_AXIS] -= 100;
  2624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2625. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2626. st_synchronize();
  2627. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2628. }
  2629. }
  2630. if (mmu_enabled)
  2631. {
  2632. if (!automatic) {
  2633. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2634. mmu_M600_wait_and_beep();
  2635. if (saved_printing) {
  2636. lcd_clear();
  2637. lcd_set_cursor(0, 2);
  2638. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2639. mmu_command(MmuCmd::R0);
  2640. manage_response(false, false);
  2641. }
  2642. }
  2643. mmu_M600_load_filament(automatic, HotendTempBckp);
  2644. }
  2645. else
  2646. M600_load_filament();
  2647. if (!automatic) M600_check_state(HotendTempBckp);
  2648. lcd_update_enable(true);
  2649. //Not let's go back to print
  2650. fanSpeed = fanSpeedBckp;
  2651. //Feed a little of filament to stabilize pressure
  2652. if (!automatic)
  2653. {
  2654. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2656. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2657. }
  2658. //Move XY back
  2659. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2660. FILAMENTCHANGE_XYFEED, active_extruder);
  2661. st_synchronize();
  2662. //Move Z back
  2663. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2664. FILAMENTCHANGE_ZFEED, active_extruder);
  2665. st_synchronize();
  2666. //Set E position to original
  2667. plan_set_e_position(lastpos[E_AXIS]);
  2668. memcpy(current_position, lastpos, sizeof(lastpos));
  2669. memcpy(destination, current_position, sizeof(current_position));
  2670. //Recover feed rate
  2671. feedmultiply = feedmultiplyBckp;
  2672. char cmd[9];
  2673. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2674. enquecommand(cmd);
  2675. #ifdef IR_SENSOR
  2676. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2677. fsensor_check_autoload();
  2678. #endif //IR_SENSOR
  2679. lcd_setstatuspgm(_T(WELCOME_MSG));
  2680. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2681. }
  2682. void gcode_M701()
  2683. {
  2684. printf_P(PSTR("gcode_M701 begin\n"));
  2685. if (mmu_enabled)
  2686. {
  2687. extr_adj(tmp_extruder);//loads current extruder
  2688. mmu_extruder = tmp_extruder;
  2689. }
  2690. else
  2691. {
  2692. enable_z();
  2693. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2694. #ifdef FSENSOR_QUALITY
  2695. fsensor_oq_meassure_start(40);
  2696. #endif //FSENSOR_QUALITY
  2697. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2698. current_position[E_AXIS] += 40;
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2700. st_synchronize();
  2701. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2702. current_position[E_AXIS] += 30;
  2703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2704. load_filament_final_feed(); //slow sequence
  2705. st_synchronize();
  2706. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2707. delay_keep_alive(50);
  2708. _noTone(BEEPER);
  2709. if (!farm_mode && loading_flag) {
  2710. lcd_load_filament_color_check();
  2711. }
  2712. lcd_update_enable(true);
  2713. lcd_update(2);
  2714. lcd_setstatuspgm(_T(WELCOME_MSG));
  2715. disable_z();
  2716. loading_flag = false;
  2717. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2718. #ifdef FSENSOR_QUALITY
  2719. fsensor_oq_meassure_stop();
  2720. if (!fsensor_oq_result())
  2721. {
  2722. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2723. lcd_update_enable(true);
  2724. lcd_update(2);
  2725. if (disable)
  2726. fsensor_disable();
  2727. }
  2728. #endif //FSENSOR_QUALITY
  2729. }
  2730. }
  2731. /**
  2732. * @brief Get serial number from 32U2 processor
  2733. *
  2734. * Typical format of S/N is:CZPX0917X003XC13518
  2735. *
  2736. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2737. *
  2738. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2739. * reply is transmitted to serial port 1 character by character.
  2740. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2741. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2742. * in any case.
  2743. */
  2744. static void gcode_PRUSA_SN()
  2745. {
  2746. if (farm_mode) {
  2747. selectedSerialPort = 0;
  2748. putchar(';');
  2749. putchar('S');
  2750. int numbersRead = 0;
  2751. ShortTimer timeout;
  2752. timeout.start();
  2753. while (numbersRead < 19) {
  2754. while (MSerial.available() > 0) {
  2755. uint8_t serial_char = MSerial.read();
  2756. selectedSerialPort = 1;
  2757. putchar(serial_char);
  2758. numbersRead++;
  2759. selectedSerialPort = 0;
  2760. }
  2761. if (timeout.expired(100u)) break;
  2762. }
  2763. selectedSerialPort = 1;
  2764. putchar('\n');
  2765. #if 0
  2766. for (int b = 0; b < 3; b++) {
  2767. _tone(BEEPER, 110);
  2768. _delay(50);
  2769. _noTone(BEEPER);
  2770. _delay(50);
  2771. }
  2772. #endif
  2773. } else {
  2774. puts_P(_N("Not in farm mode."));
  2775. }
  2776. }
  2777. #ifdef BACKLASH_X
  2778. extern uint8_t st_backlash_x;
  2779. #endif //BACKLASH_X
  2780. #ifdef BACKLASH_Y
  2781. extern uint8_t st_backlash_y;
  2782. #endif //BACKLASH_Y
  2783. //! @brief Parse and process commands
  2784. //!
  2785. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2786. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2787. //!
  2788. //! Implemented Codes
  2789. //! -------------------
  2790. //!
  2791. //!@n PRUSA CODES
  2792. //!@n P F - Returns FW versions
  2793. //!@n P R - Returns revision of printer
  2794. //!
  2795. //!@n G0 -> G1
  2796. //!@n G1 - Coordinated Movement X Y Z E
  2797. //!@n G2 - CW ARC
  2798. //!@n G3 - CCW ARC
  2799. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2800. //!@n G10 - retract filament according to settings of M207
  2801. //!@n G11 - retract recover filament according to settings of M208
  2802. //!@n G28 - Home all Axis
  2803. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2804. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2805. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2806. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2807. //!@n G80 - Automatic mesh bed leveling
  2808. //!@n G81 - Print bed profile
  2809. //!@n G90 - Use Absolute Coordinates
  2810. //!@n G91 - Use Relative Coordinates
  2811. //!@n G92 - Set current position to coordinates given
  2812. //!
  2813. //!@n M Codes
  2814. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2815. //!@n M1 - Same as M0
  2816. //!@n M17 - Enable/Power all stepper motors
  2817. //!@n M18 - Disable all stepper motors; same as M84
  2818. //!@n M20 - List SD card
  2819. //!@n M21 - Init SD card
  2820. //!@n M22 - Release SD card
  2821. //!@n M23 - Select SD file (M23 filename.g)
  2822. //!@n M24 - Start/resume SD print
  2823. //!@n M25 - Pause SD print
  2824. //!@n M26 - Set SD position in bytes (M26 S12345)
  2825. //!@n M27 - Report SD print status
  2826. //!@n M28 - Start SD write (M28 filename.g)
  2827. //!@n M29 - Stop SD write
  2828. //!@n M30 - Delete file from SD (M30 filename.g)
  2829. //!@n M31 - Output time since last M109 or SD card start to serial
  2830. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2831. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2832. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2833. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2834. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2835. //!@n M73 - Show percent done and print time remaining
  2836. //!@n M80 - Turn on Power Supply
  2837. //!@n M81 - Turn off Power Supply
  2838. //!@n M82 - Set E codes absolute (default)
  2839. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2840. //!@n M84 - Disable steppers until next move,
  2841. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2842. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2843. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2844. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2845. //!@n M104 - Set extruder target temp
  2846. //!@n M105 - Read current temp
  2847. //!@n M106 - Fan on
  2848. //!@n M107 - Fan off
  2849. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2850. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2851. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2852. //!@n M112 - Emergency stop
  2853. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2854. //!@n M114 - Output current position to serial port
  2855. //!@n M115 - Capabilities string
  2856. //!@n M117 - display message
  2857. //!@n M119 - Output Endstop status to serial port
  2858. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2859. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2860. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2861. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2862. //!@n M140 - Set bed target temp
  2863. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2864. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2865. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2866. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2867. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2868. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2869. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2870. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2871. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2872. //!@n M206 - set additional homing offset
  2873. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2874. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2875. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2876. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2877. //!@n M220 S<factor in percent>- set speed factor override percentage
  2878. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2879. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2880. //!@n M240 - Trigger a camera to take a photograph
  2881. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2882. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2883. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2884. //!@n M301 - Set PID parameters P I and D
  2885. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2886. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2887. //!@n M304 - Set bed PID parameters P I and D
  2888. //!@n M400 - Finish all moves
  2889. //!@n M401 - Lower z-probe if present
  2890. //!@n M402 - Raise z-probe if present
  2891. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2892. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2893. //!@n M406 - Turn off Filament Sensor extrusion control
  2894. //!@n M407 - Displays measured filament diameter
  2895. //!@n M500 - stores parameters in EEPROM
  2896. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2897. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2898. //!@n M503 - print the current settings (from memory not from EEPROM)
  2899. //!@n M509 - force language selection on next restart
  2900. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2901. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2902. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2903. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2904. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2905. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2906. //!@n M907 - Set digital trimpot motor current using axis codes.
  2907. //!@n M908 - Control digital trimpot directly.
  2908. //!@n M350 - Set microstepping mode.
  2909. //!@n M351 - Toggle MS1 MS2 pins directly.
  2910. //!
  2911. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2912. //!@n M999 - Restart after being stopped by error
  2913. void process_commands()
  2914. {
  2915. if (!buflen) return; //empty command
  2916. #ifdef FILAMENT_RUNOUT_SUPPORT
  2917. SET_INPUT(FR_SENS);
  2918. #endif
  2919. #ifdef CMDBUFFER_DEBUG
  2920. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2921. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2922. SERIAL_ECHOLNPGM("");
  2923. SERIAL_ECHOPGM("In cmdqueue: ");
  2924. SERIAL_ECHO(buflen);
  2925. SERIAL_ECHOLNPGM("");
  2926. #endif /* CMDBUFFER_DEBUG */
  2927. unsigned long codenum; //throw away variable
  2928. char *starpos = NULL;
  2929. #ifdef ENABLE_AUTO_BED_LEVELING
  2930. float x_tmp, y_tmp, z_tmp, real_z;
  2931. #endif
  2932. // PRUSA GCODES
  2933. KEEPALIVE_STATE(IN_HANDLER);
  2934. #ifdef SNMM
  2935. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2936. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2937. int8_t SilentMode;
  2938. #endif
  2939. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2940. starpos = (strchr(strchr_pointer + 5, '*'));
  2941. if (starpos != NULL)
  2942. *(starpos) = '\0';
  2943. lcd_setstatus(strchr_pointer + 5);
  2944. }
  2945. #ifdef TMC2130
  2946. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2947. {
  2948. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2949. {
  2950. uint8_t mask = 0;
  2951. if (code_seen('X')) mask |= X_AXIS_MASK;
  2952. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2953. crashdet_detected(mask);
  2954. }
  2955. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2956. crashdet_recover();
  2957. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2958. crashdet_cancel();
  2959. }
  2960. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2961. {
  2962. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2963. {
  2964. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2965. axis = (axis == 'E')?3:(axis - 'X');
  2966. if (axis < 4)
  2967. {
  2968. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2969. tmc2130_set_wave(axis, 247, fac);
  2970. }
  2971. }
  2972. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2973. {
  2974. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2975. axis = (axis == 'E')?3:(axis - 'X');
  2976. if (axis < 4)
  2977. {
  2978. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2979. uint16_t res = tmc2130_get_res(axis);
  2980. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2981. }
  2982. }
  2983. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2984. {
  2985. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2986. axis = (axis == 'E')?3:(axis - 'X');
  2987. if (axis < 4)
  2988. {
  2989. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2990. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2991. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2992. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2993. char* str_end = 0;
  2994. if (CMDBUFFER_CURRENT_STRING[14])
  2995. {
  2996. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2997. if (str_end && *str_end)
  2998. {
  2999. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3000. if (str_end && *str_end)
  3001. {
  3002. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3003. if (str_end && *str_end)
  3004. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3005. }
  3006. }
  3007. }
  3008. tmc2130_chopper_config[axis].toff = chop0;
  3009. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3010. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3011. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3012. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3013. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3014. }
  3015. }
  3016. }
  3017. #ifdef BACKLASH_X
  3018. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3019. {
  3020. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3021. st_backlash_x = bl;
  3022. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3023. }
  3024. #endif //BACKLASH_X
  3025. #ifdef BACKLASH_Y
  3026. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3027. {
  3028. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3029. st_backlash_y = bl;
  3030. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3031. }
  3032. #endif //BACKLASH_Y
  3033. #endif //TMC2130
  3034. else if(code_seen("PRUSA")){
  3035. if (code_seen("Ping")) { //! PRUSA Ping
  3036. if (farm_mode) {
  3037. PingTime = _millis();
  3038. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3039. }
  3040. }
  3041. else if (code_seen("PRN")) { //! PRUSA PRN
  3042. printf_P(_N("%d"), status_number);
  3043. }else if (code_seen("FAN")) { //! PRUSA FAN
  3044. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3045. }else if (code_seen("fn")) { //! PRUSA fn
  3046. if (farm_mode) {
  3047. printf_P(_N("%d"), farm_no);
  3048. }
  3049. else {
  3050. puts_P(_N("Not in farm mode."));
  3051. }
  3052. }
  3053. else if (code_seen("thx")) //! PRUSA thx
  3054. {
  3055. no_response = false;
  3056. }
  3057. else if (code_seen("uvlo")) //! PRUSA uvlo
  3058. {
  3059. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3060. enquecommand_P(PSTR("M24"));
  3061. }
  3062. #ifdef FILAMENT_SENSOR
  3063. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3064. {
  3065. fsensor_restore_print_and_continue();
  3066. }
  3067. #endif //FILAMENT_SENSOR
  3068. else if (code_seen("MMURES")) //! PRUSA MMURES
  3069. {
  3070. mmu_reset();
  3071. }
  3072. else if (code_seen("RESET")) { //! PRUSA RESET
  3073. // careful!
  3074. if (farm_mode) {
  3075. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3076. boot_app_magic = BOOT_APP_MAGIC;
  3077. boot_app_flags = BOOT_APP_FLG_RUN;
  3078. wdt_enable(WDTO_15MS);
  3079. cli();
  3080. while(1);
  3081. #else //WATCHDOG
  3082. asm volatile("jmp 0x3E000");
  3083. #endif //WATCHDOG
  3084. }
  3085. else {
  3086. MYSERIAL.println("Not in farm mode.");
  3087. }
  3088. }else if (code_seen("fv")) { //! PRUSA fv
  3089. // get file version
  3090. #ifdef SDSUPPORT
  3091. card.openFile(strchr_pointer + 3,true);
  3092. while (true) {
  3093. uint16_t readByte = card.get();
  3094. MYSERIAL.write(readByte);
  3095. if (readByte=='\n') {
  3096. break;
  3097. }
  3098. }
  3099. card.closefile();
  3100. #endif // SDSUPPORT
  3101. } else if (code_seen("M28")) { //! PRUSA M28
  3102. trace();
  3103. prusa_sd_card_upload = true;
  3104. card.openFile(strchr_pointer+4,false);
  3105. } else if (code_seen("SN")) { //! PRUSA SN
  3106. gcode_PRUSA_SN();
  3107. } else if(code_seen("Fir")){ //! PRUSA Fir
  3108. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3109. } else if(code_seen("Rev")){ //! PRUSA Rev
  3110. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3111. } else if(code_seen("Lang")) { //! PRUSA Lang
  3112. lang_reset();
  3113. } else if(code_seen("Lz")) { //! PRUSA Lz
  3114. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3115. } else if(code_seen("Beat")) { //! PRUSA Beat
  3116. // Kick farm link timer
  3117. kicktime = _millis();
  3118. } else if(code_seen("FR")) { //! PRUSA FR
  3119. // Factory full reset
  3120. factory_reset(0);
  3121. }
  3122. //else if (code_seen('Cal')) {
  3123. // lcd_calibration();
  3124. // }
  3125. }
  3126. else if (code_seen('^')) {
  3127. // nothing, this is a version line
  3128. } else if(code_seen('G'))
  3129. {
  3130. gcode_in_progress = (int)code_value();
  3131. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3132. switch (gcode_in_progress)
  3133. {
  3134. case 0: // G0 -> G1
  3135. case 1: // G1
  3136. if(Stopped == false) {
  3137. #ifdef FILAMENT_RUNOUT_SUPPORT
  3138. if(READ(FR_SENS)){
  3139. int feedmultiplyBckp=feedmultiply;
  3140. float target[4];
  3141. float lastpos[4];
  3142. target[X_AXIS]=current_position[X_AXIS];
  3143. target[Y_AXIS]=current_position[Y_AXIS];
  3144. target[Z_AXIS]=current_position[Z_AXIS];
  3145. target[E_AXIS]=current_position[E_AXIS];
  3146. lastpos[X_AXIS]=current_position[X_AXIS];
  3147. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3148. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3149. lastpos[E_AXIS]=current_position[E_AXIS];
  3150. //retract by E
  3151. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3153. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3155. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3156. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3158. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3160. //finish moves
  3161. st_synchronize();
  3162. //disable extruder steppers so filament can be removed
  3163. disable_e0();
  3164. disable_e1();
  3165. disable_e2();
  3166. _delay(100);
  3167. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3168. uint8_t cnt=0;
  3169. int counterBeep = 0;
  3170. lcd_wait_interact();
  3171. while(!lcd_clicked()){
  3172. cnt++;
  3173. manage_heater();
  3174. manage_inactivity(true);
  3175. //lcd_update(0);
  3176. if(cnt==0)
  3177. {
  3178. #if BEEPER > 0
  3179. if (counterBeep== 500){
  3180. counterBeep = 0;
  3181. }
  3182. SET_OUTPUT(BEEPER);
  3183. if (counterBeep== 0){
  3184. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3185. WRITE(BEEPER,HIGH);
  3186. }
  3187. if (counterBeep== 20){
  3188. WRITE(BEEPER,LOW);
  3189. }
  3190. counterBeep++;
  3191. #else
  3192. #endif
  3193. }
  3194. }
  3195. WRITE(BEEPER,LOW);
  3196. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3197. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3198. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3199. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3200. lcd_change_fil_state = 0;
  3201. lcd_loading_filament();
  3202. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3203. lcd_change_fil_state = 0;
  3204. lcd_alright();
  3205. switch(lcd_change_fil_state){
  3206. case 2:
  3207. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3208. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3209. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3210. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3211. lcd_loading_filament();
  3212. break;
  3213. case 3:
  3214. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3216. lcd_loading_color();
  3217. break;
  3218. default:
  3219. lcd_change_success();
  3220. break;
  3221. }
  3222. }
  3223. target[E_AXIS]+= 5;
  3224. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3225. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3227. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3228. //plan_set_e_position(current_position[E_AXIS]);
  3229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3230. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3231. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3232. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3233. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3234. plan_set_e_position(lastpos[E_AXIS]);
  3235. feedmultiply=feedmultiplyBckp;
  3236. char cmd[9];
  3237. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3238. enquecommand(cmd);
  3239. }
  3240. #endif
  3241. get_coordinates(); // For X Y Z E F
  3242. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3243. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3244. }
  3245. #ifdef FWRETRACT
  3246. if(cs.autoretract_enabled)
  3247. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3248. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3249. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3250. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3251. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3252. retract(!retracted[active_extruder]);
  3253. return;
  3254. }
  3255. }
  3256. #endif //FWRETRACT
  3257. prepare_move();
  3258. //ClearToSend();
  3259. }
  3260. break;
  3261. case 2: // G2 - CW ARC
  3262. if(Stopped == false) {
  3263. get_arc_coordinates();
  3264. prepare_arc_move(true);
  3265. }
  3266. break;
  3267. case 3: // G3 - CCW ARC
  3268. if(Stopped == false) {
  3269. get_arc_coordinates();
  3270. prepare_arc_move(false);
  3271. }
  3272. break;
  3273. case 4: // G4 dwell
  3274. codenum = 0;
  3275. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3276. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3277. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3278. st_synchronize();
  3279. codenum += _millis(); // keep track of when we started waiting
  3280. previous_millis_cmd = _millis();
  3281. while(_millis() < codenum) {
  3282. manage_heater();
  3283. manage_inactivity();
  3284. lcd_update(0);
  3285. }
  3286. break;
  3287. #ifdef FWRETRACT
  3288. case 10: // G10 retract
  3289. #if EXTRUDERS > 1
  3290. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3291. retract(true,retracted_swap[active_extruder]);
  3292. #else
  3293. retract(true);
  3294. #endif
  3295. break;
  3296. case 11: // G11 retract_recover
  3297. #if EXTRUDERS > 1
  3298. retract(false,retracted_swap[active_extruder]);
  3299. #else
  3300. retract(false);
  3301. #endif
  3302. break;
  3303. #endif //FWRETRACT
  3304. case 28: //G28 Home all Axis one at a time
  3305. {
  3306. long home_x_value = 0;
  3307. long home_y_value = 0;
  3308. long home_z_value = 0;
  3309. // Which axes should be homed?
  3310. bool home_x = code_seen(axis_codes[X_AXIS]);
  3311. home_x_value = code_value_long();
  3312. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3313. home_y_value = code_value_long();
  3314. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3315. home_z_value = code_value_long();
  3316. bool without_mbl = code_seen('W');
  3317. // calibrate?
  3318. #ifdef TMC2130
  3319. bool calib = code_seen('C');
  3320. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3321. #else
  3322. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3323. #endif //TMC2130
  3324. if ((home_x || home_y || without_mbl || home_z) == false) {
  3325. // Push the commands to the front of the message queue in the reverse order!
  3326. // There shall be always enough space reserved for these commands.
  3327. goto case_G80;
  3328. }
  3329. break;
  3330. }
  3331. #ifdef ENABLE_AUTO_BED_LEVELING
  3332. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3333. {
  3334. #if Z_MIN_PIN == -1
  3335. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3336. #endif
  3337. // Prevent user from running a G29 without first homing in X and Y
  3338. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3339. {
  3340. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3341. SERIAL_ECHO_START;
  3342. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3343. break; // abort G29, since we don't know where we are
  3344. }
  3345. st_synchronize();
  3346. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3347. //vector_3 corrected_position = plan_get_position_mm();
  3348. //corrected_position.debug("position before G29");
  3349. plan_bed_level_matrix.set_to_identity();
  3350. vector_3 uncorrected_position = plan_get_position();
  3351. //uncorrected_position.debug("position durring G29");
  3352. current_position[X_AXIS] = uncorrected_position.x;
  3353. current_position[Y_AXIS] = uncorrected_position.y;
  3354. current_position[Z_AXIS] = uncorrected_position.z;
  3355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3356. int l_feedmultiply = setup_for_endstop_move();
  3357. feedrate = homing_feedrate[Z_AXIS];
  3358. #ifdef AUTO_BED_LEVELING_GRID
  3359. // probe at the points of a lattice grid
  3360. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3361. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3362. // solve the plane equation ax + by + d = z
  3363. // A is the matrix with rows [x y 1] for all the probed points
  3364. // B is the vector of the Z positions
  3365. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3366. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3367. // "A" matrix of the linear system of equations
  3368. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3369. // "B" vector of Z points
  3370. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3371. int probePointCounter = 0;
  3372. bool zig = true;
  3373. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3374. {
  3375. int xProbe, xInc;
  3376. if (zig)
  3377. {
  3378. xProbe = LEFT_PROBE_BED_POSITION;
  3379. //xEnd = RIGHT_PROBE_BED_POSITION;
  3380. xInc = xGridSpacing;
  3381. zig = false;
  3382. } else // zag
  3383. {
  3384. xProbe = RIGHT_PROBE_BED_POSITION;
  3385. //xEnd = LEFT_PROBE_BED_POSITION;
  3386. xInc = -xGridSpacing;
  3387. zig = true;
  3388. }
  3389. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3390. {
  3391. float z_before;
  3392. if (probePointCounter == 0)
  3393. {
  3394. // raise before probing
  3395. z_before = Z_RAISE_BEFORE_PROBING;
  3396. } else
  3397. {
  3398. // raise extruder
  3399. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3400. }
  3401. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3402. eqnBVector[probePointCounter] = measured_z;
  3403. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3404. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3405. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3406. probePointCounter++;
  3407. xProbe += xInc;
  3408. }
  3409. }
  3410. clean_up_after_endstop_move(l_feedmultiply);
  3411. // solve lsq problem
  3412. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3413. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3414. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3415. SERIAL_PROTOCOLPGM(" b: ");
  3416. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3417. SERIAL_PROTOCOLPGM(" d: ");
  3418. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3419. set_bed_level_equation_lsq(plane_equation_coefficients);
  3420. free(plane_equation_coefficients);
  3421. #else // AUTO_BED_LEVELING_GRID not defined
  3422. // Probe at 3 arbitrary points
  3423. // probe 1
  3424. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3425. // probe 2
  3426. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3427. // probe 3
  3428. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3429. clean_up_after_endstop_move(l_feedmultiply);
  3430. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3431. #endif // AUTO_BED_LEVELING_GRID
  3432. st_synchronize();
  3433. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3434. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3435. // When the bed is uneven, this height must be corrected.
  3436. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3437. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3438. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3439. z_tmp = current_position[Z_AXIS];
  3440. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3441. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3443. }
  3444. break;
  3445. #ifndef Z_PROBE_SLED
  3446. case 30: // G30 Single Z Probe
  3447. {
  3448. st_synchronize();
  3449. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3450. int l_feedmultiply = setup_for_endstop_move();
  3451. feedrate = homing_feedrate[Z_AXIS];
  3452. run_z_probe();
  3453. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3454. SERIAL_PROTOCOLPGM(" X: ");
  3455. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3456. SERIAL_PROTOCOLPGM(" Y: ");
  3457. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3458. SERIAL_PROTOCOLPGM(" Z: ");
  3459. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3460. SERIAL_PROTOCOLPGM("\n");
  3461. clean_up_after_endstop_move(l_feedmultiply);
  3462. }
  3463. break;
  3464. #else
  3465. case 31: // dock the sled
  3466. dock_sled(true);
  3467. break;
  3468. case 32: // undock the sled
  3469. dock_sled(false);
  3470. break;
  3471. #endif // Z_PROBE_SLED
  3472. #endif // ENABLE_AUTO_BED_LEVELING
  3473. #ifdef MESH_BED_LEVELING
  3474. case 30: // G30 Single Z Probe
  3475. {
  3476. st_synchronize();
  3477. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3478. int l_feedmultiply = setup_for_endstop_move();
  3479. feedrate = homing_feedrate[Z_AXIS];
  3480. find_bed_induction_sensor_point_z(-10.f, 3);
  3481. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3482. clean_up_after_endstop_move(l_feedmultiply);
  3483. }
  3484. break;
  3485. case 75:
  3486. {
  3487. for (int i = 40; i <= 110; i++)
  3488. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3489. }
  3490. break;
  3491. case 76: //! G76 - PINDA probe temperature calibration
  3492. {
  3493. #ifdef PINDA_THERMISTOR
  3494. if (true)
  3495. {
  3496. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3497. //we need to know accurate position of first calibration point
  3498. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3499. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3500. break;
  3501. }
  3502. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3503. {
  3504. // We don't know where we are! HOME!
  3505. // Push the commands to the front of the message queue in the reverse order!
  3506. // There shall be always enough space reserved for these commands.
  3507. repeatcommand_front(); // repeat G76 with all its parameters
  3508. enquecommand_front_P((PSTR("G28 W0")));
  3509. break;
  3510. }
  3511. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3512. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3513. if (result)
  3514. {
  3515. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3517. current_position[Z_AXIS] = 50;
  3518. current_position[Y_AXIS] = 180;
  3519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3520. st_synchronize();
  3521. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3522. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3523. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. gcode_G28(false, false, true);
  3527. }
  3528. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3529. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3530. current_position[Z_AXIS] = 100;
  3531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3532. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3533. lcd_temp_cal_show_result(false);
  3534. break;
  3535. }
  3536. }
  3537. lcd_update_enable(true);
  3538. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3539. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3540. float zero_z;
  3541. int z_shift = 0; //unit: steps
  3542. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3543. if (start_temp < 35) start_temp = 35;
  3544. if (start_temp < current_temperature_pinda) start_temp += 5;
  3545. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3546. // setTargetHotend(200, 0);
  3547. setTargetBed(70 + (start_temp - 30));
  3548. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3549. custom_message_state = 1;
  3550. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3551. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3553. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3554. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3556. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3558. st_synchronize();
  3559. while (current_temperature_pinda < start_temp)
  3560. {
  3561. delay_keep_alive(1000);
  3562. serialecho_temperatures();
  3563. }
  3564. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3565. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3567. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3568. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3572. if (find_z_result == false) {
  3573. lcd_temp_cal_show_result(find_z_result);
  3574. break;
  3575. }
  3576. zero_z = current_position[Z_AXIS];
  3577. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3578. int i = -1; for (; i < 5; i++)
  3579. {
  3580. float temp = (40 + i * 5);
  3581. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3582. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3583. if (start_temp <= temp) break;
  3584. }
  3585. for (i++; i < 5; i++)
  3586. {
  3587. float temp = (40 + i * 5);
  3588. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3589. custom_message_state = i + 2;
  3590. setTargetBed(50 + 10 * (temp - 30) / 5);
  3591. // setTargetHotend(255, 0);
  3592. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3594. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3595. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3597. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. st_synchronize();
  3600. while (current_temperature_pinda < temp)
  3601. {
  3602. delay_keep_alive(1000);
  3603. serialecho_temperatures();
  3604. }
  3605. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3607. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3608. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3610. st_synchronize();
  3611. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3612. if (find_z_result == false) {
  3613. lcd_temp_cal_show_result(find_z_result);
  3614. break;
  3615. }
  3616. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3617. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3618. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3619. }
  3620. lcd_temp_cal_show_result(true);
  3621. break;
  3622. }
  3623. #endif //PINDA_THERMISTOR
  3624. setTargetBed(PINDA_MIN_T);
  3625. float zero_z;
  3626. int z_shift = 0; //unit: steps
  3627. int t_c; // temperature
  3628. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3629. // We don't know where we are! HOME!
  3630. // Push the commands to the front of the message queue in the reverse order!
  3631. // There shall be always enough space reserved for these commands.
  3632. repeatcommand_front(); // repeat G76 with all its parameters
  3633. enquecommand_front_P((PSTR("G28 W0")));
  3634. break;
  3635. }
  3636. puts_P(_N("PINDA probe calibration start"));
  3637. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3638. custom_message_state = 1;
  3639. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3640. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3641. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3642. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3644. st_synchronize();
  3645. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3646. delay_keep_alive(1000);
  3647. serialecho_temperatures();
  3648. }
  3649. //enquecommand_P(PSTR("M190 S50"));
  3650. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3651. delay_keep_alive(1000);
  3652. serialecho_temperatures();
  3653. }
  3654. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3655. current_position[Z_AXIS] = 5;
  3656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3657. current_position[X_AXIS] = BED_X0;
  3658. current_position[Y_AXIS] = BED_Y0;
  3659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3660. st_synchronize();
  3661. find_bed_induction_sensor_point_z(-1.f);
  3662. zero_z = current_position[Z_AXIS];
  3663. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3664. for (int i = 0; i<5; i++) {
  3665. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3666. custom_message_state = i + 2;
  3667. t_c = 60 + i * 10;
  3668. setTargetBed(t_c);
  3669. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3670. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3671. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3673. st_synchronize();
  3674. while (degBed() < t_c) {
  3675. delay_keep_alive(1000);
  3676. serialecho_temperatures();
  3677. }
  3678. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3679. delay_keep_alive(1000);
  3680. serialecho_temperatures();
  3681. }
  3682. current_position[Z_AXIS] = 5;
  3683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3684. current_position[X_AXIS] = BED_X0;
  3685. current_position[Y_AXIS] = BED_Y0;
  3686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3687. st_synchronize();
  3688. find_bed_induction_sensor_point_z(-1.f);
  3689. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3690. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3691. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3692. }
  3693. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3694. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3695. puts_P(_N("Temperature calibration done."));
  3696. disable_x();
  3697. disable_y();
  3698. disable_z();
  3699. disable_e0();
  3700. disable_e1();
  3701. disable_e2();
  3702. setTargetBed(0); //set bed target temperature back to 0
  3703. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3704. temp_cal_active = true;
  3705. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3706. lcd_update_enable(true);
  3707. lcd_update(2);
  3708. }
  3709. break;
  3710. /**
  3711. * G80: Mesh-based Z probe, probes a grid and produces a
  3712. * mesh to compensate for variable bed height
  3713. *
  3714. * The S0 report the points as below
  3715. * @code{.unparsed}
  3716. * +----> X-axis
  3717. * |
  3718. * |
  3719. * v Y-axis
  3720. * @endcode
  3721. */
  3722. case 80:
  3723. #ifdef MK1BP
  3724. break;
  3725. #endif //MK1BP
  3726. case_G80:
  3727. {
  3728. mesh_bed_leveling_flag = true;
  3729. static bool run = false;
  3730. #ifdef SUPPORT_VERBOSITY
  3731. int8_t verbosity_level = 0;
  3732. if (code_seen('V')) {
  3733. // Just 'V' without a number counts as V1.
  3734. char c = strchr_pointer[1];
  3735. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3736. }
  3737. #endif //SUPPORT_VERBOSITY
  3738. // Firstly check if we know where we are
  3739. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3740. // We don't know where we are! HOME!
  3741. // Push the commands to the front of the message queue in the reverse order!
  3742. // There shall be always enough space reserved for these commands.
  3743. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3744. repeatcommand_front(); // repeat G80 with all its parameters
  3745. enquecommand_front_P((PSTR("G28 W0")));
  3746. }
  3747. else {
  3748. mesh_bed_leveling_flag = false;
  3749. }
  3750. break;
  3751. }
  3752. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3753. if (code_seen('N')) {
  3754. nMeasPoints = code_value_uint8();
  3755. if (nMeasPoints != 7) {
  3756. nMeasPoints = 3;
  3757. }
  3758. }
  3759. else {
  3760. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3761. }
  3762. uint8_t nProbeRetry = 3;
  3763. if (code_seen('R')) {
  3764. nProbeRetry = code_value_uint8();
  3765. if (nProbeRetry > 10) {
  3766. nProbeRetry = 10;
  3767. }
  3768. }
  3769. else {
  3770. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3771. }
  3772. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3773. bool temp_comp_start = true;
  3774. #ifdef PINDA_THERMISTOR
  3775. temp_comp_start = false;
  3776. #endif //PINDA_THERMISTOR
  3777. if (temp_comp_start)
  3778. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3779. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3780. temp_compensation_start();
  3781. run = true;
  3782. repeatcommand_front(); // repeat G80 with all its parameters
  3783. enquecommand_front_P((PSTR("G28 W0")));
  3784. }
  3785. else {
  3786. mesh_bed_leveling_flag = false;
  3787. }
  3788. break;
  3789. }
  3790. run = false;
  3791. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3792. mesh_bed_leveling_flag = false;
  3793. break;
  3794. }
  3795. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3796. unsigned int custom_message_type_old = custom_message_type;
  3797. unsigned int custom_message_state_old = custom_message_state;
  3798. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3799. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3800. lcd_update(1);
  3801. mbl.reset(); //reset mesh bed leveling
  3802. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3803. // consumed during the first movements following this statement.
  3804. babystep_undo();
  3805. // Cycle through all points and probe them
  3806. // First move up. During this first movement, the babystepping will be reverted.
  3807. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3809. // The move to the first calibration point.
  3810. current_position[X_AXIS] = BED_X0;
  3811. current_position[Y_AXIS] = BED_Y0;
  3812. #ifdef SUPPORT_VERBOSITY
  3813. if (verbosity_level >= 1)
  3814. {
  3815. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3816. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3817. }
  3818. #else //SUPPORT_VERBOSITY
  3819. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3820. #endif //SUPPORT_VERBOSITY
  3821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3822. // Wait until the move is finished.
  3823. st_synchronize();
  3824. uint8_t mesh_point = 0; //index number of calibration point
  3825. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3826. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3827. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3828. #ifdef SUPPORT_VERBOSITY
  3829. if (verbosity_level >= 1) {
  3830. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3831. }
  3832. #endif // SUPPORT_VERBOSITY
  3833. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3834. const char *kill_message = NULL;
  3835. while (mesh_point != nMeasPoints * nMeasPoints) {
  3836. // Get coords of a measuring point.
  3837. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3838. uint8_t iy = mesh_point / nMeasPoints;
  3839. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3840. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3841. custom_message_state--;
  3842. mesh_point++;
  3843. continue; //skip
  3844. }*/
  3845. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3846. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3847. {
  3848. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3849. }
  3850. float z0 = 0.f;
  3851. if (has_z && (mesh_point > 0)) {
  3852. uint16_t z_offset_u = 0;
  3853. if (nMeasPoints == 7) {
  3854. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3855. }
  3856. else {
  3857. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3858. }
  3859. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3860. #ifdef SUPPORT_VERBOSITY
  3861. if (verbosity_level >= 1) {
  3862. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3863. }
  3864. #endif // SUPPORT_VERBOSITY
  3865. }
  3866. // Move Z up to MESH_HOME_Z_SEARCH.
  3867. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3868. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3869. float init_z_bckp = current_position[Z_AXIS];
  3870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3871. st_synchronize();
  3872. // Move to XY position of the sensor point.
  3873. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3874. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3875. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3876. #ifdef SUPPORT_VERBOSITY
  3877. if (verbosity_level >= 1) {
  3878. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3879. SERIAL_PROTOCOL(mesh_point);
  3880. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3881. }
  3882. #else //SUPPORT_VERBOSITY
  3883. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3884. #endif // SUPPORT_VERBOSITY
  3885. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3887. st_synchronize();
  3888. // Go down until endstop is hit
  3889. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3890. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3891. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3892. break;
  3893. }
  3894. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3895. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3896. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3898. st_synchronize();
  3899. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3900. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3901. break;
  3902. }
  3903. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3904. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3905. break;
  3906. }
  3907. }
  3908. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3909. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3910. break;
  3911. }
  3912. #ifdef SUPPORT_VERBOSITY
  3913. if (verbosity_level >= 10) {
  3914. SERIAL_ECHOPGM("X: ");
  3915. MYSERIAL.print(current_position[X_AXIS], 5);
  3916. SERIAL_ECHOLNPGM("");
  3917. SERIAL_ECHOPGM("Y: ");
  3918. MYSERIAL.print(current_position[Y_AXIS], 5);
  3919. SERIAL_PROTOCOLPGM("\n");
  3920. }
  3921. #endif // SUPPORT_VERBOSITY
  3922. float offset_z = 0;
  3923. #ifdef PINDA_THERMISTOR
  3924. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3925. #endif //PINDA_THERMISTOR
  3926. // #ifdef SUPPORT_VERBOSITY
  3927. /* if (verbosity_level >= 1)
  3928. {
  3929. SERIAL_ECHOPGM("mesh bed leveling: ");
  3930. MYSERIAL.print(current_position[Z_AXIS], 5);
  3931. SERIAL_ECHOPGM(" offset: ");
  3932. MYSERIAL.print(offset_z, 5);
  3933. SERIAL_ECHOLNPGM("");
  3934. }*/
  3935. // #endif // SUPPORT_VERBOSITY
  3936. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3937. custom_message_state--;
  3938. mesh_point++;
  3939. lcd_update(1);
  3940. }
  3941. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3942. #ifdef SUPPORT_VERBOSITY
  3943. if (verbosity_level >= 20) {
  3944. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3945. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3946. MYSERIAL.print(current_position[Z_AXIS], 5);
  3947. }
  3948. #endif // SUPPORT_VERBOSITY
  3949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3950. st_synchronize();
  3951. if (mesh_point != nMeasPoints * nMeasPoints) {
  3952. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3953. bool bState;
  3954. do { // repeat until Z-leveling o.k.
  3955. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3956. #ifdef TMC2130
  3957. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3958. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3959. #else // TMC2130
  3960. lcd_wait_for_click_delay(0); // ~ no timeout
  3961. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3962. #endif // TMC2130
  3963. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3964. bState=enable_z_endstop(false);
  3965. current_position[Z_AXIS] -= 1;
  3966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3967. st_synchronize();
  3968. enable_z_endstop(true);
  3969. #ifdef TMC2130
  3970. tmc2130_home_enter(Z_AXIS_MASK);
  3971. #endif // TMC2130
  3972. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3974. st_synchronize();
  3975. #ifdef TMC2130
  3976. tmc2130_home_exit();
  3977. #endif // TMC2130
  3978. enable_z_endstop(bState);
  3979. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3980. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3981. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3982. lcd_update_enable(true); // display / status-line recovery
  3983. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3984. repeatcommand_front(); // re-run (i.e. of "G80")
  3985. break;
  3986. }
  3987. clean_up_after_endstop_move(l_feedmultiply);
  3988. // SERIAL_ECHOLNPGM("clean up finished ");
  3989. bool apply_temp_comp = true;
  3990. #ifdef PINDA_THERMISTOR
  3991. apply_temp_comp = false;
  3992. #endif
  3993. if (apply_temp_comp)
  3994. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3995. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3996. // SERIAL_ECHOLNPGM("babystep applied");
  3997. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3998. #ifdef SUPPORT_VERBOSITY
  3999. if (verbosity_level >= 1) {
  4000. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4001. }
  4002. #endif // SUPPORT_VERBOSITY
  4003. for (uint8_t i = 0; i < 4; ++i) {
  4004. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4005. long correction = 0;
  4006. if (code_seen(codes[i]))
  4007. correction = code_value_long();
  4008. else if (eeprom_bed_correction_valid) {
  4009. unsigned char *addr = (i < 2) ?
  4010. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4011. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4012. correction = eeprom_read_int8(addr);
  4013. }
  4014. if (correction == 0)
  4015. continue;
  4016. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4017. SERIAL_ERROR_START;
  4018. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4019. SERIAL_ECHO(correction);
  4020. SERIAL_ECHOLNPGM(" microns");
  4021. }
  4022. else {
  4023. float offset = float(correction) * 0.001f;
  4024. switch (i) {
  4025. case 0:
  4026. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4027. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4028. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4029. }
  4030. }
  4031. break;
  4032. case 1:
  4033. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4034. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4035. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4036. }
  4037. }
  4038. break;
  4039. case 2:
  4040. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4041. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4042. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4043. }
  4044. }
  4045. break;
  4046. case 3:
  4047. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4048. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4049. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4050. }
  4051. }
  4052. break;
  4053. }
  4054. }
  4055. }
  4056. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4057. if (nMeasPoints == 3) {
  4058. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4059. }
  4060. /*
  4061. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4062. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4063. SERIAL_PROTOCOLPGM(",");
  4064. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4065. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4066. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4067. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4068. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4069. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4070. SERIAL_PROTOCOLPGM(" ");
  4071. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4072. }
  4073. SERIAL_PROTOCOLPGM("\n");
  4074. }
  4075. */
  4076. if (nMeasPoints == 7 && magnet_elimination) {
  4077. mbl_interpolation(nMeasPoints);
  4078. }
  4079. /*
  4080. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4081. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4082. SERIAL_PROTOCOLPGM(",");
  4083. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4084. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4085. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4086. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4087. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4088. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4089. SERIAL_PROTOCOLPGM(" ");
  4090. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4091. }
  4092. SERIAL_PROTOCOLPGM("\n");
  4093. }
  4094. */
  4095. // SERIAL_ECHOLNPGM("Upsample finished");
  4096. mbl.active = 1; //activate mesh bed leveling
  4097. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4098. go_home_with_z_lift();
  4099. // SERIAL_ECHOLNPGM("Go home finished");
  4100. //unretract (after PINDA preheat retraction)
  4101. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4102. current_position[E_AXIS] += default_retraction;
  4103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4104. }
  4105. KEEPALIVE_STATE(NOT_BUSY);
  4106. // Restore custom message state
  4107. lcd_setstatuspgm(_T(WELCOME_MSG));
  4108. custom_message_type = custom_message_type_old;
  4109. custom_message_state = custom_message_state_old;
  4110. mesh_bed_leveling_flag = false;
  4111. mesh_bed_run_from_menu = false;
  4112. lcd_update(2);
  4113. }
  4114. break;
  4115. /**
  4116. * G81: Print mesh bed leveling status and bed profile if activated
  4117. */
  4118. case 81:
  4119. if (mbl.active) {
  4120. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4121. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4122. SERIAL_PROTOCOLPGM(",");
  4123. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4124. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4125. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4126. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4127. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4128. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4129. SERIAL_PROTOCOLPGM(" ");
  4130. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4131. }
  4132. SERIAL_PROTOCOLPGM("\n");
  4133. }
  4134. }
  4135. else
  4136. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4137. break;
  4138. #if 0
  4139. /**
  4140. * G82: Single Z probe at current location
  4141. *
  4142. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4143. *
  4144. */
  4145. case 82:
  4146. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4147. int l_feedmultiply = setup_for_endstop_move();
  4148. find_bed_induction_sensor_point_z();
  4149. clean_up_after_endstop_move(l_feedmultiply);
  4150. SERIAL_PROTOCOLPGM("Bed found at: ");
  4151. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4152. SERIAL_PROTOCOLPGM("\n");
  4153. break;
  4154. /**
  4155. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4156. */
  4157. case 83:
  4158. {
  4159. int babystepz = code_seen('S') ? code_value() : 0;
  4160. int BabyPosition = code_seen('P') ? code_value() : 0;
  4161. if (babystepz != 0) {
  4162. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4163. // Is the axis indexed starting with zero or one?
  4164. if (BabyPosition > 4) {
  4165. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4166. }else{
  4167. // Save it to the eeprom
  4168. babystepLoadZ = babystepz;
  4169. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4170. // adjust the Z
  4171. babystepsTodoZadd(babystepLoadZ);
  4172. }
  4173. }
  4174. }
  4175. break;
  4176. /**
  4177. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4178. */
  4179. case 84:
  4180. babystepsTodoZsubtract(babystepLoadZ);
  4181. // babystepLoadZ = 0;
  4182. break;
  4183. /**
  4184. * G85: Prusa3D specific: Pick best babystep
  4185. */
  4186. case 85:
  4187. lcd_pick_babystep();
  4188. break;
  4189. #endif
  4190. /**
  4191. * G86: Prusa3D specific: Disable babystep correction after home.
  4192. * This G-code will be performed at the start of a calibration script.
  4193. */
  4194. case 86:
  4195. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4196. break;
  4197. /**
  4198. * G87: Prusa3D specific: Enable babystep correction after home
  4199. * This G-code will be performed at the end of a calibration script.
  4200. */
  4201. case 87:
  4202. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4203. break;
  4204. /**
  4205. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4206. */
  4207. case 88:
  4208. break;
  4209. #endif // ENABLE_MESH_BED_LEVELING
  4210. case 90: // G90
  4211. relative_mode = false;
  4212. break;
  4213. case 91: // G91
  4214. relative_mode = true;
  4215. break;
  4216. case 92: // G92
  4217. if(!code_seen(axis_codes[E_AXIS]))
  4218. st_synchronize();
  4219. for(int8_t i=0; i < NUM_AXIS; i++) {
  4220. if(code_seen(axis_codes[i])) {
  4221. if(i == E_AXIS) {
  4222. current_position[i] = code_value();
  4223. plan_set_e_position(current_position[E_AXIS]);
  4224. }
  4225. else {
  4226. current_position[i] = code_value()+cs.add_homing[i];
  4227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4228. }
  4229. }
  4230. }
  4231. break;
  4232. case 98: //! G98 (activate farm mode)
  4233. farm_mode = 1;
  4234. PingTime = _millis();
  4235. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4236. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4237. SilentModeMenu = SILENT_MODE_OFF;
  4238. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4239. break;
  4240. case 99: //! G99 (deactivate farm mode)
  4241. farm_mode = 0;
  4242. lcd_printer_connected();
  4243. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4244. lcd_update(2);
  4245. break;
  4246. default:
  4247. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4248. }
  4249. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4250. gcode_in_progress = 0;
  4251. } // end if(code_seen('G'))
  4252. else if(code_seen('M'))
  4253. {
  4254. int index;
  4255. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4256. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4257. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4258. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4259. } else
  4260. {
  4261. mcode_in_progress = (int)code_value();
  4262. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4263. switch(mcode_in_progress)
  4264. {
  4265. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4266. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4267. {
  4268. char *src = strchr_pointer + 2;
  4269. codenum = 0;
  4270. bool hasP = false, hasS = false;
  4271. if (code_seen('P')) {
  4272. codenum = code_value(); // milliseconds to wait
  4273. hasP = codenum > 0;
  4274. }
  4275. if (code_seen('S')) {
  4276. codenum = code_value() * 1000; // seconds to wait
  4277. hasS = codenum > 0;
  4278. }
  4279. starpos = strchr(src, '*');
  4280. if (starpos != NULL) *(starpos) = '\0';
  4281. while (*src == ' ') ++src;
  4282. if (!hasP && !hasS && *src != '\0') {
  4283. lcd_setstatus(src);
  4284. } else {
  4285. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4286. }
  4287. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4288. st_synchronize();
  4289. previous_millis_cmd = _millis();
  4290. if (codenum > 0){
  4291. codenum += _millis(); // keep track of when we started waiting
  4292. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4293. while(_millis() < codenum && !lcd_clicked()){
  4294. manage_heater();
  4295. manage_inactivity(true);
  4296. lcd_update(0);
  4297. }
  4298. KEEPALIVE_STATE(IN_HANDLER);
  4299. lcd_ignore_click(false);
  4300. }else{
  4301. marlin_wait_for_click();
  4302. }
  4303. if (IS_SD_PRINTING)
  4304. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4305. else
  4306. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4307. }
  4308. break;
  4309. case 17:
  4310. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4311. enable_x();
  4312. enable_y();
  4313. enable_z();
  4314. enable_e0();
  4315. enable_e1();
  4316. enable_e2();
  4317. break;
  4318. #ifdef SDSUPPORT
  4319. case 20: // M20 - list SD card
  4320. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4321. card.ls();
  4322. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4323. break;
  4324. case 21: // M21 - init SD card
  4325. card.initsd();
  4326. break;
  4327. case 22: //M22 - release SD card
  4328. card.release();
  4329. break;
  4330. case 23: //M23 - Select file
  4331. starpos = (strchr(strchr_pointer + 4,'*'));
  4332. if(starpos!=NULL)
  4333. *(starpos)='\0';
  4334. card.openFile(strchr_pointer + 4,true);
  4335. break;
  4336. case 24: //M24 - Start SD print
  4337. if (!card.paused)
  4338. failstats_reset_print();
  4339. card.startFileprint();
  4340. starttime=_millis();
  4341. break;
  4342. case 25: //M25 - Pause SD print
  4343. card.pauseSDPrint();
  4344. break;
  4345. case 26: //M26 - Set SD index
  4346. if(card.cardOK && code_seen('S')) {
  4347. card.setIndex(code_value_long());
  4348. }
  4349. break;
  4350. case 27: //M27 - Get SD status
  4351. card.getStatus();
  4352. break;
  4353. case 28: //M28 - Start SD write
  4354. starpos = (strchr(strchr_pointer + 4,'*'));
  4355. if(starpos != NULL){
  4356. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4357. strchr_pointer = strchr(npos,' ') + 1;
  4358. *(starpos) = '\0';
  4359. }
  4360. card.openFile(strchr_pointer+4,false);
  4361. break;
  4362. case 29: //M29 - Stop SD write
  4363. //processed in write to file routine above
  4364. //card,saving = false;
  4365. break;
  4366. case 30: //M30 <filename> Delete File
  4367. if (card.cardOK){
  4368. card.closefile();
  4369. starpos = (strchr(strchr_pointer + 4,'*'));
  4370. if(starpos != NULL){
  4371. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4372. strchr_pointer = strchr(npos,' ') + 1;
  4373. *(starpos) = '\0';
  4374. }
  4375. card.removeFile(strchr_pointer + 4);
  4376. }
  4377. break;
  4378. case 32: //M32 - Select file and start SD print
  4379. {
  4380. if(card.sdprinting) {
  4381. st_synchronize();
  4382. }
  4383. starpos = (strchr(strchr_pointer + 4,'*'));
  4384. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4385. if(namestartpos==NULL)
  4386. {
  4387. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4388. }
  4389. else
  4390. namestartpos++; //to skip the '!'
  4391. if(starpos!=NULL)
  4392. *(starpos)='\0';
  4393. bool call_procedure=(code_seen('P'));
  4394. if(strchr_pointer>namestartpos)
  4395. call_procedure=false; //false alert, 'P' found within filename
  4396. if( card.cardOK )
  4397. {
  4398. card.openFile(namestartpos,true,!call_procedure);
  4399. if(code_seen('S'))
  4400. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4401. card.setIndex(code_value_long());
  4402. card.startFileprint();
  4403. if(!call_procedure)
  4404. starttime=_millis(); //procedure calls count as normal print time.
  4405. }
  4406. } break;
  4407. case 928: //M928 - Start SD write
  4408. starpos = (strchr(strchr_pointer + 5,'*'));
  4409. if(starpos != NULL){
  4410. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4411. strchr_pointer = strchr(npos,' ') + 1;
  4412. *(starpos) = '\0';
  4413. }
  4414. card.openLogFile(strchr_pointer+5);
  4415. break;
  4416. #endif //SDSUPPORT
  4417. case 31: //M31 take time since the start of the SD print or an M109 command
  4418. {
  4419. stoptime=_millis();
  4420. char time[30];
  4421. unsigned long t=(stoptime-starttime)/1000;
  4422. int sec,min;
  4423. min=t/60;
  4424. sec=t%60;
  4425. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4426. SERIAL_ECHO_START;
  4427. SERIAL_ECHOLN(time);
  4428. lcd_setstatus(time);
  4429. autotempShutdown();
  4430. }
  4431. break;
  4432. case 42: //M42 -Change pin status via gcode
  4433. if (code_seen('S'))
  4434. {
  4435. int pin_status = code_value();
  4436. int pin_number = LED_PIN;
  4437. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4438. pin_number = code_value();
  4439. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4440. {
  4441. if (sensitive_pins[i] == pin_number)
  4442. {
  4443. pin_number = -1;
  4444. break;
  4445. }
  4446. }
  4447. #if defined(FAN_PIN) && FAN_PIN > -1
  4448. if (pin_number == FAN_PIN)
  4449. fanSpeed = pin_status;
  4450. #endif
  4451. if (pin_number > -1)
  4452. {
  4453. pinMode(pin_number, OUTPUT);
  4454. digitalWrite(pin_number, pin_status);
  4455. analogWrite(pin_number, pin_status);
  4456. }
  4457. }
  4458. break;
  4459. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4460. // Reset the baby step value and the baby step applied flag.
  4461. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4462. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4463. // Reset the skew and offset in both RAM and EEPROM.
  4464. reset_bed_offset_and_skew();
  4465. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4466. // the planner will not perform any adjustments in the XY plane.
  4467. // Wait for the motors to stop and update the current position with the absolute values.
  4468. world2machine_revert_to_uncorrected();
  4469. break;
  4470. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4471. {
  4472. int8_t verbosity_level = 0;
  4473. bool only_Z = code_seen('Z');
  4474. #ifdef SUPPORT_VERBOSITY
  4475. if (code_seen('V'))
  4476. {
  4477. // Just 'V' without a number counts as V1.
  4478. char c = strchr_pointer[1];
  4479. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4480. }
  4481. #endif //SUPPORT_VERBOSITY
  4482. gcode_M45(only_Z, verbosity_level);
  4483. }
  4484. break;
  4485. /*
  4486. case 46:
  4487. {
  4488. // M46: Prusa3D: Show the assigned IP address.
  4489. uint8_t ip[4];
  4490. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4491. if (hasIP) {
  4492. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4493. SERIAL_ECHO(int(ip[0]));
  4494. SERIAL_ECHOPGM(".");
  4495. SERIAL_ECHO(int(ip[1]));
  4496. SERIAL_ECHOPGM(".");
  4497. SERIAL_ECHO(int(ip[2]));
  4498. SERIAL_ECHOPGM(".");
  4499. SERIAL_ECHO(int(ip[3]));
  4500. SERIAL_ECHOLNPGM("");
  4501. } else {
  4502. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4503. }
  4504. break;
  4505. }
  4506. */
  4507. case 47:
  4508. //! M47: Prusa3D: Show end stops dialog on the display.
  4509. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4510. lcd_diag_show_end_stops();
  4511. KEEPALIVE_STATE(IN_HANDLER);
  4512. break;
  4513. #if 0
  4514. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4515. {
  4516. // Disable the default update procedure of the display. We will do a modal dialog.
  4517. lcd_update_enable(false);
  4518. // Let the planner use the uncorrected coordinates.
  4519. mbl.reset();
  4520. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4521. // the planner will not perform any adjustments in the XY plane.
  4522. // Wait for the motors to stop and update the current position with the absolute values.
  4523. world2machine_revert_to_uncorrected();
  4524. // Move the print head close to the bed.
  4525. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4527. st_synchronize();
  4528. // Home in the XY plane.
  4529. set_destination_to_current();
  4530. int l_feedmultiply = setup_for_endstop_move();
  4531. home_xy();
  4532. int8_t verbosity_level = 0;
  4533. if (code_seen('V')) {
  4534. // Just 'V' without a number counts as V1.
  4535. char c = strchr_pointer[1];
  4536. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4537. }
  4538. bool success = scan_bed_induction_points(verbosity_level);
  4539. clean_up_after_endstop_move(l_feedmultiply);
  4540. // Print head up.
  4541. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4543. st_synchronize();
  4544. lcd_update_enable(true);
  4545. break;
  4546. }
  4547. #endif
  4548. #ifdef ENABLE_AUTO_BED_LEVELING
  4549. #ifdef Z_PROBE_REPEATABILITY_TEST
  4550. //! M48 Z-Probe repeatability measurement function.
  4551. //!
  4552. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4553. //!
  4554. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4555. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4556. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4557. //! regenerated.
  4558. //!
  4559. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4560. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4561. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4562. //!
  4563. case 48: // M48 Z-Probe repeatability
  4564. {
  4565. #if Z_MIN_PIN == -1
  4566. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4567. #endif
  4568. double sum=0.0;
  4569. double mean=0.0;
  4570. double sigma=0.0;
  4571. double sample_set[50];
  4572. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4573. double X_current, Y_current, Z_current;
  4574. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4575. if (code_seen('V') || code_seen('v')) {
  4576. verbose_level = code_value();
  4577. if (verbose_level<0 || verbose_level>4 ) {
  4578. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4579. goto Sigma_Exit;
  4580. }
  4581. }
  4582. if (verbose_level > 0) {
  4583. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4584. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4585. }
  4586. if (code_seen('n')) {
  4587. n_samples = code_value();
  4588. if (n_samples<4 || n_samples>50 ) {
  4589. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4590. goto Sigma_Exit;
  4591. }
  4592. }
  4593. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4594. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4595. Z_current = st_get_position_mm(Z_AXIS);
  4596. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4597. ext_position = st_get_position_mm(E_AXIS);
  4598. if (code_seen('X') || code_seen('x') ) {
  4599. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4600. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4601. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4602. goto Sigma_Exit;
  4603. }
  4604. }
  4605. if (code_seen('Y') || code_seen('y') ) {
  4606. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4607. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4608. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4609. goto Sigma_Exit;
  4610. }
  4611. }
  4612. if (code_seen('L') || code_seen('l') ) {
  4613. n_legs = code_value();
  4614. if ( n_legs==1 )
  4615. n_legs = 2;
  4616. if ( n_legs<0 || n_legs>15 ) {
  4617. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4618. goto Sigma_Exit;
  4619. }
  4620. }
  4621. //
  4622. // Do all the preliminary setup work. First raise the probe.
  4623. //
  4624. st_synchronize();
  4625. plan_bed_level_matrix.set_to_identity();
  4626. plan_buffer_line( X_current, Y_current, Z_start_location,
  4627. ext_position,
  4628. homing_feedrate[Z_AXIS]/60,
  4629. active_extruder);
  4630. st_synchronize();
  4631. //
  4632. // Now get everything to the specified probe point So we can safely do a probe to
  4633. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4634. // use that as a starting point for each probe.
  4635. //
  4636. if (verbose_level > 2)
  4637. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4638. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4639. ext_position,
  4640. homing_feedrate[X_AXIS]/60,
  4641. active_extruder);
  4642. st_synchronize();
  4643. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4644. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4645. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4646. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4647. //
  4648. // OK, do the inital probe to get us close to the bed.
  4649. // Then retrace the right amount and use that in subsequent probes
  4650. //
  4651. int l_feedmultiply = setup_for_endstop_move();
  4652. run_z_probe();
  4653. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4654. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4655. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4656. ext_position,
  4657. homing_feedrate[X_AXIS]/60,
  4658. active_extruder);
  4659. st_synchronize();
  4660. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4661. for( n=0; n<n_samples; n++) {
  4662. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4663. if ( n_legs) {
  4664. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4665. int rotational_direction, l;
  4666. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4667. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4668. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4669. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4670. //SERIAL_ECHOPAIR(" theta: ",theta);
  4671. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4672. //SERIAL_PROTOCOLLNPGM("");
  4673. for( l=0; l<n_legs-1; l++) {
  4674. if (rotational_direction==1)
  4675. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4676. else
  4677. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4678. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4679. if ( radius<0.0 )
  4680. radius = -radius;
  4681. X_current = X_probe_location + cos(theta) * radius;
  4682. Y_current = Y_probe_location + sin(theta) * radius;
  4683. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4684. X_current = X_MIN_POS;
  4685. if ( X_current>X_MAX_POS)
  4686. X_current = X_MAX_POS;
  4687. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4688. Y_current = Y_MIN_POS;
  4689. if ( Y_current>Y_MAX_POS)
  4690. Y_current = Y_MAX_POS;
  4691. if (verbose_level>3 ) {
  4692. SERIAL_ECHOPAIR("x: ", X_current);
  4693. SERIAL_ECHOPAIR("y: ", Y_current);
  4694. SERIAL_PROTOCOLLNPGM("");
  4695. }
  4696. do_blocking_move_to( X_current, Y_current, Z_current );
  4697. }
  4698. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4699. }
  4700. int l_feedmultiply = setup_for_endstop_move();
  4701. run_z_probe();
  4702. sample_set[n] = current_position[Z_AXIS];
  4703. //
  4704. // Get the current mean for the data points we have so far
  4705. //
  4706. sum=0.0;
  4707. for( j=0; j<=n; j++) {
  4708. sum = sum + sample_set[j];
  4709. }
  4710. mean = sum / (double (n+1));
  4711. //
  4712. // Now, use that mean to calculate the standard deviation for the
  4713. // data points we have so far
  4714. //
  4715. sum=0.0;
  4716. for( j=0; j<=n; j++) {
  4717. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4718. }
  4719. sigma = sqrt( sum / (double (n+1)) );
  4720. if (verbose_level > 1) {
  4721. SERIAL_PROTOCOL(n+1);
  4722. SERIAL_PROTOCOL(" of ");
  4723. SERIAL_PROTOCOL(n_samples);
  4724. SERIAL_PROTOCOLPGM(" z: ");
  4725. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4726. }
  4727. if (verbose_level > 2) {
  4728. SERIAL_PROTOCOL(" mean: ");
  4729. SERIAL_PROTOCOL_F(mean,6);
  4730. SERIAL_PROTOCOL(" sigma: ");
  4731. SERIAL_PROTOCOL_F(sigma,6);
  4732. }
  4733. if (verbose_level > 0)
  4734. SERIAL_PROTOCOLPGM("\n");
  4735. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4736. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4737. st_synchronize();
  4738. }
  4739. _delay(1000);
  4740. clean_up_after_endstop_move(l_feedmultiply);
  4741. // enable_endstops(true);
  4742. if (verbose_level > 0) {
  4743. SERIAL_PROTOCOLPGM("Mean: ");
  4744. SERIAL_PROTOCOL_F(mean, 6);
  4745. SERIAL_PROTOCOLPGM("\n");
  4746. }
  4747. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4748. SERIAL_PROTOCOL_F(sigma, 6);
  4749. SERIAL_PROTOCOLPGM("\n\n");
  4750. Sigma_Exit:
  4751. break;
  4752. }
  4753. #endif // Z_PROBE_REPEATABILITY_TEST
  4754. #endif // ENABLE_AUTO_BED_LEVELING
  4755. case 73: //M73 show percent done and time remaining
  4756. if(code_seen('P')) print_percent_done_normal = code_value();
  4757. if(code_seen('R')) print_time_remaining_normal = code_value();
  4758. if(code_seen('Q')) print_percent_done_silent = code_value();
  4759. if(code_seen('S')) print_time_remaining_silent = code_value();
  4760. {
  4761. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4762. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4763. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4764. }
  4765. break;
  4766. case 104: // M104
  4767. {
  4768. uint8_t extruder;
  4769. if(setTargetedHotend(104,extruder)){
  4770. break;
  4771. }
  4772. if (code_seen('S'))
  4773. {
  4774. setTargetHotendSafe(code_value(), extruder);
  4775. }
  4776. setWatch();
  4777. break;
  4778. }
  4779. case 112: // M112 -Emergency Stop
  4780. kill(_n(""), 3);
  4781. break;
  4782. case 140: // M140 set bed temp
  4783. if (code_seen('S')) setTargetBed(code_value());
  4784. break;
  4785. case 105 : // M105
  4786. {
  4787. uint8_t extruder;
  4788. if(setTargetedHotend(105, extruder)){
  4789. break;
  4790. }
  4791. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4792. SERIAL_PROTOCOLPGM("ok T:");
  4793. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4794. SERIAL_PROTOCOLPGM(" /");
  4795. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4796. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4797. SERIAL_PROTOCOLPGM(" B:");
  4798. SERIAL_PROTOCOL_F(degBed(),1);
  4799. SERIAL_PROTOCOLPGM(" /");
  4800. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4801. #endif //TEMP_BED_PIN
  4802. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4803. SERIAL_PROTOCOLPGM(" T");
  4804. SERIAL_PROTOCOL(cur_extruder);
  4805. SERIAL_PROTOCOLPGM(":");
  4806. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4807. SERIAL_PROTOCOLPGM(" /");
  4808. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4809. }
  4810. #else
  4811. SERIAL_ERROR_START;
  4812. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4813. #endif
  4814. SERIAL_PROTOCOLPGM(" @:");
  4815. #ifdef EXTRUDER_WATTS
  4816. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4817. SERIAL_PROTOCOLPGM("W");
  4818. #else
  4819. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4820. #endif
  4821. SERIAL_PROTOCOLPGM(" B@:");
  4822. #ifdef BED_WATTS
  4823. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4824. SERIAL_PROTOCOLPGM("W");
  4825. #else
  4826. SERIAL_PROTOCOL(getHeaterPower(-1));
  4827. #endif
  4828. #ifdef PINDA_THERMISTOR
  4829. SERIAL_PROTOCOLPGM(" P:");
  4830. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4831. #endif //PINDA_THERMISTOR
  4832. #ifdef AMBIENT_THERMISTOR
  4833. SERIAL_PROTOCOLPGM(" A:");
  4834. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4835. #endif //AMBIENT_THERMISTOR
  4836. #ifdef SHOW_TEMP_ADC_VALUES
  4837. {float raw = 0.0;
  4838. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4839. SERIAL_PROTOCOLPGM(" ADC B:");
  4840. SERIAL_PROTOCOL_F(degBed(),1);
  4841. SERIAL_PROTOCOLPGM("C->");
  4842. raw = rawBedTemp();
  4843. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4844. SERIAL_PROTOCOLPGM(" Rb->");
  4845. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4846. SERIAL_PROTOCOLPGM(" Rxb->");
  4847. SERIAL_PROTOCOL_F(raw, 5);
  4848. #endif
  4849. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4850. SERIAL_PROTOCOLPGM(" T");
  4851. SERIAL_PROTOCOL(cur_extruder);
  4852. SERIAL_PROTOCOLPGM(":");
  4853. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4854. SERIAL_PROTOCOLPGM("C->");
  4855. raw = rawHotendTemp(cur_extruder);
  4856. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4857. SERIAL_PROTOCOLPGM(" Rt");
  4858. SERIAL_PROTOCOL(cur_extruder);
  4859. SERIAL_PROTOCOLPGM("->");
  4860. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4861. SERIAL_PROTOCOLPGM(" Rx");
  4862. SERIAL_PROTOCOL(cur_extruder);
  4863. SERIAL_PROTOCOLPGM("->");
  4864. SERIAL_PROTOCOL_F(raw, 5);
  4865. }}
  4866. #endif
  4867. SERIAL_PROTOCOLLN("");
  4868. KEEPALIVE_STATE(NOT_BUSY);
  4869. return;
  4870. break;
  4871. }
  4872. case 109:
  4873. {// M109 - Wait for extruder heater to reach target.
  4874. uint8_t extruder;
  4875. if(setTargetedHotend(109, extruder)){
  4876. break;
  4877. }
  4878. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4879. heating_status = 1;
  4880. if (farm_mode) { prusa_statistics(1); };
  4881. #ifdef AUTOTEMP
  4882. autotemp_enabled=false;
  4883. #endif
  4884. if (code_seen('S')) {
  4885. setTargetHotendSafe(code_value(), extruder);
  4886. CooldownNoWait = true;
  4887. } else if (code_seen('R')) {
  4888. setTargetHotendSafe(code_value(), extruder);
  4889. CooldownNoWait = false;
  4890. }
  4891. #ifdef AUTOTEMP
  4892. if (code_seen('S')) autotemp_min=code_value();
  4893. if (code_seen('B')) autotemp_max=code_value();
  4894. if (code_seen('F'))
  4895. {
  4896. autotemp_factor=code_value();
  4897. autotemp_enabled=true;
  4898. }
  4899. #endif
  4900. setWatch();
  4901. codenum = _millis();
  4902. /* See if we are heating up or cooling down */
  4903. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4904. KEEPALIVE_STATE(NOT_BUSY);
  4905. cancel_heatup = false;
  4906. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4907. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4908. KEEPALIVE_STATE(IN_HANDLER);
  4909. heating_status = 2;
  4910. if (farm_mode) { prusa_statistics(2); };
  4911. //starttime=_millis();
  4912. previous_millis_cmd = _millis();
  4913. }
  4914. break;
  4915. case 190: // M190 - Wait for bed heater to reach target.
  4916. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4917. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4918. heating_status = 3;
  4919. if (farm_mode) { prusa_statistics(1); };
  4920. if (code_seen('S'))
  4921. {
  4922. setTargetBed(code_value());
  4923. CooldownNoWait = true;
  4924. }
  4925. else if (code_seen('R'))
  4926. {
  4927. setTargetBed(code_value());
  4928. CooldownNoWait = false;
  4929. }
  4930. codenum = _millis();
  4931. cancel_heatup = false;
  4932. target_direction = isHeatingBed(); // true if heating, false if cooling
  4933. KEEPALIVE_STATE(NOT_BUSY);
  4934. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4935. {
  4936. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4937. {
  4938. if (!farm_mode) {
  4939. float tt = degHotend(active_extruder);
  4940. SERIAL_PROTOCOLPGM("T:");
  4941. SERIAL_PROTOCOL(tt);
  4942. SERIAL_PROTOCOLPGM(" E:");
  4943. SERIAL_PROTOCOL((int)active_extruder);
  4944. SERIAL_PROTOCOLPGM(" B:");
  4945. SERIAL_PROTOCOL_F(degBed(), 1);
  4946. SERIAL_PROTOCOLLN("");
  4947. }
  4948. codenum = _millis();
  4949. }
  4950. manage_heater();
  4951. manage_inactivity();
  4952. lcd_update(0);
  4953. }
  4954. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4955. KEEPALIVE_STATE(IN_HANDLER);
  4956. heating_status = 4;
  4957. previous_millis_cmd = _millis();
  4958. #endif
  4959. break;
  4960. #if defined(FAN_PIN) && FAN_PIN > -1
  4961. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4962. if (code_seen('S')){
  4963. fanSpeed=constrain(code_value(),0,255);
  4964. }
  4965. else {
  4966. fanSpeed=255;
  4967. }
  4968. break;
  4969. case 107: //M107 Fan Off
  4970. fanSpeed = 0;
  4971. break;
  4972. #endif //FAN_PIN
  4973. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4974. case 80: // M80 - Turn on Power Supply
  4975. SET_OUTPUT(PS_ON_PIN); //GND
  4976. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4977. // If you have a switch on suicide pin, this is useful
  4978. // if you want to start another print with suicide feature after
  4979. // a print without suicide...
  4980. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4981. SET_OUTPUT(SUICIDE_PIN);
  4982. WRITE(SUICIDE_PIN, HIGH);
  4983. #endif
  4984. powersupply = true;
  4985. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4986. lcd_update(0);
  4987. break;
  4988. #endif
  4989. case 81: // M81 - Turn off Power Supply
  4990. disable_heater();
  4991. st_synchronize();
  4992. disable_e0();
  4993. disable_e1();
  4994. disable_e2();
  4995. finishAndDisableSteppers();
  4996. fanSpeed = 0;
  4997. _delay(1000); // Wait a little before to switch off
  4998. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4999. st_synchronize();
  5000. suicide();
  5001. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5002. SET_OUTPUT(PS_ON_PIN);
  5003. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5004. #endif
  5005. powersupply = false;
  5006. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5007. lcd_update(0);
  5008. break;
  5009. case 82:
  5010. axis_relative_modes[3] = false;
  5011. break;
  5012. case 83:
  5013. axis_relative_modes[3] = true;
  5014. break;
  5015. case 18: //compatibility
  5016. case 84: // M84
  5017. if(code_seen('S')){
  5018. stepper_inactive_time = code_value() * 1000;
  5019. }
  5020. else
  5021. {
  5022. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5023. if(all_axis)
  5024. {
  5025. st_synchronize();
  5026. disable_e0();
  5027. disable_e1();
  5028. disable_e2();
  5029. finishAndDisableSteppers();
  5030. }
  5031. else
  5032. {
  5033. st_synchronize();
  5034. if (code_seen('X')) disable_x();
  5035. if (code_seen('Y')) disable_y();
  5036. if (code_seen('Z')) disable_z();
  5037. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5038. if (code_seen('E')) {
  5039. disable_e0();
  5040. disable_e1();
  5041. disable_e2();
  5042. }
  5043. #endif
  5044. }
  5045. }
  5046. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5047. print_time_remaining_init();
  5048. snmm_filaments_used = 0;
  5049. break;
  5050. case 85: // M85
  5051. if(code_seen('S')) {
  5052. max_inactive_time = code_value() * 1000;
  5053. }
  5054. break;
  5055. #ifdef SAFETYTIMER
  5056. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5057. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5058. if (code_seen('S')) {
  5059. safetytimer_inactive_time = code_value() * 1000;
  5060. safetyTimer.start();
  5061. }
  5062. break;
  5063. #endif
  5064. case 92: // M92
  5065. for(int8_t i=0; i < NUM_AXIS; i++)
  5066. {
  5067. if(code_seen(axis_codes[i]))
  5068. {
  5069. if(i == 3) { // E
  5070. float value = code_value();
  5071. if(value < 20.0) {
  5072. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5073. cs.max_jerk[E_AXIS] *= factor;
  5074. max_feedrate[i] *= factor;
  5075. axis_steps_per_sqr_second[i] *= factor;
  5076. }
  5077. cs.axis_steps_per_unit[i] = value;
  5078. }
  5079. else {
  5080. cs.axis_steps_per_unit[i] = code_value();
  5081. }
  5082. }
  5083. }
  5084. break;
  5085. case 110: //! M110 N<line number> - reset line pos
  5086. if (code_seen('N'))
  5087. gcode_LastN = code_value_long();
  5088. break;
  5089. case 113: // M113 - Get or set Host Keepalive interval
  5090. if (code_seen('S')) {
  5091. host_keepalive_interval = (uint8_t)code_value_short();
  5092. // NOMORE(host_keepalive_interval, 60);
  5093. }
  5094. else {
  5095. SERIAL_ECHO_START;
  5096. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5097. SERIAL_PROTOCOLLN("");
  5098. }
  5099. break;
  5100. case 115: // M115
  5101. if (code_seen('V')) {
  5102. // Report the Prusa version number.
  5103. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5104. } else if (code_seen('U')) {
  5105. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5106. // pause the print and ask the user to upgrade the firmware.
  5107. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5108. } else {
  5109. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5110. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5111. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5112. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5113. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5114. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5115. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5116. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5117. SERIAL_ECHOPGM(" UUID:");
  5118. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5119. }
  5120. break;
  5121. /* case 117: // M117 display message
  5122. starpos = (strchr(strchr_pointer + 5,'*'));
  5123. if(starpos!=NULL)
  5124. *(starpos)='\0';
  5125. lcd_setstatus(strchr_pointer + 5);
  5126. break;*/
  5127. case 114: // M114
  5128. gcode_M114();
  5129. break;
  5130. case 120: //! M120 - Disable endstops
  5131. enable_endstops(false) ;
  5132. break;
  5133. case 121: //! M121 - Enable endstops
  5134. enable_endstops(true) ;
  5135. break;
  5136. case 119: // M119
  5137. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5138. SERIAL_PROTOCOLLN("");
  5139. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5140. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5141. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5142. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5143. }else{
  5144. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5145. }
  5146. SERIAL_PROTOCOLLN("");
  5147. #endif
  5148. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5149. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5150. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5151. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5152. }else{
  5153. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5154. }
  5155. SERIAL_PROTOCOLLN("");
  5156. #endif
  5157. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5158. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5159. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5160. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5161. }else{
  5162. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5163. }
  5164. SERIAL_PROTOCOLLN("");
  5165. #endif
  5166. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5167. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5168. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5169. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5170. }else{
  5171. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5172. }
  5173. SERIAL_PROTOCOLLN("");
  5174. #endif
  5175. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5176. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5177. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5178. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5179. }else{
  5180. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5181. }
  5182. SERIAL_PROTOCOLLN("");
  5183. #endif
  5184. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5185. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5186. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5187. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5188. }else{
  5189. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5190. }
  5191. SERIAL_PROTOCOLLN("");
  5192. #endif
  5193. break;
  5194. //TODO: update for all axis, use for loop
  5195. #ifdef BLINKM
  5196. case 150: // M150
  5197. {
  5198. byte red;
  5199. byte grn;
  5200. byte blu;
  5201. if(code_seen('R')) red = code_value();
  5202. if(code_seen('U')) grn = code_value();
  5203. if(code_seen('B')) blu = code_value();
  5204. SendColors(red,grn,blu);
  5205. }
  5206. break;
  5207. #endif //BLINKM
  5208. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5209. {
  5210. uint8_t extruder = active_extruder;
  5211. if(code_seen('T')) {
  5212. extruder = code_value();
  5213. if(extruder >= EXTRUDERS) {
  5214. SERIAL_ECHO_START;
  5215. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5216. break;
  5217. }
  5218. }
  5219. if(code_seen('D')) {
  5220. float diameter = (float)code_value();
  5221. if (diameter == 0.0) {
  5222. // setting any extruder filament size disables volumetric on the assumption that
  5223. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5224. // for all extruders
  5225. cs.volumetric_enabled = false;
  5226. } else {
  5227. cs.filament_size[extruder] = (float)code_value();
  5228. // make sure all extruders have some sane value for the filament size
  5229. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5230. #if EXTRUDERS > 1
  5231. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5232. #if EXTRUDERS > 2
  5233. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5234. #endif
  5235. #endif
  5236. cs.volumetric_enabled = true;
  5237. }
  5238. } else {
  5239. //reserved for setting filament diameter via UFID or filament measuring device
  5240. break;
  5241. }
  5242. calculate_extruder_multipliers();
  5243. }
  5244. break;
  5245. case 201: // M201
  5246. for (int8_t i = 0; i < NUM_AXIS; i++)
  5247. {
  5248. if (code_seen(axis_codes[i]))
  5249. {
  5250. unsigned long val = code_value();
  5251. #ifdef TMC2130
  5252. unsigned long val_silent = val;
  5253. if ((i == X_AXIS) || (i == Y_AXIS))
  5254. {
  5255. if (val > NORMAL_MAX_ACCEL_XY)
  5256. val = NORMAL_MAX_ACCEL_XY;
  5257. if (val_silent > SILENT_MAX_ACCEL_XY)
  5258. val_silent = SILENT_MAX_ACCEL_XY;
  5259. }
  5260. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5261. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5262. #else //TMC2130
  5263. max_acceleration_units_per_sq_second[i] = val;
  5264. #endif //TMC2130
  5265. }
  5266. }
  5267. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5268. reset_acceleration_rates();
  5269. break;
  5270. #if 0 // Not used for Sprinter/grbl gen6
  5271. case 202: // M202
  5272. for(int8_t i=0; i < NUM_AXIS; i++) {
  5273. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5274. }
  5275. break;
  5276. #endif
  5277. case 203: // M203 max feedrate mm/sec
  5278. for (int8_t i = 0; i < NUM_AXIS; i++)
  5279. {
  5280. if (code_seen(axis_codes[i]))
  5281. {
  5282. float val = code_value();
  5283. #ifdef TMC2130
  5284. float val_silent = val;
  5285. if ((i == X_AXIS) || (i == Y_AXIS))
  5286. {
  5287. if (val > NORMAL_MAX_FEEDRATE_XY)
  5288. val = NORMAL_MAX_FEEDRATE_XY;
  5289. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5290. val_silent = SILENT_MAX_FEEDRATE_XY;
  5291. }
  5292. cs.max_feedrate_normal[i] = val;
  5293. cs.max_feedrate_silent[i] = val_silent;
  5294. #else //TMC2130
  5295. max_feedrate[i] = val;
  5296. #endif //TMC2130
  5297. }
  5298. }
  5299. break;
  5300. case 204:
  5301. //! M204 acclereration settings.
  5302. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5303. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5304. {
  5305. if(code_seen('S')) {
  5306. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5307. // and it is also generated by Slic3r to control acceleration per extrusion type
  5308. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5309. cs.acceleration = code_value();
  5310. // Interpret the T value as retract acceleration in the old Marlin format.
  5311. if(code_seen('T'))
  5312. cs.retract_acceleration = code_value();
  5313. } else {
  5314. // New acceleration format, compatible with the upstream Marlin.
  5315. if(code_seen('P'))
  5316. cs.acceleration = code_value();
  5317. if(code_seen('R'))
  5318. cs.retract_acceleration = code_value();
  5319. if(code_seen('T')) {
  5320. // Interpret the T value as the travel acceleration in the new Marlin format.
  5321. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5322. // travel_acceleration = code_value();
  5323. }
  5324. }
  5325. }
  5326. break;
  5327. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5328. {
  5329. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5330. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5331. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5332. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5333. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5334. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5335. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5336. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5337. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5338. }
  5339. break;
  5340. case 206: // M206 additional homing offset
  5341. for(int8_t i=0; i < 3; i++)
  5342. {
  5343. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5344. }
  5345. break;
  5346. #ifdef FWRETRACT
  5347. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5348. {
  5349. if(code_seen('S'))
  5350. {
  5351. cs.retract_length = code_value() ;
  5352. }
  5353. if(code_seen('F'))
  5354. {
  5355. cs.retract_feedrate = code_value()/60 ;
  5356. }
  5357. if(code_seen('Z'))
  5358. {
  5359. cs.retract_zlift = code_value() ;
  5360. }
  5361. }break;
  5362. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5363. {
  5364. if(code_seen('S'))
  5365. {
  5366. cs.retract_recover_length = code_value() ;
  5367. }
  5368. if(code_seen('F'))
  5369. {
  5370. cs.retract_recover_feedrate = code_value()/60 ;
  5371. }
  5372. }break;
  5373. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5374. {
  5375. if(code_seen('S'))
  5376. {
  5377. int t= code_value() ;
  5378. switch(t)
  5379. {
  5380. case 0:
  5381. {
  5382. cs.autoretract_enabled=false;
  5383. retracted[0]=false;
  5384. #if EXTRUDERS > 1
  5385. retracted[1]=false;
  5386. #endif
  5387. #if EXTRUDERS > 2
  5388. retracted[2]=false;
  5389. #endif
  5390. }break;
  5391. case 1:
  5392. {
  5393. cs.autoretract_enabled=true;
  5394. retracted[0]=false;
  5395. #if EXTRUDERS > 1
  5396. retracted[1]=false;
  5397. #endif
  5398. #if EXTRUDERS > 2
  5399. retracted[2]=false;
  5400. #endif
  5401. }break;
  5402. default:
  5403. SERIAL_ECHO_START;
  5404. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5405. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5406. SERIAL_ECHOLNPGM("\"(1)");
  5407. }
  5408. }
  5409. }break;
  5410. #endif // FWRETRACT
  5411. #if EXTRUDERS > 1
  5412. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5413. {
  5414. uint8_t extruder;
  5415. if(setTargetedHotend(218, extruder)){
  5416. break;
  5417. }
  5418. if(code_seen('X'))
  5419. {
  5420. extruder_offset[X_AXIS][extruder] = code_value();
  5421. }
  5422. if(code_seen('Y'))
  5423. {
  5424. extruder_offset[Y_AXIS][extruder] = code_value();
  5425. }
  5426. SERIAL_ECHO_START;
  5427. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5428. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5429. {
  5430. SERIAL_ECHO(" ");
  5431. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5432. SERIAL_ECHO(",");
  5433. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5434. }
  5435. SERIAL_ECHOLN("");
  5436. }break;
  5437. #endif
  5438. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5439. {
  5440. if (code_seen('B')) //backup current speed factor
  5441. {
  5442. saved_feedmultiply_mm = feedmultiply;
  5443. }
  5444. if(code_seen('S'))
  5445. {
  5446. feedmultiply = code_value() ;
  5447. }
  5448. if (code_seen('R')) { //restore previous feedmultiply
  5449. feedmultiply = saved_feedmultiply_mm;
  5450. }
  5451. }
  5452. break;
  5453. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5454. {
  5455. if(code_seen('S'))
  5456. {
  5457. int tmp_code = code_value();
  5458. if (code_seen('T'))
  5459. {
  5460. uint8_t extruder;
  5461. if(setTargetedHotend(221, extruder)){
  5462. break;
  5463. }
  5464. extruder_multiply[extruder] = tmp_code;
  5465. }
  5466. else
  5467. {
  5468. extrudemultiply = tmp_code ;
  5469. }
  5470. }
  5471. calculate_extruder_multipliers();
  5472. }
  5473. break;
  5474. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5475. {
  5476. if(code_seen('P')){
  5477. int pin_number = code_value(); // pin number
  5478. int pin_state = -1; // required pin state - default is inverted
  5479. if(code_seen('S')) pin_state = code_value(); // required pin state
  5480. if(pin_state >= -1 && pin_state <= 1){
  5481. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5482. {
  5483. if (sensitive_pins[i] == pin_number)
  5484. {
  5485. pin_number = -1;
  5486. break;
  5487. }
  5488. }
  5489. if (pin_number > -1)
  5490. {
  5491. int target = LOW;
  5492. st_synchronize();
  5493. pinMode(pin_number, INPUT);
  5494. switch(pin_state){
  5495. case 1:
  5496. target = HIGH;
  5497. break;
  5498. case 0:
  5499. target = LOW;
  5500. break;
  5501. case -1:
  5502. target = !digitalRead(pin_number);
  5503. break;
  5504. }
  5505. while(digitalRead(pin_number) != target){
  5506. manage_heater();
  5507. manage_inactivity();
  5508. lcd_update(0);
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. break;
  5515. #if NUM_SERVOS > 0
  5516. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5517. {
  5518. int servo_index = -1;
  5519. int servo_position = 0;
  5520. if (code_seen('P'))
  5521. servo_index = code_value();
  5522. if (code_seen('S')) {
  5523. servo_position = code_value();
  5524. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5525. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5526. servos[servo_index].attach(0);
  5527. #endif
  5528. servos[servo_index].write(servo_position);
  5529. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5530. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5531. servos[servo_index].detach();
  5532. #endif
  5533. }
  5534. else {
  5535. SERIAL_ECHO_START;
  5536. SERIAL_ECHO("Servo ");
  5537. SERIAL_ECHO(servo_index);
  5538. SERIAL_ECHOLN(" out of range");
  5539. }
  5540. }
  5541. else if (servo_index >= 0) {
  5542. SERIAL_PROTOCOL(MSG_OK);
  5543. SERIAL_PROTOCOL(" Servo ");
  5544. SERIAL_PROTOCOL(servo_index);
  5545. SERIAL_PROTOCOL(": ");
  5546. SERIAL_PROTOCOL(servos[servo_index].read());
  5547. SERIAL_PROTOCOLLN("");
  5548. }
  5549. }
  5550. break;
  5551. #endif // NUM_SERVOS > 0
  5552. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5553. case 300: // M300
  5554. {
  5555. int beepS = code_seen('S') ? code_value() : 110;
  5556. int beepP = code_seen('P') ? code_value() : 1000;
  5557. if (beepS > 0)
  5558. {
  5559. #if BEEPER > 0
  5560. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5561. _tone(BEEPER, beepS);
  5562. _delay(beepP);
  5563. _noTone(BEEPER);
  5564. #endif
  5565. }
  5566. else
  5567. {
  5568. _delay(beepP);
  5569. }
  5570. }
  5571. break;
  5572. #endif // M300
  5573. #ifdef PIDTEMP
  5574. case 301: // M301
  5575. {
  5576. if(code_seen('P')) cs.Kp = code_value();
  5577. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5578. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5579. #ifdef PID_ADD_EXTRUSION_RATE
  5580. if(code_seen('C')) Kc = code_value();
  5581. #endif
  5582. updatePID();
  5583. SERIAL_PROTOCOLRPGM(MSG_OK);
  5584. SERIAL_PROTOCOL(" p:");
  5585. SERIAL_PROTOCOL(cs.Kp);
  5586. SERIAL_PROTOCOL(" i:");
  5587. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5588. SERIAL_PROTOCOL(" d:");
  5589. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5590. #ifdef PID_ADD_EXTRUSION_RATE
  5591. SERIAL_PROTOCOL(" c:");
  5592. //Kc does not have scaling applied above, or in resetting defaults
  5593. SERIAL_PROTOCOL(Kc);
  5594. #endif
  5595. SERIAL_PROTOCOLLN("");
  5596. }
  5597. break;
  5598. #endif //PIDTEMP
  5599. #ifdef PIDTEMPBED
  5600. case 304: // M304
  5601. {
  5602. if(code_seen('P')) cs.bedKp = code_value();
  5603. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5604. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5605. updatePID();
  5606. SERIAL_PROTOCOLRPGM(MSG_OK);
  5607. SERIAL_PROTOCOL(" p:");
  5608. SERIAL_PROTOCOL(cs.bedKp);
  5609. SERIAL_PROTOCOL(" i:");
  5610. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5611. SERIAL_PROTOCOL(" d:");
  5612. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5613. SERIAL_PROTOCOLLN("");
  5614. }
  5615. break;
  5616. #endif //PIDTEMP
  5617. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5618. {
  5619. #ifdef CHDK
  5620. SET_OUTPUT(CHDK);
  5621. WRITE(CHDK, HIGH);
  5622. chdkHigh = _millis();
  5623. chdkActive = true;
  5624. #else
  5625. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5626. const uint8_t NUM_PULSES=16;
  5627. const float PULSE_LENGTH=0.01524;
  5628. for(int i=0; i < NUM_PULSES; i++) {
  5629. WRITE(PHOTOGRAPH_PIN, HIGH);
  5630. _delay_ms(PULSE_LENGTH);
  5631. WRITE(PHOTOGRAPH_PIN, LOW);
  5632. _delay_ms(PULSE_LENGTH);
  5633. }
  5634. _delay(7.33);
  5635. for(int i=0; i < NUM_PULSES; i++) {
  5636. WRITE(PHOTOGRAPH_PIN, HIGH);
  5637. _delay_ms(PULSE_LENGTH);
  5638. WRITE(PHOTOGRAPH_PIN, LOW);
  5639. _delay_ms(PULSE_LENGTH);
  5640. }
  5641. #endif
  5642. #endif //chdk end if
  5643. }
  5644. break;
  5645. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5646. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5647. {
  5648. float temp = .0;
  5649. if (code_seen('S')) temp=code_value();
  5650. set_extrude_min_temp(temp);
  5651. }
  5652. break;
  5653. #endif
  5654. case 303: // M303 PID autotune
  5655. {
  5656. float temp = 150.0;
  5657. int e=0;
  5658. int c=5;
  5659. if (code_seen('E')) e=code_value();
  5660. if (e<0)
  5661. temp=70;
  5662. if (code_seen('S')) temp=code_value();
  5663. if (code_seen('C')) c=code_value();
  5664. PID_autotune(temp, e, c);
  5665. }
  5666. break;
  5667. case 400: // M400 finish all moves
  5668. {
  5669. st_synchronize();
  5670. }
  5671. break;
  5672. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5673. {
  5674. //! currently three different materials are needed (default, flex and PVA)
  5675. //! add storing this information for different load/unload profiles etc. in the future
  5676. //!firmware does not wait for "ok" from mmu
  5677. if (mmu_enabled)
  5678. {
  5679. uint8_t extruder = 255;
  5680. uint8_t filament = FILAMENT_UNDEFINED;
  5681. if(code_seen('E')) extruder = code_value();
  5682. if(code_seen('F')) filament = code_value();
  5683. mmu_set_filament_type(extruder, filament);
  5684. }
  5685. }
  5686. break;
  5687. case 500: // M500 Store settings in EEPROM
  5688. {
  5689. Config_StoreSettings();
  5690. }
  5691. break;
  5692. case 501: // M501 Read settings from EEPROM
  5693. {
  5694. Config_RetrieveSettings();
  5695. }
  5696. break;
  5697. case 502: // M502 Revert to default settings
  5698. {
  5699. Config_ResetDefault();
  5700. }
  5701. break;
  5702. case 503: // M503 print settings currently in memory
  5703. {
  5704. Config_PrintSettings();
  5705. }
  5706. break;
  5707. case 509: //M509 Force language selection
  5708. {
  5709. lang_reset();
  5710. SERIAL_ECHO_START;
  5711. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5712. }
  5713. break;
  5714. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5715. case 540:
  5716. {
  5717. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5718. }
  5719. break;
  5720. #endif
  5721. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5722. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5723. {
  5724. float value;
  5725. if (code_seen('Z'))
  5726. {
  5727. value = code_value();
  5728. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5729. {
  5730. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5731. SERIAL_ECHO_START;
  5732. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5733. SERIAL_PROTOCOLLN("");
  5734. }
  5735. else
  5736. {
  5737. SERIAL_ECHO_START;
  5738. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5739. SERIAL_ECHORPGM(MSG_Z_MIN);
  5740. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5741. SERIAL_ECHORPGM(MSG_Z_MAX);
  5742. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5743. SERIAL_PROTOCOLLN("");
  5744. }
  5745. }
  5746. else
  5747. {
  5748. SERIAL_ECHO_START;
  5749. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5750. SERIAL_ECHO(-cs.zprobe_zoffset);
  5751. SERIAL_PROTOCOLLN("");
  5752. }
  5753. break;
  5754. }
  5755. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5756. #ifdef FILAMENTCHANGEENABLE
  5757. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5758. {
  5759. st_synchronize();
  5760. float x_position = current_position[X_AXIS];
  5761. float y_position = current_position[Y_AXIS];
  5762. float z_shift = 0;
  5763. float e_shift_init = 0;
  5764. float e_shift_late = 0;
  5765. bool automatic = false;
  5766. //Retract extruder
  5767. if(code_seen('E'))
  5768. {
  5769. e_shift_init = code_value();
  5770. }
  5771. else
  5772. {
  5773. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5774. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5775. #endif
  5776. }
  5777. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5778. if (code_seen('L'))
  5779. {
  5780. e_shift_late = code_value();
  5781. }
  5782. else
  5783. {
  5784. #ifdef FILAMENTCHANGE_FINALRETRACT
  5785. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5786. #endif
  5787. }
  5788. //Lift Z
  5789. if(code_seen('Z'))
  5790. {
  5791. z_shift = code_value();
  5792. }
  5793. else
  5794. {
  5795. #ifdef FILAMENTCHANGE_ZADD
  5796. z_shift= FILAMENTCHANGE_ZADD ;
  5797. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5798. #endif
  5799. }
  5800. //Move XY to side
  5801. if(code_seen('X'))
  5802. {
  5803. x_position = code_value();
  5804. }
  5805. else
  5806. {
  5807. #ifdef FILAMENTCHANGE_XPOS
  5808. x_position = FILAMENTCHANGE_XPOS;
  5809. #endif
  5810. }
  5811. if(code_seen('Y'))
  5812. {
  5813. y_position = code_value();
  5814. }
  5815. else
  5816. {
  5817. #ifdef FILAMENTCHANGE_YPOS
  5818. y_position = FILAMENTCHANGE_YPOS ;
  5819. #endif
  5820. }
  5821. if (mmu_enabled && code_seen("AUTO"))
  5822. automatic = true;
  5823. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5824. }
  5825. break;
  5826. #endif //FILAMENTCHANGEENABLE
  5827. case 601: //! M601 - Pause print
  5828. {
  5829. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5830. lcd_pause_print();
  5831. }
  5832. break;
  5833. case 602: { //! M602 - Resume print
  5834. lcd_resume_print();
  5835. }
  5836. break;
  5837. #ifdef PINDA_THERMISTOR
  5838. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5839. {
  5840. int set_target_pinda = 0;
  5841. if (code_seen('S')) {
  5842. set_target_pinda = code_value();
  5843. }
  5844. else {
  5845. break;
  5846. }
  5847. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5848. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5849. SERIAL_PROTOCOL(set_target_pinda);
  5850. SERIAL_PROTOCOLLN("");
  5851. codenum = _millis();
  5852. cancel_heatup = false;
  5853. bool is_pinda_cooling = false;
  5854. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5855. is_pinda_cooling = true;
  5856. }
  5857. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5858. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5859. {
  5860. SERIAL_PROTOCOLPGM("P:");
  5861. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5862. SERIAL_PROTOCOLPGM("/");
  5863. SERIAL_PROTOCOL(set_target_pinda);
  5864. SERIAL_PROTOCOLLN("");
  5865. codenum = _millis();
  5866. }
  5867. manage_heater();
  5868. manage_inactivity();
  5869. lcd_update(0);
  5870. }
  5871. LCD_MESSAGERPGM(MSG_OK);
  5872. break;
  5873. }
  5874. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5875. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5876. uint8_t cal_status = calibration_status_pinda();
  5877. int16_t usteps = 0;
  5878. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5879. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5880. for (uint8_t i = 0; i < 6; i++)
  5881. {
  5882. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5883. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5884. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5885. SERIAL_PROTOCOLPGM(", ");
  5886. SERIAL_PROTOCOL(35 + (i * 5));
  5887. SERIAL_PROTOCOLPGM(", ");
  5888. SERIAL_PROTOCOL(usteps);
  5889. SERIAL_PROTOCOLPGM(", ");
  5890. SERIAL_PROTOCOL(mm * 1000);
  5891. SERIAL_PROTOCOLLN("");
  5892. }
  5893. }
  5894. else if (code_seen('!')) { // ! - Set factory default values
  5895. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5896. int16_t z_shift = 8; //40C - 20um - 8usteps
  5897. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5898. z_shift = 24; //45C - 60um - 24usteps
  5899. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5900. z_shift = 48; //50C - 120um - 48usteps
  5901. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5902. z_shift = 80; //55C - 200um - 80usteps
  5903. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5904. z_shift = 120; //60C - 300um - 120usteps
  5905. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5906. SERIAL_PROTOCOLLN("factory restored");
  5907. }
  5908. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5909. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5910. int16_t z_shift = 0;
  5911. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5912. SERIAL_PROTOCOLLN("zerorized");
  5913. }
  5914. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5915. int16_t usteps = code_value();
  5916. if (code_seen('I')) {
  5917. uint8_t index = code_value();
  5918. if (index < 5) {
  5919. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5920. SERIAL_PROTOCOLLN("OK");
  5921. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5922. for (uint8_t i = 0; i < 6; i++)
  5923. {
  5924. usteps = 0;
  5925. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5926. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5927. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5928. SERIAL_PROTOCOLPGM(", ");
  5929. SERIAL_PROTOCOL(35 + (i * 5));
  5930. SERIAL_PROTOCOLPGM(", ");
  5931. SERIAL_PROTOCOL(usteps);
  5932. SERIAL_PROTOCOLPGM(", ");
  5933. SERIAL_PROTOCOL(mm * 1000);
  5934. SERIAL_PROTOCOLLN("");
  5935. }
  5936. }
  5937. }
  5938. }
  5939. else {
  5940. SERIAL_PROTOCOLPGM("no valid command");
  5941. }
  5942. break;
  5943. #endif //PINDA_THERMISTOR
  5944. #ifdef LIN_ADVANCE
  5945. case 900: // M900: Set LIN_ADVANCE options.
  5946. gcode_M900();
  5947. break;
  5948. #endif
  5949. case 907: // M907 Set digital trimpot motor current using axis codes.
  5950. {
  5951. #ifdef TMC2130
  5952. for (int i = 0; i < NUM_AXIS; i++)
  5953. if(code_seen(axis_codes[i]))
  5954. {
  5955. long cur_mA = code_value_long();
  5956. uint8_t val = tmc2130_cur2val(cur_mA);
  5957. tmc2130_set_current_h(i, val);
  5958. tmc2130_set_current_r(i, val);
  5959. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5960. }
  5961. #else //TMC2130
  5962. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5963. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5964. if(code_seen('B')) st_current_set(4,code_value());
  5965. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5966. #endif
  5967. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5968. if(code_seen('X')) st_current_set(0, code_value());
  5969. #endif
  5970. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5971. if(code_seen('Z')) st_current_set(1, code_value());
  5972. #endif
  5973. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5974. if(code_seen('E')) st_current_set(2, code_value());
  5975. #endif
  5976. #endif //TMC2130
  5977. }
  5978. break;
  5979. case 908: // M908 Control digital trimpot directly.
  5980. {
  5981. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5982. uint8_t channel,current;
  5983. if(code_seen('P')) channel=code_value();
  5984. if(code_seen('S')) current=code_value();
  5985. digitalPotWrite(channel, current);
  5986. #endif
  5987. }
  5988. break;
  5989. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5990. case 910: //! M910 - TMC2130 init
  5991. {
  5992. tmc2130_init();
  5993. }
  5994. break;
  5995. case 911: //! M911 - Set TMC2130 holding currents
  5996. {
  5997. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5998. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5999. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6000. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6001. }
  6002. break;
  6003. case 912: //! M912 - Set TMC2130 running currents
  6004. {
  6005. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6006. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6007. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6008. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6009. }
  6010. break;
  6011. case 913: //! M913 - Print TMC2130 currents
  6012. {
  6013. tmc2130_print_currents();
  6014. }
  6015. break;
  6016. case 914: //! M914 - Set normal mode
  6017. {
  6018. tmc2130_mode = TMC2130_MODE_NORMAL;
  6019. update_mode_profile();
  6020. tmc2130_init();
  6021. }
  6022. break;
  6023. case 915: //! M915 - Set silent mode
  6024. {
  6025. tmc2130_mode = TMC2130_MODE_SILENT;
  6026. update_mode_profile();
  6027. tmc2130_init();
  6028. }
  6029. break;
  6030. case 916: //! M916 - Set sg_thrs
  6031. {
  6032. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6033. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6034. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6035. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6036. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6037. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6038. }
  6039. break;
  6040. case 917: //! M917 - Set TMC2130 pwm_ampl
  6041. {
  6042. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6043. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6044. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6045. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6046. }
  6047. break;
  6048. case 918: //! M918 - Set TMC2130 pwm_grad
  6049. {
  6050. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6051. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6052. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6053. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6054. }
  6055. break;
  6056. #endif //TMC2130_SERVICE_CODES_M910_M918
  6057. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6058. {
  6059. #ifdef TMC2130
  6060. if(code_seen('E'))
  6061. {
  6062. uint16_t res_new = code_value();
  6063. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6064. {
  6065. st_synchronize();
  6066. uint8_t axis = E_AXIS;
  6067. uint16_t res = tmc2130_get_res(axis);
  6068. tmc2130_set_res(axis, res_new);
  6069. cs.axis_ustep_resolution[axis] = res_new;
  6070. if (res_new > res)
  6071. {
  6072. uint16_t fac = (res_new / res);
  6073. cs.axis_steps_per_unit[axis] *= fac;
  6074. position[E_AXIS] *= fac;
  6075. }
  6076. else
  6077. {
  6078. uint16_t fac = (res / res_new);
  6079. cs.axis_steps_per_unit[axis] /= fac;
  6080. position[E_AXIS] /= fac;
  6081. }
  6082. }
  6083. }
  6084. #else //TMC2130
  6085. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6086. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6087. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6088. if(code_seen('B')) microstep_mode(4,code_value());
  6089. microstep_readings();
  6090. #endif
  6091. #endif //TMC2130
  6092. }
  6093. break;
  6094. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6095. {
  6096. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6097. if(code_seen('S')) switch((int)code_value())
  6098. {
  6099. case 1:
  6100. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6101. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6102. break;
  6103. case 2:
  6104. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6105. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6106. break;
  6107. }
  6108. microstep_readings();
  6109. #endif
  6110. }
  6111. break;
  6112. case 701: //! M701 - load filament
  6113. {
  6114. if (mmu_enabled && code_seen('E'))
  6115. tmp_extruder = code_value();
  6116. gcode_M701();
  6117. }
  6118. break;
  6119. case 702: //! M702 [U C] -
  6120. {
  6121. #ifdef SNMM
  6122. if (code_seen('U'))
  6123. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6124. else if (code_seen('C'))
  6125. extr_unload(); //! if "C" unload just current filament
  6126. else
  6127. extr_unload_all(); //! otherwise unload all filaments
  6128. #else
  6129. if (code_seen('C')) {
  6130. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6131. }
  6132. else {
  6133. if(mmu_enabled) extr_unload(); //! unload current filament
  6134. else unload_filament();
  6135. }
  6136. #endif //SNMM
  6137. }
  6138. break;
  6139. case 999: // M999: Restart after being stopped
  6140. Stopped = false;
  6141. lcd_reset_alert_level();
  6142. gcode_LastN = Stopped_gcode_LastN;
  6143. FlushSerialRequestResend();
  6144. break;
  6145. default:
  6146. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6147. }
  6148. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6149. mcode_in_progress = 0;
  6150. }
  6151. }
  6152. // end if(code_seen('M')) (end of M codes)
  6153. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6154. //! select filament in case of MMU_V2
  6155. //! if extruder is "?", open menu to let the user select extruder/filament
  6156. //!
  6157. //! For MMU_V2:
  6158. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6159. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6160. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6161. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6162. else if(code_seen('T'))
  6163. {
  6164. int index;
  6165. bool load_to_nozzle = false;
  6166. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6167. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6168. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6169. SERIAL_ECHOLNPGM("Invalid T code.");
  6170. }
  6171. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6172. if (mmu_enabled)
  6173. {
  6174. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6175. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6176. {
  6177. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6178. }
  6179. else
  6180. {
  6181. st_synchronize();
  6182. mmu_command(MmuCmd::T0 + tmp_extruder);
  6183. manage_response(true, true, MMU_TCODE_MOVE);
  6184. }
  6185. }
  6186. }
  6187. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6188. if (mmu_enabled)
  6189. {
  6190. st_synchronize();
  6191. mmu_continue_loading(is_usb_printing);
  6192. mmu_extruder = tmp_extruder; //filament change is finished
  6193. mmu_load_to_nozzle();
  6194. }
  6195. }
  6196. else {
  6197. if (*(strchr_pointer + index) == '?')
  6198. {
  6199. if(mmu_enabled)
  6200. {
  6201. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6202. load_to_nozzle = true;
  6203. } else
  6204. {
  6205. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6206. }
  6207. }
  6208. else {
  6209. tmp_extruder = code_value();
  6210. if (mmu_enabled && lcd_autoDepleteEnabled())
  6211. {
  6212. tmp_extruder = ad_getAlternative(tmp_extruder);
  6213. }
  6214. }
  6215. st_synchronize();
  6216. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6217. if (mmu_enabled)
  6218. {
  6219. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6220. {
  6221. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6222. }
  6223. else
  6224. {
  6225. mmu_command(MmuCmd::T0 + tmp_extruder);
  6226. manage_response(true, true, MMU_TCODE_MOVE);
  6227. mmu_continue_loading(is_usb_printing);
  6228. mmu_extruder = tmp_extruder; //filament change is finished
  6229. if (load_to_nozzle)// for single material usage with mmu
  6230. {
  6231. mmu_load_to_nozzle();
  6232. }
  6233. }
  6234. }
  6235. else
  6236. {
  6237. #ifdef SNMM
  6238. #ifdef LIN_ADVANCE
  6239. if (mmu_extruder != tmp_extruder)
  6240. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6241. #endif
  6242. mmu_extruder = tmp_extruder;
  6243. _delay(100);
  6244. disable_e0();
  6245. disable_e1();
  6246. disable_e2();
  6247. pinMode(E_MUX0_PIN, OUTPUT);
  6248. pinMode(E_MUX1_PIN, OUTPUT);
  6249. _delay(100);
  6250. SERIAL_ECHO_START;
  6251. SERIAL_ECHO("T:");
  6252. SERIAL_ECHOLN((int)tmp_extruder);
  6253. switch (tmp_extruder) {
  6254. case 1:
  6255. WRITE(E_MUX0_PIN, HIGH);
  6256. WRITE(E_MUX1_PIN, LOW);
  6257. break;
  6258. case 2:
  6259. WRITE(E_MUX0_PIN, LOW);
  6260. WRITE(E_MUX1_PIN, HIGH);
  6261. break;
  6262. case 3:
  6263. WRITE(E_MUX0_PIN, HIGH);
  6264. WRITE(E_MUX1_PIN, HIGH);
  6265. break;
  6266. default:
  6267. WRITE(E_MUX0_PIN, LOW);
  6268. WRITE(E_MUX1_PIN, LOW);
  6269. break;
  6270. }
  6271. _delay(100);
  6272. #else //SNMM
  6273. if (tmp_extruder >= EXTRUDERS) {
  6274. SERIAL_ECHO_START;
  6275. SERIAL_ECHOPGM("T");
  6276. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6277. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6278. }
  6279. else {
  6280. #if EXTRUDERS > 1
  6281. boolean make_move = false;
  6282. #endif
  6283. if (code_seen('F')) {
  6284. #if EXTRUDERS > 1
  6285. make_move = true;
  6286. #endif
  6287. next_feedrate = code_value();
  6288. if (next_feedrate > 0.0) {
  6289. feedrate = next_feedrate;
  6290. }
  6291. }
  6292. #if EXTRUDERS > 1
  6293. if (tmp_extruder != active_extruder) {
  6294. // Save current position to return to after applying extruder offset
  6295. memcpy(destination, current_position, sizeof(destination));
  6296. // Offset extruder (only by XY)
  6297. int i;
  6298. for (i = 0; i < 2; i++) {
  6299. current_position[i] = current_position[i] -
  6300. extruder_offset[i][active_extruder] +
  6301. extruder_offset[i][tmp_extruder];
  6302. }
  6303. // Set the new active extruder and position
  6304. active_extruder = tmp_extruder;
  6305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6306. // Move to the old position if 'F' was in the parameters
  6307. if (make_move && Stopped == false) {
  6308. prepare_move();
  6309. }
  6310. }
  6311. #endif
  6312. SERIAL_ECHO_START;
  6313. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6314. SERIAL_PROTOCOLLN((int)active_extruder);
  6315. }
  6316. #endif //SNMM
  6317. }
  6318. }
  6319. } // end if(code_seen('T')) (end of T codes)
  6320. else if (code_seen('D')) // D codes (debug)
  6321. {
  6322. switch((int)code_value())
  6323. {
  6324. case -1: //! D-1 - Endless loop
  6325. dcode__1(); break;
  6326. #ifdef DEBUG_DCODES
  6327. case 0: //! D0 - Reset
  6328. dcode_0(); break;
  6329. case 1: //! D1 - Clear EEPROM
  6330. dcode_1(); break;
  6331. case 2: //! D2 - Read/Write RAM
  6332. dcode_2(); break;
  6333. #endif //DEBUG_DCODES
  6334. #ifdef DEBUG_DCODE3
  6335. case 3: //! D3 - Read/Write EEPROM
  6336. dcode_3(); break;
  6337. #endif //DEBUG_DCODE3
  6338. #ifdef DEBUG_DCODES
  6339. case 4: //! D4 - Read/Write PIN
  6340. dcode_4(); break;
  6341. #endif //DEBUG_DCODES
  6342. #ifdef DEBUG_DCODE5
  6343. case 5: // D5 - Read/Write FLASH
  6344. dcode_5(); break;
  6345. break;
  6346. #endif //DEBUG_DCODE5
  6347. #ifdef DEBUG_DCODES
  6348. case 6: // D6 - Read/Write external FLASH
  6349. dcode_6(); break;
  6350. case 7: //! D7 - Read/Write Bootloader
  6351. dcode_7(); break;
  6352. case 8: //! D8 - Read/Write PINDA
  6353. dcode_8(); break;
  6354. case 9: //! D9 - Read/Write ADC
  6355. dcode_9(); break;
  6356. case 10: //! D10 - XYZ calibration = OK
  6357. dcode_10(); break;
  6358. #endif //DEBUG_DCODES
  6359. #ifdef HEATBED_ANALYSIS
  6360. case 80:
  6361. {
  6362. float dimension_x = 40;
  6363. float dimension_y = 40;
  6364. int points_x = 40;
  6365. int points_y = 40;
  6366. float offset_x = 74;
  6367. float offset_y = 33;
  6368. if (code_seen('E')) dimension_x = code_value();
  6369. if (code_seen('F')) dimension_y = code_value();
  6370. if (code_seen('G')) {points_x = code_value(); }
  6371. if (code_seen('H')) {points_y = code_value(); }
  6372. if (code_seen('I')) {offset_x = code_value(); }
  6373. if (code_seen('J')) {offset_y = code_value(); }
  6374. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6375. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6376. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6377. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6378. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6379. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6380. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6381. }break;
  6382. case 81:
  6383. {
  6384. float dimension_x = 40;
  6385. float dimension_y = 40;
  6386. int points_x = 40;
  6387. int points_y = 40;
  6388. float offset_x = 74;
  6389. float offset_y = 33;
  6390. if (code_seen('E')) dimension_x = code_value();
  6391. if (code_seen('F')) dimension_y = code_value();
  6392. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6393. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6394. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6395. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6396. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6397. } break;
  6398. #endif //HEATBED_ANALYSIS
  6399. #ifdef DEBUG_DCODES
  6400. case 106: //D106 print measured fan speed for different pwm values
  6401. {
  6402. for (int i = 255; i > 0; i = i - 5) {
  6403. fanSpeed = i;
  6404. //delay_keep_alive(2000);
  6405. for (int j = 0; j < 100; j++) {
  6406. delay_keep_alive(100);
  6407. }
  6408. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6409. }
  6410. }break;
  6411. #ifdef TMC2130
  6412. case 2130: //! D2130 - TMC2130
  6413. dcode_2130(); break;
  6414. #endif //TMC2130
  6415. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6416. case 9125: //! D9125 - FILAMENT_SENSOR
  6417. dcode_9125(); break;
  6418. #endif //FILAMENT_SENSOR
  6419. #endif //DEBUG_DCODES
  6420. }
  6421. }
  6422. else
  6423. {
  6424. SERIAL_ECHO_START;
  6425. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6426. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6427. SERIAL_ECHOLNPGM("\"(2)");
  6428. }
  6429. KEEPALIVE_STATE(NOT_BUSY);
  6430. ClearToSend();
  6431. }
  6432. void FlushSerialRequestResend()
  6433. {
  6434. //char cmdbuffer[bufindr][100]="Resend:";
  6435. MYSERIAL.flush();
  6436. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6437. }
  6438. // Confirm the execution of a command, if sent from a serial line.
  6439. // Execution of a command from a SD card will not be confirmed.
  6440. void ClearToSend()
  6441. {
  6442. previous_millis_cmd = _millis();
  6443. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6444. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6445. }
  6446. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6447. void update_currents() {
  6448. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6449. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6450. float tmp_motor[3];
  6451. //SERIAL_ECHOLNPGM("Currents updated: ");
  6452. if (destination[Z_AXIS] < Z_SILENT) {
  6453. //SERIAL_ECHOLNPGM("LOW");
  6454. for (uint8_t i = 0; i < 3; i++) {
  6455. st_current_set(i, current_low[i]);
  6456. /*MYSERIAL.print(int(i));
  6457. SERIAL_ECHOPGM(": ");
  6458. MYSERIAL.println(current_low[i]);*/
  6459. }
  6460. }
  6461. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6462. //SERIAL_ECHOLNPGM("HIGH");
  6463. for (uint8_t i = 0; i < 3; i++) {
  6464. st_current_set(i, current_high[i]);
  6465. /*MYSERIAL.print(int(i));
  6466. SERIAL_ECHOPGM(": ");
  6467. MYSERIAL.println(current_high[i]);*/
  6468. }
  6469. }
  6470. else {
  6471. for (uint8_t i = 0; i < 3; i++) {
  6472. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6473. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6474. st_current_set(i, tmp_motor[i]);
  6475. /*MYSERIAL.print(int(i));
  6476. SERIAL_ECHOPGM(": ");
  6477. MYSERIAL.println(tmp_motor[i]);*/
  6478. }
  6479. }
  6480. }
  6481. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6482. void get_coordinates()
  6483. {
  6484. bool seen[4]={false,false,false,false};
  6485. for(int8_t i=0; i < NUM_AXIS; i++) {
  6486. if(code_seen(axis_codes[i]))
  6487. {
  6488. bool relative = axis_relative_modes[i] || relative_mode;
  6489. destination[i] = (float)code_value();
  6490. if (i == E_AXIS) {
  6491. float emult = extruder_multiplier[active_extruder];
  6492. if (emult != 1.) {
  6493. if (! relative) {
  6494. destination[i] -= current_position[i];
  6495. relative = true;
  6496. }
  6497. destination[i] *= emult;
  6498. }
  6499. }
  6500. if (relative)
  6501. destination[i] += current_position[i];
  6502. seen[i]=true;
  6503. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6504. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6505. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6506. }
  6507. else destination[i] = current_position[i]; //Are these else lines really needed?
  6508. }
  6509. if(code_seen('F')) {
  6510. next_feedrate = code_value();
  6511. #ifdef MAX_SILENT_FEEDRATE
  6512. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6513. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6514. #endif //MAX_SILENT_FEEDRATE
  6515. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6516. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6517. {
  6518. // float e_max_speed =
  6519. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6520. }
  6521. }
  6522. }
  6523. void get_arc_coordinates()
  6524. {
  6525. #ifdef SF_ARC_FIX
  6526. bool relative_mode_backup = relative_mode;
  6527. relative_mode = true;
  6528. #endif
  6529. get_coordinates();
  6530. #ifdef SF_ARC_FIX
  6531. relative_mode=relative_mode_backup;
  6532. #endif
  6533. if(code_seen('I')) {
  6534. offset[0] = code_value();
  6535. }
  6536. else {
  6537. offset[0] = 0.0;
  6538. }
  6539. if(code_seen('J')) {
  6540. offset[1] = code_value();
  6541. }
  6542. else {
  6543. offset[1] = 0.0;
  6544. }
  6545. }
  6546. void clamp_to_software_endstops(float target[3])
  6547. {
  6548. #ifdef DEBUG_DISABLE_SWLIMITS
  6549. return;
  6550. #endif //DEBUG_DISABLE_SWLIMITS
  6551. world2machine_clamp(target[0], target[1]);
  6552. // Clamp the Z coordinate.
  6553. if (min_software_endstops) {
  6554. float negative_z_offset = 0;
  6555. #ifdef ENABLE_AUTO_BED_LEVELING
  6556. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6557. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6558. #endif
  6559. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6560. }
  6561. if (max_software_endstops) {
  6562. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6563. }
  6564. }
  6565. #ifdef MESH_BED_LEVELING
  6566. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6567. float dx = x - current_position[X_AXIS];
  6568. float dy = y - current_position[Y_AXIS];
  6569. float dz = z - current_position[Z_AXIS];
  6570. int n_segments = 0;
  6571. if (mbl.active) {
  6572. float len = abs(dx) + abs(dy);
  6573. if (len > 0)
  6574. // Split to 3cm segments or shorter.
  6575. n_segments = int(ceil(len / 30.f));
  6576. }
  6577. if (n_segments > 1) {
  6578. float de = e - current_position[E_AXIS];
  6579. for (int i = 1; i < n_segments; ++ i) {
  6580. float t = float(i) / float(n_segments);
  6581. if (saved_printing || (mbl.active == false)) return;
  6582. plan_buffer_line(
  6583. current_position[X_AXIS] + t * dx,
  6584. current_position[Y_AXIS] + t * dy,
  6585. current_position[Z_AXIS] + t * dz,
  6586. current_position[E_AXIS] + t * de,
  6587. feed_rate, extruder);
  6588. }
  6589. }
  6590. // The rest of the path.
  6591. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6592. current_position[X_AXIS] = x;
  6593. current_position[Y_AXIS] = y;
  6594. current_position[Z_AXIS] = z;
  6595. current_position[E_AXIS] = e;
  6596. }
  6597. #endif // MESH_BED_LEVELING
  6598. void prepare_move()
  6599. {
  6600. clamp_to_software_endstops(destination);
  6601. previous_millis_cmd = _millis();
  6602. // Do not use feedmultiply for E or Z only moves
  6603. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6605. }
  6606. else {
  6607. #ifdef MESH_BED_LEVELING
  6608. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6609. #else
  6610. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6611. #endif
  6612. }
  6613. for(int8_t i=0; i < NUM_AXIS; i++) {
  6614. current_position[i] = destination[i];
  6615. }
  6616. }
  6617. void prepare_arc_move(char isclockwise) {
  6618. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6619. // Trace the arc
  6620. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6621. // As far as the parser is concerned, the position is now == target. In reality the
  6622. // motion control system might still be processing the action and the real tool position
  6623. // in any intermediate location.
  6624. for(int8_t i=0; i < NUM_AXIS; i++) {
  6625. current_position[i] = destination[i];
  6626. }
  6627. previous_millis_cmd = _millis();
  6628. }
  6629. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6630. #if defined(FAN_PIN)
  6631. #if CONTROLLERFAN_PIN == FAN_PIN
  6632. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6633. #endif
  6634. #endif
  6635. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6636. unsigned long lastMotorCheck = 0;
  6637. void controllerFan()
  6638. {
  6639. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6640. {
  6641. lastMotorCheck = _millis();
  6642. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6643. #if EXTRUDERS > 2
  6644. || !READ(E2_ENABLE_PIN)
  6645. #endif
  6646. #if EXTRUDER > 1
  6647. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6648. || !READ(X2_ENABLE_PIN)
  6649. #endif
  6650. || !READ(E1_ENABLE_PIN)
  6651. #endif
  6652. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6653. {
  6654. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6655. }
  6656. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6657. {
  6658. digitalWrite(CONTROLLERFAN_PIN, 0);
  6659. analogWrite(CONTROLLERFAN_PIN, 0);
  6660. }
  6661. else
  6662. {
  6663. // allows digital or PWM fan output to be used (see M42 handling)
  6664. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6665. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6666. }
  6667. }
  6668. }
  6669. #endif
  6670. #ifdef TEMP_STAT_LEDS
  6671. static bool blue_led = false;
  6672. static bool red_led = false;
  6673. static uint32_t stat_update = 0;
  6674. void handle_status_leds(void) {
  6675. float max_temp = 0.0;
  6676. if(_millis() > stat_update) {
  6677. stat_update += 500; // Update every 0.5s
  6678. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6679. max_temp = max(max_temp, degHotend(cur_extruder));
  6680. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6681. }
  6682. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6683. max_temp = max(max_temp, degTargetBed());
  6684. max_temp = max(max_temp, degBed());
  6685. #endif
  6686. if((max_temp > 55.0) && (red_led == false)) {
  6687. digitalWrite(STAT_LED_RED, 1);
  6688. digitalWrite(STAT_LED_BLUE, 0);
  6689. red_led = true;
  6690. blue_led = false;
  6691. }
  6692. if((max_temp < 54.0) && (blue_led == false)) {
  6693. digitalWrite(STAT_LED_RED, 0);
  6694. digitalWrite(STAT_LED_BLUE, 1);
  6695. red_led = false;
  6696. blue_led = true;
  6697. }
  6698. }
  6699. }
  6700. #endif
  6701. #ifdef SAFETYTIMER
  6702. /**
  6703. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6704. *
  6705. * Full screen blocking notification message is shown after heater turning off.
  6706. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6707. * damage print.
  6708. *
  6709. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6710. */
  6711. static void handleSafetyTimer()
  6712. {
  6713. #if (EXTRUDERS > 1)
  6714. #error Implemented only for one extruder.
  6715. #endif //(EXTRUDERS > 1)
  6716. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6717. {
  6718. safetyTimer.stop();
  6719. }
  6720. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6721. {
  6722. safetyTimer.start();
  6723. }
  6724. else if (safetyTimer.expired(safetytimer_inactive_time))
  6725. {
  6726. setTargetBed(0);
  6727. setAllTargetHotends(0);
  6728. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6729. }
  6730. }
  6731. #endif //SAFETYTIMER
  6732. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6733. {
  6734. bool bInhibitFlag;
  6735. #ifdef FILAMENT_SENSOR
  6736. if (mmu_enabled == false)
  6737. {
  6738. //-// if (mcode_in_progress != 600) //M600 not in progress
  6739. #ifdef PAT9125
  6740. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6741. #endif // PAT9125
  6742. #ifdef IR_SENSOR
  6743. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6744. #endif // IR_SENSOR
  6745. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6746. {
  6747. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6748. {
  6749. if (fsensor_check_autoload())
  6750. {
  6751. #ifdef PAT9125
  6752. fsensor_autoload_check_stop();
  6753. #endif //PAT9125
  6754. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6755. if(0)
  6756. {
  6757. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6758. _tone(BEEPER, 1000);
  6759. delay_keep_alive(50);
  6760. _noTone(BEEPER);
  6761. loading_flag = true;
  6762. enquecommand_front_P((PSTR("M701")));
  6763. }
  6764. else
  6765. {
  6766. /*
  6767. lcd_update_enable(false);
  6768. show_preheat_nozzle_warning();
  6769. lcd_update_enable(true);
  6770. */
  6771. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6772. bFilamentFirstRun=false;
  6773. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6774. {
  6775. bFilamentPreheatState=true;
  6776. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6777. menu_submenu(mFilamentItemForce);
  6778. }
  6779. else
  6780. {
  6781. menu_submenu(mFilamentMenu);
  6782. lcd_timeoutToStatus.start();
  6783. }
  6784. }
  6785. }
  6786. }
  6787. else
  6788. {
  6789. #ifdef PAT9125
  6790. fsensor_autoload_check_stop();
  6791. #endif //PAT9125
  6792. fsensor_update();
  6793. }
  6794. }
  6795. }
  6796. #endif //FILAMENT_SENSOR
  6797. #ifdef SAFETYTIMER
  6798. handleSafetyTimer();
  6799. #endif //SAFETYTIMER
  6800. #if defined(KILL_PIN) && KILL_PIN > -1
  6801. static int killCount = 0; // make the inactivity button a bit less responsive
  6802. const int KILL_DELAY = 10000;
  6803. #endif
  6804. if(buflen < (BUFSIZE-1)){
  6805. get_command();
  6806. }
  6807. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6808. if(max_inactive_time)
  6809. kill(_n(""), 4);
  6810. if(stepper_inactive_time) {
  6811. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6812. {
  6813. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6814. disable_x();
  6815. disable_y();
  6816. disable_z();
  6817. disable_e0();
  6818. disable_e1();
  6819. disable_e2();
  6820. }
  6821. }
  6822. }
  6823. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6824. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6825. {
  6826. chdkActive = false;
  6827. WRITE(CHDK, LOW);
  6828. }
  6829. #endif
  6830. #if defined(KILL_PIN) && KILL_PIN > -1
  6831. // Check if the kill button was pressed and wait just in case it was an accidental
  6832. // key kill key press
  6833. // -------------------------------------------------------------------------------
  6834. if( 0 == READ(KILL_PIN) )
  6835. {
  6836. killCount++;
  6837. }
  6838. else if (killCount > 0)
  6839. {
  6840. killCount--;
  6841. }
  6842. // Exceeded threshold and we can confirm that it was not accidental
  6843. // KILL the machine
  6844. // ----------------------------------------------------------------
  6845. if ( killCount >= KILL_DELAY)
  6846. {
  6847. kill("", 5);
  6848. }
  6849. #endif
  6850. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6851. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6852. #endif
  6853. #ifdef EXTRUDER_RUNOUT_PREVENT
  6854. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6855. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6856. {
  6857. bool oldstatus=READ(E0_ENABLE_PIN);
  6858. enable_e0();
  6859. float oldepos=current_position[E_AXIS];
  6860. float oldedes=destination[E_AXIS];
  6861. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6862. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6863. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6864. current_position[E_AXIS]=oldepos;
  6865. destination[E_AXIS]=oldedes;
  6866. plan_set_e_position(oldepos);
  6867. previous_millis_cmd=_millis();
  6868. st_synchronize();
  6869. WRITE(E0_ENABLE_PIN,oldstatus);
  6870. }
  6871. #endif
  6872. #ifdef TEMP_STAT_LEDS
  6873. handle_status_leds();
  6874. #endif
  6875. check_axes_activity();
  6876. mmu_loop();
  6877. }
  6878. void kill(const char *full_screen_message, unsigned char id)
  6879. {
  6880. printf_P(_N("KILL: %d\n"), id);
  6881. //return;
  6882. cli(); // Stop interrupts
  6883. disable_heater();
  6884. disable_x();
  6885. // SERIAL_ECHOLNPGM("kill - disable Y");
  6886. disable_y();
  6887. disable_z();
  6888. disable_e0();
  6889. disable_e1();
  6890. disable_e2();
  6891. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6892. pinMode(PS_ON_PIN,INPUT);
  6893. #endif
  6894. SERIAL_ERROR_START;
  6895. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6896. if (full_screen_message != NULL) {
  6897. SERIAL_ERRORLNRPGM(full_screen_message);
  6898. lcd_display_message_fullscreen_P(full_screen_message);
  6899. } else {
  6900. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6901. }
  6902. // FMC small patch to update the LCD before ending
  6903. sei(); // enable interrupts
  6904. for ( int i=5; i--; lcd_update(0))
  6905. {
  6906. _delay(200);
  6907. }
  6908. cli(); // disable interrupts
  6909. suicide();
  6910. while(1)
  6911. {
  6912. #ifdef WATCHDOG
  6913. wdt_reset();
  6914. #endif //WATCHDOG
  6915. /* Intentionally left empty */
  6916. } // Wait for reset
  6917. }
  6918. void Stop()
  6919. {
  6920. disable_heater();
  6921. if(Stopped == false) {
  6922. Stopped = true;
  6923. lcd_print_stop();
  6924. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6925. SERIAL_ERROR_START;
  6926. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6927. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6928. }
  6929. }
  6930. bool IsStopped() { return Stopped; };
  6931. #ifdef FAST_PWM_FAN
  6932. void setPwmFrequency(uint8_t pin, int val)
  6933. {
  6934. val &= 0x07;
  6935. switch(digitalPinToTimer(pin))
  6936. {
  6937. #if defined(TCCR0A)
  6938. case TIMER0A:
  6939. case TIMER0B:
  6940. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6941. // TCCR0B |= val;
  6942. break;
  6943. #endif
  6944. #if defined(TCCR1A)
  6945. case TIMER1A:
  6946. case TIMER1B:
  6947. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6948. // TCCR1B |= val;
  6949. break;
  6950. #endif
  6951. #if defined(TCCR2)
  6952. case TIMER2:
  6953. case TIMER2:
  6954. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6955. TCCR2 |= val;
  6956. break;
  6957. #endif
  6958. #if defined(TCCR2A)
  6959. case TIMER2A:
  6960. case TIMER2B:
  6961. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6962. TCCR2B |= val;
  6963. break;
  6964. #endif
  6965. #if defined(TCCR3A)
  6966. case TIMER3A:
  6967. case TIMER3B:
  6968. case TIMER3C:
  6969. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6970. TCCR3B |= val;
  6971. break;
  6972. #endif
  6973. #if defined(TCCR4A)
  6974. case TIMER4A:
  6975. case TIMER4B:
  6976. case TIMER4C:
  6977. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6978. TCCR4B |= val;
  6979. break;
  6980. #endif
  6981. #if defined(TCCR5A)
  6982. case TIMER5A:
  6983. case TIMER5B:
  6984. case TIMER5C:
  6985. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6986. TCCR5B |= val;
  6987. break;
  6988. #endif
  6989. }
  6990. }
  6991. #endif //FAST_PWM_FAN
  6992. //! @brief Get and validate extruder number
  6993. //!
  6994. //! If it is not specified, active_extruder is returned in parameter extruder.
  6995. //! @param [in] code M code number
  6996. //! @param [out] extruder
  6997. //! @return error
  6998. //! @retval true Invalid extruder specified in T code
  6999. //! @retval false Valid extruder specified in T code, or not specifiead
  7000. bool setTargetedHotend(int code, uint8_t &extruder)
  7001. {
  7002. extruder = active_extruder;
  7003. if(code_seen('T')) {
  7004. extruder = code_value();
  7005. if(extruder >= EXTRUDERS) {
  7006. SERIAL_ECHO_START;
  7007. switch(code){
  7008. case 104:
  7009. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7010. break;
  7011. case 105:
  7012. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7013. break;
  7014. case 109:
  7015. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7016. break;
  7017. case 218:
  7018. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7019. break;
  7020. case 221:
  7021. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7022. break;
  7023. }
  7024. SERIAL_PROTOCOLLN((int)extruder);
  7025. return true;
  7026. }
  7027. }
  7028. return false;
  7029. }
  7030. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7031. {
  7032. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7033. {
  7034. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7035. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7036. }
  7037. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7038. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7039. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7040. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7041. total_filament_used = 0;
  7042. }
  7043. float calculate_extruder_multiplier(float diameter) {
  7044. float out = 1.f;
  7045. if (cs.volumetric_enabled && diameter > 0.f) {
  7046. float area = M_PI * diameter * diameter * 0.25;
  7047. out = 1.f / area;
  7048. }
  7049. if (extrudemultiply != 100)
  7050. out *= float(extrudemultiply) * 0.01f;
  7051. return out;
  7052. }
  7053. void calculate_extruder_multipliers() {
  7054. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7055. #if EXTRUDERS > 1
  7056. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7057. #if EXTRUDERS > 2
  7058. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7059. #endif
  7060. #endif
  7061. }
  7062. void delay_keep_alive(unsigned int ms)
  7063. {
  7064. for (;;) {
  7065. manage_heater();
  7066. // Manage inactivity, but don't disable steppers on timeout.
  7067. manage_inactivity(true);
  7068. lcd_update(0);
  7069. if (ms == 0)
  7070. break;
  7071. else if (ms >= 50) {
  7072. _delay(50);
  7073. ms -= 50;
  7074. } else {
  7075. _delay(ms);
  7076. ms = 0;
  7077. }
  7078. }
  7079. }
  7080. static void wait_for_heater(long codenum, uint8_t extruder) {
  7081. #ifdef TEMP_RESIDENCY_TIME
  7082. long residencyStart;
  7083. residencyStart = -1;
  7084. /* continue to loop until we have reached the target temp
  7085. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7086. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7087. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7088. #else
  7089. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7090. #endif //TEMP_RESIDENCY_TIME
  7091. if ((_millis() - codenum) > 1000UL)
  7092. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7093. if (!farm_mode) {
  7094. SERIAL_PROTOCOLPGM("T:");
  7095. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7096. SERIAL_PROTOCOLPGM(" E:");
  7097. SERIAL_PROTOCOL((int)extruder);
  7098. #ifdef TEMP_RESIDENCY_TIME
  7099. SERIAL_PROTOCOLPGM(" W:");
  7100. if (residencyStart > -1)
  7101. {
  7102. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7103. SERIAL_PROTOCOLLN(codenum);
  7104. }
  7105. else
  7106. {
  7107. SERIAL_PROTOCOLLN("?");
  7108. }
  7109. }
  7110. #else
  7111. SERIAL_PROTOCOLLN("");
  7112. #endif
  7113. codenum = _millis();
  7114. }
  7115. manage_heater();
  7116. manage_inactivity(true); //do not disable steppers
  7117. lcd_update(0);
  7118. #ifdef TEMP_RESIDENCY_TIME
  7119. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7120. or when current temp falls outside the hysteresis after target temp was reached */
  7121. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7122. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7123. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7124. {
  7125. residencyStart = _millis();
  7126. }
  7127. #endif //TEMP_RESIDENCY_TIME
  7128. }
  7129. }
  7130. void check_babystep()
  7131. {
  7132. int babystep_z;
  7133. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7134. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7135. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7136. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7137. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7138. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7139. lcd_update_enable(true);
  7140. }
  7141. }
  7142. #ifdef HEATBED_ANALYSIS
  7143. void d_setup()
  7144. {
  7145. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7146. pinMode(D_DATA, INPUT_PULLUP);
  7147. pinMode(D_REQUIRE, OUTPUT);
  7148. digitalWrite(D_REQUIRE, HIGH);
  7149. }
  7150. float d_ReadData()
  7151. {
  7152. int digit[13];
  7153. String mergeOutput;
  7154. float output;
  7155. digitalWrite(D_REQUIRE, HIGH);
  7156. for (int i = 0; i<13; i++)
  7157. {
  7158. for (int j = 0; j < 4; j++)
  7159. {
  7160. while (digitalRead(D_DATACLOCK) == LOW) {}
  7161. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7162. bitWrite(digit[i], j, digitalRead(D_DATA));
  7163. }
  7164. }
  7165. digitalWrite(D_REQUIRE, LOW);
  7166. mergeOutput = "";
  7167. output = 0;
  7168. for (int r = 5; r <= 10; r++) //Merge digits
  7169. {
  7170. mergeOutput += digit[r];
  7171. }
  7172. output = mergeOutput.toFloat();
  7173. if (digit[4] == 8) //Handle sign
  7174. {
  7175. output *= -1;
  7176. }
  7177. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7178. {
  7179. output /= 10;
  7180. }
  7181. return output;
  7182. }
  7183. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7184. int t1 = 0;
  7185. int t_delay = 0;
  7186. int digit[13];
  7187. int m;
  7188. char str[3];
  7189. //String mergeOutput;
  7190. char mergeOutput[15];
  7191. float output;
  7192. int mesh_point = 0; //index number of calibration point
  7193. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7194. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7195. float mesh_home_z_search = 4;
  7196. float measure_z_heigth = 0.2f;
  7197. float row[x_points_num];
  7198. int ix = 0;
  7199. int iy = 0;
  7200. const char* filename_wldsd = "mesh.txt";
  7201. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7202. char numb_wldsd[8]; // (" -A.BCD" + null)
  7203. #ifdef MICROMETER_LOGGING
  7204. d_setup();
  7205. #endif //MICROMETER_LOGGING
  7206. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7207. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7208. unsigned int custom_message_type_old = custom_message_type;
  7209. unsigned int custom_message_state_old = custom_message_state;
  7210. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7211. custom_message_state = (x_points_num * y_points_num) + 10;
  7212. lcd_update(1);
  7213. //mbl.reset();
  7214. babystep_undo();
  7215. card.openFile(filename_wldsd, false);
  7216. /*destination[Z_AXIS] = mesh_home_z_search;
  7217. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7219. for(int8_t i=0; i < NUM_AXIS; i++) {
  7220. current_position[i] = destination[i];
  7221. }
  7222. st_synchronize();
  7223. */
  7224. destination[Z_AXIS] = measure_z_heigth;
  7225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7226. for(int8_t i=0; i < NUM_AXIS; i++) {
  7227. current_position[i] = destination[i];
  7228. }
  7229. st_synchronize();
  7230. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7231. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7232. SERIAL_PROTOCOL(x_points_num);
  7233. SERIAL_PROTOCOLPGM(",");
  7234. SERIAL_PROTOCOL(y_points_num);
  7235. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7236. SERIAL_PROTOCOL(mesh_home_z_search);
  7237. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7238. SERIAL_PROTOCOL(x_dimension);
  7239. SERIAL_PROTOCOLPGM(",");
  7240. SERIAL_PROTOCOL(y_dimension);
  7241. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7242. while (mesh_point != x_points_num * y_points_num) {
  7243. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7244. iy = mesh_point / x_points_num;
  7245. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7246. float z0 = 0.f;
  7247. /*destination[Z_AXIS] = mesh_home_z_search;
  7248. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7250. for(int8_t i=0; i < NUM_AXIS; i++) {
  7251. current_position[i] = destination[i];
  7252. }
  7253. st_synchronize();*/
  7254. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7255. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7256. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7257. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7258. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7259. for(int8_t i=0; i < NUM_AXIS; i++) {
  7260. current_position[i] = destination[i];
  7261. }
  7262. st_synchronize();
  7263. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7264. delay_keep_alive(1000);
  7265. #ifdef MICROMETER_LOGGING
  7266. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7267. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7268. //strcat(data_wldsd, numb_wldsd);
  7269. //MYSERIAL.println(data_wldsd);
  7270. //delay(1000);
  7271. //delay(3000);
  7272. //t1 = millis();
  7273. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7274. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7275. memset(digit, 0, sizeof(digit));
  7276. //cli();
  7277. digitalWrite(D_REQUIRE, LOW);
  7278. for (int i = 0; i<13; i++)
  7279. {
  7280. //t1 = millis();
  7281. for (int j = 0; j < 4; j++)
  7282. {
  7283. while (digitalRead(D_DATACLOCK) == LOW) {}
  7284. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7285. //printf_P(PSTR("Done %d\n"), j);
  7286. bitWrite(digit[i], j, digitalRead(D_DATA));
  7287. }
  7288. //t_delay = (millis() - t1);
  7289. //SERIAL_PROTOCOLPGM(" ");
  7290. //SERIAL_PROTOCOL_F(t_delay, 5);
  7291. //SERIAL_PROTOCOLPGM(" ");
  7292. }
  7293. //sei();
  7294. digitalWrite(D_REQUIRE, HIGH);
  7295. mergeOutput[0] = '\0';
  7296. output = 0;
  7297. for (int r = 5; r <= 10; r++) //Merge digits
  7298. {
  7299. sprintf(str, "%d", digit[r]);
  7300. strcat(mergeOutput, str);
  7301. }
  7302. output = atof(mergeOutput);
  7303. if (digit[4] == 8) //Handle sign
  7304. {
  7305. output *= -1;
  7306. }
  7307. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7308. {
  7309. output *= 0.1;
  7310. }
  7311. //output = d_ReadData();
  7312. //row[ix] = current_position[Z_AXIS];
  7313. //row[ix] = d_ReadData();
  7314. row[ix] = output;
  7315. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7316. memset(data_wldsd, 0, sizeof(data_wldsd));
  7317. for (int i = 0; i < x_points_num; i++) {
  7318. SERIAL_PROTOCOLPGM(" ");
  7319. SERIAL_PROTOCOL_F(row[i], 5);
  7320. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7321. dtostrf(row[i], 7, 3, numb_wldsd);
  7322. strcat(data_wldsd, numb_wldsd);
  7323. }
  7324. card.write_command(data_wldsd);
  7325. SERIAL_PROTOCOLPGM("\n");
  7326. }
  7327. custom_message_state--;
  7328. mesh_point++;
  7329. lcd_update(1);
  7330. }
  7331. #endif //MICROMETER_LOGGING
  7332. card.closefile();
  7333. //clean_up_after_endstop_move(l_feedmultiply);
  7334. }
  7335. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7336. int t1 = 0;
  7337. int t_delay = 0;
  7338. int digit[13];
  7339. int m;
  7340. char str[3];
  7341. //String mergeOutput;
  7342. char mergeOutput[15];
  7343. float output;
  7344. int mesh_point = 0; //index number of calibration point
  7345. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7346. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7347. float mesh_home_z_search = 4;
  7348. float row[x_points_num];
  7349. int ix = 0;
  7350. int iy = 0;
  7351. const char* filename_wldsd = "wldsd.txt";
  7352. char data_wldsd[70];
  7353. char numb_wldsd[10];
  7354. d_setup();
  7355. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7356. // We don't know where we are! HOME!
  7357. // Push the commands to the front of the message queue in the reverse order!
  7358. // There shall be always enough space reserved for these commands.
  7359. repeatcommand_front(); // repeat G80 with all its parameters
  7360. enquecommand_front_P((PSTR("G28 W0")));
  7361. enquecommand_front_P((PSTR("G1 Z5")));
  7362. return;
  7363. }
  7364. unsigned int custom_message_type_old = custom_message_type;
  7365. unsigned int custom_message_state_old = custom_message_state;
  7366. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7367. custom_message_state = (x_points_num * y_points_num) + 10;
  7368. lcd_update(1);
  7369. mbl.reset();
  7370. babystep_undo();
  7371. card.openFile(filename_wldsd, false);
  7372. current_position[Z_AXIS] = mesh_home_z_search;
  7373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7374. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7375. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7376. int l_feedmultiply = setup_for_endstop_move(false);
  7377. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7378. SERIAL_PROTOCOL(x_points_num);
  7379. SERIAL_PROTOCOLPGM(",");
  7380. SERIAL_PROTOCOL(y_points_num);
  7381. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7382. SERIAL_PROTOCOL(mesh_home_z_search);
  7383. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7384. SERIAL_PROTOCOL(x_dimension);
  7385. SERIAL_PROTOCOLPGM(",");
  7386. SERIAL_PROTOCOL(y_dimension);
  7387. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7388. while (mesh_point != x_points_num * y_points_num) {
  7389. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7390. iy = mesh_point / x_points_num;
  7391. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7392. float z0 = 0.f;
  7393. current_position[Z_AXIS] = mesh_home_z_search;
  7394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7395. st_synchronize();
  7396. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7397. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7399. st_synchronize();
  7400. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7401. break;
  7402. card.closefile();
  7403. }
  7404. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7405. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7406. //strcat(data_wldsd, numb_wldsd);
  7407. //MYSERIAL.println(data_wldsd);
  7408. //_delay(1000);
  7409. //_delay(3000);
  7410. //t1 = _millis();
  7411. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7412. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7413. memset(digit, 0, sizeof(digit));
  7414. //cli();
  7415. digitalWrite(D_REQUIRE, LOW);
  7416. for (int i = 0; i<13; i++)
  7417. {
  7418. //t1 = _millis();
  7419. for (int j = 0; j < 4; j++)
  7420. {
  7421. while (digitalRead(D_DATACLOCK) == LOW) {}
  7422. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7423. bitWrite(digit[i], j, digitalRead(D_DATA));
  7424. }
  7425. //t_delay = (_millis() - t1);
  7426. //SERIAL_PROTOCOLPGM(" ");
  7427. //SERIAL_PROTOCOL_F(t_delay, 5);
  7428. //SERIAL_PROTOCOLPGM(" ");
  7429. }
  7430. //sei();
  7431. digitalWrite(D_REQUIRE, HIGH);
  7432. mergeOutput[0] = '\0';
  7433. output = 0;
  7434. for (int r = 5; r <= 10; r++) //Merge digits
  7435. {
  7436. sprintf(str, "%d", digit[r]);
  7437. strcat(mergeOutput, str);
  7438. }
  7439. output = atof(mergeOutput);
  7440. if (digit[4] == 8) //Handle sign
  7441. {
  7442. output *= -1;
  7443. }
  7444. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7445. {
  7446. output *= 0.1;
  7447. }
  7448. //output = d_ReadData();
  7449. //row[ix] = current_position[Z_AXIS];
  7450. memset(data_wldsd, 0, sizeof(data_wldsd));
  7451. for (int i = 0; i <3; i++) {
  7452. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7453. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7454. strcat(data_wldsd, numb_wldsd);
  7455. strcat(data_wldsd, ";");
  7456. }
  7457. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7458. dtostrf(output, 8, 5, numb_wldsd);
  7459. strcat(data_wldsd, numb_wldsd);
  7460. //strcat(data_wldsd, ";");
  7461. card.write_command(data_wldsd);
  7462. //row[ix] = d_ReadData();
  7463. row[ix] = output; // current_position[Z_AXIS];
  7464. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7465. for (int i = 0; i < x_points_num; i++) {
  7466. SERIAL_PROTOCOLPGM(" ");
  7467. SERIAL_PROTOCOL_F(row[i], 5);
  7468. }
  7469. SERIAL_PROTOCOLPGM("\n");
  7470. }
  7471. custom_message_state--;
  7472. mesh_point++;
  7473. lcd_update(1);
  7474. }
  7475. card.closefile();
  7476. clean_up_after_endstop_move(l_feedmultiply);
  7477. }
  7478. #endif //HEATBED_ANALYSIS
  7479. void temp_compensation_start() {
  7480. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7481. custom_message_state = PINDA_HEAT_T + 1;
  7482. lcd_update(2);
  7483. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7484. current_position[E_AXIS] -= default_retraction;
  7485. }
  7486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7487. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7488. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7489. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7491. st_synchronize();
  7492. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7493. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7494. delay_keep_alive(1000);
  7495. custom_message_state = PINDA_HEAT_T - i;
  7496. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7497. else lcd_update(1);
  7498. }
  7499. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7500. custom_message_state = 0;
  7501. }
  7502. void temp_compensation_apply() {
  7503. int i_add;
  7504. int z_shift = 0;
  7505. float z_shift_mm;
  7506. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7507. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7508. i_add = (target_temperature_bed - 60) / 10;
  7509. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7510. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7511. }else {
  7512. //interpolation
  7513. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7514. }
  7515. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7517. st_synchronize();
  7518. plan_set_z_position(current_position[Z_AXIS]);
  7519. }
  7520. else {
  7521. //we have no temp compensation data
  7522. }
  7523. }
  7524. float temp_comp_interpolation(float inp_temperature) {
  7525. //cubic spline interpolation
  7526. int n, i, j;
  7527. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7528. int shift[10];
  7529. int temp_C[10];
  7530. n = 6; //number of measured points
  7531. shift[0] = 0;
  7532. for (i = 0; i < n; i++) {
  7533. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7534. temp_C[i] = 50 + i * 10; //temperature in C
  7535. #ifdef PINDA_THERMISTOR
  7536. temp_C[i] = 35 + i * 5; //temperature in C
  7537. #else
  7538. temp_C[i] = 50 + i * 10; //temperature in C
  7539. #endif
  7540. x[i] = (float)temp_C[i];
  7541. f[i] = (float)shift[i];
  7542. }
  7543. if (inp_temperature < x[0]) return 0;
  7544. for (i = n - 1; i>0; i--) {
  7545. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7546. h[i - 1] = x[i] - x[i - 1];
  7547. }
  7548. //*********** formation of h, s , f matrix **************
  7549. for (i = 1; i<n - 1; i++) {
  7550. m[i][i] = 2 * (h[i - 1] + h[i]);
  7551. if (i != 1) {
  7552. m[i][i - 1] = h[i - 1];
  7553. m[i - 1][i] = h[i - 1];
  7554. }
  7555. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7556. }
  7557. //*********** forward elimination **************
  7558. for (i = 1; i<n - 2; i++) {
  7559. temp = (m[i + 1][i] / m[i][i]);
  7560. for (j = 1; j <= n - 1; j++)
  7561. m[i + 1][j] -= temp*m[i][j];
  7562. }
  7563. //*********** backward substitution *********
  7564. for (i = n - 2; i>0; i--) {
  7565. sum = 0;
  7566. for (j = i; j <= n - 2; j++)
  7567. sum += m[i][j] * s[j];
  7568. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7569. }
  7570. for (i = 0; i<n - 1; i++)
  7571. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7572. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7573. b = s[i] / 2;
  7574. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7575. d = f[i];
  7576. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7577. }
  7578. return sum;
  7579. }
  7580. #ifdef PINDA_THERMISTOR
  7581. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7582. {
  7583. if (!temp_cal_active) return 0;
  7584. if (!calibration_status_pinda()) return 0;
  7585. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7586. }
  7587. #endif //PINDA_THERMISTOR
  7588. void long_pause() //long pause print
  7589. {
  7590. st_synchronize();
  7591. start_pause_print = _millis();
  7592. //retract
  7593. current_position[E_AXIS] -= default_retraction;
  7594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7595. //lift z
  7596. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7597. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7599. //Move XY to side
  7600. current_position[X_AXIS] = X_PAUSE_POS;
  7601. current_position[Y_AXIS] = Y_PAUSE_POS;
  7602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7603. // Turn off the print fan
  7604. fanSpeed = 0;
  7605. st_synchronize();
  7606. }
  7607. void serialecho_temperatures() {
  7608. float tt = degHotend(active_extruder);
  7609. SERIAL_PROTOCOLPGM("T:");
  7610. SERIAL_PROTOCOL(tt);
  7611. SERIAL_PROTOCOLPGM(" E:");
  7612. SERIAL_PROTOCOL((int)active_extruder);
  7613. SERIAL_PROTOCOLPGM(" B:");
  7614. SERIAL_PROTOCOL_F(degBed(), 1);
  7615. SERIAL_PROTOCOLLN("");
  7616. }
  7617. extern uint32_t sdpos_atomic;
  7618. #ifdef UVLO_SUPPORT
  7619. void uvlo_()
  7620. {
  7621. unsigned long time_start = _millis();
  7622. bool sd_print = card.sdprinting;
  7623. // Conserve power as soon as possible.
  7624. disable_x();
  7625. disable_y();
  7626. #ifdef TMC2130
  7627. tmc2130_set_current_h(Z_AXIS, 20);
  7628. tmc2130_set_current_r(Z_AXIS, 20);
  7629. tmc2130_set_current_h(E_AXIS, 20);
  7630. tmc2130_set_current_r(E_AXIS, 20);
  7631. #endif //TMC2130
  7632. // Indicate that the interrupt has been triggered.
  7633. // SERIAL_ECHOLNPGM("UVLO");
  7634. // Read out the current Z motor microstep counter. This will be later used
  7635. // for reaching the zero full step before powering off.
  7636. uint16_t z_microsteps = 0;
  7637. #ifdef TMC2130
  7638. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7639. #endif //TMC2130
  7640. // Calculate the file position, from which to resume this print.
  7641. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7642. {
  7643. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7644. sd_position -= sdlen_planner;
  7645. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7646. sd_position -= sdlen_cmdqueue;
  7647. if (sd_position < 0) sd_position = 0;
  7648. }
  7649. // Backup the feedrate in mm/min.
  7650. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7651. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7652. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7653. // are in action.
  7654. planner_abort_hard();
  7655. // Store the current extruder position.
  7656. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7657. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7658. // Clean the input command queue.
  7659. cmdqueue_reset();
  7660. card.sdprinting = false;
  7661. // card.closefile();
  7662. // Enable stepper driver interrupt to move Z axis.
  7663. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7664. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7665. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7666. sei();
  7667. plan_buffer_line(
  7668. current_position[X_AXIS],
  7669. current_position[Y_AXIS],
  7670. current_position[Z_AXIS],
  7671. current_position[E_AXIS] - default_retraction,
  7672. 95, active_extruder);
  7673. st_synchronize();
  7674. disable_e0();
  7675. plan_buffer_line(
  7676. current_position[X_AXIS],
  7677. current_position[Y_AXIS],
  7678. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7679. current_position[E_AXIS] - default_retraction,
  7680. 40, active_extruder);
  7681. st_synchronize();
  7682. disable_e0();
  7683. plan_buffer_line(
  7684. current_position[X_AXIS],
  7685. current_position[Y_AXIS],
  7686. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7687. current_position[E_AXIS] - default_retraction,
  7688. 40, active_extruder);
  7689. st_synchronize();
  7690. disable_e0();
  7691. disable_z();
  7692. // Move Z up to the next 0th full step.
  7693. // Write the file position.
  7694. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7695. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7696. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7697. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7698. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7699. // Scale the z value to 1u resolution.
  7700. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7701. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7702. }
  7703. // Read out the current Z motor microstep counter. This will be later used
  7704. // for reaching the zero full step before powering off.
  7705. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7706. // Store the current position.
  7707. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7708. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7709. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7710. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7711. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7712. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7713. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7714. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7715. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7716. #if EXTRUDERS > 1
  7717. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7718. #if EXTRUDERS > 2
  7719. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7720. #endif
  7721. #endif
  7722. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7723. // Finaly store the "power outage" flag.
  7724. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7725. st_synchronize();
  7726. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7727. disable_z();
  7728. // Increment power failure counter
  7729. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7730. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7731. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7732. #if 0
  7733. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7734. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7736. st_synchronize();
  7737. #endif
  7738. wdt_enable(WDTO_500MS);
  7739. WRITE(BEEPER,HIGH);
  7740. while(1)
  7741. ;
  7742. }
  7743. void uvlo_tiny()
  7744. {
  7745. uint16_t z_microsteps=0;
  7746. // Conserve power as soon as possible.
  7747. disable_x();
  7748. disable_y();
  7749. disable_e0();
  7750. #ifdef TMC2130
  7751. tmc2130_set_current_h(Z_AXIS, 20);
  7752. tmc2130_set_current_r(Z_AXIS, 20);
  7753. #endif //TMC2130
  7754. // Read out the current Z motor microstep counter
  7755. #ifdef TMC2130
  7756. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7757. #endif //TMC2130
  7758. planner_abort_hard();
  7759. sei();
  7760. plan_buffer_line(
  7761. current_position[X_AXIS],
  7762. current_position[Y_AXIS],
  7763. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7764. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7765. current_position[E_AXIS],
  7766. 40, active_extruder);
  7767. st_synchronize();
  7768. disable_z();
  7769. // Finaly store the "power outage" flag.
  7770. //if(sd_print)
  7771. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7772. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7773. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7774. // Increment power failure counter
  7775. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7776. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7777. wdt_enable(WDTO_500MS);
  7778. WRITE(BEEPER,HIGH);
  7779. while(1)
  7780. ;
  7781. }
  7782. #endif //UVLO_SUPPORT
  7783. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7784. void setup_fan_interrupt() {
  7785. //INT7
  7786. DDRE &= ~(1 << 7); //input pin
  7787. PORTE &= ~(1 << 7); //no internal pull-up
  7788. //start with sensing rising edge
  7789. EICRB &= ~(1 << 6);
  7790. EICRB |= (1 << 7);
  7791. //enable INT7 interrupt
  7792. EIMSK |= (1 << 7);
  7793. }
  7794. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7795. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7796. ISR(INT7_vect) {
  7797. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7798. #ifdef FAN_SOFT_PWM
  7799. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7800. #else //FAN_SOFT_PWM
  7801. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7802. #endif //FAN_SOFT_PWM
  7803. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7804. t_fan_rising_edge = millis_nc();
  7805. }
  7806. else { //interrupt was triggered by falling edge
  7807. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7808. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7809. }
  7810. }
  7811. EICRB ^= (1 << 6); //change edge
  7812. }
  7813. #endif
  7814. #ifdef UVLO_SUPPORT
  7815. void setup_uvlo_interrupt() {
  7816. DDRE &= ~(1 << 4); //input pin
  7817. PORTE &= ~(1 << 4); //no internal pull-up
  7818. //sensing falling edge
  7819. EICRB |= (1 << 0);
  7820. EICRB &= ~(1 << 1);
  7821. //enable INT4 interrupt
  7822. EIMSK |= (1 << 4);
  7823. }
  7824. ISR(INT4_vect) {
  7825. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7826. SERIAL_ECHOLNPGM("INT4");
  7827. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7828. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7829. }
  7830. void recover_print(uint8_t automatic) {
  7831. char cmd[30];
  7832. lcd_update_enable(true);
  7833. lcd_update(2);
  7834. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7835. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7836. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7837. // Lift the print head, so one may remove the excess priming material.
  7838. if(!bTiny&&(current_position[Z_AXIS]<25))
  7839. enquecommand_P(PSTR("G1 Z25 F800"));
  7840. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7841. enquecommand_P(PSTR("G28 X Y"));
  7842. // Set the target bed and nozzle temperatures and wait.
  7843. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7844. enquecommand(cmd);
  7845. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7846. enquecommand(cmd);
  7847. enquecommand_P(PSTR("M83")); //E axis relative mode
  7848. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7849. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7850. if(automatic == 0){
  7851. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7852. }
  7853. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7854. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7855. // Restart the print.
  7856. restore_print_from_eeprom();
  7857. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7858. }
  7859. void recover_machine_state_after_power_panic(bool bTiny)
  7860. {
  7861. char cmd[30];
  7862. // 1) Recover the logical cordinates at the time of the power panic.
  7863. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7864. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7865. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7866. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7867. // The current position after power panic is moved to the next closest 0th full step.
  7868. if(bTiny)
  7869. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7870. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7871. else
  7872. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7873. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7874. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7875. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7876. sprintf_P(cmd, PSTR("G92 E"));
  7877. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7878. enquecommand(cmd);
  7879. }
  7880. memcpy(destination, current_position, sizeof(destination));
  7881. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7882. print_world_coordinates();
  7883. // 2) Initialize the logical to physical coordinate system transformation.
  7884. world2machine_initialize();
  7885. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7886. mbl.active = false;
  7887. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7888. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7889. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7890. // Scale the z value to 10u resolution.
  7891. int16_t v;
  7892. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7893. if (v != 0)
  7894. mbl.active = true;
  7895. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7896. }
  7897. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7898. // print_mesh_bed_leveling_table();
  7899. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7900. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7901. babystep_load();
  7902. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7904. // 6) Power up the motors, mark their positions as known.
  7905. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7906. axis_known_position[X_AXIS] = true; enable_x();
  7907. axis_known_position[Y_AXIS] = true; enable_y();
  7908. axis_known_position[Z_AXIS] = true; enable_z();
  7909. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7910. print_physical_coordinates();
  7911. // 7) Recover the target temperatures.
  7912. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7913. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7914. // 8) Recover extruder multipilers
  7915. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7916. #if EXTRUDERS > 1
  7917. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7918. #if EXTRUDERS > 2
  7919. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7920. #endif
  7921. #endif
  7922. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7923. }
  7924. void restore_print_from_eeprom() {
  7925. int feedrate_rec;
  7926. uint8_t fan_speed_rec;
  7927. char cmd[30];
  7928. char filename[13];
  7929. uint8_t depth = 0;
  7930. char dir_name[9];
  7931. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7932. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7933. SERIAL_ECHOPGM("Feedrate:");
  7934. MYSERIAL.println(feedrate_rec);
  7935. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7936. MYSERIAL.println(int(depth));
  7937. for (int i = 0; i < depth; i++) {
  7938. for (int j = 0; j < 8; j++) {
  7939. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7940. }
  7941. dir_name[8] = '\0';
  7942. MYSERIAL.println(dir_name);
  7943. strcpy(dir_names[i], dir_name);
  7944. card.chdir(dir_name);
  7945. }
  7946. for (int i = 0; i < 8; i++) {
  7947. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7948. }
  7949. filename[8] = '\0';
  7950. MYSERIAL.print(filename);
  7951. strcat_P(filename, PSTR(".gco"));
  7952. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7953. enquecommand(cmd);
  7954. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7955. SERIAL_ECHOPGM("Position read from eeprom:");
  7956. MYSERIAL.println(position);
  7957. // E axis relative mode.
  7958. enquecommand_P(PSTR("M83"));
  7959. // Move to the XY print position in logical coordinates, where the print has been killed.
  7960. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7961. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7962. strcat_P(cmd, PSTR(" F2000"));
  7963. enquecommand(cmd);
  7964. // Move the Z axis down to the print, in logical coordinates.
  7965. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7966. enquecommand(cmd);
  7967. // Unretract.
  7968. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7969. // Set the feedrate saved at the power panic.
  7970. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7971. enquecommand(cmd);
  7972. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7973. {
  7974. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7975. }
  7976. // Set the fan speed saved at the power panic.
  7977. strcpy_P(cmd, PSTR("M106 S"));
  7978. strcat(cmd, itostr3(int(fan_speed_rec)));
  7979. enquecommand(cmd);
  7980. // Set a position in the file.
  7981. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7982. enquecommand(cmd);
  7983. enquecommand_P(PSTR("G4 S0"));
  7984. enquecommand_P(PSTR("PRUSA uvlo"));
  7985. }
  7986. #endif //UVLO_SUPPORT
  7987. //! @brief Immediately stop print moves
  7988. //!
  7989. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7990. //! If printing from sd card, position in file is saved.
  7991. //! If printing from USB, line number is saved.
  7992. //!
  7993. //! @param z_move
  7994. //! @param e_move
  7995. void stop_and_save_print_to_ram(float z_move, float e_move)
  7996. {
  7997. if (saved_printing) return;
  7998. #if 0
  7999. unsigned char nplanner_blocks;
  8000. #endif
  8001. unsigned char nlines;
  8002. uint16_t sdlen_planner;
  8003. uint16_t sdlen_cmdqueue;
  8004. cli();
  8005. if (card.sdprinting) {
  8006. #if 0
  8007. nplanner_blocks = number_of_blocks();
  8008. #endif
  8009. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8010. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8011. saved_sdpos -= sdlen_planner;
  8012. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8013. saved_sdpos -= sdlen_cmdqueue;
  8014. saved_printing_type = PRINTING_TYPE_SD;
  8015. }
  8016. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8017. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8018. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8019. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8020. saved_sdpos -= nlines;
  8021. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8022. saved_printing_type = PRINTING_TYPE_USB;
  8023. }
  8024. else {
  8025. saved_printing_type = PRINTING_TYPE_NONE;
  8026. //not sd printing nor usb printing
  8027. }
  8028. #if 0
  8029. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8030. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8031. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8032. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8033. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8034. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8035. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8036. {
  8037. card.setIndex(saved_sdpos);
  8038. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8039. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8040. MYSERIAL.print(char(card.get()));
  8041. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8042. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8043. MYSERIAL.print(char(card.get()));
  8044. SERIAL_ECHOLNPGM("End of command buffer");
  8045. }
  8046. {
  8047. // Print the content of the planner buffer, line by line:
  8048. card.setIndex(saved_sdpos);
  8049. int8_t iline = 0;
  8050. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8051. SERIAL_ECHOPGM("Planner line (from file): ");
  8052. MYSERIAL.print(int(iline), DEC);
  8053. SERIAL_ECHOPGM(", length: ");
  8054. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8055. SERIAL_ECHOPGM(", steps: (");
  8056. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8057. SERIAL_ECHOPGM(",");
  8058. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8059. SERIAL_ECHOPGM(",");
  8060. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8061. SERIAL_ECHOPGM(",");
  8062. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8063. SERIAL_ECHOPGM("), events: ");
  8064. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8065. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8066. MYSERIAL.print(char(card.get()));
  8067. }
  8068. }
  8069. {
  8070. // Print the content of the command buffer, line by line:
  8071. int8_t iline = 0;
  8072. union {
  8073. struct {
  8074. char lo;
  8075. char hi;
  8076. } lohi;
  8077. uint16_t value;
  8078. } sdlen_single;
  8079. int _bufindr = bufindr;
  8080. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8081. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8082. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8083. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8084. }
  8085. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8086. MYSERIAL.print(int(iline), DEC);
  8087. SERIAL_ECHOPGM(", type: ");
  8088. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8089. SERIAL_ECHOPGM(", len: ");
  8090. MYSERIAL.println(sdlen_single.value, DEC);
  8091. // Print the content of the buffer line.
  8092. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8093. SERIAL_ECHOPGM("Buffer line (from file): ");
  8094. MYSERIAL.println(int(iline), DEC);
  8095. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8096. MYSERIAL.print(char(card.get()));
  8097. if (-- _buflen == 0)
  8098. break;
  8099. // First skip the current command ID and iterate up to the end of the string.
  8100. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8101. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8102. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8103. // If the end of the buffer was empty,
  8104. if (_bufindr == sizeof(cmdbuffer)) {
  8105. // skip to the start and find the nonzero command.
  8106. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8107. }
  8108. }
  8109. }
  8110. #endif
  8111. #if 0
  8112. saved_feedrate2 = feedrate; //save feedrate
  8113. #else
  8114. // Try to deduce the feedrate from the first block of the planner.
  8115. // Speed is in mm/min.
  8116. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8117. #endif
  8118. planner_abort_hard(); //abort printing
  8119. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8120. saved_active_extruder = active_extruder; //save active_extruder
  8121. saved_extruder_temperature = degTargetHotend(active_extruder);
  8122. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8123. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8124. saved_fanSpeed = fanSpeed;
  8125. cmdqueue_reset(); //empty cmdqueue
  8126. card.sdprinting = false;
  8127. // card.closefile();
  8128. saved_printing = true;
  8129. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8130. st_reset_timer();
  8131. sei();
  8132. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8133. #if 1
  8134. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8135. char buf[48];
  8136. // First unretract (relative extrusion)
  8137. if(!saved_extruder_relative_mode){
  8138. strcpy_P(buf, PSTR("M83"));
  8139. enquecommand(buf, false);
  8140. }
  8141. //retract 45mm/s
  8142. strcpy_P(buf, PSTR("G1 E"));
  8143. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8144. strcat_P(buf, PSTR(" F"));
  8145. dtostrf(2700, 8, 3, buf + strlen(buf));
  8146. enquecommand(buf, false);
  8147. // Then lift Z axis
  8148. strcpy_P(buf, PSTR("G1 Z"));
  8149. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8150. strcat_P(buf, PSTR(" F"));
  8151. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8152. // At this point the command queue is empty.
  8153. enquecommand(buf, false);
  8154. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8155. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8156. repeatcommand_front();
  8157. #else
  8158. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8159. st_synchronize(); //wait moving
  8160. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8161. memcpy(destination, current_position, sizeof(destination));
  8162. #endif
  8163. }
  8164. }
  8165. //! @brief Restore print from ram
  8166. //!
  8167. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8168. //! waits for extruder temperature restore, then restores position and continues
  8169. //! print moves.
  8170. //! Internaly lcd_update() is called by wait_for_heater().
  8171. //!
  8172. //! @param e_move
  8173. void restore_print_from_ram_and_continue(float e_move)
  8174. {
  8175. if (!saved_printing) return;
  8176. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8177. // current_position[axis] = st_get_position_mm(axis);
  8178. active_extruder = saved_active_extruder; //restore active_extruder
  8179. if (saved_extruder_temperature) {
  8180. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8181. heating_status = 1;
  8182. wait_for_heater(_millis(), saved_active_extruder);
  8183. heating_status = 2;
  8184. }
  8185. feedrate = saved_feedrate2; //restore feedrate
  8186. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8187. fanSpeed = saved_fanSpeed;
  8188. float e = saved_pos[E_AXIS] - e_move;
  8189. plan_set_e_position(e);
  8190. //first move print head in XY to the saved position:
  8191. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8192. st_synchronize();
  8193. //then move Z
  8194. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8195. st_synchronize();
  8196. //and finaly unretract (35mm/s)
  8197. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8198. st_synchronize();
  8199. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8200. memcpy(destination, current_position, sizeof(destination));
  8201. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8202. card.setIndex(saved_sdpos);
  8203. sdpos_atomic = saved_sdpos;
  8204. card.sdprinting = true;
  8205. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8206. }
  8207. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8208. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8209. serial_count = 0;
  8210. FlushSerialRequestResend();
  8211. }
  8212. else {
  8213. //not sd printing nor usb printing
  8214. }
  8215. lcd_setstatuspgm(_T(WELCOME_MSG));
  8216. saved_printing = false;
  8217. }
  8218. void print_world_coordinates()
  8219. {
  8220. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8221. }
  8222. void print_physical_coordinates()
  8223. {
  8224. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8225. }
  8226. void print_mesh_bed_leveling_table()
  8227. {
  8228. SERIAL_ECHOPGM("mesh bed leveling: ");
  8229. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8230. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8231. MYSERIAL.print(mbl.z_values[y][x], 3);
  8232. SERIAL_ECHOPGM(" ");
  8233. }
  8234. SERIAL_ECHOLNPGM("");
  8235. }
  8236. uint16_t print_time_remaining() {
  8237. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8238. #ifdef TMC2130
  8239. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8240. else print_t = print_time_remaining_silent;
  8241. #else
  8242. print_t = print_time_remaining_normal;
  8243. #endif //TMC2130
  8244. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8245. return print_t;
  8246. }
  8247. uint8_t calc_percent_done()
  8248. {
  8249. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8250. uint8_t percent_done = 0;
  8251. #ifdef TMC2130
  8252. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8253. percent_done = print_percent_done_normal;
  8254. }
  8255. else if (print_percent_done_silent <= 100) {
  8256. percent_done = print_percent_done_silent;
  8257. }
  8258. #else
  8259. if (print_percent_done_normal <= 100) {
  8260. percent_done = print_percent_done_normal;
  8261. }
  8262. #endif //TMC2130
  8263. else {
  8264. percent_done = card.percentDone();
  8265. }
  8266. return percent_done;
  8267. }
  8268. static void print_time_remaining_init()
  8269. {
  8270. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8271. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8272. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8273. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8274. }
  8275. void load_filament_final_feed()
  8276. {
  8277. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8279. }
  8280. //! @brief Wait for user to check the state
  8281. //! @par nozzle_temp nozzle temperature to load filament
  8282. void M600_check_state(float nozzle_temp)
  8283. {
  8284. lcd_change_fil_state = 0;
  8285. while (lcd_change_fil_state != 1)
  8286. {
  8287. lcd_change_fil_state = 0;
  8288. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8289. lcd_alright();
  8290. KEEPALIVE_STATE(IN_HANDLER);
  8291. switch(lcd_change_fil_state)
  8292. {
  8293. // Filament failed to load so load it again
  8294. case 2:
  8295. if (mmu_enabled)
  8296. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8297. else
  8298. M600_load_filament_movements();
  8299. break;
  8300. // Filament loaded properly but color is not clear
  8301. case 3:
  8302. st_synchronize();
  8303. load_filament_final_feed();
  8304. lcd_loading_color();
  8305. st_synchronize();
  8306. break;
  8307. // Everything good
  8308. default:
  8309. lcd_change_success();
  8310. break;
  8311. }
  8312. }
  8313. }
  8314. //! @brief Wait for user action
  8315. //!
  8316. //! Beep, manage nozzle heater and wait for user to start unload filament
  8317. //! If times out, active extruder temperature is set to 0.
  8318. //!
  8319. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8320. void M600_wait_for_user(float HotendTempBckp) {
  8321. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8322. int counterBeep = 0;
  8323. unsigned long waiting_start_time = _millis();
  8324. uint8_t wait_for_user_state = 0;
  8325. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8326. bool bFirst=true;
  8327. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8328. manage_heater();
  8329. manage_inactivity(true);
  8330. #if BEEPER > 0
  8331. if (counterBeep == 500) {
  8332. counterBeep = 0;
  8333. }
  8334. SET_OUTPUT(BEEPER);
  8335. if (counterBeep == 0) {
  8336. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8337. {
  8338. bFirst=false;
  8339. WRITE(BEEPER, HIGH);
  8340. }
  8341. }
  8342. if (counterBeep == 20) {
  8343. WRITE(BEEPER, LOW);
  8344. }
  8345. counterBeep++;
  8346. #endif //BEEPER > 0
  8347. switch (wait_for_user_state) {
  8348. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8349. delay_keep_alive(4);
  8350. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8351. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8352. wait_for_user_state = 1;
  8353. setAllTargetHotends(0);
  8354. st_synchronize();
  8355. disable_e0();
  8356. disable_e1();
  8357. disable_e2();
  8358. }
  8359. break;
  8360. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8361. delay_keep_alive(4);
  8362. if (lcd_clicked()) {
  8363. setTargetHotend(HotendTempBckp, active_extruder);
  8364. lcd_wait_for_heater();
  8365. wait_for_user_state = 2;
  8366. }
  8367. break;
  8368. case 2: //waiting for nozzle to reach target temperature
  8369. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8370. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8371. waiting_start_time = _millis();
  8372. wait_for_user_state = 0;
  8373. }
  8374. else {
  8375. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8376. lcd_set_cursor(1, 4);
  8377. lcd_print(ftostr3(degHotend(active_extruder)));
  8378. }
  8379. break;
  8380. }
  8381. }
  8382. WRITE(BEEPER, LOW);
  8383. }
  8384. void M600_load_filament_movements()
  8385. {
  8386. #ifdef SNMM
  8387. display_loading();
  8388. do
  8389. {
  8390. current_position[E_AXIS] += 0.002;
  8391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8392. delay_keep_alive(2);
  8393. }
  8394. while (!lcd_clicked());
  8395. st_synchronize();
  8396. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8398. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8400. current_position[E_AXIS] += 40;
  8401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8402. current_position[E_AXIS] += 10;
  8403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8404. #else
  8405. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8407. #endif
  8408. load_filament_final_feed();
  8409. lcd_loading_filament();
  8410. st_synchronize();
  8411. }
  8412. void M600_load_filament() {
  8413. //load filament for single material and SNMM
  8414. lcd_wait_interact();
  8415. //load_filament_time = _millis();
  8416. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8417. #ifdef PAT9125
  8418. fsensor_autoload_check_start();
  8419. #endif //PAT9125
  8420. while(!lcd_clicked())
  8421. {
  8422. manage_heater();
  8423. manage_inactivity(true);
  8424. #ifdef FILAMENT_SENSOR
  8425. if (fsensor_check_autoload())
  8426. {
  8427. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8428. _tone(BEEPER, 1000);
  8429. delay_keep_alive(50);
  8430. _noTone(BEEPER);
  8431. break;
  8432. }
  8433. #endif //FILAMENT_SENSOR
  8434. }
  8435. #ifdef PAT9125
  8436. fsensor_autoload_check_stop();
  8437. #endif //PAT9125
  8438. KEEPALIVE_STATE(IN_HANDLER);
  8439. #ifdef FSENSOR_QUALITY
  8440. fsensor_oq_meassure_start(70);
  8441. #endif //FSENSOR_QUALITY
  8442. M600_load_filament_movements();
  8443. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8444. _tone(BEEPER, 500);
  8445. delay_keep_alive(50);
  8446. _noTone(BEEPER);
  8447. #ifdef FSENSOR_QUALITY
  8448. fsensor_oq_meassure_stop();
  8449. if (!fsensor_oq_result())
  8450. {
  8451. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8452. lcd_update_enable(true);
  8453. lcd_update(2);
  8454. if (disable)
  8455. fsensor_disable();
  8456. }
  8457. #endif //FSENSOR_QUALITY
  8458. lcd_update_enable(false);
  8459. }
  8460. //! @brief Wait for click
  8461. //!
  8462. //! Set
  8463. void marlin_wait_for_click()
  8464. {
  8465. int8_t busy_state_backup = busy_state;
  8466. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8467. lcd_consume_click();
  8468. while(!lcd_clicked())
  8469. {
  8470. manage_heater();
  8471. manage_inactivity(true);
  8472. lcd_update(0);
  8473. }
  8474. KEEPALIVE_STATE(busy_state);
  8475. }
  8476. #define FIL_LOAD_LENGTH 60