Marlin_main.cpp 300 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. static LongTimer crashDetTimer;
  284. //unsigned long load_filament_time;
  285. bool mesh_bed_leveling_flag = false;
  286. bool mesh_bed_run_from_menu = false;
  287. int8_t FarmMode = 0;
  288. bool prusa_sd_card_upload = false;
  289. unsigned int status_number = 0;
  290. unsigned long total_filament_used;
  291. unsigned int heating_status;
  292. unsigned int heating_status_counter;
  293. bool custom_message;
  294. bool loading_flag = false;
  295. unsigned int custom_message_type;
  296. unsigned int custom_message_state;
  297. char snmm_filaments_used = 0;
  298. bool fan_state[2];
  299. int fan_edge_counter[2];
  300. int fan_speed[2];
  301. char dir_names[3][9];
  302. bool sortAlpha = false;
  303. bool volumetric_enabled = false;
  304. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 1
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 2
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #endif
  310. #endif
  311. };
  312. float extruder_multiplier[EXTRUDERS] = {1.0
  313. #if EXTRUDERS > 1
  314. , 1.0
  315. #if EXTRUDERS > 2
  316. , 1.0
  317. #endif
  318. #endif
  319. };
  320. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  321. //shortcuts for more readable code
  322. #define _x current_position[X_AXIS]
  323. #define _y current_position[Y_AXIS]
  324. #define _z current_position[Z_AXIS]
  325. #define _e current_position[E_AXIS]
  326. float add_homing[3]={0,0,0};
  327. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  328. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  329. bool axis_known_position[3] = {false, false, false};
  330. float zprobe_zoffset;
  331. // Extruder offset
  332. #if EXTRUDERS > 1
  333. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  334. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  335. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  336. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  337. #endif
  338. };
  339. #endif
  340. uint8_t active_extruder = 0;
  341. int fanSpeed=0;
  342. #ifdef FWRETRACT
  343. bool autoretract_enabled=false;
  344. bool retracted[EXTRUDERS]={false
  345. #if EXTRUDERS > 1
  346. , false
  347. #if EXTRUDERS > 2
  348. , false
  349. #endif
  350. #endif
  351. };
  352. bool retracted_swap[EXTRUDERS]={false
  353. #if EXTRUDERS > 1
  354. , false
  355. #if EXTRUDERS > 2
  356. , false
  357. #endif
  358. #endif
  359. };
  360. float retract_length = RETRACT_LENGTH;
  361. float retract_length_swap = RETRACT_LENGTH_SWAP;
  362. float retract_feedrate = RETRACT_FEEDRATE;
  363. float retract_zlift = RETRACT_ZLIFT;
  364. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  365. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  366. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  367. #endif
  368. #ifdef ULTIPANEL
  369. #ifdef PS_DEFAULT_OFF
  370. bool powersupply = false;
  371. #else
  372. bool powersupply = true;
  373. #endif
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. static uint8_t tmp_extruder;
  422. bool extruder_under_pressure = true;
  423. bool Stopped=false;
  424. #if NUM_SERVOS > 0
  425. Servo servos[NUM_SERVOS];
  426. #endif
  427. bool CooldownNoWait = true;
  428. bool target_direction;
  429. //Insert variables if CHDK is defined
  430. #ifdef CHDK
  431. unsigned long chdkHigh = 0;
  432. boolean chdkActive = false;
  433. #endif
  434. // save/restore printing
  435. static uint32_t saved_sdpos = 0;
  436. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  437. static float saved_pos[4] = { 0, 0, 0, 0 };
  438. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  439. static float saved_feedrate2 = 0;
  440. static uint8_t saved_active_extruder = 0;
  441. static bool saved_extruder_under_pressure = false;
  442. //===========================================================================
  443. //=============================Routines======================================
  444. //===========================================================================
  445. void get_arc_coordinates();
  446. bool setTargetedHotend(int code);
  447. void serial_echopair_P(const char *s_P, float v)
  448. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char *s_P, double v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, unsigned long v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. #ifdef SDSUPPORT
  454. #include "SdFatUtil.h"
  455. int freeMemory() { return SdFatUtil::FreeRam(); }
  456. #else
  457. extern "C" {
  458. extern unsigned int __bss_end;
  459. extern unsigned int __heap_start;
  460. extern void *__brkval;
  461. int freeMemory() {
  462. int free_memory;
  463. if ((int)__brkval == 0)
  464. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  465. else
  466. free_memory = ((int)&free_memory) - ((int)__brkval);
  467. return free_memory;
  468. }
  469. }
  470. #endif //!SDSUPPORT
  471. void setup_killpin()
  472. {
  473. #if defined(KILL_PIN) && KILL_PIN > -1
  474. SET_INPUT(KILL_PIN);
  475. WRITE(KILL_PIN,HIGH);
  476. #endif
  477. }
  478. // Set home pin
  479. void setup_homepin(void)
  480. {
  481. #if defined(HOME_PIN) && HOME_PIN > -1
  482. SET_INPUT(HOME_PIN);
  483. WRITE(HOME_PIN,HIGH);
  484. #endif
  485. }
  486. void setup_photpin()
  487. {
  488. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  489. SET_OUTPUT(PHOTOGRAPH_PIN);
  490. WRITE(PHOTOGRAPH_PIN, LOW);
  491. #endif
  492. }
  493. void setup_powerhold()
  494. {
  495. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  496. SET_OUTPUT(SUICIDE_PIN);
  497. WRITE(SUICIDE_PIN, HIGH);
  498. #endif
  499. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  500. SET_OUTPUT(PS_ON_PIN);
  501. #if defined(PS_DEFAULT_OFF)
  502. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  503. #else
  504. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  505. #endif
  506. #endif
  507. }
  508. void suicide()
  509. {
  510. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  511. SET_OUTPUT(SUICIDE_PIN);
  512. WRITE(SUICIDE_PIN, LOW);
  513. #endif
  514. }
  515. void servo_init()
  516. {
  517. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  518. servos[0].attach(SERVO0_PIN);
  519. #endif
  520. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  521. servos[1].attach(SERVO1_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  524. servos[2].attach(SERVO2_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  527. servos[3].attach(SERVO3_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 5)
  530. #error "TODO: enter initalisation code for more servos"
  531. #endif
  532. }
  533. void stop_and_save_print_to_ram(float z_move, float e_move);
  534. void restore_print_from_ram_and_continue(float e_move);
  535. bool fans_check_enabled = true;
  536. bool filament_autoload_enabled = true;
  537. #ifdef TMC2130
  538. extern int8_t CrashDetectMenu;
  539. void crashdet_enable()
  540. {
  541. tmc2130_sg_stop_on_crash = true;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  543. CrashDetectMenu = 1;
  544. }
  545. void crashdet_disable()
  546. {
  547. tmc2130_sg_stop_on_crash = false;
  548. tmc2130_sg_crash = 0;
  549. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  550. CrashDetectMenu = 0;
  551. }
  552. void crashdet_stop_and_save_print()
  553. {
  554. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  555. }
  556. void crashdet_restore_print_and_continue()
  557. {
  558. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  559. // babystep_apply();
  560. }
  561. void crashdet_stop_and_save_print2()
  562. {
  563. cli();
  564. planner_abort_hard(); //abort printing
  565. cmdqueue_reset(); //empty cmdqueue
  566. card.sdprinting = false;
  567. card.closefile();
  568. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  569. st_reset_timer();
  570. sei();
  571. }
  572. void crashdet_detected(uint8_t mask)
  573. {
  574. // printf("CRASH_DETECTED");
  575. /* while (!is_buffer_empty())
  576. {
  577. process_commands();
  578. cmdqueue_pop_front();
  579. }*/
  580. st_synchronize();
  581. static uint8_t crashDet_counter = 0;
  582. bool automatic_recovery_after_crash = true;
  583. if (crashDet_counter++ == 0) {
  584. crashDetTimer.start();
  585. }
  586. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  591. automatic_recovery_after_crash = false;
  592. crashDetTimer.stop();
  593. crashDet_counter = 0;
  594. }
  595. else {
  596. crashDetTimer.start();
  597. }
  598. lcd_update_enable(true);
  599. lcd_implementation_clear();
  600. lcd_update(2);
  601. if (mask & X_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  605. }
  606. if (mask & Y_AXIS_MASK)
  607. {
  608. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  609. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  610. }
  611. lcd_update_enable(true);
  612. lcd_update(2);
  613. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  614. gcode_G28(true, true, false, false); //home X and Y
  615. st_synchronize();
  616. if (automatic_recovery_after_crash) {
  617. enquecommand_P(PSTR("CRASH_RECOVER"));
  618. }else{
  619. HotendTempBckp = degTargetHotend(active_extruder);
  620. setTargetHotend(0, active_extruder);
  621. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  622. lcd_update_enable(true);
  623. if (yesno)
  624. {
  625. char cmd1[10];
  626. strcpy(cmd1, "M109 S");
  627. strcat(cmd1, ftostr3(HotendTempBckp));
  628. enquecommand(cmd1);
  629. enquecommand_P(PSTR("CRASH_RECOVER"));
  630. }
  631. else
  632. {
  633. enquecommand_P(PSTR("CRASH_CANCEL"));
  634. }
  635. }
  636. }
  637. void crashdet_recover()
  638. {
  639. crashdet_restore_print_and_continue();
  640. tmc2130_sg_stop_on_crash = true;
  641. }
  642. void crashdet_cancel()
  643. {
  644. tmc2130_sg_stop_on_crash = true;
  645. if (saved_printing_type == PRINTING_TYPE_SD) {
  646. lcd_print_stop();
  647. }else if(saved_printing_type == PRINTING_TYPE_USB){
  648. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  649. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  650. }
  651. }
  652. #endif //TMC2130
  653. void failstats_reset_print()
  654. {
  655. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  659. }
  660. #ifdef MESH_BED_LEVELING
  661. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  662. #endif
  663. // Factory reset function
  664. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  665. // Level input parameter sets depth of reset
  666. // Quiet parameter masks all waitings for user interact.
  667. int er_progress = 0;
  668. void factory_reset(char level, bool quiet)
  669. {
  670. lcd_implementation_clear();
  671. int cursor_pos = 0;
  672. switch (level) {
  673. // Level 0: Language reset
  674. case 0:
  675. WRITE(BEEPER, HIGH);
  676. _delay_ms(100);
  677. WRITE(BEEPER, LOW);
  678. lang_reset();
  679. break;
  680. //Level 1: Reset statistics
  681. case 1:
  682. WRITE(BEEPER, HIGH);
  683. _delay_ms(100);
  684. WRITE(BEEPER, LOW);
  685. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  686. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  695. lcd_menu_statistics();
  696. break;
  697. // Level 2: Prepare for shipping
  698. case 2:
  699. //lcd_printPGM(PSTR("Factory RESET"));
  700. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  701. // Force language selection at the next boot up.
  702. lang_reset();
  703. // Force the "Follow calibration flow" message at the next boot up.
  704. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  705. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  706. farm_no = 0;
  707. farm_mode = false;
  708. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  709. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. //_delay_ms(2000);
  714. break;
  715. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  716. case 3:
  717. lcd_printPGM(PSTR("Factory RESET"));
  718. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. er_progress = 0;
  723. lcd_print_at_PGM(3, 3, PSTR(" "));
  724. lcd_implementation_print_at(3, 3, er_progress);
  725. // Erase EEPROM
  726. for (int i = 0; i < 4096; i++) {
  727. eeprom_write_byte((uint8_t*)i, 0xFF);
  728. if (i % 41 == 0) {
  729. er_progress++;
  730. lcd_print_at_PGM(3, 3, PSTR(" "));
  731. lcd_implementation_print_at(3, 3, er_progress);
  732. lcd_printPGM(PSTR("%"));
  733. }
  734. }
  735. break;
  736. case 4:
  737. bowden_menu();
  738. break;
  739. default:
  740. break;
  741. }
  742. }
  743. #include "LiquidCrystal_Prusa.h"
  744. extern LiquidCrystal_Prusa lcd;
  745. FILE _lcdout = {0};
  746. int lcd_putchar(char c, FILE *stream)
  747. {
  748. lcd.write(c);
  749. return 0;
  750. }
  751. FILE _uartout = {0};
  752. int uart_putchar(char c, FILE *stream)
  753. {
  754. MYSERIAL.write(c);
  755. return 0;
  756. }
  757. void lcd_splash()
  758. {
  759. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  760. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  761. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  762. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  763. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  764. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  765. }
  766. void factory_reset()
  767. {
  768. KEEPALIVE_STATE(PAUSED_FOR_USER);
  769. if (!READ(BTN_ENC))
  770. {
  771. _delay_ms(1000);
  772. if (!READ(BTN_ENC))
  773. {
  774. lcd_implementation_clear();
  775. lcd_printPGM(PSTR("Factory RESET"));
  776. SET_OUTPUT(BEEPER);
  777. WRITE(BEEPER, HIGH);
  778. while (!READ(BTN_ENC));
  779. WRITE(BEEPER, LOW);
  780. _delay_ms(2000);
  781. char level = reset_menu();
  782. factory_reset(level, false);
  783. switch (level) {
  784. case 0: _delay_ms(0); break;
  785. case 1: _delay_ms(0); break;
  786. case 2: _delay_ms(0); break;
  787. case 3: _delay_ms(0); break;
  788. }
  789. // _delay_ms(100);
  790. /*
  791. #ifdef MESH_BED_LEVELING
  792. _delay_ms(2000);
  793. if (!READ(BTN_ENC))
  794. {
  795. WRITE(BEEPER, HIGH);
  796. _delay_ms(100);
  797. WRITE(BEEPER, LOW);
  798. _delay_ms(200);
  799. WRITE(BEEPER, HIGH);
  800. _delay_ms(100);
  801. WRITE(BEEPER, LOW);
  802. int _z = 0;
  803. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  804. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  805. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  806. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  807. }
  808. else
  809. {
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. }
  814. #endif // mesh */
  815. }
  816. }
  817. else
  818. {
  819. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  820. }
  821. KEEPALIVE_STATE(IN_HANDLER);
  822. }
  823. void show_fw_version_warnings() {
  824. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  825. switch (FW_DEV_VERSION) {
  826. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  827. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  828. case(FW_VERSION_DEVEL):
  829. case(FW_VERSION_DEBUG):
  830. lcd_update_enable(false);
  831. lcd_implementation_clear();
  832. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  833. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  834. #else
  835. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  836. #endif
  837. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  838. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  839. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  840. lcd_wait_for_click();
  841. break;
  842. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  843. }
  844. lcd_update_enable(true);
  845. }
  846. uint8_t check_printer_version()
  847. {
  848. uint8_t version_changed = 0;
  849. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  850. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  851. if (printer_type != PRINTER_TYPE) {
  852. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  853. else version_changed |= 0b10;
  854. }
  855. if (motherboard != MOTHERBOARD) {
  856. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  857. else version_changed |= 0b01;
  858. }
  859. return version_changed;
  860. }
  861. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  862. {
  863. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  864. }
  865. #if (LANG_MODE != 0) //secondary language support
  866. #ifdef W25X20CL
  867. #include "bootapp.h" //bootloader support
  868. // language update from external flash
  869. #define LANGBOOT_BLOCKSIZE 0x1000
  870. #define LANGBOOT_RAMBUFFER 0x0800
  871. void update_sec_lang_from_external_flash()
  872. {
  873. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  874. {
  875. uint8_t lang = boot_reserved >> 4;
  876. uint8_t state = boot_reserved & 0xf;
  877. lang_table_header_t header;
  878. uint32_t src_addr;
  879. if (lang_get_header(lang, &header, &src_addr))
  880. {
  881. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  882. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  883. delay(100);
  884. boot_reserved = (state + 1) | (lang << 4);
  885. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  886. {
  887. cli();
  888. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  889. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  890. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  891. if (state == 0)
  892. {
  893. //TODO - check header integrity
  894. }
  895. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  896. }
  897. else
  898. {
  899. //TODO - check sec lang data integrity
  900. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  901. }
  902. }
  903. }
  904. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  905. }
  906. #ifdef DEBUG_W25X20CL
  907. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  908. {
  909. lang_table_header_t header;
  910. uint8_t count = 0;
  911. uint32_t addr = 0x00000;
  912. while (1)
  913. {
  914. printf_P(_n("LANGTABLE%d:"), count);
  915. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  916. if (header.magic != LANG_MAGIC)
  917. {
  918. printf_P(_n("NG!\n"));
  919. break;
  920. }
  921. printf_P(_n("OK\n"));
  922. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  923. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  924. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  925. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  926. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  927. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  928. addr += header.size;
  929. codes[count] = header.code;
  930. count ++;
  931. }
  932. return count;
  933. }
  934. void list_sec_lang_from_external_flash()
  935. {
  936. uint16_t codes[8];
  937. uint8_t count = lang_xflash_enum_codes(codes);
  938. printf_P(_n("XFlash lang count = %hhd\n"), count);
  939. }
  940. #endif //DEBUG_W25X20CL
  941. #endif //W25X20CL
  942. #endif //(LANG_MODE != 0)
  943. // "Setup" function is called by the Arduino framework on startup.
  944. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  945. // are initialized by the main() routine provided by the Arduino framework.
  946. void setup()
  947. {
  948. lcd_init();
  949. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  950. spi_init();
  951. lcd_splash();
  952. #if (LANG_MODE != 0) //secondary language support
  953. #ifdef W25X20CL
  954. if (w25x20cl_init())
  955. update_sec_lang_from_external_flash();
  956. else
  957. kill(_i("External SPI flash W25X20CL not responding."));
  958. #endif //W25X20CL
  959. #endif //(LANG_MODE != 0)
  960. setup_killpin();
  961. setup_powerhold();
  962. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  963. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  964. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  965. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  966. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  967. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  968. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  969. if (farm_mode)
  970. {
  971. no_response = true; //we need confirmation by recieving PRUSA thx
  972. important_status = 8;
  973. prusa_statistics(8);
  974. selectedSerialPort = 1;
  975. }
  976. MYSERIAL.begin(BAUDRATE);
  977. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  978. stdout = uartout;
  979. SERIAL_PROTOCOLLNPGM("start");
  980. SERIAL_ECHO_START;
  981. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  982. #ifdef DEBUG_SEC_LANG
  983. lang_table_header_t header;
  984. uint32_t src_addr = 0x00000;
  985. if (lang_get_header(3, &header, &src_addr))
  986. {
  987. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  988. #define LT_PRINT_TEST 2
  989. // flash usage
  990. // total p.test
  991. //0 252718 t+c text code
  992. //1 253142 424 170 254
  993. //2 253040 322 164 158
  994. //3 253248 530 135 395
  995. #if (LT_PRINT_TEST==1) //not optimized printf
  996. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  997. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  998. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  999. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1000. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1001. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1002. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  1003. #elif (LT_PRINT_TEST==2) //optimized printf
  1004. printf_P(
  1005. _n(
  1006. " _src_addr = 0x%08lx\n"
  1007. " _lt_magic = 0x%08lx %S\n"
  1008. " _lt_size = 0x%04x (%d)\n"
  1009. " _lt_count = 0x%04x (%d)\n"
  1010. " _lt_chsum = 0x%04x\n"
  1011. " _lt_code = 0x%04x (%c%c)\n"
  1012. " _lt_resv1 = 0x%08lx\n"
  1013. ),
  1014. src_addr,
  1015. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1016. header.size, header.size,
  1017. header.count, header.count,
  1018. header.checksum,
  1019. header.code, header.code >> 8, header.code & 0xff,
  1020. header.reserved1
  1021. );
  1022. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1023. MYSERIAL.print(" _src_addr = 0x");
  1024. MYSERIAL.println(src_addr, 16);
  1025. MYSERIAL.print(" _lt_magic = 0x");
  1026. MYSERIAL.print(header.magic, 16);
  1027. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1028. MYSERIAL.print(" _lt_size = 0x");
  1029. MYSERIAL.print(header.size, 16);
  1030. MYSERIAL.print(" (");
  1031. MYSERIAL.print(header.size, 10);
  1032. MYSERIAL.println(")");
  1033. MYSERIAL.print(" _lt_count = 0x");
  1034. MYSERIAL.print(header.count, 16);
  1035. MYSERIAL.print(" (");
  1036. MYSERIAL.print(header.count, 10);
  1037. MYSERIAL.println(")");
  1038. MYSERIAL.print(" _lt_chsum = 0x");
  1039. MYSERIAL.println(header.checksum, 16);
  1040. MYSERIAL.print(" _lt_code = 0x");
  1041. MYSERIAL.print(header.code, 16);
  1042. MYSERIAL.print(" (");
  1043. MYSERIAL.print((char)(header.code >> 8), 0);
  1044. MYSERIAL.print((char)(header.code & 0xff), 0);
  1045. MYSERIAL.println(")");
  1046. MYSERIAL.print(" _lt_resv1 = 0x");
  1047. MYSERIAL.println(header.reserved1, 16);
  1048. #endif //(LT_PRINT_TEST==)
  1049. #undef LT_PRINT_TEST
  1050. #if 0
  1051. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1052. for (uint16_t i = 0; i < 1024; i++)
  1053. {
  1054. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1055. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1056. if ((i % 16) == 15) putchar('\n');
  1057. }
  1058. #endif
  1059. #if 1
  1060. for (uint16_t i = 0; i < 1024*10; i++)
  1061. {
  1062. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1063. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1064. if ((i % 16) == 15) putchar('\n');
  1065. }
  1066. #endif
  1067. }
  1068. else
  1069. printf_P(_n("lang_get_header failed!\n"));
  1070. #if 0
  1071. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1072. for (int i = 0; i < 4096; ++i) {
  1073. int b = eeprom_read_byte((unsigned char*)i);
  1074. if (b != 255) {
  1075. SERIAL_ECHO(i);
  1076. SERIAL_ECHO(":");
  1077. SERIAL_ECHO(b);
  1078. SERIAL_ECHOLN("");
  1079. }
  1080. }
  1081. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1082. #endif
  1083. #endif //DEBUG_SEC_LANG
  1084. // Check startup - does nothing if bootloader sets MCUSR to 0
  1085. byte mcu = MCUSR;
  1086. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1087. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1088. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1089. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1090. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1091. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1092. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1093. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1094. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1095. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1096. MCUSR = 0;
  1097. //SERIAL_ECHORPGM(MSG_MARLIN);
  1098. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1099. #ifdef STRING_VERSION_CONFIG_H
  1100. #ifdef STRING_CONFIG_H_AUTHOR
  1101. SERIAL_ECHO_START;
  1102. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1103. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1104. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1105. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1106. SERIAL_ECHOPGM("Compiled: ");
  1107. SERIAL_ECHOLNPGM(__DATE__);
  1108. #endif
  1109. #endif
  1110. SERIAL_ECHO_START;
  1111. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1112. SERIAL_ECHO(freeMemory());
  1113. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1114. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1115. //lcd_update_enable(false); // why do we need this?? - andre
  1116. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1117. bool previous_settings_retrieved = false;
  1118. uint8_t hw_changed = check_printer_version();
  1119. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1120. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1121. }
  1122. else { //printer version was changed so use default settings
  1123. Config_ResetDefault();
  1124. }
  1125. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1126. tp_init(); // Initialize temperature loop
  1127. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1128. plan_init(); // Initialize planner;
  1129. factory_reset();
  1130. #ifdef TMC2130
  1131. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1132. if (silentMode == 0xff) silentMode = 0;
  1133. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1134. tmc2130_mode = TMC2130_MODE_NORMAL;
  1135. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1136. if (crashdet && !farm_mode)
  1137. {
  1138. crashdet_enable();
  1139. puts_P(_N("CrashDetect ENABLED!"));
  1140. }
  1141. else
  1142. {
  1143. crashdet_disable();
  1144. puts_P(_N("CrashDetect DISABLED"));
  1145. }
  1146. #ifdef TMC2130_LINEARITY_CORRECTION
  1147. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1148. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1149. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1150. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1151. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1152. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1153. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1154. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1155. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1156. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1157. #endif //TMC2130_LINEARITY_CORRECTION
  1158. #ifdef TMC2130_VARIABLE_RESOLUTION
  1159. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1160. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1161. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1162. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1163. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1164. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1165. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1166. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1167. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1171. #else //TMC2130_VARIABLE_RESOLUTION
  1172. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1173. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1174. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1175. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1176. #endif //TMC2130_VARIABLE_RESOLUTION
  1177. #endif //TMC2130
  1178. st_init(); // Initialize stepper, this enables interrupts!
  1179. #ifdef TMC2130
  1180. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1181. tmc2130_init();
  1182. #endif //TMC2130
  1183. setup_photpin();
  1184. servo_init();
  1185. // Reset the machine correction matrix.
  1186. // It does not make sense to load the correction matrix until the machine is homed.
  1187. world2machine_reset();
  1188. #ifdef PAT9125
  1189. fsensor_init();
  1190. #endif //PAT9125
  1191. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1192. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1193. #endif
  1194. setup_homepin();
  1195. #ifdef TMC2130
  1196. if (1) {
  1197. // try to run to zero phase before powering the Z motor.
  1198. // Move in negative direction
  1199. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1200. // Round the current micro-micro steps to micro steps.
  1201. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1202. // Until the phase counter is reset to zero.
  1203. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1204. delay(2);
  1205. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1206. delay(2);
  1207. }
  1208. }
  1209. #endif //TMC2130
  1210. #if defined(Z_AXIS_ALWAYS_ON)
  1211. enable_z();
  1212. #endif
  1213. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1214. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1215. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1216. if (farm_no == 0xFFFF) farm_no = 0;
  1217. if (farm_mode)
  1218. {
  1219. prusa_statistics(8);
  1220. }
  1221. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1222. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1223. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1224. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1225. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1226. // where all the EEPROM entries are set to 0x0ff.
  1227. // Once a firmware boots up, it forces at least a language selection, which changes
  1228. // EEPROM_LANG to number lower than 0x0ff.
  1229. // 1) Set a high power mode.
  1230. #ifdef TMC2130
  1231. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1232. tmc2130_mode = TMC2130_MODE_NORMAL;
  1233. #endif //TMC2130
  1234. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1235. }
  1236. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1237. // but this times out if a blocking dialog is shown in setup().
  1238. card.initsd();
  1239. #ifdef DEBUG_SD_SPEED_TEST
  1240. if (card.cardOK)
  1241. {
  1242. uint8_t* buff = (uint8_t*)block_buffer;
  1243. uint32_t block = 0;
  1244. uint32_t sumr = 0;
  1245. uint32_t sumw = 0;
  1246. for (int i = 0; i < 1024; i++)
  1247. {
  1248. uint32_t u = micros();
  1249. bool res = card.card.readBlock(i, buff);
  1250. u = micros() - u;
  1251. if (res)
  1252. {
  1253. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1254. sumr += u;
  1255. u = micros();
  1256. res = card.card.writeBlock(i, buff);
  1257. u = micros() - u;
  1258. if (res)
  1259. {
  1260. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1261. sumw += u;
  1262. }
  1263. else
  1264. {
  1265. printf_P(PSTR("writeBlock %4d error\n"), i);
  1266. break;
  1267. }
  1268. }
  1269. else
  1270. {
  1271. printf_P(PSTR("readBlock %4d error\n"), i);
  1272. break;
  1273. }
  1274. }
  1275. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1276. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1277. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1278. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1279. }
  1280. else
  1281. printf_P(PSTR("Card NG!\n"));
  1282. #endif //DEBUG_SD_SPEED_TEST
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1287. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1288. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1289. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1291. #ifdef SNMM
  1292. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1293. int _z = BOWDEN_LENGTH;
  1294. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1295. }
  1296. #endif
  1297. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1298. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1299. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1300. #if (LANG_MODE != 0) //secondary language support
  1301. #ifdef DEBUG_W25X20CL
  1302. W25X20CL_SPI_ENTER();
  1303. uint8_t uid[8]; // 64bit unique id
  1304. w25x20cl_rd_uid(uid);
  1305. puts_P(_n("W25X20CL UID="));
  1306. for (uint8_t i = 0; i < 8; i ++)
  1307. printf_P(PSTR("%02hhx"), uid[i]);
  1308. putchar('\n');
  1309. list_sec_lang_from_external_flash();
  1310. #endif //DEBUG_W25X20CL
  1311. // lang_reset();
  1312. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1313. lcd_language();
  1314. #ifdef DEBUG_SEC_LANG
  1315. uint16_t sec_lang_code = lang_get_code(1);
  1316. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1317. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1318. // lang_print_sec_lang(uartout);
  1319. #endif //DEBUG_SEC_LANG
  1320. #endif //(LANG_MODE != 0)
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1322. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1323. temp_cal_active = false;
  1324. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1326. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1327. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1328. int16_t z_shift = 0;
  1329. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1330. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1331. temp_cal_active = false;
  1332. }
  1333. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1334. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1335. }
  1336. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1337. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1338. }
  1339. check_babystep(); //checking if Z babystep is in allowed range
  1340. #ifdef UVLO_SUPPORT
  1341. setup_uvlo_interrupt();
  1342. #endif //UVLO_SUPPORT
  1343. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1344. setup_fan_interrupt();
  1345. #endif //DEBUG_DISABLE_FANCHECK
  1346. #ifdef PAT9125
  1347. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1348. fsensor_setup_interrupt();
  1349. #endif //DEBUG_DISABLE_FSENSORCHECK
  1350. #endif //PAT9125
  1351. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1352. #ifndef DEBUG_DISABLE_STARTMSGS
  1353. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1354. show_fw_version_warnings();
  1355. switch (hw_changed) {
  1356. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1357. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1358. case(0b01):
  1359. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1360. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1361. break;
  1362. case(0b10):
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1364. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1365. break;
  1366. case(0b11):
  1367. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1368. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1369. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1370. break;
  1371. default: break; //no change, show no message
  1372. }
  1373. if (!previous_settings_retrieved) {
  1374. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1375. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1376. }
  1377. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1378. lcd_wizard(0);
  1379. }
  1380. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1381. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1382. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1383. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1384. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1385. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1386. // Show the message.
  1387. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1388. }
  1389. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1390. // Show the message.
  1391. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1392. lcd_update_enable(true);
  1393. }
  1394. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1395. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1396. lcd_update_enable(true);
  1397. }
  1398. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1399. // Show the message.
  1400. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1401. }
  1402. }
  1403. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1404. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1405. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1406. update_current_firmware_version_to_eeprom();
  1407. lcd_selftest();
  1408. }
  1409. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1410. KEEPALIVE_STATE(IN_PROCESS);
  1411. #endif //DEBUG_DISABLE_STARTMSGS
  1412. lcd_update_enable(true);
  1413. lcd_implementation_clear();
  1414. lcd_update(2);
  1415. // Store the currently running firmware into an eeprom,
  1416. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1417. update_current_firmware_version_to_eeprom();
  1418. #ifdef TMC2130
  1419. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1420. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1421. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1422. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1423. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1424. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1425. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1426. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1427. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1428. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1429. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1430. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1431. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1432. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1433. #endif //TMC2130
  1434. #ifdef UVLO_SUPPORT
  1435. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1436. /*
  1437. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1438. else {
  1439. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1440. lcd_update_enable(true);
  1441. lcd_update(2);
  1442. lcd_setstatuspgm(_T(WELCOME_MSG));
  1443. }
  1444. */
  1445. manage_heater(); // Update temperatures
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1448. #endif
  1449. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1450. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1451. puts_P(_N("Automatic recovery!"));
  1452. #endif
  1453. recover_print(1);
  1454. }
  1455. else{
  1456. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1457. puts_P(_N("Normal recovery!"));
  1458. #endif
  1459. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1460. else {
  1461. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1462. lcd_update_enable(true);
  1463. lcd_update(2);
  1464. lcd_setstatuspgm(_T(WELCOME_MSG));
  1465. }
  1466. }
  1467. }
  1468. #endif //UVLO_SUPPORT
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. #ifdef WATCHDOG
  1471. wdt_enable(WDTO_4S);
  1472. #endif //WATCHDOG
  1473. }
  1474. #ifdef PAT9125
  1475. void fsensor_init() {
  1476. int pat9125 = pat9125_init();
  1477. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1478. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1479. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1480. if (!pat9125)
  1481. {
  1482. fsensor = 0; //disable sensor
  1483. fsensor_not_responding = true;
  1484. }
  1485. else {
  1486. fsensor_not_responding = false;
  1487. }
  1488. puts_P(PSTR("FSensor "));
  1489. if (fsensor)
  1490. {
  1491. puts_P(PSTR("ENABLED\n"));
  1492. fsensor_enable();
  1493. }
  1494. else
  1495. {
  1496. puts_P(PSTR("DISABLED\n"));
  1497. fsensor_disable();
  1498. }
  1499. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1500. filament_autoload_enabled = false;
  1501. fsensor_disable();
  1502. #endif //DEBUG_DISABLE_FSENSORCHECK
  1503. }
  1504. #endif //PAT9125
  1505. void trace();
  1506. #define CHUNK_SIZE 64 // bytes
  1507. #define SAFETY_MARGIN 1
  1508. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1509. int chunkHead = 0;
  1510. int serial_read_stream() {
  1511. setTargetHotend(0, 0);
  1512. setTargetBed(0);
  1513. lcd_implementation_clear();
  1514. lcd_printPGM(PSTR(" Upload in progress"));
  1515. // first wait for how many bytes we will receive
  1516. uint32_t bytesToReceive;
  1517. // receive the four bytes
  1518. char bytesToReceiveBuffer[4];
  1519. for (int i=0; i<4; i++) {
  1520. int data;
  1521. while ((data = MYSERIAL.read()) == -1) {};
  1522. bytesToReceiveBuffer[i] = data;
  1523. }
  1524. // make it a uint32
  1525. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1526. // we're ready, notify the sender
  1527. MYSERIAL.write('+');
  1528. // lock in the routine
  1529. uint32_t receivedBytes = 0;
  1530. while (prusa_sd_card_upload) {
  1531. int i;
  1532. for (i=0; i<CHUNK_SIZE; i++) {
  1533. int data;
  1534. // check if we're not done
  1535. if (receivedBytes == bytesToReceive) {
  1536. break;
  1537. }
  1538. // read the next byte
  1539. while ((data = MYSERIAL.read()) == -1) {};
  1540. receivedBytes++;
  1541. // save it to the chunk
  1542. chunk[i] = data;
  1543. }
  1544. // write the chunk to SD
  1545. card.write_command_no_newline(&chunk[0]);
  1546. // notify the sender we're ready for more data
  1547. MYSERIAL.write('+');
  1548. // for safety
  1549. manage_heater();
  1550. // check if we're done
  1551. if(receivedBytes == bytesToReceive) {
  1552. trace(); // beep
  1553. card.closefile();
  1554. prusa_sd_card_upload = false;
  1555. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1556. return 0;
  1557. }
  1558. }
  1559. }
  1560. #ifdef HOST_KEEPALIVE_FEATURE
  1561. /**
  1562. * Output a "busy" message at regular intervals
  1563. * while the machine is not accepting commands.
  1564. */
  1565. void host_keepalive() {
  1566. if (farm_mode) return;
  1567. long ms = millis();
  1568. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1569. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1570. switch (busy_state) {
  1571. case IN_HANDLER:
  1572. case IN_PROCESS:
  1573. SERIAL_ECHO_START;
  1574. SERIAL_ECHOLNPGM("busy: processing");
  1575. break;
  1576. case PAUSED_FOR_USER:
  1577. SERIAL_ECHO_START;
  1578. SERIAL_ECHOLNPGM("busy: paused for user");
  1579. break;
  1580. case PAUSED_FOR_INPUT:
  1581. SERIAL_ECHO_START;
  1582. SERIAL_ECHOLNPGM("busy: paused for input");
  1583. break;
  1584. default:
  1585. break;
  1586. }
  1587. }
  1588. prev_busy_signal_ms = ms;
  1589. }
  1590. #endif
  1591. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1592. // Before loop(), the setup() function is called by the main() routine.
  1593. void loop()
  1594. {
  1595. KEEPALIVE_STATE(NOT_BUSY);
  1596. bool stack_integrity = true;
  1597. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1598. {
  1599. is_usb_printing = true;
  1600. usb_printing_counter--;
  1601. _usb_timer = millis();
  1602. }
  1603. if (usb_printing_counter == 0)
  1604. {
  1605. is_usb_printing = false;
  1606. }
  1607. if (prusa_sd_card_upload)
  1608. {
  1609. //we read byte-by byte
  1610. serial_read_stream();
  1611. } else
  1612. {
  1613. get_command();
  1614. #ifdef SDSUPPORT
  1615. card.checkautostart(false);
  1616. #endif
  1617. if(buflen)
  1618. {
  1619. cmdbuffer_front_already_processed = false;
  1620. #ifdef SDSUPPORT
  1621. if(card.saving)
  1622. {
  1623. // Saving a G-code file onto an SD-card is in progress.
  1624. // Saving starts with M28, saving until M29 is seen.
  1625. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1626. card.write_command(CMDBUFFER_CURRENT_STRING);
  1627. if(card.logging)
  1628. process_commands();
  1629. else
  1630. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1631. } else {
  1632. card.closefile();
  1633. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1634. }
  1635. } else {
  1636. process_commands();
  1637. }
  1638. #else
  1639. process_commands();
  1640. #endif //SDSUPPORT
  1641. if (! cmdbuffer_front_already_processed && buflen)
  1642. {
  1643. // ptr points to the start of the block currently being processed.
  1644. // The first character in the block is the block type.
  1645. char *ptr = cmdbuffer + bufindr;
  1646. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1647. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1648. union {
  1649. struct {
  1650. char lo;
  1651. char hi;
  1652. } lohi;
  1653. uint16_t value;
  1654. } sdlen;
  1655. sdlen.value = 0;
  1656. {
  1657. // This block locks the interrupts globally for 3.25 us,
  1658. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1659. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1660. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1661. cli();
  1662. // Reset the command to something, which will be ignored by the power panic routine,
  1663. // so this buffer length will not be counted twice.
  1664. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1665. // Extract the current buffer length.
  1666. sdlen.lohi.lo = *ptr ++;
  1667. sdlen.lohi.hi = *ptr;
  1668. // and pass it to the planner queue.
  1669. planner_add_sd_length(sdlen.value);
  1670. sei();
  1671. }
  1672. }
  1673. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1674. cli();
  1675. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1676. // and one for each command to previous block in the planner queue.
  1677. planner_add_sd_length(1);
  1678. sei();
  1679. }
  1680. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1681. // this block's SD card length will not be counted twice as its command type has been replaced
  1682. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1683. cmdqueue_pop_front();
  1684. }
  1685. host_keepalive();
  1686. }
  1687. }
  1688. //check heater every n milliseconds
  1689. manage_heater();
  1690. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1691. checkHitEndstops();
  1692. lcd_update();
  1693. #ifdef PAT9125
  1694. fsensor_update();
  1695. #endif //PAT9125
  1696. #ifdef TMC2130
  1697. tmc2130_check_overtemp();
  1698. if (tmc2130_sg_crash)
  1699. {
  1700. uint8_t crash = tmc2130_sg_crash;
  1701. tmc2130_sg_crash = 0;
  1702. // crashdet_stop_and_save_print();
  1703. switch (crash)
  1704. {
  1705. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1706. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1707. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1708. }
  1709. }
  1710. #endif //TMC2130
  1711. }
  1712. #define DEFINE_PGM_READ_ANY(type, reader) \
  1713. static inline type pgm_read_any(const type *p) \
  1714. { return pgm_read_##reader##_near(p); }
  1715. DEFINE_PGM_READ_ANY(float, float);
  1716. DEFINE_PGM_READ_ANY(signed char, byte);
  1717. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1718. static const PROGMEM type array##_P[3] = \
  1719. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1720. static inline type array(int axis) \
  1721. { return pgm_read_any(&array##_P[axis]); } \
  1722. type array##_ext(int axis) \
  1723. { return pgm_read_any(&array##_P[axis]); }
  1724. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1725. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1726. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1727. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1728. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1729. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1730. static void axis_is_at_home(int axis) {
  1731. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1732. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1733. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1734. }
  1735. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1736. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1737. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1738. saved_feedrate = feedrate;
  1739. saved_feedmultiply = feedmultiply;
  1740. feedmultiply = 100;
  1741. previous_millis_cmd = millis();
  1742. enable_endstops(enable_endstops_now);
  1743. }
  1744. static void clean_up_after_endstop_move() {
  1745. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1746. enable_endstops(false);
  1747. #endif
  1748. feedrate = saved_feedrate;
  1749. feedmultiply = saved_feedmultiply;
  1750. previous_millis_cmd = millis();
  1751. }
  1752. #ifdef ENABLE_AUTO_BED_LEVELING
  1753. #ifdef AUTO_BED_LEVELING_GRID
  1754. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1755. {
  1756. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1757. planeNormal.debug("planeNormal");
  1758. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1759. //bedLevel.debug("bedLevel");
  1760. //plan_bed_level_matrix.debug("bed level before");
  1761. //vector_3 uncorrected_position = plan_get_position_mm();
  1762. //uncorrected_position.debug("position before");
  1763. vector_3 corrected_position = plan_get_position();
  1764. // corrected_position.debug("position after");
  1765. current_position[X_AXIS] = corrected_position.x;
  1766. current_position[Y_AXIS] = corrected_position.y;
  1767. current_position[Z_AXIS] = corrected_position.z;
  1768. // put the bed at 0 so we don't go below it.
  1769. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. }
  1772. #else // not AUTO_BED_LEVELING_GRID
  1773. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1774. plan_bed_level_matrix.set_to_identity();
  1775. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1776. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1777. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1778. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1779. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1780. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1781. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1782. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1783. vector_3 corrected_position = plan_get_position();
  1784. current_position[X_AXIS] = corrected_position.x;
  1785. current_position[Y_AXIS] = corrected_position.y;
  1786. current_position[Z_AXIS] = corrected_position.z;
  1787. // put the bed at 0 so we don't go below it.
  1788. current_position[Z_AXIS] = zprobe_zoffset;
  1789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1790. }
  1791. #endif // AUTO_BED_LEVELING_GRID
  1792. static void run_z_probe() {
  1793. plan_bed_level_matrix.set_to_identity();
  1794. feedrate = homing_feedrate[Z_AXIS];
  1795. // move down until you find the bed
  1796. float zPosition = -10;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. // we have to let the planner know where we are right now as it is not where we said to go.
  1800. zPosition = st_get_position_mm(Z_AXIS);
  1801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1802. // move up the retract distance
  1803. zPosition += home_retract_mm(Z_AXIS);
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. // move back down slowly to find bed
  1807. feedrate = homing_feedrate[Z_AXIS]/4;
  1808. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1810. st_synchronize();
  1811. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1812. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. }
  1815. static void do_blocking_move_to(float x, float y, float z) {
  1816. float oldFeedRate = feedrate;
  1817. feedrate = homing_feedrate[Z_AXIS];
  1818. current_position[Z_AXIS] = z;
  1819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. feedrate = XY_TRAVEL_SPEED;
  1822. current_position[X_AXIS] = x;
  1823. current_position[Y_AXIS] = y;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. feedrate = oldFeedRate;
  1827. }
  1828. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1829. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1830. }
  1831. /// Probe bed height at position (x,y), returns the measured z value
  1832. static float probe_pt(float x, float y, float z_before) {
  1833. // move to right place
  1834. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1835. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1836. run_z_probe();
  1837. float measured_z = current_position[Z_AXIS];
  1838. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1839. SERIAL_PROTOCOLPGM(" x: ");
  1840. SERIAL_PROTOCOL(x);
  1841. SERIAL_PROTOCOLPGM(" y: ");
  1842. SERIAL_PROTOCOL(y);
  1843. SERIAL_PROTOCOLPGM(" z: ");
  1844. SERIAL_PROTOCOL(measured_z);
  1845. SERIAL_PROTOCOLPGM("\n");
  1846. return measured_z;
  1847. }
  1848. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1849. #ifdef LIN_ADVANCE
  1850. /**
  1851. * M900: Set and/or Get advance K factor and WH/D ratio
  1852. *
  1853. * K<factor> Set advance K factor
  1854. * R<ratio> Set ratio directly (overrides WH/D)
  1855. * W<width> H<height> D<diam> Set ratio from WH/D
  1856. */
  1857. inline void gcode_M900() {
  1858. st_synchronize();
  1859. const float newK = code_seen('K') ? code_value_float() : -1;
  1860. if (newK >= 0) extruder_advance_k = newK;
  1861. float newR = code_seen('R') ? code_value_float() : -1;
  1862. if (newR < 0) {
  1863. const float newD = code_seen('D') ? code_value_float() : -1,
  1864. newW = code_seen('W') ? code_value_float() : -1,
  1865. newH = code_seen('H') ? code_value_float() : -1;
  1866. if (newD >= 0 && newW >= 0 && newH >= 0)
  1867. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1868. }
  1869. if (newR >= 0) advance_ed_ratio = newR;
  1870. SERIAL_ECHO_START;
  1871. SERIAL_ECHOPGM("Advance K=");
  1872. SERIAL_ECHOLN(extruder_advance_k);
  1873. SERIAL_ECHOPGM(" E/D=");
  1874. const float ratio = advance_ed_ratio;
  1875. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1876. }
  1877. #endif // LIN_ADVANCE
  1878. bool check_commands() {
  1879. bool end_command_found = false;
  1880. while (buflen)
  1881. {
  1882. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1883. if (!cmdbuffer_front_already_processed)
  1884. cmdqueue_pop_front();
  1885. cmdbuffer_front_already_processed = false;
  1886. }
  1887. return end_command_found;
  1888. }
  1889. #ifdef TMC2130
  1890. bool calibrate_z_auto()
  1891. {
  1892. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1893. lcd_implementation_clear();
  1894. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1895. bool endstops_enabled = enable_endstops(true);
  1896. int axis_up_dir = -home_dir(Z_AXIS);
  1897. tmc2130_home_enter(Z_AXIS_MASK);
  1898. current_position[Z_AXIS] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. set_destination_to_current();
  1901. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1902. feedrate = homing_feedrate[Z_AXIS];
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. // current_position[axis] = 0;
  1906. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1907. tmc2130_home_exit();
  1908. enable_endstops(false);
  1909. current_position[Z_AXIS] = 0;
  1910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. set_destination_to_current();
  1912. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1913. feedrate = homing_feedrate[Z_AXIS] / 2;
  1914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1915. st_synchronize();
  1916. enable_endstops(endstops_enabled);
  1917. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1918. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1919. return true;
  1920. }
  1921. #endif //TMC2130
  1922. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1923. {
  1924. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1925. #define HOMEAXIS_DO(LETTER) \
  1926. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1927. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1928. {
  1929. int axis_home_dir = home_dir(axis);
  1930. feedrate = homing_feedrate[axis];
  1931. #ifdef TMC2130
  1932. tmc2130_home_enter(X_AXIS_MASK << axis);
  1933. #endif //TMC2130
  1934. // Move right a bit, so that the print head does not touch the left end position,
  1935. // and the following left movement has a chance to achieve the required velocity
  1936. // for the stall guard to work.
  1937. current_position[axis] = 0;
  1938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1939. set_destination_to_current();
  1940. // destination[axis] = 11.f;
  1941. destination[axis] = 3.f;
  1942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1943. st_synchronize();
  1944. // Move left away from the possible collision with the collision detection disabled.
  1945. endstops_hit_on_purpose();
  1946. enable_endstops(false);
  1947. current_position[axis] = 0;
  1948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1949. destination[axis] = - 1.;
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. // Now continue to move up to the left end stop with the collision detection enabled.
  1953. enable_endstops(true);
  1954. destination[axis] = - 1.1 * max_length(axis);
  1955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1956. st_synchronize();
  1957. for (uint8_t i = 0; i < cnt; i++)
  1958. {
  1959. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1960. endstops_hit_on_purpose();
  1961. enable_endstops(false);
  1962. current_position[axis] = 0;
  1963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1964. destination[axis] = 10.f;
  1965. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1966. st_synchronize();
  1967. endstops_hit_on_purpose();
  1968. // Now move left up to the collision, this time with a repeatable velocity.
  1969. enable_endstops(true);
  1970. destination[axis] = - 11.f;
  1971. #ifdef TMC2130
  1972. feedrate = homing_feedrate[axis];
  1973. #else //TMC2130
  1974. feedrate = homing_feedrate[axis] / 2;
  1975. #endif //TMC2130
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. #ifdef TMC2130
  1979. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1980. if (pstep) pstep[i] = mscnt >> 4;
  1981. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1982. #endif //TMC2130
  1983. }
  1984. endstops_hit_on_purpose();
  1985. enable_endstops(false);
  1986. #ifdef TMC2130
  1987. uint8_t orig = tmc2130_home_origin[axis];
  1988. uint8_t back = tmc2130_home_bsteps[axis];
  1989. if (tmc2130_home_enabled && (orig <= 63))
  1990. {
  1991. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1992. if (back > 0)
  1993. tmc2130_do_steps(axis, back, 1, 1000);
  1994. }
  1995. else
  1996. tmc2130_do_steps(axis, 8, 2, 1000);
  1997. tmc2130_home_exit();
  1998. #endif //TMC2130
  1999. axis_is_at_home(axis);
  2000. axis_known_position[axis] = true;
  2001. // Move from minimum
  2002. #ifdef TMC2130
  2003. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2004. #else //TMC2130
  2005. float dist = 0.01f * 64;
  2006. #endif //TMC2130
  2007. current_position[axis] -= dist;
  2008. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2009. current_position[axis] += dist;
  2010. destination[axis] = current_position[axis];
  2011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2012. st_synchronize();
  2013. feedrate = 0.0;
  2014. }
  2015. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2016. {
  2017. #ifdef TMC2130
  2018. FORCE_HIGH_POWER_START;
  2019. #endif
  2020. int axis_home_dir = home_dir(axis);
  2021. current_position[axis] = 0;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2024. feedrate = homing_feedrate[axis];
  2025. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2026. st_synchronize();
  2027. #ifdef TMC2130
  2028. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2029. FORCE_HIGH_POWER_END;
  2030. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2031. return;
  2032. }
  2033. #endif //TMC2130
  2034. current_position[axis] = 0;
  2035. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2036. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2038. st_synchronize();
  2039. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2040. feedrate = homing_feedrate[axis]/2 ;
  2041. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2042. st_synchronize();
  2043. #ifdef TMC2130
  2044. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2045. FORCE_HIGH_POWER_END;
  2046. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2047. return;
  2048. }
  2049. #endif //TMC2130
  2050. axis_is_at_home(axis);
  2051. destination[axis] = current_position[axis];
  2052. feedrate = 0.0;
  2053. endstops_hit_on_purpose();
  2054. axis_known_position[axis] = true;
  2055. #ifdef TMC2130
  2056. FORCE_HIGH_POWER_END;
  2057. #endif
  2058. }
  2059. enable_endstops(endstops_enabled);
  2060. }
  2061. /**/
  2062. void home_xy()
  2063. {
  2064. set_destination_to_current();
  2065. homeaxis(X_AXIS);
  2066. homeaxis(Y_AXIS);
  2067. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2068. endstops_hit_on_purpose();
  2069. }
  2070. void refresh_cmd_timeout(void)
  2071. {
  2072. previous_millis_cmd = millis();
  2073. }
  2074. #ifdef FWRETRACT
  2075. void retract(bool retracting, bool swapretract = false) {
  2076. if(retracting && !retracted[active_extruder]) {
  2077. destination[X_AXIS]=current_position[X_AXIS];
  2078. destination[Y_AXIS]=current_position[Y_AXIS];
  2079. destination[Z_AXIS]=current_position[Z_AXIS];
  2080. destination[E_AXIS]=current_position[E_AXIS];
  2081. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2082. plan_set_e_position(current_position[E_AXIS]);
  2083. float oldFeedrate = feedrate;
  2084. feedrate=retract_feedrate*60;
  2085. retracted[active_extruder]=true;
  2086. prepare_move();
  2087. current_position[Z_AXIS]-=retract_zlift;
  2088. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2089. prepare_move();
  2090. feedrate = oldFeedrate;
  2091. } else if(!retracting && retracted[active_extruder]) {
  2092. destination[X_AXIS]=current_position[X_AXIS];
  2093. destination[Y_AXIS]=current_position[Y_AXIS];
  2094. destination[Z_AXIS]=current_position[Z_AXIS];
  2095. destination[E_AXIS]=current_position[E_AXIS];
  2096. current_position[Z_AXIS]+=retract_zlift;
  2097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2098. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2099. plan_set_e_position(current_position[E_AXIS]);
  2100. float oldFeedrate = feedrate;
  2101. feedrate=retract_recover_feedrate*60;
  2102. retracted[active_extruder]=false;
  2103. prepare_move();
  2104. feedrate = oldFeedrate;
  2105. }
  2106. } //retract
  2107. #endif //FWRETRACT
  2108. void trace() {
  2109. tone(BEEPER, 440);
  2110. delay(25);
  2111. noTone(BEEPER);
  2112. delay(20);
  2113. }
  2114. /*
  2115. void ramming() {
  2116. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2117. if (current_temperature[0] < 230) {
  2118. //PLA
  2119. max_feedrate[E_AXIS] = 50;
  2120. //current_position[E_AXIS] -= 8;
  2121. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2122. //current_position[E_AXIS] += 8;
  2123. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2124. current_position[E_AXIS] += 5.4;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2126. current_position[E_AXIS] += 3.2;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2128. current_position[E_AXIS] += 3;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2130. st_synchronize();
  2131. max_feedrate[E_AXIS] = 80;
  2132. current_position[E_AXIS] -= 82;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2134. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2135. current_position[E_AXIS] -= 20;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2137. current_position[E_AXIS] += 5;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2139. current_position[E_AXIS] += 5;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2141. current_position[E_AXIS] -= 10;
  2142. st_synchronize();
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2144. current_position[E_AXIS] += 10;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2146. current_position[E_AXIS] -= 10;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2148. current_position[E_AXIS] += 10;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2150. current_position[E_AXIS] -= 10;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2152. st_synchronize();
  2153. }
  2154. else {
  2155. //ABS
  2156. max_feedrate[E_AXIS] = 50;
  2157. //current_position[E_AXIS] -= 8;
  2158. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2159. //current_position[E_AXIS] += 8;
  2160. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2161. current_position[E_AXIS] += 3.1;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2163. current_position[E_AXIS] += 3.1;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2165. current_position[E_AXIS] += 4;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2167. st_synchronize();
  2168. //current_position[X_AXIS] += 23; //delay
  2169. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2170. //current_position[X_AXIS] -= 23; //delay
  2171. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2172. delay(4700);
  2173. max_feedrate[E_AXIS] = 80;
  2174. current_position[E_AXIS] -= 92;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2176. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2177. current_position[E_AXIS] -= 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2179. current_position[E_AXIS] += 5;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2181. current_position[E_AXIS] -= 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2183. st_synchronize();
  2184. current_position[E_AXIS] += 5;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2186. current_position[E_AXIS] -= 5;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2188. current_position[E_AXIS] += 5;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2190. current_position[E_AXIS] -= 5;
  2191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2192. st_synchronize();
  2193. }
  2194. }
  2195. */
  2196. #ifdef TMC2130
  2197. void force_high_power_mode(bool start_high_power_section) {
  2198. uint8_t silent;
  2199. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2200. if (silent == 1) {
  2201. //we are in silent mode, set to normal mode to enable crash detection
  2202. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2203. st_synchronize();
  2204. cli();
  2205. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2206. tmc2130_init();
  2207. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2208. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2209. st_reset_timer();
  2210. sei();
  2211. }
  2212. }
  2213. #endif //TMC2130
  2214. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2215. st_synchronize();
  2216. #if 0
  2217. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2218. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2219. #endif
  2220. // Flag for the display update routine and to disable the print cancelation during homing.
  2221. homing_flag = true;
  2222. // Either all X,Y,Z codes are present, or none of them.
  2223. bool home_all_axes = home_x == home_y && home_x == home_z;
  2224. if (home_all_axes)
  2225. // No X/Y/Z code provided means to home all axes.
  2226. home_x = home_y = home_z = true;
  2227. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2228. if (home_all_axes) {
  2229. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2230. feedrate = homing_feedrate[Z_AXIS];
  2231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2232. st_synchronize();
  2233. }
  2234. #ifdef ENABLE_AUTO_BED_LEVELING
  2235. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2236. #endif //ENABLE_AUTO_BED_LEVELING
  2237. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2238. // the planner will not perform any adjustments in the XY plane.
  2239. // Wait for the motors to stop and update the current position with the absolute values.
  2240. world2machine_revert_to_uncorrected();
  2241. // For mesh bed leveling deactivate the matrix temporarily.
  2242. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2243. // in a single axis only.
  2244. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2245. #ifdef MESH_BED_LEVELING
  2246. uint8_t mbl_was_active = mbl.active;
  2247. mbl.active = 0;
  2248. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2249. #endif
  2250. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2251. // consumed during the first movements following this statement.
  2252. if (home_z)
  2253. babystep_undo();
  2254. saved_feedrate = feedrate;
  2255. saved_feedmultiply = feedmultiply;
  2256. feedmultiply = 100;
  2257. previous_millis_cmd = millis();
  2258. enable_endstops(true);
  2259. memcpy(destination, current_position, sizeof(destination));
  2260. feedrate = 0.0;
  2261. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2262. if(home_z)
  2263. homeaxis(Z_AXIS);
  2264. #endif
  2265. #ifdef QUICK_HOME
  2266. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2267. if(home_x && home_y) //first diagonal move
  2268. {
  2269. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2270. int x_axis_home_dir = home_dir(X_AXIS);
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2273. feedrate = homing_feedrate[X_AXIS];
  2274. if(homing_feedrate[Y_AXIS]<feedrate)
  2275. feedrate = homing_feedrate[Y_AXIS];
  2276. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2277. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2278. } else {
  2279. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2280. }
  2281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2282. st_synchronize();
  2283. axis_is_at_home(X_AXIS);
  2284. axis_is_at_home(Y_AXIS);
  2285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2286. destination[X_AXIS] = current_position[X_AXIS];
  2287. destination[Y_AXIS] = current_position[Y_AXIS];
  2288. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2289. feedrate = 0.0;
  2290. st_synchronize();
  2291. endstops_hit_on_purpose();
  2292. current_position[X_AXIS] = destination[X_AXIS];
  2293. current_position[Y_AXIS] = destination[Y_AXIS];
  2294. current_position[Z_AXIS] = destination[Z_AXIS];
  2295. }
  2296. #endif /* QUICK_HOME */
  2297. #ifdef TMC2130
  2298. if(home_x)
  2299. {
  2300. if (!calib)
  2301. homeaxis(X_AXIS);
  2302. else
  2303. tmc2130_home_calibrate(X_AXIS);
  2304. }
  2305. if(home_y)
  2306. {
  2307. if (!calib)
  2308. homeaxis(Y_AXIS);
  2309. else
  2310. tmc2130_home_calibrate(Y_AXIS);
  2311. }
  2312. #endif //TMC2130
  2313. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2314. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2315. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2316. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2317. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2318. #ifndef Z_SAFE_HOMING
  2319. if(home_z) {
  2320. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2321. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2322. feedrate = max_feedrate[Z_AXIS];
  2323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2324. st_synchronize();
  2325. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2326. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2327. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2328. {
  2329. homeaxis(X_AXIS);
  2330. homeaxis(Y_AXIS);
  2331. }
  2332. // 1st mesh bed leveling measurement point, corrected.
  2333. world2machine_initialize();
  2334. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2335. world2machine_reset();
  2336. if (destination[Y_AXIS] < Y_MIN_POS)
  2337. destination[Y_AXIS] = Y_MIN_POS;
  2338. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2339. feedrate = homing_feedrate[Z_AXIS]/10;
  2340. current_position[Z_AXIS] = 0;
  2341. enable_endstops(false);
  2342. #ifdef DEBUG_BUILD
  2343. SERIAL_ECHOLNPGM("plan_set_position()");
  2344. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2345. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2346. #endif
  2347. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2348. #ifdef DEBUG_BUILD
  2349. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2350. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2351. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2352. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2353. #endif
  2354. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2355. st_synchronize();
  2356. current_position[X_AXIS] = destination[X_AXIS];
  2357. current_position[Y_AXIS] = destination[Y_AXIS];
  2358. enable_endstops(true);
  2359. endstops_hit_on_purpose();
  2360. homeaxis(Z_AXIS);
  2361. #else // MESH_BED_LEVELING
  2362. homeaxis(Z_AXIS);
  2363. #endif // MESH_BED_LEVELING
  2364. }
  2365. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2366. if(home_all_axes) {
  2367. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2368. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2369. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2370. feedrate = XY_TRAVEL_SPEED/60;
  2371. current_position[Z_AXIS] = 0;
  2372. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2373. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2374. st_synchronize();
  2375. current_position[X_AXIS] = destination[X_AXIS];
  2376. current_position[Y_AXIS] = destination[Y_AXIS];
  2377. homeaxis(Z_AXIS);
  2378. }
  2379. // Let's see if X and Y are homed and probe is inside bed area.
  2380. if(home_z) {
  2381. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2382. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2383. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2384. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2385. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2386. current_position[Z_AXIS] = 0;
  2387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2388. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2389. feedrate = max_feedrate[Z_AXIS];
  2390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2391. st_synchronize();
  2392. homeaxis(Z_AXIS);
  2393. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2394. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2395. SERIAL_ECHO_START;
  2396. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2397. } else {
  2398. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2399. SERIAL_ECHO_START;
  2400. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2401. }
  2402. }
  2403. #endif // Z_SAFE_HOMING
  2404. #endif // Z_HOME_DIR < 0
  2405. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2406. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2407. #ifdef ENABLE_AUTO_BED_LEVELING
  2408. if(home_z)
  2409. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2410. #endif
  2411. // Set the planner and stepper routine positions.
  2412. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2413. // contains the machine coordinates.
  2414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2415. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2416. enable_endstops(false);
  2417. #endif
  2418. feedrate = saved_feedrate;
  2419. feedmultiply = saved_feedmultiply;
  2420. previous_millis_cmd = millis();
  2421. endstops_hit_on_purpose();
  2422. #ifndef MESH_BED_LEVELING
  2423. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2424. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2425. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2426. lcd_adjust_z();
  2427. #endif
  2428. // Load the machine correction matrix
  2429. world2machine_initialize();
  2430. // and correct the current_position XY axes to match the transformed coordinate system.
  2431. world2machine_update_current();
  2432. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2433. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2434. {
  2435. if (! home_z && mbl_was_active) {
  2436. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2437. mbl.active = true;
  2438. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2439. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2440. }
  2441. }
  2442. else
  2443. {
  2444. st_synchronize();
  2445. homing_flag = false;
  2446. // Push the commands to the front of the message queue in the reverse order!
  2447. // There shall be always enough space reserved for these commands.
  2448. enquecommand_front_P((PSTR("G80")));
  2449. //goto case_G80;
  2450. }
  2451. #endif
  2452. if (farm_mode) { prusa_statistics(20); };
  2453. homing_flag = false;
  2454. #if 0
  2455. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2456. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2457. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2458. #endif
  2459. }
  2460. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2461. {
  2462. bool final_result = false;
  2463. #ifdef TMC2130
  2464. FORCE_HIGH_POWER_START;
  2465. #endif // TMC2130
  2466. // Only Z calibration?
  2467. if (!onlyZ)
  2468. {
  2469. setTargetBed(0);
  2470. setTargetHotend(0, 0);
  2471. setTargetHotend(0, 1);
  2472. setTargetHotend(0, 2);
  2473. adjust_bed_reset(); //reset bed level correction
  2474. }
  2475. // Disable the default update procedure of the display. We will do a modal dialog.
  2476. lcd_update_enable(false);
  2477. // Let the planner use the uncorrected coordinates.
  2478. mbl.reset();
  2479. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2480. // the planner will not perform any adjustments in the XY plane.
  2481. // Wait for the motors to stop and update the current position with the absolute values.
  2482. world2machine_revert_to_uncorrected();
  2483. // Reset the baby step value applied without moving the axes.
  2484. babystep_reset();
  2485. // Mark all axes as in a need for homing.
  2486. memset(axis_known_position, 0, sizeof(axis_known_position));
  2487. // Home in the XY plane.
  2488. //set_destination_to_current();
  2489. setup_for_endstop_move();
  2490. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2491. home_xy();
  2492. enable_endstops(false);
  2493. current_position[X_AXIS] += 5;
  2494. current_position[Y_AXIS] += 5;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2496. st_synchronize();
  2497. // Let the user move the Z axes up to the end stoppers.
  2498. #ifdef TMC2130
  2499. if (calibrate_z_auto())
  2500. {
  2501. #else //TMC2130
  2502. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2503. {
  2504. #endif //TMC2130
  2505. refresh_cmd_timeout();
  2506. #ifndef STEEL_SHEET
  2507. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2508. {
  2509. lcd_wait_for_cool_down();
  2510. }
  2511. #endif //STEEL_SHEET
  2512. if(!onlyZ)
  2513. {
  2514. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2515. #ifdef STEEL_SHEET
  2516. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2517. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2518. #endif //STEEL_SHEET
  2519. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2520. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2521. KEEPALIVE_STATE(IN_HANDLER);
  2522. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2523. lcd_implementation_print_at(0, 2, 1);
  2524. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2525. }
  2526. // Move the print head close to the bed.
  2527. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2528. bool endstops_enabled = enable_endstops(true);
  2529. #ifdef TMC2130
  2530. tmc2130_home_enter(Z_AXIS_MASK);
  2531. #endif //TMC2130
  2532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2533. st_synchronize();
  2534. #ifdef TMC2130
  2535. tmc2130_home_exit();
  2536. #endif //TMC2130
  2537. enable_endstops(endstops_enabled);
  2538. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2539. {
  2540. int8_t verbosity_level = 0;
  2541. if (code_seen('V'))
  2542. {
  2543. // Just 'V' without a number counts as V1.
  2544. char c = strchr_pointer[1];
  2545. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2546. }
  2547. if (onlyZ)
  2548. {
  2549. clean_up_after_endstop_move();
  2550. // Z only calibration.
  2551. // Load the machine correction matrix
  2552. world2machine_initialize();
  2553. // and correct the current_position to match the transformed coordinate system.
  2554. world2machine_update_current();
  2555. //FIXME
  2556. bool result = sample_mesh_and_store_reference();
  2557. if (result)
  2558. {
  2559. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2560. // Shipped, the nozzle height has been set already. The user can start printing now.
  2561. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2562. final_result = true;
  2563. // babystep_apply();
  2564. }
  2565. }
  2566. else
  2567. {
  2568. // Reset the baby step value and the baby step applied flag.
  2569. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2570. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2571. // Complete XYZ calibration.
  2572. uint8_t point_too_far_mask = 0;
  2573. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2574. clean_up_after_endstop_move();
  2575. // Print head up.
  2576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2578. st_synchronize();
  2579. //#ifndef NEW_XYZCAL
  2580. if (result >= 0)
  2581. {
  2582. #ifdef HEATBED_V2
  2583. sample_z();
  2584. #else //HEATBED_V2
  2585. point_too_far_mask = 0;
  2586. // Second half: The fine adjustment.
  2587. // Let the planner use the uncorrected coordinates.
  2588. mbl.reset();
  2589. world2machine_reset();
  2590. // Home in the XY plane.
  2591. setup_for_endstop_move();
  2592. home_xy();
  2593. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2594. clean_up_after_endstop_move();
  2595. // Print head up.
  2596. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2598. st_synchronize();
  2599. // if (result >= 0) babystep_apply();
  2600. #endif //HEATBED_V2
  2601. }
  2602. //#endif //NEW_XYZCAL
  2603. lcd_update_enable(true);
  2604. lcd_update(2);
  2605. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2606. if (result >= 0)
  2607. {
  2608. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2609. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2610. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2611. final_result = true;
  2612. }
  2613. }
  2614. #ifdef TMC2130
  2615. tmc2130_home_exit();
  2616. #endif
  2617. }
  2618. else
  2619. {
  2620. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2621. final_result = false;
  2622. }
  2623. }
  2624. else
  2625. {
  2626. // Timeouted.
  2627. }
  2628. lcd_update_enable(true);
  2629. #ifdef TMC2130
  2630. FORCE_HIGH_POWER_END;
  2631. #endif // TMC2130
  2632. return final_result;
  2633. }
  2634. void gcode_M114()
  2635. {
  2636. SERIAL_PROTOCOLPGM("X:");
  2637. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Y:");
  2639. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Z:");
  2641. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" E:");
  2643. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2644. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2645. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2646. SERIAL_PROTOCOLPGM(" Y:");
  2647. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" Z:");
  2649. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2650. SERIAL_PROTOCOLPGM(" E:");
  2651. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2652. SERIAL_PROTOCOLLN("");
  2653. }
  2654. void gcode_M701()
  2655. {
  2656. #ifdef SNMM
  2657. extr_adj(snmm_extruder);//loads current extruder
  2658. #else
  2659. enable_z();
  2660. custom_message = true;
  2661. custom_message_type = 2;
  2662. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2663. current_position[E_AXIS] += 70;
  2664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2665. current_position[E_AXIS] += 25;
  2666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2667. st_synchronize();
  2668. tone(BEEPER, 500);
  2669. delay_keep_alive(50);
  2670. noTone(BEEPER);
  2671. if (!farm_mode && loading_flag) {
  2672. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2673. while (!clean) {
  2674. lcd_update_enable(true);
  2675. lcd_update(2);
  2676. current_position[E_AXIS] += 25;
  2677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2678. st_synchronize();
  2679. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2680. }
  2681. }
  2682. lcd_update_enable(true);
  2683. lcd_update(2);
  2684. lcd_setstatuspgm(_T(WELCOME_MSG));
  2685. disable_z();
  2686. loading_flag = false;
  2687. custom_message = false;
  2688. custom_message_type = 0;
  2689. #endif
  2690. }
  2691. /**
  2692. * @brief Get serial number from 32U2 processor
  2693. *
  2694. * Typical format of S/N is:CZPX0917X003XC13518
  2695. *
  2696. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2697. *
  2698. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2699. * reply is transmitted to serial port 1 character by character.
  2700. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2701. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2702. * in any case.
  2703. */
  2704. static void gcode_PRUSA_SN()
  2705. {
  2706. if (farm_mode) {
  2707. selectedSerialPort = 0;
  2708. putchar(';');
  2709. putchar('S');
  2710. int numbersRead = 0;
  2711. ShortTimer timeout;
  2712. timeout.start();
  2713. while (numbersRead < 19) {
  2714. while (MSerial.available() > 0) {
  2715. uint8_t serial_char = MSerial.read();
  2716. selectedSerialPort = 1;
  2717. putchar(serial_char);
  2718. numbersRead++;
  2719. selectedSerialPort = 0;
  2720. }
  2721. if (timeout.expired(100u)) break;
  2722. }
  2723. selectedSerialPort = 1;
  2724. putchar('\n');
  2725. #if 0
  2726. for (int b = 0; b < 3; b++) {
  2727. tone(BEEPER, 110);
  2728. delay(50);
  2729. noTone(BEEPER);
  2730. delay(50);
  2731. }
  2732. #endif
  2733. } else {
  2734. puts_P(_N("Not in farm mode."));
  2735. }
  2736. }
  2737. void process_commands()
  2738. {
  2739. if (!buflen) return; //empty command
  2740. #ifdef FILAMENT_RUNOUT_SUPPORT
  2741. SET_INPUT(FR_SENS);
  2742. #endif
  2743. #ifdef CMDBUFFER_DEBUG
  2744. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2745. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2746. SERIAL_ECHOLNPGM("");
  2747. SERIAL_ECHOPGM("In cmdqueue: ");
  2748. SERIAL_ECHO(buflen);
  2749. SERIAL_ECHOLNPGM("");
  2750. #endif /* CMDBUFFER_DEBUG */
  2751. unsigned long codenum; //throw away variable
  2752. char *starpos = NULL;
  2753. #ifdef ENABLE_AUTO_BED_LEVELING
  2754. float x_tmp, y_tmp, z_tmp, real_z;
  2755. #endif
  2756. // PRUSA GCODES
  2757. KEEPALIVE_STATE(IN_HANDLER);
  2758. #ifdef SNMM
  2759. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2760. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2761. int8_t SilentMode;
  2762. #endif
  2763. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2764. starpos = (strchr(strchr_pointer + 5, '*'));
  2765. if (starpos != NULL)
  2766. *(starpos) = '\0';
  2767. lcd_setstatus(strchr_pointer + 5);
  2768. }
  2769. #ifdef TMC2130
  2770. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2771. {
  2772. if(code_seen("CRASH_DETECTED"))
  2773. {
  2774. uint8_t mask = 0;
  2775. if (code_seen("X")) mask |= X_AXIS_MASK;
  2776. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2777. crashdet_detected(mask);
  2778. }
  2779. else if(code_seen("CRASH_RECOVER"))
  2780. crashdet_recover();
  2781. else if(code_seen("CRASH_CANCEL"))
  2782. crashdet_cancel();
  2783. }
  2784. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2785. {
  2786. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2787. {
  2788. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2789. tmc2130_set_wave(E_AXIS, 247, fac);
  2790. }
  2791. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2792. {
  2793. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2794. uint16_t res = tmc2130_get_res(E_AXIS);
  2795. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2796. }
  2797. }
  2798. #endif //TMC2130
  2799. else if(code_seen("PRUSA")){
  2800. if (code_seen("Ping")) { //PRUSA Ping
  2801. if (farm_mode) {
  2802. PingTime = millis();
  2803. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2804. }
  2805. }
  2806. else if (code_seen("PRN")) {
  2807. printf_P(_N("%d"), status_number);
  2808. }else if (code_seen("FAN")) {
  2809. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2810. }else if (code_seen("fn")) {
  2811. if (farm_mode) {
  2812. printf_P(_N("%d"), farm_no);
  2813. }
  2814. else {
  2815. puts_P(_N("Not in farm mode."));
  2816. }
  2817. }
  2818. else if (code_seen("thx")) {
  2819. no_response = false;
  2820. }else if (code_seen("fv")) {
  2821. // get file version
  2822. #ifdef SDSUPPORT
  2823. card.openFile(strchr_pointer + 3,true);
  2824. while (true) {
  2825. uint16_t readByte = card.get();
  2826. MYSERIAL.write(readByte);
  2827. if (readByte=='\n') {
  2828. break;
  2829. }
  2830. }
  2831. card.closefile();
  2832. #endif // SDSUPPORT
  2833. } else if (code_seen("M28")) {
  2834. trace();
  2835. prusa_sd_card_upload = true;
  2836. card.openFile(strchr_pointer+4,false);
  2837. } else if (code_seen("SN")) {
  2838. gcode_PRUSA_SN();
  2839. } else if(code_seen("Fir")){
  2840. SERIAL_PROTOCOLLN(FW_VERSION);
  2841. } else if(code_seen("Rev")){
  2842. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2843. } else if(code_seen("Lang")) {
  2844. lang_reset();
  2845. } else if(code_seen("Lz")) {
  2846. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2847. } else if(code_seen("Beat")) {
  2848. // Kick farm link timer
  2849. kicktime = millis();
  2850. } else if(code_seen("FR")) {
  2851. // Factory full reset
  2852. factory_reset(0,true);
  2853. }
  2854. //else if (code_seen('Cal')) {
  2855. // lcd_calibration();
  2856. // }
  2857. }
  2858. else if (code_seen('^')) {
  2859. // nothing, this is a version line
  2860. } else if(code_seen('G'))
  2861. {
  2862. switch((int)code_value())
  2863. {
  2864. case 0: // G0 -> G1
  2865. case 1: // G1
  2866. if(Stopped == false) {
  2867. #ifdef FILAMENT_RUNOUT_SUPPORT
  2868. if(READ(FR_SENS)){
  2869. feedmultiplyBckp=feedmultiply;
  2870. float target[4];
  2871. float lastpos[4];
  2872. target[X_AXIS]=current_position[X_AXIS];
  2873. target[Y_AXIS]=current_position[Y_AXIS];
  2874. target[Z_AXIS]=current_position[Z_AXIS];
  2875. target[E_AXIS]=current_position[E_AXIS];
  2876. lastpos[X_AXIS]=current_position[X_AXIS];
  2877. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2878. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2879. lastpos[E_AXIS]=current_position[E_AXIS];
  2880. //retract by E
  2881. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2883. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2885. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2886. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2888. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2890. //finish moves
  2891. st_synchronize();
  2892. //disable extruder steppers so filament can be removed
  2893. disable_e0();
  2894. disable_e1();
  2895. disable_e2();
  2896. delay(100);
  2897. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2898. uint8_t cnt=0;
  2899. int counterBeep = 0;
  2900. lcd_wait_interact();
  2901. while(!lcd_clicked()){
  2902. cnt++;
  2903. manage_heater();
  2904. manage_inactivity(true);
  2905. //lcd_update();
  2906. if(cnt==0)
  2907. {
  2908. #if BEEPER > 0
  2909. if (counterBeep== 500){
  2910. counterBeep = 0;
  2911. }
  2912. SET_OUTPUT(BEEPER);
  2913. if (counterBeep== 0){
  2914. WRITE(BEEPER,HIGH);
  2915. }
  2916. if (counterBeep== 20){
  2917. WRITE(BEEPER,LOW);
  2918. }
  2919. counterBeep++;
  2920. #else
  2921. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2922. lcd_buzz(1000/6,100);
  2923. #else
  2924. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2925. #endif
  2926. #endif
  2927. }
  2928. }
  2929. WRITE(BEEPER,LOW);
  2930. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2932. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2934. lcd_change_fil_state = 0;
  2935. lcd_loading_filament();
  2936. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2937. lcd_change_fil_state = 0;
  2938. lcd_alright();
  2939. switch(lcd_change_fil_state){
  2940. case 2:
  2941. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2942. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2943. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2945. lcd_loading_filament();
  2946. break;
  2947. case 3:
  2948. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2949. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2950. lcd_loading_color();
  2951. break;
  2952. default:
  2953. lcd_change_success();
  2954. break;
  2955. }
  2956. }
  2957. target[E_AXIS]+= 5;
  2958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2959. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2961. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2962. //plan_set_e_position(current_position[E_AXIS]);
  2963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2964. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2965. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2966. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2967. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2968. plan_set_e_position(lastpos[E_AXIS]);
  2969. feedmultiply=feedmultiplyBckp;
  2970. char cmd[9];
  2971. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2972. enquecommand(cmd);
  2973. }
  2974. #endif
  2975. get_coordinates(); // For X Y Z E F
  2976. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2977. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2978. }
  2979. #ifdef FWRETRACT
  2980. if(autoretract_enabled)
  2981. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2982. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2983. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2984. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2985. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2986. retract(!retracted[active_extruder]);
  2987. return;
  2988. }
  2989. }
  2990. #endif //FWRETRACT
  2991. prepare_move();
  2992. //ClearToSend();
  2993. }
  2994. break;
  2995. case 2: // G2 - CW ARC
  2996. if(Stopped == false) {
  2997. get_arc_coordinates();
  2998. prepare_arc_move(true);
  2999. }
  3000. break;
  3001. case 3: // G3 - CCW ARC
  3002. if(Stopped == false) {
  3003. get_arc_coordinates();
  3004. prepare_arc_move(false);
  3005. }
  3006. break;
  3007. case 4: // G4 dwell
  3008. codenum = 0;
  3009. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3010. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3011. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3012. st_synchronize();
  3013. codenum += millis(); // keep track of when we started waiting
  3014. previous_millis_cmd = millis();
  3015. while(millis() < codenum) {
  3016. manage_heater();
  3017. manage_inactivity();
  3018. lcd_update();
  3019. }
  3020. break;
  3021. #ifdef FWRETRACT
  3022. case 10: // G10 retract
  3023. #if EXTRUDERS > 1
  3024. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3025. retract(true,retracted_swap[active_extruder]);
  3026. #else
  3027. retract(true);
  3028. #endif
  3029. break;
  3030. case 11: // G11 retract_recover
  3031. #if EXTRUDERS > 1
  3032. retract(false,retracted_swap[active_extruder]);
  3033. #else
  3034. retract(false);
  3035. #endif
  3036. break;
  3037. #endif //FWRETRACT
  3038. case 28: //G28 Home all Axis one at a time
  3039. {
  3040. // Which axes should be homed?
  3041. bool home_x = code_seen(axis_codes[X_AXIS]);
  3042. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3043. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3044. // calibrate?
  3045. bool calib = code_seen('C');
  3046. gcode_G28(home_x, home_y, home_z, calib);
  3047. break;
  3048. }
  3049. #ifdef ENABLE_AUTO_BED_LEVELING
  3050. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3051. {
  3052. #if Z_MIN_PIN == -1
  3053. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3054. #endif
  3055. // Prevent user from running a G29 without first homing in X and Y
  3056. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3057. {
  3058. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3059. SERIAL_ECHO_START;
  3060. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3061. break; // abort G29, since we don't know where we are
  3062. }
  3063. st_synchronize();
  3064. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3065. //vector_3 corrected_position = plan_get_position_mm();
  3066. //corrected_position.debug("position before G29");
  3067. plan_bed_level_matrix.set_to_identity();
  3068. vector_3 uncorrected_position = plan_get_position();
  3069. //uncorrected_position.debug("position durring G29");
  3070. current_position[X_AXIS] = uncorrected_position.x;
  3071. current_position[Y_AXIS] = uncorrected_position.y;
  3072. current_position[Z_AXIS] = uncorrected_position.z;
  3073. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3074. setup_for_endstop_move();
  3075. feedrate = homing_feedrate[Z_AXIS];
  3076. #ifdef AUTO_BED_LEVELING_GRID
  3077. // probe at the points of a lattice grid
  3078. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3079. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3080. // solve the plane equation ax + by + d = z
  3081. // A is the matrix with rows [x y 1] for all the probed points
  3082. // B is the vector of the Z positions
  3083. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3084. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3085. // "A" matrix of the linear system of equations
  3086. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3087. // "B" vector of Z points
  3088. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3089. int probePointCounter = 0;
  3090. bool zig = true;
  3091. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3092. {
  3093. int xProbe, xInc;
  3094. if (zig)
  3095. {
  3096. xProbe = LEFT_PROBE_BED_POSITION;
  3097. //xEnd = RIGHT_PROBE_BED_POSITION;
  3098. xInc = xGridSpacing;
  3099. zig = false;
  3100. } else // zag
  3101. {
  3102. xProbe = RIGHT_PROBE_BED_POSITION;
  3103. //xEnd = LEFT_PROBE_BED_POSITION;
  3104. xInc = -xGridSpacing;
  3105. zig = true;
  3106. }
  3107. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3108. {
  3109. float z_before;
  3110. if (probePointCounter == 0)
  3111. {
  3112. // raise before probing
  3113. z_before = Z_RAISE_BEFORE_PROBING;
  3114. } else
  3115. {
  3116. // raise extruder
  3117. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3118. }
  3119. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3120. eqnBVector[probePointCounter] = measured_z;
  3121. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3122. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3123. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3124. probePointCounter++;
  3125. xProbe += xInc;
  3126. }
  3127. }
  3128. clean_up_after_endstop_move();
  3129. // solve lsq problem
  3130. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3131. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3132. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3133. SERIAL_PROTOCOLPGM(" b: ");
  3134. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3135. SERIAL_PROTOCOLPGM(" d: ");
  3136. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3137. set_bed_level_equation_lsq(plane_equation_coefficients);
  3138. free(plane_equation_coefficients);
  3139. #else // AUTO_BED_LEVELING_GRID not defined
  3140. // Probe at 3 arbitrary points
  3141. // probe 1
  3142. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3143. // probe 2
  3144. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3145. // probe 3
  3146. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3147. clean_up_after_endstop_move();
  3148. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3149. #endif // AUTO_BED_LEVELING_GRID
  3150. st_synchronize();
  3151. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3152. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3153. // When the bed is uneven, this height must be corrected.
  3154. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3155. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3156. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3157. z_tmp = current_position[Z_AXIS];
  3158. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3159. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3160. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3161. }
  3162. break;
  3163. #ifndef Z_PROBE_SLED
  3164. case 30: // G30 Single Z Probe
  3165. {
  3166. st_synchronize();
  3167. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3168. setup_for_endstop_move();
  3169. feedrate = homing_feedrate[Z_AXIS];
  3170. run_z_probe();
  3171. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3172. SERIAL_PROTOCOLPGM(" X: ");
  3173. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3174. SERIAL_PROTOCOLPGM(" Y: ");
  3175. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3176. SERIAL_PROTOCOLPGM(" Z: ");
  3177. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3178. SERIAL_PROTOCOLPGM("\n");
  3179. clean_up_after_endstop_move();
  3180. }
  3181. break;
  3182. #else
  3183. case 31: // dock the sled
  3184. dock_sled(true);
  3185. break;
  3186. case 32: // undock the sled
  3187. dock_sled(false);
  3188. break;
  3189. #endif // Z_PROBE_SLED
  3190. #endif // ENABLE_AUTO_BED_LEVELING
  3191. #ifdef MESH_BED_LEVELING
  3192. case 30: // G30 Single Z Probe
  3193. {
  3194. st_synchronize();
  3195. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3196. setup_for_endstop_move();
  3197. feedrate = homing_feedrate[Z_AXIS];
  3198. find_bed_induction_sensor_point_z(-10.f, 3);
  3199. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3200. clean_up_after_endstop_move();
  3201. }
  3202. break;
  3203. case 75:
  3204. {
  3205. for (int i = 40; i <= 110; i++)
  3206. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3207. }
  3208. break;
  3209. case 76: //PINDA probe temperature calibration
  3210. {
  3211. #ifdef PINDA_THERMISTOR
  3212. if (true)
  3213. {
  3214. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3215. //we need to know accurate position of first calibration point
  3216. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3217. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3218. break;
  3219. }
  3220. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3221. {
  3222. // We don't know where we are! HOME!
  3223. // Push the commands to the front of the message queue in the reverse order!
  3224. // There shall be always enough space reserved for these commands.
  3225. repeatcommand_front(); // repeat G76 with all its parameters
  3226. enquecommand_front_P((PSTR("G28 W0")));
  3227. break;
  3228. }
  3229. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3230. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3231. if (result)
  3232. {
  3233. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3235. current_position[Z_AXIS] = 50;
  3236. current_position[Y_AXIS] = 180;
  3237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3238. st_synchronize();
  3239. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3240. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3241. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3242. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3243. st_synchronize();
  3244. gcode_G28(false, false, true, false);
  3245. }
  3246. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3247. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3248. current_position[Z_AXIS] = 100;
  3249. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3250. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3251. lcd_temp_cal_show_result(false);
  3252. break;
  3253. }
  3254. }
  3255. lcd_update_enable(true);
  3256. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3257. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3258. float zero_z;
  3259. int z_shift = 0; //unit: steps
  3260. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3261. if (start_temp < 35) start_temp = 35;
  3262. if (start_temp < current_temperature_pinda) start_temp += 5;
  3263. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3264. // setTargetHotend(200, 0);
  3265. setTargetBed(70 + (start_temp - 30));
  3266. custom_message = true;
  3267. custom_message_type = 4;
  3268. custom_message_state = 1;
  3269. custom_message = _T(MSG_TEMP_CALIBRATION);
  3270. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3272. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3273. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3275. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3277. st_synchronize();
  3278. while (current_temperature_pinda < start_temp)
  3279. {
  3280. delay_keep_alive(1000);
  3281. serialecho_temperatures();
  3282. }
  3283. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3284. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3286. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3287. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3289. st_synchronize();
  3290. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3291. if (find_z_result == false) {
  3292. lcd_temp_cal_show_result(find_z_result);
  3293. break;
  3294. }
  3295. zero_z = current_position[Z_AXIS];
  3296. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3297. int i = -1; for (; i < 5; i++)
  3298. {
  3299. float temp = (40 + i * 5);
  3300. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3301. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3302. if (start_temp <= temp) break;
  3303. }
  3304. for (i++; i < 5; i++)
  3305. {
  3306. float temp = (40 + i * 5);
  3307. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3308. custom_message_state = i + 2;
  3309. setTargetBed(50 + 10 * (temp - 30) / 5);
  3310. // setTargetHotend(255, 0);
  3311. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3313. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3314. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3316. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3317. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3318. st_synchronize();
  3319. while (current_temperature_pinda < temp)
  3320. {
  3321. delay_keep_alive(1000);
  3322. serialecho_temperatures();
  3323. }
  3324. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3326. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3327. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3329. st_synchronize();
  3330. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3331. if (find_z_result == false) {
  3332. lcd_temp_cal_show_result(find_z_result);
  3333. break;
  3334. }
  3335. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3336. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3337. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3338. }
  3339. lcd_temp_cal_show_result(true);
  3340. break;
  3341. }
  3342. #endif //PINDA_THERMISTOR
  3343. setTargetBed(PINDA_MIN_T);
  3344. float zero_z;
  3345. int z_shift = 0; //unit: steps
  3346. int t_c; // temperature
  3347. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3348. // We don't know where we are! HOME!
  3349. // Push the commands to the front of the message queue in the reverse order!
  3350. // There shall be always enough space reserved for these commands.
  3351. repeatcommand_front(); // repeat G76 with all its parameters
  3352. enquecommand_front_P((PSTR("G28 W0")));
  3353. break;
  3354. }
  3355. puts_P(_N("PINDA probe calibration start"));
  3356. custom_message = true;
  3357. custom_message_type = 4;
  3358. custom_message_state = 1;
  3359. custom_message = _T(MSG_TEMP_CALIBRATION);
  3360. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3361. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3362. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. st_synchronize();
  3365. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3366. delay_keep_alive(1000);
  3367. serialecho_temperatures();
  3368. }
  3369. //enquecommand_P(PSTR("M190 S50"));
  3370. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3371. delay_keep_alive(1000);
  3372. serialecho_temperatures();
  3373. }
  3374. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3375. current_position[Z_AXIS] = 5;
  3376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3377. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3378. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3380. st_synchronize();
  3381. find_bed_induction_sensor_point_z(-1.f);
  3382. zero_z = current_position[Z_AXIS];
  3383. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3384. for (int i = 0; i<5; i++) {
  3385. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3386. custom_message_state = i + 2;
  3387. t_c = 60 + i * 10;
  3388. setTargetBed(t_c);
  3389. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3390. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3391. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3393. st_synchronize();
  3394. while (degBed() < t_c) {
  3395. delay_keep_alive(1000);
  3396. serialecho_temperatures();
  3397. }
  3398. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3399. delay_keep_alive(1000);
  3400. serialecho_temperatures();
  3401. }
  3402. current_position[Z_AXIS] = 5;
  3403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3404. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3405. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3407. st_synchronize();
  3408. find_bed_induction_sensor_point_z(-1.f);
  3409. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3410. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3411. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3412. }
  3413. custom_message_type = 0;
  3414. custom_message = false;
  3415. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3416. puts_P(_N("Temperature calibration done."));
  3417. disable_x();
  3418. disable_y();
  3419. disable_z();
  3420. disable_e0();
  3421. disable_e1();
  3422. disable_e2();
  3423. setTargetBed(0); //set bed target temperature back to 0
  3424. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3425. temp_cal_active = true;
  3426. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3427. lcd_update_enable(true);
  3428. lcd_update(2);
  3429. }
  3430. break;
  3431. #ifdef DIS
  3432. case 77:
  3433. {
  3434. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3435. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3436. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3437. float dimension_x = 40;
  3438. float dimension_y = 40;
  3439. int points_x = 40;
  3440. int points_y = 40;
  3441. float offset_x = 74;
  3442. float offset_y = 33;
  3443. if (code_seen('X')) dimension_x = code_value();
  3444. if (code_seen('Y')) dimension_y = code_value();
  3445. if (code_seen('XP')) points_x = code_value();
  3446. if (code_seen('YP')) points_y = code_value();
  3447. if (code_seen('XO')) offset_x = code_value();
  3448. if (code_seen('YO')) offset_y = code_value();
  3449. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3450. } break;
  3451. #endif
  3452. case 79: {
  3453. for (int i = 255; i > 0; i = i - 5) {
  3454. fanSpeed = i;
  3455. //delay_keep_alive(2000);
  3456. for (int j = 0; j < 100; j++) {
  3457. delay_keep_alive(100);
  3458. }
  3459. fan_speed[1];
  3460. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3461. }
  3462. }break;
  3463. /**
  3464. * G80: Mesh-based Z probe, probes a grid and produces a
  3465. * mesh to compensate for variable bed height
  3466. *
  3467. * The S0 report the points as below
  3468. *
  3469. * +----> X-axis
  3470. * |
  3471. * |
  3472. * v Y-axis
  3473. *
  3474. */
  3475. case 80:
  3476. #ifdef MK1BP
  3477. break;
  3478. #endif //MK1BP
  3479. case_G80:
  3480. {
  3481. mesh_bed_leveling_flag = true;
  3482. int8_t verbosity_level = 0;
  3483. static bool run = false;
  3484. if (code_seen('V')) {
  3485. // Just 'V' without a number counts as V1.
  3486. char c = strchr_pointer[1];
  3487. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3488. }
  3489. // Firstly check if we know where we are
  3490. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3491. // We don't know where we are! HOME!
  3492. // Push the commands to the front of the message queue in the reverse order!
  3493. // There shall be always enough space reserved for these commands.
  3494. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3495. repeatcommand_front(); // repeat G80 with all its parameters
  3496. enquecommand_front_P((PSTR("G28 W0")));
  3497. }
  3498. else {
  3499. mesh_bed_leveling_flag = false;
  3500. }
  3501. break;
  3502. }
  3503. bool temp_comp_start = true;
  3504. #ifdef PINDA_THERMISTOR
  3505. temp_comp_start = false;
  3506. #endif //PINDA_THERMISTOR
  3507. if (temp_comp_start)
  3508. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3509. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3510. temp_compensation_start();
  3511. run = true;
  3512. repeatcommand_front(); // repeat G80 with all its parameters
  3513. enquecommand_front_P((PSTR("G28 W0")));
  3514. }
  3515. else {
  3516. mesh_bed_leveling_flag = false;
  3517. }
  3518. break;
  3519. }
  3520. run = false;
  3521. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3522. mesh_bed_leveling_flag = false;
  3523. break;
  3524. }
  3525. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3526. bool custom_message_old = custom_message;
  3527. unsigned int custom_message_type_old = custom_message_type;
  3528. unsigned int custom_message_state_old = custom_message_state;
  3529. custom_message = true;
  3530. custom_message_type = 1;
  3531. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3532. lcd_update(1);
  3533. mbl.reset(); //reset mesh bed leveling
  3534. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3535. // consumed during the first movements following this statement.
  3536. babystep_undo();
  3537. // Cycle through all points and probe them
  3538. // First move up. During this first movement, the babystepping will be reverted.
  3539. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3541. // The move to the first calibration point.
  3542. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3543. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3544. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3545. #ifdef SUPPORT_VERBOSITY
  3546. if (verbosity_level >= 1) {
  3547. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3548. }
  3549. #endif //SUPPORT_VERBOSITY
  3550. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3552. // Wait until the move is finished.
  3553. st_synchronize();
  3554. int mesh_point = 0; //index number of calibration point
  3555. int ix = 0;
  3556. int iy = 0;
  3557. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3558. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3559. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3560. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3561. #ifdef SUPPORT_VERBOSITY
  3562. if (verbosity_level >= 1) {
  3563. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3564. }
  3565. #endif // SUPPORT_VERBOSITY
  3566. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3567. const char *kill_message = NULL;
  3568. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3569. // Get coords of a measuring point.
  3570. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3571. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3572. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3573. float z0 = 0.f;
  3574. if (has_z && mesh_point > 0) {
  3575. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3576. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3577. //#if 0
  3578. #ifdef SUPPORT_VERBOSITY
  3579. if (verbosity_level >= 1) {
  3580. SERIAL_ECHOLNPGM("");
  3581. SERIAL_ECHOPGM("Bed leveling, point: ");
  3582. MYSERIAL.print(mesh_point);
  3583. SERIAL_ECHOPGM(", calibration z: ");
  3584. MYSERIAL.print(z0, 5);
  3585. SERIAL_ECHOLNPGM("");
  3586. }
  3587. #endif // SUPPORT_VERBOSITY
  3588. //#endif
  3589. }
  3590. // Move Z up to MESH_HOME_Z_SEARCH.
  3591. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3593. st_synchronize();
  3594. // Move to XY position of the sensor point.
  3595. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3596. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3597. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3598. #ifdef SUPPORT_VERBOSITY
  3599. if (verbosity_level >= 1) {
  3600. SERIAL_PROTOCOL(mesh_point);
  3601. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3602. }
  3603. #endif // SUPPORT_VERBOSITY
  3604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3605. st_synchronize();
  3606. // Go down until endstop is hit
  3607. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3608. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3609. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3610. break;
  3611. }
  3612. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3613. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3614. break;
  3615. }
  3616. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3617. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3618. break;
  3619. }
  3620. #ifdef SUPPORT_VERBOSITY
  3621. if (verbosity_level >= 10) {
  3622. SERIAL_ECHOPGM("X: ");
  3623. MYSERIAL.print(current_position[X_AXIS], 5);
  3624. SERIAL_ECHOLNPGM("");
  3625. SERIAL_ECHOPGM("Y: ");
  3626. MYSERIAL.print(current_position[Y_AXIS], 5);
  3627. SERIAL_PROTOCOLPGM("\n");
  3628. }
  3629. #endif // SUPPORT_VERBOSITY
  3630. float offset_z = 0;
  3631. #ifdef PINDA_THERMISTOR
  3632. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3633. #endif //PINDA_THERMISTOR
  3634. // #ifdef SUPPORT_VERBOSITY
  3635. /* if (verbosity_level >= 1)
  3636. {
  3637. SERIAL_ECHOPGM("mesh bed leveling: ");
  3638. MYSERIAL.print(current_position[Z_AXIS], 5);
  3639. SERIAL_ECHOPGM(" offset: ");
  3640. MYSERIAL.print(offset_z, 5);
  3641. SERIAL_ECHOLNPGM("");
  3642. }*/
  3643. // #endif // SUPPORT_VERBOSITY
  3644. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3645. custom_message_state--;
  3646. mesh_point++;
  3647. lcd_update(1);
  3648. }
  3649. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3650. #ifdef SUPPORT_VERBOSITY
  3651. if (verbosity_level >= 20) {
  3652. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3653. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3654. MYSERIAL.print(current_position[Z_AXIS], 5);
  3655. }
  3656. #endif // SUPPORT_VERBOSITY
  3657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3658. st_synchronize();
  3659. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3660. kill(kill_message);
  3661. SERIAL_ECHOLNPGM("killed");
  3662. }
  3663. clean_up_after_endstop_move();
  3664. // SERIAL_ECHOLNPGM("clean up finished ");
  3665. bool apply_temp_comp = true;
  3666. #ifdef PINDA_THERMISTOR
  3667. apply_temp_comp = false;
  3668. #endif
  3669. if (apply_temp_comp)
  3670. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3671. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3672. // SERIAL_ECHOLNPGM("babystep applied");
  3673. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3674. #ifdef SUPPORT_VERBOSITY
  3675. if (verbosity_level >= 1) {
  3676. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3677. }
  3678. #endif // SUPPORT_VERBOSITY
  3679. for (uint8_t i = 0; i < 4; ++i) {
  3680. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3681. long correction = 0;
  3682. if (code_seen(codes[i]))
  3683. correction = code_value_long();
  3684. else if (eeprom_bed_correction_valid) {
  3685. unsigned char *addr = (i < 2) ?
  3686. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3687. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3688. correction = eeprom_read_int8(addr);
  3689. }
  3690. if (correction == 0)
  3691. continue;
  3692. float offset = float(correction) * 0.001f;
  3693. if (fabs(offset) > 0.101f) {
  3694. SERIAL_ERROR_START;
  3695. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3696. SERIAL_ECHO(offset);
  3697. SERIAL_ECHOLNPGM(" microns");
  3698. }
  3699. else {
  3700. switch (i) {
  3701. case 0:
  3702. for (uint8_t row = 0; row < 3; ++row) {
  3703. mbl.z_values[row][1] += 0.5f * offset;
  3704. mbl.z_values[row][0] += offset;
  3705. }
  3706. break;
  3707. case 1:
  3708. for (uint8_t row = 0; row < 3; ++row) {
  3709. mbl.z_values[row][1] += 0.5f * offset;
  3710. mbl.z_values[row][2] += offset;
  3711. }
  3712. break;
  3713. case 2:
  3714. for (uint8_t col = 0; col < 3; ++col) {
  3715. mbl.z_values[1][col] += 0.5f * offset;
  3716. mbl.z_values[0][col] += offset;
  3717. }
  3718. break;
  3719. case 3:
  3720. for (uint8_t col = 0; col < 3; ++col) {
  3721. mbl.z_values[1][col] += 0.5f * offset;
  3722. mbl.z_values[2][col] += offset;
  3723. }
  3724. break;
  3725. }
  3726. }
  3727. }
  3728. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3729. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3730. // SERIAL_ECHOLNPGM("Upsample finished");
  3731. mbl.active = 1; //activate mesh bed leveling
  3732. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3733. go_home_with_z_lift();
  3734. // SERIAL_ECHOLNPGM("Go home finished");
  3735. //unretract (after PINDA preheat retraction)
  3736. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3737. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3739. }
  3740. KEEPALIVE_STATE(NOT_BUSY);
  3741. // Restore custom message state
  3742. custom_message = custom_message_old;
  3743. custom_message_type = custom_message_type_old;
  3744. custom_message_state = custom_message_state_old;
  3745. mesh_bed_leveling_flag = false;
  3746. mesh_bed_run_from_menu = false;
  3747. lcd_update(2);
  3748. }
  3749. break;
  3750. /**
  3751. * G81: Print mesh bed leveling status and bed profile if activated
  3752. */
  3753. case 81:
  3754. if (mbl.active) {
  3755. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3756. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3757. SERIAL_PROTOCOLPGM(",");
  3758. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3759. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3760. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3761. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3762. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3763. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3764. SERIAL_PROTOCOLPGM(" ");
  3765. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3766. }
  3767. SERIAL_PROTOCOLPGM("\n");
  3768. }
  3769. }
  3770. else
  3771. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3772. break;
  3773. #if 0
  3774. /**
  3775. * G82: Single Z probe at current location
  3776. *
  3777. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3778. *
  3779. */
  3780. case 82:
  3781. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3782. setup_for_endstop_move();
  3783. find_bed_induction_sensor_point_z();
  3784. clean_up_after_endstop_move();
  3785. SERIAL_PROTOCOLPGM("Bed found at: ");
  3786. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3787. SERIAL_PROTOCOLPGM("\n");
  3788. break;
  3789. /**
  3790. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3791. */
  3792. case 83:
  3793. {
  3794. int babystepz = code_seen('S') ? code_value() : 0;
  3795. int BabyPosition = code_seen('P') ? code_value() : 0;
  3796. if (babystepz != 0) {
  3797. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3798. // Is the axis indexed starting with zero or one?
  3799. if (BabyPosition > 4) {
  3800. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3801. }else{
  3802. // Save it to the eeprom
  3803. babystepLoadZ = babystepz;
  3804. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3805. // adjust the Z
  3806. babystepsTodoZadd(babystepLoadZ);
  3807. }
  3808. }
  3809. }
  3810. break;
  3811. /**
  3812. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3813. */
  3814. case 84:
  3815. babystepsTodoZsubtract(babystepLoadZ);
  3816. // babystepLoadZ = 0;
  3817. break;
  3818. /**
  3819. * G85: Prusa3D specific: Pick best babystep
  3820. */
  3821. case 85:
  3822. lcd_pick_babystep();
  3823. break;
  3824. #endif
  3825. /**
  3826. * G86: Prusa3D specific: Disable babystep correction after home.
  3827. * This G-code will be performed at the start of a calibration script.
  3828. */
  3829. case 86:
  3830. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3831. break;
  3832. /**
  3833. * G87: Prusa3D specific: Enable babystep correction after home
  3834. * This G-code will be performed at the end of a calibration script.
  3835. */
  3836. case 87:
  3837. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3838. break;
  3839. /**
  3840. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3841. */
  3842. case 88:
  3843. break;
  3844. #endif // ENABLE_MESH_BED_LEVELING
  3845. case 90: // G90
  3846. relative_mode = false;
  3847. break;
  3848. case 91: // G91
  3849. relative_mode = true;
  3850. break;
  3851. case 92: // G92
  3852. if(!code_seen(axis_codes[E_AXIS]))
  3853. st_synchronize();
  3854. for(int8_t i=0; i < NUM_AXIS; i++) {
  3855. if(code_seen(axis_codes[i])) {
  3856. if(i == E_AXIS) {
  3857. current_position[i] = code_value();
  3858. plan_set_e_position(current_position[E_AXIS]);
  3859. }
  3860. else {
  3861. current_position[i] = code_value()+add_homing[i];
  3862. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3863. }
  3864. }
  3865. }
  3866. break;
  3867. case 98: // G98 (activate farm mode)
  3868. farm_mode = 1;
  3869. PingTime = millis();
  3870. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3871. SilentModeMenu = SILENT_MODE_OFF;
  3872. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3873. break;
  3874. case 99: // G99 (deactivate farm mode)
  3875. farm_mode = 0;
  3876. lcd_printer_connected();
  3877. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3878. lcd_update(2);
  3879. break;
  3880. default:
  3881. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3882. }
  3883. } // end if(code_seen('G'))
  3884. else if(code_seen('M'))
  3885. {
  3886. int index;
  3887. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3888. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3889. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3890. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3891. } else
  3892. switch((int)code_value())
  3893. {
  3894. #ifdef ULTIPANEL
  3895. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3896. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3897. {
  3898. char *src = strchr_pointer + 2;
  3899. codenum = 0;
  3900. bool hasP = false, hasS = false;
  3901. if (code_seen('P')) {
  3902. codenum = code_value(); // milliseconds to wait
  3903. hasP = codenum > 0;
  3904. }
  3905. if (code_seen('S')) {
  3906. codenum = code_value() * 1000; // seconds to wait
  3907. hasS = codenum > 0;
  3908. }
  3909. starpos = strchr(src, '*');
  3910. if (starpos != NULL) *(starpos) = '\0';
  3911. while (*src == ' ') ++src;
  3912. if (!hasP && !hasS && *src != '\0') {
  3913. lcd_setstatus(src);
  3914. } else {
  3915. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3916. }
  3917. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3918. st_synchronize();
  3919. previous_millis_cmd = millis();
  3920. if (codenum > 0){
  3921. codenum += millis(); // keep track of when we started waiting
  3922. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3923. while(millis() < codenum && !lcd_clicked()){
  3924. manage_heater();
  3925. manage_inactivity(true);
  3926. lcd_update();
  3927. }
  3928. KEEPALIVE_STATE(IN_HANDLER);
  3929. lcd_ignore_click(false);
  3930. }else{
  3931. if (!lcd_detected())
  3932. break;
  3933. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3934. while(!lcd_clicked()){
  3935. manage_heater();
  3936. manage_inactivity(true);
  3937. lcd_update();
  3938. }
  3939. KEEPALIVE_STATE(IN_HANDLER);
  3940. }
  3941. if (IS_SD_PRINTING)
  3942. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3943. else
  3944. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3945. }
  3946. break;
  3947. #endif
  3948. case 17:
  3949. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3950. enable_x();
  3951. enable_y();
  3952. enable_z();
  3953. enable_e0();
  3954. enable_e1();
  3955. enable_e2();
  3956. break;
  3957. #ifdef SDSUPPORT
  3958. case 20: // M20 - list SD card
  3959. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3960. card.ls();
  3961. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3962. break;
  3963. case 21: // M21 - init SD card
  3964. card.initsd();
  3965. break;
  3966. case 22: //M22 - release SD card
  3967. card.release();
  3968. break;
  3969. case 23: //M23 - Select file
  3970. starpos = (strchr(strchr_pointer + 4,'*'));
  3971. if(starpos!=NULL)
  3972. *(starpos)='\0';
  3973. card.openFile(strchr_pointer + 4,true);
  3974. break;
  3975. case 24: //M24 - Start SD print
  3976. if (!card.paused)
  3977. failstats_reset_print();
  3978. card.startFileprint();
  3979. starttime=millis();
  3980. break;
  3981. case 25: //M25 - Pause SD print
  3982. card.pauseSDPrint();
  3983. break;
  3984. case 26: //M26 - Set SD index
  3985. if(card.cardOK && code_seen('S')) {
  3986. card.setIndex(code_value_long());
  3987. }
  3988. break;
  3989. case 27: //M27 - Get SD status
  3990. card.getStatus();
  3991. break;
  3992. case 28: //M28 - Start SD write
  3993. starpos = (strchr(strchr_pointer + 4,'*'));
  3994. if(starpos != NULL){
  3995. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3996. strchr_pointer = strchr(npos,' ') + 1;
  3997. *(starpos) = '\0';
  3998. }
  3999. card.openFile(strchr_pointer+4,false);
  4000. break;
  4001. case 29: //M29 - Stop SD write
  4002. //processed in write to file routine above
  4003. //card,saving = false;
  4004. break;
  4005. case 30: //M30 <filename> Delete File
  4006. if (card.cardOK){
  4007. card.closefile();
  4008. starpos = (strchr(strchr_pointer + 4,'*'));
  4009. if(starpos != NULL){
  4010. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4011. strchr_pointer = strchr(npos,' ') + 1;
  4012. *(starpos) = '\0';
  4013. }
  4014. card.removeFile(strchr_pointer + 4);
  4015. }
  4016. break;
  4017. case 32: //M32 - Select file and start SD print
  4018. {
  4019. if(card.sdprinting) {
  4020. st_synchronize();
  4021. }
  4022. starpos = (strchr(strchr_pointer + 4,'*'));
  4023. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4024. if(namestartpos==NULL)
  4025. {
  4026. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4027. }
  4028. else
  4029. namestartpos++; //to skip the '!'
  4030. if(starpos!=NULL)
  4031. *(starpos)='\0';
  4032. bool call_procedure=(code_seen('P'));
  4033. if(strchr_pointer>namestartpos)
  4034. call_procedure=false; //false alert, 'P' found within filename
  4035. if( card.cardOK )
  4036. {
  4037. card.openFile(namestartpos,true,!call_procedure);
  4038. if(code_seen('S'))
  4039. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4040. card.setIndex(code_value_long());
  4041. card.startFileprint();
  4042. if(!call_procedure)
  4043. starttime=millis(); //procedure calls count as normal print time.
  4044. }
  4045. } break;
  4046. case 928: //M928 - Start SD write
  4047. starpos = (strchr(strchr_pointer + 5,'*'));
  4048. if(starpos != NULL){
  4049. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4050. strchr_pointer = strchr(npos,' ') + 1;
  4051. *(starpos) = '\0';
  4052. }
  4053. card.openLogFile(strchr_pointer+5);
  4054. break;
  4055. #endif //SDSUPPORT
  4056. case 31: //M31 take time since the start of the SD print or an M109 command
  4057. {
  4058. stoptime=millis();
  4059. char time[30];
  4060. unsigned long t=(stoptime-starttime)/1000;
  4061. int sec,min;
  4062. min=t/60;
  4063. sec=t%60;
  4064. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4065. SERIAL_ECHO_START;
  4066. SERIAL_ECHOLN(time);
  4067. lcd_setstatus(time);
  4068. autotempShutdown();
  4069. }
  4070. break;
  4071. #ifndef _DISABLE_M42_M226
  4072. case 42: //M42 -Change pin status via gcode
  4073. if (code_seen('S'))
  4074. {
  4075. int pin_status = code_value();
  4076. int pin_number = LED_PIN;
  4077. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4078. pin_number = code_value();
  4079. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4080. {
  4081. if (sensitive_pins[i] == pin_number)
  4082. {
  4083. pin_number = -1;
  4084. break;
  4085. }
  4086. }
  4087. #if defined(FAN_PIN) && FAN_PIN > -1
  4088. if (pin_number == FAN_PIN)
  4089. fanSpeed = pin_status;
  4090. #endif
  4091. if (pin_number > -1)
  4092. {
  4093. pinMode(pin_number, OUTPUT);
  4094. digitalWrite(pin_number, pin_status);
  4095. analogWrite(pin_number, pin_status);
  4096. }
  4097. }
  4098. break;
  4099. #endif //_DISABLE_M42_M226
  4100. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4101. // Reset the baby step value and the baby step applied flag.
  4102. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4103. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4104. // Reset the skew and offset in both RAM and EEPROM.
  4105. reset_bed_offset_and_skew();
  4106. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4107. // the planner will not perform any adjustments in the XY plane.
  4108. // Wait for the motors to stop and update the current position with the absolute values.
  4109. world2machine_revert_to_uncorrected();
  4110. break;
  4111. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4112. {
  4113. int8_t verbosity_level = 0;
  4114. bool only_Z = code_seen('Z');
  4115. #ifdef SUPPORT_VERBOSITY
  4116. if (code_seen('V'))
  4117. {
  4118. // Just 'V' without a number counts as V1.
  4119. char c = strchr_pointer[1];
  4120. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4121. }
  4122. #endif //SUPPORT_VERBOSITY
  4123. gcode_M45(only_Z, verbosity_level);
  4124. }
  4125. break;
  4126. /*
  4127. case 46:
  4128. {
  4129. // M46: Prusa3D: Show the assigned IP address.
  4130. uint8_t ip[4];
  4131. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4132. if (hasIP) {
  4133. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4134. SERIAL_ECHO(int(ip[0]));
  4135. SERIAL_ECHOPGM(".");
  4136. SERIAL_ECHO(int(ip[1]));
  4137. SERIAL_ECHOPGM(".");
  4138. SERIAL_ECHO(int(ip[2]));
  4139. SERIAL_ECHOPGM(".");
  4140. SERIAL_ECHO(int(ip[3]));
  4141. SERIAL_ECHOLNPGM("");
  4142. } else {
  4143. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4144. }
  4145. break;
  4146. }
  4147. */
  4148. case 47:
  4149. // M47: Prusa3D: Show end stops dialog on the display.
  4150. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4151. lcd_diag_show_end_stops();
  4152. KEEPALIVE_STATE(IN_HANDLER);
  4153. break;
  4154. #if 0
  4155. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4156. {
  4157. // Disable the default update procedure of the display. We will do a modal dialog.
  4158. lcd_update_enable(false);
  4159. // Let the planner use the uncorrected coordinates.
  4160. mbl.reset();
  4161. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4162. // the planner will not perform any adjustments in the XY plane.
  4163. // Wait for the motors to stop and update the current position with the absolute values.
  4164. world2machine_revert_to_uncorrected();
  4165. // Move the print head close to the bed.
  4166. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4168. st_synchronize();
  4169. // Home in the XY plane.
  4170. set_destination_to_current();
  4171. setup_for_endstop_move();
  4172. home_xy();
  4173. int8_t verbosity_level = 0;
  4174. if (code_seen('V')) {
  4175. // Just 'V' without a number counts as V1.
  4176. char c = strchr_pointer[1];
  4177. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4178. }
  4179. bool success = scan_bed_induction_points(verbosity_level);
  4180. clean_up_after_endstop_move();
  4181. // Print head up.
  4182. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4184. st_synchronize();
  4185. lcd_update_enable(true);
  4186. break;
  4187. }
  4188. #endif
  4189. // M48 Z-Probe repeatability measurement function.
  4190. //
  4191. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4192. //
  4193. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4194. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4195. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4196. // regenerated.
  4197. //
  4198. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4199. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4200. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4201. //
  4202. #ifdef ENABLE_AUTO_BED_LEVELING
  4203. #ifdef Z_PROBE_REPEATABILITY_TEST
  4204. case 48: // M48 Z-Probe repeatability
  4205. {
  4206. #if Z_MIN_PIN == -1
  4207. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4208. #endif
  4209. double sum=0.0;
  4210. double mean=0.0;
  4211. double sigma=0.0;
  4212. double sample_set[50];
  4213. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4214. double X_current, Y_current, Z_current;
  4215. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4216. if (code_seen('V') || code_seen('v')) {
  4217. verbose_level = code_value();
  4218. if (verbose_level<0 || verbose_level>4 ) {
  4219. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4220. goto Sigma_Exit;
  4221. }
  4222. }
  4223. if (verbose_level > 0) {
  4224. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4225. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4226. }
  4227. if (code_seen('n')) {
  4228. n_samples = code_value();
  4229. if (n_samples<4 || n_samples>50 ) {
  4230. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4231. goto Sigma_Exit;
  4232. }
  4233. }
  4234. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4235. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4236. Z_current = st_get_position_mm(Z_AXIS);
  4237. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4238. ext_position = st_get_position_mm(E_AXIS);
  4239. if (code_seen('X') || code_seen('x') ) {
  4240. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4241. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4242. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4243. goto Sigma_Exit;
  4244. }
  4245. }
  4246. if (code_seen('Y') || code_seen('y') ) {
  4247. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4248. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4249. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4250. goto Sigma_Exit;
  4251. }
  4252. }
  4253. if (code_seen('L') || code_seen('l') ) {
  4254. n_legs = code_value();
  4255. if ( n_legs==1 )
  4256. n_legs = 2;
  4257. if ( n_legs<0 || n_legs>15 ) {
  4258. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4259. goto Sigma_Exit;
  4260. }
  4261. }
  4262. //
  4263. // Do all the preliminary setup work. First raise the probe.
  4264. //
  4265. st_synchronize();
  4266. plan_bed_level_matrix.set_to_identity();
  4267. plan_buffer_line( X_current, Y_current, Z_start_location,
  4268. ext_position,
  4269. homing_feedrate[Z_AXIS]/60,
  4270. active_extruder);
  4271. st_synchronize();
  4272. //
  4273. // Now get everything to the specified probe point So we can safely do a probe to
  4274. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4275. // use that as a starting point for each probe.
  4276. //
  4277. if (verbose_level > 2)
  4278. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4279. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4280. ext_position,
  4281. homing_feedrate[X_AXIS]/60,
  4282. active_extruder);
  4283. st_synchronize();
  4284. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4285. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4286. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4287. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4288. //
  4289. // OK, do the inital probe to get us close to the bed.
  4290. // Then retrace the right amount and use that in subsequent probes
  4291. //
  4292. setup_for_endstop_move();
  4293. run_z_probe();
  4294. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4295. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4296. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4297. ext_position,
  4298. homing_feedrate[X_AXIS]/60,
  4299. active_extruder);
  4300. st_synchronize();
  4301. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4302. for( n=0; n<n_samples; n++) {
  4303. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4304. if ( n_legs) {
  4305. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4306. int rotational_direction, l;
  4307. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4308. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4309. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4310. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4311. //SERIAL_ECHOPAIR(" theta: ",theta);
  4312. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4313. //SERIAL_PROTOCOLLNPGM("");
  4314. for( l=0; l<n_legs-1; l++) {
  4315. if (rotational_direction==1)
  4316. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4317. else
  4318. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4319. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4320. if ( radius<0.0 )
  4321. radius = -radius;
  4322. X_current = X_probe_location + cos(theta) * radius;
  4323. Y_current = Y_probe_location + sin(theta) * radius;
  4324. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4325. X_current = X_MIN_POS;
  4326. if ( X_current>X_MAX_POS)
  4327. X_current = X_MAX_POS;
  4328. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4329. Y_current = Y_MIN_POS;
  4330. if ( Y_current>Y_MAX_POS)
  4331. Y_current = Y_MAX_POS;
  4332. if (verbose_level>3 ) {
  4333. SERIAL_ECHOPAIR("x: ", X_current);
  4334. SERIAL_ECHOPAIR("y: ", Y_current);
  4335. SERIAL_PROTOCOLLNPGM("");
  4336. }
  4337. do_blocking_move_to( X_current, Y_current, Z_current );
  4338. }
  4339. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4340. }
  4341. setup_for_endstop_move();
  4342. run_z_probe();
  4343. sample_set[n] = current_position[Z_AXIS];
  4344. //
  4345. // Get the current mean for the data points we have so far
  4346. //
  4347. sum=0.0;
  4348. for( j=0; j<=n; j++) {
  4349. sum = sum + sample_set[j];
  4350. }
  4351. mean = sum / (double (n+1));
  4352. //
  4353. // Now, use that mean to calculate the standard deviation for the
  4354. // data points we have so far
  4355. //
  4356. sum=0.0;
  4357. for( j=0; j<=n; j++) {
  4358. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4359. }
  4360. sigma = sqrt( sum / (double (n+1)) );
  4361. if (verbose_level > 1) {
  4362. SERIAL_PROTOCOL(n+1);
  4363. SERIAL_PROTOCOL(" of ");
  4364. SERIAL_PROTOCOL(n_samples);
  4365. SERIAL_PROTOCOLPGM(" z: ");
  4366. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4367. }
  4368. if (verbose_level > 2) {
  4369. SERIAL_PROTOCOL(" mean: ");
  4370. SERIAL_PROTOCOL_F(mean,6);
  4371. SERIAL_PROTOCOL(" sigma: ");
  4372. SERIAL_PROTOCOL_F(sigma,6);
  4373. }
  4374. if (verbose_level > 0)
  4375. SERIAL_PROTOCOLPGM("\n");
  4376. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4377. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4378. st_synchronize();
  4379. }
  4380. delay(1000);
  4381. clean_up_after_endstop_move();
  4382. // enable_endstops(true);
  4383. if (verbose_level > 0) {
  4384. SERIAL_PROTOCOLPGM("Mean: ");
  4385. SERIAL_PROTOCOL_F(mean, 6);
  4386. SERIAL_PROTOCOLPGM("\n");
  4387. }
  4388. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4389. SERIAL_PROTOCOL_F(sigma, 6);
  4390. SERIAL_PROTOCOLPGM("\n\n");
  4391. Sigma_Exit:
  4392. break;
  4393. }
  4394. #endif // Z_PROBE_REPEATABILITY_TEST
  4395. #endif // ENABLE_AUTO_BED_LEVELING
  4396. case 73: //M73 show percent done and time remaining
  4397. if(code_seen('P')) print_percent_done_normal = code_value();
  4398. if(code_seen('R')) print_time_remaining_normal = code_value();
  4399. if(code_seen('Q')) print_percent_done_silent = code_value();
  4400. if(code_seen('S')) print_time_remaining_silent = code_value();
  4401. {
  4402. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4403. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4404. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4405. }
  4406. break;
  4407. case 104: // M104
  4408. if(setTargetedHotend(104)){
  4409. break;
  4410. }
  4411. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4412. setWatch();
  4413. break;
  4414. case 112: // M112 -Emergency Stop
  4415. kill(_n(""), 3);
  4416. break;
  4417. case 140: // M140 set bed temp
  4418. if (code_seen('S')) setTargetBed(code_value());
  4419. break;
  4420. case 105 : // M105
  4421. if(setTargetedHotend(105)){
  4422. break;
  4423. }
  4424. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4425. SERIAL_PROTOCOLPGM("ok T:");
  4426. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4427. SERIAL_PROTOCOLPGM(" /");
  4428. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4429. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4430. SERIAL_PROTOCOLPGM(" B:");
  4431. SERIAL_PROTOCOL_F(degBed(),1);
  4432. SERIAL_PROTOCOLPGM(" /");
  4433. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4434. #endif //TEMP_BED_PIN
  4435. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4436. SERIAL_PROTOCOLPGM(" T");
  4437. SERIAL_PROTOCOL(cur_extruder);
  4438. SERIAL_PROTOCOLPGM(":");
  4439. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4440. SERIAL_PROTOCOLPGM(" /");
  4441. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4442. }
  4443. #else
  4444. SERIAL_ERROR_START;
  4445. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4446. #endif
  4447. SERIAL_PROTOCOLPGM(" @:");
  4448. #ifdef EXTRUDER_WATTS
  4449. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4450. SERIAL_PROTOCOLPGM("W");
  4451. #else
  4452. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4453. #endif
  4454. SERIAL_PROTOCOLPGM(" B@:");
  4455. #ifdef BED_WATTS
  4456. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4457. SERIAL_PROTOCOLPGM("W");
  4458. #else
  4459. SERIAL_PROTOCOL(getHeaterPower(-1));
  4460. #endif
  4461. #ifdef PINDA_THERMISTOR
  4462. SERIAL_PROTOCOLPGM(" P:");
  4463. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4464. #endif //PINDA_THERMISTOR
  4465. #ifdef AMBIENT_THERMISTOR
  4466. SERIAL_PROTOCOLPGM(" A:");
  4467. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4468. #endif //AMBIENT_THERMISTOR
  4469. #ifdef SHOW_TEMP_ADC_VALUES
  4470. {float raw = 0.0;
  4471. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4472. SERIAL_PROTOCOLPGM(" ADC B:");
  4473. SERIAL_PROTOCOL_F(degBed(),1);
  4474. SERIAL_PROTOCOLPGM("C->");
  4475. raw = rawBedTemp();
  4476. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4477. SERIAL_PROTOCOLPGM(" Rb->");
  4478. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4479. SERIAL_PROTOCOLPGM(" Rxb->");
  4480. SERIAL_PROTOCOL_F(raw, 5);
  4481. #endif
  4482. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4483. SERIAL_PROTOCOLPGM(" T");
  4484. SERIAL_PROTOCOL(cur_extruder);
  4485. SERIAL_PROTOCOLPGM(":");
  4486. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4487. SERIAL_PROTOCOLPGM("C->");
  4488. raw = rawHotendTemp(cur_extruder);
  4489. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4490. SERIAL_PROTOCOLPGM(" Rt");
  4491. SERIAL_PROTOCOL(cur_extruder);
  4492. SERIAL_PROTOCOLPGM("->");
  4493. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4494. SERIAL_PROTOCOLPGM(" Rx");
  4495. SERIAL_PROTOCOL(cur_extruder);
  4496. SERIAL_PROTOCOLPGM("->");
  4497. SERIAL_PROTOCOL_F(raw, 5);
  4498. }}
  4499. #endif
  4500. SERIAL_PROTOCOLLN("");
  4501. KEEPALIVE_STATE(NOT_BUSY);
  4502. return;
  4503. break;
  4504. case 109:
  4505. {// M109 - Wait for extruder heater to reach target.
  4506. if(setTargetedHotend(109)){
  4507. break;
  4508. }
  4509. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4510. heating_status = 1;
  4511. if (farm_mode) { prusa_statistics(1); };
  4512. #ifdef AUTOTEMP
  4513. autotemp_enabled=false;
  4514. #endif
  4515. if (code_seen('S')) {
  4516. setTargetHotend(code_value(), tmp_extruder);
  4517. CooldownNoWait = true;
  4518. } else if (code_seen('R')) {
  4519. setTargetHotend(code_value(), tmp_extruder);
  4520. CooldownNoWait = false;
  4521. }
  4522. #ifdef AUTOTEMP
  4523. if (code_seen('S')) autotemp_min=code_value();
  4524. if (code_seen('B')) autotemp_max=code_value();
  4525. if (code_seen('F'))
  4526. {
  4527. autotemp_factor=code_value();
  4528. autotemp_enabled=true;
  4529. }
  4530. #endif
  4531. setWatch();
  4532. codenum = millis();
  4533. /* See if we are heating up or cooling down */
  4534. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4535. KEEPALIVE_STATE(NOT_BUSY);
  4536. cancel_heatup = false;
  4537. wait_for_heater(codenum); //loops until target temperature is reached
  4538. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4539. KEEPALIVE_STATE(IN_HANDLER);
  4540. heating_status = 2;
  4541. if (farm_mode) { prusa_statistics(2); };
  4542. //starttime=millis();
  4543. previous_millis_cmd = millis();
  4544. }
  4545. break;
  4546. case 190: // M190 - Wait for bed heater to reach target.
  4547. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4548. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4549. heating_status = 3;
  4550. if (farm_mode) { prusa_statistics(1); };
  4551. if (code_seen('S'))
  4552. {
  4553. setTargetBed(code_value());
  4554. CooldownNoWait = true;
  4555. }
  4556. else if (code_seen('R'))
  4557. {
  4558. setTargetBed(code_value());
  4559. CooldownNoWait = false;
  4560. }
  4561. codenum = millis();
  4562. cancel_heatup = false;
  4563. target_direction = isHeatingBed(); // true if heating, false if cooling
  4564. KEEPALIVE_STATE(NOT_BUSY);
  4565. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4566. {
  4567. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4568. {
  4569. if (!farm_mode) {
  4570. float tt = degHotend(active_extruder);
  4571. SERIAL_PROTOCOLPGM("T:");
  4572. SERIAL_PROTOCOL(tt);
  4573. SERIAL_PROTOCOLPGM(" E:");
  4574. SERIAL_PROTOCOL((int)active_extruder);
  4575. SERIAL_PROTOCOLPGM(" B:");
  4576. SERIAL_PROTOCOL_F(degBed(), 1);
  4577. SERIAL_PROTOCOLLN("");
  4578. }
  4579. codenum = millis();
  4580. }
  4581. manage_heater();
  4582. manage_inactivity();
  4583. lcd_update();
  4584. }
  4585. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4586. KEEPALIVE_STATE(IN_HANDLER);
  4587. heating_status = 4;
  4588. previous_millis_cmd = millis();
  4589. #endif
  4590. break;
  4591. #if defined(FAN_PIN) && FAN_PIN > -1
  4592. case 106: //M106 Fan On
  4593. if (code_seen('S')){
  4594. fanSpeed=constrain(code_value(),0,255);
  4595. }
  4596. else {
  4597. fanSpeed=255;
  4598. }
  4599. break;
  4600. case 107: //M107 Fan Off
  4601. fanSpeed = 0;
  4602. break;
  4603. #endif //FAN_PIN
  4604. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4605. case 80: // M80 - Turn on Power Supply
  4606. SET_OUTPUT(PS_ON_PIN); //GND
  4607. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4608. // If you have a switch on suicide pin, this is useful
  4609. // if you want to start another print with suicide feature after
  4610. // a print without suicide...
  4611. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4612. SET_OUTPUT(SUICIDE_PIN);
  4613. WRITE(SUICIDE_PIN, HIGH);
  4614. #endif
  4615. #ifdef ULTIPANEL
  4616. powersupply = true;
  4617. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4618. lcd_update();
  4619. #endif
  4620. break;
  4621. #endif
  4622. case 81: // M81 - Turn off Power Supply
  4623. disable_heater();
  4624. st_synchronize();
  4625. disable_e0();
  4626. disable_e1();
  4627. disable_e2();
  4628. finishAndDisableSteppers();
  4629. fanSpeed = 0;
  4630. delay(1000); // Wait a little before to switch off
  4631. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4632. st_synchronize();
  4633. suicide();
  4634. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4635. SET_OUTPUT(PS_ON_PIN);
  4636. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4637. #endif
  4638. #ifdef ULTIPANEL
  4639. powersupply = false;
  4640. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4641. lcd_update();
  4642. #endif
  4643. break;
  4644. case 82:
  4645. axis_relative_modes[3] = false;
  4646. break;
  4647. case 83:
  4648. axis_relative_modes[3] = true;
  4649. break;
  4650. case 18: //compatibility
  4651. case 84: // M84
  4652. if(code_seen('S')){
  4653. stepper_inactive_time = code_value() * 1000;
  4654. }
  4655. else
  4656. {
  4657. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4658. if(all_axis)
  4659. {
  4660. st_synchronize();
  4661. disable_e0();
  4662. disable_e1();
  4663. disable_e2();
  4664. finishAndDisableSteppers();
  4665. }
  4666. else
  4667. {
  4668. st_synchronize();
  4669. if (code_seen('X')) disable_x();
  4670. if (code_seen('Y')) disable_y();
  4671. if (code_seen('Z')) disable_z();
  4672. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4673. if (code_seen('E')) {
  4674. disable_e0();
  4675. disable_e1();
  4676. disable_e2();
  4677. }
  4678. #endif
  4679. }
  4680. }
  4681. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4682. print_time_remaining_init();
  4683. snmm_filaments_used = 0;
  4684. break;
  4685. case 85: // M85
  4686. if(code_seen('S')) {
  4687. max_inactive_time = code_value() * 1000;
  4688. }
  4689. break;
  4690. #ifdef SAFETYTIMER
  4691. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4692. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4693. if (code_seen('S')) {
  4694. safetytimer_inactive_time = code_value() * 1000;
  4695. safetyTimer.start();
  4696. }
  4697. break;
  4698. #endif
  4699. case 92: // M92
  4700. for(int8_t i=0; i < NUM_AXIS; i++)
  4701. {
  4702. if(code_seen(axis_codes[i]))
  4703. {
  4704. if(i == 3) { // E
  4705. float value = code_value();
  4706. if(value < 20.0) {
  4707. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4708. max_jerk[E_AXIS] *= factor;
  4709. max_feedrate[i] *= factor;
  4710. axis_steps_per_sqr_second[i] *= factor;
  4711. }
  4712. axis_steps_per_unit[i] = value;
  4713. }
  4714. else {
  4715. axis_steps_per_unit[i] = code_value();
  4716. }
  4717. }
  4718. }
  4719. break;
  4720. case 110: // M110 - reset line pos
  4721. if (code_seen('N'))
  4722. gcode_LastN = code_value_long();
  4723. break;
  4724. #ifdef HOST_KEEPALIVE_FEATURE
  4725. case 113: // M113 - Get or set Host Keepalive interval
  4726. if (code_seen('S')) {
  4727. host_keepalive_interval = (uint8_t)code_value_short();
  4728. // NOMORE(host_keepalive_interval, 60);
  4729. }
  4730. else {
  4731. SERIAL_ECHO_START;
  4732. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4733. SERIAL_PROTOCOLLN("");
  4734. }
  4735. break;
  4736. #endif
  4737. case 115: // M115
  4738. if (code_seen('V')) {
  4739. // Report the Prusa version number.
  4740. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4741. } else if (code_seen('U')) {
  4742. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4743. // pause the print and ask the user to upgrade the firmware.
  4744. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4745. } else {
  4746. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4747. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4748. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4749. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4750. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4751. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4752. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4753. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4754. SERIAL_ECHOPGM(" UUID:");
  4755. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4756. }
  4757. break;
  4758. /* case 117: // M117 display message
  4759. starpos = (strchr(strchr_pointer + 5,'*'));
  4760. if(starpos!=NULL)
  4761. *(starpos)='\0';
  4762. lcd_setstatus(strchr_pointer + 5);
  4763. break;*/
  4764. case 114: // M114
  4765. gcode_M114();
  4766. break;
  4767. case 120: // M120
  4768. enable_endstops(false) ;
  4769. break;
  4770. case 121: // M121
  4771. enable_endstops(true) ;
  4772. break;
  4773. case 119: // M119
  4774. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4775. SERIAL_PROTOCOLLN("");
  4776. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4777. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4778. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4779. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4780. }else{
  4781. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4782. }
  4783. SERIAL_PROTOCOLLN("");
  4784. #endif
  4785. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4786. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4787. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4788. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4789. }else{
  4790. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4791. }
  4792. SERIAL_PROTOCOLLN("");
  4793. #endif
  4794. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4795. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4796. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4797. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4798. }else{
  4799. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4800. }
  4801. SERIAL_PROTOCOLLN("");
  4802. #endif
  4803. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4804. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4805. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4806. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4807. }else{
  4808. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4809. }
  4810. SERIAL_PROTOCOLLN("");
  4811. #endif
  4812. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4813. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4814. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4815. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4816. }else{
  4817. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4818. }
  4819. SERIAL_PROTOCOLLN("");
  4820. #endif
  4821. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4822. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4823. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4824. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4825. }else{
  4826. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4827. }
  4828. SERIAL_PROTOCOLLN("");
  4829. #endif
  4830. break;
  4831. //TODO: update for all axis, use for loop
  4832. #ifdef BLINKM
  4833. case 150: // M150
  4834. {
  4835. byte red;
  4836. byte grn;
  4837. byte blu;
  4838. if(code_seen('R')) red = code_value();
  4839. if(code_seen('U')) grn = code_value();
  4840. if(code_seen('B')) blu = code_value();
  4841. SendColors(red,grn,blu);
  4842. }
  4843. break;
  4844. #endif //BLINKM
  4845. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4846. {
  4847. tmp_extruder = active_extruder;
  4848. if(code_seen('T')) {
  4849. tmp_extruder = code_value();
  4850. if(tmp_extruder >= EXTRUDERS) {
  4851. SERIAL_ECHO_START;
  4852. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4853. break;
  4854. }
  4855. }
  4856. float area = .0;
  4857. if(code_seen('D')) {
  4858. float diameter = (float)code_value();
  4859. if (diameter == 0.0) {
  4860. // setting any extruder filament size disables volumetric on the assumption that
  4861. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4862. // for all extruders
  4863. volumetric_enabled = false;
  4864. } else {
  4865. filament_size[tmp_extruder] = (float)code_value();
  4866. // make sure all extruders have some sane value for the filament size
  4867. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4868. #if EXTRUDERS > 1
  4869. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4870. #if EXTRUDERS > 2
  4871. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4872. #endif
  4873. #endif
  4874. volumetric_enabled = true;
  4875. }
  4876. } else {
  4877. //reserved for setting filament diameter via UFID or filament measuring device
  4878. break;
  4879. }
  4880. calculate_extruder_multipliers();
  4881. }
  4882. break;
  4883. case 201: // M201
  4884. for(int8_t i=0; i < NUM_AXIS; i++)
  4885. {
  4886. if(code_seen(axis_codes[i]))
  4887. {
  4888. max_acceleration_units_per_sq_second[i] = code_value();
  4889. }
  4890. }
  4891. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4892. reset_acceleration_rates();
  4893. break;
  4894. #if 0 // Not used for Sprinter/grbl gen6
  4895. case 202: // M202
  4896. for(int8_t i=0; i < NUM_AXIS; i++) {
  4897. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4898. }
  4899. break;
  4900. #endif
  4901. case 203: // M203 max feedrate mm/sec
  4902. for(int8_t i=0; i < NUM_AXIS; i++) {
  4903. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4904. }
  4905. break;
  4906. case 204: // M204 acclereration S normal moves T filmanent only moves
  4907. {
  4908. if(code_seen('S')) acceleration = code_value() ;
  4909. if(code_seen('T')) retract_acceleration = code_value() ;
  4910. }
  4911. break;
  4912. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4913. {
  4914. if(code_seen('S')) minimumfeedrate = code_value();
  4915. if(code_seen('T')) mintravelfeedrate = code_value();
  4916. if(code_seen('B')) minsegmenttime = code_value() ;
  4917. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4918. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4919. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4920. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4921. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4922. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4923. }
  4924. break;
  4925. case 206: // M206 additional homing offset
  4926. for(int8_t i=0; i < 3; i++)
  4927. {
  4928. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4929. }
  4930. break;
  4931. #ifdef FWRETRACT
  4932. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4933. {
  4934. if(code_seen('S'))
  4935. {
  4936. retract_length = code_value() ;
  4937. }
  4938. if(code_seen('F'))
  4939. {
  4940. retract_feedrate = code_value()/60 ;
  4941. }
  4942. if(code_seen('Z'))
  4943. {
  4944. retract_zlift = code_value() ;
  4945. }
  4946. }break;
  4947. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4948. {
  4949. if(code_seen('S'))
  4950. {
  4951. retract_recover_length = code_value() ;
  4952. }
  4953. if(code_seen('F'))
  4954. {
  4955. retract_recover_feedrate = code_value()/60 ;
  4956. }
  4957. }break;
  4958. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4959. {
  4960. if(code_seen('S'))
  4961. {
  4962. int t= code_value() ;
  4963. switch(t)
  4964. {
  4965. case 0:
  4966. {
  4967. autoretract_enabled=false;
  4968. retracted[0]=false;
  4969. #if EXTRUDERS > 1
  4970. retracted[1]=false;
  4971. #endif
  4972. #if EXTRUDERS > 2
  4973. retracted[2]=false;
  4974. #endif
  4975. }break;
  4976. case 1:
  4977. {
  4978. autoretract_enabled=true;
  4979. retracted[0]=false;
  4980. #if EXTRUDERS > 1
  4981. retracted[1]=false;
  4982. #endif
  4983. #if EXTRUDERS > 2
  4984. retracted[2]=false;
  4985. #endif
  4986. }break;
  4987. default:
  4988. SERIAL_ECHO_START;
  4989. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4990. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4991. SERIAL_ECHOLNPGM("\"(1)");
  4992. }
  4993. }
  4994. }break;
  4995. #endif // FWRETRACT
  4996. #if EXTRUDERS > 1
  4997. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4998. {
  4999. if(setTargetedHotend(218)){
  5000. break;
  5001. }
  5002. if(code_seen('X'))
  5003. {
  5004. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5005. }
  5006. if(code_seen('Y'))
  5007. {
  5008. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5009. }
  5010. SERIAL_ECHO_START;
  5011. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5012. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5013. {
  5014. SERIAL_ECHO(" ");
  5015. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5016. SERIAL_ECHO(",");
  5017. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5018. }
  5019. SERIAL_ECHOLN("");
  5020. }break;
  5021. #endif
  5022. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5023. {
  5024. if(code_seen('S'))
  5025. {
  5026. feedmultiply = code_value() ;
  5027. }
  5028. }
  5029. break;
  5030. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5031. {
  5032. if(code_seen('S'))
  5033. {
  5034. int tmp_code = code_value();
  5035. if (code_seen('T'))
  5036. {
  5037. if(setTargetedHotend(221)){
  5038. break;
  5039. }
  5040. extruder_multiply[tmp_extruder] = tmp_code;
  5041. }
  5042. else
  5043. {
  5044. extrudemultiply = tmp_code ;
  5045. }
  5046. }
  5047. calculate_extruder_multipliers();
  5048. }
  5049. break;
  5050. #ifndef _DISABLE_M42_M226
  5051. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5052. {
  5053. if(code_seen('P')){
  5054. int pin_number = code_value(); // pin number
  5055. int pin_state = -1; // required pin state - default is inverted
  5056. if(code_seen('S')) pin_state = code_value(); // required pin state
  5057. if(pin_state >= -1 && pin_state <= 1){
  5058. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5059. {
  5060. if (sensitive_pins[i] == pin_number)
  5061. {
  5062. pin_number = -1;
  5063. break;
  5064. }
  5065. }
  5066. if (pin_number > -1)
  5067. {
  5068. int target = LOW;
  5069. st_synchronize();
  5070. pinMode(pin_number, INPUT);
  5071. switch(pin_state){
  5072. case 1:
  5073. target = HIGH;
  5074. break;
  5075. case 0:
  5076. target = LOW;
  5077. break;
  5078. case -1:
  5079. target = !digitalRead(pin_number);
  5080. break;
  5081. }
  5082. while(digitalRead(pin_number) != target){
  5083. manage_heater();
  5084. manage_inactivity();
  5085. lcd_update();
  5086. }
  5087. }
  5088. }
  5089. }
  5090. }
  5091. break;
  5092. #endif //_DISABLE_M42_M226
  5093. #if NUM_SERVOS > 0
  5094. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5095. {
  5096. int servo_index = -1;
  5097. int servo_position = 0;
  5098. if (code_seen('P'))
  5099. servo_index = code_value();
  5100. if (code_seen('S')) {
  5101. servo_position = code_value();
  5102. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5103. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5104. servos[servo_index].attach(0);
  5105. #endif
  5106. servos[servo_index].write(servo_position);
  5107. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5108. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5109. servos[servo_index].detach();
  5110. #endif
  5111. }
  5112. else {
  5113. SERIAL_ECHO_START;
  5114. SERIAL_ECHO("Servo ");
  5115. SERIAL_ECHO(servo_index);
  5116. SERIAL_ECHOLN(" out of range");
  5117. }
  5118. }
  5119. else if (servo_index >= 0) {
  5120. SERIAL_PROTOCOL(_T(MSG_OK));
  5121. SERIAL_PROTOCOL(" Servo ");
  5122. SERIAL_PROTOCOL(servo_index);
  5123. SERIAL_PROTOCOL(": ");
  5124. SERIAL_PROTOCOL(servos[servo_index].read());
  5125. SERIAL_PROTOCOLLN("");
  5126. }
  5127. }
  5128. break;
  5129. #endif // NUM_SERVOS > 0
  5130. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5131. case 300: // M300
  5132. {
  5133. int beepS = code_seen('S') ? code_value() : 110;
  5134. int beepP = code_seen('P') ? code_value() : 1000;
  5135. if (beepS > 0)
  5136. {
  5137. #if BEEPER > 0
  5138. tone(BEEPER, beepS);
  5139. delay(beepP);
  5140. noTone(BEEPER);
  5141. #elif defined(ULTRALCD)
  5142. lcd_buzz(beepS, beepP);
  5143. #elif defined(LCD_USE_I2C_BUZZER)
  5144. lcd_buzz(beepP, beepS);
  5145. #endif
  5146. }
  5147. else
  5148. {
  5149. delay(beepP);
  5150. }
  5151. }
  5152. break;
  5153. #endif // M300
  5154. #ifdef PIDTEMP
  5155. case 301: // M301
  5156. {
  5157. if(code_seen('P')) Kp = code_value();
  5158. if(code_seen('I')) Ki = scalePID_i(code_value());
  5159. if(code_seen('D')) Kd = scalePID_d(code_value());
  5160. #ifdef PID_ADD_EXTRUSION_RATE
  5161. if(code_seen('C')) Kc = code_value();
  5162. #endif
  5163. updatePID();
  5164. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5165. SERIAL_PROTOCOL(" p:");
  5166. SERIAL_PROTOCOL(Kp);
  5167. SERIAL_PROTOCOL(" i:");
  5168. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5169. SERIAL_PROTOCOL(" d:");
  5170. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5171. #ifdef PID_ADD_EXTRUSION_RATE
  5172. SERIAL_PROTOCOL(" c:");
  5173. //Kc does not have scaling applied above, or in resetting defaults
  5174. SERIAL_PROTOCOL(Kc);
  5175. #endif
  5176. SERIAL_PROTOCOLLN("");
  5177. }
  5178. break;
  5179. #endif //PIDTEMP
  5180. #ifdef PIDTEMPBED
  5181. case 304: // M304
  5182. {
  5183. if(code_seen('P')) bedKp = code_value();
  5184. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5185. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5186. updatePID();
  5187. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5188. SERIAL_PROTOCOL(" p:");
  5189. SERIAL_PROTOCOL(bedKp);
  5190. SERIAL_PROTOCOL(" i:");
  5191. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5192. SERIAL_PROTOCOL(" d:");
  5193. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5194. SERIAL_PROTOCOLLN("");
  5195. }
  5196. break;
  5197. #endif //PIDTEMP
  5198. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5199. {
  5200. #ifdef CHDK
  5201. SET_OUTPUT(CHDK);
  5202. WRITE(CHDK, HIGH);
  5203. chdkHigh = millis();
  5204. chdkActive = true;
  5205. #else
  5206. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5207. const uint8_t NUM_PULSES=16;
  5208. const float PULSE_LENGTH=0.01524;
  5209. for(int i=0; i < NUM_PULSES; i++) {
  5210. WRITE(PHOTOGRAPH_PIN, HIGH);
  5211. _delay_ms(PULSE_LENGTH);
  5212. WRITE(PHOTOGRAPH_PIN, LOW);
  5213. _delay_ms(PULSE_LENGTH);
  5214. }
  5215. delay(7.33);
  5216. for(int i=0; i < NUM_PULSES; i++) {
  5217. WRITE(PHOTOGRAPH_PIN, HIGH);
  5218. _delay_ms(PULSE_LENGTH);
  5219. WRITE(PHOTOGRAPH_PIN, LOW);
  5220. _delay_ms(PULSE_LENGTH);
  5221. }
  5222. #endif
  5223. #endif //chdk end if
  5224. }
  5225. break;
  5226. #ifdef DOGLCD
  5227. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5228. {
  5229. if (code_seen('C')) {
  5230. lcd_setcontrast( ((int)code_value())&63 );
  5231. }
  5232. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5233. SERIAL_PROTOCOL(lcd_contrast);
  5234. SERIAL_PROTOCOLLN("");
  5235. }
  5236. break;
  5237. #endif
  5238. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5239. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5240. {
  5241. float temp = .0;
  5242. if (code_seen('S')) temp=code_value();
  5243. set_extrude_min_temp(temp);
  5244. }
  5245. break;
  5246. #endif
  5247. case 303: // M303 PID autotune
  5248. {
  5249. float temp = 150.0;
  5250. int e=0;
  5251. int c=5;
  5252. if (code_seen('E')) e=code_value();
  5253. if (e<0)
  5254. temp=70;
  5255. if (code_seen('S')) temp=code_value();
  5256. if (code_seen('C')) c=code_value();
  5257. PID_autotune(temp, e, c);
  5258. }
  5259. break;
  5260. case 400: // M400 finish all moves
  5261. {
  5262. st_synchronize();
  5263. }
  5264. break;
  5265. case 500: // M500 Store settings in EEPROM
  5266. {
  5267. Config_StoreSettings(EEPROM_OFFSET);
  5268. }
  5269. break;
  5270. case 501: // M501 Read settings from EEPROM
  5271. {
  5272. Config_RetrieveSettings(EEPROM_OFFSET);
  5273. }
  5274. break;
  5275. case 502: // M502 Revert to default settings
  5276. {
  5277. Config_ResetDefault();
  5278. }
  5279. break;
  5280. case 503: // M503 print settings currently in memory
  5281. {
  5282. Config_PrintSettings();
  5283. }
  5284. break;
  5285. case 509: //M509 Force language selection
  5286. {
  5287. lang_reset();
  5288. SERIAL_ECHO_START;
  5289. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5290. }
  5291. break;
  5292. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5293. case 540:
  5294. {
  5295. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5296. }
  5297. break;
  5298. #endif
  5299. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5300. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5301. {
  5302. float value;
  5303. if (code_seen('Z'))
  5304. {
  5305. value = code_value();
  5306. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5307. {
  5308. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5309. SERIAL_ECHO_START;
  5310. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5311. SERIAL_PROTOCOLLN("");
  5312. }
  5313. else
  5314. {
  5315. SERIAL_ECHO_START;
  5316. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5317. SERIAL_ECHORPGM(MSG_Z_MIN);
  5318. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5319. SERIAL_ECHORPGM(MSG_Z_MAX);
  5320. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5321. SERIAL_PROTOCOLLN("");
  5322. }
  5323. }
  5324. else
  5325. {
  5326. SERIAL_ECHO_START;
  5327. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5328. SERIAL_ECHO(-zprobe_zoffset);
  5329. SERIAL_PROTOCOLLN("");
  5330. }
  5331. break;
  5332. }
  5333. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5334. #ifdef FILAMENTCHANGEENABLE
  5335. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5336. {
  5337. #ifdef PAT9125
  5338. bool old_fsensor_enabled = fsensor_enabled;
  5339. fsensor_enabled = false; //temporary solution for unexpected restarting
  5340. #endif //PAT9125
  5341. st_synchronize();
  5342. float target[4];
  5343. float lastpos[4];
  5344. if (farm_mode)
  5345. {
  5346. prusa_statistics(22);
  5347. }
  5348. feedmultiplyBckp=feedmultiply;
  5349. int8_t TooLowZ = 0;
  5350. float HotendTempBckp = degTargetHotend(active_extruder);
  5351. int fanSpeedBckp = fanSpeed;
  5352. target[X_AXIS]=current_position[X_AXIS];
  5353. target[Y_AXIS]=current_position[Y_AXIS];
  5354. target[Z_AXIS]=current_position[Z_AXIS];
  5355. target[E_AXIS]=current_position[E_AXIS];
  5356. lastpos[X_AXIS]=current_position[X_AXIS];
  5357. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5358. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5359. lastpos[E_AXIS]=current_position[E_AXIS];
  5360. //Restract extruder
  5361. if(code_seen('E'))
  5362. {
  5363. target[E_AXIS]+= code_value();
  5364. }
  5365. else
  5366. {
  5367. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5368. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5369. #endif
  5370. }
  5371. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5372. //Lift Z
  5373. if(code_seen('Z'))
  5374. {
  5375. target[Z_AXIS]+= code_value();
  5376. }
  5377. else
  5378. {
  5379. #ifdef FILAMENTCHANGE_ZADD
  5380. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5381. if(target[Z_AXIS] < 10){
  5382. target[Z_AXIS]+= 10 ;
  5383. TooLowZ = 1;
  5384. }else{
  5385. TooLowZ = 0;
  5386. }
  5387. #endif
  5388. }
  5389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5390. //Move XY to side
  5391. if(code_seen('X'))
  5392. {
  5393. target[X_AXIS]+= code_value();
  5394. }
  5395. else
  5396. {
  5397. #ifdef FILAMENTCHANGE_XPOS
  5398. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5399. #endif
  5400. }
  5401. if(code_seen('Y'))
  5402. {
  5403. target[Y_AXIS]= code_value();
  5404. }
  5405. else
  5406. {
  5407. #ifdef FILAMENTCHANGE_YPOS
  5408. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5409. #endif
  5410. }
  5411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5412. st_synchronize();
  5413. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5414. uint8_t cnt = 0;
  5415. int counterBeep = 0;
  5416. fanSpeed = 0;
  5417. unsigned long waiting_start_time = millis();
  5418. uint8_t wait_for_user_state = 0;
  5419. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5420. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5421. //cnt++;
  5422. manage_heater();
  5423. manage_inactivity(true);
  5424. /*#ifdef SNMM
  5425. target[E_AXIS] += 0.002;
  5426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5427. #endif // SNMM*/
  5428. //if (cnt == 0)
  5429. {
  5430. #if BEEPER > 0
  5431. if (counterBeep == 500) {
  5432. counterBeep = 0;
  5433. }
  5434. SET_OUTPUT(BEEPER);
  5435. if (counterBeep == 0) {
  5436. WRITE(BEEPER, HIGH);
  5437. }
  5438. if (counterBeep == 20) {
  5439. WRITE(BEEPER, LOW);
  5440. }
  5441. counterBeep++;
  5442. #else
  5443. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5444. lcd_buzz(1000 / 6, 100);
  5445. #else
  5446. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5447. #endif
  5448. #endif
  5449. }
  5450. switch (wait_for_user_state) {
  5451. case 0:
  5452. delay_keep_alive(4);
  5453. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5454. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5455. wait_for_user_state = 1;
  5456. setTargetHotend(0, 0);
  5457. setTargetHotend(0, 1);
  5458. setTargetHotend(0, 2);
  5459. st_synchronize();
  5460. disable_e0();
  5461. disable_e1();
  5462. disable_e2();
  5463. }
  5464. break;
  5465. case 1:
  5466. delay_keep_alive(4);
  5467. if (lcd_clicked()) {
  5468. setTargetHotend(HotendTempBckp, active_extruder);
  5469. lcd_wait_for_heater();
  5470. wait_for_user_state = 2;
  5471. }
  5472. break;
  5473. case 2:
  5474. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5475. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5476. waiting_start_time = millis();
  5477. wait_for_user_state = 0;
  5478. }
  5479. else {
  5480. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5481. lcd.setCursor(1, 4);
  5482. lcd.print(ftostr3(degHotend(active_extruder)));
  5483. }
  5484. break;
  5485. }
  5486. }
  5487. WRITE(BEEPER, LOW);
  5488. lcd_change_fil_state = 0;
  5489. // Unload filament
  5490. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5491. KEEPALIVE_STATE(IN_HANDLER);
  5492. custom_message = true;
  5493. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5494. if (code_seen('L'))
  5495. {
  5496. target[E_AXIS] += code_value();
  5497. }
  5498. else
  5499. {
  5500. #ifdef SNMM
  5501. #else
  5502. #ifdef FILAMENTCHANGE_FINALRETRACT
  5503. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5504. #endif
  5505. #endif // SNMM
  5506. }
  5507. #ifdef SNMM
  5508. target[E_AXIS] += 12;
  5509. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5510. target[E_AXIS] += 6;
  5511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5512. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5513. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5514. st_synchronize();
  5515. target[E_AXIS] += (FIL_COOLING);
  5516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5517. target[E_AXIS] += (FIL_COOLING*-1);
  5518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5519. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5520. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5521. st_synchronize();
  5522. #else
  5523. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5524. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5525. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5526. st_synchronize();
  5527. #ifdef TMC2130
  5528. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5529. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5530. #else
  5531. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5532. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5533. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5534. #endif //TMC2130
  5535. target[E_AXIS] -= 45;
  5536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5537. st_synchronize();
  5538. target[E_AXIS] -= 15;
  5539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5540. st_synchronize();
  5541. target[E_AXIS] -= 20;
  5542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5543. st_synchronize();
  5544. #ifdef TMC2130
  5545. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5546. #else
  5547. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5548. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5549. else st_current_set(2, tmp_motor_loud[2]);
  5550. #endif //TMC2130
  5551. #endif // SNMM
  5552. //finish moves
  5553. st_synchronize();
  5554. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5555. //disable extruder steppers so filament can be removed
  5556. disable_e0();
  5557. disable_e1();
  5558. disable_e2();
  5559. delay(100);
  5560. WRITE(BEEPER, HIGH);
  5561. counterBeep = 0;
  5562. while(!lcd_clicked() && (counterBeep < 50)) {
  5563. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5564. delay_keep_alive(100);
  5565. counterBeep++;
  5566. }
  5567. WRITE(BEEPER, LOW);
  5568. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5569. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5570. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5571. //lcd_return_to_status();
  5572. lcd_update_enable(true);
  5573. //Wait for user to insert filament
  5574. lcd_wait_interact();
  5575. //load_filament_time = millis();
  5576. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5577. #ifdef PAT9125
  5578. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5579. #endif //PAT9125
  5580. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5581. while(!lcd_clicked())
  5582. {
  5583. manage_heater();
  5584. manage_inactivity(true);
  5585. #ifdef PAT9125
  5586. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5587. {
  5588. tone(BEEPER, 1000);
  5589. delay_keep_alive(50);
  5590. noTone(BEEPER);
  5591. break;
  5592. }
  5593. #endif //PAT9125
  5594. /*#ifdef SNMM
  5595. target[E_AXIS] += 0.002;
  5596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5597. #endif // SNMM*/
  5598. }
  5599. #ifdef PAT9125
  5600. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5601. #endif //PAT9125
  5602. //WRITE(BEEPER, LOW);
  5603. KEEPALIVE_STATE(IN_HANDLER);
  5604. #ifdef SNMM
  5605. display_loading();
  5606. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5607. do {
  5608. target[E_AXIS] += 0.002;
  5609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5610. delay_keep_alive(2);
  5611. } while (!lcd_clicked());
  5612. KEEPALIVE_STATE(IN_HANDLER);
  5613. /*if (millis() - load_filament_time > 2) {
  5614. load_filament_time = millis();
  5615. target[E_AXIS] += 0.001;
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5617. }*/
  5618. //Filament inserted
  5619. //Feed the filament to the end of nozzle quickly
  5620. st_synchronize();
  5621. target[E_AXIS] += bowden_length[snmm_extruder];
  5622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5623. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5625. target[E_AXIS] += 40;
  5626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5627. target[E_AXIS] += 10;
  5628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5629. #else
  5630. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5632. #endif // SNMM
  5633. //Extrude some filament
  5634. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5636. //Wait for user to check the state
  5637. lcd_change_fil_state = 0;
  5638. lcd_loading_filament();
  5639. tone(BEEPER, 500);
  5640. delay_keep_alive(50);
  5641. noTone(BEEPER);
  5642. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5643. lcd_change_fil_state = 0;
  5644. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5645. lcd_alright();
  5646. KEEPALIVE_STATE(IN_HANDLER);
  5647. switch(lcd_change_fil_state){
  5648. // Filament failed to load so load it again
  5649. case 2:
  5650. #ifdef SNMM
  5651. display_loading();
  5652. do {
  5653. target[E_AXIS] += 0.002;
  5654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5655. delay_keep_alive(2);
  5656. } while (!lcd_clicked());
  5657. st_synchronize();
  5658. target[E_AXIS] += bowden_length[snmm_extruder];
  5659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5660. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5661. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5662. target[E_AXIS] += 40;
  5663. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5664. target[E_AXIS] += 10;
  5665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5666. #else
  5667. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5669. #endif
  5670. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5672. lcd_loading_filament();
  5673. break;
  5674. // Filament loaded properly but color is not clear
  5675. case 3:
  5676. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5678. lcd_loading_color();
  5679. break;
  5680. // Everything good
  5681. default:
  5682. lcd_change_success();
  5683. lcd_update_enable(true);
  5684. break;
  5685. }
  5686. }
  5687. //Not let's go back to print
  5688. fanSpeed = fanSpeedBckp;
  5689. //Feed a little of filament to stabilize pressure
  5690. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5692. //Retract
  5693. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5695. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5696. //Move XY back
  5697. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5698. //Move Z back
  5699. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5700. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5701. //Unretract
  5702. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5703. //Set E position to original
  5704. plan_set_e_position(lastpos[E_AXIS]);
  5705. //Recover feed rate
  5706. feedmultiply=feedmultiplyBckp;
  5707. char cmd[9];
  5708. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5709. enquecommand(cmd);
  5710. lcd_setstatuspgm(_T(WELCOME_MSG));
  5711. custom_message = false;
  5712. custom_message_type = 0;
  5713. #ifdef PAT9125
  5714. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5715. if (fsensor_M600)
  5716. {
  5717. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5718. st_synchronize();
  5719. while (!is_buffer_empty())
  5720. {
  5721. process_commands();
  5722. cmdqueue_pop_front();
  5723. }
  5724. KEEPALIVE_STATE(IN_HANDLER);
  5725. fsensor_enable();
  5726. fsensor_restore_print_and_continue();
  5727. }
  5728. #endif //PAT9125
  5729. }
  5730. break;
  5731. #endif //FILAMENTCHANGEENABLE
  5732. case 601: {
  5733. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5734. }
  5735. break;
  5736. case 602: {
  5737. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5738. }
  5739. break;
  5740. #ifdef PINDA_THERMISTOR
  5741. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5742. {
  5743. int set_target_pinda = 0;
  5744. if (code_seen('S')) {
  5745. set_target_pinda = code_value();
  5746. }
  5747. else {
  5748. break;
  5749. }
  5750. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5751. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5752. SERIAL_PROTOCOL(set_target_pinda);
  5753. SERIAL_PROTOCOLLN("");
  5754. codenum = millis();
  5755. cancel_heatup = false;
  5756. bool is_pinda_cooling = false;
  5757. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5758. is_pinda_cooling = true;
  5759. }
  5760. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5761. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5762. {
  5763. SERIAL_PROTOCOLPGM("P:");
  5764. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5765. SERIAL_PROTOCOLPGM("/");
  5766. SERIAL_PROTOCOL(set_target_pinda);
  5767. SERIAL_PROTOCOLLN("");
  5768. codenum = millis();
  5769. }
  5770. manage_heater();
  5771. manage_inactivity();
  5772. lcd_update();
  5773. }
  5774. LCD_MESSAGERPGM(_T(MSG_OK));
  5775. break;
  5776. }
  5777. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5778. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5779. uint8_t cal_status = calibration_status_pinda();
  5780. int16_t usteps = 0;
  5781. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5782. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5783. for (uint8_t i = 0; i < 6; i++)
  5784. {
  5785. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5786. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5787. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5788. SERIAL_PROTOCOLPGM(", ");
  5789. SERIAL_PROTOCOL(35 + (i * 5));
  5790. SERIAL_PROTOCOLPGM(", ");
  5791. SERIAL_PROTOCOL(usteps);
  5792. SERIAL_PROTOCOLPGM(", ");
  5793. SERIAL_PROTOCOL(mm * 1000);
  5794. SERIAL_PROTOCOLLN("");
  5795. }
  5796. }
  5797. else if (code_seen('!')) { // ! - Set factory default values
  5798. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5799. int16_t z_shift = 8; //40C - 20um - 8usteps
  5800. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5801. z_shift = 24; //45C - 60um - 24usteps
  5802. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5803. z_shift = 48; //50C - 120um - 48usteps
  5804. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5805. z_shift = 80; //55C - 200um - 80usteps
  5806. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5807. z_shift = 120; //60C - 300um - 120usteps
  5808. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5809. SERIAL_PROTOCOLLN("factory restored");
  5810. }
  5811. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5812. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5813. int16_t z_shift = 0;
  5814. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5815. SERIAL_PROTOCOLLN("zerorized");
  5816. }
  5817. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5818. int16_t usteps = code_value();
  5819. if (code_seen('I')) {
  5820. byte index = code_value();
  5821. if ((index >= 0) && (index < 5)) {
  5822. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5823. SERIAL_PROTOCOLLN("OK");
  5824. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5825. for (uint8_t i = 0; i < 6; i++)
  5826. {
  5827. usteps = 0;
  5828. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5829. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5830. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5831. SERIAL_PROTOCOLPGM(", ");
  5832. SERIAL_PROTOCOL(35 + (i * 5));
  5833. SERIAL_PROTOCOLPGM(", ");
  5834. SERIAL_PROTOCOL(usteps);
  5835. SERIAL_PROTOCOLPGM(", ");
  5836. SERIAL_PROTOCOL(mm * 1000);
  5837. SERIAL_PROTOCOLLN("");
  5838. }
  5839. }
  5840. }
  5841. }
  5842. else {
  5843. SERIAL_PROTOCOLPGM("no valid command");
  5844. }
  5845. break;
  5846. #endif //PINDA_THERMISTOR
  5847. #ifdef LIN_ADVANCE
  5848. case 900: // M900: Set LIN_ADVANCE options.
  5849. gcode_M900();
  5850. break;
  5851. #endif
  5852. case 907: // M907 Set digital trimpot motor current using axis codes.
  5853. {
  5854. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5855. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5856. if(code_seen('B')) st_current_set(4,code_value());
  5857. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5858. #endif
  5859. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5860. if(code_seen('X')) st_current_set(0, code_value());
  5861. #endif
  5862. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5863. if(code_seen('Z')) st_current_set(1, code_value());
  5864. #endif
  5865. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5866. if(code_seen('E')) st_current_set(2, code_value());
  5867. #endif
  5868. }
  5869. break;
  5870. case 908: // M908 Control digital trimpot directly.
  5871. {
  5872. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5873. uint8_t channel,current;
  5874. if(code_seen('P')) channel=code_value();
  5875. if(code_seen('S')) current=code_value();
  5876. digitalPotWrite(channel, current);
  5877. #endif
  5878. }
  5879. break;
  5880. #ifdef TMC2130
  5881. case 910: // M910 TMC2130 init
  5882. {
  5883. tmc2130_init();
  5884. }
  5885. break;
  5886. case 911: // M911 Set TMC2130 holding currents
  5887. {
  5888. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5889. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5890. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5891. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5892. }
  5893. break;
  5894. case 912: // M912 Set TMC2130 running currents
  5895. {
  5896. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5897. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5898. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5899. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5900. }
  5901. break;
  5902. case 913: // M913 Print TMC2130 currents
  5903. {
  5904. tmc2130_print_currents();
  5905. }
  5906. break;
  5907. case 914: // M914 Set normal mode
  5908. {
  5909. tmc2130_mode = TMC2130_MODE_NORMAL;
  5910. tmc2130_init();
  5911. }
  5912. break;
  5913. case 915: // M915 Set silent mode
  5914. {
  5915. tmc2130_mode = TMC2130_MODE_SILENT;
  5916. tmc2130_init();
  5917. }
  5918. break;
  5919. case 916: // M916 Set sg_thrs
  5920. {
  5921. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5922. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5923. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5924. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5925. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5926. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5927. }
  5928. break;
  5929. case 917: // M917 Set TMC2130 pwm_ampl
  5930. {
  5931. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5932. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5933. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5934. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5935. }
  5936. break;
  5937. case 918: // M918 Set TMC2130 pwm_grad
  5938. {
  5939. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5940. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5941. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5942. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5943. }
  5944. break;
  5945. #endif //TMC2130
  5946. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5947. {
  5948. #ifdef TMC2130
  5949. if(code_seen('E'))
  5950. {
  5951. uint16_t res_new = code_value();
  5952. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5953. {
  5954. st_synchronize();
  5955. uint8_t axis = E_AXIS;
  5956. uint16_t res = tmc2130_get_res(axis);
  5957. tmc2130_set_res(axis, res_new);
  5958. if (res_new > res)
  5959. {
  5960. uint16_t fac = (res_new / res);
  5961. axis_steps_per_unit[axis] *= fac;
  5962. position[E_AXIS] *= fac;
  5963. }
  5964. else
  5965. {
  5966. uint16_t fac = (res / res_new);
  5967. axis_steps_per_unit[axis] /= fac;
  5968. position[E_AXIS] /= fac;
  5969. }
  5970. }
  5971. }
  5972. #else //TMC2130
  5973. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5974. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5975. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5976. if(code_seen('B')) microstep_mode(4,code_value());
  5977. microstep_readings();
  5978. #endif
  5979. #endif //TMC2130
  5980. }
  5981. break;
  5982. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5983. {
  5984. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5985. if(code_seen('S')) switch((int)code_value())
  5986. {
  5987. case 1:
  5988. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5989. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5990. break;
  5991. case 2:
  5992. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5993. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5994. break;
  5995. }
  5996. microstep_readings();
  5997. #endif
  5998. }
  5999. break;
  6000. case 701: //M701: load filament
  6001. {
  6002. gcode_M701();
  6003. }
  6004. break;
  6005. case 702:
  6006. {
  6007. #ifdef SNMM
  6008. if (code_seen('U')) {
  6009. extr_unload_used(); //unload all filaments which were used in current print
  6010. }
  6011. else if (code_seen('C')) {
  6012. extr_unload(); //unload just current filament
  6013. }
  6014. else {
  6015. extr_unload_all(); //unload all filaments
  6016. }
  6017. #else
  6018. #ifdef PAT9125
  6019. bool old_fsensor_enabled = fsensor_enabled;
  6020. fsensor_enabled = false;
  6021. #endif //PAT9125
  6022. custom_message = true;
  6023. custom_message_type = 2;
  6024. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6025. // extr_unload2();
  6026. current_position[E_AXIS] -= 45;
  6027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6028. st_synchronize();
  6029. current_position[E_AXIS] -= 15;
  6030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6031. st_synchronize();
  6032. current_position[E_AXIS] -= 20;
  6033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6034. st_synchronize();
  6035. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6036. //disable extruder steppers so filament can be removed
  6037. disable_e0();
  6038. disable_e1();
  6039. disable_e2();
  6040. delay(100);
  6041. WRITE(BEEPER, HIGH);
  6042. uint8_t counterBeep = 0;
  6043. while (!lcd_clicked() && (counterBeep < 50)) {
  6044. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6045. delay_keep_alive(100);
  6046. counterBeep++;
  6047. }
  6048. WRITE(BEEPER, LOW);
  6049. st_synchronize();
  6050. while (lcd_clicked()) delay_keep_alive(100);
  6051. lcd_update_enable(true);
  6052. lcd_setstatuspgm(_T(WELCOME_MSG));
  6053. custom_message = false;
  6054. custom_message_type = 0;
  6055. #ifdef PAT9125
  6056. fsensor_enabled = old_fsensor_enabled;
  6057. #endif //PAT9125
  6058. #endif
  6059. }
  6060. break;
  6061. case 999: // M999: Restart after being stopped
  6062. Stopped = false;
  6063. lcd_reset_alert_level();
  6064. gcode_LastN = Stopped_gcode_LastN;
  6065. FlushSerialRequestResend();
  6066. break;
  6067. default:
  6068. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6069. }
  6070. } // end if(code_seen('M')) (end of M codes)
  6071. else if(code_seen('T'))
  6072. {
  6073. int index;
  6074. st_synchronize();
  6075. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6076. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6077. SERIAL_ECHOLNPGM("Invalid T code.");
  6078. }
  6079. else {
  6080. if (*(strchr_pointer + index) == '?') {
  6081. tmp_extruder = choose_extruder_menu();
  6082. }
  6083. else {
  6084. tmp_extruder = code_value();
  6085. }
  6086. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6087. #ifdef SNMM
  6088. #ifdef LIN_ADVANCE
  6089. if (snmm_extruder != tmp_extruder)
  6090. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6091. #endif
  6092. snmm_extruder = tmp_extruder;
  6093. delay(100);
  6094. disable_e0();
  6095. disable_e1();
  6096. disable_e2();
  6097. pinMode(E_MUX0_PIN, OUTPUT);
  6098. pinMode(E_MUX1_PIN, OUTPUT);
  6099. delay(100);
  6100. SERIAL_ECHO_START;
  6101. SERIAL_ECHO("T:");
  6102. SERIAL_ECHOLN((int)tmp_extruder);
  6103. switch (tmp_extruder) {
  6104. case 1:
  6105. WRITE(E_MUX0_PIN, HIGH);
  6106. WRITE(E_MUX1_PIN, LOW);
  6107. break;
  6108. case 2:
  6109. WRITE(E_MUX0_PIN, LOW);
  6110. WRITE(E_MUX1_PIN, HIGH);
  6111. break;
  6112. case 3:
  6113. WRITE(E_MUX0_PIN, HIGH);
  6114. WRITE(E_MUX1_PIN, HIGH);
  6115. break;
  6116. default:
  6117. WRITE(E_MUX0_PIN, LOW);
  6118. WRITE(E_MUX1_PIN, LOW);
  6119. break;
  6120. }
  6121. delay(100);
  6122. #else
  6123. if (tmp_extruder >= EXTRUDERS) {
  6124. SERIAL_ECHO_START;
  6125. SERIAL_ECHOPGM("T");
  6126. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6127. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6128. }
  6129. else {
  6130. boolean make_move = false;
  6131. if (code_seen('F')) {
  6132. make_move = true;
  6133. next_feedrate = code_value();
  6134. if (next_feedrate > 0.0) {
  6135. feedrate = next_feedrate;
  6136. }
  6137. }
  6138. #if EXTRUDERS > 1
  6139. if (tmp_extruder != active_extruder) {
  6140. // Save current position to return to after applying extruder offset
  6141. memcpy(destination, current_position, sizeof(destination));
  6142. // Offset extruder (only by XY)
  6143. int i;
  6144. for (i = 0; i < 2; i++) {
  6145. current_position[i] = current_position[i] -
  6146. extruder_offset[i][active_extruder] +
  6147. extruder_offset[i][tmp_extruder];
  6148. }
  6149. // Set the new active extruder and position
  6150. active_extruder = tmp_extruder;
  6151. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6152. // Move to the old position if 'F' was in the parameters
  6153. if (make_move && Stopped == false) {
  6154. prepare_move();
  6155. }
  6156. }
  6157. #endif
  6158. SERIAL_ECHO_START;
  6159. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6160. SERIAL_PROTOCOLLN((int)active_extruder);
  6161. }
  6162. #endif
  6163. }
  6164. } // end if(code_seen('T')) (end of T codes)
  6165. #ifdef DEBUG_DCODES
  6166. else if (code_seen('D')) // D codes (debug)
  6167. {
  6168. switch((int)code_value())
  6169. {
  6170. case -1: // D-1 - Endless loop
  6171. dcode__1(); break;
  6172. case 0: // D0 - Reset
  6173. dcode_0(); break;
  6174. case 1: // D1 - Clear EEPROM
  6175. dcode_1(); break;
  6176. case 2: // D2 - Read/Write RAM
  6177. dcode_2(); break;
  6178. case 3: // D3 - Read/Write EEPROM
  6179. dcode_3(); break;
  6180. case 4: // D4 - Read/Write PIN
  6181. dcode_4(); break;
  6182. case 5: // D5 - Read/Write FLASH
  6183. // dcode_5(); break;
  6184. break;
  6185. case 6: // D6 - Read/Write external FLASH
  6186. dcode_6(); break;
  6187. case 7: // D7 - Read/Write Bootloader
  6188. dcode_7(); break;
  6189. case 8: // D8 - Read/Write PINDA
  6190. dcode_8(); break;
  6191. case 9: // D9 - Read/Write ADC
  6192. dcode_9(); break;
  6193. case 10: // D10 - XYZ calibration = OK
  6194. dcode_10(); break;
  6195. #ifdef TMC2130
  6196. case 2130: // D9125 - TMC2130
  6197. dcode_2130(); break;
  6198. #endif //TMC2130
  6199. #ifdef PAT9125
  6200. case 9125: // D9125 - PAT9125
  6201. dcode_9125(); break;
  6202. #endif //PAT9125
  6203. }
  6204. }
  6205. #endif //DEBUG_DCODES
  6206. else
  6207. {
  6208. SERIAL_ECHO_START;
  6209. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6210. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6211. SERIAL_ECHOLNPGM("\"(2)");
  6212. }
  6213. KEEPALIVE_STATE(NOT_BUSY);
  6214. ClearToSend();
  6215. }
  6216. void FlushSerialRequestResend()
  6217. {
  6218. //char cmdbuffer[bufindr][100]="Resend:";
  6219. MYSERIAL.flush();
  6220. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6221. }
  6222. // Confirm the execution of a command, if sent from a serial line.
  6223. // Execution of a command from a SD card will not be confirmed.
  6224. void ClearToSend()
  6225. {
  6226. previous_millis_cmd = millis();
  6227. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6228. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6229. }
  6230. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6231. void update_currents() {
  6232. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6233. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6234. float tmp_motor[3];
  6235. //SERIAL_ECHOLNPGM("Currents updated: ");
  6236. if (destination[Z_AXIS] < Z_SILENT) {
  6237. //SERIAL_ECHOLNPGM("LOW");
  6238. for (uint8_t i = 0; i < 3; i++) {
  6239. st_current_set(i, current_low[i]);
  6240. /*MYSERIAL.print(int(i));
  6241. SERIAL_ECHOPGM(": ");
  6242. MYSERIAL.println(current_low[i]);*/
  6243. }
  6244. }
  6245. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6246. //SERIAL_ECHOLNPGM("HIGH");
  6247. for (uint8_t i = 0; i < 3; i++) {
  6248. st_current_set(i, current_high[i]);
  6249. /*MYSERIAL.print(int(i));
  6250. SERIAL_ECHOPGM(": ");
  6251. MYSERIAL.println(current_high[i]);*/
  6252. }
  6253. }
  6254. else {
  6255. for (uint8_t i = 0; i < 3; i++) {
  6256. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6257. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6258. st_current_set(i, tmp_motor[i]);
  6259. /*MYSERIAL.print(int(i));
  6260. SERIAL_ECHOPGM(": ");
  6261. MYSERIAL.println(tmp_motor[i]);*/
  6262. }
  6263. }
  6264. }
  6265. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6266. void get_coordinates()
  6267. {
  6268. bool seen[4]={false,false,false,false};
  6269. for(int8_t i=0; i < NUM_AXIS; i++) {
  6270. if(code_seen(axis_codes[i]))
  6271. {
  6272. bool relative = axis_relative_modes[i] || relative_mode;
  6273. destination[i] = (float)code_value();
  6274. if (i == E_AXIS) {
  6275. float emult = extruder_multiplier[active_extruder];
  6276. if (emult != 1.) {
  6277. if (! relative) {
  6278. destination[i] -= current_position[i];
  6279. relative = true;
  6280. }
  6281. destination[i] *= emult;
  6282. }
  6283. }
  6284. if (relative)
  6285. destination[i] += current_position[i];
  6286. seen[i]=true;
  6287. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6288. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6289. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6290. }
  6291. else destination[i] = current_position[i]; //Are these else lines really needed?
  6292. }
  6293. if(code_seen('F')) {
  6294. next_feedrate = code_value();
  6295. #ifdef MAX_SILENT_FEEDRATE
  6296. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6297. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6298. #endif //MAX_SILENT_FEEDRATE
  6299. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6300. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6301. {
  6302. // float e_max_speed =
  6303. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6304. }
  6305. }
  6306. }
  6307. void get_arc_coordinates()
  6308. {
  6309. #ifdef SF_ARC_FIX
  6310. bool relative_mode_backup = relative_mode;
  6311. relative_mode = true;
  6312. #endif
  6313. get_coordinates();
  6314. #ifdef SF_ARC_FIX
  6315. relative_mode=relative_mode_backup;
  6316. #endif
  6317. if(code_seen('I')) {
  6318. offset[0] = code_value();
  6319. }
  6320. else {
  6321. offset[0] = 0.0;
  6322. }
  6323. if(code_seen('J')) {
  6324. offset[1] = code_value();
  6325. }
  6326. else {
  6327. offset[1] = 0.0;
  6328. }
  6329. }
  6330. void clamp_to_software_endstops(float target[3])
  6331. {
  6332. #ifdef DEBUG_DISABLE_SWLIMITS
  6333. return;
  6334. #endif //DEBUG_DISABLE_SWLIMITS
  6335. world2machine_clamp(target[0], target[1]);
  6336. // Clamp the Z coordinate.
  6337. if (min_software_endstops) {
  6338. float negative_z_offset = 0;
  6339. #ifdef ENABLE_AUTO_BED_LEVELING
  6340. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6341. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6342. #endif
  6343. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6344. }
  6345. if (max_software_endstops) {
  6346. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6347. }
  6348. }
  6349. #ifdef MESH_BED_LEVELING
  6350. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6351. float dx = x - current_position[X_AXIS];
  6352. float dy = y - current_position[Y_AXIS];
  6353. float dz = z - current_position[Z_AXIS];
  6354. int n_segments = 0;
  6355. if (mbl.active) {
  6356. float len = abs(dx) + abs(dy);
  6357. if (len > 0)
  6358. // Split to 3cm segments or shorter.
  6359. n_segments = int(ceil(len / 30.f));
  6360. }
  6361. if (n_segments > 1) {
  6362. float de = e - current_position[E_AXIS];
  6363. for (int i = 1; i < n_segments; ++ i) {
  6364. float t = float(i) / float(n_segments);
  6365. plan_buffer_line(
  6366. current_position[X_AXIS] + t * dx,
  6367. current_position[Y_AXIS] + t * dy,
  6368. current_position[Z_AXIS] + t * dz,
  6369. current_position[E_AXIS] + t * de,
  6370. feed_rate, extruder);
  6371. }
  6372. }
  6373. // The rest of the path.
  6374. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6375. current_position[X_AXIS] = x;
  6376. current_position[Y_AXIS] = y;
  6377. current_position[Z_AXIS] = z;
  6378. current_position[E_AXIS] = e;
  6379. }
  6380. #endif // MESH_BED_LEVELING
  6381. void prepare_move()
  6382. {
  6383. clamp_to_software_endstops(destination);
  6384. previous_millis_cmd = millis();
  6385. // Do not use feedmultiply for E or Z only moves
  6386. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6388. }
  6389. else {
  6390. #ifdef MESH_BED_LEVELING
  6391. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6392. #else
  6393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6394. #endif
  6395. }
  6396. for(int8_t i=0; i < NUM_AXIS; i++) {
  6397. current_position[i] = destination[i];
  6398. }
  6399. }
  6400. void prepare_arc_move(char isclockwise) {
  6401. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6402. // Trace the arc
  6403. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6404. // As far as the parser is concerned, the position is now == target. In reality the
  6405. // motion control system might still be processing the action and the real tool position
  6406. // in any intermediate location.
  6407. for(int8_t i=0; i < NUM_AXIS; i++) {
  6408. current_position[i] = destination[i];
  6409. }
  6410. previous_millis_cmd = millis();
  6411. }
  6412. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6413. #if defined(FAN_PIN)
  6414. #if CONTROLLERFAN_PIN == FAN_PIN
  6415. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6416. #endif
  6417. #endif
  6418. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6419. unsigned long lastMotorCheck = 0;
  6420. void controllerFan()
  6421. {
  6422. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6423. {
  6424. lastMotorCheck = millis();
  6425. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6426. #if EXTRUDERS > 2
  6427. || !READ(E2_ENABLE_PIN)
  6428. #endif
  6429. #if EXTRUDER > 1
  6430. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6431. || !READ(X2_ENABLE_PIN)
  6432. #endif
  6433. || !READ(E1_ENABLE_PIN)
  6434. #endif
  6435. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6436. {
  6437. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6438. }
  6439. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6440. {
  6441. digitalWrite(CONTROLLERFAN_PIN, 0);
  6442. analogWrite(CONTROLLERFAN_PIN, 0);
  6443. }
  6444. else
  6445. {
  6446. // allows digital or PWM fan output to be used (see M42 handling)
  6447. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6448. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6449. }
  6450. }
  6451. }
  6452. #endif
  6453. #ifdef TEMP_STAT_LEDS
  6454. static bool blue_led = false;
  6455. static bool red_led = false;
  6456. static uint32_t stat_update = 0;
  6457. void handle_status_leds(void) {
  6458. float max_temp = 0.0;
  6459. if(millis() > stat_update) {
  6460. stat_update += 500; // Update every 0.5s
  6461. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6462. max_temp = max(max_temp, degHotend(cur_extruder));
  6463. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6464. }
  6465. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6466. max_temp = max(max_temp, degTargetBed());
  6467. max_temp = max(max_temp, degBed());
  6468. #endif
  6469. if((max_temp > 55.0) && (red_led == false)) {
  6470. digitalWrite(STAT_LED_RED, 1);
  6471. digitalWrite(STAT_LED_BLUE, 0);
  6472. red_led = true;
  6473. blue_led = false;
  6474. }
  6475. if((max_temp < 54.0) && (blue_led == false)) {
  6476. digitalWrite(STAT_LED_RED, 0);
  6477. digitalWrite(STAT_LED_BLUE, 1);
  6478. red_led = false;
  6479. blue_led = true;
  6480. }
  6481. }
  6482. }
  6483. #endif
  6484. #ifdef SAFETYTIMER
  6485. /**
  6486. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6487. *
  6488. * Full screen blocking notification message is shown after heater turning off.
  6489. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6490. * damage print.
  6491. *
  6492. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6493. */
  6494. static void handleSafetyTimer()
  6495. {
  6496. #if (EXTRUDERS > 1)
  6497. #error Implemented only for one extruder.
  6498. #endif //(EXTRUDERS > 1)
  6499. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6500. {
  6501. safetyTimer.stop();
  6502. }
  6503. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6504. {
  6505. safetyTimer.start();
  6506. }
  6507. else if (safetyTimer.expired(safetytimer_inactive_time))
  6508. {
  6509. setTargetBed(0);
  6510. setTargetHotend(0, 0);
  6511. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6512. }
  6513. }
  6514. #endif //SAFETYTIMER
  6515. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6516. {
  6517. #ifdef PAT9125
  6518. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6519. {
  6520. if (fsensor_autoload_enabled)
  6521. {
  6522. if (fsensor_check_autoload())
  6523. {
  6524. if (degHotend0() > EXTRUDE_MINTEMP)
  6525. {
  6526. fsensor_autoload_check_stop();
  6527. tone(BEEPER, 1000);
  6528. delay_keep_alive(50);
  6529. noTone(BEEPER);
  6530. loading_flag = true;
  6531. enquecommand_front_P((PSTR("M701")));
  6532. }
  6533. else
  6534. {
  6535. lcd_update_enable(false);
  6536. lcd_implementation_clear();
  6537. lcd.setCursor(0, 0);
  6538. lcd_printPGM(_T(MSG_ERROR));
  6539. lcd.setCursor(0, 2);
  6540. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6541. delay(2000);
  6542. lcd_implementation_clear();
  6543. lcd_update_enable(true);
  6544. }
  6545. }
  6546. }
  6547. else
  6548. fsensor_autoload_check_start();
  6549. }
  6550. else
  6551. if (fsensor_autoload_enabled)
  6552. fsensor_autoload_check_stop();
  6553. #endif //PAT9125
  6554. #ifdef SAFETYTIMER
  6555. handleSafetyTimer();
  6556. #endif //SAFETYTIMER
  6557. #if defined(KILL_PIN) && KILL_PIN > -1
  6558. static int killCount = 0; // make the inactivity button a bit less responsive
  6559. const int KILL_DELAY = 10000;
  6560. #endif
  6561. if(buflen < (BUFSIZE-1)){
  6562. get_command();
  6563. }
  6564. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6565. if(max_inactive_time)
  6566. kill(_n(""), 4);
  6567. if(stepper_inactive_time) {
  6568. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6569. {
  6570. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6571. disable_x();
  6572. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6573. disable_y();
  6574. disable_z();
  6575. disable_e0();
  6576. disable_e1();
  6577. disable_e2();
  6578. }
  6579. }
  6580. }
  6581. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6582. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6583. {
  6584. chdkActive = false;
  6585. WRITE(CHDK, LOW);
  6586. }
  6587. #endif
  6588. #if defined(KILL_PIN) && KILL_PIN > -1
  6589. // Check if the kill button was pressed and wait just in case it was an accidental
  6590. // key kill key press
  6591. // -------------------------------------------------------------------------------
  6592. if( 0 == READ(KILL_PIN) )
  6593. {
  6594. killCount++;
  6595. }
  6596. else if (killCount > 0)
  6597. {
  6598. killCount--;
  6599. }
  6600. // Exceeded threshold and we can confirm that it was not accidental
  6601. // KILL the machine
  6602. // ----------------------------------------------------------------
  6603. if ( killCount >= KILL_DELAY)
  6604. {
  6605. kill("", 5);
  6606. }
  6607. #endif
  6608. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6609. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6610. #endif
  6611. #ifdef EXTRUDER_RUNOUT_PREVENT
  6612. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6613. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6614. {
  6615. bool oldstatus=READ(E0_ENABLE_PIN);
  6616. enable_e0();
  6617. float oldepos=current_position[E_AXIS];
  6618. float oldedes=destination[E_AXIS];
  6619. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6620. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6621. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6622. current_position[E_AXIS]=oldepos;
  6623. destination[E_AXIS]=oldedes;
  6624. plan_set_e_position(oldepos);
  6625. previous_millis_cmd=millis();
  6626. st_synchronize();
  6627. WRITE(E0_ENABLE_PIN,oldstatus);
  6628. }
  6629. #endif
  6630. #ifdef TEMP_STAT_LEDS
  6631. handle_status_leds();
  6632. #endif
  6633. check_axes_activity();
  6634. }
  6635. void kill(const char *full_screen_message, unsigned char id)
  6636. {
  6637. printf_P(_N("KILL: %d\n"), id);
  6638. //return;
  6639. cli(); // Stop interrupts
  6640. disable_heater();
  6641. disable_x();
  6642. // SERIAL_ECHOLNPGM("kill - disable Y");
  6643. disable_y();
  6644. disable_z();
  6645. disable_e0();
  6646. disable_e1();
  6647. disable_e2();
  6648. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6649. pinMode(PS_ON_PIN,INPUT);
  6650. #endif
  6651. SERIAL_ERROR_START;
  6652. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6653. if (full_screen_message != NULL) {
  6654. SERIAL_ERRORLNRPGM(full_screen_message);
  6655. lcd_display_message_fullscreen_P(full_screen_message);
  6656. } else {
  6657. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6658. }
  6659. // FMC small patch to update the LCD before ending
  6660. sei(); // enable interrupts
  6661. for ( int i=5; i--; lcd_update())
  6662. {
  6663. delay(200);
  6664. }
  6665. cli(); // disable interrupts
  6666. suicide();
  6667. while(1)
  6668. {
  6669. #ifdef WATCHDOG
  6670. wdt_reset();
  6671. #endif //WATCHDOG
  6672. /* Intentionally left empty */
  6673. } // Wait for reset
  6674. }
  6675. void Stop()
  6676. {
  6677. disable_heater();
  6678. if(Stopped == false) {
  6679. Stopped = true;
  6680. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6681. SERIAL_ERROR_START;
  6682. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6683. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6684. }
  6685. }
  6686. bool IsStopped() { return Stopped; };
  6687. #ifdef FAST_PWM_FAN
  6688. void setPwmFrequency(uint8_t pin, int val)
  6689. {
  6690. val &= 0x07;
  6691. switch(digitalPinToTimer(pin))
  6692. {
  6693. #if defined(TCCR0A)
  6694. case TIMER0A:
  6695. case TIMER0B:
  6696. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6697. // TCCR0B |= val;
  6698. break;
  6699. #endif
  6700. #if defined(TCCR1A)
  6701. case TIMER1A:
  6702. case TIMER1B:
  6703. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6704. // TCCR1B |= val;
  6705. break;
  6706. #endif
  6707. #if defined(TCCR2)
  6708. case TIMER2:
  6709. case TIMER2:
  6710. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6711. TCCR2 |= val;
  6712. break;
  6713. #endif
  6714. #if defined(TCCR2A)
  6715. case TIMER2A:
  6716. case TIMER2B:
  6717. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6718. TCCR2B |= val;
  6719. break;
  6720. #endif
  6721. #if defined(TCCR3A)
  6722. case TIMER3A:
  6723. case TIMER3B:
  6724. case TIMER3C:
  6725. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6726. TCCR3B |= val;
  6727. break;
  6728. #endif
  6729. #if defined(TCCR4A)
  6730. case TIMER4A:
  6731. case TIMER4B:
  6732. case TIMER4C:
  6733. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6734. TCCR4B |= val;
  6735. break;
  6736. #endif
  6737. #if defined(TCCR5A)
  6738. case TIMER5A:
  6739. case TIMER5B:
  6740. case TIMER5C:
  6741. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6742. TCCR5B |= val;
  6743. break;
  6744. #endif
  6745. }
  6746. }
  6747. #endif //FAST_PWM_FAN
  6748. bool setTargetedHotend(int code){
  6749. tmp_extruder = active_extruder;
  6750. if(code_seen('T')) {
  6751. tmp_extruder = code_value();
  6752. if(tmp_extruder >= EXTRUDERS) {
  6753. SERIAL_ECHO_START;
  6754. switch(code){
  6755. case 104:
  6756. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6757. break;
  6758. case 105:
  6759. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6760. break;
  6761. case 109:
  6762. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6763. break;
  6764. case 218:
  6765. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6766. break;
  6767. case 221:
  6768. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6769. break;
  6770. }
  6771. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6772. return true;
  6773. }
  6774. }
  6775. return false;
  6776. }
  6777. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6778. {
  6779. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6780. {
  6781. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6782. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6783. }
  6784. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6785. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6786. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6787. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6788. total_filament_used = 0;
  6789. }
  6790. float calculate_extruder_multiplier(float diameter) {
  6791. float out = 1.f;
  6792. if (volumetric_enabled && diameter > 0.f) {
  6793. float area = M_PI * diameter * diameter * 0.25;
  6794. out = 1.f / area;
  6795. }
  6796. if (extrudemultiply != 100)
  6797. out *= float(extrudemultiply) * 0.01f;
  6798. return out;
  6799. }
  6800. void calculate_extruder_multipliers() {
  6801. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6802. #if EXTRUDERS > 1
  6803. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6804. #if EXTRUDERS > 2
  6805. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6806. #endif
  6807. #endif
  6808. }
  6809. void delay_keep_alive(unsigned int ms)
  6810. {
  6811. for (;;) {
  6812. manage_heater();
  6813. // Manage inactivity, but don't disable steppers on timeout.
  6814. manage_inactivity(true);
  6815. lcd_update();
  6816. if (ms == 0)
  6817. break;
  6818. else if (ms >= 50) {
  6819. delay(50);
  6820. ms -= 50;
  6821. } else {
  6822. delay(ms);
  6823. ms = 0;
  6824. }
  6825. }
  6826. }
  6827. void wait_for_heater(long codenum) {
  6828. #ifdef TEMP_RESIDENCY_TIME
  6829. long residencyStart;
  6830. residencyStart = -1;
  6831. /* continue to loop until we have reached the target temp
  6832. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6833. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6834. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6835. #else
  6836. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6837. #endif //TEMP_RESIDENCY_TIME
  6838. if ((millis() - codenum) > 1000UL)
  6839. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6840. if (!farm_mode) {
  6841. SERIAL_PROTOCOLPGM("T:");
  6842. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6843. SERIAL_PROTOCOLPGM(" E:");
  6844. SERIAL_PROTOCOL((int)tmp_extruder);
  6845. #ifdef TEMP_RESIDENCY_TIME
  6846. SERIAL_PROTOCOLPGM(" W:");
  6847. if (residencyStart > -1)
  6848. {
  6849. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6850. SERIAL_PROTOCOLLN(codenum);
  6851. }
  6852. else
  6853. {
  6854. SERIAL_PROTOCOLLN("?");
  6855. }
  6856. }
  6857. #else
  6858. SERIAL_PROTOCOLLN("");
  6859. #endif
  6860. codenum = millis();
  6861. }
  6862. manage_heater();
  6863. manage_inactivity();
  6864. lcd_update();
  6865. #ifdef TEMP_RESIDENCY_TIME
  6866. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6867. or when current temp falls outside the hysteresis after target temp was reached */
  6868. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6869. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6870. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6871. {
  6872. residencyStart = millis();
  6873. }
  6874. #endif //TEMP_RESIDENCY_TIME
  6875. }
  6876. }
  6877. void check_babystep() {
  6878. int babystep_z;
  6879. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6880. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6881. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6882. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6883. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6884. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6885. lcd_update_enable(true);
  6886. }
  6887. }
  6888. #ifdef DIS
  6889. void d_setup()
  6890. {
  6891. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6892. pinMode(D_DATA, INPUT_PULLUP);
  6893. pinMode(D_REQUIRE, OUTPUT);
  6894. digitalWrite(D_REQUIRE, HIGH);
  6895. }
  6896. float d_ReadData()
  6897. {
  6898. int digit[13];
  6899. String mergeOutput;
  6900. float output;
  6901. digitalWrite(D_REQUIRE, HIGH);
  6902. for (int i = 0; i<13; i++)
  6903. {
  6904. for (int j = 0; j < 4; j++)
  6905. {
  6906. while (digitalRead(D_DATACLOCK) == LOW) {}
  6907. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6908. bitWrite(digit[i], j, digitalRead(D_DATA));
  6909. }
  6910. }
  6911. digitalWrite(D_REQUIRE, LOW);
  6912. mergeOutput = "";
  6913. output = 0;
  6914. for (int r = 5; r <= 10; r++) //Merge digits
  6915. {
  6916. mergeOutput += digit[r];
  6917. }
  6918. output = mergeOutput.toFloat();
  6919. if (digit[4] == 8) //Handle sign
  6920. {
  6921. output *= -1;
  6922. }
  6923. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6924. {
  6925. output /= 10;
  6926. }
  6927. return output;
  6928. }
  6929. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6930. int t1 = 0;
  6931. int t_delay = 0;
  6932. int digit[13];
  6933. int m;
  6934. char str[3];
  6935. //String mergeOutput;
  6936. char mergeOutput[15];
  6937. float output;
  6938. int mesh_point = 0; //index number of calibration point
  6939. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6940. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6941. float mesh_home_z_search = 4;
  6942. float row[x_points_num];
  6943. int ix = 0;
  6944. int iy = 0;
  6945. char* filename_wldsd = "wldsd.txt";
  6946. char data_wldsd[70];
  6947. char numb_wldsd[10];
  6948. d_setup();
  6949. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6950. // We don't know where we are! HOME!
  6951. // Push the commands to the front of the message queue in the reverse order!
  6952. // There shall be always enough space reserved for these commands.
  6953. repeatcommand_front(); // repeat G80 with all its parameters
  6954. enquecommand_front_P((PSTR("G28 W0")));
  6955. enquecommand_front_P((PSTR("G1 Z5")));
  6956. return;
  6957. }
  6958. bool custom_message_old = custom_message;
  6959. unsigned int custom_message_type_old = custom_message_type;
  6960. unsigned int custom_message_state_old = custom_message_state;
  6961. custom_message = true;
  6962. custom_message_type = 1;
  6963. custom_message_state = (x_points_num * y_points_num) + 10;
  6964. lcd_update(1);
  6965. mbl.reset();
  6966. babystep_undo();
  6967. card.openFile(filename_wldsd, false);
  6968. current_position[Z_AXIS] = mesh_home_z_search;
  6969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6970. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6971. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6972. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6973. setup_for_endstop_move(false);
  6974. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6975. SERIAL_PROTOCOL(x_points_num);
  6976. SERIAL_PROTOCOLPGM(",");
  6977. SERIAL_PROTOCOL(y_points_num);
  6978. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6979. SERIAL_PROTOCOL(mesh_home_z_search);
  6980. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6981. SERIAL_PROTOCOL(x_dimension);
  6982. SERIAL_PROTOCOLPGM(",");
  6983. SERIAL_PROTOCOL(y_dimension);
  6984. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6985. while (mesh_point != x_points_num * y_points_num) {
  6986. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6987. iy = mesh_point / x_points_num;
  6988. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6989. float z0 = 0.f;
  6990. current_position[Z_AXIS] = mesh_home_z_search;
  6991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6992. st_synchronize();
  6993. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6994. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6996. st_synchronize();
  6997. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6998. break;
  6999. card.closefile();
  7000. }
  7001. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7002. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7003. //strcat(data_wldsd, numb_wldsd);
  7004. //MYSERIAL.println(data_wldsd);
  7005. //delay(1000);
  7006. //delay(3000);
  7007. //t1 = millis();
  7008. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7009. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7010. memset(digit, 0, sizeof(digit));
  7011. //cli();
  7012. digitalWrite(D_REQUIRE, LOW);
  7013. for (int i = 0; i<13; i++)
  7014. {
  7015. //t1 = millis();
  7016. for (int j = 0; j < 4; j++)
  7017. {
  7018. while (digitalRead(D_DATACLOCK) == LOW) {}
  7019. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7020. bitWrite(digit[i], j, digitalRead(D_DATA));
  7021. }
  7022. //t_delay = (millis() - t1);
  7023. //SERIAL_PROTOCOLPGM(" ");
  7024. //SERIAL_PROTOCOL_F(t_delay, 5);
  7025. //SERIAL_PROTOCOLPGM(" ");
  7026. }
  7027. //sei();
  7028. digitalWrite(D_REQUIRE, HIGH);
  7029. mergeOutput[0] = '\0';
  7030. output = 0;
  7031. for (int r = 5; r <= 10; r++) //Merge digits
  7032. {
  7033. sprintf(str, "%d", digit[r]);
  7034. strcat(mergeOutput, str);
  7035. }
  7036. output = atof(mergeOutput);
  7037. if (digit[4] == 8) //Handle sign
  7038. {
  7039. output *= -1;
  7040. }
  7041. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7042. {
  7043. output *= 0.1;
  7044. }
  7045. //output = d_ReadData();
  7046. //row[ix] = current_position[Z_AXIS];
  7047. memset(data_wldsd, 0, sizeof(data_wldsd));
  7048. for (int i = 0; i <3; i++) {
  7049. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7050. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7051. strcat(data_wldsd, numb_wldsd);
  7052. strcat(data_wldsd, ";");
  7053. }
  7054. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7055. dtostrf(output, 8, 5, numb_wldsd);
  7056. strcat(data_wldsd, numb_wldsd);
  7057. //strcat(data_wldsd, ";");
  7058. card.write_command(data_wldsd);
  7059. //row[ix] = d_ReadData();
  7060. row[ix] = output; // current_position[Z_AXIS];
  7061. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7062. for (int i = 0; i < x_points_num; i++) {
  7063. SERIAL_PROTOCOLPGM(" ");
  7064. SERIAL_PROTOCOL_F(row[i], 5);
  7065. }
  7066. SERIAL_PROTOCOLPGM("\n");
  7067. }
  7068. custom_message_state--;
  7069. mesh_point++;
  7070. lcd_update(1);
  7071. }
  7072. card.closefile();
  7073. }
  7074. #endif
  7075. void temp_compensation_start() {
  7076. custom_message = true;
  7077. custom_message_type = 5;
  7078. custom_message_state = PINDA_HEAT_T + 1;
  7079. lcd_update(2);
  7080. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7081. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7082. }
  7083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7084. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7085. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7086. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7088. st_synchronize();
  7089. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7090. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7091. delay_keep_alive(1000);
  7092. custom_message_state = PINDA_HEAT_T - i;
  7093. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7094. else lcd_update(1);
  7095. }
  7096. custom_message_type = 0;
  7097. custom_message_state = 0;
  7098. custom_message = false;
  7099. }
  7100. void temp_compensation_apply() {
  7101. int i_add;
  7102. int compensation_value;
  7103. int z_shift = 0;
  7104. float z_shift_mm;
  7105. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7106. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7107. i_add = (target_temperature_bed - 60) / 10;
  7108. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7109. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7110. }else {
  7111. //interpolation
  7112. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7113. }
  7114. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7116. st_synchronize();
  7117. plan_set_z_position(current_position[Z_AXIS]);
  7118. }
  7119. else {
  7120. //we have no temp compensation data
  7121. }
  7122. }
  7123. float temp_comp_interpolation(float inp_temperature) {
  7124. //cubic spline interpolation
  7125. int n, i, j, k;
  7126. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7127. int shift[10];
  7128. int temp_C[10];
  7129. n = 6; //number of measured points
  7130. shift[0] = 0;
  7131. for (i = 0; i < n; i++) {
  7132. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7133. temp_C[i] = 50 + i * 10; //temperature in C
  7134. #ifdef PINDA_THERMISTOR
  7135. temp_C[i] = 35 + i * 5; //temperature in C
  7136. #else
  7137. temp_C[i] = 50 + i * 10; //temperature in C
  7138. #endif
  7139. x[i] = (float)temp_C[i];
  7140. f[i] = (float)shift[i];
  7141. }
  7142. if (inp_temperature < x[0]) return 0;
  7143. for (i = n - 1; i>0; i--) {
  7144. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7145. h[i - 1] = x[i] - x[i - 1];
  7146. }
  7147. //*********** formation of h, s , f matrix **************
  7148. for (i = 1; i<n - 1; i++) {
  7149. m[i][i] = 2 * (h[i - 1] + h[i]);
  7150. if (i != 1) {
  7151. m[i][i - 1] = h[i - 1];
  7152. m[i - 1][i] = h[i - 1];
  7153. }
  7154. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7155. }
  7156. //*********** forward elimination **************
  7157. for (i = 1; i<n - 2; i++) {
  7158. temp = (m[i + 1][i] / m[i][i]);
  7159. for (j = 1; j <= n - 1; j++)
  7160. m[i + 1][j] -= temp*m[i][j];
  7161. }
  7162. //*********** backward substitution *********
  7163. for (i = n - 2; i>0; i--) {
  7164. sum = 0;
  7165. for (j = i; j <= n - 2; j++)
  7166. sum += m[i][j] * s[j];
  7167. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7168. }
  7169. for (i = 0; i<n - 1; i++)
  7170. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7171. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7172. b = s[i] / 2;
  7173. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7174. d = f[i];
  7175. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7176. }
  7177. return sum;
  7178. }
  7179. #ifdef PINDA_THERMISTOR
  7180. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7181. {
  7182. if (!temp_cal_active) return 0;
  7183. if (!calibration_status_pinda()) return 0;
  7184. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7185. }
  7186. #endif //PINDA_THERMISTOR
  7187. void long_pause() //long pause print
  7188. {
  7189. st_synchronize();
  7190. //save currently set parameters to global variables
  7191. saved_feedmultiply = feedmultiply;
  7192. HotendTempBckp = degTargetHotend(active_extruder);
  7193. fanSpeedBckp = fanSpeed;
  7194. start_pause_print = millis();
  7195. //save position
  7196. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7197. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7198. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7199. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7200. //retract
  7201. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7203. //lift z
  7204. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7205. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7207. //set nozzle target temperature to 0
  7208. setTargetHotend(0, 0);
  7209. setTargetHotend(0, 1);
  7210. setTargetHotend(0, 2);
  7211. //Move XY to side
  7212. current_position[X_AXIS] = X_PAUSE_POS;
  7213. current_position[Y_AXIS] = Y_PAUSE_POS;
  7214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7215. // Turn off the print fan
  7216. fanSpeed = 0;
  7217. st_synchronize();
  7218. }
  7219. void serialecho_temperatures() {
  7220. float tt = degHotend(active_extruder);
  7221. SERIAL_PROTOCOLPGM("T:");
  7222. SERIAL_PROTOCOL(tt);
  7223. SERIAL_PROTOCOLPGM(" E:");
  7224. SERIAL_PROTOCOL((int)active_extruder);
  7225. SERIAL_PROTOCOLPGM(" B:");
  7226. SERIAL_PROTOCOL_F(degBed(), 1);
  7227. SERIAL_PROTOCOLLN("");
  7228. }
  7229. extern uint32_t sdpos_atomic;
  7230. #ifdef UVLO_SUPPORT
  7231. void uvlo_()
  7232. {
  7233. unsigned long time_start = millis();
  7234. bool sd_print = card.sdprinting;
  7235. // Conserve power as soon as possible.
  7236. disable_x();
  7237. disable_y();
  7238. #ifdef TMC2130
  7239. tmc2130_set_current_h(Z_AXIS, 20);
  7240. tmc2130_set_current_r(Z_AXIS, 20);
  7241. tmc2130_set_current_h(E_AXIS, 20);
  7242. tmc2130_set_current_r(E_AXIS, 20);
  7243. #endif //TMC2130
  7244. // Indicate that the interrupt has been triggered.
  7245. // SERIAL_ECHOLNPGM("UVLO");
  7246. // Read out the current Z motor microstep counter. This will be later used
  7247. // for reaching the zero full step before powering off.
  7248. uint16_t z_microsteps = 0;
  7249. #ifdef TMC2130
  7250. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7251. #endif //TMC2130
  7252. // Calculate the file position, from which to resume this print.
  7253. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7254. {
  7255. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7256. sd_position -= sdlen_planner;
  7257. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7258. sd_position -= sdlen_cmdqueue;
  7259. if (sd_position < 0) sd_position = 0;
  7260. }
  7261. // Backup the feedrate in mm/min.
  7262. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7263. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7264. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7265. // are in action.
  7266. planner_abort_hard();
  7267. // Store the current extruder position.
  7268. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7269. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7270. // Clean the input command queue.
  7271. cmdqueue_reset();
  7272. card.sdprinting = false;
  7273. // card.closefile();
  7274. // Enable stepper driver interrupt to move Z axis.
  7275. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7276. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7277. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7278. sei();
  7279. plan_buffer_line(
  7280. current_position[X_AXIS],
  7281. current_position[Y_AXIS],
  7282. current_position[Z_AXIS],
  7283. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7284. 95, active_extruder);
  7285. st_synchronize();
  7286. disable_e0();
  7287. plan_buffer_line(
  7288. current_position[X_AXIS],
  7289. current_position[Y_AXIS],
  7290. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7291. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7292. 40, active_extruder);
  7293. st_synchronize();
  7294. disable_e0();
  7295. plan_buffer_line(
  7296. current_position[X_AXIS],
  7297. current_position[Y_AXIS],
  7298. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7299. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7300. 40, active_extruder);
  7301. st_synchronize();
  7302. disable_e0();
  7303. disable_z();
  7304. // Move Z up to the next 0th full step.
  7305. // Write the file position.
  7306. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7307. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7308. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7309. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7310. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7311. // Scale the z value to 1u resolution.
  7312. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7313. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7314. }
  7315. // Read out the current Z motor microstep counter. This will be later used
  7316. // for reaching the zero full step before powering off.
  7317. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7318. // Store the current position.
  7319. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7320. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7321. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7322. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7323. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7324. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7325. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7326. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7327. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7328. #if EXTRUDERS > 1
  7329. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7330. #if EXTRUDERS > 2
  7331. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7332. #endif
  7333. #endif
  7334. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7335. // Finaly store the "power outage" flag.
  7336. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7337. st_synchronize();
  7338. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7339. disable_z();
  7340. // Increment power failure counter
  7341. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7342. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7343. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7344. #if 0
  7345. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7346. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7348. st_synchronize();
  7349. #endif
  7350. cli();
  7351. volatile unsigned int ppcount = 0;
  7352. SET_OUTPUT(BEEPER);
  7353. WRITE(BEEPER, HIGH);
  7354. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7355. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7356. }
  7357. WRITE(BEEPER, LOW);
  7358. while(1){
  7359. #if 1
  7360. WRITE(BEEPER, LOW);
  7361. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7362. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7363. }
  7364. #endif
  7365. };
  7366. }
  7367. #endif //UVLO_SUPPORT
  7368. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7369. void setup_fan_interrupt() {
  7370. //INT7
  7371. DDRE &= ~(1 << 7); //input pin
  7372. PORTE &= ~(1 << 7); //no internal pull-up
  7373. //start with sensing rising edge
  7374. EICRB &= ~(1 << 6);
  7375. EICRB |= (1 << 7);
  7376. //enable INT7 interrupt
  7377. EIMSK |= (1 << 7);
  7378. }
  7379. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7380. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7381. ISR(INT7_vect) {
  7382. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7383. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7384. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7385. t_fan_rising_edge = millis_nc();
  7386. }
  7387. else { //interrupt was triggered by falling edge
  7388. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7389. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7390. }
  7391. }
  7392. EICRB ^= (1 << 6); //change edge
  7393. }
  7394. #endif
  7395. #ifdef UVLO_SUPPORT
  7396. void setup_uvlo_interrupt() {
  7397. DDRE &= ~(1 << 4); //input pin
  7398. PORTE &= ~(1 << 4); //no internal pull-up
  7399. //sensing falling edge
  7400. EICRB |= (1 << 0);
  7401. EICRB &= ~(1 << 1);
  7402. //enable INT4 interrupt
  7403. EIMSK |= (1 << 4);
  7404. }
  7405. ISR(INT4_vect) {
  7406. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7407. SERIAL_ECHOLNPGM("INT4");
  7408. if (IS_SD_PRINTING) uvlo_();
  7409. }
  7410. void recover_print(uint8_t automatic) {
  7411. char cmd[30];
  7412. lcd_update_enable(true);
  7413. lcd_update(2);
  7414. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7415. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7416. // Lift the print head, so one may remove the excess priming material.
  7417. if (current_position[Z_AXIS] < 25)
  7418. enquecommand_P(PSTR("G1 Z25 F800"));
  7419. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7420. enquecommand_P(PSTR("G28 X Y"));
  7421. // Set the target bed and nozzle temperatures and wait.
  7422. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7423. enquecommand(cmd);
  7424. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7425. enquecommand(cmd);
  7426. enquecommand_P(PSTR("M83")); //E axis relative mode
  7427. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7428. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7429. if(automatic == 0){
  7430. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7431. }
  7432. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7433. // Mark the power panic status as inactive.
  7434. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7435. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7436. delay_keep_alive(1000);
  7437. }*/
  7438. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7439. // Restart the print.
  7440. restore_print_from_eeprom();
  7441. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7442. }
  7443. void recover_machine_state_after_power_panic()
  7444. {
  7445. char cmd[30];
  7446. // 1) Recover the logical cordinates at the time of the power panic.
  7447. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7448. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7449. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7450. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7451. // The current position after power panic is moved to the next closest 0th full step.
  7452. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7453. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7454. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7455. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7456. sprintf_P(cmd, PSTR("G92 E"));
  7457. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7458. enquecommand(cmd);
  7459. }
  7460. memcpy(destination, current_position, sizeof(destination));
  7461. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7462. print_world_coordinates();
  7463. // 2) Initialize the logical to physical coordinate system transformation.
  7464. world2machine_initialize();
  7465. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7466. mbl.active = false;
  7467. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7468. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7469. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7470. // Scale the z value to 10u resolution.
  7471. int16_t v;
  7472. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7473. if (v != 0)
  7474. mbl.active = true;
  7475. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7476. }
  7477. if (mbl.active)
  7478. mbl.upsample_3x3();
  7479. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7480. // print_mesh_bed_leveling_table();
  7481. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7482. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7483. babystep_load();
  7484. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7485. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7486. // 6) Power up the motors, mark their positions as known.
  7487. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7488. axis_known_position[X_AXIS] = true; enable_x();
  7489. axis_known_position[Y_AXIS] = true; enable_y();
  7490. axis_known_position[Z_AXIS] = true; enable_z();
  7491. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7492. print_physical_coordinates();
  7493. // 7) Recover the target temperatures.
  7494. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7495. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7496. // 8) Recover extruder multipilers
  7497. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7498. #if EXTRUDERS > 1
  7499. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7500. #if EXTRUDERS > 2
  7501. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7502. #endif
  7503. #endif
  7504. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7505. }
  7506. void restore_print_from_eeprom() {
  7507. float x_rec, y_rec, z_pos;
  7508. int feedrate_rec;
  7509. uint8_t fan_speed_rec;
  7510. char cmd[30];
  7511. char* c;
  7512. char filename[13];
  7513. uint8_t depth = 0;
  7514. char dir_name[9];
  7515. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7516. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7517. SERIAL_ECHOPGM("Feedrate:");
  7518. MYSERIAL.println(feedrate_rec);
  7519. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7520. MYSERIAL.println(int(depth));
  7521. for (int i = 0; i < depth; i++) {
  7522. for (int j = 0; j < 8; j++) {
  7523. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7524. }
  7525. dir_name[8] = '\0';
  7526. MYSERIAL.println(dir_name);
  7527. strcpy(dir_names[i], dir_name);
  7528. card.chdir(dir_name);
  7529. }
  7530. for (int i = 0; i < 8; i++) {
  7531. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7532. }
  7533. filename[8] = '\0';
  7534. MYSERIAL.print(filename);
  7535. strcat_P(filename, PSTR(".gco"));
  7536. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7537. enquecommand(cmd);
  7538. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7539. SERIAL_ECHOPGM("Position read from eeprom:");
  7540. MYSERIAL.println(position);
  7541. // E axis relative mode.
  7542. enquecommand_P(PSTR("M83"));
  7543. // Move to the XY print position in logical coordinates, where the print has been killed.
  7544. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7545. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7546. strcat_P(cmd, PSTR(" F2000"));
  7547. enquecommand(cmd);
  7548. // Move the Z axis down to the print, in logical coordinates.
  7549. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7550. enquecommand(cmd);
  7551. // Unretract.
  7552. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7553. // Set the feedrate saved at the power panic.
  7554. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7555. enquecommand(cmd);
  7556. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7557. {
  7558. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7559. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7560. }
  7561. // Set the fan speed saved at the power panic.
  7562. strcpy_P(cmd, PSTR("M106 S"));
  7563. strcat(cmd, itostr3(int(fan_speed_rec)));
  7564. enquecommand(cmd);
  7565. // Set a position in the file.
  7566. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7567. enquecommand(cmd);
  7568. // Start SD print.
  7569. enquecommand_P(PSTR("M24"));
  7570. }
  7571. #endif //UVLO_SUPPORT
  7572. ////////////////////////////////////////////////////////////////////////////////
  7573. // save/restore printing
  7574. void stop_and_save_print_to_ram(float z_move, float e_move)
  7575. {
  7576. if (saved_printing) return;
  7577. unsigned char nplanner_blocks;
  7578. unsigned char nlines;
  7579. uint16_t sdlen_planner;
  7580. uint16_t sdlen_cmdqueue;
  7581. cli();
  7582. if (card.sdprinting) {
  7583. nplanner_blocks = number_of_blocks();
  7584. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7585. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7586. saved_sdpos -= sdlen_planner;
  7587. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7588. saved_sdpos -= sdlen_cmdqueue;
  7589. saved_printing_type = PRINTING_TYPE_SD;
  7590. }
  7591. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7592. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7593. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7594. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7595. saved_sdpos -= nlines;
  7596. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7597. saved_printing_type = PRINTING_TYPE_USB;
  7598. }
  7599. else {
  7600. //not sd printing nor usb printing
  7601. }
  7602. #if 0
  7603. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7604. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7605. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7606. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7607. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7608. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7609. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7610. {
  7611. card.setIndex(saved_sdpos);
  7612. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7613. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7614. MYSERIAL.print(char(card.get()));
  7615. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7616. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7617. MYSERIAL.print(char(card.get()));
  7618. SERIAL_ECHOLNPGM("End of command buffer");
  7619. }
  7620. {
  7621. // Print the content of the planner buffer, line by line:
  7622. card.setIndex(saved_sdpos);
  7623. int8_t iline = 0;
  7624. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7625. SERIAL_ECHOPGM("Planner line (from file): ");
  7626. MYSERIAL.print(int(iline), DEC);
  7627. SERIAL_ECHOPGM(", length: ");
  7628. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7629. SERIAL_ECHOPGM(", steps: (");
  7630. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7631. SERIAL_ECHOPGM(",");
  7632. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7633. SERIAL_ECHOPGM(",");
  7634. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7635. SERIAL_ECHOPGM(",");
  7636. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7637. SERIAL_ECHOPGM("), events: ");
  7638. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7639. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7640. MYSERIAL.print(char(card.get()));
  7641. }
  7642. }
  7643. {
  7644. // Print the content of the command buffer, line by line:
  7645. int8_t iline = 0;
  7646. union {
  7647. struct {
  7648. char lo;
  7649. char hi;
  7650. } lohi;
  7651. uint16_t value;
  7652. } sdlen_single;
  7653. int _bufindr = bufindr;
  7654. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7655. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7656. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7657. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7658. }
  7659. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7660. MYSERIAL.print(int(iline), DEC);
  7661. SERIAL_ECHOPGM(", type: ");
  7662. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7663. SERIAL_ECHOPGM(", len: ");
  7664. MYSERIAL.println(sdlen_single.value, DEC);
  7665. // Print the content of the buffer line.
  7666. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7667. SERIAL_ECHOPGM("Buffer line (from file): ");
  7668. MYSERIAL.print(int(iline), DEC);
  7669. MYSERIAL.println(int(iline), DEC);
  7670. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7671. MYSERIAL.print(char(card.get()));
  7672. if (-- _buflen == 0)
  7673. break;
  7674. // First skip the current command ID and iterate up to the end of the string.
  7675. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7676. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7677. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7678. // If the end of the buffer was empty,
  7679. if (_bufindr == sizeof(cmdbuffer)) {
  7680. // skip to the start and find the nonzero command.
  7681. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7682. }
  7683. }
  7684. }
  7685. #endif
  7686. #if 0
  7687. saved_feedrate2 = feedrate; //save feedrate
  7688. #else
  7689. // Try to deduce the feedrate from the first block of the planner.
  7690. // Speed is in mm/min.
  7691. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7692. #endif
  7693. planner_abort_hard(); //abort printing
  7694. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7695. saved_active_extruder = active_extruder; //save active_extruder
  7696. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7697. cmdqueue_reset(); //empty cmdqueue
  7698. card.sdprinting = false;
  7699. // card.closefile();
  7700. saved_printing = true;
  7701. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7702. st_reset_timer();
  7703. sei();
  7704. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7705. #if 1
  7706. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7707. char buf[48];
  7708. // First unretract (relative extrusion)
  7709. strcpy_P(buf, PSTR("G1 E"));
  7710. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7711. strcat_P(buf, PSTR(" F"));
  7712. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7713. enquecommand(buf, false);
  7714. // Then lift Z axis
  7715. strcpy_P(buf, PSTR("G1 Z"));
  7716. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7717. strcat_P(buf, PSTR(" F"));
  7718. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7719. // At this point the command queue is empty.
  7720. enquecommand(buf, false);
  7721. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7722. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7723. repeatcommand_front();
  7724. #else
  7725. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7726. st_synchronize(); //wait moving
  7727. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7728. memcpy(destination, current_position, sizeof(destination));
  7729. #endif
  7730. }
  7731. }
  7732. void restore_print_from_ram_and_continue(float e_move)
  7733. {
  7734. if (!saved_printing) return;
  7735. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7736. // current_position[axis] = st_get_position_mm(axis);
  7737. active_extruder = saved_active_extruder; //restore active_extruder
  7738. feedrate = saved_feedrate2; //restore feedrate
  7739. float e = saved_pos[E_AXIS] - e_move;
  7740. plan_set_e_position(e);
  7741. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7742. st_synchronize();
  7743. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7744. memcpy(destination, current_position, sizeof(destination));
  7745. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7746. card.setIndex(saved_sdpos);
  7747. sdpos_atomic = saved_sdpos;
  7748. card.sdprinting = true;
  7749. }
  7750. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7751. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7752. FlushSerialRequestResend();
  7753. }
  7754. else {
  7755. //not sd printing nor usb printing
  7756. }
  7757. saved_printing = false;
  7758. }
  7759. void print_world_coordinates()
  7760. {
  7761. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7762. }
  7763. void print_physical_coordinates()
  7764. {
  7765. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7766. }
  7767. void print_mesh_bed_leveling_table()
  7768. {
  7769. SERIAL_ECHOPGM("mesh bed leveling: ");
  7770. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7771. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7772. MYSERIAL.print(mbl.z_values[y][x], 3);
  7773. SERIAL_ECHOPGM(" ");
  7774. }
  7775. SERIAL_ECHOLNPGM("");
  7776. }
  7777. uint16_t print_time_remaining() {
  7778. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7779. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7780. else print_t = print_time_remaining_silent;
  7781. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7782. return print_t;
  7783. }
  7784. uint8_t print_percent_done() {
  7785. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7786. uint8_t percent_done = 0;
  7787. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7788. percent_done = print_percent_done_normal;
  7789. }
  7790. else if (print_percent_done_silent <= 100) {
  7791. percent_done = print_percent_done_silent;
  7792. }
  7793. else {
  7794. percent_done = card.percentDone();
  7795. }
  7796. return percent_done;
  7797. }
  7798. static void print_time_remaining_init() {
  7799. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7800. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7801. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7802. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7803. }
  7804. #define FIL_LOAD_LENGTH 60