Marlin_main.cpp 207 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // P Y - Starts filament allignment process for multicolor
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. unsigned long PingTime = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. int8_t FarmMode = 0;
  225. bool prusa_sd_card_upload = false;
  226. unsigned int status_number = 0;
  227. unsigned long total_filament_used;
  228. unsigned int heating_status;
  229. unsigned int heating_status_counter;
  230. bool custom_message;
  231. bool loading_flag = false;
  232. unsigned int custom_message_type;
  233. unsigned int custom_message_state;
  234. bool volumetric_enabled = false;
  235. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 1
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #if EXTRUDERS > 2
  239. , DEFAULT_NOMINAL_FILAMENT_DIA
  240. #endif
  241. #endif
  242. };
  243. float volumetric_multiplier[EXTRUDERS] = {1.0
  244. #if EXTRUDERS > 1
  245. , 1.0
  246. #if EXTRUDERS > 2
  247. , 1.0
  248. #endif
  249. #endif
  250. };
  251. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  252. float add_homing[3]={0,0,0};
  253. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  254. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  255. bool axis_known_position[3] = {false, false, false};
  256. float zprobe_zoffset;
  257. // Extruder offset
  258. #if EXTRUDERS > 1
  259. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  260. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  261. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  262. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  263. #endif
  264. };
  265. #endif
  266. uint8_t active_extruder = 0;
  267. int fanSpeed=0;
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled=false;
  270. bool retracted[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. bool retracted_swap[EXTRUDERS]={false
  279. #if EXTRUDERS > 1
  280. , false
  281. #if EXTRUDERS > 2
  282. , false
  283. #endif
  284. #endif
  285. };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif
  294. #ifdef ULTIPANEL
  295. #ifdef PS_DEFAULT_OFF
  296. bool powersupply = false;
  297. #else
  298. bool powersupply = true;
  299. #endif
  300. #endif
  301. bool cancel_heatup = false ;
  302. #ifdef FILAMENT_SENSOR
  303. //Variables for Filament Sensor input
  304. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  305. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  306. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  307. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  308. int delay_index1=0; //index into ring buffer
  309. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  310. float delay_dist=0; //delay distance counter
  311. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  312. #endif
  313. const char errormagic[] PROGMEM = "Error:";
  314. const char echomagic[] PROGMEM = "echo:";
  315. //===========================================================================
  316. //=============================Private Variables=============================
  317. //===========================================================================
  318. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  319. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  320. static float delta[3] = {0.0, 0.0, 0.0};
  321. // For tracing an arc
  322. static float offset[3] = {0.0, 0.0, 0.0};
  323. static bool home_all_axis = true;
  324. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  325. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  326. // Determines Absolute or Relative Coordinates.
  327. // Also there is bool axis_relative_modes[] per axis flag.
  328. static bool relative_mode = false;
  329. // String circular buffer. Commands may be pushed to the buffer from both sides:
  330. // Chained commands will be pushed to the front, interactive (from LCD menu)
  331. // and printing commands (from serial line or from SD card) are pushed to the tail.
  332. // First character of each entry indicates the type of the entry:
  333. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  334. // Command in cmdbuffer was sent over USB.
  335. #define CMDBUFFER_CURRENT_TYPE_USB 1
  336. // Command in cmdbuffer was read from SDCARD.
  337. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  338. // Command in cmdbuffer was generated by the UI.
  339. #define CMDBUFFER_CURRENT_TYPE_UI 3
  340. // Command in cmdbuffer was generated by another G-code.
  341. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  342. // How much space to reserve for the chained commands
  343. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  344. // which are pushed to the front of the queue?
  345. // Maximum 5 commands of max length 20 + null terminator.
  346. #define CMDBUFFER_RESERVE_FRONT (5*21)
  347. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  348. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  349. // Head of the circular buffer, where to read.
  350. static int bufindr = 0;
  351. // Tail of the buffer, where to write.
  352. static int bufindw = 0;
  353. // Number of lines in cmdbuffer.
  354. static int buflen = 0;
  355. // Flag for processing the current command inside the main Arduino loop().
  356. // If a new command was pushed to the front of a command buffer while
  357. // processing another command, this replaces the command on the top.
  358. // Therefore don't remove the command from the queue in the loop() function.
  359. static bool cmdbuffer_front_already_processed = false;
  360. // Type of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  362. // String of a command, which is to be executed right now.
  363. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  364. // Enable debugging of the command buffer.
  365. // Debugging information will be sent to serial line.
  366. // #define CMDBUFFER_DEBUG
  367. static int serial_count = 0; //index of character read from serial line
  368. static boolean comment_mode = false;
  369. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  370. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  371. //static float tt = 0;
  372. //static float bt = 0;
  373. //Inactivity shutdown variables
  374. static unsigned long previous_millis_cmd = 0;
  375. unsigned long max_inactive_time = 0;
  376. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  377. unsigned long starttime=0;
  378. unsigned long stoptime=0;
  379. unsigned long _usb_timer = 0;
  380. static uint8_t tmp_extruder;
  381. bool Stopped=false;
  382. #if NUM_SERVOS > 0
  383. Servo servos[NUM_SERVOS];
  384. #endif
  385. bool CooldownNoWait = true;
  386. bool target_direction;
  387. //Insert variables if CHDK is defined
  388. #ifdef CHDK
  389. unsigned long chdkHigh = 0;
  390. boolean chdkActive = false;
  391. #endif
  392. //===========================================================================
  393. //=============================Routines======================================
  394. //===========================================================================
  395. void get_arc_coordinates();
  396. bool setTargetedHotend(int code);
  397. void serial_echopair_P(const char *s_P, float v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, double v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, unsigned long v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. #ifdef SDSUPPORT
  404. #include "SdFatUtil.h"
  405. int freeMemory() { return SdFatUtil::FreeRam(); }
  406. #else
  407. extern "C" {
  408. extern unsigned int __bss_end;
  409. extern unsigned int __heap_start;
  410. extern void *__brkval;
  411. int freeMemory() {
  412. int free_memory;
  413. if ((int)__brkval == 0)
  414. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  415. else
  416. free_memory = ((int)&free_memory) - ((int)__brkval);
  417. return free_memory;
  418. }
  419. }
  420. #endif //!SDSUPPORT
  421. // Pop the currently processed command from the queue.
  422. // It is expected, that there is at least one command in the queue.
  423. bool cmdqueue_pop_front()
  424. {
  425. if (buflen > 0) {
  426. #ifdef CMDBUFFER_DEBUG
  427. SERIAL_ECHOPGM("Dequeing ");
  428. SERIAL_ECHO(cmdbuffer+bufindr+1);
  429. SERIAL_ECHOLNPGM("");
  430. SERIAL_ECHOPGM("Old indices: buflen ");
  431. SERIAL_ECHO(buflen);
  432. SERIAL_ECHOPGM(", bufindr ");
  433. SERIAL_ECHO(bufindr);
  434. SERIAL_ECHOPGM(", bufindw ");
  435. SERIAL_ECHO(bufindw);
  436. SERIAL_ECHOPGM(", serial_count ");
  437. SERIAL_ECHO(serial_count);
  438. SERIAL_ECHOPGM(", bufsize ");
  439. SERIAL_ECHO(sizeof(cmdbuffer));
  440. SERIAL_ECHOLNPGM("");
  441. #endif /* CMDBUFFER_DEBUG */
  442. if (-- buflen == 0) {
  443. // Empty buffer.
  444. if (serial_count == 0)
  445. // No serial communication is pending. Reset both pointers to zero.
  446. bufindw = 0;
  447. bufindr = bufindw;
  448. } else {
  449. // There is at least one ready line in the buffer.
  450. // First skip the current command ID and iterate up to the end of the string.
  451. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  452. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  453. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. // If the end of the buffer was empty,
  455. if (bufindr == sizeof(cmdbuffer)) {
  456. // skip to the start and find the nonzero command.
  457. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  458. }
  459. #ifdef CMDBUFFER_DEBUG
  460. SERIAL_ECHOPGM("New indices: buflen ");
  461. SERIAL_ECHO(buflen);
  462. SERIAL_ECHOPGM(", bufindr ");
  463. SERIAL_ECHO(bufindr);
  464. SERIAL_ECHOPGM(", bufindw ");
  465. SERIAL_ECHO(bufindw);
  466. SERIAL_ECHOPGM(", serial_count ");
  467. SERIAL_ECHO(serial_count);
  468. SERIAL_ECHOPGM(" new command on the top: ");
  469. SERIAL_ECHO(cmdbuffer+bufindr+1);
  470. SERIAL_ECHOLNPGM("");
  471. #endif /* CMDBUFFER_DEBUG */
  472. }
  473. return true;
  474. }
  475. return false;
  476. }
  477. void cmdqueue_reset()
  478. {
  479. while (cmdqueue_pop_front()) ;
  480. }
  481. // How long a string could be pushed to the front of the command queue?
  482. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  483. // len_asked does not contain the zero terminator size.
  484. bool cmdqueue_could_enqueue_front(int len_asked)
  485. {
  486. // MAX_CMD_SIZE has to accommodate the zero terminator.
  487. if (len_asked >= MAX_CMD_SIZE)
  488. return false;
  489. // Remove the currently processed command from the queue.
  490. if (! cmdbuffer_front_already_processed) {
  491. cmdqueue_pop_front();
  492. cmdbuffer_front_already_processed = true;
  493. }
  494. if (bufindr == bufindw && buflen > 0)
  495. // Full buffer.
  496. return false;
  497. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  498. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  499. if (bufindw < bufindr) {
  500. int bufindr_new = bufindr - len_asked - 2;
  501. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  502. if (endw <= bufindr_new) {
  503. bufindr = bufindr_new;
  504. return true;
  505. }
  506. } else {
  507. // Otherwise the free space is split between the start and end.
  508. if (len_asked + 2 <= bufindr) {
  509. // Could fit at the start.
  510. bufindr -= len_asked + 2;
  511. return true;
  512. }
  513. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  514. if (endw <= bufindr_new) {
  515. memset(cmdbuffer, 0, bufindr);
  516. bufindr = bufindr_new;
  517. return true;
  518. }
  519. }
  520. return false;
  521. }
  522. // Could one enqueue a command of lenthg len_asked into the buffer,
  523. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  524. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  525. // len_asked does not contain the zero terminator size.
  526. bool cmdqueue_could_enqueue_back(int len_asked)
  527. {
  528. // MAX_CMD_SIZE has to accommodate the zero terminator.
  529. if (len_asked >= MAX_CMD_SIZE)
  530. return false;
  531. if (bufindr == bufindw && buflen > 0)
  532. // Full buffer.
  533. return false;
  534. if (serial_count > 0) {
  535. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  536. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  537. // serial data.
  538. // How much memory to reserve for the commands pushed to the front?
  539. // End of the queue, when pushing to the end.
  540. int endw = bufindw + len_asked + 2;
  541. if (bufindw < bufindr)
  542. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  543. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  544. // Otherwise the free space is split between the start and end.
  545. if (// Could one fit to the end, including the reserve?
  546. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  547. // Could one fit to the end, and the reserve to the start?
  548. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  549. return true;
  550. // Could one fit both to the start?
  551. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  552. // Mark the rest of the buffer as used.
  553. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  554. // and point to the start.
  555. bufindw = 0;
  556. return true;
  557. }
  558. } else {
  559. // How much memory to reserve for the commands pushed to the front?
  560. // End of the queue, when pushing to the end.
  561. int endw = bufindw + len_asked + 2;
  562. if (bufindw < bufindr)
  563. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  564. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  565. // Otherwise the free space is split between the start and end.
  566. if (// Could one fit to the end, including the reserve?
  567. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  568. // Could one fit to the end, and the reserve to the start?
  569. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  570. return true;
  571. // Could one fit both to the start?
  572. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  573. // Mark the rest of the buffer as used.
  574. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  575. // and point to the start.
  576. bufindw = 0;
  577. return true;
  578. }
  579. }
  580. return false;
  581. }
  582. #ifdef CMDBUFFER_DEBUG
  583. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  584. {
  585. SERIAL_ECHOPGM("Entry nr: ");
  586. SERIAL_ECHO(nr);
  587. SERIAL_ECHOPGM(", type: ");
  588. SERIAL_ECHO(int(*p));
  589. SERIAL_ECHOPGM(", cmd: ");
  590. SERIAL_ECHO(p+1);
  591. SERIAL_ECHOLNPGM("");
  592. }
  593. static void cmdqueue_dump_to_serial()
  594. {
  595. if (buflen == 0) {
  596. SERIAL_ECHOLNPGM("The command buffer is empty.");
  597. } else {
  598. SERIAL_ECHOPGM("Content of the buffer: entries ");
  599. SERIAL_ECHO(buflen);
  600. SERIAL_ECHOPGM(", indr ");
  601. SERIAL_ECHO(bufindr);
  602. SERIAL_ECHOPGM(", indw ");
  603. SERIAL_ECHO(bufindw);
  604. SERIAL_ECHOLNPGM("");
  605. int nr = 0;
  606. if (bufindr < bufindw) {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  613. }
  614. } else {
  615. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  616. cmdqueue_dump_to_serial_single_line(nr, p);
  617. // Skip the command.
  618. for (++p; *p != 0; ++ p);
  619. // Skip the gaps.
  620. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  621. }
  622. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  623. cmdqueue_dump_to_serial_single_line(nr, p);
  624. // Skip the command.
  625. for (++p; *p != 0; ++ p);
  626. // Skip the gaps.
  627. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  628. }
  629. }
  630. SERIAL_ECHOLNPGM("End of the buffer.");
  631. }
  632. }
  633. #endif /* CMDBUFFER_DEBUG */
  634. //adds an command to the main command buffer
  635. //thats really done in a non-safe way.
  636. //needs overworking someday
  637. // Currently the maximum length of a command piped through this function is around 20 characters
  638. void enquecommand(const char *cmd, bool from_progmem)
  639. {
  640. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  641. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  642. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  643. if (cmdqueue_could_enqueue_back(len)) {
  644. // This is dangerous if a mixing of serial and this happens
  645. // This may easily be tested: If serial_count > 0, we have a problem.
  646. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  647. if (from_progmem)
  648. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  649. else
  650. strcpy(cmdbuffer + bufindw + 1, cmd);
  651. SERIAL_ECHO_START;
  652. SERIAL_ECHORPGM(MSG_Enqueing);
  653. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  654. SERIAL_ECHOLNPGM("\"");
  655. bufindw += len + 2;
  656. if (bufindw == sizeof(cmdbuffer))
  657. bufindw = 0;
  658. ++ buflen;
  659. #ifdef CMDBUFFER_DEBUG
  660. cmdqueue_dump_to_serial();
  661. #endif /* CMDBUFFER_DEBUG */
  662. } else {
  663. SERIAL_ERROR_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. if (from_progmem)
  666. SERIAL_PROTOCOLRPGM(cmd);
  667. else
  668. SERIAL_ECHO(cmd);
  669. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  670. #ifdef CMDBUFFER_DEBUG
  671. cmdqueue_dump_to_serial();
  672. #endif /* CMDBUFFER_DEBUG */
  673. }
  674. }
  675. void enquecommand_front(const char *cmd, bool from_progmem)
  676. {
  677. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  678. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  679. if (cmdqueue_could_enqueue_front(len)) {
  680. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  681. if (from_progmem)
  682. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  683. else
  684. strcpy(cmdbuffer + bufindr + 1, cmd);
  685. ++ buflen;
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  689. SERIAL_ECHOLNPGM("\"");
  690. #ifdef CMDBUFFER_DEBUG
  691. cmdqueue_dump_to_serial();
  692. #endif /* CMDBUFFER_DEBUG */
  693. } else {
  694. SERIAL_ERROR_START;
  695. SERIAL_ECHOPGM("Enqueing to the front: \"");
  696. if (from_progmem)
  697. SERIAL_PROTOCOLRPGM(cmd);
  698. else
  699. SERIAL_ECHO(cmd);
  700. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  701. #ifdef CMDBUFFER_DEBUG
  702. cmdqueue_dump_to_serial();
  703. #endif /* CMDBUFFER_DEBUG */
  704. }
  705. }
  706. // Mark the command at the top of the command queue as new.
  707. // Therefore it will not be removed from the queue.
  708. void repeatcommand_front()
  709. {
  710. cmdbuffer_front_already_processed = true;
  711. }
  712. bool is_buffer_empty()
  713. {
  714. if (buflen == 0) return true;
  715. else return false;
  716. }
  717. void setup_killpin()
  718. {
  719. #if defined(KILL_PIN) && KILL_PIN > -1
  720. SET_INPUT(KILL_PIN);
  721. WRITE(KILL_PIN,HIGH);
  722. #endif
  723. }
  724. // Set home pin
  725. void setup_homepin(void)
  726. {
  727. #if defined(HOME_PIN) && HOME_PIN > -1
  728. SET_INPUT(HOME_PIN);
  729. WRITE(HOME_PIN,HIGH);
  730. #endif
  731. }
  732. void setup_photpin()
  733. {
  734. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  735. SET_OUTPUT(PHOTOGRAPH_PIN);
  736. WRITE(PHOTOGRAPH_PIN, LOW);
  737. #endif
  738. }
  739. void setup_powerhold()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, HIGH);
  744. #endif
  745. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  746. SET_OUTPUT(PS_ON_PIN);
  747. #if defined(PS_DEFAULT_OFF)
  748. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  749. #else
  750. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  751. #endif
  752. #endif
  753. }
  754. void suicide()
  755. {
  756. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  757. SET_OUTPUT(SUICIDE_PIN);
  758. WRITE(SUICIDE_PIN, LOW);
  759. #endif
  760. }
  761. void servo_init()
  762. {
  763. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  764. servos[0].attach(SERVO0_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  767. servos[1].attach(SERVO1_PIN);
  768. #endif
  769. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  770. servos[2].attach(SERVO2_PIN);
  771. #endif
  772. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  773. servos[3].attach(SERVO3_PIN);
  774. #endif
  775. #if (NUM_SERVOS >= 5)
  776. #error "TODO: enter initalisation code for more servos"
  777. #endif
  778. }
  779. static void lcd_language_menu();
  780. #ifdef MESH_BED_LEVELING
  781. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  782. #endif
  783. // Factory reset function
  784. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  785. // Level input parameter sets depth of reset
  786. // Quiet parameter masks all waitings for user interact.
  787. int er_progress = 0;
  788. void factory_reset(char level, bool quiet)
  789. {
  790. lcd_implementation_clear();
  791. switch (level) {
  792. // Level 0: Language reset
  793. case 0:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. lcd_force_language_selection();
  798. break;
  799. //Level 1: Reset statistics
  800. case 1:
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  805. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  806. lcd_menu_statistics();
  807. break;
  808. // Level 2: Prepare for shipping
  809. case 2:
  810. //lcd_printPGM(PSTR("Factory RESET"));
  811. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  812. // Force language selection at the next boot up.
  813. lcd_force_language_selection();
  814. // Force the "Follow calibration flow" message at the next boot up.
  815. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  816. farm_no = 0;
  817. farm_mode == false;
  818. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  819. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. //_delay_ms(2000);
  824. break;
  825. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  826. case 3:
  827. lcd_printPGM(PSTR("Factory RESET"));
  828. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  829. WRITE(BEEPER, HIGH);
  830. _delay_ms(100);
  831. WRITE(BEEPER, LOW);
  832. er_progress = 0;
  833. lcd_print_at_PGM(3, 3, PSTR(" "));
  834. lcd_implementation_print_at(3, 3, er_progress);
  835. // Erase EEPROM
  836. for (int i = 0; i < 4096; i++) {
  837. eeprom_write_byte((uint8_t*)i, 0xFF);
  838. if (i % 41 == 0) {
  839. er_progress++;
  840. lcd_print_at_PGM(3, 3, PSTR(" "));
  841. lcd_implementation_print_at(3, 3, er_progress);
  842. lcd_printPGM(PSTR("%"));
  843. }
  844. }
  845. break;
  846. default:
  847. break;
  848. }
  849. }
  850. // "Setup" function is called by the Arduino framework on startup.
  851. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  852. // are initialized by the main() routine provided by the Arduino framework.
  853. void setup()
  854. {
  855. setup_killpin();
  856. setup_powerhold();
  857. MYSERIAL.begin(BAUDRATE);
  858. SERIAL_PROTOCOLLNPGM("start");
  859. SERIAL_ECHO_START;
  860. #if 0
  861. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  862. for (int i = 0; i < 4096; ++ i) {
  863. int b = eeprom_read_byte((unsigned char*)i);
  864. if (b != 255) {
  865. SERIAL_ECHO(i);
  866. SERIAL_ECHO(":");
  867. SERIAL_ECHO(b);
  868. SERIAL_ECHOLN("");
  869. }
  870. }
  871. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  872. #endif
  873. // Check startup - does nothing if bootloader sets MCUSR to 0
  874. byte mcu = MCUSR;
  875. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  876. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  877. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  878. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  879. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  880. MCUSR=0;
  881. //SERIAL_ECHORPGM(MSG_MARLIN);
  882. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  883. #ifdef STRING_VERSION_CONFIG_H
  884. #ifdef STRING_CONFIG_H_AUTHOR
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  887. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  888. SERIAL_ECHORPGM(MSG_AUTHOR);
  889. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  890. SERIAL_ECHOPGM("Compiled: ");
  891. SERIAL_ECHOLNPGM(__DATE__);
  892. #endif
  893. #endif
  894. SERIAL_ECHO_START;
  895. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  896. SERIAL_ECHO(freeMemory());
  897. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  898. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  899. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  900. Config_RetrieveSettings();
  901. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  902. tp_init(); // Initialize temperature loop
  903. plan_init(); // Initialize planner;
  904. watchdog_init();
  905. st_init(); // Initialize stepper, this enables interrupts!
  906. setup_photpin();
  907. servo_init();
  908. // Reset the machine correction matrix.
  909. // It does not make sense to load the correction matrix until the machine is homed.
  910. world2machine_reset();
  911. lcd_init();
  912. if (!READ(BTN_ENC))
  913. {
  914. _delay_ms(1000);
  915. if (!READ(BTN_ENC))
  916. {
  917. lcd_implementation_clear();
  918. lcd_printPGM(PSTR("Factory RESET"));
  919. SET_OUTPUT(BEEPER);
  920. WRITE(BEEPER, HIGH);
  921. while (!READ(BTN_ENC));
  922. WRITE(BEEPER, LOW);
  923. _delay_ms(2000);
  924. char level = reset_menu();
  925. factory_reset(level, false);
  926. switch (level) {
  927. case 0: _delay_ms(0); break;
  928. case 1: _delay_ms(0); break;
  929. case 2: _delay_ms(0); break;
  930. case 3: _delay_ms(0); break;
  931. }
  932. // _delay_ms(100);
  933. /*
  934. #ifdef MESH_BED_LEVELING
  935. _delay_ms(2000);
  936. if (!READ(BTN_ENC))
  937. {
  938. WRITE(BEEPER, HIGH);
  939. _delay_ms(100);
  940. WRITE(BEEPER, LOW);
  941. _delay_ms(200);
  942. WRITE(BEEPER, HIGH);
  943. _delay_ms(100);
  944. WRITE(BEEPER, LOW);
  945. int _z = 0;
  946. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  947. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  948. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  949. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  950. }
  951. else
  952. {
  953. WRITE(BEEPER, HIGH);
  954. _delay_ms(100);
  955. WRITE(BEEPER, LOW);
  956. }
  957. #endif // mesh */
  958. }
  959. }
  960. else
  961. {
  962. _delay_ms(1000); // wait 1sec to display the splash screen
  963. }
  964. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  965. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  966. #endif
  967. #ifdef DIGIPOT_I2C
  968. digipot_i2c_init();
  969. #endif
  970. setup_homepin();
  971. #if defined(Z_AXIS_ALWAYS_ON)
  972. enable_z();
  973. #endif
  974. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  975. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  976. if (farm_mode == 0xFF && farm_no == 0) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero, deactivate farm mode
  977. if (farm_mode)
  978. {
  979. prusa_statistics(8);
  980. }
  981. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  982. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  983. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  984. // but this times out if a blocking dialog is shown in setup().
  985. card.initsd();
  986. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  987. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  988. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  989. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  990. // where all the EEPROM entries are set to 0x0ff.
  991. // Once a firmware boots up, it forces at least a language selection, which changes
  992. // EEPROM_LANG to number lower than 0x0ff.
  993. // 1) Set a high power mode.
  994. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  995. }
  996. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  997. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  998. // is being written into the EEPROM, so the update procedure will be triggered only once.
  999. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1000. if (lang_selected >= LANG_NUM){
  1001. lcd_mylang();
  1002. }
  1003. check_babystep(); //checking if Z babystep is in allowed range
  1004. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1005. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1006. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1007. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1008. // Show the message.
  1009. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1010. lcd_update_enable(true);
  1011. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1012. // Show the message.
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1014. lcd_update_enable(true);
  1015. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1016. // Show the message.
  1017. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1018. lcd_update_enable(true);
  1019. }
  1020. // Store the currently running firmware into an eeprom,
  1021. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1022. update_current_firmware_version_to_eeprom();
  1023. }
  1024. void trace();
  1025. #define CHUNK_SIZE 64 // bytes
  1026. #define SAFETY_MARGIN 1
  1027. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1028. int chunkHead = 0;
  1029. int serial_read_stream() {
  1030. setTargetHotend(0, 0);
  1031. setTargetBed(0);
  1032. lcd_implementation_clear();
  1033. lcd_printPGM(PSTR(" Upload in progress"));
  1034. // first wait for how many bytes we will receive
  1035. uint32_t bytesToReceive;
  1036. // receive the four bytes
  1037. char bytesToReceiveBuffer[4];
  1038. for (int i=0; i<4; i++) {
  1039. int data;
  1040. while ((data = MYSERIAL.read()) == -1) {};
  1041. bytesToReceiveBuffer[i] = data;
  1042. }
  1043. // make it a uint32
  1044. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1045. // we're ready, notify the sender
  1046. MYSERIAL.write('+');
  1047. // lock in the routine
  1048. uint32_t receivedBytes = 0;
  1049. while (prusa_sd_card_upload) {
  1050. int i;
  1051. for (i=0; i<CHUNK_SIZE; i++) {
  1052. int data;
  1053. // check if we're not done
  1054. if (receivedBytes == bytesToReceive) {
  1055. break;
  1056. }
  1057. // read the next byte
  1058. while ((data = MYSERIAL.read()) == -1) {};
  1059. receivedBytes++;
  1060. // save it to the chunk
  1061. chunk[i] = data;
  1062. }
  1063. // write the chunk to SD
  1064. card.write_command_no_newline(&chunk[0]);
  1065. // notify the sender we're ready for more data
  1066. MYSERIAL.write('+');
  1067. // for safety
  1068. manage_heater();
  1069. // check if we're done
  1070. if(receivedBytes == bytesToReceive) {
  1071. trace(); // beep
  1072. card.closefile();
  1073. prusa_sd_card_upload = false;
  1074. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1075. return 0;
  1076. }
  1077. }
  1078. }
  1079. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1080. // Before loop(), the setup() function is called by the main() routine.
  1081. void loop()
  1082. {
  1083. bool stack_integrity = true;
  1084. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1085. {
  1086. is_usb_printing = true;
  1087. usb_printing_counter--;
  1088. _usb_timer = millis();
  1089. }
  1090. if (usb_printing_counter == 0)
  1091. {
  1092. is_usb_printing = false;
  1093. }
  1094. if (prusa_sd_card_upload)
  1095. {
  1096. //we read byte-by byte
  1097. serial_read_stream();
  1098. } else
  1099. {
  1100. get_command();
  1101. #ifdef SDSUPPORT
  1102. card.checkautostart(false);
  1103. #endif
  1104. if(buflen)
  1105. {
  1106. #ifdef SDSUPPORT
  1107. if(card.saving)
  1108. {
  1109. // Saving a G-code file onto an SD-card is in progress.
  1110. // Saving starts with M28, saving until M29 is seen.
  1111. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1112. card.write_command(CMDBUFFER_CURRENT_STRING);
  1113. if(card.logging)
  1114. process_commands();
  1115. else
  1116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1117. } else {
  1118. card.closefile();
  1119. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1120. }
  1121. } else {
  1122. process_commands();
  1123. }
  1124. #else
  1125. process_commands();
  1126. #endif //SDSUPPORT
  1127. if (! cmdbuffer_front_already_processed)
  1128. cmdqueue_pop_front();
  1129. cmdbuffer_front_already_processed = false;
  1130. }
  1131. }
  1132. //check heater every n milliseconds
  1133. manage_heater();
  1134. manage_inactivity();
  1135. checkHitEndstops();
  1136. lcd_update();
  1137. }
  1138. void get_command()
  1139. {
  1140. // Test and reserve space for the new command string.
  1141. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1142. return;
  1143. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1144. while (MYSERIAL.available() > 0) {
  1145. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1146. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1147. rx_buffer_full = true; //sets flag that buffer was full
  1148. }
  1149. char serial_char = MYSERIAL.read();
  1150. TimeSent = millis();
  1151. TimeNow = millis();
  1152. if (serial_char < 0)
  1153. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1154. // and Marlin does not support such file names anyway.
  1155. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1156. // to a hang-up of the print process from an SD card.
  1157. continue;
  1158. if(serial_char == '\n' ||
  1159. serial_char == '\r' ||
  1160. (serial_char == ':' && comment_mode == false) ||
  1161. serial_count >= (MAX_CMD_SIZE - 1) )
  1162. {
  1163. if(!serial_count) { //if empty line
  1164. comment_mode = false; //for new command
  1165. return;
  1166. }
  1167. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1168. if(!comment_mode){
  1169. comment_mode = false; //for new command
  1170. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1171. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1172. {
  1173. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1174. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1175. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1176. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1177. // M110 - set current line number.
  1178. // Line numbers not sent in succession.
  1179. SERIAL_ERROR_START;
  1180. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1181. SERIAL_ERRORLN(gcode_LastN);
  1182. //Serial.println(gcode_N);
  1183. FlushSerialRequestResend();
  1184. serial_count = 0;
  1185. return;
  1186. }
  1187. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1188. {
  1189. byte checksum = 0;
  1190. char *p = cmdbuffer+bufindw+1;
  1191. while (p != strchr_pointer)
  1192. checksum = checksum^(*p++);
  1193. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1194. SERIAL_ERROR_START;
  1195. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1196. SERIAL_ERRORLN(gcode_LastN);
  1197. FlushSerialRequestResend();
  1198. serial_count = 0;
  1199. return;
  1200. }
  1201. // If no errors, remove the checksum and continue parsing.
  1202. *strchr_pointer = 0;
  1203. }
  1204. else
  1205. {
  1206. SERIAL_ERROR_START;
  1207. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1208. SERIAL_ERRORLN(gcode_LastN);
  1209. FlushSerialRequestResend();
  1210. serial_count = 0;
  1211. return;
  1212. }
  1213. gcode_LastN = gcode_N;
  1214. //if no errors, continue parsing
  1215. } // end of 'N' command
  1216. }
  1217. else // if we don't receive 'N' but still see '*'
  1218. {
  1219. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1220. {
  1221. SERIAL_ERROR_START;
  1222. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1223. SERIAL_ERRORLN(gcode_LastN);
  1224. serial_count = 0;
  1225. return;
  1226. }
  1227. } // end of '*' command
  1228. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1229. if (! IS_SD_PRINTING) {
  1230. usb_printing_counter = 10;
  1231. is_usb_printing = true;
  1232. }
  1233. if (Stopped == true) {
  1234. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1235. if (gcode >= 0 && gcode <= 3) {
  1236. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1237. LCD_MESSAGERPGM(MSG_STOPPED);
  1238. }
  1239. }
  1240. } // end of 'G' command
  1241. //If command was e-stop process now
  1242. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1243. kill();
  1244. // Store the current line into buffer, move to the next line.
  1245. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1246. #ifdef CMDBUFFER_DEBUG
  1247. SERIAL_ECHO_START;
  1248. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1249. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1250. SERIAL_ECHOLNPGM("");
  1251. #endif /* CMDBUFFER_DEBUG */
  1252. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1253. if (bufindw == sizeof(cmdbuffer))
  1254. bufindw = 0;
  1255. ++ buflen;
  1256. #ifdef CMDBUFFER_DEBUG
  1257. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1258. SERIAL_ECHO(buflen);
  1259. SERIAL_ECHOLNPGM("");
  1260. #endif /* CMDBUFFER_DEBUG */
  1261. } // end of 'not comment mode'
  1262. serial_count = 0; //clear buffer
  1263. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1264. // in the queue, as this function will reserve the memory.
  1265. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1266. return;
  1267. } // end of "end of line" processing
  1268. else {
  1269. // Not an "end of line" symbol. Store the new character into a buffer.
  1270. if(serial_char == ';') comment_mode = true;
  1271. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1272. }
  1273. } // end of serial line processing loop
  1274. if(farm_mode){
  1275. TimeNow = millis();
  1276. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1277. cmdbuffer[bufindw+serial_count+1] = 0;
  1278. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1279. if (bufindw == sizeof(cmdbuffer))
  1280. bufindw = 0;
  1281. ++ buflen;
  1282. serial_count = 0;
  1283. SERIAL_ECHOPGM("TIMEOUT:");
  1284. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1285. return;
  1286. }
  1287. }
  1288. //add comment
  1289. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1290. rx_buffer_full = false;
  1291. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1292. serial_count = 0;
  1293. }
  1294. #ifdef SDSUPPORT
  1295. if(!card.sdprinting || serial_count!=0){
  1296. // If there is a half filled buffer from serial line, wait until return before
  1297. // continuing with the serial line.
  1298. return;
  1299. }
  1300. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1301. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1302. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1303. static bool stop_buffering=false;
  1304. if(buflen==0) stop_buffering=false;
  1305. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1306. while( !card.eof() && !stop_buffering) {
  1307. int16_t n=card.get();
  1308. char serial_char = (char)n;
  1309. if(serial_char == '\n' ||
  1310. serial_char == '\r' ||
  1311. (serial_char == '#' && comment_mode == false) ||
  1312. (serial_char == ':' && comment_mode == false) ||
  1313. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1314. {
  1315. if(card.eof()){
  1316. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1317. stoptime=millis();
  1318. char time[30];
  1319. unsigned long t=(stoptime-starttime)/1000;
  1320. int hours, minutes;
  1321. minutes=(t/60)%60;
  1322. hours=t/60/60;
  1323. save_statistics(total_filament_used, t);
  1324. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1325. SERIAL_ECHO_START;
  1326. SERIAL_ECHOLN(time);
  1327. lcd_setstatus(time);
  1328. card.printingHasFinished();
  1329. card.checkautostart(true);
  1330. if (farm_mode)
  1331. {
  1332. prusa_statistics(6);
  1333. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1334. }
  1335. }
  1336. if(serial_char=='#')
  1337. stop_buffering=true;
  1338. if(!serial_count)
  1339. {
  1340. comment_mode = false; //for new command
  1341. return; //if empty line
  1342. }
  1343. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1344. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1345. ++ buflen;
  1346. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1347. if (bufindw == sizeof(cmdbuffer))
  1348. bufindw = 0;
  1349. comment_mode = false; //for new command
  1350. serial_count = 0; //clear buffer
  1351. // The following line will reserve buffer space if available.
  1352. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1353. return;
  1354. }
  1355. else
  1356. {
  1357. if(serial_char == ';') comment_mode = true;
  1358. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1359. }
  1360. }
  1361. #endif //SDSUPPORT
  1362. }
  1363. // Return True if a character was found
  1364. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1365. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1366. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1367. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1368. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1369. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1370. #define DEFINE_PGM_READ_ANY(type, reader) \
  1371. static inline type pgm_read_any(const type *p) \
  1372. { return pgm_read_##reader##_near(p); }
  1373. DEFINE_PGM_READ_ANY(float, float);
  1374. DEFINE_PGM_READ_ANY(signed char, byte);
  1375. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1376. static const PROGMEM type array##_P[3] = \
  1377. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1378. static inline type array(int axis) \
  1379. { return pgm_read_any(&array##_P[axis]); } \
  1380. type array##_ext(int axis) \
  1381. { return pgm_read_any(&array##_P[axis]); }
  1382. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1383. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1384. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1385. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1386. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1387. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1388. static void axis_is_at_home(int axis) {
  1389. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1390. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1391. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1392. }
  1393. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1394. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1395. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1396. saved_feedrate = feedrate;
  1397. saved_feedmultiply = feedmultiply;
  1398. feedmultiply = 100;
  1399. previous_millis_cmd = millis();
  1400. enable_endstops(enable_endstops_now);
  1401. }
  1402. static void clean_up_after_endstop_move() {
  1403. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1404. enable_endstops(false);
  1405. #endif
  1406. feedrate = saved_feedrate;
  1407. feedmultiply = saved_feedmultiply;
  1408. previous_millis_cmd = millis();
  1409. }
  1410. #ifdef ENABLE_AUTO_BED_LEVELING
  1411. #ifdef AUTO_BED_LEVELING_GRID
  1412. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1413. {
  1414. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1415. planeNormal.debug("planeNormal");
  1416. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1417. //bedLevel.debug("bedLevel");
  1418. //plan_bed_level_matrix.debug("bed level before");
  1419. //vector_3 uncorrected_position = plan_get_position_mm();
  1420. //uncorrected_position.debug("position before");
  1421. vector_3 corrected_position = plan_get_position();
  1422. // corrected_position.debug("position after");
  1423. current_position[X_AXIS] = corrected_position.x;
  1424. current_position[Y_AXIS] = corrected_position.y;
  1425. current_position[Z_AXIS] = corrected_position.z;
  1426. // put the bed at 0 so we don't go below it.
  1427. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. }
  1430. #else // not AUTO_BED_LEVELING_GRID
  1431. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1432. plan_bed_level_matrix.set_to_identity();
  1433. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1434. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1435. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1436. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1437. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1438. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1439. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1440. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1441. vector_3 corrected_position = plan_get_position();
  1442. current_position[X_AXIS] = corrected_position.x;
  1443. current_position[Y_AXIS] = corrected_position.y;
  1444. current_position[Z_AXIS] = corrected_position.z;
  1445. // put the bed at 0 so we don't go below it.
  1446. current_position[Z_AXIS] = zprobe_zoffset;
  1447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. }
  1449. #endif // AUTO_BED_LEVELING_GRID
  1450. static void run_z_probe() {
  1451. plan_bed_level_matrix.set_to_identity();
  1452. feedrate = homing_feedrate[Z_AXIS];
  1453. // move down until you find the bed
  1454. float zPosition = -10;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1456. st_synchronize();
  1457. // we have to let the planner know where we are right now as it is not where we said to go.
  1458. zPosition = st_get_position_mm(Z_AXIS);
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1460. // move up the retract distance
  1461. zPosition += home_retract_mm(Z_AXIS);
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // move back down slowly to find bed
  1465. feedrate = homing_feedrate[Z_AXIS]/4;
  1466. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1470. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. }
  1473. static void do_blocking_move_to(float x, float y, float z) {
  1474. float oldFeedRate = feedrate;
  1475. feedrate = homing_feedrate[Z_AXIS];
  1476. current_position[Z_AXIS] = z;
  1477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1478. st_synchronize();
  1479. feedrate = XY_TRAVEL_SPEED;
  1480. current_position[X_AXIS] = x;
  1481. current_position[Y_AXIS] = y;
  1482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. feedrate = oldFeedRate;
  1485. }
  1486. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1487. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1488. }
  1489. /// Probe bed height at position (x,y), returns the measured z value
  1490. static float probe_pt(float x, float y, float z_before) {
  1491. // move to right place
  1492. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1493. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1494. run_z_probe();
  1495. float measured_z = current_position[Z_AXIS];
  1496. SERIAL_PROTOCOLRPGM(MSG_BED);
  1497. SERIAL_PROTOCOLPGM(" x: ");
  1498. SERIAL_PROTOCOL(x);
  1499. SERIAL_PROTOCOLPGM(" y: ");
  1500. SERIAL_PROTOCOL(y);
  1501. SERIAL_PROTOCOLPGM(" z: ");
  1502. SERIAL_PROTOCOL(measured_z);
  1503. SERIAL_PROTOCOLPGM("\n");
  1504. return measured_z;
  1505. }
  1506. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1507. void homeaxis(int axis) {
  1508. #define HOMEAXIS_DO(LETTER) \
  1509. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1510. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1511. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1512. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1513. 0) {
  1514. int axis_home_dir = home_dir(axis);
  1515. current_position[axis] = 0;
  1516. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1517. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1518. feedrate = homing_feedrate[axis];
  1519. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1520. st_synchronize();
  1521. current_position[axis] = 0;
  1522. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1523. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1524. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1525. st_synchronize();
  1526. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1527. feedrate = homing_feedrate[axis]/2 ;
  1528. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1529. st_synchronize();
  1530. axis_is_at_home(axis);
  1531. destination[axis] = current_position[axis];
  1532. feedrate = 0.0;
  1533. endstops_hit_on_purpose();
  1534. axis_known_position[axis] = true;
  1535. }
  1536. }
  1537. void home_xy()
  1538. {
  1539. set_destination_to_current();
  1540. homeaxis(X_AXIS);
  1541. homeaxis(Y_AXIS);
  1542. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1543. endstops_hit_on_purpose();
  1544. }
  1545. void refresh_cmd_timeout(void)
  1546. {
  1547. previous_millis_cmd = millis();
  1548. }
  1549. #ifdef FWRETRACT
  1550. void retract(bool retracting, bool swapretract = false) {
  1551. if(retracting && !retracted[active_extruder]) {
  1552. destination[X_AXIS]=current_position[X_AXIS];
  1553. destination[Y_AXIS]=current_position[Y_AXIS];
  1554. destination[Z_AXIS]=current_position[Z_AXIS];
  1555. destination[E_AXIS]=current_position[E_AXIS];
  1556. if (swapretract) {
  1557. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1558. } else {
  1559. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1560. }
  1561. plan_set_e_position(current_position[E_AXIS]);
  1562. float oldFeedrate = feedrate;
  1563. feedrate=retract_feedrate*60;
  1564. retracted[active_extruder]=true;
  1565. prepare_move();
  1566. current_position[Z_AXIS]-=retract_zlift;
  1567. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1568. prepare_move();
  1569. feedrate = oldFeedrate;
  1570. } else if(!retracting && retracted[active_extruder]) {
  1571. destination[X_AXIS]=current_position[X_AXIS];
  1572. destination[Y_AXIS]=current_position[Y_AXIS];
  1573. destination[Z_AXIS]=current_position[Z_AXIS];
  1574. destination[E_AXIS]=current_position[E_AXIS];
  1575. current_position[Z_AXIS]+=retract_zlift;
  1576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1577. //prepare_move();
  1578. if (swapretract) {
  1579. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1580. } else {
  1581. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1582. }
  1583. plan_set_e_position(current_position[E_AXIS]);
  1584. float oldFeedrate = feedrate;
  1585. feedrate=retract_recover_feedrate*60;
  1586. retracted[active_extruder]=false;
  1587. prepare_move();
  1588. feedrate = oldFeedrate;
  1589. }
  1590. } //retract
  1591. #endif //FWRETRACT
  1592. void trace() {
  1593. tone(BEEPER, 440);
  1594. delay(25);
  1595. noTone(BEEPER);
  1596. delay(20);
  1597. }
  1598. void ramming() {
  1599. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1600. if (current_temperature[0] < 230) {
  1601. //PLA
  1602. max_feedrate[E_AXIS] = 50;
  1603. //current_position[E_AXIS] -= 8;
  1604. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1605. //current_position[E_AXIS] += 8;
  1606. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1607. current_position[E_AXIS] += 5.4;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1609. current_position[E_AXIS] += 3.2;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1611. current_position[E_AXIS] += 3;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1613. st_synchronize();
  1614. max_feedrate[E_AXIS] = 80;
  1615. current_position[E_AXIS] -= 82;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1617. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1618. current_position[E_AXIS] -= 20;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1620. current_position[E_AXIS] += 5;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1622. current_position[E_AXIS] += 5;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1624. current_position[E_AXIS] -= 10;
  1625. st_synchronize();
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1627. current_position[E_AXIS] += 10;
  1628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1629. current_position[E_AXIS] -= 10;
  1630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1631. current_position[E_AXIS] += 10;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1633. current_position[E_AXIS] -= 10;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1635. st_synchronize();
  1636. }
  1637. else {
  1638. //ABS
  1639. max_feedrate[E_AXIS] = 50;
  1640. //current_position[E_AXIS] -= 8;
  1641. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1642. //current_position[E_AXIS] += 8;
  1643. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1644. current_position[E_AXIS] += 3.1;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1646. current_position[E_AXIS] += 3.1;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1648. current_position[E_AXIS] += 4;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1650. st_synchronize();
  1651. /*current_position[X_AXIS] += 23; //delay
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1653. current_position[X_AXIS] -= 23; //delay
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1655. delay(4700);
  1656. max_feedrate[E_AXIS] = 80;
  1657. current_position[E_AXIS] -= 92;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1659. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1660. current_position[E_AXIS] -= 5;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1662. current_position[E_AXIS] += 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1664. current_position[E_AXIS] -= 5;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. st_synchronize();
  1667. current_position[E_AXIS] += 5;
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1669. current_position[E_AXIS] -= 5;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1671. current_position[E_AXIS] += 5;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1673. current_position[E_AXIS] -= 5;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1675. st_synchronize();
  1676. }
  1677. }
  1678. void process_commands()
  1679. {
  1680. #ifdef FILAMENT_RUNOUT_SUPPORT
  1681. SET_INPUT(FR_SENS);
  1682. #endif
  1683. #ifdef CMDBUFFER_DEBUG
  1684. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1685. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1686. SERIAL_ECHOLNPGM("");
  1687. SERIAL_ECHOPGM("In cmdqueue: ");
  1688. SERIAL_ECHO(buflen);
  1689. SERIAL_ECHOLNPGM("");
  1690. #endif /* CMDBUFFER_DEBUG */
  1691. unsigned long codenum; //throw away variable
  1692. char *starpos = NULL;
  1693. #ifdef ENABLE_AUTO_BED_LEVELING
  1694. float x_tmp, y_tmp, z_tmp, real_z;
  1695. #endif
  1696. // PRUSA GCODES
  1697. #ifdef SNMM
  1698. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1699. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1700. int8_t SilentMode;
  1701. #endif
  1702. if(code_seen("PRUSA")){
  1703. if (code_seen("Ping")) { //PRUSA Ping
  1704. if (farm_mode) {
  1705. PingTime = millis();
  1706. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1707. }
  1708. }
  1709. else if (code_seen("PRN")) {
  1710. MYSERIAL.println(status_number);
  1711. }else if (code_seen("fn")) {
  1712. if (farm_mode) {
  1713. MYSERIAL.println(farm_no);
  1714. }
  1715. else {
  1716. MYSERIAL.println("Not in farm mode.");
  1717. }
  1718. }else if (code_seen("fv")) {
  1719. // get file version
  1720. #ifdef SDSUPPORT
  1721. card.openFile(strchr_pointer + 3,true);
  1722. while (true) {
  1723. uint16_t readByte = card.get();
  1724. MYSERIAL.write(readByte);
  1725. if (readByte=='\n') {
  1726. break;
  1727. }
  1728. }
  1729. card.closefile();
  1730. #endif // SDSUPPORT
  1731. } else if (code_seen("M28")) {
  1732. trace();
  1733. prusa_sd_card_upload = true;
  1734. card.openFile(strchr_pointer+4,false);
  1735. } else if(code_seen("Fir")){
  1736. SERIAL_PROTOCOLLN(FW_version);
  1737. } else if(code_seen("Rev")){
  1738. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1739. } else if(code_seen("Lang")) {
  1740. lcd_force_language_selection();
  1741. } else if(code_seen("Lz")) {
  1742. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1743. } else if (code_seen("SERIAL LOW")) {
  1744. MYSERIAL.println("SERIAL LOW");
  1745. MYSERIAL.begin(BAUDRATE);
  1746. return;
  1747. } else if (code_seen("SERIAL HIGH")) {
  1748. MYSERIAL.println("SERIAL HIGH");
  1749. MYSERIAL.begin(1152000);
  1750. return;
  1751. } else if(code_seen("Beat")) {
  1752. // Kick farm link timer
  1753. kicktime = millis();
  1754. } else if(code_seen("FR")) {
  1755. // Factory full reset
  1756. factory_reset(0,true);
  1757. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1758. #ifdef SNMM
  1759. int extr;
  1760. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1761. lcd_implementation_clear();
  1762. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1763. current_position[Z_AXIS] = 100;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1765. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1766. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1767. change_extr(extr);
  1768. ramming();
  1769. }
  1770. change_extr(0);
  1771. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1773. st_synchronize();
  1774. for (extr = 1; extr < 4; extr++) {
  1775. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1776. change_extr(extr);
  1777. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1779. st_synchronize();
  1780. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1781. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1783. st_synchronize();
  1784. }
  1785. change_extr(0);
  1786. current_position[E_AXIS] += 25;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1788. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1789. ramming();
  1790. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1791. else digipot_current(2, tmp_motor_loud[2]);
  1792. st_synchronize();
  1793. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1794. lcd_implementation_clear();
  1795. lcd_printPGM(MSG_PLEASE_WAIT);
  1796. current_position[Z_AXIS] = 0;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1798. st_synchronize();
  1799. lcd_update_enable(true);
  1800. #endif
  1801. }
  1802. else if (code_seen("SetF")) {
  1803. #ifdef SNMM
  1804. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1805. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1806. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1807. #endif
  1808. }
  1809. else if (code_seen("ResF")) {
  1810. #ifdef SNMM
  1811. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1812. #endif
  1813. }
  1814. //else if (code_seen('Cal')) {
  1815. // lcd_calibration();
  1816. // }
  1817. }
  1818. else if (code_seen('^')) {
  1819. // nothing, this is a version line
  1820. } else if(code_seen('G'))
  1821. {
  1822. switch((int)code_value())
  1823. {
  1824. case 0: // G0 -> G1
  1825. case 1: // G1
  1826. if(Stopped == false) {
  1827. #ifdef FILAMENT_RUNOUT_SUPPORT
  1828. if(READ(FR_SENS)){
  1829. feedmultiplyBckp=feedmultiply;
  1830. float target[4];
  1831. float lastpos[4];
  1832. target[X_AXIS]=current_position[X_AXIS];
  1833. target[Y_AXIS]=current_position[Y_AXIS];
  1834. target[Z_AXIS]=current_position[Z_AXIS];
  1835. target[E_AXIS]=current_position[E_AXIS];
  1836. lastpos[X_AXIS]=current_position[X_AXIS];
  1837. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1838. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1839. lastpos[E_AXIS]=current_position[E_AXIS];
  1840. //retract by E
  1841. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1842. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1843. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1844. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1845. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1846. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1847. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1848. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1849. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1850. //finish moves
  1851. st_synchronize();
  1852. //disable extruder steppers so filament can be removed
  1853. disable_e0();
  1854. disable_e1();
  1855. disable_e2();
  1856. delay(100);
  1857. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1858. uint8_t cnt=0;
  1859. int counterBeep = 0;
  1860. lcd_wait_interact();
  1861. while(!lcd_clicked()){
  1862. cnt++;
  1863. manage_heater();
  1864. manage_inactivity(true);
  1865. //lcd_update();
  1866. if(cnt==0)
  1867. {
  1868. #if BEEPER > 0
  1869. if (counterBeep== 500){
  1870. counterBeep = 0;
  1871. }
  1872. SET_OUTPUT(BEEPER);
  1873. if (counterBeep== 0){
  1874. WRITE(BEEPER,HIGH);
  1875. }
  1876. if (counterBeep== 20){
  1877. WRITE(BEEPER,LOW);
  1878. }
  1879. counterBeep++;
  1880. #else
  1881. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1882. lcd_buzz(1000/6,100);
  1883. #else
  1884. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1885. #endif
  1886. #endif
  1887. }
  1888. }
  1889. WRITE(BEEPER,LOW);
  1890. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1892. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1893. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1894. lcd_change_fil_state = 0;
  1895. lcd_loading_filament();
  1896. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1897. lcd_change_fil_state = 0;
  1898. lcd_alright();
  1899. switch(lcd_change_fil_state){
  1900. case 2:
  1901. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1903. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1905. lcd_loading_filament();
  1906. break;
  1907. case 3:
  1908. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1909. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1910. lcd_loading_color();
  1911. break;
  1912. default:
  1913. lcd_change_success();
  1914. break;
  1915. }
  1916. }
  1917. target[E_AXIS]+= 5;
  1918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1919. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1921. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1922. //plan_set_e_position(current_position[E_AXIS]);
  1923. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1924. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1925. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1926. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1927. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1928. plan_set_e_position(lastpos[E_AXIS]);
  1929. feedmultiply=feedmultiplyBckp;
  1930. char cmd[9];
  1931. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1932. enquecommand(cmd);
  1933. }
  1934. #endif
  1935. get_coordinates(); // For X Y Z E F
  1936. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1937. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1938. }
  1939. #ifdef FWRETRACT
  1940. if(autoretract_enabled)
  1941. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1942. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1943. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1944. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1945. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1946. retract(!retracted);
  1947. return;
  1948. }
  1949. }
  1950. #endif //FWRETRACT
  1951. prepare_move();
  1952. //ClearToSend();
  1953. }
  1954. break;
  1955. case 2: // G2 - CW ARC
  1956. if(Stopped == false) {
  1957. get_arc_coordinates();
  1958. prepare_arc_move(true);
  1959. }
  1960. break;
  1961. case 3: // G3 - CCW ARC
  1962. if(Stopped == false) {
  1963. get_arc_coordinates();
  1964. prepare_arc_move(false);
  1965. }
  1966. break;
  1967. case 4: // G4 dwell
  1968. LCD_MESSAGERPGM(MSG_DWELL);
  1969. codenum = 0;
  1970. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1971. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1972. st_synchronize();
  1973. codenum += millis(); // keep track of when we started waiting
  1974. previous_millis_cmd = millis();
  1975. while(millis() < codenum) {
  1976. manage_heater();
  1977. manage_inactivity();
  1978. lcd_update();
  1979. }
  1980. break;
  1981. #ifdef FWRETRACT
  1982. case 10: // G10 retract
  1983. #if EXTRUDERS > 1
  1984. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1985. retract(true,retracted_swap[active_extruder]);
  1986. #else
  1987. retract(true);
  1988. #endif
  1989. break;
  1990. case 11: // G11 retract_recover
  1991. #if EXTRUDERS > 1
  1992. retract(false,retracted_swap[active_extruder]);
  1993. #else
  1994. retract(false);
  1995. #endif
  1996. break;
  1997. #endif //FWRETRACT
  1998. case 28: //G28 Home all Axis one at a time
  1999. homing_flag = true;
  2000. #ifdef ENABLE_AUTO_BED_LEVELING
  2001. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2002. #endif //ENABLE_AUTO_BED_LEVELING
  2003. // For mesh bed leveling deactivate the matrix temporarily
  2004. #ifdef MESH_BED_LEVELING
  2005. mbl.active = 0;
  2006. #endif
  2007. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2008. // the planner will not perform any adjustments in the XY plane.
  2009. // Wait for the motors to stop and update the current position with the absolute values.
  2010. world2machine_revert_to_uncorrected();
  2011. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2012. // consumed during the first movements following this statement.
  2013. babystep_undo();
  2014. saved_feedrate = feedrate;
  2015. saved_feedmultiply = feedmultiply;
  2016. feedmultiply = 100;
  2017. previous_millis_cmd = millis();
  2018. enable_endstops(true);
  2019. for(int8_t i=0; i < NUM_AXIS; i++)
  2020. destination[i] = current_position[i];
  2021. feedrate = 0.0;
  2022. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2023. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2024. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2025. homeaxis(Z_AXIS);
  2026. }
  2027. #endif
  2028. #ifdef QUICK_HOME
  2029. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2030. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2031. {
  2032. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2033. int x_axis_home_dir = home_dir(X_AXIS);
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2036. feedrate = homing_feedrate[X_AXIS];
  2037. if(homing_feedrate[Y_AXIS]<feedrate)
  2038. feedrate = homing_feedrate[Y_AXIS];
  2039. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2040. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2041. } else {
  2042. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2043. }
  2044. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2045. st_synchronize();
  2046. axis_is_at_home(X_AXIS);
  2047. axis_is_at_home(Y_AXIS);
  2048. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2049. destination[X_AXIS] = current_position[X_AXIS];
  2050. destination[Y_AXIS] = current_position[Y_AXIS];
  2051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2052. feedrate = 0.0;
  2053. st_synchronize();
  2054. endstops_hit_on_purpose();
  2055. current_position[X_AXIS] = destination[X_AXIS];
  2056. current_position[Y_AXIS] = destination[Y_AXIS];
  2057. current_position[Z_AXIS] = destination[Z_AXIS];
  2058. }
  2059. #endif /* QUICK_HOME */
  2060. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2061. homeaxis(X_AXIS);
  2062. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2063. homeaxis(Y_AXIS);
  2064. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2065. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2066. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2067. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2068. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2069. #ifndef Z_SAFE_HOMING
  2070. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2071. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2072. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2073. feedrate = max_feedrate[Z_AXIS];
  2074. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2075. st_synchronize();
  2076. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2077. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2078. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2079. {
  2080. homeaxis(X_AXIS);
  2081. homeaxis(Y_AXIS);
  2082. }
  2083. // 1st mesh bed leveling measurement point, corrected.
  2084. world2machine_initialize();
  2085. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2086. world2machine_reset();
  2087. if (destination[Y_AXIS] < Y_MIN_POS)
  2088. destination[Y_AXIS] = Y_MIN_POS;
  2089. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2090. feedrate = homing_feedrate[Z_AXIS]/10;
  2091. current_position[Z_AXIS] = 0;
  2092. enable_endstops(false);
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2095. st_synchronize();
  2096. current_position[X_AXIS] = destination[X_AXIS];
  2097. current_position[Y_AXIS] = destination[Y_AXIS];
  2098. enable_endstops(true);
  2099. endstops_hit_on_purpose();
  2100. homeaxis(Z_AXIS);
  2101. #else // MESH_BED_LEVELING
  2102. homeaxis(Z_AXIS);
  2103. #endif // MESH_BED_LEVELING
  2104. }
  2105. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2106. if(home_all_axis) {
  2107. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2108. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2109. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2110. feedrate = XY_TRAVEL_SPEED/60;
  2111. current_position[Z_AXIS] = 0;
  2112. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2114. st_synchronize();
  2115. current_position[X_AXIS] = destination[X_AXIS];
  2116. current_position[Y_AXIS] = destination[Y_AXIS];
  2117. homeaxis(Z_AXIS);
  2118. }
  2119. // Let's see if X and Y are homed and probe is inside bed area.
  2120. if(code_seen(axis_codes[Z_AXIS])) {
  2121. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2122. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2123. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2124. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2125. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2126. current_position[Z_AXIS] = 0;
  2127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2128. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2129. feedrate = max_feedrate[Z_AXIS];
  2130. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2131. st_synchronize();
  2132. homeaxis(Z_AXIS);
  2133. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2134. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2135. SERIAL_ECHO_START;
  2136. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2137. } else {
  2138. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2139. SERIAL_ECHO_START;
  2140. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2141. }
  2142. }
  2143. #endif // Z_SAFE_HOMING
  2144. #endif // Z_HOME_DIR < 0
  2145. if(code_seen(axis_codes[Z_AXIS])) {
  2146. if(code_value_long() != 0) {
  2147. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2148. }
  2149. }
  2150. #ifdef ENABLE_AUTO_BED_LEVELING
  2151. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2152. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2153. }
  2154. #endif
  2155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2156. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2157. enable_endstops(false);
  2158. #endif
  2159. feedrate = saved_feedrate;
  2160. feedmultiply = saved_feedmultiply;
  2161. previous_millis_cmd = millis();
  2162. endstops_hit_on_purpose();
  2163. #ifndef MESH_BED_LEVELING
  2164. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2165. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2166. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2167. lcd_adjust_z();
  2168. #endif
  2169. // Load the machine correction matrix
  2170. world2machine_initialize();
  2171. // and correct the current_position to match the transformed coordinate system.
  2172. world2machine_update_current();
  2173. #ifdef MESH_BED_LEVELING
  2174. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2175. {
  2176. }
  2177. else
  2178. {
  2179. st_synchronize();
  2180. homing_flag = false;
  2181. // Push the commands to the front of the message queue in the reverse order!
  2182. // There shall be always enough space reserved for these commands.
  2183. // enquecommand_front_P((PSTR("G80")));
  2184. goto case_G80;
  2185. }
  2186. #endif
  2187. if (farm_mode) { prusa_statistics(20); };
  2188. homing_flag = false;
  2189. break;
  2190. #ifdef ENABLE_AUTO_BED_LEVELING
  2191. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2192. {
  2193. #if Z_MIN_PIN == -1
  2194. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2195. #endif
  2196. // Prevent user from running a G29 without first homing in X and Y
  2197. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2198. {
  2199. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2200. SERIAL_ECHO_START;
  2201. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2202. break; // abort G29, since we don't know where we are
  2203. }
  2204. st_synchronize();
  2205. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2206. //vector_3 corrected_position = plan_get_position_mm();
  2207. //corrected_position.debug("position before G29");
  2208. plan_bed_level_matrix.set_to_identity();
  2209. vector_3 uncorrected_position = plan_get_position();
  2210. //uncorrected_position.debug("position durring G29");
  2211. current_position[X_AXIS] = uncorrected_position.x;
  2212. current_position[Y_AXIS] = uncorrected_position.y;
  2213. current_position[Z_AXIS] = uncorrected_position.z;
  2214. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2215. setup_for_endstop_move();
  2216. feedrate = homing_feedrate[Z_AXIS];
  2217. #ifdef AUTO_BED_LEVELING_GRID
  2218. // probe at the points of a lattice grid
  2219. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2220. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2221. // solve the plane equation ax + by + d = z
  2222. // A is the matrix with rows [x y 1] for all the probed points
  2223. // B is the vector of the Z positions
  2224. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2225. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2226. // "A" matrix of the linear system of equations
  2227. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2228. // "B" vector of Z points
  2229. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2230. int probePointCounter = 0;
  2231. bool zig = true;
  2232. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2233. {
  2234. int xProbe, xInc;
  2235. if (zig)
  2236. {
  2237. xProbe = LEFT_PROBE_BED_POSITION;
  2238. //xEnd = RIGHT_PROBE_BED_POSITION;
  2239. xInc = xGridSpacing;
  2240. zig = false;
  2241. } else // zag
  2242. {
  2243. xProbe = RIGHT_PROBE_BED_POSITION;
  2244. //xEnd = LEFT_PROBE_BED_POSITION;
  2245. xInc = -xGridSpacing;
  2246. zig = true;
  2247. }
  2248. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2249. {
  2250. float z_before;
  2251. if (probePointCounter == 0)
  2252. {
  2253. // raise before probing
  2254. z_before = Z_RAISE_BEFORE_PROBING;
  2255. } else
  2256. {
  2257. // raise extruder
  2258. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2259. }
  2260. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2261. eqnBVector[probePointCounter] = measured_z;
  2262. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2263. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2264. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2265. probePointCounter++;
  2266. xProbe += xInc;
  2267. }
  2268. }
  2269. clean_up_after_endstop_move();
  2270. // solve lsq problem
  2271. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2272. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2273. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2274. SERIAL_PROTOCOLPGM(" b: ");
  2275. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2276. SERIAL_PROTOCOLPGM(" d: ");
  2277. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2278. set_bed_level_equation_lsq(plane_equation_coefficients);
  2279. free(plane_equation_coefficients);
  2280. #else // AUTO_BED_LEVELING_GRID not defined
  2281. // Probe at 3 arbitrary points
  2282. // probe 1
  2283. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2284. // probe 2
  2285. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2286. // probe 3
  2287. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2288. clean_up_after_endstop_move();
  2289. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2290. #endif // AUTO_BED_LEVELING_GRID
  2291. st_synchronize();
  2292. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2293. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2294. // When the bed is uneven, this height must be corrected.
  2295. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2296. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2297. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2298. z_tmp = current_position[Z_AXIS];
  2299. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2300. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. }
  2303. break;
  2304. #ifndef Z_PROBE_SLED
  2305. case 30: // G30 Single Z Probe
  2306. {
  2307. st_synchronize();
  2308. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2309. setup_for_endstop_move();
  2310. feedrate = homing_feedrate[Z_AXIS];
  2311. run_z_probe();
  2312. SERIAL_PROTOCOLPGM(MSG_BED);
  2313. SERIAL_PROTOCOLPGM(" X: ");
  2314. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2315. SERIAL_PROTOCOLPGM(" Y: ");
  2316. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2317. SERIAL_PROTOCOLPGM(" Z: ");
  2318. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2319. SERIAL_PROTOCOLPGM("\n");
  2320. clean_up_after_endstop_move();
  2321. }
  2322. break;
  2323. #else
  2324. case 31: // dock the sled
  2325. dock_sled(true);
  2326. break;
  2327. case 32: // undock the sled
  2328. dock_sled(false);
  2329. break;
  2330. #endif // Z_PROBE_SLED
  2331. #endif // ENABLE_AUTO_BED_LEVELING
  2332. #ifdef MESH_BED_LEVELING
  2333. case 30: // G30 Single Z Probe
  2334. {
  2335. st_synchronize();
  2336. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2337. setup_for_endstop_move();
  2338. feedrate = homing_feedrate[Z_AXIS];
  2339. find_bed_induction_sensor_point_z(-10.f, 3);
  2340. SERIAL_PROTOCOLRPGM(MSG_BED);
  2341. SERIAL_PROTOCOLPGM(" X: ");
  2342. MYSERIAL.print(current_position[X_AXIS], 5);
  2343. SERIAL_PROTOCOLPGM(" Y: ");
  2344. MYSERIAL.print(current_position[Y_AXIS], 5);
  2345. SERIAL_PROTOCOLPGM(" Z: ");
  2346. MYSERIAL.print(current_position[Z_AXIS], 5);
  2347. SERIAL_PROTOCOLPGM("\n");
  2348. clean_up_after_endstop_move();
  2349. }
  2350. break;
  2351. #ifdef DIS
  2352. case 77:
  2353. {
  2354. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2355. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2356. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2357. float dimension_x = 40;
  2358. float dimension_y = 40;
  2359. int points_x = 40;
  2360. int points_y = 40;
  2361. float offset_x = 74;
  2362. float offset_y = 33;
  2363. if (code_seen('X')) dimension_x = code_value();
  2364. if (code_seen('Y')) dimension_y = code_value();
  2365. if (code_seen('XP')) points_x = code_value();
  2366. if (code_seen('YP')) points_y = code_value();
  2367. if (code_seen('XO')) offset_x = code_value();
  2368. if (code_seen('YO')) offset_y = code_value();
  2369. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2370. } break;
  2371. #endif
  2372. /**
  2373. * G80: Mesh-based Z probe, probes a grid and produces a
  2374. * mesh to compensate for variable bed height
  2375. *
  2376. * The S0 report the points as below
  2377. *
  2378. * +----> X-axis
  2379. * |
  2380. * |
  2381. * v Y-axis
  2382. *
  2383. */
  2384. case 80:
  2385. case_G80:
  2386. {
  2387. // Firstly check if we know where we are
  2388. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2389. // We don't know where we are! HOME!
  2390. // Push the commands to the front of the message queue in the reverse order!
  2391. // There shall be always enough space reserved for these commands.
  2392. repeatcommand_front(); // repeat G80 with all its parameters
  2393. enquecommand_front_P((PSTR("G28 W0")));
  2394. break;
  2395. }
  2396. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2397. bool custom_message_old = custom_message;
  2398. unsigned int custom_message_type_old = custom_message_type;
  2399. unsigned int custom_message_state_old = custom_message_state;
  2400. custom_message = true;
  2401. custom_message_type = 1;
  2402. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2403. lcd_update(1);
  2404. mbl.reset();
  2405. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2406. // consumed during the first movements following this statement.
  2407. babystep_undo();
  2408. // Cycle through all points and probe them
  2409. // First move up. During this first movement, the babystepping will be reverted.
  2410. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2412. // The move to the first calibration point.
  2413. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2414. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2415. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2416. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2418. // Wait until the move is finished.
  2419. st_synchronize();
  2420. int mesh_point = 0;
  2421. int ix = 0;
  2422. int iy = 0;
  2423. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2424. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2425. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2426. bool has_z = is_bed_z_jitter_data_valid();
  2427. setup_for_endstop_move(false);
  2428. const char *kill_message = NULL;
  2429. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2430. // Get coords of a measuring point.
  2431. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2432. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2433. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2434. float z0 = 0.f;
  2435. if (has_z && mesh_point > 0) {
  2436. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2437. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2438. #if 0
  2439. SERIAL_ECHOPGM("Bed leveling, point: ");
  2440. MYSERIAL.print(mesh_point);
  2441. SERIAL_ECHOPGM(", calibration z: ");
  2442. MYSERIAL.print(z0, 5);
  2443. SERIAL_ECHOLNPGM("");
  2444. #endif
  2445. }
  2446. // Move Z up to MESH_HOME_Z_SEARCH.
  2447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2449. st_synchronize();
  2450. // Move to XY position of the sensor point.
  2451. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2452. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2453. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2455. st_synchronize();
  2456. // Go down until endstop is hit
  2457. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2458. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2459. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2460. break;
  2461. }
  2462. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2463. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2464. break;
  2465. }
  2466. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2467. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2468. break;
  2469. }
  2470. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2471. custom_message_state--;
  2472. mesh_point++;
  2473. lcd_update(1);
  2474. }
  2475. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2477. st_synchronize();
  2478. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2479. kill(kill_message);
  2480. }
  2481. clean_up_after_endstop_move();
  2482. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2483. babystep_apply();
  2484. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2485. for (uint8_t i = 0; i < 4; ++ i) {
  2486. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2487. long correction = 0;
  2488. if (code_seen(codes[i]))
  2489. correction = code_value_long();
  2490. else if (eeprom_bed_correction_valid) {
  2491. unsigned char *addr = (i < 2) ?
  2492. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2493. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2494. correction = eeprom_read_int8(addr);
  2495. }
  2496. if (correction == 0)
  2497. continue;
  2498. float offset = float(correction) * 0.001f;
  2499. if (fabs(offset) > 0.101f) {
  2500. SERIAL_ERROR_START;
  2501. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2502. SERIAL_ECHO(offset);
  2503. SERIAL_ECHOLNPGM(" microns");
  2504. } else {
  2505. switch (i) {
  2506. case 0:
  2507. for (uint8_t row = 0; row < 3; ++ row) {
  2508. mbl.z_values[row][1] += 0.5f * offset;
  2509. mbl.z_values[row][0] += offset;
  2510. }
  2511. break;
  2512. case 1:
  2513. for (uint8_t row = 0; row < 3; ++ row) {
  2514. mbl.z_values[row][1] += 0.5f * offset;
  2515. mbl.z_values[row][2] += offset;
  2516. }
  2517. break;
  2518. case 2:
  2519. for (uint8_t col = 0; col < 3; ++ col) {
  2520. mbl.z_values[1][col] += 0.5f * offset;
  2521. mbl.z_values[0][col] += offset;
  2522. }
  2523. break;
  2524. case 3:
  2525. for (uint8_t col = 0; col < 3; ++ col) {
  2526. mbl.z_values[1][col] += 0.5f * offset;
  2527. mbl.z_values[2][col] += offset;
  2528. }
  2529. break;
  2530. }
  2531. }
  2532. }
  2533. mbl.upsample_3x3();
  2534. mbl.active = 1;
  2535. go_home_with_z_lift();
  2536. // Restore custom message state
  2537. custom_message = custom_message_old;
  2538. custom_message_type = custom_message_type_old;
  2539. custom_message_state = custom_message_state_old;
  2540. lcd_update(1);
  2541. }
  2542. break;
  2543. /**
  2544. * G81: Print mesh bed leveling status and bed profile if activated
  2545. */
  2546. case 81:
  2547. if (mbl.active) {
  2548. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2549. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2550. SERIAL_PROTOCOLPGM(",");
  2551. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2552. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2553. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2554. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2555. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2556. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2557. SERIAL_PROTOCOLPGM(" ");
  2558. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2559. }
  2560. SERIAL_PROTOCOLPGM("\n");
  2561. }
  2562. }
  2563. else
  2564. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2565. break;
  2566. #if 0
  2567. /**
  2568. * G82: Single Z probe at current location
  2569. *
  2570. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2571. *
  2572. */
  2573. case 82:
  2574. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2575. setup_for_endstop_move();
  2576. find_bed_induction_sensor_point_z();
  2577. clean_up_after_endstop_move();
  2578. SERIAL_PROTOCOLPGM("Bed found at: ");
  2579. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2580. SERIAL_PROTOCOLPGM("\n");
  2581. break;
  2582. /**
  2583. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2584. */
  2585. case 83:
  2586. {
  2587. int babystepz = code_seen('S') ? code_value() : 0;
  2588. int BabyPosition = code_seen('P') ? code_value() : 0;
  2589. if (babystepz != 0) {
  2590. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2591. // Is the axis indexed starting with zero or one?
  2592. if (BabyPosition > 4) {
  2593. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2594. }else{
  2595. // Save it to the eeprom
  2596. babystepLoadZ = babystepz;
  2597. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2598. // adjust the Z
  2599. babystepsTodoZadd(babystepLoadZ);
  2600. }
  2601. }
  2602. }
  2603. break;
  2604. /**
  2605. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2606. */
  2607. case 84:
  2608. babystepsTodoZsubtract(babystepLoadZ);
  2609. // babystepLoadZ = 0;
  2610. break;
  2611. /**
  2612. * G85: Prusa3D specific: Pick best babystep
  2613. */
  2614. case 85:
  2615. lcd_pick_babystep();
  2616. break;
  2617. #endif
  2618. /**
  2619. * G86: Prusa3D specific: Disable babystep correction after home.
  2620. * This G-code will be performed at the start of a calibration script.
  2621. */
  2622. case 86:
  2623. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2624. break;
  2625. /**
  2626. * G87: Prusa3D specific: Enable babystep correction after home
  2627. * This G-code will be performed at the end of a calibration script.
  2628. */
  2629. case 87:
  2630. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2631. break;
  2632. /**
  2633. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2634. */
  2635. case 88:
  2636. break;
  2637. #endif // ENABLE_MESH_BED_LEVELING
  2638. case 90: // G90
  2639. relative_mode = false;
  2640. break;
  2641. case 91: // G91
  2642. relative_mode = true;
  2643. break;
  2644. case 92: // G92
  2645. if(!code_seen(axis_codes[E_AXIS]))
  2646. st_synchronize();
  2647. for(int8_t i=0; i < NUM_AXIS; i++) {
  2648. if(code_seen(axis_codes[i])) {
  2649. if(i == E_AXIS) {
  2650. current_position[i] = code_value();
  2651. plan_set_e_position(current_position[E_AXIS]);
  2652. }
  2653. else {
  2654. current_position[i] = code_value()+add_homing[i];
  2655. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2656. }
  2657. }
  2658. }
  2659. break;
  2660. case 98: //activate farm mode
  2661. farm_mode = 1;
  2662. PingTime = millis();
  2663. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2664. break;
  2665. case 99: //deactivate farm mode
  2666. farm_mode = 0;
  2667. lcd_printer_connected();
  2668. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2669. lcd_update(2);
  2670. break;
  2671. }
  2672. } // end if(code_seen('G'))
  2673. else if(code_seen('M'))
  2674. {
  2675. int index;
  2676. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2677. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2678. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2679. SERIAL_ECHOLNPGM("Invalid M code");
  2680. } else
  2681. switch((int)code_value())
  2682. {
  2683. #ifdef ULTIPANEL
  2684. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2685. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2686. {
  2687. char *src = strchr_pointer + 2;
  2688. codenum = 0;
  2689. bool hasP = false, hasS = false;
  2690. if (code_seen('P')) {
  2691. codenum = code_value(); // milliseconds to wait
  2692. hasP = codenum > 0;
  2693. }
  2694. if (code_seen('S')) {
  2695. codenum = code_value() * 1000; // seconds to wait
  2696. hasS = codenum > 0;
  2697. }
  2698. starpos = strchr(src, '*');
  2699. if (starpos != NULL) *(starpos) = '\0';
  2700. while (*src == ' ') ++src;
  2701. if (!hasP && !hasS && *src != '\0') {
  2702. lcd_setstatus(src);
  2703. } else {
  2704. LCD_MESSAGERPGM(MSG_USERWAIT);
  2705. }
  2706. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2707. st_synchronize();
  2708. previous_millis_cmd = millis();
  2709. if (codenum > 0){
  2710. codenum += millis(); // keep track of when we started waiting
  2711. while(millis() < codenum && !lcd_clicked()){
  2712. manage_heater();
  2713. manage_inactivity(true);
  2714. lcd_update();
  2715. }
  2716. lcd_ignore_click(false);
  2717. }else{
  2718. if (!lcd_detected())
  2719. break;
  2720. while(!lcd_clicked()){
  2721. manage_heater();
  2722. manage_inactivity(true);
  2723. lcd_update();
  2724. }
  2725. }
  2726. if (IS_SD_PRINTING)
  2727. LCD_MESSAGERPGM(MSG_RESUMING);
  2728. else
  2729. LCD_MESSAGERPGM(WELCOME_MSG);
  2730. }
  2731. break;
  2732. #endif
  2733. case 17:
  2734. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2735. enable_x();
  2736. enable_y();
  2737. enable_z();
  2738. enable_e0();
  2739. enable_e1();
  2740. enable_e2();
  2741. break;
  2742. #ifdef SDSUPPORT
  2743. case 20: // M20 - list SD card
  2744. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2745. card.ls();
  2746. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2747. break;
  2748. case 21: // M21 - init SD card
  2749. card.initsd();
  2750. break;
  2751. case 22: //M22 - release SD card
  2752. card.release();
  2753. break;
  2754. case 23: //M23 - Select file
  2755. starpos = (strchr(strchr_pointer + 4,'*'));
  2756. if(starpos!=NULL)
  2757. *(starpos)='\0';
  2758. card.openFile(strchr_pointer + 4,true);
  2759. break;
  2760. case 24: //M24 - Start SD print
  2761. card.startFileprint();
  2762. starttime=millis();
  2763. break;
  2764. case 25: //M25 - Pause SD print
  2765. card.pauseSDPrint();
  2766. break;
  2767. case 26: //M26 - Set SD index
  2768. if(card.cardOK && code_seen('S')) {
  2769. card.setIndex(code_value_long());
  2770. }
  2771. break;
  2772. case 27: //M27 - Get SD status
  2773. card.getStatus();
  2774. break;
  2775. case 28: //M28 - Start SD write
  2776. starpos = (strchr(strchr_pointer + 4,'*'));
  2777. if(starpos != NULL){
  2778. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2779. strchr_pointer = strchr(npos,' ') + 1;
  2780. *(starpos) = '\0';
  2781. }
  2782. card.openFile(strchr_pointer+4,false);
  2783. break;
  2784. case 29: //M29 - Stop SD write
  2785. //processed in write to file routine above
  2786. //card,saving = false;
  2787. break;
  2788. case 30: //M30 <filename> Delete File
  2789. if (card.cardOK){
  2790. card.closefile();
  2791. starpos = (strchr(strchr_pointer + 4,'*'));
  2792. if(starpos != NULL){
  2793. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2794. strchr_pointer = strchr(npos,' ') + 1;
  2795. *(starpos) = '\0';
  2796. }
  2797. card.removeFile(strchr_pointer + 4);
  2798. }
  2799. break;
  2800. case 32: //M32 - Select file and start SD print
  2801. {
  2802. if(card.sdprinting) {
  2803. st_synchronize();
  2804. }
  2805. starpos = (strchr(strchr_pointer + 4,'*'));
  2806. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2807. if(namestartpos==NULL)
  2808. {
  2809. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2810. }
  2811. else
  2812. namestartpos++; //to skip the '!'
  2813. if(starpos!=NULL)
  2814. *(starpos)='\0';
  2815. bool call_procedure=(code_seen('P'));
  2816. if(strchr_pointer>namestartpos)
  2817. call_procedure=false; //false alert, 'P' found within filename
  2818. if( card.cardOK )
  2819. {
  2820. card.openFile(namestartpos,true,!call_procedure);
  2821. if(code_seen('S'))
  2822. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2823. card.setIndex(code_value_long());
  2824. card.startFileprint();
  2825. if(!call_procedure)
  2826. starttime=millis(); //procedure calls count as normal print time.
  2827. }
  2828. } break;
  2829. case 928: //M928 - Start SD write
  2830. starpos = (strchr(strchr_pointer + 5,'*'));
  2831. if(starpos != NULL){
  2832. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2833. strchr_pointer = strchr(npos,' ') + 1;
  2834. *(starpos) = '\0';
  2835. }
  2836. card.openLogFile(strchr_pointer+5);
  2837. break;
  2838. #endif //SDSUPPORT
  2839. case 31: //M31 take time since the start of the SD print or an M109 command
  2840. {
  2841. stoptime=millis();
  2842. char time[30];
  2843. unsigned long t=(stoptime-starttime)/1000;
  2844. int sec,min;
  2845. min=t/60;
  2846. sec=t%60;
  2847. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2848. SERIAL_ECHO_START;
  2849. SERIAL_ECHOLN(time);
  2850. lcd_setstatus(time);
  2851. autotempShutdown();
  2852. }
  2853. break;
  2854. case 42: //M42 -Change pin status via gcode
  2855. if (code_seen('S'))
  2856. {
  2857. int pin_status = code_value();
  2858. int pin_number = LED_PIN;
  2859. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2860. pin_number = code_value();
  2861. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2862. {
  2863. if (sensitive_pins[i] == pin_number)
  2864. {
  2865. pin_number = -1;
  2866. break;
  2867. }
  2868. }
  2869. #if defined(FAN_PIN) && FAN_PIN > -1
  2870. if (pin_number == FAN_PIN)
  2871. fanSpeed = pin_status;
  2872. #endif
  2873. if (pin_number > -1)
  2874. {
  2875. pinMode(pin_number, OUTPUT);
  2876. digitalWrite(pin_number, pin_status);
  2877. analogWrite(pin_number, pin_status);
  2878. }
  2879. }
  2880. break;
  2881. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2882. // Reset the baby step value and the baby step applied flag.
  2883. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2884. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2885. // Reset the skew and offset in both RAM and EEPROM.
  2886. reset_bed_offset_and_skew();
  2887. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2888. // the planner will not perform any adjustments in the XY plane.
  2889. // Wait for the motors to stop and update the current position with the absolute values.
  2890. world2machine_revert_to_uncorrected();
  2891. break;
  2892. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2893. {
  2894. // Only Z calibration?
  2895. bool onlyZ = code_seen('Z');
  2896. if (!onlyZ) {
  2897. setTargetBed(0);
  2898. setTargetHotend(0, 0);
  2899. setTargetHotend(0, 1);
  2900. setTargetHotend(0, 2);
  2901. adjust_bed_reset(); //reset bed level correction
  2902. }
  2903. // Disable the default update procedure of the display. We will do a modal dialog.
  2904. lcd_update_enable(false);
  2905. // Let the planner use the uncorrected coordinates.
  2906. mbl.reset();
  2907. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2908. // the planner will not perform any adjustments in the XY plane.
  2909. // Wait for the motors to stop and update the current position with the absolute values.
  2910. world2machine_revert_to_uncorrected();
  2911. // Reset the baby step value applied without moving the axes.
  2912. babystep_reset();
  2913. // Mark all axes as in a need for homing.
  2914. memset(axis_known_position, 0, sizeof(axis_known_position));
  2915. // Let the user move the Z axes up to the end stoppers.
  2916. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2917. refresh_cmd_timeout();
  2918. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  2919. lcd_wait_for_cool_down();
  2920. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2921. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2922. lcd_implementation_print_at(0, 2, 1);
  2923. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2924. }
  2925. // Move the print head close to the bed.
  2926. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2928. st_synchronize();
  2929. // Home in the XY plane.
  2930. set_destination_to_current();
  2931. setup_for_endstop_move();
  2932. home_xy();
  2933. int8_t verbosity_level = 0;
  2934. if (code_seen('V')) {
  2935. // Just 'V' without a number counts as V1.
  2936. char c = strchr_pointer[1];
  2937. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2938. }
  2939. if (onlyZ) {
  2940. clean_up_after_endstop_move();
  2941. // Z only calibration.
  2942. // Load the machine correction matrix
  2943. world2machine_initialize();
  2944. // and correct the current_position to match the transformed coordinate system.
  2945. world2machine_update_current();
  2946. //FIXME
  2947. bool result = sample_mesh_and_store_reference();
  2948. if (result) {
  2949. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2950. // Shipped, the nozzle height has been set already. The user can start printing now.
  2951. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2952. // babystep_apply();
  2953. }
  2954. } else {
  2955. // Reset the baby step value and the baby step applied flag.
  2956. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2957. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2958. // Complete XYZ calibration.
  2959. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2960. uint8_t point_too_far_mask = 0;
  2961. clean_up_after_endstop_move();
  2962. // Print head up.
  2963. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2965. st_synchronize();
  2966. if (result >= 0) {
  2967. // Second half: The fine adjustment.
  2968. // Let the planner use the uncorrected coordinates.
  2969. mbl.reset();
  2970. world2machine_reset();
  2971. // Home in the XY plane.
  2972. setup_for_endstop_move();
  2973. home_xy();
  2974. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2975. clean_up_after_endstop_move();
  2976. // Print head up.
  2977. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2979. st_synchronize();
  2980. // if (result >= 0) babystep_apply();
  2981. }
  2982. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2983. if (result >= 0) {
  2984. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2985. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2986. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2987. }
  2988. }
  2989. } else {
  2990. // Timeouted.
  2991. }
  2992. lcd_update_enable(true);
  2993. break;
  2994. }
  2995. /*
  2996. case 46:
  2997. {
  2998. // M46: Prusa3D: Show the assigned IP address.
  2999. uint8_t ip[4];
  3000. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3001. if (hasIP) {
  3002. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3003. SERIAL_ECHO(int(ip[0]));
  3004. SERIAL_ECHOPGM(".");
  3005. SERIAL_ECHO(int(ip[1]));
  3006. SERIAL_ECHOPGM(".");
  3007. SERIAL_ECHO(int(ip[2]));
  3008. SERIAL_ECHOPGM(".");
  3009. SERIAL_ECHO(int(ip[3]));
  3010. SERIAL_ECHOLNPGM("");
  3011. } else {
  3012. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3013. }
  3014. break;
  3015. }
  3016. */
  3017. case 47:
  3018. // M47: Prusa3D: Show end stops dialog on the display.
  3019. lcd_diag_show_end_stops();
  3020. break;
  3021. #if 0
  3022. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3023. {
  3024. // Disable the default update procedure of the display. We will do a modal dialog.
  3025. lcd_update_enable(false);
  3026. // Let the planner use the uncorrected coordinates.
  3027. mbl.reset();
  3028. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3029. // the planner will not perform any adjustments in the XY plane.
  3030. // Wait for the motors to stop and update the current position with the absolute values.
  3031. world2machine_revert_to_uncorrected();
  3032. // Move the print head close to the bed.
  3033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3035. st_synchronize();
  3036. // Home in the XY plane.
  3037. set_destination_to_current();
  3038. setup_for_endstop_move();
  3039. home_xy();
  3040. int8_t verbosity_level = 0;
  3041. if (code_seen('V')) {
  3042. // Just 'V' without a number counts as V1.
  3043. char c = strchr_pointer[1];
  3044. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3045. }
  3046. bool success = scan_bed_induction_points(verbosity_level);
  3047. clean_up_after_endstop_move();
  3048. // Print head up.
  3049. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3051. st_synchronize();
  3052. lcd_update_enable(true);
  3053. break;
  3054. }
  3055. #endif
  3056. // M48 Z-Probe repeatability measurement function.
  3057. //
  3058. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3059. //
  3060. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3061. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3062. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3063. // regenerated.
  3064. //
  3065. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3066. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3067. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3068. //
  3069. #ifdef ENABLE_AUTO_BED_LEVELING
  3070. #ifdef Z_PROBE_REPEATABILITY_TEST
  3071. case 48: // M48 Z-Probe repeatability
  3072. {
  3073. #if Z_MIN_PIN == -1
  3074. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3075. #endif
  3076. double sum=0.0;
  3077. double mean=0.0;
  3078. double sigma=0.0;
  3079. double sample_set[50];
  3080. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3081. double X_current, Y_current, Z_current;
  3082. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3083. if (code_seen('V') || code_seen('v')) {
  3084. verbose_level = code_value();
  3085. if (verbose_level<0 || verbose_level>4 ) {
  3086. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3087. goto Sigma_Exit;
  3088. }
  3089. }
  3090. if (verbose_level > 0) {
  3091. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3092. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3093. }
  3094. if (code_seen('n')) {
  3095. n_samples = code_value();
  3096. if (n_samples<4 || n_samples>50 ) {
  3097. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3098. goto Sigma_Exit;
  3099. }
  3100. }
  3101. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3102. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3103. Z_current = st_get_position_mm(Z_AXIS);
  3104. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3105. ext_position = st_get_position_mm(E_AXIS);
  3106. if (code_seen('X') || code_seen('x') ) {
  3107. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3108. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3109. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3110. goto Sigma_Exit;
  3111. }
  3112. }
  3113. if (code_seen('Y') || code_seen('y') ) {
  3114. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3115. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3116. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3117. goto Sigma_Exit;
  3118. }
  3119. }
  3120. if (code_seen('L') || code_seen('l') ) {
  3121. n_legs = code_value();
  3122. if ( n_legs==1 )
  3123. n_legs = 2;
  3124. if ( n_legs<0 || n_legs>15 ) {
  3125. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3126. goto Sigma_Exit;
  3127. }
  3128. }
  3129. //
  3130. // Do all the preliminary setup work. First raise the probe.
  3131. //
  3132. st_synchronize();
  3133. plan_bed_level_matrix.set_to_identity();
  3134. plan_buffer_line( X_current, Y_current, Z_start_location,
  3135. ext_position,
  3136. homing_feedrate[Z_AXIS]/60,
  3137. active_extruder);
  3138. st_synchronize();
  3139. //
  3140. // Now get everything to the specified probe point So we can safely do a probe to
  3141. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3142. // use that as a starting point for each probe.
  3143. //
  3144. if (verbose_level > 2)
  3145. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3146. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3147. ext_position,
  3148. homing_feedrate[X_AXIS]/60,
  3149. active_extruder);
  3150. st_synchronize();
  3151. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3152. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3153. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3154. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3155. //
  3156. // OK, do the inital probe to get us close to the bed.
  3157. // Then retrace the right amount and use that in subsequent probes
  3158. //
  3159. setup_for_endstop_move();
  3160. run_z_probe();
  3161. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3162. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3163. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3164. ext_position,
  3165. homing_feedrate[X_AXIS]/60,
  3166. active_extruder);
  3167. st_synchronize();
  3168. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3169. for( n=0; n<n_samples; n++) {
  3170. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3171. if ( n_legs) {
  3172. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3173. int rotational_direction, l;
  3174. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3175. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3176. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3177. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3178. //SERIAL_ECHOPAIR(" theta: ",theta);
  3179. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3180. //SERIAL_PROTOCOLLNPGM("");
  3181. for( l=0; l<n_legs-1; l++) {
  3182. if (rotational_direction==1)
  3183. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3184. else
  3185. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3186. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3187. if ( radius<0.0 )
  3188. radius = -radius;
  3189. X_current = X_probe_location + cos(theta) * radius;
  3190. Y_current = Y_probe_location + sin(theta) * radius;
  3191. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3192. X_current = X_MIN_POS;
  3193. if ( X_current>X_MAX_POS)
  3194. X_current = X_MAX_POS;
  3195. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3196. Y_current = Y_MIN_POS;
  3197. if ( Y_current>Y_MAX_POS)
  3198. Y_current = Y_MAX_POS;
  3199. if (verbose_level>3 ) {
  3200. SERIAL_ECHOPAIR("x: ", X_current);
  3201. SERIAL_ECHOPAIR("y: ", Y_current);
  3202. SERIAL_PROTOCOLLNPGM("");
  3203. }
  3204. do_blocking_move_to( X_current, Y_current, Z_current );
  3205. }
  3206. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3207. }
  3208. setup_for_endstop_move();
  3209. run_z_probe();
  3210. sample_set[n] = current_position[Z_AXIS];
  3211. //
  3212. // Get the current mean for the data points we have so far
  3213. //
  3214. sum=0.0;
  3215. for( j=0; j<=n; j++) {
  3216. sum = sum + sample_set[j];
  3217. }
  3218. mean = sum / (double (n+1));
  3219. //
  3220. // Now, use that mean to calculate the standard deviation for the
  3221. // data points we have so far
  3222. //
  3223. sum=0.0;
  3224. for( j=0; j<=n; j++) {
  3225. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3226. }
  3227. sigma = sqrt( sum / (double (n+1)) );
  3228. if (verbose_level > 1) {
  3229. SERIAL_PROTOCOL(n+1);
  3230. SERIAL_PROTOCOL(" of ");
  3231. SERIAL_PROTOCOL(n_samples);
  3232. SERIAL_PROTOCOLPGM(" z: ");
  3233. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3234. }
  3235. if (verbose_level > 2) {
  3236. SERIAL_PROTOCOL(" mean: ");
  3237. SERIAL_PROTOCOL_F(mean,6);
  3238. SERIAL_PROTOCOL(" sigma: ");
  3239. SERIAL_PROTOCOL_F(sigma,6);
  3240. }
  3241. if (verbose_level > 0)
  3242. SERIAL_PROTOCOLPGM("\n");
  3243. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3244. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3245. st_synchronize();
  3246. }
  3247. delay(1000);
  3248. clean_up_after_endstop_move();
  3249. // enable_endstops(true);
  3250. if (verbose_level > 0) {
  3251. SERIAL_PROTOCOLPGM("Mean: ");
  3252. SERIAL_PROTOCOL_F(mean, 6);
  3253. SERIAL_PROTOCOLPGM("\n");
  3254. }
  3255. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3256. SERIAL_PROTOCOL_F(sigma, 6);
  3257. SERIAL_PROTOCOLPGM("\n\n");
  3258. Sigma_Exit:
  3259. break;
  3260. }
  3261. #endif // Z_PROBE_REPEATABILITY_TEST
  3262. #endif // ENABLE_AUTO_BED_LEVELING
  3263. case 104: // M104
  3264. if(setTargetedHotend(104)){
  3265. break;
  3266. }
  3267. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3268. setWatch();
  3269. break;
  3270. case 112: // M112 -Emergency Stop
  3271. kill();
  3272. break;
  3273. case 140: // M140 set bed temp
  3274. if (code_seen('S')) setTargetBed(code_value());
  3275. break;
  3276. case 105 : // M105
  3277. if(setTargetedHotend(105)){
  3278. break;
  3279. }
  3280. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3281. SERIAL_PROTOCOLPGM("ok T:");
  3282. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3283. SERIAL_PROTOCOLPGM(" /");
  3284. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3285. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3286. SERIAL_PROTOCOLPGM(" B:");
  3287. SERIAL_PROTOCOL_F(degBed(),1);
  3288. SERIAL_PROTOCOLPGM(" /");
  3289. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3290. #endif //TEMP_BED_PIN
  3291. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3292. SERIAL_PROTOCOLPGM(" T");
  3293. SERIAL_PROTOCOL(cur_extruder);
  3294. SERIAL_PROTOCOLPGM(":");
  3295. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3296. SERIAL_PROTOCOLPGM(" /");
  3297. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3298. }
  3299. #else
  3300. SERIAL_ERROR_START;
  3301. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3302. #endif
  3303. SERIAL_PROTOCOLPGM(" @:");
  3304. #ifdef EXTRUDER_WATTS
  3305. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3306. SERIAL_PROTOCOLPGM("W");
  3307. #else
  3308. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3309. #endif
  3310. SERIAL_PROTOCOLPGM(" B@:");
  3311. #ifdef BED_WATTS
  3312. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3313. SERIAL_PROTOCOLPGM("W");
  3314. #else
  3315. SERIAL_PROTOCOL(getHeaterPower(-1));
  3316. #endif
  3317. #ifdef SHOW_TEMP_ADC_VALUES
  3318. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3319. SERIAL_PROTOCOLPGM(" ADC B:");
  3320. SERIAL_PROTOCOL_F(degBed(),1);
  3321. SERIAL_PROTOCOLPGM("C->");
  3322. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3323. #endif
  3324. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3325. SERIAL_PROTOCOLPGM(" T");
  3326. SERIAL_PROTOCOL(cur_extruder);
  3327. SERIAL_PROTOCOLPGM(":");
  3328. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3329. SERIAL_PROTOCOLPGM("C->");
  3330. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3331. }
  3332. #endif
  3333. SERIAL_PROTOCOLLN("");
  3334. return;
  3335. break;
  3336. case 109:
  3337. {// M109 - Wait for extruder heater to reach target.
  3338. if(setTargetedHotend(109)){
  3339. break;
  3340. }
  3341. LCD_MESSAGERPGM(MSG_HEATING);
  3342. heating_status = 1;
  3343. if (farm_mode) { prusa_statistics(1); };
  3344. #ifdef AUTOTEMP
  3345. autotemp_enabled=false;
  3346. #endif
  3347. if (code_seen('S')) {
  3348. setTargetHotend(code_value(), tmp_extruder);
  3349. CooldownNoWait = true;
  3350. } else if (code_seen('R')) {
  3351. setTargetHotend(code_value(), tmp_extruder);
  3352. CooldownNoWait = false;
  3353. }
  3354. #ifdef AUTOTEMP
  3355. if (code_seen('S')) autotemp_min=code_value();
  3356. if (code_seen('B')) autotemp_max=code_value();
  3357. if (code_seen('F'))
  3358. {
  3359. autotemp_factor=code_value();
  3360. autotemp_enabled=true;
  3361. }
  3362. #endif
  3363. setWatch();
  3364. codenum = millis();
  3365. /* See if we are heating up or cooling down */
  3366. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3367. cancel_heatup = false;
  3368. #ifdef TEMP_RESIDENCY_TIME
  3369. long residencyStart;
  3370. residencyStart = -1;
  3371. /* continue to loop until we have reached the target temp
  3372. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3373. while((!cancel_heatup)&&((residencyStart == -1) ||
  3374. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3375. #else
  3376. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3377. #endif //TEMP_RESIDENCY_TIME
  3378. if( (millis() - codenum) > 1000UL )
  3379. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3380. if (!farm_mode) {
  3381. SERIAL_PROTOCOLPGM("T:");
  3382. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  3383. SERIAL_PROTOCOLPGM(" E:");
  3384. SERIAL_PROTOCOL((int)tmp_extruder);
  3385. #ifdef TEMP_RESIDENCY_TIME
  3386. SERIAL_PROTOCOLPGM(" W:");
  3387. if (residencyStart > -1)
  3388. {
  3389. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3390. SERIAL_PROTOCOLLN(codenum);
  3391. }
  3392. else
  3393. {
  3394. SERIAL_PROTOCOLLN("?");
  3395. }
  3396. }
  3397. #else
  3398. SERIAL_PROTOCOLLN("");
  3399. #endif
  3400. codenum = millis();
  3401. }
  3402. manage_heater();
  3403. manage_inactivity();
  3404. lcd_update();
  3405. #ifdef TEMP_RESIDENCY_TIME
  3406. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3407. or when current temp falls outside the hysteresis after target temp was reached */
  3408. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3409. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3410. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3411. {
  3412. residencyStart = millis();
  3413. }
  3414. #endif //TEMP_RESIDENCY_TIME
  3415. }
  3416. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3417. heating_status = 2;
  3418. if (farm_mode) { prusa_statistics(2); };
  3419. starttime=millis();
  3420. previous_millis_cmd = millis();
  3421. }
  3422. break;
  3423. case 190: // M190 - Wait for bed heater to reach target.
  3424. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3425. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3426. heating_status = 3;
  3427. if (farm_mode) { prusa_statistics(1); };
  3428. if (code_seen('S'))
  3429. {
  3430. setTargetBed(code_value());
  3431. CooldownNoWait = true;
  3432. }
  3433. else if (code_seen('R'))
  3434. {
  3435. setTargetBed(code_value());
  3436. CooldownNoWait = false;
  3437. }
  3438. codenum = millis();
  3439. cancel_heatup = false;
  3440. target_direction = isHeatingBed(); // true if heating, false if cooling
  3441. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3442. {
  3443. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3444. {
  3445. if (!farm_mode) {
  3446. float tt = degHotend(active_extruder);
  3447. SERIAL_PROTOCOLPGM("T:");
  3448. SERIAL_PROTOCOL(tt);
  3449. SERIAL_PROTOCOLPGM(" E:");
  3450. SERIAL_PROTOCOL((int)active_extruder);
  3451. SERIAL_PROTOCOLPGM(" B:");
  3452. SERIAL_PROTOCOL_F(degBed(), 1);
  3453. SERIAL_PROTOCOLLN("");
  3454. }
  3455. codenum = millis();
  3456. }
  3457. manage_heater();
  3458. manage_inactivity();
  3459. lcd_update();
  3460. }
  3461. LCD_MESSAGERPGM(MSG_BED_DONE);
  3462. heating_status = 4;
  3463. previous_millis_cmd = millis();
  3464. #endif
  3465. break;
  3466. #if defined(FAN_PIN) && FAN_PIN > -1
  3467. case 106: //M106 Fan On
  3468. if (code_seen('S')){
  3469. fanSpeed=constrain(code_value(),0,255);
  3470. }
  3471. else {
  3472. fanSpeed=255;
  3473. }
  3474. break;
  3475. case 107: //M107 Fan Off
  3476. fanSpeed = 0;
  3477. break;
  3478. #endif //FAN_PIN
  3479. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3480. case 80: // M80 - Turn on Power Supply
  3481. SET_OUTPUT(PS_ON_PIN); //GND
  3482. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3483. // If you have a switch on suicide pin, this is useful
  3484. // if you want to start another print with suicide feature after
  3485. // a print without suicide...
  3486. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3487. SET_OUTPUT(SUICIDE_PIN);
  3488. WRITE(SUICIDE_PIN, HIGH);
  3489. #endif
  3490. #ifdef ULTIPANEL
  3491. powersupply = true;
  3492. LCD_MESSAGERPGM(WELCOME_MSG);
  3493. lcd_update();
  3494. #endif
  3495. break;
  3496. #endif
  3497. case 81: // M81 - Turn off Power Supply
  3498. disable_heater();
  3499. st_synchronize();
  3500. disable_e0();
  3501. disable_e1();
  3502. disable_e2();
  3503. finishAndDisableSteppers();
  3504. fanSpeed = 0;
  3505. delay(1000); // Wait a little before to switch off
  3506. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3507. st_synchronize();
  3508. suicide();
  3509. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3510. SET_OUTPUT(PS_ON_PIN);
  3511. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3512. #endif
  3513. #ifdef ULTIPANEL
  3514. powersupply = false;
  3515. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3516. /*
  3517. MACHNAME = "Prusa i3"
  3518. MSGOFF = "Vypnuto"
  3519. "Prusai3"" ""vypnuto""."
  3520. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3521. */
  3522. lcd_update();
  3523. #endif
  3524. break;
  3525. case 82:
  3526. axis_relative_modes[3] = false;
  3527. break;
  3528. case 83:
  3529. axis_relative_modes[3] = true;
  3530. break;
  3531. case 18: //compatibility
  3532. case 84: // M84
  3533. if(code_seen('S')){
  3534. stepper_inactive_time = code_value() * 1000;
  3535. }
  3536. else
  3537. {
  3538. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3539. if(all_axis)
  3540. {
  3541. st_synchronize();
  3542. disable_e0();
  3543. disable_e1();
  3544. disable_e2();
  3545. finishAndDisableSteppers();
  3546. }
  3547. else
  3548. {
  3549. st_synchronize();
  3550. if(code_seen('X')) disable_x();
  3551. if(code_seen('Y')) disable_y();
  3552. if(code_seen('Z')) disable_z();
  3553. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3554. if(code_seen('E')) {
  3555. disable_e0();
  3556. disable_e1();
  3557. disable_e2();
  3558. }
  3559. #endif
  3560. }
  3561. }
  3562. break;
  3563. case 85: // M85
  3564. if(code_seen('S')) {
  3565. max_inactive_time = code_value() * 1000;
  3566. }
  3567. break;
  3568. case 92: // M92
  3569. for(int8_t i=0; i < NUM_AXIS; i++)
  3570. {
  3571. if(code_seen(axis_codes[i]))
  3572. {
  3573. if(i == 3) { // E
  3574. float value = code_value();
  3575. if(value < 20.0) {
  3576. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3577. max_jerk[E_AXIS] *= factor;
  3578. max_feedrate[i] *= factor;
  3579. axis_steps_per_sqr_second[i] *= factor;
  3580. }
  3581. axis_steps_per_unit[i] = value;
  3582. }
  3583. else {
  3584. axis_steps_per_unit[i] = code_value();
  3585. }
  3586. }
  3587. }
  3588. break;
  3589. case 115: // M115
  3590. if (code_seen('V')) {
  3591. // Report the Prusa version number.
  3592. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3593. } else if (code_seen('U')) {
  3594. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3595. // pause the print and ask the user to upgrade the firmware.
  3596. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3597. } else {
  3598. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3599. }
  3600. break;
  3601. case 117: // M117 display message
  3602. starpos = (strchr(strchr_pointer + 5,'*'));
  3603. if(starpos!=NULL)
  3604. *(starpos)='\0';
  3605. lcd_setstatus(strchr_pointer + 5);
  3606. break;
  3607. case 114: // M114
  3608. SERIAL_PROTOCOLPGM("X:");
  3609. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3610. SERIAL_PROTOCOLPGM(" Y:");
  3611. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3612. SERIAL_PROTOCOLPGM(" Z:");
  3613. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3614. SERIAL_PROTOCOLPGM(" E:");
  3615. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3616. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3617. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3618. SERIAL_PROTOCOLPGM(" Y:");
  3619. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3620. SERIAL_PROTOCOLPGM(" Z:");
  3621. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3622. SERIAL_PROTOCOLLN("");
  3623. break;
  3624. case 120: // M120
  3625. enable_endstops(false) ;
  3626. break;
  3627. case 121: // M121
  3628. enable_endstops(true) ;
  3629. break;
  3630. case 119: // M119
  3631. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3632. SERIAL_PROTOCOLLN("");
  3633. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3634. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3635. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3636. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3637. }else{
  3638. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3639. }
  3640. SERIAL_PROTOCOLLN("");
  3641. #endif
  3642. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3643. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3644. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3645. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3646. }else{
  3647. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3648. }
  3649. SERIAL_PROTOCOLLN("");
  3650. #endif
  3651. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3652. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3653. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3654. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3655. }else{
  3656. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3657. }
  3658. SERIAL_PROTOCOLLN("");
  3659. #endif
  3660. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3661. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3662. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3663. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3664. }else{
  3665. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3666. }
  3667. SERIAL_PROTOCOLLN("");
  3668. #endif
  3669. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3670. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3671. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3672. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3673. }else{
  3674. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3675. }
  3676. SERIAL_PROTOCOLLN("");
  3677. #endif
  3678. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3679. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3680. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3681. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3682. }else{
  3683. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3684. }
  3685. SERIAL_PROTOCOLLN("");
  3686. #endif
  3687. break;
  3688. //TODO: update for all axis, use for loop
  3689. #ifdef BLINKM
  3690. case 150: // M150
  3691. {
  3692. byte red;
  3693. byte grn;
  3694. byte blu;
  3695. if(code_seen('R')) red = code_value();
  3696. if(code_seen('U')) grn = code_value();
  3697. if(code_seen('B')) blu = code_value();
  3698. SendColors(red,grn,blu);
  3699. }
  3700. break;
  3701. #endif //BLINKM
  3702. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3703. {
  3704. tmp_extruder = active_extruder;
  3705. if(code_seen('T')) {
  3706. tmp_extruder = code_value();
  3707. if(tmp_extruder >= EXTRUDERS) {
  3708. SERIAL_ECHO_START;
  3709. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3710. break;
  3711. }
  3712. }
  3713. float area = .0;
  3714. if(code_seen('D')) {
  3715. float diameter = (float)code_value();
  3716. if (diameter == 0.0) {
  3717. // setting any extruder filament size disables volumetric on the assumption that
  3718. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3719. // for all extruders
  3720. volumetric_enabled = false;
  3721. } else {
  3722. filament_size[tmp_extruder] = (float)code_value();
  3723. // make sure all extruders have some sane value for the filament size
  3724. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3725. #if EXTRUDERS > 1
  3726. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3727. #if EXTRUDERS > 2
  3728. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3729. #endif
  3730. #endif
  3731. volumetric_enabled = true;
  3732. }
  3733. } else {
  3734. //reserved for setting filament diameter via UFID or filament measuring device
  3735. break;
  3736. }
  3737. calculate_volumetric_multipliers();
  3738. }
  3739. break;
  3740. case 201: // M201
  3741. for(int8_t i=0; i < NUM_AXIS; i++)
  3742. {
  3743. if(code_seen(axis_codes[i]))
  3744. {
  3745. max_acceleration_units_per_sq_second[i] = code_value();
  3746. }
  3747. }
  3748. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3749. reset_acceleration_rates();
  3750. break;
  3751. #if 0 // Not used for Sprinter/grbl gen6
  3752. case 202: // M202
  3753. for(int8_t i=0; i < NUM_AXIS; i++) {
  3754. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3755. }
  3756. break;
  3757. #endif
  3758. case 203: // M203 max feedrate mm/sec
  3759. for(int8_t i=0; i < NUM_AXIS; i++) {
  3760. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3761. }
  3762. break;
  3763. case 204: // M204 acclereration S normal moves T filmanent only moves
  3764. {
  3765. if(code_seen('S')) acceleration = code_value() ;
  3766. if(code_seen('T')) retract_acceleration = code_value() ;
  3767. }
  3768. break;
  3769. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3770. {
  3771. if(code_seen('S')) minimumfeedrate = code_value();
  3772. if(code_seen('T')) mintravelfeedrate = code_value();
  3773. if(code_seen('B')) minsegmenttime = code_value() ;
  3774. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3775. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3776. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3777. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3778. }
  3779. break;
  3780. case 206: // M206 additional homing offset
  3781. for(int8_t i=0; i < 3; i++)
  3782. {
  3783. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3784. }
  3785. break;
  3786. #ifdef FWRETRACT
  3787. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3788. {
  3789. if(code_seen('S'))
  3790. {
  3791. retract_length = code_value() ;
  3792. }
  3793. if(code_seen('F'))
  3794. {
  3795. retract_feedrate = code_value()/60 ;
  3796. }
  3797. if(code_seen('Z'))
  3798. {
  3799. retract_zlift = code_value() ;
  3800. }
  3801. }break;
  3802. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3803. {
  3804. if(code_seen('S'))
  3805. {
  3806. retract_recover_length = code_value() ;
  3807. }
  3808. if(code_seen('F'))
  3809. {
  3810. retract_recover_feedrate = code_value()/60 ;
  3811. }
  3812. }break;
  3813. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3814. {
  3815. if(code_seen('S'))
  3816. {
  3817. int t= code_value() ;
  3818. switch(t)
  3819. {
  3820. case 0:
  3821. {
  3822. autoretract_enabled=false;
  3823. retracted[0]=false;
  3824. #if EXTRUDERS > 1
  3825. retracted[1]=false;
  3826. #endif
  3827. #if EXTRUDERS > 2
  3828. retracted[2]=false;
  3829. #endif
  3830. }break;
  3831. case 1:
  3832. {
  3833. autoretract_enabled=true;
  3834. retracted[0]=false;
  3835. #if EXTRUDERS > 1
  3836. retracted[1]=false;
  3837. #endif
  3838. #if EXTRUDERS > 2
  3839. retracted[2]=false;
  3840. #endif
  3841. }break;
  3842. default:
  3843. SERIAL_ECHO_START;
  3844. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3845. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3846. SERIAL_ECHOLNPGM("\"");
  3847. }
  3848. }
  3849. }break;
  3850. #endif // FWRETRACT
  3851. #if EXTRUDERS > 1
  3852. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3853. {
  3854. if(setTargetedHotend(218)){
  3855. break;
  3856. }
  3857. if(code_seen('X'))
  3858. {
  3859. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3860. }
  3861. if(code_seen('Y'))
  3862. {
  3863. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3864. }
  3865. SERIAL_ECHO_START;
  3866. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3867. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3868. {
  3869. SERIAL_ECHO(" ");
  3870. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3871. SERIAL_ECHO(",");
  3872. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3873. }
  3874. SERIAL_ECHOLN("");
  3875. }break;
  3876. #endif
  3877. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3878. {
  3879. if(code_seen('S'))
  3880. {
  3881. feedmultiply = code_value() ;
  3882. }
  3883. }
  3884. break;
  3885. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3886. {
  3887. if(code_seen('S'))
  3888. {
  3889. int tmp_code = code_value();
  3890. if (code_seen('T'))
  3891. {
  3892. if(setTargetedHotend(221)){
  3893. break;
  3894. }
  3895. extruder_multiply[tmp_extruder] = tmp_code;
  3896. }
  3897. else
  3898. {
  3899. extrudemultiply = tmp_code ;
  3900. }
  3901. }
  3902. }
  3903. break;
  3904. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3905. {
  3906. if(code_seen('P')){
  3907. int pin_number = code_value(); // pin number
  3908. int pin_state = -1; // required pin state - default is inverted
  3909. if(code_seen('S')) pin_state = code_value(); // required pin state
  3910. if(pin_state >= -1 && pin_state <= 1){
  3911. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3912. {
  3913. if (sensitive_pins[i] == pin_number)
  3914. {
  3915. pin_number = -1;
  3916. break;
  3917. }
  3918. }
  3919. if (pin_number > -1)
  3920. {
  3921. int target = LOW;
  3922. st_synchronize();
  3923. pinMode(pin_number, INPUT);
  3924. switch(pin_state){
  3925. case 1:
  3926. target = HIGH;
  3927. break;
  3928. case 0:
  3929. target = LOW;
  3930. break;
  3931. case -1:
  3932. target = !digitalRead(pin_number);
  3933. break;
  3934. }
  3935. while(digitalRead(pin_number) != target){
  3936. manage_heater();
  3937. manage_inactivity();
  3938. lcd_update();
  3939. }
  3940. }
  3941. }
  3942. }
  3943. }
  3944. break;
  3945. #if NUM_SERVOS > 0
  3946. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3947. {
  3948. int servo_index = -1;
  3949. int servo_position = 0;
  3950. if (code_seen('P'))
  3951. servo_index = code_value();
  3952. if (code_seen('S')) {
  3953. servo_position = code_value();
  3954. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3955. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3956. servos[servo_index].attach(0);
  3957. #endif
  3958. servos[servo_index].write(servo_position);
  3959. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3960. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3961. servos[servo_index].detach();
  3962. #endif
  3963. }
  3964. else {
  3965. SERIAL_ECHO_START;
  3966. SERIAL_ECHO("Servo ");
  3967. SERIAL_ECHO(servo_index);
  3968. SERIAL_ECHOLN(" out of range");
  3969. }
  3970. }
  3971. else if (servo_index >= 0) {
  3972. SERIAL_PROTOCOL(MSG_OK);
  3973. SERIAL_PROTOCOL(" Servo ");
  3974. SERIAL_PROTOCOL(servo_index);
  3975. SERIAL_PROTOCOL(": ");
  3976. SERIAL_PROTOCOL(servos[servo_index].read());
  3977. SERIAL_PROTOCOLLN("");
  3978. }
  3979. }
  3980. break;
  3981. #endif // NUM_SERVOS > 0
  3982. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3983. case 300: // M300
  3984. {
  3985. int beepS = code_seen('S') ? code_value() : 110;
  3986. int beepP = code_seen('P') ? code_value() : 1000;
  3987. if (beepS > 0)
  3988. {
  3989. #if BEEPER > 0
  3990. tone(BEEPER, beepS);
  3991. delay(beepP);
  3992. noTone(BEEPER);
  3993. #elif defined(ULTRALCD)
  3994. lcd_buzz(beepS, beepP);
  3995. #elif defined(LCD_USE_I2C_BUZZER)
  3996. lcd_buzz(beepP, beepS);
  3997. #endif
  3998. }
  3999. else
  4000. {
  4001. delay(beepP);
  4002. }
  4003. }
  4004. break;
  4005. #endif // M300
  4006. #ifdef PIDTEMP
  4007. case 301: // M301
  4008. {
  4009. if(code_seen('P')) Kp = code_value();
  4010. if(code_seen('I')) Ki = scalePID_i(code_value());
  4011. if(code_seen('D')) Kd = scalePID_d(code_value());
  4012. #ifdef PID_ADD_EXTRUSION_RATE
  4013. if(code_seen('C')) Kc = code_value();
  4014. #endif
  4015. updatePID();
  4016. SERIAL_PROTOCOLRPGM(MSG_OK);
  4017. SERIAL_PROTOCOL(" p:");
  4018. SERIAL_PROTOCOL(Kp);
  4019. SERIAL_PROTOCOL(" i:");
  4020. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4021. SERIAL_PROTOCOL(" d:");
  4022. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4023. #ifdef PID_ADD_EXTRUSION_RATE
  4024. SERIAL_PROTOCOL(" c:");
  4025. //Kc does not have scaling applied above, or in resetting defaults
  4026. SERIAL_PROTOCOL(Kc);
  4027. #endif
  4028. SERIAL_PROTOCOLLN("");
  4029. }
  4030. break;
  4031. #endif //PIDTEMP
  4032. #ifdef PIDTEMPBED
  4033. case 304: // M304
  4034. {
  4035. if(code_seen('P')) bedKp = code_value();
  4036. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4037. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4038. updatePID();
  4039. SERIAL_PROTOCOLRPGM(MSG_OK);
  4040. SERIAL_PROTOCOL(" p:");
  4041. SERIAL_PROTOCOL(bedKp);
  4042. SERIAL_PROTOCOL(" i:");
  4043. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4044. SERIAL_PROTOCOL(" d:");
  4045. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4046. SERIAL_PROTOCOLLN("");
  4047. }
  4048. break;
  4049. #endif //PIDTEMP
  4050. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4051. {
  4052. #ifdef CHDK
  4053. SET_OUTPUT(CHDK);
  4054. WRITE(CHDK, HIGH);
  4055. chdkHigh = millis();
  4056. chdkActive = true;
  4057. #else
  4058. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4059. const uint8_t NUM_PULSES=16;
  4060. const float PULSE_LENGTH=0.01524;
  4061. for(int i=0; i < NUM_PULSES; i++) {
  4062. WRITE(PHOTOGRAPH_PIN, HIGH);
  4063. _delay_ms(PULSE_LENGTH);
  4064. WRITE(PHOTOGRAPH_PIN, LOW);
  4065. _delay_ms(PULSE_LENGTH);
  4066. }
  4067. delay(7.33);
  4068. for(int i=0; i < NUM_PULSES; i++) {
  4069. WRITE(PHOTOGRAPH_PIN, HIGH);
  4070. _delay_ms(PULSE_LENGTH);
  4071. WRITE(PHOTOGRAPH_PIN, LOW);
  4072. _delay_ms(PULSE_LENGTH);
  4073. }
  4074. #endif
  4075. #endif //chdk end if
  4076. }
  4077. break;
  4078. #ifdef DOGLCD
  4079. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4080. {
  4081. if (code_seen('C')) {
  4082. lcd_setcontrast( ((int)code_value())&63 );
  4083. }
  4084. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4085. SERIAL_PROTOCOL(lcd_contrast);
  4086. SERIAL_PROTOCOLLN("");
  4087. }
  4088. break;
  4089. #endif
  4090. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4091. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4092. {
  4093. float temp = .0;
  4094. if (code_seen('S')) temp=code_value();
  4095. set_extrude_min_temp(temp);
  4096. }
  4097. break;
  4098. #endif
  4099. case 303: // M303 PID autotune
  4100. {
  4101. float temp = 150.0;
  4102. int e=0;
  4103. int c=5;
  4104. if (code_seen('E')) e=code_value();
  4105. if (e<0)
  4106. temp=70;
  4107. if (code_seen('S')) temp=code_value();
  4108. if (code_seen('C')) c=code_value();
  4109. PID_autotune(temp, e, c);
  4110. }
  4111. break;
  4112. case 400: // M400 finish all moves
  4113. {
  4114. st_synchronize();
  4115. }
  4116. break;
  4117. #ifdef FILAMENT_SENSOR
  4118. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4119. {
  4120. #if (FILWIDTH_PIN > -1)
  4121. if(code_seen('N')) filament_width_nominal=code_value();
  4122. else{
  4123. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4124. SERIAL_PROTOCOLLN(filament_width_nominal);
  4125. }
  4126. #endif
  4127. }
  4128. break;
  4129. case 405: //M405 Turn on filament sensor for control
  4130. {
  4131. if(code_seen('D')) meas_delay_cm=code_value();
  4132. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4133. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4134. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4135. {
  4136. int temp_ratio = widthFil_to_size_ratio();
  4137. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4138. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4139. }
  4140. delay_index1=0;
  4141. delay_index2=0;
  4142. }
  4143. filament_sensor = true ;
  4144. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4145. //SERIAL_PROTOCOL(filament_width_meas);
  4146. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4147. //SERIAL_PROTOCOL(extrudemultiply);
  4148. }
  4149. break;
  4150. case 406: //M406 Turn off filament sensor for control
  4151. {
  4152. filament_sensor = false ;
  4153. }
  4154. break;
  4155. case 407: //M407 Display measured filament diameter
  4156. {
  4157. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4158. SERIAL_PROTOCOLLN(filament_width_meas);
  4159. }
  4160. break;
  4161. #endif
  4162. case 500: // M500 Store settings in EEPROM
  4163. {
  4164. Config_StoreSettings();
  4165. }
  4166. break;
  4167. case 501: // M501 Read settings from EEPROM
  4168. {
  4169. Config_RetrieveSettings();
  4170. }
  4171. break;
  4172. case 502: // M502 Revert to default settings
  4173. {
  4174. Config_ResetDefault();
  4175. }
  4176. break;
  4177. case 503: // M503 print settings currently in memory
  4178. {
  4179. Config_PrintSettings();
  4180. }
  4181. break;
  4182. case 509: //M509 Force language selection
  4183. {
  4184. lcd_force_language_selection();
  4185. SERIAL_ECHO_START;
  4186. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4187. }
  4188. break;
  4189. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4190. case 540:
  4191. {
  4192. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4193. }
  4194. break;
  4195. #endif
  4196. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4197. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4198. {
  4199. float value;
  4200. if (code_seen('Z'))
  4201. {
  4202. value = code_value();
  4203. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4204. {
  4205. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4206. SERIAL_ECHO_START;
  4207. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4208. SERIAL_PROTOCOLLN("");
  4209. }
  4210. else
  4211. {
  4212. SERIAL_ECHO_START;
  4213. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4214. SERIAL_ECHORPGM(MSG_Z_MIN);
  4215. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4216. SERIAL_ECHORPGM(MSG_Z_MAX);
  4217. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4218. SERIAL_PROTOCOLLN("");
  4219. }
  4220. }
  4221. else
  4222. {
  4223. SERIAL_ECHO_START;
  4224. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4225. SERIAL_ECHO(-zprobe_zoffset);
  4226. SERIAL_PROTOCOLLN("");
  4227. }
  4228. break;
  4229. }
  4230. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4231. #ifdef FILAMENTCHANGEENABLE
  4232. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4233. {
  4234. st_synchronize();
  4235. if (farm_mode)
  4236. {
  4237. prusa_statistics(22);
  4238. }
  4239. feedmultiplyBckp=feedmultiply;
  4240. int8_t TooLowZ = 0;
  4241. float target[4];
  4242. float lastpos[4];
  4243. target[X_AXIS]=current_position[X_AXIS];
  4244. target[Y_AXIS]=current_position[Y_AXIS];
  4245. target[Z_AXIS]=current_position[Z_AXIS];
  4246. target[E_AXIS]=current_position[E_AXIS];
  4247. lastpos[X_AXIS]=current_position[X_AXIS];
  4248. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4249. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4250. lastpos[E_AXIS]=current_position[E_AXIS];
  4251. //Restract extruder
  4252. if(code_seen('E'))
  4253. {
  4254. target[E_AXIS]+= code_value();
  4255. }
  4256. else
  4257. {
  4258. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4259. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4260. #endif
  4261. }
  4262. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4263. //Lift Z
  4264. if(code_seen('Z'))
  4265. {
  4266. target[Z_AXIS]+= code_value();
  4267. }
  4268. else
  4269. {
  4270. #ifdef FILAMENTCHANGE_ZADD
  4271. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4272. if(target[Z_AXIS] < 10){
  4273. target[Z_AXIS]+= 10 ;
  4274. TooLowZ = 1;
  4275. }else{
  4276. TooLowZ = 0;
  4277. }
  4278. #endif
  4279. }
  4280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4281. //Move XY to side
  4282. if(code_seen('X'))
  4283. {
  4284. target[X_AXIS]+= code_value();
  4285. }
  4286. else
  4287. {
  4288. #ifdef FILAMENTCHANGE_XPOS
  4289. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4290. #endif
  4291. }
  4292. if(code_seen('Y'))
  4293. {
  4294. target[Y_AXIS]= code_value();
  4295. }
  4296. else
  4297. {
  4298. #ifdef FILAMENTCHANGE_YPOS
  4299. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4300. #endif
  4301. }
  4302. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4303. // Unload filament
  4304. if(code_seen('L'))
  4305. {
  4306. target[E_AXIS]+= code_value();
  4307. }
  4308. else
  4309. {
  4310. #ifdef FILAMENTCHANGE_FINALRETRACT
  4311. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4312. #endif
  4313. }
  4314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4315. //finish moves
  4316. st_synchronize();
  4317. //disable extruder steppers so filament can be removed
  4318. disable_e0();
  4319. disable_e1();
  4320. disable_e2();
  4321. delay(100);
  4322. //Wait for user to insert filament
  4323. uint8_t cnt=0;
  4324. int counterBeep = 0;
  4325. lcd_wait_interact();
  4326. while(!lcd_clicked()){
  4327. cnt++;
  4328. manage_heater();
  4329. manage_inactivity(true);
  4330. if(cnt==0)
  4331. {
  4332. #if BEEPER > 0
  4333. if (counterBeep== 500){
  4334. counterBeep = 0;
  4335. }
  4336. SET_OUTPUT(BEEPER);
  4337. if (counterBeep== 0){
  4338. WRITE(BEEPER,HIGH);
  4339. }
  4340. if (counterBeep== 20){
  4341. WRITE(BEEPER,LOW);
  4342. }
  4343. counterBeep++;
  4344. #else
  4345. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4346. lcd_buzz(1000/6,100);
  4347. #else
  4348. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4349. #endif
  4350. #endif
  4351. }
  4352. }
  4353. //Filament inserted
  4354. WRITE(BEEPER,LOW);
  4355. //Feed the filament to the end of nozzle quickly
  4356. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4357. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4358. //Extrude some filament
  4359. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4360. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4361. //Wait for user to check the state
  4362. lcd_change_fil_state = 0;
  4363. lcd_loading_filament();
  4364. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4365. lcd_change_fil_state = 0;
  4366. lcd_alright();
  4367. switch(lcd_change_fil_state){
  4368. // Filament failed to load so load it again
  4369. case 2:
  4370. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4371. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4372. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4373. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4374. lcd_loading_filament();
  4375. break;
  4376. // Filament loaded properly but color is not clear
  4377. case 3:
  4378. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4379. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4380. lcd_loading_color();
  4381. break;
  4382. // Everything good
  4383. default:
  4384. lcd_change_success();
  4385. break;
  4386. }
  4387. }
  4388. //Not let's go back to print
  4389. //Feed a little of filament to stabilize pressure
  4390. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4392. //Retract
  4393. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4395. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4396. //Move XY back
  4397. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4398. //Move Z back
  4399. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4400. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4401. //Unretract
  4402. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4403. //Set E position to original
  4404. plan_set_e_position(lastpos[E_AXIS]);
  4405. //Recover feed rate
  4406. feedmultiply=feedmultiplyBckp;
  4407. char cmd[9];
  4408. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4409. enquecommand(cmd);
  4410. }
  4411. break;
  4412. #endif //FILAMENTCHANGEENABLE
  4413. case 907: // M907 Set digital trimpot motor current using axis codes.
  4414. {
  4415. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4416. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4417. if(code_seen('B')) digipot_current(4,code_value());
  4418. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4419. #endif
  4420. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4421. if(code_seen('X')) digipot_current(0, code_value());
  4422. #endif
  4423. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4424. if(code_seen('Z')) digipot_current(1, code_value());
  4425. #endif
  4426. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4427. if(code_seen('E')) digipot_current(2, code_value());
  4428. #endif
  4429. #ifdef DIGIPOT_I2C
  4430. // this one uses actual amps in floating point
  4431. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4432. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4433. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4434. #endif
  4435. }
  4436. break;
  4437. case 908: // M908 Control digital trimpot directly.
  4438. {
  4439. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4440. uint8_t channel,current;
  4441. if(code_seen('P')) channel=code_value();
  4442. if(code_seen('S')) current=code_value();
  4443. digitalPotWrite(channel, current);
  4444. #endif
  4445. }
  4446. break;
  4447. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4448. {
  4449. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4450. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4451. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4452. if(code_seen('B')) microstep_mode(4,code_value());
  4453. microstep_readings();
  4454. #endif
  4455. }
  4456. break;
  4457. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4458. {
  4459. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4460. if(code_seen('S')) switch((int)code_value())
  4461. {
  4462. case 1:
  4463. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4464. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4465. break;
  4466. case 2:
  4467. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4468. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4469. break;
  4470. }
  4471. microstep_readings();
  4472. #endif
  4473. }
  4474. break;
  4475. case 701: //M701: load filament
  4476. {
  4477. enable_z();
  4478. custom_message = true;
  4479. custom_message_type = 2;
  4480. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4481. current_position[E_AXIS] += 65;
  4482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4483. current_position[E_AXIS] += 40;
  4484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4485. st_synchronize();
  4486. if (!farm_mode && loading_flag) {
  4487. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4488. while (!clean) {
  4489. lcd_update_enable(true);
  4490. lcd_update(2);
  4491. current_position[E_AXIS] += 40;
  4492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4493. st_synchronize();
  4494. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4495. }
  4496. }
  4497. lcd_update_enable(true);
  4498. lcd_update(2);
  4499. lcd_setstatuspgm(WELCOME_MSG);
  4500. disable_z();
  4501. loading_flag = false;
  4502. custom_message = false;
  4503. custom_message_type = 0;
  4504. }
  4505. break;
  4506. case 702:
  4507. {
  4508. custom_message = true;
  4509. custom_message_type = 2;
  4510. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4511. current_position[E_AXIS] -= 80;
  4512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4513. st_synchronize();
  4514. lcd_setstatuspgm(WELCOME_MSG);
  4515. custom_message = false;
  4516. custom_message_type = 0;
  4517. }
  4518. break;
  4519. case 999: // M999: Restart after being stopped
  4520. Stopped = false;
  4521. lcd_reset_alert_level();
  4522. gcode_LastN = Stopped_gcode_LastN;
  4523. FlushSerialRequestResend();
  4524. break;
  4525. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4526. }
  4527. } // end if(code_seen('M')) (end of M codes)
  4528. else if(code_seen('T'))
  4529. {
  4530. int index;
  4531. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4532. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4533. SERIAL_ECHOLNPGM("Invalid T code.");
  4534. }
  4535. else {
  4536. tmp_extruder = code_value();
  4537. #ifdef SNMM
  4538. st_synchronize();
  4539. delay(100);
  4540. disable_e0();
  4541. disable_e1();
  4542. disable_e2();
  4543. pinMode(E_MUX0_PIN, OUTPUT);
  4544. pinMode(E_MUX1_PIN, OUTPUT);
  4545. pinMode(E_MUX2_PIN, OUTPUT);
  4546. delay(100);
  4547. SERIAL_ECHO_START;
  4548. SERIAL_ECHO("T:");
  4549. SERIAL_ECHOLN((int)tmp_extruder);
  4550. switch (tmp_extruder) {
  4551. case 1:
  4552. WRITE(E_MUX0_PIN, HIGH);
  4553. WRITE(E_MUX1_PIN, LOW);
  4554. WRITE(E_MUX2_PIN, LOW);
  4555. break;
  4556. case 2:
  4557. WRITE(E_MUX0_PIN, LOW);
  4558. WRITE(E_MUX1_PIN, HIGH);
  4559. WRITE(E_MUX2_PIN, LOW);
  4560. break;
  4561. case 3:
  4562. WRITE(E_MUX0_PIN, HIGH);
  4563. WRITE(E_MUX1_PIN, HIGH);
  4564. WRITE(E_MUX2_PIN, LOW);
  4565. break;
  4566. default:
  4567. WRITE(E_MUX0_PIN, LOW);
  4568. WRITE(E_MUX1_PIN, LOW);
  4569. WRITE(E_MUX2_PIN, LOW);
  4570. break;
  4571. }
  4572. delay(100);
  4573. #else
  4574. if (tmp_extruder >= EXTRUDERS) {
  4575. SERIAL_ECHO_START;
  4576. SERIAL_ECHOPGM("T");
  4577. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4578. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4579. }
  4580. else {
  4581. boolean make_move = false;
  4582. if (code_seen('F')) {
  4583. make_move = true;
  4584. next_feedrate = code_value();
  4585. if (next_feedrate > 0.0) {
  4586. feedrate = next_feedrate;
  4587. }
  4588. }
  4589. #if EXTRUDERS > 1
  4590. if (tmp_extruder != active_extruder) {
  4591. // Save current position to return to after applying extruder offset
  4592. memcpy(destination, current_position, sizeof(destination));
  4593. // Offset extruder (only by XY)
  4594. int i;
  4595. for (i = 0; i < 2; i++) {
  4596. current_position[i] = current_position[i] -
  4597. extruder_offset[i][active_extruder] +
  4598. extruder_offset[i][tmp_extruder];
  4599. }
  4600. // Set the new active extruder and position
  4601. active_extruder = tmp_extruder;
  4602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4603. // Move to the old position if 'F' was in the parameters
  4604. if (make_move && Stopped == false) {
  4605. prepare_move();
  4606. }
  4607. }
  4608. #endif
  4609. SERIAL_ECHO_START;
  4610. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4611. SERIAL_PROTOCOLLN((int)active_extruder);
  4612. }
  4613. #endif
  4614. }
  4615. } // end if(code_seen('T')) (end of T codes)
  4616. else
  4617. {
  4618. SERIAL_ECHO_START;
  4619. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4620. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4621. SERIAL_ECHOLNPGM("\"");
  4622. }
  4623. ClearToSend();
  4624. }
  4625. void FlushSerialRequestResend()
  4626. {
  4627. //char cmdbuffer[bufindr][100]="Resend:";
  4628. MYSERIAL.flush();
  4629. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4630. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4631. ClearToSend();
  4632. }
  4633. // Confirm the execution of a command, if sent from a serial line.
  4634. // Execution of a command from a SD card will not be confirmed.
  4635. void ClearToSend()
  4636. {
  4637. previous_millis_cmd = millis();
  4638. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4639. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4640. }
  4641. void get_coordinates()
  4642. {
  4643. bool seen[4]={false,false,false,false};
  4644. for(int8_t i=0; i < NUM_AXIS; i++) {
  4645. if(code_seen(axis_codes[i]))
  4646. {
  4647. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4648. seen[i]=true;
  4649. }
  4650. else destination[i] = current_position[i]; //Are these else lines really needed?
  4651. }
  4652. if(code_seen('F')) {
  4653. next_feedrate = code_value();
  4654. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4655. }
  4656. }
  4657. void get_arc_coordinates()
  4658. {
  4659. #ifdef SF_ARC_FIX
  4660. bool relative_mode_backup = relative_mode;
  4661. relative_mode = true;
  4662. #endif
  4663. get_coordinates();
  4664. #ifdef SF_ARC_FIX
  4665. relative_mode=relative_mode_backup;
  4666. #endif
  4667. if(code_seen('I')) {
  4668. offset[0] = code_value();
  4669. }
  4670. else {
  4671. offset[0] = 0.0;
  4672. }
  4673. if(code_seen('J')) {
  4674. offset[1] = code_value();
  4675. }
  4676. else {
  4677. offset[1] = 0.0;
  4678. }
  4679. }
  4680. void clamp_to_software_endstops(float target[3])
  4681. {
  4682. world2machine_clamp(target[0], target[1]);
  4683. // Clamp the Z coordinate.
  4684. if (min_software_endstops) {
  4685. float negative_z_offset = 0;
  4686. #ifdef ENABLE_AUTO_BED_LEVELING
  4687. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4688. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4689. #endif
  4690. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4691. }
  4692. if (max_software_endstops) {
  4693. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4694. }
  4695. }
  4696. #ifdef MESH_BED_LEVELING
  4697. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4698. float dx = x - current_position[X_AXIS];
  4699. float dy = y - current_position[Y_AXIS];
  4700. float dz = z - current_position[Z_AXIS];
  4701. int n_segments = 0;
  4702. if (mbl.active) {
  4703. float len = abs(dx) + abs(dy);
  4704. if (len > 0)
  4705. // Split to 3cm segments or shorter.
  4706. n_segments = int(ceil(len / 30.f));
  4707. }
  4708. if (n_segments > 1) {
  4709. float de = e - current_position[E_AXIS];
  4710. for (int i = 1; i < n_segments; ++ i) {
  4711. float t = float(i) / float(n_segments);
  4712. plan_buffer_line(
  4713. current_position[X_AXIS] + t * dx,
  4714. current_position[Y_AXIS] + t * dy,
  4715. current_position[Z_AXIS] + t * dz,
  4716. current_position[E_AXIS] + t * de,
  4717. feed_rate, extruder);
  4718. }
  4719. }
  4720. // The rest of the path.
  4721. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4722. current_position[X_AXIS] = x;
  4723. current_position[Y_AXIS] = y;
  4724. current_position[Z_AXIS] = z;
  4725. current_position[E_AXIS] = e;
  4726. }
  4727. #endif // MESH_BED_LEVELING
  4728. void prepare_move()
  4729. {
  4730. clamp_to_software_endstops(destination);
  4731. previous_millis_cmd = millis();
  4732. // Do not use feedmultiply for E or Z only moves
  4733. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4734. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4735. }
  4736. else {
  4737. #ifdef MESH_BED_LEVELING
  4738. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4739. #else
  4740. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4741. #endif
  4742. }
  4743. for(int8_t i=0; i < NUM_AXIS; i++) {
  4744. current_position[i] = destination[i];
  4745. }
  4746. }
  4747. void prepare_arc_move(char isclockwise) {
  4748. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4749. // Trace the arc
  4750. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4751. // As far as the parser is concerned, the position is now == target. In reality the
  4752. // motion control system might still be processing the action and the real tool position
  4753. // in any intermediate location.
  4754. for(int8_t i=0; i < NUM_AXIS; i++) {
  4755. current_position[i] = destination[i];
  4756. }
  4757. previous_millis_cmd = millis();
  4758. }
  4759. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4760. #if defined(FAN_PIN)
  4761. #if CONTROLLERFAN_PIN == FAN_PIN
  4762. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4763. #endif
  4764. #endif
  4765. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4766. unsigned long lastMotorCheck = 0;
  4767. void controllerFan()
  4768. {
  4769. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4770. {
  4771. lastMotorCheck = millis();
  4772. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4773. #if EXTRUDERS > 2
  4774. || !READ(E2_ENABLE_PIN)
  4775. #endif
  4776. #if EXTRUDER > 1
  4777. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4778. || !READ(X2_ENABLE_PIN)
  4779. #endif
  4780. || !READ(E1_ENABLE_PIN)
  4781. #endif
  4782. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4783. {
  4784. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4785. }
  4786. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4787. {
  4788. digitalWrite(CONTROLLERFAN_PIN, 0);
  4789. analogWrite(CONTROLLERFAN_PIN, 0);
  4790. }
  4791. else
  4792. {
  4793. // allows digital or PWM fan output to be used (see M42 handling)
  4794. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4795. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4796. }
  4797. }
  4798. }
  4799. #endif
  4800. #ifdef TEMP_STAT_LEDS
  4801. static bool blue_led = false;
  4802. static bool red_led = false;
  4803. static uint32_t stat_update = 0;
  4804. void handle_status_leds(void) {
  4805. float max_temp = 0.0;
  4806. if(millis() > stat_update) {
  4807. stat_update += 500; // Update every 0.5s
  4808. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4809. max_temp = max(max_temp, degHotend(cur_extruder));
  4810. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4811. }
  4812. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4813. max_temp = max(max_temp, degTargetBed());
  4814. max_temp = max(max_temp, degBed());
  4815. #endif
  4816. if((max_temp > 55.0) && (red_led == false)) {
  4817. digitalWrite(STAT_LED_RED, 1);
  4818. digitalWrite(STAT_LED_BLUE, 0);
  4819. red_led = true;
  4820. blue_led = false;
  4821. }
  4822. if((max_temp < 54.0) && (blue_led == false)) {
  4823. digitalWrite(STAT_LED_RED, 0);
  4824. digitalWrite(STAT_LED_BLUE, 1);
  4825. red_led = false;
  4826. blue_led = true;
  4827. }
  4828. }
  4829. }
  4830. #endif
  4831. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4832. {
  4833. #if defined(KILL_PIN) && KILL_PIN > -1
  4834. static int killCount = 0; // make the inactivity button a bit less responsive
  4835. const int KILL_DELAY = 10000;
  4836. #endif
  4837. if(buflen < (BUFSIZE-1)){
  4838. get_command();
  4839. }
  4840. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4841. if(max_inactive_time)
  4842. kill();
  4843. if(stepper_inactive_time) {
  4844. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4845. {
  4846. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4847. disable_x();
  4848. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4849. disable_y();
  4850. disable_z();
  4851. disable_e0();
  4852. disable_e1();
  4853. disable_e2();
  4854. }
  4855. }
  4856. }
  4857. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4858. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4859. {
  4860. chdkActive = false;
  4861. WRITE(CHDK, LOW);
  4862. }
  4863. #endif
  4864. #if defined(KILL_PIN) && KILL_PIN > -1
  4865. // Check if the kill button was pressed and wait just in case it was an accidental
  4866. // key kill key press
  4867. // -------------------------------------------------------------------------------
  4868. if( 0 == READ(KILL_PIN) )
  4869. {
  4870. killCount++;
  4871. }
  4872. else if (killCount > 0)
  4873. {
  4874. killCount--;
  4875. }
  4876. // Exceeded threshold and we can confirm that it was not accidental
  4877. // KILL the machine
  4878. // ----------------------------------------------------------------
  4879. if ( killCount >= KILL_DELAY)
  4880. {
  4881. kill();
  4882. }
  4883. #endif
  4884. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4885. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4886. #endif
  4887. #ifdef EXTRUDER_RUNOUT_PREVENT
  4888. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4889. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4890. {
  4891. bool oldstatus=READ(E0_ENABLE_PIN);
  4892. enable_e0();
  4893. float oldepos=current_position[E_AXIS];
  4894. float oldedes=destination[E_AXIS];
  4895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4896. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4897. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4898. current_position[E_AXIS]=oldepos;
  4899. destination[E_AXIS]=oldedes;
  4900. plan_set_e_position(oldepos);
  4901. previous_millis_cmd=millis();
  4902. st_synchronize();
  4903. WRITE(E0_ENABLE_PIN,oldstatus);
  4904. }
  4905. #endif
  4906. #ifdef TEMP_STAT_LEDS
  4907. handle_status_leds();
  4908. #endif
  4909. check_axes_activity();
  4910. }
  4911. void kill(const char *full_screen_message)
  4912. {
  4913. cli(); // Stop interrupts
  4914. disable_heater();
  4915. disable_x();
  4916. // SERIAL_ECHOLNPGM("kill - disable Y");
  4917. disable_y();
  4918. disable_z();
  4919. disable_e0();
  4920. disable_e1();
  4921. disable_e2();
  4922. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4923. pinMode(PS_ON_PIN,INPUT);
  4924. #endif
  4925. SERIAL_ERROR_START;
  4926. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4927. if (full_screen_message != NULL) {
  4928. SERIAL_ERRORLNRPGM(full_screen_message);
  4929. lcd_display_message_fullscreen_P(full_screen_message);
  4930. } else {
  4931. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4932. }
  4933. // FMC small patch to update the LCD before ending
  4934. sei(); // enable interrupts
  4935. for ( int i=5; i--; lcd_update())
  4936. {
  4937. delay(200);
  4938. }
  4939. cli(); // disable interrupts
  4940. suicide();
  4941. while(1) { /* Intentionally left empty */ } // Wait for reset
  4942. }
  4943. void Stop()
  4944. {
  4945. disable_heater();
  4946. if(Stopped == false) {
  4947. Stopped = true;
  4948. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4949. SERIAL_ERROR_START;
  4950. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4951. LCD_MESSAGERPGM(MSG_STOPPED);
  4952. }
  4953. }
  4954. bool IsStopped() { return Stopped; };
  4955. #ifdef FAST_PWM_FAN
  4956. void setPwmFrequency(uint8_t pin, int val)
  4957. {
  4958. val &= 0x07;
  4959. switch(digitalPinToTimer(pin))
  4960. {
  4961. #if defined(TCCR0A)
  4962. case TIMER0A:
  4963. case TIMER0B:
  4964. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4965. // TCCR0B |= val;
  4966. break;
  4967. #endif
  4968. #if defined(TCCR1A)
  4969. case TIMER1A:
  4970. case TIMER1B:
  4971. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4972. // TCCR1B |= val;
  4973. break;
  4974. #endif
  4975. #if defined(TCCR2)
  4976. case TIMER2:
  4977. case TIMER2:
  4978. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4979. TCCR2 |= val;
  4980. break;
  4981. #endif
  4982. #if defined(TCCR2A)
  4983. case TIMER2A:
  4984. case TIMER2B:
  4985. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4986. TCCR2B |= val;
  4987. break;
  4988. #endif
  4989. #if defined(TCCR3A)
  4990. case TIMER3A:
  4991. case TIMER3B:
  4992. case TIMER3C:
  4993. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4994. TCCR3B |= val;
  4995. break;
  4996. #endif
  4997. #if defined(TCCR4A)
  4998. case TIMER4A:
  4999. case TIMER4B:
  5000. case TIMER4C:
  5001. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5002. TCCR4B |= val;
  5003. break;
  5004. #endif
  5005. #if defined(TCCR5A)
  5006. case TIMER5A:
  5007. case TIMER5B:
  5008. case TIMER5C:
  5009. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5010. TCCR5B |= val;
  5011. break;
  5012. #endif
  5013. }
  5014. }
  5015. #endif //FAST_PWM_FAN
  5016. bool setTargetedHotend(int code){
  5017. tmp_extruder = active_extruder;
  5018. if(code_seen('T')) {
  5019. tmp_extruder = code_value();
  5020. if(tmp_extruder >= EXTRUDERS) {
  5021. SERIAL_ECHO_START;
  5022. switch(code){
  5023. case 104:
  5024. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5025. break;
  5026. case 105:
  5027. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5028. break;
  5029. case 109:
  5030. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5031. break;
  5032. case 218:
  5033. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5034. break;
  5035. case 221:
  5036. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5037. break;
  5038. }
  5039. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5040. return true;
  5041. }
  5042. }
  5043. return false;
  5044. }
  5045. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5046. {
  5047. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5048. {
  5049. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5050. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5051. }
  5052. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5053. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5054. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5055. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5056. total_filament_used = 0;
  5057. }
  5058. float calculate_volumetric_multiplier(float diameter) {
  5059. float area = .0;
  5060. float radius = .0;
  5061. radius = diameter * .5;
  5062. if (! volumetric_enabled || radius == 0) {
  5063. area = 1;
  5064. }
  5065. else {
  5066. area = M_PI * pow(radius, 2);
  5067. }
  5068. return 1.0 / area;
  5069. }
  5070. void calculate_volumetric_multipliers() {
  5071. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5072. #if EXTRUDERS > 1
  5073. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5074. #if EXTRUDERS > 2
  5075. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5076. #endif
  5077. #endif
  5078. }
  5079. void delay_keep_alive(int ms)
  5080. {
  5081. for (;;) {
  5082. manage_heater();
  5083. // Manage inactivity, but don't disable steppers on timeout.
  5084. manage_inactivity(true);
  5085. lcd_update();
  5086. if (ms == 0)
  5087. break;
  5088. else if (ms >= 50) {
  5089. delay(50);
  5090. ms -= 50;
  5091. } else {
  5092. delay(ms);
  5093. ms = 0;
  5094. }
  5095. }
  5096. }
  5097. void check_babystep() {
  5098. int babystep_z;
  5099. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5100. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5101. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5102. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5103. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5104. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5105. lcd_update_enable(true);
  5106. }
  5107. }
  5108. #ifdef DIS
  5109. void d_setup()
  5110. {
  5111. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5112. pinMode(D_DATA, INPUT_PULLUP);
  5113. pinMode(D_REQUIRE, OUTPUT);
  5114. digitalWrite(D_REQUIRE, HIGH);
  5115. }
  5116. float d_ReadData()
  5117. {
  5118. int digit[13];
  5119. String mergeOutput;
  5120. float output;
  5121. digitalWrite(D_REQUIRE, HIGH);
  5122. for (int i = 0; i<13; i++)
  5123. {
  5124. for (int j = 0; j < 4; j++)
  5125. {
  5126. while (digitalRead(D_DATACLOCK) == LOW) {}
  5127. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5128. bitWrite(digit[i], j, digitalRead(D_DATA));
  5129. }
  5130. }
  5131. digitalWrite(D_REQUIRE, LOW);
  5132. mergeOutput = "";
  5133. output = 0;
  5134. for (int r = 5; r <= 10; r++) //Merge digits
  5135. {
  5136. mergeOutput += digit[r];
  5137. }
  5138. output = mergeOutput.toFloat();
  5139. if (digit[4] == 8) //Handle sign
  5140. {
  5141. output *= -1;
  5142. }
  5143. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5144. {
  5145. output /= 10;
  5146. }
  5147. return output;
  5148. }
  5149. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5150. int t1 = 0;
  5151. int t_delay = 0;
  5152. int digit[13];
  5153. int m;
  5154. char str[3];
  5155. //String mergeOutput;
  5156. char mergeOutput[15];
  5157. float output;
  5158. int mesh_point = 0; //index number of calibration point
  5159. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5160. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5161. float mesh_home_z_search = 4;
  5162. float row[x_points_num];
  5163. int ix = 0;
  5164. int iy = 0;
  5165. char* filename_wldsd = "wldsd.txt";
  5166. char data_wldsd[70];
  5167. char numb_wldsd[10];
  5168. d_setup();
  5169. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5170. // We don't know where we are! HOME!
  5171. // Push the commands to the front of the message queue in the reverse order!
  5172. // There shall be always enough space reserved for these commands.
  5173. repeatcommand_front(); // repeat G80 with all its parameters
  5174. enquecommand_front_P((PSTR("G28 W0")));
  5175. enquecommand_front_P((PSTR("G1 Z5")));
  5176. return;
  5177. }
  5178. bool custom_message_old = custom_message;
  5179. unsigned int custom_message_type_old = custom_message_type;
  5180. unsigned int custom_message_state_old = custom_message_state;
  5181. custom_message = true;
  5182. custom_message_type = 1;
  5183. custom_message_state = (x_points_num * y_points_num) + 10;
  5184. lcd_update(1);
  5185. mbl.reset();
  5186. babystep_undo();
  5187. card.openFile(filename_wldsd, false);
  5188. current_position[Z_AXIS] = mesh_home_z_search;
  5189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5190. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5191. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5192. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5193. setup_for_endstop_move(false);
  5194. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5195. SERIAL_PROTOCOL(x_points_num);
  5196. SERIAL_PROTOCOLPGM(",");
  5197. SERIAL_PROTOCOL(y_points_num);
  5198. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5199. SERIAL_PROTOCOL(mesh_home_z_search);
  5200. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5201. SERIAL_PROTOCOL(x_dimension);
  5202. SERIAL_PROTOCOLPGM(",");
  5203. SERIAL_PROTOCOL(y_dimension);
  5204. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5205. while (mesh_point != x_points_num * y_points_num) {
  5206. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5207. iy = mesh_point / x_points_num;
  5208. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5209. float z0 = 0.f;
  5210. current_position[Z_AXIS] = mesh_home_z_search;
  5211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5212. st_synchronize();
  5213. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5214. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5216. st_synchronize();
  5217. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5218. break;
  5219. card.closefile();
  5220. }
  5221. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5222. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5223. //strcat(data_wldsd, numb_wldsd);
  5224. //MYSERIAL.println(data_wldsd);
  5225. //delay(1000);
  5226. //delay(3000);
  5227. //t1 = millis();
  5228. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5229. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5230. memset(digit, 0, sizeof(digit));
  5231. //cli();
  5232. digitalWrite(D_REQUIRE, LOW);
  5233. for (int i = 0; i<13; i++)
  5234. {
  5235. //t1 = millis();
  5236. for (int j = 0; j < 4; j++)
  5237. {
  5238. while (digitalRead(D_DATACLOCK) == LOW) {}
  5239. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5240. bitWrite(digit[i], j, digitalRead(D_DATA));
  5241. }
  5242. //t_delay = (millis() - t1);
  5243. //SERIAL_PROTOCOLPGM(" ");
  5244. //SERIAL_PROTOCOL_F(t_delay, 5);
  5245. //SERIAL_PROTOCOLPGM(" ");
  5246. }
  5247. //sei();
  5248. digitalWrite(D_REQUIRE, HIGH);
  5249. mergeOutput[0] = '\0';
  5250. output = 0;
  5251. for (int r = 5; r <= 10; r++) //Merge digits
  5252. {
  5253. sprintf(str, "%d", digit[r]);
  5254. strcat(mergeOutput, str);
  5255. }
  5256. output = atof(mergeOutput);
  5257. if (digit[4] == 8) //Handle sign
  5258. {
  5259. output *= -1;
  5260. }
  5261. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5262. {
  5263. output *= 0.1;
  5264. }
  5265. //output = d_ReadData();
  5266. //row[ix] = current_position[Z_AXIS];
  5267. memset(data_wldsd, 0, sizeof(data_wldsd));
  5268. for (int i = 0; i <3; i++) {
  5269. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5270. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5271. strcat(data_wldsd, numb_wldsd);
  5272. strcat(data_wldsd, ";");
  5273. }
  5274. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5275. dtostrf(output, 8, 5, numb_wldsd);
  5276. strcat(data_wldsd, numb_wldsd);
  5277. //strcat(data_wldsd, ";");
  5278. card.write_command(data_wldsd);
  5279. //row[ix] = d_ReadData();
  5280. row[ix] = output; // current_position[Z_AXIS];
  5281. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5282. for (int i = 0; i < x_points_num; i++) {
  5283. SERIAL_PROTOCOLPGM(" ");
  5284. SERIAL_PROTOCOL_F(row[i], 5);
  5285. }
  5286. SERIAL_PROTOCOLPGM("\n");
  5287. }
  5288. custom_message_state--;
  5289. mesh_point++;
  5290. lcd_update(1);
  5291. }
  5292. card.closefile();
  5293. }
  5294. #endif