temperature.cpp 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "sound.h"
  27. #include "temperature.h"
  28. #include "cardreader.h"
  29. #include "Sd2PinMap.h"
  30. #include <avr/wdt.h>
  31. #include "adc.h"
  32. #include "ConfigurationStore.h"
  33. #include "messages.h"
  34. #include "Timer.h"
  35. #include "Configuration_prusa.h"
  36. #include "config.h"
  37. //===========================================================================
  38. //=============================public variables============================
  39. //===========================================================================
  40. int target_temperature[EXTRUDERS] = { 0 };
  41. int target_temperature_bed = 0;
  42. int current_temperature_raw[EXTRUDERS] = { 0 };
  43. float current_temperature[EXTRUDERS] = { 0.0 };
  44. #ifdef PINDA_THERMISTOR
  45. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  46. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  47. float current_temperature_pinda = 0.0;
  48. #endif //PINDA_THERMISTOR
  49. #ifdef AMBIENT_THERMISTOR
  50. int current_temperature_raw_ambient = 0 ;
  51. float current_temperature_ambient = 0.0;
  52. #endif //AMBIENT_THERMISTOR
  53. #ifdef VOLT_PWR_PIN
  54. int current_voltage_raw_pwr = 0;
  55. #endif
  56. #ifdef VOLT_BED_PIN
  57. int current_voltage_raw_bed = 0;
  58. #endif
  59. #ifdef IR_SENSOR_ANALOG
  60. uint16_t current_voltage_raw_IR = 0;
  61. #endif //IR_SENSOR_ANALOG
  62. int current_temperature_bed_raw = 0;
  63. float current_temperature_bed = 0.0;
  64. #ifdef PIDTEMP
  65. float _Kp, _Ki, _Kd;
  66. int pid_cycle, pid_number_of_cycles;
  67. bool pid_tuning_finished = false;
  68. #ifdef PID_ADD_EXTRUSION_RATE
  69. float Kc=DEFAULT_Kc;
  70. #endif
  71. #endif //PIDTEMP
  72. #ifdef FAN_SOFT_PWM
  73. unsigned char fanSpeedSoftPwm;
  74. #endif
  75. #ifdef FANCHECK
  76. volatile uint8_t fan_check_error = EFCE_OK;
  77. #endif
  78. unsigned char soft_pwm_bed;
  79. #ifdef BABYSTEPPING
  80. volatile int babystepsTodo[3]={0,0,0};
  81. #endif
  82. //===========================================================================
  83. //=============================private variables============================
  84. //===========================================================================
  85. static volatile bool temp_meas_ready = false;
  86. #ifdef PIDTEMP
  87. //static cannot be external:
  88. static float iState_sum[EXTRUDERS] = { 0 };
  89. static float dState_last[EXTRUDERS] = { 0 };
  90. static float pTerm[EXTRUDERS];
  91. static float iTerm[EXTRUDERS];
  92. static float dTerm[EXTRUDERS];
  93. //int output;
  94. static float pid_error[EXTRUDERS];
  95. static float iState_sum_min[EXTRUDERS];
  96. static float iState_sum_max[EXTRUDERS];
  97. // static float pid_input[EXTRUDERS];
  98. // static float pid_output[EXTRUDERS];
  99. static bool pid_reset[EXTRUDERS];
  100. #endif //PIDTEMP
  101. #ifdef PIDTEMPBED
  102. //static cannot be external:
  103. static float temp_iState_bed = { 0 };
  104. static float temp_dState_bed = { 0 };
  105. static float pTerm_bed;
  106. static float iTerm_bed;
  107. static float dTerm_bed;
  108. //int output;
  109. static float pid_error_bed;
  110. static float temp_iState_min_bed;
  111. static float temp_iState_max_bed;
  112. #else //PIDTEMPBED
  113. static unsigned long previous_millis_bed_heater;
  114. #endif //PIDTEMPBED
  115. static unsigned char soft_pwm[EXTRUDERS];
  116. #ifdef FAN_SOFT_PWM
  117. static unsigned char soft_pwm_fan;
  118. #endif
  119. uint8_t fanSpeedBckp = 255;
  120. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. bool fan_measuring = false;
  123. uint8_t fanState = 0;
  124. #ifdef EXTRUDER_ALTFAN_DETECT
  125. struct
  126. {
  127. uint8_t isAltfan : 1;
  128. uint8_t altfanOverride : 1;
  129. } altfanStatus;
  130. #endif //EXTRUDER_ALTFAN_DETECT
  131. #endif
  132. #if EXTRUDERS > 3
  133. # error Unsupported number of extruders
  134. #elif EXTRUDERS > 2
  135. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  136. #elif EXTRUDERS > 1
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  138. #else
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  140. #endif
  141. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  142. // Init min and max temp with extreme values to prevent false errors during startup
  143. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  144. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  145. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  146. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  147. #ifdef BED_MINTEMP
  148. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  149. #endif
  150. #ifdef BED_MAXTEMP
  151. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  152. #endif
  153. #ifdef AMBIENT_MINTEMP
  154. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  155. #endif
  156. #ifdef AMBIENT_MAXTEMP
  157. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  158. #endif
  159. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  160. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  161. static float analog2temp(int raw, uint8_t e);
  162. static float analog2tempBed(int raw);
  163. static float analog2tempAmbient(int raw);
  164. static void updateTemperaturesFromRawValues();
  165. enum TempRunawayStates
  166. {
  167. TempRunaway_INACTIVE = 0,
  168. TempRunaway_PREHEAT = 1,
  169. TempRunaway_ACTIVE = 2,
  170. };
  171. #ifndef SOFT_PWM_SCALE
  172. #define SOFT_PWM_SCALE 0
  173. #endif
  174. //===========================================================================
  175. //============================= functions ============================
  176. //===========================================================================
  177. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  178. static float temp_runaway_status[4];
  179. static float temp_runaway_target[4];
  180. static float temp_runaway_timer[4];
  181. static int temp_runaway_error_counter[4];
  182. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  183. static void temp_runaway_stop(bool isPreheat, bool isBed);
  184. #endif
  185. #ifdef EXTRUDER_ALTFAN_DETECT
  186. ISR(INT6_vect) {
  187. fan_edge_counter[0]++;
  188. }
  189. bool extruder_altfan_detect()
  190. {
  191. setExtruderAutoFanState(3);
  192. SET_INPUT(TACH_0);
  193. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  194. if (overrideVal == EEPROM_EMPTY_VALUE)
  195. {
  196. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  197. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  198. }
  199. altfanStatus.altfanOverride = overrideVal;
  200. CRITICAL_SECTION_START;
  201. EICRB &= ~(1 << ISC61);
  202. EICRB |= (1 << ISC60);
  203. EIMSK |= (1 << INT6);
  204. fan_edge_counter[0] = 0;
  205. CRITICAL_SECTION_END;
  206. extruder_autofan_last_check = _millis();
  207. _delay(1000);
  208. EIMSK &= ~(1 << INT6);
  209. countFanSpeed();
  210. altfanStatus.isAltfan = fan_speed[0] > 100;
  211. setExtruderAutoFanState(1);
  212. return altfanStatus.isAltfan;
  213. }
  214. void altfanOverride_toggle()
  215. {
  216. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  217. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  218. }
  219. bool altfanOverride_get()
  220. {
  221. return altfanStatus.altfanOverride;
  222. }
  223. #endif //EXTRUDER_ALTFAN_DETECT
  224. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  225. bool checkAllHotends(void)
  226. {
  227. bool result=false;
  228. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  229. return(result);
  230. }
  231. void PID_autotune(float temp, int extruder, int ncycles)
  232. {
  233. pid_number_of_cycles = ncycles;
  234. pid_tuning_finished = false;
  235. float input = 0.0;
  236. pid_cycle=0;
  237. bool heating = true;
  238. unsigned long temp_millis = _millis();
  239. unsigned long t1=temp_millis;
  240. unsigned long t2=temp_millis;
  241. long t_high = 0;
  242. long t_low = 0;
  243. long bias, d;
  244. float Ku, Tu;
  245. float max = 0, min = 10000;
  246. uint8_t safety_check_cycles = 0;
  247. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  248. float temp_ambient;
  249. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  250. unsigned long extruder_autofan_last_check = _millis();
  251. #endif
  252. if ((extruder >= EXTRUDERS)
  253. #if (TEMP_BED_PIN <= -1)
  254. ||(extruder < 0)
  255. #endif
  256. ){
  257. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  258. pid_tuning_finished = true;
  259. pid_cycle = 0;
  260. return;
  261. }
  262. SERIAL_ECHOLN("PID Autotune start");
  263. disable_heater(); // switch off all heaters.
  264. if (extruder<0)
  265. {
  266. soft_pwm_bed = (MAX_BED_POWER)/2;
  267. timer02_set_pwm0(soft_pwm_bed << 1);
  268. bias = d = (MAX_BED_POWER)/2;
  269. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  270. }
  271. else
  272. {
  273. soft_pwm[extruder] = (PID_MAX)/2;
  274. bias = d = (PID_MAX)/2;
  275. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  276. }
  277. for(;;) {
  278. #ifdef WATCHDOG
  279. wdt_reset();
  280. #endif //WATCHDOG
  281. if(temp_meas_ready == true) { // temp sample ready
  282. updateTemperaturesFromRawValues();
  283. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  284. max=max(max,input);
  285. min=min(min,input);
  286. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  287. if(_millis() - extruder_autofan_last_check > 2500) {
  288. checkExtruderAutoFans();
  289. extruder_autofan_last_check = _millis();
  290. }
  291. #endif
  292. if(heating == true && input > temp) {
  293. if(_millis() - t2 > 5000) {
  294. heating=false;
  295. if (extruder<0)
  296. {
  297. soft_pwm_bed = (bias - d) >> 1;
  298. timer02_set_pwm0(soft_pwm_bed << 1);
  299. }
  300. else
  301. soft_pwm[extruder] = (bias - d) >> 1;
  302. t1=_millis();
  303. t_high=t1 - t2;
  304. max=temp;
  305. }
  306. }
  307. if(heating == false && input < temp) {
  308. if(_millis() - t1 > 5000) {
  309. heating=true;
  310. t2=_millis();
  311. t_low=t2 - t1;
  312. if(pid_cycle > 0) {
  313. bias += (d*(t_high - t_low))/(t_low + t_high);
  314. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  315. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  316. else d = bias;
  317. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  318. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  319. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  320. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  321. if(pid_cycle > 2) {
  322. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  323. Tu = ((float)(t_low + t_high)/1000.0);
  324. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  325. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  326. _Kp = 0.6*Ku;
  327. _Ki = 2*_Kp/Tu;
  328. _Kd = _Kp*Tu/8;
  329. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  330. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  331. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  332. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  333. /*
  334. _Kp = 0.33*Ku;
  335. _Ki = _Kp/Tu;
  336. _Kd = _Kp*Tu/3;
  337. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  338. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  339. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  340. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  341. _Kp = 0.2*Ku;
  342. _Ki = 2*_Kp/Tu;
  343. _Kd = _Kp*Tu/3;
  344. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  345. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  346. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  347. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  348. */
  349. }
  350. }
  351. if (extruder<0)
  352. {
  353. soft_pwm_bed = (bias + d) >> 1;
  354. timer02_set_pwm0(soft_pwm_bed << 1);
  355. }
  356. else
  357. soft_pwm[extruder] = (bias + d) >> 1;
  358. pid_cycle++;
  359. min=temp;
  360. }
  361. }
  362. }
  363. if(input > (temp + 20)) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. if(_millis() - temp_millis > 2000) {
  370. int p;
  371. if (extruder<0){
  372. p=soft_pwm_bed;
  373. SERIAL_PROTOCOLPGM("B:");
  374. }else{
  375. p=soft_pwm[extruder];
  376. SERIAL_PROTOCOLPGM("T:");
  377. }
  378. SERIAL_PROTOCOL(input);
  379. SERIAL_PROTOCOLPGM(" @:");
  380. SERIAL_PROTOCOLLN(p);
  381. if (safety_check_cycles == 0) { //save ambient temp
  382. temp_ambient = input;
  383. //SERIAL_ECHOPGM("Ambient T: ");
  384. //MYSERIAL.println(temp_ambient);
  385. safety_check_cycles++;
  386. }
  387. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  391. safety_check_cycles++;
  392. //SERIAL_ECHOPGM("Time from beginning: ");
  393. //MYSERIAL.print(safety_check_cycles_count * 2);
  394. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  395. //MYSERIAL.println(input - temp_ambient);
  396. if (abs(input - temp_ambient) < 5.0) {
  397. temp_runaway_stop(false, (extruder<0));
  398. pid_tuning_finished = true;
  399. return;
  400. }
  401. }
  402. temp_millis = _millis();
  403. }
  404. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  405. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  406. pid_tuning_finished = true;
  407. pid_cycle = 0;
  408. return;
  409. }
  410. if(pid_cycle > ncycles) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. lcd_update(0);
  417. }
  418. }
  419. void updatePID()
  420. {
  421. #ifdef PIDTEMP
  422. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  423. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  424. }
  425. #endif
  426. #ifdef PIDTEMPBED
  427. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  428. #endif
  429. }
  430. int getHeaterPower(int heater) {
  431. if (heater<0)
  432. return soft_pwm_bed;
  433. return soft_pwm[heater];
  434. }
  435. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  436. #if defined(FAN_PIN) && FAN_PIN > -1
  437. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  438. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  439. #endif
  440. #endif
  441. void setExtruderAutoFanState(uint8_t state)
  442. {
  443. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  444. //the fan to either On or Off during certain tests/errors.
  445. fanState = state;
  446. newFanSpeed = 0;
  447. if (fanState & 0x01)
  448. {
  449. #ifdef EXTRUDER_ALTFAN_DETECT
  450. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  451. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  452. #else //EXTRUDER_ALTFAN_DETECT
  453. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  454. #endif //EXTRUDER_ALTFAN_DETECT
  455. }
  456. timer4_set_fan0(newFanSpeed);
  457. }
  458. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  459. void countFanSpeed()
  460. {
  461. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  462. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  463. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  464. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  465. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  466. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  467. SERIAL_ECHOLNPGM(" ");*/
  468. fan_edge_counter[0] = 0;
  469. fan_edge_counter[1] = 0;
  470. }
  471. void checkFanSpeed()
  472. {
  473. uint8_t max_print_fan_errors = 0;
  474. uint8_t max_extruder_fan_errors = 0;
  475. #ifdef FAN_SOFT_PWM
  476. max_print_fan_errors = 3; //15 seconds
  477. max_extruder_fan_errors = 2; //10seconds
  478. #else //FAN_SOFT_PWM
  479. max_print_fan_errors = 15; //15 seconds
  480. max_extruder_fan_errors = 5; //5 seconds
  481. #endif //FAN_SOFT_PWM
  482. if(fans_check_enabled != false)
  483. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  484. static unsigned char fan_speed_errors[2] = { 0,0 };
  485. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  486. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  487. else{
  488. fan_speed_errors[0] = 0;
  489. host_keepalive();
  490. }
  491. #endif
  492. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  493. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  494. else fan_speed_errors[1] = 0;
  495. #endif
  496. // drop the fan_check_error flag when both fans are ok
  497. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  498. // we may even send some info to the LCD from here
  499. fan_check_error = EFCE_FIXED;
  500. }
  501. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  502. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  503. lcd_reset_alert_level(); //for another fan speed error
  504. }
  505. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  506. fan_speed_errors[0] = 0;
  507. fanSpeedError(0); //extruder fan
  508. }
  509. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  510. fan_speed_errors[1] = 0;
  511. fanSpeedError(1); //print fan
  512. }
  513. }
  514. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  515. //! Extracted from fanSpeedError to save some space.
  516. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  517. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  518. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  519. SERIAL_ECHOLNRPGM(serialMsg);
  520. if (get_message_level() == 0) {
  521. Sound_MakeCustom(200,0,true);
  522. LCD_ALERTMESSAGERPGM(lcdMsg);
  523. }
  524. }
  525. void fanSpeedError(unsigned char _fan) {
  526. if (get_message_level() != 0 && isPrintPaused) return;
  527. //to ensure that target temp. is not set to zero in case that we are resuming print
  528. if (card.sdprinting || is_usb_printing) {
  529. if (heating_status != 0) {
  530. lcd_print_stop();
  531. }
  532. else {
  533. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  534. }
  535. }
  536. else {
  537. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  538. setTargetHotend0(0);
  539. heating_status = 0;
  540. fan_check_error = EFCE_REPORTED;
  541. }
  542. switch (_fan) {
  543. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  544. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  545. break;
  546. case 1:
  547. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  548. break;
  549. }
  550. }
  551. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  552. void checkExtruderAutoFans()
  553. {
  554. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  555. if (!(fanState & 0x02))
  556. {
  557. fanState &= ~1;
  558. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  559. }
  560. setExtruderAutoFanState(fanState);
  561. #endif
  562. }
  563. #endif // any extruder auto fan pins set
  564. // ready for eventually parameters adjusting
  565. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  566. //void resetPID(uint8_t extruder)
  567. {
  568. }
  569. void manage_heater()
  570. {
  571. #ifdef WATCHDOG
  572. wdt_reset();
  573. #endif //WATCHDOG
  574. float pid_input;
  575. float pid_output;
  576. if(temp_meas_ready != true) //better readability
  577. return;
  578. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  579. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  580. updateTemperaturesFromRawValues();
  581. check_max_temp();
  582. check_min_temp();
  583. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  584. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  585. #endif
  586. for(int e = 0; e < EXTRUDERS; e++)
  587. {
  588. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  589. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  590. #endif
  591. #ifdef PIDTEMP
  592. pid_input = current_temperature[e];
  593. #ifndef PID_OPENLOOP
  594. if(target_temperature[e] == 0) {
  595. pid_output = 0;
  596. pid_reset[e] = true;
  597. } else {
  598. pid_error[e] = target_temperature[e] - pid_input;
  599. if(pid_reset[e]) {
  600. iState_sum[e] = 0.0;
  601. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  602. pid_reset[e] = false;
  603. }
  604. #ifndef PonM
  605. pTerm[e] = cs.Kp * pid_error[e];
  606. iState_sum[e] += pid_error[e];
  607. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  608. iTerm[e] = cs.Ki * iState_sum[e];
  609. // PID_K1 defined in Configuration.h in the PID settings
  610. #define K2 (1.0-PID_K1)
  611. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  612. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  613. if (pid_output > PID_MAX) {
  614. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  615. pid_output=PID_MAX;
  616. } else if (pid_output < 0) {
  617. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  618. pid_output=0;
  619. }
  620. #else // PonM ("Proportional on Measurement" method)
  621. iState_sum[e] += cs.Ki * pid_error[e];
  622. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  623. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  624. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  625. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  626. pid_output = constrain(pid_output, 0, PID_MAX);
  627. #endif // PonM
  628. }
  629. dState_last[e] = pid_input;
  630. #else
  631. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  632. #endif //PID_OPENLOOP
  633. #ifdef PID_DEBUG
  634. SERIAL_ECHO_START;
  635. SERIAL_ECHO(" PID_DEBUG ");
  636. SERIAL_ECHO(e);
  637. SERIAL_ECHO(": Input ");
  638. SERIAL_ECHO(pid_input);
  639. SERIAL_ECHO(" Output ");
  640. SERIAL_ECHO(pid_output);
  641. SERIAL_ECHO(" pTerm ");
  642. SERIAL_ECHO(pTerm[e]);
  643. SERIAL_ECHO(" iTerm ");
  644. SERIAL_ECHO(iTerm[e]);
  645. SERIAL_ECHO(" dTerm ");
  646. SERIAL_ECHOLN(-dTerm[e]);
  647. #endif //PID_DEBUG
  648. #else /* PID off */
  649. pid_output = 0;
  650. if(current_temperature[e] < target_temperature[e]) {
  651. pid_output = PID_MAX;
  652. }
  653. #endif
  654. // Check if temperature is within the correct range
  655. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  656. {
  657. soft_pwm[e] = (int)pid_output >> 1;
  658. }
  659. else
  660. {
  661. soft_pwm[e] = 0;
  662. }
  663. } // End extruder for loop
  664. #define FAN_CHECK_PERIOD 5000 //5s
  665. #define FAN_CHECK_DURATION 100 //100ms
  666. #ifndef DEBUG_DISABLE_FANCHECK
  667. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  668. #ifdef FAN_SOFT_PWM
  669. #ifdef FANCHECK
  670. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  671. extruder_autofan_last_check = _millis();
  672. fanSpeedBckp = fanSpeedSoftPwm;
  673. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  674. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  675. fanSpeedSoftPwm = 255;
  676. }
  677. fan_measuring = true;
  678. }
  679. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  680. countFanSpeed();
  681. checkFanSpeed();
  682. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  683. fanSpeedSoftPwm = fanSpeedBckp;
  684. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  685. extruder_autofan_last_check = _millis();
  686. fan_measuring = false;
  687. }
  688. #endif //FANCHECK
  689. checkExtruderAutoFans();
  690. #else //FAN_SOFT_PWM
  691. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  692. {
  693. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  694. countFanSpeed();
  695. checkFanSpeed();
  696. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  697. checkExtruderAutoFans();
  698. extruder_autofan_last_check = _millis();
  699. }
  700. #endif //FAN_SOFT_PWM
  701. #endif
  702. #endif //DEBUG_DISABLE_FANCHECK
  703. #ifndef PIDTEMPBED
  704. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  705. return;
  706. previous_millis_bed_heater = _millis();
  707. #endif
  708. #if TEMP_SENSOR_BED != 0
  709. #ifdef PIDTEMPBED
  710. pid_input = current_temperature_bed;
  711. #ifndef PID_OPENLOOP
  712. pid_error_bed = target_temperature_bed - pid_input;
  713. pTerm_bed = cs.bedKp * pid_error_bed;
  714. temp_iState_bed += pid_error_bed;
  715. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  716. iTerm_bed = cs.bedKi * temp_iState_bed;
  717. //PID_K1 defined in Configuration.h in the PID settings
  718. #define K2 (1.0-PID_K1)
  719. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  720. temp_dState_bed = pid_input;
  721. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  722. if (pid_output > MAX_BED_POWER) {
  723. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  724. pid_output=MAX_BED_POWER;
  725. } else if (pid_output < 0){
  726. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  727. pid_output=0;
  728. }
  729. #else
  730. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  731. #endif //PID_OPENLOOP
  732. if(current_temperature_bed < BED_MAXTEMP)
  733. {
  734. soft_pwm_bed = (int)pid_output >> 1;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. else {
  738. soft_pwm_bed = 0;
  739. timer02_set_pwm0(soft_pwm_bed << 1);
  740. }
  741. #elif !defined(BED_LIMIT_SWITCHING)
  742. // Check if temperature is within the correct range
  743. if(current_temperature_bed < BED_MAXTEMP)
  744. {
  745. if(current_temperature_bed >= target_temperature_bed)
  746. {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. else
  751. {
  752. soft_pwm_bed = MAX_BED_POWER>>1;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. }
  755. }
  756. else
  757. {
  758. soft_pwm_bed = 0;
  759. timer02_set_pwm0(soft_pwm_bed << 1);
  760. WRITE(HEATER_BED_PIN,LOW);
  761. }
  762. #else //#ifdef BED_LIMIT_SWITCHING
  763. // Check if temperature is within the correct band
  764. if(current_temperature_bed < BED_MAXTEMP)
  765. {
  766. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  767. {
  768. soft_pwm_bed = 0;
  769. timer02_set_pwm0(soft_pwm_bed << 1);
  770. }
  771. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  772. {
  773. soft_pwm_bed = MAX_BED_POWER>>1;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. }
  776. }
  777. else
  778. {
  779. soft_pwm_bed = 0;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. WRITE(HEATER_BED_PIN,LOW);
  782. }
  783. #endif
  784. if(target_temperature_bed==0)
  785. {
  786. soft_pwm_bed = 0;
  787. timer02_set_pwm0(soft_pwm_bed << 1);
  788. }
  789. #endif
  790. host_keepalive();
  791. }
  792. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  793. // Derived from RepRap FiveD extruder::getTemperature()
  794. // For hot end temperature measurement.
  795. static float analog2temp(int raw, uint8_t e) {
  796. if(e >= EXTRUDERS)
  797. {
  798. SERIAL_ERROR_START;
  799. SERIAL_ERROR((int)e);
  800. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  801. kill(NULL, 6);
  802. return 0.0;
  803. }
  804. #ifdef HEATER_0_USES_MAX6675
  805. if (e == 0)
  806. {
  807. return 0.25 * raw;
  808. }
  809. #endif
  810. if(heater_ttbl_map[e] != NULL)
  811. {
  812. float celsius = 0;
  813. uint8_t i;
  814. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  815. for (i=1; i<heater_ttbllen_map[e]; i++)
  816. {
  817. if (PGM_RD_W((*tt)[i][0]) > raw)
  818. {
  819. celsius = PGM_RD_W((*tt)[i-1][1]) +
  820. (raw - PGM_RD_W((*tt)[i-1][0])) *
  821. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  822. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  823. break;
  824. }
  825. }
  826. // Overflow: Set to last value in the table
  827. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  828. return celsius;
  829. }
  830. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  831. }
  832. // Derived from RepRap FiveD extruder::getTemperature()
  833. // For bed temperature measurement.
  834. static float analog2tempBed(int raw) {
  835. #ifdef BED_USES_THERMISTOR
  836. float celsius = 0;
  837. byte i;
  838. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  839. {
  840. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  841. {
  842. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  843. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  844. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  845. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  846. break;
  847. }
  848. }
  849. // Overflow: Set to last value in the table
  850. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  851. // temperature offset adjustment
  852. #ifdef BED_OFFSET
  853. float _offset = BED_OFFSET;
  854. float _offset_center = BED_OFFSET_CENTER;
  855. float _offset_start = BED_OFFSET_START;
  856. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  857. float _second_koef = (_offset / 2) / (100 - _offset_center);
  858. if (celsius >= _offset_start && celsius <= _offset_center)
  859. {
  860. celsius = celsius + (_first_koef * (celsius - _offset_start));
  861. }
  862. else if (celsius > _offset_center && celsius <= 100)
  863. {
  864. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  865. }
  866. else if (celsius > 100)
  867. {
  868. celsius = celsius + _offset;
  869. }
  870. #endif
  871. return celsius;
  872. #elif defined BED_USES_AD595
  873. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  874. #else
  875. return 0;
  876. #endif
  877. }
  878. #ifdef AMBIENT_THERMISTOR
  879. static float analog2tempAmbient(int raw)
  880. {
  881. float celsius = 0;
  882. byte i;
  883. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  884. {
  885. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  886. {
  887. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  888. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  889. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  890. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  891. break;
  892. }
  893. }
  894. // Overflow: Set to last value in the table
  895. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  896. return celsius;
  897. }
  898. #endif //AMBIENT_THERMISTOR
  899. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  900. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  901. static void updateTemperaturesFromRawValues()
  902. {
  903. for(uint8_t e=0;e<EXTRUDERS;e++)
  904. {
  905. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  906. }
  907. #ifdef PINDA_THERMISTOR
  908. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  909. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  910. #endif
  911. #ifdef AMBIENT_THERMISTOR
  912. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  913. #endif
  914. #ifdef DEBUG_HEATER_BED_SIM
  915. current_temperature_bed = target_temperature_bed;
  916. #else //DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  918. #endif //DEBUG_HEATER_BED_SIM
  919. CRITICAL_SECTION_START;
  920. temp_meas_ready = false;
  921. CRITICAL_SECTION_END;
  922. }
  923. void tp_init()
  924. {
  925. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  926. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  927. MCUCR=(1<<JTD);
  928. MCUCR=(1<<JTD);
  929. #endif
  930. // Finish init of mult extruder arrays
  931. for(int e = 0; e < EXTRUDERS; e++) {
  932. // populate with the first value
  933. maxttemp[e] = maxttemp[0];
  934. #ifdef PIDTEMP
  935. iState_sum_min[e] = 0.0;
  936. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  937. #endif //PIDTEMP
  938. #ifdef PIDTEMPBED
  939. temp_iState_min_bed = 0.0;
  940. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  941. #endif //PIDTEMPBED
  942. }
  943. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  944. SET_OUTPUT(HEATER_0_PIN);
  945. #endif
  946. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  947. SET_OUTPUT(HEATER_1_PIN);
  948. #endif
  949. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  950. SET_OUTPUT(HEATER_2_PIN);
  951. #endif
  952. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  953. SET_OUTPUT(HEATER_BED_PIN);
  954. #endif
  955. #if defined(FAN_PIN) && (FAN_PIN > -1)
  956. SET_OUTPUT(FAN_PIN);
  957. #ifdef FAST_PWM_FAN
  958. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  959. #endif
  960. #ifdef FAN_SOFT_PWM
  961. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  962. #endif
  963. #endif
  964. #ifdef HEATER_0_USES_MAX6675
  965. #ifndef SDSUPPORT
  966. SET_OUTPUT(SCK_PIN);
  967. WRITE(SCK_PIN,0);
  968. SET_OUTPUT(MOSI_PIN);
  969. WRITE(MOSI_PIN,1);
  970. SET_INPUT(MISO_PIN);
  971. WRITE(MISO_PIN,1);
  972. #endif
  973. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  974. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  975. pinMode(SS_PIN, OUTPUT);
  976. digitalWrite(SS_PIN,0);
  977. pinMode(MAX6675_SS, OUTPUT);
  978. digitalWrite(MAX6675_SS,1);
  979. #endif
  980. adc_init();
  981. timer0_init(); //enables the heatbed timer.
  982. // timer2 already enabled earlier in the code
  983. // now enable the COMPB temperature interrupt
  984. OCR2B = 128;
  985. TIMSK2 |= (1<<OCIE2B);
  986. timer4_init(); //for tone and Extruder fan PWM
  987. // Wait for temperature measurement to settle
  988. _delay(250);
  989. #ifdef HEATER_0_MINTEMP
  990. minttemp[0] = HEATER_0_MINTEMP;
  991. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  992. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  993. minttemp_raw[0] += OVERSAMPLENR;
  994. #else
  995. minttemp_raw[0] -= OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MINTEMP
  999. #ifdef HEATER_0_MAXTEMP
  1000. maxttemp[0] = HEATER_0_MAXTEMP;
  1001. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1002. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1003. maxttemp_raw[0] -= OVERSAMPLENR;
  1004. #else
  1005. maxttemp_raw[0] += OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //MAXTEMP
  1009. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1010. minttemp[1] = HEATER_1_MINTEMP;
  1011. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1012. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1013. minttemp_raw[1] += OVERSAMPLENR;
  1014. #else
  1015. minttemp_raw[1] -= OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif // MINTEMP 1
  1019. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1020. maxttemp[1] = HEATER_1_MAXTEMP;
  1021. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1022. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1023. maxttemp_raw[1] -= OVERSAMPLENR;
  1024. #else
  1025. maxttemp_raw[1] += OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //MAXTEMP 1
  1029. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1030. minttemp[2] = HEATER_2_MINTEMP;
  1031. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1032. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1033. minttemp_raw[2] += OVERSAMPLENR;
  1034. #else
  1035. minttemp_raw[2] -= OVERSAMPLENR;
  1036. #endif
  1037. }
  1038. #endif //MINTEMP 2
  1039. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1040. maxttemp[2] = HEATER_2_MAXTEMP;
  1041. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1042. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1043. maxttemp_raw[2] -= OVERSAMPLENR;
  1044. #else
  1045. maxttemp_raw[2] += OVERSAMPLENR;
  1046. #endif
  1047. }
  1048. #endif //MAXTEMP 2
  1049. #ifdef BED_MINTEMP
  1050. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1051. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1052. bed_minttemp_raw += OVERSAMPLENR;
  1053. #else
  1054. bed_minttemp_raw -= OVERSAMPLENR;
  1055. #endif
  1056. }
  1057. #endif //BED_MINTEMP
  1058. #ifdef BED_MAXTEMP
  1059. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1060. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1061. bed_maxttemp_raw -= OVERSAMPLENR;
  1062. #else
  1063. bed_maxttemp_raw += OVERSAMPLENR;
  1064. #endif
  1065. }
  1066. #endif //BED_MAXTEMP
  1067. #ifdef AMBIENT_MINTEMP
  1068. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1069. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1070. ambient_minttemp_raw += OVERSAMPLENR;
  1071. #else
  1072. ambient_minttemp_raw -= OVERSAMPLENR;
  1073. #endif
  1074. }
  1075. #endif //AMBIENT_MINTEMP
  1076. #ifdef AMBIENT_MAXTEMP
  1077. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1078. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1079. ambient_maxttemp_raw -= OVERSAMPLENR;
  1080. #else
  1081. ambient_maxttemp_raw += OVERSAMPLENR;
  1082. #endif
  1083. }
  1084. #endif //AMBIENT_MAXTEMP
  1085. }
  1086. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1087. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1088. {
  1089. float __delta;
  1090. float __hysteresis = 0;
  1091. int __timeout = 0;
  1092. bool temp_runaway_check_active = false;
  1093. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1094. static int __preheat_counter[2] = { 0,0};
  1095. static int __preheat_errors[2] = { 0,0};
  1096. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1097. {
  1098. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1099. if (_isbed)
  1100. {
  1101. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1102. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1103. }
  1104. #endif
  1105. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1106. if (!_isbed)
  1107. {
  1108. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1109. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1110. }
  1111. #endif
  1112. temp_runaway_timer[_heater_id] = _millis();
  1113. if (_output == 0)
  1114. {
  1115. temp_runaway_check_active = false;
  1116. temp_runaway_error_counter[_heater_id] = 0;
  1117. }
  1118. if (temp_runaway_target[_heater_id] != _target_temperature)
  1119. {
  1120. if (_target_temperature > 0)
  1121. {
  1122. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1123. temp_runaway_target[_heater_id] = _target_temperature;
  1124. __preheat_start[_heater_id] = _current_temperature;
  1125. __preheat_counter[_heater_id] = 0;
  1126. }
  1127. else
  1128. {
  1129. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1130. temp_runaway_target[_heater_id] = _target_temperature;
  1131. }
  1132. }
  1133. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1134. {
  1135. __preheat_counter[_heater_id]++;
  1136. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1137. {
  1138. /*SERIAL_ECHOPGM("Heater:");
  1139. MYSERIAL.print(_heater_id);
  1140. SERIAL_ECHOPGM(" T:");
  1141. MYSERIAL.print(_current_temperature);
  1142. SERIAL_ECHOPGM(" Tstart:");
  1143. MYSERIAL.print(__preheat_start[_heater_id]);
  1144. SERIAL_ECHOPGM(" delta:");
  1145. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1146. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1147. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1148. __delta=2.0;
  1149. if(_isbed)
  1150. {
  1151. __delta=3.0;
  1152. if(_current_temperature>90.0) __delta=2.0;
  1153. if(_current_temperature>105.0) __delta=0.6;
  1154. }
  1155. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1156. __preheat_errors[_heater_id]++;
  1157. /*SERIAL_ECHOPGM(" Preheat errors:");
  1158. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1159. }
  1160. else {
  1161. //SERIAL_ECHOLNPGM("");
  1162. __preheat_errors[_heater_id] = 0;
  1163. }
  1164. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1165. {
  1166. if (farm_mode) { prusa_statistics(0); }
  1167. temp_runaway_stop(true, _isbed);
  1168. if (farm_mode) { prusa_statistics(91); }
  1169. }
  1170. __preheat_start[_heater_id] = _current_temperature;
  1171. __preheat_counter[_heater_id] = 0;
  1172. }
  1173. }
  1174. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1175. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1176. {
  1177. /*SERIAL_ECHOPGM("Heater:");
  1178. MYSERIAL.print(_heater_id);
  1179. MYSERIAL.println(" ->tempRunaway");*/
  1180. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1181. temp_runaway_check_active = false;
  1182. temp_runaway_error_counter[_heater_id] = 0;
  1183. }
  1184. if (_output > 0)
  1185. {
  1186. temp_runaway_check_active = true;
  1187. }
  1188. if (temp_runaway_check_active)
  1189. {
  1190. // we are in range
  1191. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1192. {
  1193. temp_runaway_check_active = false;
  1194. temp_runaway_error_counter[_heater_id] = 0;
  1195. }
  1196. else
  1197. {
  1198. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1199. {
  1200. temp_runaway_error_counter[_heater_id]++;
  1201. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1202. {
  1203. if (farm_mode) { prusa_statistics(0); }
  1204. temp_runaway_stop(false, _isbed);
  1205. if (farm_mode) { prusa_statistics(90); }
  1206. }
  1207. }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. void temp_runaway_stop(bool isPreheat, bool isBed)
  1213. {
  1214. cancel_heatup = true;
  1215. quickStop();
  1216. if (card.sdprinting)
  1217. {
  1218. card.sdprinting = false;
  1219. card.closefile();
  1220. }
  1221. // Clean the input command queue
  1222. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1223. cmdqueue_reset();
  1224. disable_heater();
  1225. disable_x();
  1226. disable_y();
  1227. disable_e0();
  1228. disable_e1();
  1229. disable_e2();
  1230. manage_heater();
  1231. lcd_update(0);
  1232. Sound_MakeCustom(200,0,true);
  1233. if (isPreheat)
  1234. {
  1235. Stop();
  1236. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1237. SERIAL_ERROR_START;
  1238. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1239. #ifdef EXTRUDER_ALTFAN_DETECT
  1240. altfanStatus.altfanOverride = 1; //full speed
  1241. #endif //EXTRUDER_ALTFAN_DETECT
  1242. setExtruderAutoFanState(3);
  1243. SET_OUTPUT(FAN_PIN);
  1244. #ifdef FAN_SOFT_PWM
  1245. fanSpeedSoftPwm = 255;
  1246. #else //FAN_SOFT_PWM
  1247. analogWrite(FAN_PIN, 255);
  1248. #endif //FAN_SOFT_PWM
  1249. fanSpeed = 255;
  1250. delayMicroseconds(2000);
  1251. }
  1252. else
  1253. {
  1254. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1255. SERIAL_ERROR_START;
  1256. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1257. }
  1258. }
  1259. #endif
  1260. void disable_heater()
  1261. {
  1262. setAllTargetHotends(0);
  1263. setTargetBed(0);
  1264. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1265. target_temperature[0]=0;
  1266. soft_pwm[0]=0;
  1267. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1268. WRITE(HEATER_0_PIN,LOW);
  1269. #endif
  1270. #endif
  1271. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1272. target_temperature[1]=0;
  1273. soft_pwm[1]=0;
  1274. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1275. WRITE(HEATER_1_PIN,LOW);
  1276. #endif
  1277. #endif
  1278. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1279. target_temperature[2]=0;
  1280. soft_pwm[2]=0;
  1281. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1282. WRITE(HEATER_2_PIN,LOW);
  1283. #endif
  1284. #endif
  1285. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1286. target_temperature_bed=0;
  1287. soft_pwm_bed=0;
  1288. timer02_set_pwm0(soft_pwm_bed << 1);
  1289. bedPWMDisabled = 0;
  1290. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1291. //WRITE(HEATER_BED_PIN,LOW);
  1292. #endif
  1293. #endif
  1294. }
  1295. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1296. //! than raw const char * of the messages themselves.
  1297. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1298. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1299. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1300. //! remember the last alert message sent to the LCD
  1301. //! to prevent flicker and improve speed
  1302. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1303. //! update the current temperature error message
  1304. //! @param type short error abbreviation (PROGMEM)
  1305. //! @param func optional lcd update function (lcd_setalertstatus when first setting the error)
  1306. void temp_update_messagepgm(const char* PROGMEM type, void (*func)(const char*) = lcd_updatestatus)
  1307. {
  1308. char msg[LCD_WIDTH];
  1309. strcpy_P(msg, PSTR("Err: "));
  1310. strcat_P(msg, type);
  1311. (*func)(msg);
  1312. }
  1313. //! signal a temperature error on both the lcd and serial
  1314. //! @param type short error abbreviation (PROGMEM)
  1315. //! @param e optional extruder index for hotend errors
  1316. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1317. {
  1318. temp_update_messagepgm(type, lcd_setalertstatus);
  1319. SERIAL_ERROR_START;
  1320. if(e != EXTRUDERS) {
  1321. SERIAL_ERROR((int)e);
  1322. SERIAL_ERRORPGM(": ");
  1323. }
  1324. SERIAL_ERRORPGM("Heaters switched off. ");
  1325. SERIAL_ERRORRPGM(type);
  1326. SERIAL_ERRORLNPGM(" triggered!");
  1327. }
  1328. void max_temp_error(uint8_t e) {
  1329. disable_heater();
  1330. if(IsStopped() == false) {
  1331. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1332. }
  1333. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1334. Stop();
  1335. #endif
  1336. SET_OUTPUT(FAN_PIN);
  1337. SET_OUTPUT(BEEPER);
  1338. WRITE(FAN_PIN, 1);
  1339. WRITE(BEEPER, 1);
  1340. #ifdef EXTRUDER_ALTFAN_DETECT
  1341. altfanStatus.altfanOverride = 1; //full speed
  1342. #endif //EXTRUDER_ALTFAN_DETECT
  1343. setExtruderAutoFanState(3);
  1344. // fanSpeed will consumed by the check_axes_activity() routine.
  1345. fanSpeed=255;
  1346. if (farm_mode) { prusa_statistics(93); }
  1347. }
  1348. void min_temp_error(uint8_t e) {
  1349. #ifdef DEBUG_DISABLE_MINTEMP
  1350. return;
  1351. #endif
  1352. disable_heater();
  1353. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1354. static const char err[] PROGMEM = "MINTEMP";
  1355. if(IsStopped() == false) {
  1356. temp_error_messagepgm(err, e);
  1357. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1358. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1359. // we are already stopped due to some error, only update the status message without flickering
  1360. temp_update_messagepgm(err);
  1361. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1362. }
  1363. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1364. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1365. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1366. // lcd_print_stop();
  1367. // }
  1368. Stop();
  1369. #endif
  1370. if (farm_mode) { prusa_statistics(92); }
  1371. }
  1372. void bed_max_temp_error(void) {
  1373. disable_heater();
  1374. if(IsStopped() == false) {
  1375. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1376. }
  1377. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1378. Stop();
  1379. #endif
  1380. }
  1381. void bed_min_temp_error(void) {
  1382. #ifdef DEBUG_DISABLE_MINTEMP
  1383. return;
  1384. #endif
  1385. disable_heater();
  1386. static const char err[] PROGMEM = "MINTEMP BED";
  1387. if(IsStopped() == false) {
  1388. temp_error_messagepgm(err);
  1389. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1390. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1391. // we are already stopped due to some error, only update the status message without flickering
  1392. temp_update_messagepgm(err);
  1393. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1394. }
  1395. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1396. Stop();
  1397. #endif
  1398. }
  1399. #ifdef AMBIENT_THERMISTOR
  1400. void ambient_max_temp_error(void) {
  1401. disable_heater();
  1402. if(IsStopped() == false) {
  1403. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1404. }
  1405. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1406. Stop();
  1407. #endif
  1408. }
  1409. void ambient_min_temp_error(void) {
  1410. #ifdef DEBUG_DISABLE_MINTEMP
  1411. return;
  1412. #endif
  1413. disable_heater();
  1414. if(IsStopped() == false) {
  1415. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1416. }
  1417. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1418. Stop();
  1419. #endif
  1420. }
  1421. #endif
  1422. #ifdef HEATER_0_USES_MAX6675
  1423. #define MAX6675_HEAT_INTERVAL 250
  1424. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1425. int max6675_temp = 2000;
  1426. int read_max6675()
  1427. {
  1428. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1429. return max6675_temp;
  1430. max6675_previous_millis = _millis();
  1431. max6675_temp = 0;
  1432. #ifdef PRR
  1433. PRR &= ~(1<<PRSPI);
  1434. #elif defined PRR0
  1435. PRR0 &= ~(1<<PRSPI);
  1436. #endif
  1437. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1438. // enable TT_MAX6675
  1439. WRITE(MAX6675_SS, 0);
  1440. // ensure 100ns delay - a bit extra is fine
  1441. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1442. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1443. // read MSB
  1444. SPDR = 0;
  1445. for (;(SPSR & (1<<SPIF)) == 0;);
  1446. max6675_temp = SPDR;
  1447. max6675_temp <<= 8;
  1448. // read LSB
  1449. SPDR = 0;
  1450. for (;(SPSR & (1<<SPIF)) == 0;);
  1451. max6675_temp |= SPDR;
  1452. // disable TT_MAX6675
  1453. WRITE(MAX6675_SS, 1);
  1454. if (max6675_temp & 4)
  1455. {
  1456. // thermocouple open
  1457. max6675_temp = 2000;
  1458. }
  1459. else
  1460. {
  1461. max6675_temp = max6675_temp >> 3;
  1462. }
  1463. return max6675_temp;
  1464. }
  1465. #endif
  1466. extern "C" {
  1467. void adc_ready(void) //callback from adc when sampling finished
  1468. {
  1469. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1470. #ifdef PINDA_THERMISTOR
  1471. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1472. #endif //PINDA_THERMISTOR
  1473. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1474. #ifdef VOLT_PWR_PIN
  1475. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1476. #endif
  1477. #ifdef AMBIENT_THERMISTOR
  1478. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1479. #endif //AMBIENT_THERMISTOR
  1480. #ifdef VOLT_BED_PIN
  1481. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1482. #endif
  1483. #ifdef IR_SENSOR_ANALOG
  1484. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1485. #endif //IR_SENSOR_ANALOG
  1486. temp_meas_ready = true;
  1487. }
  1488. } // extern "C"
  1489. FORCE_INLINE static void temperature_isr()
  1490. {
  1491. if (!temp_meas_ready) adc_cycle();
  1492. lcd_buttons_update();
  1493. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1494. static uint8_t soft_pwm_0;
  1495. #ifdef SLOW_PWM_HEATERS
  1496. static unsigned char slow_pwm_count = 0;
  1497. static unsigned char state_heater_0 = 0;
  1498. static unsigned char state_timer_heater_0 = 0;
  1499. #endif
  1500. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1501. static unsigned char soft_pwm_1;
  1502. #ifdef SLOW_PWM_HEATERS
  1503. static unsigned char state_heater_1 = 0;
  1504. static unsigned char state_timer_heater_1 = 0;
  1505. #endif
  1506. #endif
  1507. #if EXTRUDERS > 2
  1508. static unsigned char soft_pwm_2;
  1509. #ifdef SLOW_PWM_HEATERS
  1510. static unsigned char state_heater_2 = 0;
  1511. static unsigned char state_timer_heater_2 = 0;
  1512. #endif
  1513. #endif
  1514. #if HEATER_BED_PIN > -1
  1515. // @@DR static unsigned char soft_pwm_b;
  1516. #ifdef SLOW_PWM_HEATERS
  1517. static unsigned char state_heater_b = 0;
  1518. static unsigned char state_timer_heater_b = 0;
  1519. #endif
  1520. #endif
  1521. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1522. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1523. #endif
  1524. #ifndef SLOW_PWM_HEATERS
  1525. /*
  1526. * standard PWM modulation
  1527. */
  1528. if (pwm_count == 0)
  1529. {
  1530. soft_pwm_0 = soft_pwm[0];
  1531. if(soft_pwm_0 > 0)
  1532. {
  1533. WRITE(HEATER_0_PIN,1);
  1534. #ifdef HEATERS_PARALLEL
  1535. WRITE(HEATER_1_PIN,1);
  1536. #endif
  1537. } else WRITE(HEATER_0_PIN,0);
  1538. #if EXTRUDERS > 1
  1539. soft_pwm_1 = soft_pwm[1];
  1540. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1541. #endif
  1542. #if EXTRUDERS > 2
  1543. soft_pwm_2 = soft_pwm[2];
  1544. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1545. #endif
  1546. }
  1547. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1548. #if 0 // @@DR vypnuto pro hw pwm bedu
  1549. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1550. // teoreticky by se tato cast uz vubec nemusela poustet
  1551. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1552. {
  1553. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1554. # ifndef SYSTEM_TIMER_2
  1555. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1556. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1557. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1558. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1559. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1560. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1561. # endif //SYSTEM_TIMER_2
  1562. }
  1563. #endif
  1564. #endif
  1565. #ifdef FAN_SOFT_PWM
  1566. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1567. {
  1568. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1569. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1570. }
  1571. #endif
  1572. if(soft_pwm_0 < pwm_count)
  1573. {
  1574. WRITE(HEATER_0_PIN,0);
  1575. #ifdef HEATERS_PARALLEL
  1576. WRITE(HEATER_1_PIN,0);
  1577. #endif
  1578. }
  1579. #if EXTRUDERS > 1
  1580. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1581. #endif
  1582. #if EXTRUDERS > 2
  1583. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1584. #endif
  1585. #if 0 // @@DR
  1586. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1587. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1588. //WRITE(HEATER_BED_PIN,0);
  1589. }
  1590. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1591. #endif
  1592. #endif
  1593. #ifdef FAN_SOFT_PWM
  1594. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1595. #endif
  1596. pwm_count += (1 << SOFT_PWM_SCALE);
  1597. pwm_count &= 0x7f;
  1598. #else //ifndef SLOW_PWM_HEATERS
  1599. /*
  1600. * SLOW PWM HEATERS
  1601. *
  1602. * for heaters drived by relay
  1603. */
  1604. #ifndef MIN_STATE_TIME
  1605. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1606. #endif
  1607. if (slow_pwm_count == 0) {
  1608. // EXTRUDER 0
  1609. soft_pwm_0 = soft_pwm[0];
  1610. if (soft_pwm_0 > 0) {
  1611. // turn ON heather only if the minimum time is up
  1612. if (state_timer_heater_0 == 0) {
  1613. // if change state set timer
  1614. if (state_heater_0 == 0) {
  1615. state_timer_heater_0 = MIN_STATE_TIME;
  1616. }
  1617. state_heater_0 = 1;
  1618. WRITE(HEATER_0_PIN, 1);
  1619. #ifdef HEATERS_PARALLEL
  1620. WRITE(HEATER_1_PIN, 1);
  1621. #endif
  1622. }
  1623. } else {
  1624. // turn OFF heather only if the minimum time is up
  1625. if (state_timer_heater_0 == 0) {
  1626. // if change state set timer
  1627. if (state_heater_0 == 1) {
  1628. state_timer_heater_0 = MIN_STATE_TIME;
  1629. }
  1630. state_heater_0 = 0;
  1631. WRITE(HEATER_0_PIN, 0);
  1632. #ifdef HEATERS_PARALLEL
  1633. WRITE(HEATER_1_PIN, 0);
  1634. #endif
  1635. }
  1636. }
  1637. #if EXTRUDERS > 1
  1638. // EXTRUDER 1
  1639. soft_pwm_1 = soft_pwm[1];
  1640. if (soft_pwm_1 > 0) {
  1641. // turn ON heather only if the minimum time is up
  1642. if (state_timer_heater_1 == 0) {
  1643. // if change state set timer
  1644. if (state_heater_1 == 0) {
  1645. state_timer_heater_1 = MIN_STATE_TIME;
  1646. }
  1647. state_heater_1 = 1;
  1648. WRITE(HEATER_1_PIN, 1);
  1649. }
  1650. } else {
  1651. // turn OFF heather only if the minimum time is up
  1652. if (state_timer_heater_1 == 0) {
  1653. // if change state set timer
  1654. if (state_heater_1 == 1) {
  1655. state_timer_heater_1 = MIN_STATE_TIME;
  1656. }
  1657. state_heater_1 = 0;
  1658. WRITE(HEATER_1_PIN, 0);
  1659. }
  1660. }
  1661. #endif
  1662. #if EXTRUDERS > 2
  1663. // EXTRUDER 2
  1664. soft_pwm_2 = soft_pwm[2];
  1665. if (soft_pwm_2 > 0) {
  1666. // turn ON heather only if the minimum time is up
  1667. if (state_timer_heater_2 == 0) {
  1668. // if change state set timer
  1669. if (state_heater_2 == 0) {
  1670. state_timer_heater_2 = MIN_STATE_TIME;
  1671. }
  1672. state_heater_2 = 1;
  1673. WRITE(HEATER_2_PIN, 1);
  1674. }
  1675. } else {
  1676. // turn OFF heather only if the minimum time is up
  1677. if (state_timer_heater_2 == 0) {
  1678. // if change state set timer
  1679. if (state_heater_2 == 1) {
  1680. state_timer_heater_2 = MIN_STATE_TIME;
  1681. }
  1682. state_heater_2 = 0;
  1683. WRITE(HEATER_2_PIN, 0);
  1684. }
  1685. }
  1686. #endif
  1687. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1688. // BED
  1689. soft_pwm_b = soft_pwm_bed;
  1690. if (soft_pwm_b > 0) {
  1691. // turn ON heather only if the minimum time is up
  1692. if (state_timer_heater_b == 0) {
  1693. // if change state set timer
  1694. if (state_heater_b == 0) {
  1695. state_timer_heater_b = MIN_STATE_TIME;
  1696. }
  1697. state_heater_b = 1;
  1698. //WRITE(HEATER_BED_PIN, 1);
  1699. }
  1700. } else {
  1701. // turn OFF heather only if the minimum time is up
  1702. if (state_timer_heater_b == 0) {
  1703. // if change state set timer
  1704. if (state_heater_b == 1) {
  1705. state_timer_heater_b = MIN_STATE_TIME;
  1706. }
  1707. state_heater_b = 0;
  1708. WRITE(HEATER_BED_PIN, 0);
  1709. }
  1710. }
  1711. #endif
  1712. } // if (slow_pwm_count == 0)
  1713. // EXTRUDER 0
  1714. if (soft_pwm_0 < slow_pwm_count) {
  1715. // turn OFF heather only if the minimum time is up
  1716. if (state_timer_heater_0 == 0) {
  1717. // if change state set timer
  1718. if (state_heater_0 == 1) {
  1719. state_timer_heater_0 = MIN_STATE_TIME;
  1720. }
  1721. state_heater_0 = 0;
  1722. WRITE(HEATER_0_PIN, 0);
  1723. #ifdef HEATERS_PARALLEL
  1724. WRITE(HEATER_1_PIN, 0);
  1725. #endif
  1726. }
  1727. }
  1728. #if EXTRUDERS > 1
  1729. // EXTRUDER 1
  1730. if (soft_pwm_1 < slow_pwm_count) {
  1731. // turn OFF heather only if the minimum time is up
  1732. if (state_timer_heater_1 == 0) {
  1733. // if change state set timer
  1734. if (state_heater_1 == 1) {
  1735. state_timer_heater_1 = MIN_STATE_TIME;
  1736. }
  1737. state_heater_1 = 0;
  1738. WRITE(HEATER_1_PIN, 0);
  1739. }
  1740. }
  1741. #endif
  1742. #if EXTRUDERS > 2
  1743. // EXTRUDER 2
  1744. if (soft_pwm_2 < slow_pwm_count) {
  1745. // turn OFF heather only if the minimum time is up
  1746. if (state_timer_heater_2 == 0) {
  1747. // if change state set timer
  1748. if (state_heater_2 == 1) {
  1749. state_timer_heater_2 = MIN_STATE_TIME;
  1750. }
  1751. state_heater_2 = 0;
  1752. WRITE(HEATER_2_PIN, 0);
  1753. }
  1754. }
  1755. #endif
  1756. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1757. // BED
  1758. if (soft_pwm_b < slow_pwm_count) {
  1759. // turn OFF heather only if the minimum time is up
  1760. if (state_timer_heater_b == 0) {
  1761. // if change state set timer
  1762. if (state_heater_b == 1) {
  1763. state_timer_heater_b = MIN_STATE_TIME;
  1764. }
  1765. state_heater_b = 0;
  1766. WRITE(HEATER_BED_PIN, 0);
  1767. }
  1768. }
  1769. #endif
  1770. #ifdef FAN_SOFT_PWM
  1771. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1772. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1773. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1774. }
  1775. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1776. #endif
  1777. pwm_count += (1 << SOFT_PWM_SCALE);
  1778. pwm_count &= 0x7f;
  1779. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1780. if ((pwm_count % 64) == 0) {
  1781. slow_pwm_count++;
  1782. slow_pwm_count &= 0x7f;
  1783. // Extruder 0
  1784. if (state_timer_heater_0 > 0) {
  1785. state_timer_heater_0--;
  1786. }
  1787. #if EXTRUDERS > 1
  1788. // Extruder 1
  1789. if (state_timer_heater_1 > 0)
  1790. state_timer_heater_1--;
  1791. #endif
  1792. #if EXTRUDERS > 2
  1793. // Extruder 2
  1794. if (state_timer_heater_2 > 0)
  1795. state_timer_heater_2--;
  1796. #endif
  1797. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1798. // Bed
  1799. if (state_timer_heater_b > 0)
  1800. state_timer_heater_b--;
  1801. #endif
  1802. } //if ((pwm_count % 64) == 0) {
  1803. #endif //ifndef SLOW_PWM_HEATERS
  1804. #ifdef BABYSTEPPING
  1805. for(uint8_t axis=0;axis<3;axis++)
  1806. {
  1807. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1808. if(curTodo>0)
  1809. {
  1810. asm("cli");
  1811. babystep(axis,/*fwd*/true);
  1812. babystepsTodo[axis]--; //less to do next time
  1813. asm("sei");
  1814. }
  1815. else
  1816. if(curTodo<0)
  1817. {
  1818. asm("cli");
  1819. babystep(axis,/*fwd*/false);
  1820. babystepsTodo[axis]++; //less to do next time
  1821. asm("sei");
  1822. }
  1823. }
  1824. #endif //BABYSTEPPING
  1825. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  1826. check_fans();
  1827. #endif //(defined(TACH_0))
  1828. }
  1829. // Timer2 (originaly timer0) is shared with millies
  1830. #ifdef SYSTEM_TIMER_2
  1831. ISR(TIMER2_COMPB_vect)
  1832. #else //SYSTEM_TIMER_2
  1833. ISR(TIMER0_COMPB_vect)
  1834. #endif //SYSTEM_TIMER_2
  1835. {
  1836. static bool _lock = false;
  1837. if (!_lock)
  1838. {
  1839. _lock = true;
  1840. sei();
  1841. temperature_isr();
  1842. cli();
  1843. _lock = false;
  1844. }
  1845. }
  1846. void check_max_temp()
  1847. {
  1848. //heater
  1849. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1850. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1851. #else
  1852. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1853. #endif
  1854. max_temp_error(0);
  1855. }
  1856. //bed
  1857. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1858. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1859. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1860. #else
  1861. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1862. #endif
  1863. bed_max_temp_error();
  1864. }
  1865. #endif
  1866. //ambient
  1867. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1868. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1869. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1870. #else
  1871. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1872. #endif
  1873. ambient_max_temp_error();
  1874. }
  1875. #endif
  1876. }
  1877. //! number of repeating the same state with consecutive step() calls
  1878. //! used to slow down text switching
  1879. struct alert_automaton_mintemp {
  1880. const char *m2;
  1881. alert_automaton_mintemp(const char *m2):m2(m2){}
  1882. private:
  1883. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1884. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1885. States state = States::Init;
  1886. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1887. void substep(States next_state){
  1888. if( repeat == 0 ){
  1889. state = next_state; // advance to the next state
  1890. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1891. } else {
  1892. --repeat;
  1893. }
  1894. }
  1895. public:
  1896. //! brief state automaton step routine
  1897. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1898. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1899. void step(float current_temp, float mintemp){
  1900. static const char m1[] PROGMEM = "Please restart";
  1901. switch(state){
  1902. case States::Init: // initial state - check hysteresis
  1903. if( current_temp > mintemp ){
  1904. state = States::TempAboveMintemp;
  1905. }
  1906. // otherwise keep the Err MINTEMP alert message on the display,
  1907. // i.e. do not transfer to state 1
  1908. break;
  1909. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1910. lcd_setalertstatuspgm(m2);
  1911. substep(States::ShowMintemp);
  1912. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1913. break;
  1914. case States::ShowPleaseRestart: // displaying "Please restart"
  1915. lcd_updatestatuspgm(m1);
  1916. substep(States::ShowMintemp);
  1917. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1918. break;
  1919. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1920. lcd_updatestatuspgm(m2);
  1921. substep(States::ShowPleaseRestart);
  1922. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1923. break;
  1924. }
  1925. }
  1926. };
  1927. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1928. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1929. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1930. void check_min_temp_heater0()
  1931. {
  1932. //heater
  1933. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1934. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1935. #else
  1936. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1937. #endif
  1938. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1939. min_temp_error(0);
  1940. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1941. // no recovery, just force the user to restart the printer
  1942. // which is a safer variant than just continuing printing
  1943. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1944. // we shall signalize, that MINTEMP has been fixed
  1945. // Code notice: normally the alert_automaton instance would have been placed here
  1946. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1947. // due to stupid compiler that takes 16 more bytes.
  1948. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1949. }
  1950. }
  1951. void check_min_temp_bed()
  1952. {
  1953. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1954. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1955. #else
  1956. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1957. #endif
  1958. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1959. bed_min_temp_error();
  1960. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1961. // no recovery, just force the user to restart the printer
  1962. // which is a safer variant than just continuing printing
  1963. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1964. }
  1965. }
  1966. #ifdef AMBIENT_MINTEMP
  1967. void check_min_temp_ambient()
  1968. {
  1969. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1970. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1971. #else
  1972. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1973. #endif
  1974. ambient_min_temp_error();
  1975. }
  1976. }
  1977. #endif
  1978. void check_min_temp()
  1979. {
  1980. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1981. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1982. #ifdef AMBIENT_THERMISTOR
  1983. #ifdef AMBIENT_MINTEMP
  1984. check_min_temp_ambient();
  1985. #endif
  1986. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1987. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1988. #else
  1989. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1990. #endif
  1991. { // ambient temperature is low
  1992. #endif //AMBIENT_THERMISTOR
  1993. // *** 'common' part of code for MK2.5 & MK3
  1994. // * nozzle checking
  1995. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1996. { // ~ nozzle heating is on
  1997. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1998. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1999. {
  2000. bCheckingOnHeater=true; // not necessary
  2001. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2002. }
  2003. }
  2004. else { // ~ nozzle heating is off
  2005. oTimer4minTempHeater.start();
  2006. bCheckingOnHeater=false;
  2007. }
  2008. // * bed checking
  2009. if(target_temperature_bed>BED_MINTEMP)
  2010. { // ~ bed heating is on
  2011. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  2012. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2013. {
  2014. bCheckingOnBed=true; // not necessary
  2015. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2016. }
  2017. }
  2018. else { // ~ bed heating is off
  2019. oTimer4minTempBed.start();
  2020. bCheckingOnBed=false;
  2021. }
  2022. // *** end of 'common' part
  2023. #ifdef AMBIENT_THERMISTOR
  2024. }
  2025. else { // ambient temperature is standard
  2026. check_min_temp_heater0();
  2027. check_min_temp_bed();
  2028. }
  2029. #endif //AMBIENT_THERMISTOR
  2030. }
  2031. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  2032. void check_fans() {
  2033. #ifdef FAN_SOFT_PWM
  2034. if (READ(TACH_0) != fan_state[0]) {
  2035. if(fan_measuring) fan_edge_counter[0] ++;
  2036. fan_state[0] = !fan_state[0];
  2037. }
  2038. if (READ(TACH_1) != fan_state[1]) {
  2039. if(fan_measuring) fan_edge_counter[1] ++;
  2040. fan_state[1] = !fan_state[1];
  2041. }
  2042. #else //FAN_SOFT_PWM
  2043. if (READ(TACH_0) != fan_state[0]) {
  2044. fan_edge_counter[0] ++;
  2045. fan_state[0] = !fan_state[0];
  2046. }
  2047. if (READ(TACH_1) != fan_state[1]) {
  2048. fan_edge_counter[1] ++;
  2049. fan_state[1] = !fan_state[1];
  2050. }
  2051. #endif
  2052. }
  2053. #endif //TACH_0
  2054. #ifdef PIDTEMP
  2055. // Apply the scale factors to the PID values
  2056. float scalePID_i(float i)
  2057. {
  2058. return i*PID_dT;
  2059. }
  2060. float unscalePID_i(float i)
  2061. {
  2062. return i/PID_dT;
  2063. }
  2064. float scalePID_d(float d)
  2065. {
  2066. return d/PID_dT;
  2067. }
  2068. float unscalePID_d(float d)
  2069. {
  2070. return d*PID_dT;
  2071. }
  2072. #endif //PIDTEMP
  2073. #ifdef PINDA_THERMISTOR
  2074. //! @brief PINDA thermistor detected
  2075. //!
  2076. //! @retval true firmware should do temperature compensation and allow calibration
  2077. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2078. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2079. //!
  2080. bool has_temperature_compensation()
  2081. {
  2082. #ifdef SUPERPINDA_SUPPORT
  2083. #ifdef PINDA_TEMP_COMP
  2084. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2085. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2086. {
  2087. #endif //PINDA_TEMP_COMP
  2088. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2089. #ifdef PINDA_TEMP_COMP
  2090. }
  2091. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2092. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2093. #endif //PINDA_TEMP_COMP
  2094. #else
  2095. return true;
  2096. #endif
  2097. }
  2098. #endif //PINDA_THERMISTOR