mmu2.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. #include "mmu2.h"
  2. #include "mmu2_error_converter.h"
  3. #include "mmu2_fsensor.h"
  4. #include "mmu2_log.h"
  5. #include "mmu2_power.h"
  6. #include "mmu2_progress_converter.h"
  7. #include "mmu2_reporting.h"
  8. #include "Marlin.h"
  9. #include "language.h"
  10. #include "messages.h"
  11. #include "sound.h"
  12. #include "stepper.h"
  13. #include "strlen_cx.h"
  14. #include "temperature.h"
  15. #include "ultralcd.h"
  16. #include "cardreader.h" // for IS_SD_PRINTING
  17. #include "SpoolJoin.h"
  18. // As of FW 3.12 we only support building the FW with only one extruder, all the multi-extruder infrastructure will be removed.
  19. // Saves at least 800B of code size
  20. static_assert(EXTRUDERS==1);
  21. // Settings for filament load / unload from the LCD menu.
  22. // This is for Prusa MK3-style extruders. Customize for your hardware.
  23. #define MMU2_FILAMENTCHANGE_EJECT_FEED 80.0
  24. #define NOZZLE_PARK_XY_FEEDRATE 50
  25. #define NOZZLE_PARK_Z_FEEDRATE 15
  26. // Nominal distance from the extruder gear to the nozzle tip is 87mm
  27. // However, some slipping may occur and we need separate distances for
  28. // LoadToNozzle and ToolChange.
  29. // - +5mm seemed good for LoadToNozzle,
  30. // - but too much (made blobs) for a ToolChange
  31. static constexpr float MMU2_LOAD_TO_NOZZLE_LENGTH = 87.0F + 5.0F;
  32. // As discussed with our PrusaSlicer profile specialist
  33. // - ToolChange shall not try to push filament into the very tip of the nozzle
  34. // to have some space for additional G-code to tune the extruded filament length
  35. // in the profile
  36. static constexpr float MMU2_TOOL_CHANGE_LOAD_LENGTH = 30.0F;
  37. static constexpr float MMU2_LOAD_TO_NOZZLE_FEED_RATE = 20.0F; // mm/s
  38. static constexpr float MMU2_UNLOAD_TO_FINDA_FEED_RATE = 120.0F; // mm/s
  39. // The first the MMU does is initialise its axis. Meanwhile the E-motor will unload 20mm of filament in approx. 1 second.
  40. static constexpr float MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH = 20.0f; // mm
  41. static constexpr float MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE = 20.0f; // mm/s
  42. static constexpr uint8_t MMU2_NO_TOOL = 99;
  43. static constexpr uint32_t MMU_BAUD = 115200;
  44. struct E_Step {
  45. float extrude; ///< extrude distance in mm
  46. float feedRate; ///< feed rate in mm/s
  47. };
  48. static constexpr E_Step ramming_sequence[] PROGMEM = {
  49. { 1.0F, 1000.0F / 60.F},
  50. { 1.0F, 1500.0F / 60.F},
  51. { 2.0F, 2000.0F / 60.F},
  52. { 1.5F, 3000.0F / 60.F},
  53. { 2.5F, 4000.0F / 60.F},
  54. {-15.0F, 5000.0F / 60.F},
  55. {-14.0F, 1200.0F / 60.F},
  56. {-6.0F, 600.0F / 60.F},
  57. { 10.0F, 700.0F / 60.F},
  58. {-10.0F, 400.0F / 60.F},
  59. {-50.0F, 2000.0F / 60.F},
  60. };
  61. static constexpr E_Step load_to_nozzle_sequence[] PROGMEM = {
  62. { 10.0F, 810.0F / 60.F}, // feed rate = 13.5mm/s - Load fast until filament reach end of nozzle
  63. { 25.0F, 198.0F / 60.F}, // feed rate = 3.3mm/s - Load slower once filament is out of the nozzle
  64. };
  65. namespace MMU2 {
  66. void execute_extruder_sequence(const E_Step *sequence, int steps);
  67. template<typename F>
  68. void waitForHotendTargetTemp(uint16_t delay, F f){
  69. while (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
  70. f();
  71. delay_keep_alive(delay);
  72. }
  73. }
  74. void WaitForHotendTargetTempBeep(){
  75. waitForHotendTargetTemp(3000, []{ Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); } );
  76. }
  77. MMU2 mmu2;
  78. MMU2::MMU2()
  79. : is_mmu_error_monitor_active(false)
  80. , logic(&mmu2Serial)
  81. , extruder(MMU2_NO_TOOL)
  82. , tool_change_extruder(MMU2_NO_TOOL)
  83. , resume_position()
  84. , resume_hotend_temp(0)
  85. , logicStepLastStatus(StepStatus::Finished)
  86. , state(xState::Stopped)
  87. , mmu_print_saved(SavedState::None)
  88. , loadFilamentStarted(false)
  89. , unloadFilamentStarted(false)
  90. , loadingToNozzle(false)
  91. , inAutoRetry(false)
  92. , retryAttempts(MAX_RETRIES)
  93. {
  94. }
  95. void MMU2::Start() {
  96. #ifdef MMU_HWRESET
  97. WRITE(MMU_RST_PIN, 1);
  98. SET_OUTPUT(MMU_RST_PIN); // setup reset pin
  99. #endif //MMU_HWRESET
  100. mmu2Serial.begin(MMU_BAUD);
  101. PowerOn(); // I repurposed this to serve as our EEPROM disable toggle.
  102. Reset(ResetForm::ResetPin);
  103. mmu2Serial.flush(); // make sure the UART buffer is clear before starting communication
  104. extruder = MMU2_NO_TOOL;
  105. state = xState::Connecting;
  106. // start the communication
  107. logic.Start();
  108. ResetRetryAttempts();
  109. }
  110. void MMU2::Stop() {
  111. StopKeepPowered();
  112. PowerOff(); // This also disables the MMU in the EEPROM.
  113. }
  114. void MMU2::StopKeepPowered(){
  115. state = xState::Stopped;
  116. logic.Stop();
  117. mmu2Serial.close();
  118. }
  119. void MMU2::Reset(ResetForm level){
  120. switch (level) {
  121. case Software: ResetX0(); break;
  122. case ResetPin: TriggerResetPin(); break;
  123. case CutThePower: PowerCycle(); break;
  124. default: break;
  125. }
  126. }
  127. void MMU2::ResetX0() {
  128. logic.ResetMMU(); // Send soft reset
  129. }
  130. void MMU2::TriggerResetPin(){
  131. reset();
  132. }
  133. void MMU2::PowerCycle(){
  134. // cut the power to the MMU and after a while restore it
  135. // Sadly, MK3/S/+ cannot do this
  136. // NOTE: the below will toggle the EEPROM var. Should we
  137. // assert this function is never called in the MK3 FW? Do we even care?
  138. PowerOff();
  139. delay_keep_alive(1000);
  140. PowerOn();
  141. }
  142. void MMU2::PowerOff(){
  143. power_off();
  144. }
  145. void MMU2::PowerOn(){
  146. power_on();
  147. }
  148. bool MMU2::ReadRegister(uint8_t address){
  149. if( ! WaitForMMUReady())
  150. return false;
  151. logic.ReadRegister(address); // we may signal the accepted/rejected status of the response as return value of this function
  152. manage_response(false, false);
  153. return true;
  154. }
  155. bool MMU2::WriteRegister(uint8_t address, uint16_t data){
  156. if( ! WaitForMMUReady())
  157. return false;
  158. logic.WriteRegister(address, data); // we may signal the accepted/rejected status of the response as return value of this function
  159. manage_response(false, false);
  160. return true;
  161. }
  162. void MMU2::mmu_loop() {
  163. // We only leave this method if the current command was successfully completed - that's the Marlin's way of blocking operation
  164. // Atomic compare_exchange would have been the most appropriate solution here, but this gets called only in Marlin's task,
  165. // so thread safety should be kept
  166. static bool avoidRecursion = false;
  167. if (avoidRecursion)
  168. return;
  169. avoidRecursion = true;
  170. logicStepLastStatus = LogicStep(); // it looks like the mmu_loop doesn't need to be a blocking call
  171. if (is_mmu_error_monitor_active){
  172. // Call this every iteration to keep the knob rotation responsive
  173. // This includes when mmu_loop is called within manage_response
  174. ReportErrorHook((uint16_t)lastErrorCode, mmu2.MMUCurrentErrorCode() == ErrorCode::OK ? ErrorSourcePrinter : ErrorSourceMMU);
  175. }
  176. avoidRecursion = false;
  177. }
  178. void MMU2::CheckFINDARunout()
  179. {
  180. // Check for FINDA filament runout
  181. if (!FindaDetectsFilament() && CHECK_FSENSOR) {
  182. SERIAL_ECHOLNPGM("FINDA filament runout!");
  183. stop_and_save_print_to_ram(0, 0);
  184. restore_print_from_ram_and_continue(0);
  185. if (SpoolJoin::spooljoin.isSpoolJoinEnabled() && get_current_tool() != (uint8_t)FILAMENT_UNKNOWN) // Can't auto if F=?
  186. {
  187. enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  188. }
  189. else
  190. {
  191. enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  192. }
  193. }
  194. }
  195. struct ReportingRAII {
  196. CommandInProgress cip;
  197. inline ReportingRAII(CommandInProgress cip):cip(cip){
  198. BeginReport(cip, (uint16_t)ProgressCode::EngagingIdler);
  199. }
  200. inline ~ReportingRAII(){
  201. EndReport(cip, (uint16_t)ProgressCode::OK);
  202. }
  203. };
  204. bool MMU2::WaitForMMUReady(){
  205. switch(State()){
  206. case xState::Stopped:
  207. return false;
  208. case xState::Connecting:
  209. // shall we wait until the MMU reconnects?
  210. // fire-up a fsm_dlg and show "MMU not responding"?
  211. default:
  212. return true;
  213. }
  214. }
  215. bool MMU2::RetryIfPossible(uint16_t ec){
  216. if( retryAttempts ){
  217. SERIAL_ECHOPGM("retryAttempts=");SERIAL_ECHOLN((uint16_t)retryAttempts);
  218. SetButtonResponse(ButtonOperations::Retry);
  219. // check, that Retry is actually allowed on that operation
  220. if( ButtonAvailable(ec) != NoButton ){
  221. inAutoRetry = true;
  222. SERIAL_ECHOLNPGM("RetryButtonPressed");
  223. // We don't decrement until the button is acknowledged by the MMU.
  224. //--retryAttempts; // "used" one retry attempt
  225. return true;
  226. }
  227. }
  228. inAutoRetry = false;
  229. return false;
  230. }
  231. void MMU2::ResetRetryAttempts(){
  232. SERIAL_ECHOLNPGM("ResetRetryAttempts");
  233. retryAttempts = MAX_RETRIES;
  234. }
  235. void MMU2::DecrementRetryAttempts(){
  236. if (inAutoRetry && retryAttempts)
  237. {
  238. SERIAL_ECHOLNPGM("DecrementRetryAttempts");
  239. retryAttempts--;
  240. }
  241. }
  242. bool MMU2::tool_change(uint8_t index) {
  243. if( ! WaitForMMUReady())
  244. return false;
  245. if (index != extruder) {
  246. if (!IS_SD_PRINTING && !usb_timer.running())
  247. {
  248. // If Tcodes are used manually through the serial
  249. // we need to unload manually as well
  250. unload();
  251. }
  252. ReportingRAII rep(CommandInProgress::ToolChange);
  253. FSensorBlockRunout blockRunout;
  254. st_synchronize();
  255. tool_change_extruder = index;
  256. logic.ToolChange(index); // let the MMU pull the filament out and push a new one in
  257. manage_response(true, true);
  258. // reset current position to whatever the planner thinks it is
  259. plan_set_e_position(current_position[E_AXIS]);
  260. extruder = index; //filament change is finished
  261. SpoolJoin::spooljoin.setSlot(index);
  262. // @@TODO really report onto the serial? May be for the Octoprint? Not important now
  263. // SERIAL_ECHO_START();
  264. // SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(extruder));
  265. }
  266. return true;
  267. }
  268. /// Handle special T?/Tx/Tc commands
  269. ///
  270. ///- T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  271. ///- Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  272. ///- Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated.
  273. bool MMU2::tool_change(char code, uint8_t slot) {
  274. if( ! WaitForMMUReady())
  275. return false;
  276. FSensorBlockRunout blockRunout;
  277. switch (code) {
  278. case '?': {
  279. waitForHotendTargetTemp(100, []{});
  280. load_filament_to_nozzle(slot);
  281. } break;
  282. case 'x': {
  283. set_extrude_min_temp(0); // Allow cold extrusion since Tx only loads to the gears not nozzle
  284. st_synchronize();
  285. tool_change_extruder = slot;
  286. logic.ToolChange(slot);
  287. manage_response(false, false);
  288. extruder = slot;
  289. SpoolJoin::spooljoin.setSlot(slot);
  290. set_extrude_min_temp(EXTRUDE_MINTEMP);
  291. } break;
  292. case 'c': {
  293. waitForHotendTargetTemp(100, []{});
  294. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  295. } break;
  296. }
  297. return true;
  298. }
  299. void MMU2::get_statistics() {
  300. logic.Statistics();
  301. }
  302. uint8_t MMU2::get_current_tool() const {
  303. return extruder == MMU2_NO_TOOL ? (uint8_t)FILAMENT_UNKNOWN : extruder;
  304. }
  305. uint8_t MMU2::get_tool_change_tool() const {
  306. return tool_change_extruder == MMU2_NO_TOOL ? (uint8_t)FILAMENT_UNKNOWN : tool_change_extruder;
  307. }
  308. bool MMU2::set_filament_type(uint8_t index, uint8_t type) {
  309. if( ! WaitForMMUReady())
  310. return false;
  311. // @@TODO - this is not supported in the new MMU yet
  312. // cmd_arg = filamentType;
  313. // command(MMU_CMD_F0 + index);
  314. manage_response(false, false); // true, true); -- Comment: how is it possible for a filament type set to fail?
  315. return true;
  316. }
  317. bool MMU2::unload() {
  318. if( ! WaitForMMUReady())
  319. return false;
  320. WaitForHotendTargetTempBeep();
  321. {
  322. FSensorBlockRunout blockRunout;
  323. ReportingRAII rep(CommandInProgress::UnloadFilament);
  324. filament_ramming();
  325. logic.UnloadFilament();
  326. manage_response(false, true);
  327. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  328. // no active tool
  329. extruder = MMU2_NO_TOOL;
  330. tool_change_extruder = MMU2_NO_TOOL;
  331. }
  332. return true;
  333. }
  334. bool MMU2::cut_filament(uint8_t index){
  335. if( ! WaitForMMUReady())
  336. return false;
  337. ReportingRAII rep(CommandInProgress::CutFilament);
  338. logic.CutFilament(index);
  339. manage_response(false, true);
  340. return true;
  341. }
  342. void FullScreenMsg(const char *pgmS, uint8_t slot){
  343. lcd_update_enable(false);
  344. lcd_clear();
  345. lcd_puts_at_P(0, 1, pgmS);
  346. lcd_print(' ');
  347. lcd_print(slot + 1);
  348. }
  349. bool MMU2::load_to_extruder(uint8_t index){
  350. FullScreenMsg(_T(MSG_TESTING_FILAMENT), index);
  351. tool_change(index);
  352. st_synchronize();
  353. unload();
  354. lcd_update_enable(true);
  355. return true;
  356. }
  357. bool MMU2::load_filament(uint8_t index) {
  358. if( ! WaitForMMUReady())
  359. return false;
  360. FullScreenMsg(_T(MSG_LOADING_FILAMENT), index);
  361. ReportingRAII rep(CommandInProgress::LoadFilament);
  362. logic.LoadFilament(index);
  363. manage_response(false, false);
  364. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  365. lcd_update_enable(true);
  366. return true;
  367. }
  368. struct LoadingToNozzleRAII {
  369. MMU2 &mmu2;
  370. explicit inline LoadingToNozzleRAII(MMU2 &mmu2):mmu2(mmu2){
  371. mmu2.loadingToNozzle = true;
  372. }
  373. inline ~LoadingToNozzleRAII(){
  374. mmu2.loadingToNozzle = false;
  375. }
  376. };
  377. bool MMU2::load_filament_to_nozzle(uint8_t index) {
  378. if( ! WaitForMMUReady())
  379. return false;
  380. LoadingToNozzleRAII ln(*this);
  381. WaitForHotendTargetTempBeep();
  382. FullScreenMsg(_T(MSG_LOADING_FILAMENT), index);
  383. {
  384. // used for MMU-menu operation "Load to Nozzle"
  385. ReportingRAII rep(CommandInProgress::ToolChange);
  386. FSensorBlockRunout blockRunout;
  387. if( extruder != MMU2_NO_TOOL ){ // we already have some filament loaded - free it + shape its tip properly
  388. filament_ramming();
  389. }
  390. tool_change_extruder = index;
  391. logic.ToolChange(index);
  392. manage_response(true, true);
  393. // The MMU's idler is disengaged at this point
  394. // That means the MK3/S now has fully control
  395. // reset current position to whatever the planner thinks it is
  396. st_synchronize();
  397. plan_set_e_position(current_position[E_AXIS]);
  398. // Finish loading to the nozzle with finely tuned steps.
  399. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  400. extruder = index;
  401. SpoolJoin::spooljoin.setSlot(index);
  402. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  403. }
  404. lcd_update_enable(true);
  405. return true;
  406. }
  407. bool MMU2::eject_filament(uint8_t index, bool recover) {
  408. if( ! WaitForMMUReady())
  409. return false;
  410. ReportingRAII rep(CommandInProgress::EjectFilament);
  411. current_position[E_AXIS] -= MMU2_FILAMENTCHANGE_EJECT_FEED;
  412. plan_buffer_line_curposXYZE(2500.F / 60.F);
  413. st_synchronize();
  414. logic.EjectFilament(index);
  415. manage_response(false, false);
  416. if (recover) {
  417. // LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER);
  418. Sound_MakeSound(e_SOUND_TYPE_StandardPrompt);
  419. //@@TODO wait_for_user = true;
  420. //#if ENABLED(HOST_PROMPT_SUPPORT)
  421. // host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), PSTR("Continue"));
  422. //#endif
  423. //#if ENABLED(EXTENSIBLE_UI)
  424. // ExtUI::onUserConfirmRequired_P(PSTR("MMU2 Eject Recover"));
  425. //#endif
  426. //@@TODO while (wait_for_user) idle(true);
  427. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  428. // logic.Command(); //@@TODO command(MMU_CMD_R0);
  429. manage_response(false, false);
  430. }
  431. // no active tool
  432. extruder = MMU2_NO_TOOL;
  433. tool_change_extruder = MMU2_NO_TOOL;
  434. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  435. // disable_E0();
  436. return true;
  437. }
  438. void MMU2::Button(uint8_t index){
  439. LogEchoEvent_P(PSTR("Button"));
  440. logic.Button(index);
  441. }
  442. void MMU2::Home(uint8_t mode){
  443. logic.Home(mode);
  444. }
  445. void MMU2::SaveAndPark(bool move_axes, bool turn_off_nozzle) {
  446. if (mmu_print_saved == SavedState::None) { // First occurrence. Save current position, park print head, disable nozzle heater.
  447. LogEchoEvent_P(PSTR("Saving and parking"));
  448. st_synchronize();
  449. resume_hotend_temp = degTargetHotend(active_extruder);
  450. if (move_axes){
  451. mmu_print_saved |= SavedState::ParkExtruder;
  452. // save current pos
  453. for(uint8_t i = 0; i < 3; ++i){
  454. resume_position.xyz[i] = current_position[i];
  455. }
  456. // lift Z
  457. raise_z(MMU_ERR_Z_PAUSE_LIFT);
  458. // move XY aside
  459. current_position[X_AXIS] = MMU_ERR_X_PAUSE_POS;
  460. current_position[Y_AXIS] = MMU_ERR_Y_PAUSE_POS;
  461. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  462. st_synchronize();
  463. }
  464. if (turn_off_nozzle){
  465. mmu_print_saved |= SavedState::CooldownPending;
  466. LogEchoEvent_P(PSTR("Heater cooldown pending"));
  467. // This just sets the flag that we should timeout and shut off the nozzle in 30 minutes...
  468. //setAllTargetHotends(0);
  469. }
  470. }
  471. // keep the motors powered forever (until some other strategy is chosen)
  472. // @@TODO do we need that in 8bit?
  473. // gcode.reset_stepper_timeout();
  474. }
  475. void MMU2::ResumeHotendTemp() {
  476. if ((mmu_print_saved & SavedState::CooldownPending))
  477. {
  478. // Clear the "pending" flag if we haven't cooled yet.
  479. mmu_print_saved &= ~(SavedState::CooldownPending);
  480. LogEchoEvent_P(PSTR("Cooldown flag cleared"));
  481. }
  482. if ((mmu_print_saved & SavedState::Cooldown) && resume_hotend_temp) {
  483. LogEchoEvent_P(PSTR("Resuming Temp"));
  484. MMU2_ECHO_MSGRPGM(PSTR("Restoring hotend temperature "));
  485. SERIAL_ECHOLN(resume_hotend_temp);
  486. mmu_print_saved &= ~(SavedState::Cooldown);
  487. setTargetHotend(resume_hotend_temp, active_extruder);
  488. lcd_display_message_fullscreen_P(_i("MMU Retry: Restoring temperature...")); // better report the event and let the GUI do its work somewhere else
  489. ReportErrorHookSensorLineRender();
  490. waitForHotendTargetTemp(1000, []{
  491. ReportErrorHookDynamicRender();
  492. manage_inactivity(true);
  493. });
  494. lcd_update_enable(true); // temporary hack to stop this locking the printer...
  495. LogEchoEvent_P(PSTR("Hotend temperature reached"));
  496. lcd_clear();
  497. }
  498. }
  499. void MMU2::ResumeUnpark(){
  500. if (mmu_print_saved & SavedState::ParkExtruder) {
  501. LogEchoEvent_P(PSTR("Resuming XYZ"));
  502. current_position[X_AXIS] = resume_position.xyz[X_AXIS];
  503. current_position[Y_AXIS] = resume_position.xyz[Y_AXIS];
  504. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  505. st_synchronize();
  506. current_position[Z_AXIS] = resume_position.xyz[Z_AXIS];
  507. plan_buffer_line_curposXYZE(NOZZLE_PARK_Z_FEEDRATE);
  508. st_synchronize();
  509. mmu_print_saved &= ~(SavedState::ParkExtruder);
  510. }
  511. }
  512. void MMU2::CheckUserInput(){
  513. auto btn = ButtonPressed((uint16_t)lastErrorCode);
  514. // Was a button pressed on the MMU itself instead of the LCD?
  515. if (btn == Buttons::NoButton && lastButton != Buttons::NoButton){
  516. btn = lastButton;
  517. lastButton = Buttons::NoButton; // Clear it.
  518. }
  519. switch (btn) {
  520. case Left:
  521. case Middle:
  522. case Right:
  523. SERIAL_ECHOPGM("CheckUserInput-btnLMR ");
  524. SERIAL_ECHOLN(btn);
  525. ResumeHotendTemp(); // Recover the hotend temp before we attempt to do anything else...
  526. Button(btn);
  527. break;
  528. case RestartMMU:
  529. Reset(ResetPin); // we cannot do power cycle on the MK3
  530. // ... but mmu2_power.cpp knows this and triggers a soft-reset instead.
  531. break;
  532. case DisableMMU:
  533. Stop(); // Poweroff handles updating the EEPROM shutoff.
  534. break;
  535. case StopPrint:
  536. // @@TODO not sure if we shall handle this high level operation at this spot
  537. break;
  538. default:
  539. break;
  540. }
  541. }
  542. /// Originally, this was used to wait for response and deal with timeout if necessary.
  543. /// The new protocol implementation enables much nicer and intense reporting, so this method will boil down
  544. /// just to verify the result of an issued command (which was basically the original idea)
  545. ///
  546. /// It is closely related to mmu_loop() (which corresponds to our ProtocolLogic::Step()), which does NOT perform any blocking wait for a command to finish.
  547. /// But - in case of an error, the command is not yet finished, but we must react accordingly - move the printhead elsewhere, stop heating, eat a cat or so.
  548. /// That's what's being done here...
  549. void MMU2::manage_response(const bool move_axes, const bool turn_off_nozzle) {
  550. mmu_print_saved = SavedState::None;
  551. KEEPALIVE_STATE(PAUSED_FOR_USER);
  552. LongTimer nozzleTimeout;
  553. for (;;) {
  554. // in our new implementation, we know the exact state of the MMU at any moment, we do not have to wait for a timeout
  555. // So in this case we shall decide if the operation is:
  556. // - still running -> wait normally in idle()
  557. // - failed -> then do the safety moves on the printer like before
  558. // - finished ok -> proceed with reading other commands
  559. manage_heater();
  560. manage_inactivity(true); // calls LogicStep() and remembers its return status
  561. lcd_update(0);
  562. if (mmu_print_saved & SavedState::CooldownPending){
  563. if (!nozzleTimeout.running()){
  564. nozzleTimeout.start();
  565. LogEchoEvent_P(PSTR("Cooling Timeout started"));
  566. } else if (nozzleTimeout.expired(DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul)){ // mins->msec. TODO: do we use the global or have our own independent timeout
  567. mmu_print_saved &= ~(SavedState::CooldownPending);
  568. mmu_print_saved |= SavedState::Cooldown;
  569. setAllTargetHotends(0);
  570. LogEchoEvent_P(PSTR("Heater cooldown"));
  571. }
  572. } else if (nozzleTimeout.running()) {
  573. nozzleTimeout.stop();
  574. LogEchoEvent_P(PSTR("Cooling timer stopped"));
  575. }
  576. switch (logicStepLastStatus) {
  577. case Finished:
  578. // command/operation completed, let Marlin continue its work
  579. // the E may have some more moves to finish - wait for them
  580. ResumeUnpark(); // We can now travel back to the tower or wherever we were when we saved.
  581. ResetRetryAttempts(); // Reset the retry counter.
  582. st_synchronize();
  583. return;
  584. case VersionMismatch: // this basically means the MMU will be disabled until reconnected
  585. CheckUserInput();
  586. return;
  587. case CommandError:
  588. // Don't proceed to the park/save if we are doing an autoretry.
  589. if (inAutoRetry){
  590. continue;
  591. }
  592. [[fallthrough]];
  593. case CommunicationTimeout:
  594. case ProtocolError:
  595. SaveAndPark(move_axes, turn_off_nozzle); // and wait for the user to resolve the problem
  596. CheckUserInput();
  597. break;
  598. case CommunicationRecovered: // @@TODO communication recovered and may be an error recovered as well
  599. // may be the logic layer can detect the change of state a respond with one "Recovered" to be handled here
  600. ResumeHotendTemp();
  601. ResumeUnpark();
  602. break;
  603. case Processing: // wait for the MMU to respond
  604. default:
  605. break;
  606. }
  607. }
  608. }
  609. StepStatus MMU2::LogicStep() {
  610. CheckUserInput(); // Process any buttons before proceeding with another MMU Query
  611. StepStatus ss = logic.Step();
  612. switch (ss) {
  613. case Finished:
  614. // At this point it is safe to trigger a runout and not interrupt the MMU protocol
  615. CheckFINDARunout();
  616. break;
  617. case Processing:
  618. OnMMUProgressMsg(logic.Progress());
  619. break;
  620. case CommandError:
  621. ReportError(logic.Error(), ErrorSourceMMU);
  622. break;
  623. case CommunicationTimeout:
  624. state = xState::Connecting;
  625. ReportError(ErrorCode::MMU_NOT_RESPONDING, ErrorSourcePrinter);
  626. break;
  627. case ProtocolError:
  628. state = xState::Connecting;
  629. ReportError(ErrorCode::PROTOCOL_ERROR, ErrorSourcePrinter);
  630. break;
  631. case VersionMismatch:
  632. StopKeepPowered();
  633. ReportError(ErrorCode::VERSION_MISMATCH, ErrorSourcePrinter);
  634. break;
  635. case ButtonPushed:
  636. lastButton = logic.Button();
  637. LogEchoEvent_P(PSTR("MMU Button pushed"));
  638. CheckUserInput(); // Process the button immediately
  639. break;
  640. default:
  641. break;
  642. }
  643. if( logic.Running() ){
  644. state = xState::Active;
  645. }
  646. return ss;
  647. }
  648. void MMU2::filament_ramming() {
  649. execute_extruder_sequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step));
  650. }
  651. void MMU2::execute_extruder_sequence(const E_Step *sequence, uint8_t steps) {
  652. st_synchronize();
  653. const E_Step *step = sequence;
  654. for (uint8_t i = 0; i < steps; i++) {
  655. current_position[E_AXIS] += pgm_read_float(&(step->extrude));
  656. plan_buffer_line_curposXYZE(pgm_read_float(&(step->feedRate)));
  657. st_synchronize();
  658. step++;
  659. }
  660. }
  661. void MMU2::ReportError(ErrorCode ec, uint8_t res) {
  662. // Due to a potential lossy error reporting layers linked to this hook
  663. // we'd better report everything to make sure especially the error states
  664. // do not get lost.
  665. // - The good news here is the fact, that the MMU reports the errors repeatedly until resolved.
  666. // - The bad news is, that MMU not responding may repeatedly occur on printers not having the MMU at all.
  667. //
  668. // Not sure how to properly handle this situation, options:
  669. // - skip reporting "MMU not responding" (at least for now)
  670. // - report only changes of states (we can miss an error message)
  671. // - may be some combination of MMUAvailable + UseMMU flags and decide based on their state
  672. // Right now the filtering of MMU_NOT_RESPONDING is done in ReportErrorHook() as it is not a problem if mmu2.cpp
  673. // Depending on the Progress code, we may want to do some action when an error occurs
  674. switch (logic.Progress()){
  675. case ProgressCode::UnloadingToFinda:
  676. unloadFilamentStarted = false;
  677. break;
  678. case ProgressCode::FeedingToFSensor:
  679. // FSENSOR error during load. Make sure E-motor stops moving.
  680. loadFilamentStarted = false;
  681. break;
  682. default:
  683. break;
  684. }
  685. ReportErrorHook((uint16_t)ec, res);
  686. if( ec != lastErrorCode ){ // deduplicate: only report changes in error codes into the log
  687. lastErrorCode = ec;
  688. LogErrorEvent_P( _T(PrusaErrorTitle(PrusaErrorCodeIndex((uint16_t)ec))) );
  689. }
  690. static_assert(mmu2Magic[0] == 'M'
  691. && mmu2Magic[1] == 'M'
  692. && mmu2Magic[2] == 'U'
  693. && mmu2Magic[3] == '2'
  694. && mmu2Magic[4] == ':'
  695. && strlen_constexpr(mmu2Magic) == 5,
  696. "MMU2 logging prefix mismatch, must be updated at various spots"
  697. );
  698. }
  699. void MMU2::ReportProgress(ProgressCode pc) {
  700. ReportProgressHook((CommandInProgress)logic.CommandInProgress(), (uint16_t)pc);
  701. LogEchoEvent_P( _T(ProgressCodeToText((uint16_t)pc)) );
  702. }
  703. void MMU2::OnMMUProgressMsg(ProgressCode pc){
  704. if (pc != lastProgressCode) {
  705. OnMMUProgressMsgChanged(pc);
  706. } else {
  707. OnMMUProgressMsgSame(pc);
  708. }
  709. }
  710. void MMU2::OnMMUProgressMsgChanged(ProgressCode pc){
  711. ReportProgress(pc);
  712. lastProgressCode = pc;
  713. switch (pc) {
  714. case ProgressCode::UnloadingToFinda:
  715. if ((CommandInProgress)logic.CommandInProgress() == CommandInProgress::UnloadFilament
  716. || ((CommandInProgress)logic.CommandInProgress() == CommandInProgress::ToolChange))
  717. {
  718. // If MK3S sent U0 command, ramming sequence takes care of releasing the filament.
  719. // If Toolchange is done while printing, PrusaSlicer takes care of releasing the filament
  720. // If printing is not in progress, ToolChange will issue a U0 command.
  721. break;
  722. } else {
  723. // We're likely recovering from an MMU error
  724. st_synchronize();
  725. unloadFilamentStarted = true;
  726. current_position[E_AXIS] -= MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH;
  727. plan_buffer_line_curposXYZE(MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE);
  728. }
  729. break;
  730. case ProgressCode::FeedingToFSensor:
  731. // prepare for the movement of the E-motor
  732. st_synchronize();
  733. loadFilamentStarted = true;
  734. break;
  735. default:
  736. // do nothing yet
  737. break;
  738. }
  739. }
  740. void MMU2::OnMMUProgressMsgSame(ProgressCode pc){
  741. switch (pc) {
  742. case ProgressCode::UnloadingToFinda:
  743. if (unloadFilamentStarted && !blocks_queued()) { // Only plan a move if there is no move ongoing
  744. if (fsensor.getFilamentPresent()) {
  745. current_position[E_AXIS] -= MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH;
  746. plan_buffer_line_curposXYZE(MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE);
  747. } else {
  748. unloadFilamentStarted = false;
  749. }
  750. }
  751. break;
  752. case ProgressCode::FeedingToFSensor:
  753. if (loadFilamentStarted) {
  754. switch (WhereIsFilament()) {
  755. case FilamentState::AT_FSENSOR:
  756. // fsensor triggered, finish FeedingToExtruder state
  757. loadFilamentStarted = false;
  758. // After the MMU knows the FSENSOR is triggered it will:
  759. // 1. Push the filament by additional 30mm (see fsensorToNozzle)
  760. // 2. Disengage the idler and push another 5mm.
  761. current_position[E_AXIS] += 30.0f + 2.0f;
  762. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  763. break;
  764. case FilamentState::NOT_PRESENT:
  765. // fsensor not triggered, continue moving extruder
  766. if (!blocks_queued()) { // Only plan a move if there is no move ongoing
  767. current_position[E_AXIS] += 2.0f;
  768. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  769. }
  770. break;
  771. default:
  772. // Abort here?
  773. break;
  774. }
  775. }
  776. break;
  777. default:
  778. // do nothing yet
  779. break;
  780. }
  781. }
  782. } // namespace MMU2