Marlin_main.cpp 305 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef ULTIPANEL
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. #endif
  377. bool cancel_heatup = false ;
  378. #ifdef HOST_KEEPALIVE_FEATURE
  379. int busy_state = NOT_BUSY;
  380. static long prev_busy_signal_ms = -1;
  381. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  382. #else
  383. #define host_keepalive();
  384. #define KEEPALIVE_STATE(n);
  385. #endif
  386. const char errormagic[] PROGMEM = "Error:";
  387. const char echomagic[] PROGMEM = "echo:";
  388. bool no_response = false;
  389. uint8_t important_status;
  390. uint8_t saved_filament_type;
  391. // save/restore printing
  392. bool saved_printing = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. //===========================================================================
  399. //=============================Private Variables=============================
  400. //===========================================================================
  401. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  402. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  403. static float delta[3] = {0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. #ifndef _DISABLE_M42_M226
  411. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  412. #endif //_DISABLE_M42_M226
  413. //static float tt = 0;
  414. //static float bt = 0;
  415. //Inactivity shutdown variables
  416. static unsigned long previous_millis_cmd = 0;
  417. unsigned long max_inactive_time = 0;
  418. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  419. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  420. unsigned long starttime=0;
  421. unsigned long stoptime=0;
  422. unsigned long _usb_timer = 0;
  423. static uint8_t tmp_extruder;
  424. bool extruder_under_pressure = true;
  425. bool Stopped=false;
  426. #if NUM_SERVOS > 0
  427. Servo servos[NUM_SERVOS];
  428. #endif
  429. bool CooldownNoWait = true;
  430. bool target_direction;
  431. //Insert variables if CHDK is defined
  432. #ifdef CHDK
  433. unsigned long chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. // save/restore printing
  437. static uint32_t saved_sdpos = 0;
  438. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  439. static float saved_pos[4] = { 0, 0, 0, 0 };
  440. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  441. static float saved_feedrate2 = 0;
  442. static uint8_t saved_active_extruder = 0;
  443. static bool saved_extruder_under_pressure = false;
  444. static bool saved_extruder_relative_mode = false;
  445. //===========================================================================
  446. //=============================Routines======================================
  447. //===========================================================================
  448. static void get_arc_coordinates();
  449. static bool setTargetedHotend(int code);
  450. static void print_time_remaining_init();
  451. void serial_echopair_P(const char *s_P, float v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, double v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char *s_P, unsigned long v)
  456. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. #ifdef SDSUPPORT
  458. #include "SdFatUtil.h"
  459. int freeMemory() { return SdFatUtil::FreeRam(); }
  460. #else
  461. extern "C" {
  462. extern unsigned int __bss_end;
  463. extern unsigned int __heap_start;
  464. extern void *__brkval;
  465. int freeMemory() {
  466. int free_memory;
  467. if ((int)__brkval == 0)
  468. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  469. else
  470. free_memory = ((int)&free_memory) - ((int)__brkval);
  471. return free_memory;
  472. }
  473. }
  474. #endif //!SDSUPPORT
  475. void setup_killpin()
  476. {
  477. #if defined(KILL_PIN) && KILL_PIN > -1
  478. SET_INPUT(KILL_PIN);
  479. WRITE(KILL_PIN,HIGH);
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. SET_OUTPUT(PHOTOGRAPH_PIN);
  494. WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. SET_OUTPUT(PS_ON_PIN);
  505. #if defined(PS_DEFAULT_OFF)
  506. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  507. #else
  508. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  509. #endif
  510. #endif
  511. }
  512. void suicide()
  513. {
  514. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  515. SET_OUTPUT(SUICIDE_PIN);
  516. WRITE(SUICIDE_PIN, LOW);
  517. #endif
  518. }
  519. void servo_init()
  520. {
  521. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  522. servos[0].attach(SERVO0_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  525. servos[1].attach(SERVO1_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  528. servos[2].attach(SERVO2_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  531. servos[3].attach(SERVO3_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 5)
  534. #error "TODO: enter initalisation code for more servos"
  535. #endif
  536. }
  537. void stop_and_save_print_to_ram(float z_move, float e_move);
  538. void restore_print_from_ram_and_continue(float e_move);
  539. bool fans_check_enabled = true;
  540. bool filament_autoload_enabled = true;
  541. #ifdef TMC2130
  542. extern int8_t CrashDetectMenu;
  543. void crashdet_enable()
  544. {
  545. tmc2130_sg_stop_on_crash = true;
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  547. CrashDetectMenu = 1;
  548. }
  549. void crashdet_disable()
  550. {
  551. tmc2130_sg_stop_on_crash = false;
  552. tmc2130_sg_crash = 0;
  553. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  554. CrashDetectMenu = 0;
  555. }
  556. void crashdet_stop_and_save_print()
  557. {
  558. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  559. }
  560. void crashdet_restore_print_and_continue()
  561. {
  562. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  563. // babystep_apply();
  564. }
  565. void crashdet_stop_and_save_print2()
  566. {
  567. cli();
  568. planner_abort_hard(); //abort printing
  569. cmdqueue_reset(); //empty cmdqueue
  570. card.sdprinting = false;
  571. card.closefile();
  572. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  573. st_reset_timer();
  574. sei();
  575. }
  576. void crashdet_detected(uint8_t mask)
  577. {
  578. // printf("CRASH_DETECTED");
  579. /* while (!is_buffer_empty())
  580. {
  581. process_commands();
  582. cmdqueue_pop_front();
  583. }*/
  584. st_synchronize();
  585. static uint8_t crashDet_counter = 0;
  586. bool automatic_recovery_after_crash = true;
  587. if (crashDet_counter++ == 0) {
  588. crashDetTimer.start();
  589. }
  590. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  591. crashDetTimer.stop();
  592. crashDet_counter = 0;
  593. }
  594. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  595. automatic_recovery_after_crash = false;
  596. crashDetTimer.stop();
  597. crashDet_counter = 0;
  598. }
  599. else {
  600. crashDetTimer.start();
  601. }
  602. lcd_update_enable(true);
  603. lcd_implementation_clear();
  604. lcd_update(2);
  605. if (mask & X_AXIS_MASK)
  606. {
  607. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  608. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  609. }
  610. if (mask & Y_AXIS_MASK)
  611. {
  612. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  613. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  614. }
  615. lcd_update_enable(true);
  616. lcd_update(2);
  617. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  618. gcode_G28(true, true, false, false); //home X and Y
  619. st_synchronize();
  620. if (automatic_recovery_after_crash) {
  621. enquecommand_P(PSTR("CRASH_RECOVER"));
  622. }else{
  623. HotendTempBckp = degTargetHotend(active_extruder);
  624. setTargetHotend(0, active_extruder);
  625. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  626. lcd_update_enable(true);
  627. if (yesno)
  628. {
  629. char cmd1[10];
  630. strcpy(cmd1, "M109 S");
  631. strcat(cmd1, ftostr3(HotendTempBckp));
  632. enquecommand(cmd1);
  633. enquecommand_P(PSTR("CRASH_RECOVER"));
  634. }
  635. else
  636. {
  637. enquecommand_P(PSTR("CRASH_CANCEL"));
  638. }
  639. }
  640. }
  641. void crashdet_recover()
  642. {
  643. crashdet_restore_print_and_continue();
  644. tmc2130_sg_stop_on_crash = true;
  645. }
  646. void crashdet_cancel()
  647. {
  648. tmc2130_sg_stop_on_crash = true;
  649. if (saved_printing_type == PRINTING_TYPE_SD) {
  650. lcd_print_stop();
  651. }else if(saved_printing_type == PRINTING_TYPE_USB){
  652. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  653. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  654. }
  655. }
  656. #endif //TMC2130
  657. void failstats_reset_print()
  658. {
  659. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  661. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  662. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  663. }
  664. #ifdef MESH_BED_LEVELING
  665. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  666. #endif
  667. // Factory reset function
  668. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  669. // Level input parameter sets depth of reset
  670. // Quiet parameter masks all waitings for user interact.
  671. int er_progress = 0;
  672. void factory_reset(char level, bool quiet)
  673. {
  674. lcd_implementation_clear();
  675. int cursor_pos = 0;
  676. switch (level) {
  677. // Level 0: Language reset
  678. case 0:
  679. WRITE(BEEPER, HIGH);
  680. _delay_ms(100);
  681. WRITE(BEEPER, LOW);
  682. lang_reset();
  683. break;
  684. //Level 1: Reset statistics
  685. case 1:
  686. WRITE(BEEPER, HIGH);
  687. _delay_ms(100);
  688. WRITE(BEEPER, LOW);
  689. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  690. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  693. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  694. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  697. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  698. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  699. lcd_menu_statistics();
  700. break;
  701. // Level 2: Prepare for shipping
  702. case 2:
  703. //lcd_printPGM(PSTR("Factory RESET"));
  704. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  705. // Force language selection at the next boot up.
  706. lang_reset();
  707. // Force the "Follow calibration flow" message at the next boot up.
  708. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  709. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  710. farm_no = 0;
  711. farm_mode = false;
  712. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  713. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  714. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  715. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  717. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  718. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  719. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  720. fsensor_enable();
  721. fautoload_set(true);
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. //_delay_ms(2000);
  726. break;
  727. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  728. case 3:
  729. lcd_printPGM(PSTR("Factory RESET"));
  730. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  731. WRITE(BEEPER, HIGH);
  732. _delay_ms(100);
  733. WRITE(BEEPER, LOW);
  734. er_progress = 0;
  735. lcd_print_at_PGM(3, 3, PSTR(" "));
  736. lcd_implementation_print_at(3, 3, er_progress);
  737. // Erase EEPROM
  738. for (int i = 0; i < 4096; i++) {
  739. eeprom_write_byte((uint8_t*)i, 0xFF);
  740. if (i % 41 == 0) {
  741. er_progress++;
  742. lcd_print_at_PGM(3, 3, PSTR(" "));
  743. lcd_implementation_print_at(3, 3, er_progress);
  744. lcd_printPGM(PSTR("%"));
  745. }
  746. }
  747. break;
  748. case 4:
  749. bowden_menu();
  750. break;
  751. default:
  752. break;
  753. }
  754. }
  755. #include "LiquidCrystal_Prusa.h"
  756. extern LiquidCrystal_Prusa lcd;
  757. FILE _lcdout = {0};
  758. int lcd_putchar(char c, FILE *stream)
  759. {
  760. lcd.write(c);
  761. return 0;
  762. }
  763. FILE _uartout = {0};
  764. int uart_putchar(char c, FILE *stream)
  765. {
  766. MYSERIAL.write(c);
  767. return 0;
  768. }
  769. void lcd_splash()
  770. {
  771. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  772. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  773. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  774. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  775. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  776. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  777. }
  778. void factory_reset()
  779. {
  780. KEEPALIVE_STATE(PAUSED_FOR_USER);
  781. if (!READ(BTN_ENC))
  782. {
  783. _delay_ms(1000);
  784. if (!READ(BTN_ENC))
  785. {
  786. lcd_implementation_clear();
  787. lcd_printPGM(PSTR("Factory RESET"));
  788. SET_OUTPUT(BEEPER);
  789. WRITE(BEEPER, HIGH);
  790. while (!READ(BTN_ENC));
  791. WRITE(BEEPER, LOW);
  792. _delay_ms(2000);
  793. char level = reset_menu();
  794. factory_reset(level, false);
  795. switch (level) {
  796. case 0: _delay_ms(0); break;
  797. case 1: _delay_ms(0); break;
  798. case 2: _delay_ms(0); break;
  799. case 3: _delay_ms(0); break;
  800. }
  801. // _delay_ms(100);
  802. /*
  803. #ifdef MESH_BED_LEVELING
  804. _delay_ms(2000);
  805. if (!READ(BTN_ENC))
  806. {
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. _delay_ms(200);
  811. WRITE(BEEPER, HIGH);
  812. _delay_ms(100);
  813. WRITE(BEEPER, LOW);
  814. int _z = 0;
  815. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  816. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  817. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  818. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  819. }
  820. else
  821. {
  822. WRITE(BEEPER, HIGH);
  823. _delay_ms(100);
  824. WRITE(BEEPER, LOW);
  825. }
  826. #endif // mesh */
  827. }
  828. }
  829. else
  830. {
  831. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  832. }
  833. KEEPALIVE_STATE(IN_HANDLER);
  834. }
  835. void show_fw_version_warnings() {
  836. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  837. switch (FW_DEV_VERSION) {
  838. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  839. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  840. case(FW_VERSION_DEVEL):
  841. case(FW_VERSION_DEBUG):
  842. lcd_update_enable(false);
  843. lcd_implementation_clear();
  844. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  845. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  846. #else
  847. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  848. #endif
  849. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  850. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  851. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  852. lcd_wait_for_click();
  853. break;
  854. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  855. }
  856. lcd_update_enable(true);
  857. }
  858. uint8_t check_printer_version()
  859. {
  860. uint8_t version_changed = 0;
  861. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  862. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  863. if (printer_type != PRINTER_TYPE) {
  864. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  865. else version_changed |= 0b10;
  866. }
  867. if (motherboard != MOTHERBOARD) {
  868. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  869. else version_changed |= 0b01;
  870. }
  871. return version_changed;
  872. }
  873. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  874. {
  875. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  876. }
  877. #if (LANG_MODE != 0) //secondary language support
  878. #ifdef W25X20CL
  879. #include "bootapp.h" //bootloader support
  880. // language update from external flash
  881. #define LANGBOOT_BLOCKSIZE 0x1000
  882. #define LANGBOOT_RAMBUFFER 0x0800
  883. void update_sec_lang_from_external_flash()
  884. {
  885. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  886. {
  887. uint8_t lang = boot_reserved >> 4;
  888. uint8_t state = boot_reserved & 0xf;
  889. lang_table_header_t header;
  890. uint32_t src_addr;
  891. if (lang_get_header(lang, &header, &src_addr))
  892. {
  893. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  894. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  895. delay(100);
  896. boot_reserved = (state + 1) | (lang << 4);
  897. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  898. {
  899. cli();
  900. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  901. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  902. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  903. if (state == 0)
  904. {
  905. //TODO - check header integrity
  906. }
  907. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  908. }
  909. else
  910. {
  911. //TODO - check sec lang data integrity
  912. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  913. }
  914. }
  915. }
  916. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  917. }
  918. #ifdef DEBUG_W25X20CL
  919. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  920. {
  921. lang_table_header_t header;
  922. uint8_t count = 0;
  923. uint32_t addr = 0x00000;
  924. while (1)
  925. {
  926. printf_P(_n("LANGTABLE%d:"), count);
  927. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  928. if (header.magic != LANG_MAGIC)
  929. {
  930. printf_P(_n("NG!\n"));
  931. break;
  932. }
  933. printf_P(_n("OK\n"));
  934. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  935. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  936. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  937. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  938. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  939. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  940. addr += header.size;
  941. codes[count] = header.code;
  942. count ++;
  943. }
  944. return count;
  945. }
  946. void list_sec_lang_from_external_flash()
  947. {
  948. uint16_t codes[8];
  949. uint8_t count = lang_xflash_enum_codes(codes);
  950. printf_P(_n("XFlash lang count = %hhd\n"), count);
  951. }
  952. #endif //DEBUG_W25X20CL
  953. #endif //W25X20CL
  954. #endif //(LANG_MODE != 0)
  955. // "Setup" function is called by the Arduino framework on startup.
  956. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  957. // are initialized by the main() routine provided by the Arduino framework.
  958. void setup()
  959. {
  960. #ifdef W25X20CL
  961. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  962. optiboot_w25x20cl_enter();
  963. #endif
  964. lcd_init();
  965. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  966. spi_init();
  967. lcd_splash();
  968. #if (LANG_MODE != 0) //secondary language support
  969. #ifdef W25X20CL
  970. if (w25x20cl_init())
  971. update_sec_lang_from_external_flash();
  972. else
  973. kill(_i("External SPI flash W25X20CL not responding."));
  974. #endif //W25X20CL
  975. #endif //(LANG_MODE != 0)
  976. setup_killpin();
  977. setup_powerhold();
  978. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  979. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  980. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  981. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  982. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  983. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  984. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  985. if (farm_mode)
  986. {
  987. no_response = true; //we need confirmation by recieving PRUSA thx
  988. important_status = 8;
  989. prusa_statistics(8);
  990. selectedSerialPort = 1;
  991. #ifdef TMC2130
  992. //increased extruder current (PFW363)
  993. tmc2130_current_h[E_AXIS] = 36;
  994. tmc2130_current_r[E_AXIS] = 36;
  995. #endif //TMC2130
  996. //disabled filament autoload (PFW360)
  997. filament_autoload_enabled = false;
  998. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  999. }
  1000. MYSERIAL.begin(BAUDRATE);
  1001. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1002. stdout = uartout;
  1003. SERIAL_PROTOCOLLNPGM("start");
  1004. SERIAL_ECHO_START;
  1005. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1006. uart2_init();
  1007. #ifdef DEBUG_SEC_LANG
  1008. lang_table_header_t header;
  1009. uint32_t src_addr = 0x00000;
  1010. if (lang_get_header(1, &header, &src_addr))
  1011. {
  1012. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1013. #define LT_PRINT_TEST 2
  1014. // flash usage
  1015. // total p.test
  1016. //0 252718 t+c text code
  1017. //1 253142 424 170 254
  1018. //2 253040 322 164 158
  1019. //3 253248 530 135 395
  1020. #if (LT_PRINT_TEST==1) //not optimized printf
  1021. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1022. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1023. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1024. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1025. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1026. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1027. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1028. #elif (LT_PRINT_TEST==2) //optimized printf
  1029. printf_P(
  1030. _n(
  1031. " _src_addr = 0x%08lx\n"
  1032. " _lt_magic = 0x%08lx %S\n"
  1033. " _lt_size = 0x%04x (%d)\n"
  1034. " _lt_count = 0x%04x (%d)\n"
  1035. " _lt_chsum = 0x%04x\n"
  1036. " _lt_code = 0x%04x (%c%c)\n"
  1037. " _lt_resv1 = 0x%08lx\n"
  1038. ),
  1039. src_addr,
  1040. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1041. header.size, header.size,
  1042. header.count, header.count,
  1043. header.checksum,
  1044. header.code, header.code >> 8, header.code & 0xff,
  1045. header.signature
  1046. );
  1047. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1048. MYSERIAL.print(" _src_addr = 0x");
  1049. MYSERIAL.println(src_addr, 16);
  1050. MYSERIAL.print(" _lt_magic = 0x");
  1051. MYSERIAL.print(header.magic, 16);
  1052. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1053. MYSERIAL.print(" _lt_size = 0x");
  1054. MYSERIAL.print(header.size, 16);
  1055. MYSERIAL.print(" (");
  1056. MYSERIAL.print(header.size, 10);
  1057. MYSERIAL.println(")");
  1058. MYSERIAL.print(" _lt_count = 0x");
  1059. MYSERIAL.print(header.count, 16);
  1060. MYSERIAL.print(" (");
  1061. MYSERIAL.print(header.count, 10);
  1062. MYSERIAL.println(")");
  1063. MYSERIAL.print(" _lt_chsum = 0x");
  1064. MYSERIAL.println(header.checksum, 16);
  1065. MYSERIAL.print(" _lt_code = 0x");
  1066. MYSERIAL.print(header.code, 16);
  1067. MYSERIAL.print(" (");
  1068. MYSERIAL.print((char)(header.code >> 8), 0);
  1069. MYSERIAL.print((char)(header.code & 0xff), 0);
  1070. MYSERIAL.println(")");
  1071. MYSERIAL.print(" _lt_resv1 = 0x");
  1072. MYSERIAL.println(header.signature, 16);
  1073. #endif //(LT_PRINT_TEST==)
  1074. #undef LT_PRINT_TEST
  1075. #if 0
  1076. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1077. for (uint16_t i = 0; i < 1024; i++)
  1078. {
  1079. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1080. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1081. if ((i % 16) == 15) putchar('\n');
  1082. }
  1083. #endif
  1084. uint16_t sum = 0;
  1085. for (uint16_t i = 0; i < header.size; i++)
  1086. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1087. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1088. sum -= header.checksum; //subtract checksum
  1089. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1090. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1091. if (sum == header.checksum)
  1092. printf_P(_n("Checksum OK\n"), sum);
  1093. else
  1094. printf_P(_n("Checksum NG\n"), sum);
  1095. }
  1096. else
  1097. printf_P(_n("lang_get_header failed!\n"));
  1098. #if 0
  1099. for (uint16_t i = 0; i < 1024*10; i++)
  1100. {
  1101. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1102. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1103. if ((i % 16) == 15) putchar('\n');
  1104. }
  1105. #endif
  1106. #if 0
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1108. for (int i = 0; i < 4096; ++i) {
  1109. int b = eeprom_read_byte((unsigned char*)i);
  1110. if (b != 255) {
  1111. SERIAL_ECHO(i);
  1112. SERIAL_ECHO(":");
  1113. SERIAL_ECHO(b);
  1114. SERIAL_ECHOLN("");
  1115. }
  1116. }
  1117. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1118. #endif
  1119. #endif //DEBUG_SEC_LANG
  1120. // Check startup - does nothing if bootloader sets MCUSR to 0
  1121. byte mcu = MCUSR;
  1122. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1123. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1124. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1125. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1126. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1127. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1128. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1129. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1130. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1131. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1132. MCUSR = 0;
  1133. //SERIAL_ECHORPGM(MSG_MARLIN);
  1134. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1135. #ifdef STRING_VERSION_CONFIG_H
  1136. #ifdef STRING_CONFIG_H_AUTHOR
  1137. SERIAL_ECHO_START;
  1138. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1139. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1140. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1141. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1142. SERIAL_ECHOPGM("Compiled: ");
  1143. SERIAL_ECHOLNPGM(__DATE__);
  1144. #endif
  1145. #endif
  1146. SERIAL_ECHO_START;
  1147. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1148. SERIAL_ECHO(freeMemory());
  1149. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1150. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1151. //lcd_update_enable(false); // why do we need this?? - andre
  1152. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1153. bool previous_settings_retrieved = false;
  1154. uint8_t hw_changed = check_printer_version();
  1155. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1156. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1157. }
  1158. else { //printer version was changed so use default settings
  1159. Config_ResetDefault();
  1160. }
  1161. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1162. tp_init(); // Initialize temperature loop
  1163. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1164. plan_init(); // Initialize planner;
  1165. factory_reset();
  1166. #ifdef TMC2130
  1167. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1168. if (silentMode == 0xff) silentMode = 0;
  1169. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1170. tmc2130_mode = TMC2130_MODE_NORMAL;
  1171. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1172. if (crashdet && !farm_mode)
  1173. {
  1174. crashdet_enable();
  1175. puts_P(_N("CrashDetect ENABLED!"));
  1176. }
  1177. else
  1178. {
  1179. crashdet_disable();
  1180. puts_P(_N("CrashDetect DISABLED"));
  1181. }
  1182. #ifdef TMC2130_LINEARITY_CORRECTION
  1183. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1184. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1185. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1186. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1187. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1188. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1189. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1190. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1191. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1192. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1193. #endif //TMC2130_LINEARITY_CORRECTION
  1194. #ifdef TMC2130_VARIABLE_RESOLUTION
  1195. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1196. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1197. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1198. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1199. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1201. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1202. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1203. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1205. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1206. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1207. #else //TMC2130_VARIABLE_RESOLUTION
  1208. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1209. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1210. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1211. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1212. #endif //TMC2130_VARIABLE_RESOLUTION
  1213. #endif //TMC2130
  1214. st_init(); // Initialize stepper, this enables interrupts!
  1215. #ifdef TMC2130
  1216. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1217. tmc2130_init();
  1218. #endif //TMC2130
  1219. setup_photpin();
  1220. servo_init();
  1221. // Reset the machine correction matrix.
  1222. // It does not make sense to load the correction matrix until the machine is homed.
  1223. world2machine_reset();
  1224. #ifdef PAT9125
  1225. fsensor_init();
  1226. #endif //PAT9125
  1227. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1228. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1229. #endif
  1230. setup_homepin();
  1231. #ifdef TMC2130
  1232. if (1) {
  1233. // try to run to zero phase before powering the Z motor.
  1234. // Move in negative direction
  1235. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1236. // Round the current micro-micro steps to micro steps.
  1237. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1238. // Until the phase counter is reset to zero.
  1239. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1240. delay(2);
  1241. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1242. delay(2);
  1243. }
  1244. }
  1245. #endif //TMC2130
  1246. #if defined(Z_AXIS_ALWAYS_ON)
  1247. enable_z();
  1248. #endif
  1249. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1250. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1251. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1252. if (farm_no == 0xFFFF) farm_no = 0;
  1253. if (farm_mode)
  1254. {
  1255. prusa_statistics(8);
  1256. }
  1257. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1258. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1259. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1260. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1261. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1262. // where all the EEPROM entries are set to 0x0ff.
  1263. // Once a firmware boots up, it forces at least a language selection, which changes
  1264. // EEPROM_LANG to number lower than 0x0ff.
  1265. // 1) Set a high power mode.
  1266. #ifdef TMC2130
  1267. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1268. tmc2130_mode = TMC2130_MODE_NORMAL;
  1269. #endif //TMC2130
  1270. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1271. }
  1272. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1273. // but this times out if a blocking dialog is shown in setup().
  1274. card.initsd();
  1275. #ifdef DEBUG_SD_SPEED_TEST
  1276. if (card.cardOK)
  1277. {
  1278. uint8_t* buff = (uint8_t*)block_buffer;
  1279. uint32_t block = 0;
  1280. uint32_t sumr = 0;
  1281. uint32_t sumw = 0;
  1282. for (int i = 0; i < 1024; i++)
  1283. {
  1284. uint32_t u = micros();
  1285. bool res = card.card.readBlock(i, buff);
  1286. u = micros() - u;
  1287. if (res)
  1288. {
  1289. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1290. sumr += u;
  1291. u = micros();
  1292. res = card.card.writeBlock(i, buff);
  1293. u = micros() - u;
  1294. if (res)
  1295. {
  1296. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1297. sumw += u;
  1298. }
  1299. else
  1300. {
  1301. printf_P(PSTR("writeBlock %4d error\n"), i);
  1302. break;
  1303. }
  1304. }
  1305. else
  1306. {
  1307. printf_P(PSTR("readBlock %4d error\n"), i);
  1308. break;
  1309. }
  1310. }
  1311. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1312. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1313. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1314. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1315. }
  1316. else
  1317. printf_P(PSTR("Card NG!\n"));
  1318. #endif //DEBUG_SD_SPEED_TEST
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1323. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1324. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1325. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1326. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1327. #ifdef SNMM
  1328. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1329. int _z = BOWDEN_LENGTH;
  1330. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1331. }
  1332. #endif
  1333. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1334. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1335. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1336. #if (LANG_MODE != 0) //secondary language support
  1337. #ifdef DEBUG_W25X20CL
  1338. W25X20CL_SPI_ENTER();
  1339. uint8_t uid[8]; // 64bit unique id
  1340. w25x20cl_rd_uid(uid);
  1341. puts_P(_n("W25X20CL UID="));
  1342. for (uint8_t i = 0; i < 8; i ++)
  1343. printf_P(PSTR("%02hhx"), uid[i]);
  1344. putchar('\n');
  1345. list_sec_lang_from_external_flash();
  1346. #endif //DEBUG_W25X20CL
  1347. // lang_reset();
  1348. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1349. lcd_language();
  1350. #ifdef DEBUG_SEC_LANG
  1351. uint16_t sec_lang_code = lang_get_code(1);
  1352. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1353. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1354. // lang_print_sec_lang(uartout);
  1355. #endif //DEBUG_SEC_LANG
  1356. #endif //(LANG_MODE != 0)
  1357. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1358. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1359. temp_cal_active = false;
  1360. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1361. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1362. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1363. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1364. int16_t z_shift = 0;
  1365. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1366. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1367. temp_cal_active = false;
  1368. }
  1369. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1370. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1371. }
  1372. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1373. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1374. }
  1375. check_babystep(); //checking if Z babystep is in allowed range
  1376. #ifdef UVLO_SUPPORT
  1377. setup_uvlo_interrupt();
  1378. #endif //UVLO_SUPPORT
  1379. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1380. setup_fan_interrupt();
  1381. #endif //DEBUG_DISABLE_FANCHECK
  1382. #ifdef PAT9125
  1383. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1384. fsensor_setup_interrupt();
  1385. #endif //DEBUG_DISABLE_FSENSORCHECK
  1386. #endif //PAT9125
  1387. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1388. #ifndef DEBUG_DISABLE_STARTMSGS
  1389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1390. show_fw_version_warnings();
  1391. switch (hw_changed) {
  1392. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1393. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1394. case(0b01):
  1395. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1396. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1397. break;
  1398. case(0b10):
  1399. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1400. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1401. break;
  1402. case(0b11):
  1403. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1404. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1405. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1406. break;
  1407. default: break; //no change, show no message
  1408. }
  1409. if (!previous_settings_retrieved) {
  1410. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1411. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1412. }
  1413. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1414. lcd_wizard(0);
  1415. }
  1416. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1417. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1418. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1419. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1420. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1421. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1422. // Show the message.
  1423. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1424. }
  1425. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1426. // Show the message.
  1427. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1428. lcd_update_enable(true);
  1429. }
  1430. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1431. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1432. lcd_update_enable(true);
  1433. }
  1434. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1435. // Show the message.
  1436. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1437. }
  1438. }
  1439. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1440. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1441. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1442. update_current_firmware_version_to_eeprom();
  1443. lcd_selftest();
  1444. }
  1445. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1446. KEEPALIVE_STATE(IN_PROCESS);
  1447. #endif //DEBUG_DISABLE_STARTMSGS
  1448. lcd_update_enable(true);
  1449. lcd_implementation_clear();
  1450. lcd_update(2);
  1451. // Store the currently running firmware into an eeprom,
  1452. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1453. update_current_firmware_version_to_eeprom();
  1454. #ifdef TMC2130
  1455. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1456. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1457. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1458. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1459. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1460. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1461. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1462. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1463. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1464. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1465. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1466. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1467. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1468. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1469. #endif //TMC2130
  1470. #ifdef UVLO_SUPPORT
  1471. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1472. /*
  1473. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1474. else {
  1475. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1476. lcd_update_enable(true);
  1477. lcd_update(2);
  1478. lcd_setstatuspgm(_T(WELCOME_MSG));
  1479. }
  1480. */
  1481. manage_heater(); // Update temperatures
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1484. #endif
  1485. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1486. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1487. puts_P(_N("Automatic recovery!"));
  1488. #endif
  1489. recover_print(1);
  1490. }
  1491. else{
  1492. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1493. puts_P(_N("Normal recovery!"));
  1494. #endif
  1495. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1496. else {
  1497. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1498. lcd_update_enable(true);
  1499. lcd_update(2);
  1500. lcd_setstatuspgm(_T(WELCOME_MSG));
  1501. }
  1502. }
  1503. }
  1504. #endif //UVLO_SUPPORT
  1505. KEEPALIVE_STATE(NOT_BUSY);
  1506. #ifdef WATCHDOG
  1507. wdt_enable(WDTO_4S);
  1508. #endif //WATCHDOG
  1509. }
  1510. #ifdef PAT9125
  1511. void fsensor_init() {
  1512. int pat9125 = pat9125_init();
  1513. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1514. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1515. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1516. if (!pat9125)
  1517. {
  1518. fsensor = 0; //disable sensor
  1519. fsensor_not_responding = true;
  1520. }
  1521. else {
  1522. fsensor_not_responding = false;
  1523. }
  1524. puts_P(PSTR("FSensor "));
  1525. if (fsensor)
  1526. {
  1527. puts_P(PSTR("ENABLED\n"));
  1528. fsensor_enable();
  1529. }
  1530. else
  1531. {
  1532. puts_P(PSTR("DISABLED\n"));
  1533. fsensor_disable();
  1534. }
  1535. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1536. filament_autoload_enabled = false;
  1537. fsensor_disable();
  1538. #endif //DEBUG_DISABLE_FSENSORCHECK
  1539. }
  1540. #endif //PAT9125
  1541. void trace();
  1542. #define CHUNK_SIZE 64 // bytes
  1543. #define SAFETY_MARGIN 1
  1544. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1545. int chunkHead = 0;
  1546. int serial_read_stream() {
  1547. setTargetHotend(0, 0);
  1548. setTargetBed(0);
  1549. lcd_implementation_clear();
  1550. lcd_printPGM(PSTR(" Upload in progress"));
  1551. // first wait for how many bytes we will receive
  1552. uint32_t bytesToReceive;
  1553. // receive the four bytes
  1554. char bytesToReceiveBuffer[4];
  1555. for (int i=0; i<4; i++) {
  1556. int data;
  1557. while ((data = MYSERIAL.read()) == -1) {};
  1558. bytesToReceiveBuffer[i] = data;
  1559. }
  1560. // make it a uint32
  1561. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1562. // we're ready, notify the sender
  1563. MYSERIAL.write('+');
  1564. // lock in the routine
  1565. uint32_t receivedBytes = 0;
  1566. while (prusa_sd_card_upload) {
  1567. int i;
  1568. for (i=0; i<CHUNK_SIZE; i++) {
  1569. int data;
  1570. // check if we're not done
  1571. if (receivedBytes == bytesToReceive) {
  1572. break;
  1573. }
  1574. // read the next byte
  1575. while ((data = MYSERIAL.read()) == -1) {};
  1576. receivedBytes++;
  1577. // save it to the chunk
  1578. chunk[i] = data;
  1579. }
  1580. // write the chunk to SD
  1581. card.write_command_no_newline(&chunk[0]);
  1582. // notify the sender we're ready for more data
  1583. MYSERIAL.write('+');
  1584. // for safety
  1585. manage_heater();
  1586. // check if we're done
  1587. if(receivedBytes == bytesToReceive) {
  1588. trace(); // beep
  1589. card.closefile();
  1590. prusa_sd_card_upload = false;
  1591. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1592. return 0;
  1593. }
  1594. }
  1595. }
  1596. #ifdef HOST_KEEPALIVE_FEATURE
  1597. /**
  1598. * Output a "busy" message at regular intervals
  1599. * while the machine is not accepting commands.
  1600. */
  1601. void host_keepalive() {
  1602. if (farm_mode) return;
  1603. long ms = millis();
  1604. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1605. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1606. switch (busy_state) {
  1607. case IN_HANDLER:
  1608. case IN_PROCESS:
  1609. SERIAL_ECHO_START;
  1610. SERIAL_ECHOLNPGM("busy: processing");
  1611. break;
  1612. case PAUSED_FOR_USER:
  1613. SERIAL_ECHO_START;
  1614. SERIAL_ECHOLNPGM("busy: paused for user");
  1615. break;
  1616. case PAUSED_FOR_INPUT:
  1617. SERIAL_ECHO_START;
  1618. SERIAL_ECHOLNPGM("busy: paused for input");
  1619. break;
  1620. default:
  1621. break;
  1622. }
  1623. }
  1624. prev_busy_signal_ms = ms;
  1625. }
  1626. #endif
  1627. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1628. // Before loop(), the setup() function is called by the main() routine.
  1629. void loop()
  1630. {
  1631. KEEPALIVE_STATE(NOT_BUSY);
  1632. bool stack_integrity = true;
  1633. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1634. {
  1635. is_usb_printing = true;
  1636. usb_printing_counter--;
  1637. _usb_timer = millis();
  1638. }
  1639. if (usb_printing_counter == 0)
  1640. {
  1641. is_usb_printing = false;
  1642. }
  1643. if (prusa_sd_card_upload)
  1644. {
  1645. //we read byte-by byte
  1646. serial_read_stream();
  1647. } else
  1648. {
  1649. get_command();
  1650. #ifdef SDSUPPORT
  1651. card.checkautostart(false);
  1652. #endif
  1653. if(buflen)
  1654. {
  1655. cmdbuffer_front_already_processed = false;
  1656. #ifdef SDSUPPORT
  1657. if(card.saving)
  1658. {
  1659. // Saving a G-code file onto an SD-card is in progress.
  1660. // Saving starts with M28, saving until M29 is seen.
  1661. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1662. card.write_command(CMDBUFFER_CURRENT_STRING);
  1663. if(card.logging)
  1664. process_commands();
  1665. else
  1666. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1667. } else {
  1668. card.closefile();
  1669. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1670. }
  1671. } else {
  1672. process_commands();
  1673. }
  1674. #else
  1675. process_commands();
  1676. #endif //SDSUPPORT
  1677. if (! cmdbuffer_front_already_processed && buflen)
  1678. {
  1679. // ptr points to the start of the block currently being processed.
  1680. // The first character in the block is the block type.
  1681. char *ptr = cmdbuffer + bufindr;
  1682. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1683. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1684. union {
  1685. struct {
  1686. char lo;
  1687. char hi;
  1688. } lohi;
  1689. uint16_t value;
  1690. } sdlen;
  1691. sdlen.value = 0;
  1692. {
  1693. // This block locks the interrupts globally for 3.25 us,
  1694. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1695. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1696. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1697. cli();
  1698. // Reset the command to something, which will be ignored by the power panic routine,
  1699. // so this buffer length will not be counted twice.
  1700. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1701. // Extract the current buffer length.
  1702. sdlen.lohi.lo = *ptr ++;
  1703. sdlen.lohi.hi = *ptr;
  1704. // and pass it to the planner queue.
  1705. planner_add_sd_length(sdlen.value);
  1706. sei();
  1707. }
  1708. }
  1709. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1710. cli();
  1711. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1712. // and one for each command to previous block in the planner queue.
  1713. planner_add_sd_length(1);
  1714. sei();
  1715. }
  1716. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1717. // this block's SD card length will not be counted twice as its command type has been replaced
  1718. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1719. cmdqueue_pop_front();
  1720. }
  1721. host_keepalive();
  1722. }
  1723. }
  1724. //check heater every n milliseconds
  1725. manage_heater();
  1726. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1727. checkHitEndstops();
  1728. lcd_update();
  1729. #ifdef PAT9125
  1730. fsensor_update();
  1731. #endif //PAT9125
  1732. #ifdef TMC2130
  1733. tmc2130_check_overtemp();
  1734. if (tmc2130_sg_crash)
  1735. {
  1736. uint8_t crash = tmc2130_sg_crash;
  1737. tmc2130_sg_crash = 0;
  1738. // crashdet_stop_and_save_print();
  1739. switch (crash)
  1740. {
  1741. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1742. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1743. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1744. }
  1745. }
  1746. #endif //TMC2130
  1747. }
  1748. #define DEFINE_PGM_READ_ANY(type, reader) \
  1749. static inline type pgm_read_any(const type *p) \
  1750. { return pgm_read_##reader##_near(p); }
  1751. DEFINE_PGM_READ_ANY(float, float);
  1752. DEFINE_PGM_READ_ANY(signed char, byte);
  1753. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1754. static const PROGMEM type array##_P[3] = \
  1755. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1756. static inline type array(int axis) \
  1757. { return pgm_read_any(&array##_P[axis]); } \
  1758. type array##_ext(int axis) \
  1759. { return pgm_read_any(&array##_P[axis]); }
  1760. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1761. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1762. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1763. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1764. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1765. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1766. static void axis_is_at_home(int axis) {
  1767. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1768. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1769. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1770. }
  1771. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1772. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1773. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1774. saved_feedrate = feedrate;
  1775. saved_feedmultiply = feedmultiply;
  1776. feedmultiply = 100;
  1777. previous_millis_cmd = millis();
  1778. enable_endstops(enable_endstops_now);
  1779. }
  1780. static void clean_up_after_endstop_move() {
  1781. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1782. enable_endstops(false);
  1783. #endif
  1784. feedrate = saved_feedrate;
  1785. feedmultiply = saved_feedmultiply;
  1786. previous_millis_cmd = millis();
  1787. }
  1788. #ifdef ENABLE_AUTO_BED_LEVELING
  1789. #ifdef AUTO_BED_LEVELING_GRID
  1790. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1791. {
  1792. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1793. planeNormal.debug("planeNormal");
  1794. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1795. //bedLevel.debug("bedLevel");
  1796. //plan_bed_level_matrix.debug("bed level before");
  1797. //vector_3 uncorrected_position = plan_get_position_mm();
  1798. //uncorrected_position.debug("position before");
  1799. vector_3 corrected_position = plan_get_position();
  1800. // corrected_position.debug("position after");
  1801. current_position[X_AXIS] = corrected_position.x;
  1802. current_position[Y_AXIS] = corrected_position.y;
  1803. current_position[Z_AXIS] = corrected_position.z;
  1804. // put the bed at 0 so we don't go below it.
  1805. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. }
  1808. #else // not AUTO_BED_LEVELING_GRID
  1809. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1810. plan_bed_level_matrix.set_to_identity();
  1811. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1812. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1813. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1814. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1815. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1816. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1817. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1818. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1819. vector_3 corrected_position = plan_get_position();
  1820. current_position[X_AXIS] = corrected_position.x;
  1821. current_position[Y_AXIS] = corrected_position.y;
  1822. current_position[Z_AXIS] = corrected_position.z;
  1823. // put the bed at 0 so we don't go below it.
  1824. current_position[Z_AXIS] = zprobe_zoffset;
  1825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1826. }
  1827. #endif // AUTO_BED_LEVELING_GRID
  1828. static void run_z_probe() {
  1829. plan_bed_level_matrix.set_to_identity();
  1830. feedrate = homing_feedrate[Z_AXIS];
  1831. // move down until you find the bed
  1832. float zPosition = -10;
  1833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. // we have to let the planner know where we are right now as it is not where we said to go.
  1836. zPosition = st_get_position_mm(Z_AXIS);
  1837. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1838. // move up the retract distance
  1839. zPosition += home_retract_mm(Z_AXIS);
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1841. st_synchronize();
  1842. // move back down slowly to find bed
  1843. feedrate = homing_feedrate[Z_AXIS]/4;
  1844. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1848. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1849. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1850. }
  1851. static void do_blocking_move_to(float x, float y, float z) {
  1852. float oldFeedRate = feedrate;
  1853. feedrate = homing_feedrate[Z_AXIS];
  1854. current_position[Z_AXIS] = z;
  1855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1856. st_synchronize();
  1857. feedrate = XY_TRAVEL_SPEED;
  1858. current_position[X_AXIS] = x;
  1859. current_position[Y_AXIS] = y;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. feedrate = oldFeedRate;
  1863. }
  1864. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1865. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1866. }
  1867. /// Probe bed height at position (x,y), returns the measured z value
  1868. static float probe_pt(float x, float y, float z_before) {
  1869. // move to right place
  1870. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1871. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1872. run_z_probe();
  1873. float measured_z = current_position[Z_AXIS];
  1874. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1875. SERIAL_PROTOCOLPGM(" x: ");
  1876. SERIAL_PROTOCOL(x);
  1877. SERIAL_PROTOCOLPGM(" y: ");
  1878. SERIAL_PROTOCOL(y);
  1879. SERIAL_PROTOCOLPGM(" z: ");
  1880. SERIAL_PROTOCOL(measured_z);
  1881. SERIAL_PROTOCOLPGM("\n");
  1882. return measured_z;
  1883. }
  1884. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1885. #ifdef LIN_ADVANCE
  1886. /**
  1887. * M900: Set and/or Get advance K factor and WH/D ratio
  1888. *
  1889. * K<factor> Set advance K factor
  1890. * R<ratio> Set ratio directly (overrides WH/D)
  1891. * W<width> H<height> D<diam> Set ratio from WH/D
  1892. */
  1893. inline void gcode_M900() {
  1894. st_synchronize();
  1895. const float newK = code_seen('K') ? code_value_float() : -1;
  1896. if (newK >= 0) extruder_advance_k = newK;
  1897. float newR = code_seen('R') ? code_value_float() : -1;
  1898. if (newR < 0) {
  1899. const float newD = code_seen('D') ? code_value_float() : -1,
  1900. newW = code_seen('W') ? code_value_float() : -1,
  1901. newH = code_seen('H') ? code_value_float() : -1;
  1902. if (newD >= 0 && newW >= 0 && newH >= 0)
  1903. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1904. }
  1905. if (newR >= 0) advance_ed_ratio = newR;
  1906. SERIAL_ECHO_START;
  1907. SERIAL_ECHOPGM("Advance K=");
  1908. SERIAL_ECHOLN(extruder_advance_k);
  1909. SERIAL_ECHOPGM(" E/D=");
  1910. const float ratio = advance_ed_ratio;
  1911. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1912. }
  1913. #endif // LIN_ADVANCE
  1914. bool check_commands() {
  1915. bool end_command_found = false;
  1916. while (buflen)
  1917. {
  1918. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1919. if (!cmdbuffer_front_already_processed)
  1920. cmdqueue_pop_front();
  1921. cmdbuffer_front_already_processed = false;
  1922. }
  1923. return end_command_found;
  1924. }
  1925. #ifdef TMC2130
  1926. bool calibrate_z_auto()
  1927. {
  1928. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1929. lcd_implementation_clear();
  1930. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1931. bool endstops_enabled = enable_endstops(true);
  1932. int axis_up_dir = -home_dir(Z_AXIS);
  1933. tmc2130_home_enter(Z_AXIS_MASK);
  1934. current_position[Z_AXIS] = 0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. set_destination_to_current();
  1937. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1938. feedrate = homing_feedrate[Z_AXIS];
  1939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1940. st_synchronize();
  1941. // current_position[axis] = 0;
  1942. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1943. tmc2130_home_exit();
  1944. enable_endstops(false);
  1945. current_position[Z_AXIS] = 0;
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. set_destination_to_current();
  1948. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1949. feedrate = homing_feedrate[Z_AXIS] / 2;
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. enable_endstops(endstops_enabled);
  1953. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1955. return true;
  1956. }
  1957. #endif //TMC2130
  1958. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1959. {
  1960. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1961. #define HOMEAXIS_DO(LETTER) \
  1962. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1963. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1964. {
  1965. int axis_home_dir = home_dir(axis);
  1966. feedrate = homing_feedrate[axis];
  1967. #ifdef TMC2130
  1968. tmc2130_home_enter(X_AXIS_MASK << axis);
  1969. #endif //TMC2130
  1970. // Move right a bit, so that the print head does not touch the left end position,
  1971. // and the following left movement has a chance to achieve the required velocity
  1972. // for the stall guard to work.
  1973. current_position[axis] = 0;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. set_destination_to_current();
  1976. // destination[axis] = 11.f;
  1977. destination[axis] = 3.f;
  1978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1979. st_synchronize();
  1980. // Move left away from the possible collision with the collision detection disabled.
  1981. endstops_hit_on_purpose();
  1982. enable_endstops(false);
  1983. current_position[axis] = 0;
  1984. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1985. destination[axis] = - 1.;
  1986. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1987. st_synchronize();
  1988. // Now continue to move up to the left end stop with the collision detection enabled.
  1989. enable_endstops(true);
  1990. destination[axis] = - 1.1 * max_length(axis);
  1991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1992. st_synchronize();
  1993. for (uint8_t i = 0; i < cnt; i++)
  1994. {
  1995. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1996. endstops_hit_on_purpose();
  1997. enable_endstops(false);
  1998. current_position[axis] = 0;
  1999. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2000. destination[axis] = 10.f;
  2001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2002. st_synchronize();
  2003. endstops_hit_on_purpose();
  2004. // Now move left up to the collision, this time with a repeatable velocity.
  2005. enable_endstops(true);
  2006. destination[axis] = - 11.f;
  2007. #ifdef TMC2130
  2008. feedrate = homing_feedrate[axis];
  2009. #else //TMC2130
  2010. feedrate = homing_feedrate[axis] / 2;
  2011. #endif //TMC2130
  2012. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2013. st_synchronize();
  2014. #ifdef TMC2130
  2015. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2016. if (pstep) pstep[i] = mscnt >> 4;
  2017. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2018. #endif //TMC2130
  2019. }
  2020. endstops_hit_on_purpose();
  2021. enable_endstops(false);
  2022. #ifdef TMC2130
  2023. uint8_t orig = tmc2130_home_origin[axis];
  2024. uint8_t back = tmc2130_home_bsteps[axis];
  2025. if (tmc2130_home_enabled && (orig <= 63))
  2026. {
  2027. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2028. if (back > 0)
  2029. tmc2130_do_steps(axis, back, 1, 1000);
  2030. }
  2031. else
  2032. tmc2130_do_steps(axis, 8, 2, 1000);
  2033. tmc2130_home_exit();
  2034. #endif //TMC2130
  2035. axis_is_at_home(axis);
  2036. axis_known_position[axis] = true;
  2037. // Move from minimum
  2038. #ifdef TMC2130
  2039. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2040. #else //TMC2130
  2041. float dist = 0.01f * 64;
  2042. #endif //TMC2130
  2043. current_position[axis] -= dist;
  2044. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2045. current_position[axis] += dist;
  2046. destination[axis] = current_position[axis];
  2047. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2048. st_synchronize();
  2049. feedrate = 0.0;
  2050. }
  2051. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2052. {
  2053. #ifdef TMC2130
  2054. FORCE_HIGH_POWER_START;
  2055. #endif
  2056. int axis_home_dir = home_dir(axis);
  2057. current_position[axis] = 0;
  2058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2059. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2060. feedrate = homing_feedrate[axis];
  2061. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2062. st_synchronize();
  2063. #ifdef TMC2130
  2064. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2065. FORCE_HIGH_POWER_END;
  2066. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2067. return;
  2068. }
  2069. #endif //TMC2130
  2070. current_position[axis] = 0;
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2073. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2074. st_synchronize();
  2075. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2076. feedrate = homing_feedrate[axis]/2 ;
  2077. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2078. st_synchronize();
  2079. #ifdef TMC2130
  2080. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2081. FORCE_HIGH_POWER_END;
  2082. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2083. return;
  2084. }
  2085. #endif //TMC2130
  2086. axis_is_at_home(axis);
  2087. destination[axis] = current_position[axis];
  2088. feedrate = 0.0;
  2089. endstops_hit_on_purpose();
  2090. axis_known_position[axis] = true;
  2091. #ifdef TMC2130
  2092. FORCE_HIGH_POWER_END;
  2093. #endif
  2094. }
  2095. enable_endstops(endstops_enabled);
  2096. }
  2097. /**/
  2098. void home_xy()
  2099. {
  2100. set_destination_to_current();
  2101. homeaxis(X_AXIS);
  2102. homeaxis(Y_AXIS);
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. endstops_hit_on_purpose();
  2105. }
  2106. void refresh_cmd_timeout(void)
  2107. {
  2108. previous_millis_cmd = millis();
  2109. }
  2110. #ifdef FWRETRACT
  2111. void retract(bool retracting, bool swapretract = false) {
  2112. if(retracting && !retracted[active_extruder]) {
  2113. destination[X_AXIS]=current_position[X_AXIS];
  2114. destination[Y_AXIS]=current_position[Y_AXIS];
  2115. destination[Z_AXIS]=current_position[Z_AXIS];
  2116. destination[E_AXIS]=current_position[E_AXIS];
  2117. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2118. plan_set_e_position(current_position[E_AXIS]);
  2119. float oldFeedrate = feedrate;
  2120. feedrate=retract_feedrate*60;
  2121. retracted[active_extruder]=true;
  2122. prepare_move();
  2123. current_position[Z_AXIS]-=retract_zlift;
  2124. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2125. prepare_move();
  2126. feedrate = oldFeedrate;
  2127. } else if(!retracting && retracted[active_extruder]) {
  2128. destination[X_AXIS]=current_position[X_AXIS];
  2129. destination[Y_AXIS]=current_position[Y_AXIS];
  2130. destination[Z_AXIS]=current_position[Z_AXIS];
  2131. destination[E_AXIS]=current_position[E_AXIS];
  2132. current_position[Z_AXIS]+=retract_zlift;
  2133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2134. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2135. plan_set_e_position(current_position[E_AXIS]);
  2136. float oldFeedrate = feedrate;
  2137. feedrate=retract_recover_feedrate*60;
  2138. retracted[active_extruder]=false;
  2139. prepare_move();
  2140. feedrate = oldFeedrate;
  2141. }
  2142. } //retract
  2143. #endif //FWRETRACT
  2144. void trace() {
  2145. tone(BEEPER, 440);
  2146. delay(25);
  2147. noTone(BEEPER);
  2148. delay(20);
  2149. }
  2150. /*
  2151. void ramming() {
  2152. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2153. if (current_temperature[0] < 230) {
  2154. //PLA
  2155. max_feedrate[E_AXIS] = 50;
  2156. //current_position[E_AXIS] -= 8;
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2158. //current_position[E_AXIS] += 8;
  2159. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2160. current_position[E_AXIS] += 5.4;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2162. current_position[E_AXIS] += 3.2;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2164. current_position[E_AXIS] += 3;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2166. st_synchronize();
  2167. max_feedrate[E_AXIS] = 80;
  2168. current_position[E_AXIS] -= 82;
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2170. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2171. current_position[E_AXIS] -= 20;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2173. current_position[E_AXIS] += 5;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2175. current_position[E_AXIS] += 5;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2177. current_position[E_AXIS] -= 10;
  2178. st_synchronize();
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. current_position[E_AXIS] += 10;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2182. current_position[E_AXIS] -= 10;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2184. current_position[E_AXIS] += 10;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2186. current_position[E_AXIS] -= 10;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2188. st_synchronize();
  2189. }
  2190. else {
  2191. //ABS
  2192. max_feedrate[E_AXIS] = 50;
  2193. //current_position[E_AXIS] -= 8;
  2194. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2195. //current_position[E_AXIS] += 8;
  2196. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2197. current_position[E_AXIS] += 3.1;
  2198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2199. current_position[E_AXIS] += 3.1;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2201. current_position[E_AXIS] += 4;
  2202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2203. st_synchronize();
  2204. //current_position[X_AXIS] += 23; //delay
  2205. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2206. //current_position[X_AXIS] -= 23; //delay
  2207. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2208. delay(4700);
  2209. max_feedrate[E_AXIS] = 80;
  2210. current_position[E_AXIS] -= 92;
  2211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2212. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2213. current_position[E_AXIS] -= 5;
  2214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2215. current_position[E_AXIS] += 5;
  2216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2217. current_position[E_AXIS] -= 5;
  2218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2219. st_synchronize();
  2220. current_position[E_AXIS] += 5;
  2221. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2222. current_position[E_AXIS] -= 5;
  2223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2224. current_position[E_AXIS] += 5;
  2225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2226. current_position[E_AXIS] -= 5;
  2227. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2228. st_synchronize();
  2229. }
  2230. }
  2231. */
  2232. #ifdef TMC2130
  2233. void force_high_power_mode(bool start_high_power_section) {
  2234. uint8_t silent;
  2235. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2236. if (silent == 1) {
  2237. //we are in silent mode, set to normal mode to enable crash detection
  2238. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2239. st_synchronize();
  2240. cli();
  2241. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2242. tmc2130_init();
  2243. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2244. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2245. st_reset_timer();
  2246. sei();
  2247. }
  2248. }
  2249. #endif //TMC2130
  2250. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2251. st_synchronize();
  2252. #if 0
  2253. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2254. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2255. #endif
  2256. // Flag for the display update routine and to disable the print cancelation during homing.
  2257. homing_flag = true;
  2258. // Either all X,Y,Z codes are present, or none of them.
  2259. bool home_all_axes = home_x == home_y && home_x == home_z;
  2260. if (home_all_axes)
  2261. // No X/Y/Z code provided means to home all axes.
  2262. home_x = home_y = home_z = true;
  2263. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2264. if (home_all_axes) {
  2265. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2266. feedrate = homing_feedrate[Z_AXIS];
  2267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2268. st_synchronize();
  2269. }
  2270. #ifdef ENABLE_AUTO_BED_LEVELING
  2271. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2272. #endif //ENABLE_AUTO_BED_LEVELING
  2273. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2274. // the planner will not perform any adjustments in the XY plane.
  2275. // Wait for the motors to stop and update the current position with the absolute values.
  2276. world2machine_revert_to_uncorrected();
  2277. // For mesh bed leveling deactivate the matrix temporarily.
  2278. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2279. // in a single axis only.
  2280. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2281. #ifdef MESH_BED_LEVELING
  2282. uint8_t mbl_was_active = mbl.active;
  2283. mbl.active = 0;
  2284. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2285. #endif
  2286. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2287. // consumed during the first movements following this statement.
  2288. if (home_z)
  2289. babystep_undo();
  2290. saved_feedrate = feedrate;
  2291. saved_feedmultiply = feedmultiply;
  2292. feedmultiply = 100;
  2293. previous_millis_cmd = millis();
  2294. enable_endstops(true);
  2295. memcpy(destination, current_position, sizeof(destination));
  2296. feedrate = 0.0;
  2297. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2298. if(home_z)
  2299. homeaxis(Z_AXIS);
  2300. #endif
  2301. #ifdef QUICK_HOME
  2302. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2303. if(home_x && home_y) //first diagonal move
  2304. {
  2305. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2306. int x_axis_home_dir = home_dir(X_AXIS);
  2307. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2308. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2309. feedrate = homing_feedrate[X_AXIS];
  2310. if(homing_feedrate[Y_AXIS]<feedrate)
  2311. feedrate = homing_feedrate[Y_AXIS];
  2312. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2313. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2314. } else {
  2315. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2316. }
  2317. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2318. st_synchronize();
  2319. axis_is_at_home(X_AXIS);
  2320. axis_is_at_home(Y_AXIS);
  2321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2322. destination[X_AXIS] = current_position[X_AXIS];
  2323. destination[Y_AXIS] = current_position[Y_AXIS];
  2324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2325. feedrate = 0.0;
  2326. st_synchronize();
  2327. endstops_hit_on_purpose();
  2328. current_position[X_AXIS] = destination[X_AXIS];
  2329. current_position[Y_AXIS] = destination[Y_AXIS];
  2330. current_position[Z_AXIS] = destination[Z_AXIS];
  2331. }
  2332. #endif /* QUICK_HOME */
  2333. #ifdef TMC2130
  2334. if(home_x)
  2335. {
  2336. if (!calib)
  2337. homeaxis(X_AXIS);
  2338. else
  2339. tmc2130_home_calibrate(X_AXIS);
  2340. }
  2341. if(home_y)
  2342. {
  2343. if (!calib)
  2344. homeaxis(Y_AXIS);
  2345. else
  2346. tmc2130_home_calibrate(Y_AXIS);
  2347. }
  2348. #endif //TMC2130
  2349. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2350. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2351. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2352. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2353. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2354. #ifndef Z_SAFE_HOMING
  2355. if(home_z) {
  2356. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2357. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2358. feedrate = max_feedrate[Z_AXIS];
  2359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2360. st_synchronize();
  2361. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2362. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2363. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2364. {
  2365. homeaxis(X_AXIS);
  2366. homeaxis(Y_AXIS);
  2367. }
  2368. // 1st mesh bed leveling measurement point, corrected.
  2369. world2machine_initialize();
  2370. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2371. world2machine_reset();
  2372. if (destination[Y_AXIS] < Y_MIN_POS)
  2373. destination[Y_AXIS] = Y_MIN_POS;
  2374. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2375. feedrate = homing_feedrate[Z_AXIS]/10;
  2376. current_position[Z_AXIS] = 0;
  2377. enable_endstops(false);
  2378. #ifdef DEBUG_BUILD
  2379. SERIAL_ECHOLNPGM("plan_set_position()");
  2380. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2381. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2382. #endif
  2383. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2384. #ifdef DEBUG_BUILD
  2385. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2386. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2387. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2388. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2389. #endif
  2390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2391. st_synchronize();
  2392. current_position[X_AXIS] = destination[X_AXIS];
  2393. current_position[Y_AXIS] = destination[Y_AXIS];
  2394. enable_endstops(true);
  2395. endstops_hit_on_purpose();
  2396. homeaxis(Z_AXIS);
  2397. #else // MESH_BED_LEVELING
  2398. homeaxis(Z_AXIS);
  2399. #endif // MESH_BED_LEVELING
  2400. }
  2401. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2402. if(home_all_axes) {
  2403. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2404. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2405. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2406. feedrate = XY_TRAVEL_SPEED/60;
  2407. current_position[Z_AXIS] = 0;
  2408. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2409. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2410. st_synchronize();
  2411. current_position[X_AXIS] = destination[X_AXIS];
  2412. current_position[Y_AXIS] = destination[Y_AXIS];
  2413. homeaxis(Z_AXIS);
  2414. }
  2415. // Let's see if X and Y are homed and probe is inside bed area.
  2416. if(home_z) {
  2417. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2418. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2419. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2420. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2421. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2422. current_position[Z_AXIS] = 0;
  2423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2424. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2425. feedrate = max_feedrate[Z_AXIS];
  2426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2427. st_synchronize();
  2428. homeaxis(Z_AXIS);
  2429. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2430. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2431. SERIAL_ECHO_START;
  2432. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2433. } else {
  2434. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2435. SERIAL_ECHO_START;
  2436. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2437. }
  2438. }
  2439. #endif // Z_SAFE_HOMING
  2440. #endif // Z_HOME_DIR < 0
  2441. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2442. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2443. #ifdef ENABLE_AUTO_BED_LEVELING
  2444. if(home_z)
  2445. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2446. #endif
  2447. // Set the planner and stepper routine positions.
  2448. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2449. // contains the machine coordinates.
  2450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2451. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2452. enable_endstops(false);
  2453. #endif
  2454. feedrate = saved_feedrate;
  2455. feedmultiply = saved_feedmultiply;
  2456. previous_millis_cmd = millis();
  2457. endstops_hit_on_purpose();
  2458. #ifndef MESH_BED_LEVELING
  2459. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2460. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2461. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2462. lcd_adjust_z();
  2463. #endif
  2464. // Load the machine correction matrix
  2465. world2machine_initialize();
  2466. // and correct the current_position XY axes to match the transformed coordinate system.
  2467. world2machine_update_current();
  2468. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2469. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2470. {
  2471. if (! home_z && mbl_was_active) {
  2472. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2473. mbl.active = true;
  2474. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2475. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2476. }
  2477. }
  2478. else
  2479. {
  2480. st_synchronize();
  2481. homing_flag = false;
  2482. // Push the commands to the front of the message queue in the reverse order!
  2483. // There shall be always enough space reserved for these commands.
  2484. enquecommand_front_P((PSTR("G80")));
  2485. //goto case_G80;
  2486. }
  2487. #endif
  2488. if (farm_mode) { prusa_statistics(20); };
  2489. homing_flag = false;
  2490. #if 0
  2491. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2492. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2493. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2494. #endif
  2495. }
  2496. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2497. {
  2498. bool final_result = false;
  2499. #ifdef TMC2130
  2500. FORCE_HIGH_POWER_START;
  2501. #endif // TMC2130
  2502. // Only Z calibration?
  2503. if (!onlyZ)
  2504. {
  2505. setTargetBed(0);
  2506. setTargetHotend(0, 0);
  2507. setTargetHotend(0, 1);
  2508. setTargetHotend(0, 2);
  2509. adjust_bed_reset(); //reset bed level correction
  2510. }
  2511. // Disable the default update procedure of the display. We will do a modal dialog.
  2512. lcd_update_enable(false);
  2513. // Let the planner use the uncorrected coordinates.
  2514. mbl.reset();
  2515. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2516. // the planner will not perform any adjustments in the XY plane.
  2517. // Wait for the motors to stop and update the current position with the absolute values.
  2518. world2machine_revert_to_uncorrected();
  2519. // Reset the baby step value applied without moving the axes.
  2520. babystep_reset();
  2521. // Mark all axes as in a need for homing.
  2522. memset(axis_known_position, 0, sizeof(axis_known_position));
  2523. // Home in the XY plane.
  2524. //set_destination_to_current();
  2525. setup_for_endstop_move();
  2526. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2527. home_xy();
  2528. enable_endstops(false);
  2529. current_position[X_AXIS] += 5;
  2530. current_position[Y_AXIS] += 5;
  2531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2532. st_synchronize();
  2533. // Let the user move the Z axes up to the end stoppers.
  2534. #ifdef TMC2130
  2535. if (calibrate_z_auto())
  2536. {
  2537. #else //TMC2130
  2538. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2539. {
  2540. #endif //TMC2130
  2541. refresh_cmd_timeout();
  2542. #ifndef STEEL_SHEET
  2543. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2544. {
  2545. lcd_wait_for_cool_down();
  2546. }
  2547. #endif //STEEL_SHEET
  2548. if(!onlyZ)
  2549. {
  2550. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2551. #ifdef STEEL_SHEET
  2552. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2553. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2554. #endif //STEEL_SHEET
  2555. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2556. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2557. KEEPALIVE_STATE(IN_HANDLER);
  2558. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2559. lcd_implementation_print_at(0, 2, 1);
  2560. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2561. }
  2562. // Move the print head close to the bed.
  2563. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2564. bool endstops_enabled = enable_endstops(true);
  2565. #ifdef TMC2130
  2566. tmc2130_home_enter(Z_AXIS_MASK);
  2567. #endif //TMC2130
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2569. st_synchronize();
  2570. #ifdef TMC2130
  2571. tmc2130_home_exit();
  2572. #endif //TMC2130
  2573. enable_endstops(endstops_enabled);
  2574. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2575. {
  2576. int8_t verbosity_level = 0;
  2577. if (code_seen('V'))
  2578. {
  2579. // Just 'V' without a number counts as V1.
  2580. char c = strchr_pointer[1];
  2581. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2582. }
  2583. if (onlyZ)
  2584. {
  2585. clean_up_after_endstop_move();
  2586. // Z only calibration.
  2587. // Load the machine correction matrix
  2588. world2machine_initialize();
  2589. // and correct the current_position to match the transformed coordinate system.
  2590. world2machine_update_current();
  2591. //FIXME
  2592. bool result = sample_mesh_and_store_reference();
  2593. if (result)
  2594. {
  2595. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2596. // Shipped, the nozzle height has been set already. The user can start printing now.
  2597. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2598. final_result = true;
  2599. // babystep_apply();
  2600. }
  2601. }
  2602. else
  2603. {
  2604. // Reset the baby step value and the baby step applied flag.
  2605. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2606. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2607. // Complete XYZ calibration.
  2608. uint8_t point_too_far_mask = 0;
  2609. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2610. clean_up_after_endstop_move();
  2611. // Print head up.
  2612. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2614. st_synchronize();
  2615. //#ifndef NEW_XYZCAL
  2616. if (result >= 0)
  2617. {
  2618. #ifdef HEATBED_V2
  2619. sample_z();
  2620. #else //HEATBED_V2
  2621. point_too_far_mask = 0;
  2622. // Second half: The fine adjustment.
  2623. // Let the planner use the uncorrected coordinates.
  2624. mbl.reset();
  2625. world2machine_reset();
  2626. // Home in the XY plane.
  2627. setup_for_endstop_move();
  2628. home_xy();
  2629. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2630. clean_up_after_endstop_move();
  2631. // Print head up.
  2632. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2634. st_synchronize();
  2635. // if (result >= 0) babystep_apply();
  2636. #endif //HEATBED_V2
  2637. }
  2638. //#endif //NEW_XYZCAL
  2639. lcd_update_enable(true);
  2640. lcd_update(2);
  2641. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2642. if (result >= 0)
  2643. {
  2644. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2645. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2646. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2647. final_result = true;
  2648. }
  2649. }
  2650. #ifdef TMC2130
  2651. tmc2130_home_exit();
  2652. #endif
  2653. }
  2654. else
  2655. {
  2656. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2657. final_result = false;
  2658. }
  2659. }
  2660. else
  2661. {
  2662. // Timeouted.
  2663. }
  2664. lcd_update_enable(true);
  2665. #ifdef TMC2130
  2666. FORCE_HIGH_POWER_END;
  2667. #endif // TMC2130
  2668. return final_result;
  2669. }
  2670. void gcode_M114()
  2671. {
  2672. SERIAL_PROTOCOLPGM("X:");
  2673. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2674. SERIAL_PROTOCOLPGM(" Y:");
  2675. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" Z:");
  2677. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2678. SERIAL_PROTOCOLPGM(" E:");
  2679. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2680. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2681. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2682. SERIAL_PROTOCOLPGM(" Y:");
  2683. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2684. SERIAL_PROTOCOLPGM(" Z:");
  2685. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2686. SERIAL_PROTOCOLPGM(" E:");
  2687. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2688. SERIAL_PROTOCOLLN("");
  2689. }
  2690. void gcode_M701()
  2691. {
  2692. #ifdef SNMM
  2693. extr_adj(snmm_extruder);//loads current extruder
  2694. #else
  2695. enable_z();
  2696. custom_message = true;
  2697. custom_message_type = 2;
  2698. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2699. current_position[E_AXIS] += 70;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2701. current_position[E_AXIS] += 25;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2703. st_synchronize();
  2704. tone(BEEPER, 500);
  2705. delay_keep_alive(50);
  2706. noTone(BEEPER);
  2707. if (!farm_mode && loading_flag) {
  2708. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2709. while (!clean) {
  2710. lcd_update_enable(true);
  2711. lcd_update(2);
  2712. current_position[E_AXIS] += 25;
  2713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2714. st_synchronize();
  2715. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2716. }
  2717. }
  2718. lcd_update_enable(true);
  2719. lcd_update(2);
  2720. lcd_setstatuspgm(_T(WELCOME_MSG));
  2721. disable_z();
  2722. loading_flag = false;
  2723. custom_message = false;
  2724. custom_message_type = 0;
  2725. #endif
  2726. }
  2727. /**
  2728. * @brief Get serial number from 32U2 processor
  2729. *
  2730. * Typical format of S/N is:CZPX0917X003XC13518
  2731. *
  2732. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2733. *
  2734. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2735. * reply is transmitted to serial port 1 character by character.
  2736. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2737. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2738. * in any case.
  2739. */
  2740. static void gcode_PRUSA_SN()
  2741. {
  2742. if (farm_mode) {
  2743. selectedSerialPort = 0;
  2744. putchar(';');
  2745. putchar('S');
  2746. int numbersRead = 0;
  2747. ShortTimer timeout;
  2748. timeout.start();
  2749. while (numbersRead < 19) {
  2750. while (MSerial.available() > 0) {
  2751. uint8_t serial_char = MSerial.read();
  2752. selectedSerialPort = 1;
  2753. putchar(serial_char);
  2754. numbersRead++;
  2755. selectedSerialPort = 0;
  2756. }
  2757. if (timeout.expired(100u)) break;
  2758. }
  2759. selectedSerialPort = 1;
  2760. putchar('\n');
  2761. #if 0
  2762. for (int b = 0; b < 3; b++) {
  2763. tone(BEEPER, 110);
  2764. delay(50);
  2765. noTone(BEEPER);
  2766. delay(50);
  2767. }
  2768. #endif
  2769. } else {
  2770. puts_P(_N("Not in farm mode."));
  2771. }
  2772. }
  2773. void process_commands()
  2774. {
  2775. if (!buflen) return; //empty command
  2776. #ifdef FILAMENT_RUNOUT_SUPPORT
  2777. SET_INPUT(FR_SENS);
  2778. #endif
  2779. #ifdef CMDBUFFER_DEBUG
  2780. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2781. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2782. SERIAL_ECHOLNPGM("");
  2783. SERIAL_ECHOPGM("In cmdqueue: ");
  2784. SERIAL_ECHO(buflen);
  2785. SERIAL_ECHOLNPGM("");
  2786. #endif /* CMDBUFFER_DEBUG */
  2787. unsigned long codenum; //throw away variable
  2788. char *starpos = NULL;
  2789. #ifdef ENABLE_AUTO_BED_LEVELING
  2790. float x_tmp, y_tmp, z_tmp, real_z;
  2791. #endif
  2792. // PRUSA GCODES
  2793. KEEPALIVE_STATE(IN_HANDLER);
  2794. #ifdef SNMM
  2795. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2796. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2797. int8_t SilentMode;
  2798. #endif
  2799. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2800. starpos = (strchr(strchr_pointer + 5, '*'));
  2801. if (starpos != NULL)
  2802. *(starpos) = '\0';
  2803. lcd_setstatus(strchr_pointer + 5);
  2804. }
  2805. #ifdef TMC2130
  2806. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2807. {
  2808. if(code_seen("CRASH_DETECTED"))
  2809. {
  2810. uint8_t mask = 0;
  2811. if (code_seen("X")) mask |= X_AXIS_MASK;
  2812. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2813. crashdet_detected(mask);
  2814. }
  2815. else if(code_seen("CRASH_RECOVER"))
  2816. crashdet_recover();
  2817. else if(code_seen("CRASH_CANCEL"))
  2818. crashdet_cancel();
  2819. }
  2820. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2821. {
  2822. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2823. {
  2824. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2825. axis = (axis == 'E')?3:(axis - 'X');
  2826. if (axis < 4)
  2827. {
  2828. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2829. tmc2130_set_wave(axis, 247, fac);
  2830. }
  2831. }
  2832. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2833. {
  2834. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2835. axis = (axis == 'E')?3:(axis - 'X');
  2836. if (axis < 4)
  2837. {
  2838. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2839. uint16_t res = tmc2130_get_res(axis);
  2840. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2841. }
  2842. }
  2843. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2844. {
  2845. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2846. axis = (axis == 'E')?3:(axis - 'X');
  2847. if (axis < 4)
  2848. {
  2849. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2850. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2851. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2852. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2853. char* str_end = 0;
  2854. if (CMDBUFFER_CURRENT_STRING[14])
  2855. {
  2856. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2857. if (str_end && *str_end)
  2858. {
  2859. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2860. if (str_end && *str_end)
  2861. {
  2862. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2863. if (str_end && *str_end)
  2864. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2865. }
  2866. }
  2867. }
  2868. tmc2130_chopper_config[axis].toff = chop0;
  2869. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2870. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2871. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2872. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2873. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2874. }
  2875. }
  2876. }
  2877. #endif //TMC2130
  2878. else if(code_seen("PRUSA")){
  2879. if (code_seen("Ping")) { //PRUSA Ping
  2880. if (farm_mode) {
  2881. PingTime = millis();
  2882. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2883. }
  2884. }
  2885. else if (code_seen("PRN")) {
  2886. printf_P(_N("%d"), status_number);
  2887. }else if (code_seen("FAN")) {
  2888. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2889. }else if (code_seen("fn")) {
  2890. if (farm_mode) {
  2891. printf_P(_N("%d"), farm_no);
  2892. }
  2893. else {
  2894. puts_P(_N("Not in farm mode."));
  2895. }
  2896. }
  2897. else if (code_seen("thx")) {
  2898. no_response = false;
  2899. } else if (code_seen("RESET")) {
  2900. // careful!
  2901. if (farm_mode) {
  2902. #ifdef WATCHDOG
  2903. wdt_enable(WDTO_15MS);
  2904. cli();
  2905. while(1);
  2906. #else //WATCHDOG
  2907. asm volatile("jmp 0x3E000");
  2908. #endif //WATCHDOG
  2909. }
  2910. else {
  2911. MYSERIAL.println("Not in farm mode.");
  2912. }
  2913. }else if (code_seen("fv")) {
  2914. // get file version
  2915. #ifdef SDSUPPORT
  2916. card.openFile(strchr_pointer + 3,true);
  2917. while (true) {
  2918. uint16_t readByte = card.get();
  2919. MYSERIAL.write(readByte);
  2920. if (readByte=='\n') {
  2921. break;
  2922. }
  2923. }
  2924. card.closefile();
  2925. #endif // SDSUPPORT
  2926. } else if (code_seen("M28")) {
  2927. trace();
  2928. prusa_sd_card_upload = true;
  2929. card.openFile(strchr_pointer+4,false);
  2930. } else if (code_seen("SN")) {
  2931. gcode_PRUSA_SN();
  2932. } else if(code_seen("Fir")){
  2933. SERIAL_PROTOCOLLN(FW_VERSION);
  2934. } else if(code_seen("Rev")){
  2935. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2936. } else if(code_seen("Lang")) {
  2937. lang_reset();
  2938. } else if(code_seen("Lz")) {
  2939. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2940. } else if(code_seen("Beat")) {
  2941. // Kick farm link timer
  2942. kicktime = millis();
  2943. } else if(code_seen("FR")) {
  2944. // Factory full reset
  2945. factory_reset(0,true);
  2946. }
  2947. //else if (code_seen('Cal')) {
  2948. // lcd_calibration();
  2949. // }
  2950. }
  2951. else if (code_seen('^')) {
  2952. // nothing, this is a version line
  2953. } else if(code_seen('G'))
  2954. {
  2955. switch((int)code_value())
  2956. {
  2957. case 0: // G0 -> G1
  2958. case 1: // G1
  2959. if(Stopped == false) {
  2960. #ifdef FILAMENT_RUNOUT_SUPPORT
  2961. if(READ(FR_SENS)){
  2962. feedmultiplyBckp=feedmultiply;
  2963. float target[4];
  2964. float lastpos[4];
  2965. target[X_AXIS]=current_position[X_AXIS];
  2966. target[Y_AXIS]=current_position[Y_AXIS];
  2967. target[Z_AXIS]=current_position[Z_AXIS];
  2968. target[E_AXIS]=current_position[E_AXIS];
  2969. lastpos[X_AXIS]=current_position[X_AXIS];
  2970. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2971. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2972. lastpos[E_AXIS]=current_position[E_AXIS];
  2973. //retract by E
  2974. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2975. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2976. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2977. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2978. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2979. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2981. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2983. //finish moves
  2984. st_synchronize();
  2985. //disable extruder steppers so filament can be removed
  2986. disable_e0();
  2987. disable_e1();
  2988. disable_e2();
  2989. delay(100);
  2990. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2991. uint8_t cnt=0;
  2992. int counterBeep = 0;
  2993. lcd_wait_interact();
  2994. while(!lcd_clicked()){
  2995. cnt++;
  2996. manage_heater();
  2997. manage_inactivity(true);
  2998. //lcd_update();
  2999. if(cnt==0)
  3000. {
  3001. #if BEEPER > 0
  3002. if (counterBeep== 500){
  3003. counterBeep = 0;
  3004. }
  3005. SET_OUTPUT(BEEPER);
  3006. if (counterBeep== 0){
  3007. WRITE(BEEPER,HIGH);
  3008. }
  3009. if (counterBeep== 20){
  3010. WRITE(BEEPER,LOW);
  3011. }
  3012. counterBeep++;
  3013. #else
  3014. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3015. lcd_buzz(1000/6,100);
  3016. #else
  3017. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3018. #endif
  3019. #endif
  3020. }
  3021. }
  3022. WRITE(BEEPER,LOW);
  3023. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3025. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3026. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3027. lcd_change_fil_state = 0;
  3028. lcd_loading_filament();
  3029. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3030. lcd_change_fil_state = 0;
  3031. lcd_alright();
  3032. switch(lcd_change_fil_state){
  3033. case 2:
  3034. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3036. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3037. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3038. lcd_loading_filament();
  3039. break;
  3040. case 3:
  3041. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3043. lcd_loading_color();
  3044. break;
  3045. default:
  3046. lcd_change_success();
  3047. break;
  3048. }
  3049. }
  3050. target[E_AXIS]+= 5;
  3051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3052. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3054. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3055. //plan_set_e_position(current_position[E_AXIS]);
  3056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3057. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3058. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3059. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3060. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3061. plan_set_e_position(lastpos[E_AXIS]);
  3062. feedmultiply=feedmultiplyBckp;
  3063. char cmd[9];
  3064. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3065. enquecommand(cmd);
  3066. }
  3067. #endif
  3068. get_coordinates(); // For X Y Z E F
  3069. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3070. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3071. }
  3072. #ifdef FWRETRACT
  3073. if(autoretract_enabled)
  3074. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3075. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3076. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3077. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3078. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3079. retract(!retracted[active_extruder]);
  3080. return;
  3081. }
  3082. }
  3083. #endif //FWRETRACT
  3084. prepare_move();
  3085. //ClearToSend();
  3086. }
  3087. break;
  3088. case 2: // G2 - CW ARC
  3089. if(Stopped == false) {
  3090. get_arc_coordinates();
  3091. prepare_arc_move(true);
  3092. }
  3093. break;
  3094. case 3: // G3 - CCW ARC
  3095. if(Stopped == false) {
  3096. get_arc_coordinates();
  3097. prepare_arc_move(false);
  3098. }
  3099. break;
  3100. case 4: // G4 dwell
  3101. codenum = 0;
  3102. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3103. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3104. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3105. st_synchronize();
  3106. codenum += millis(); // keep track of when we started waiting
  3107. previous_millis_cmd = millis();
  3108. while(millis() < codenum) {
  3109. manage_heater();
  3110. manage_inactivity();
  3111. lcd_update();
  3112. }
  3113. break;
  3114. #ifdef FWRETRACT
  3115. case 10: // G10 retract
  3116. #if EXTRUDERS > 1
  3117. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3118. retract(true,retracted_swap[active_extruder]);
  3119. #else
  3120. retract(true);
  3121. #endif
  3122. break;
  3123. case 11: // G11 retract_recover
  3124. #if EXTRUDERS > 1
  3125. retract(false,retracted_swap[active_extruder]);
  3126. #else
  3127. retract(false);
  3128. #endif
  3129. break;
  3130. #endif //FWRETRACT
  3131. case 28: //G28 Home all Axis one at a time
  3132. {
  3133. // Which axes should be homed?
  3134. bool home_x = code_seen(axis_codes[X_AXIS]);
  3135. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3136. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3137. // calibrate?
  3138. bool calib = code_seen('C');
  3139. gcode_G28(home_x, home_y, home_z, calib);
  3140. break;
  3141. }
  3142. #ifdef ENABLE_AUTO_BED_LEVELING
  3143. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3144. {
  3145. #if Z_MIN_PIN == -1
  3146. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3147. #endif
  3148. // Prevent user from running a G29 without first homing in X and Y
  3149. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3150. {
  3151. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3152. SERIAL_ECHO_START;
  3153. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3154. break; // abort G29, since we don't know where we are
  3155. }
  3156. st_synchronize();
  3157. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3158. //vector_3 corrected_position = plan_get_position_mm();
  3159. //corrected_position.debug("position before G29");
  3160. plan_bed_level_matrix.set_to_identity();
  3161. vector_3 uncorrected_position = plan_get_position();
  3162. //uncorrected_position.debug("position durring G29");
  3163. current_position[X_AXIS] = uncorrected_position.x;
  3164. current_position[Y_AXIS] = uncorrected_position.y;
  3165. current_position[Z_AXIS] = uncorrected_position.z;
  3166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3167. setup_for_endstop_move();
  3168. feedrate = homing_feedrate[Z_AXIS];
  3169. #ifdef AUTO_BED_LEVELING_GRID
  3170. // probe at the points of a lattice grid
  3171. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3172. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3173. // solve the plane equation ax + by + d = z
  3174. // A is the matrix with rows [x y 1] for all the probed points
  3175. // B is the vector of the Z positions
  3176. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3177. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3178. // "A" matrix of the linear system of equations
  3179. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3180. // "B" vector of Z points
  3181. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3182. int probePointCounter = 0;
  3183. bool zig = true;
  3184. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3185. {
  3186. int xProbe, xInc;
  3187. if (zig)
  3188. {
  3189. xProbe = LEFT_PROBE_BED_POSITION;
  3190. //xEnd = RIGHT_PROBE_BED_POSITION;
  3191. xInc = xGridSpacing;
  3192. zig = false;
  3193. } else // zag
  3194. {
  3195. xProbe = RIGHT_PROBE_BED_POSITION;
  3196. //xEnd = LEFT_PROBE_BED_POSITION;
  3197. xInc = -xGridSpacing;
  3198. zig = true;
  3199. }
  3200. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3201. {
  3202. float z_before;
  3203. if (probePointCounter == 0)
  3204. {
  3205. // raise before probing
  3206. z_before = Z_RAISE_BEFORE_PROBING;
  3207. } else
  3208. {
  3209. // raise extruder
  3210. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3211. }
  3212. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3213. eqnBVector[probePointCounter] = measured_z;
  3214. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3215. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3216. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3217. probePointCounter++;
  3218. xProbe += xInc;
  3219. }
  3220. }
  3221. clean_up_after_endstop_move();
  3222. // solve lsq problem
  3223. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3224. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3225. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3226. SERIAL_PROTOCOLPGM(" b: ");
  3227. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3228. SERIAL_PROTOCOLPGM(" d: ");
  3229. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3230. set_bed_level_equation_lsq(plane_equation_coefficients);
  3231. free(plane_equation_coefficients);
  3232. #else // AUTO_BED_LEVELING_GRID not defined
  3233. // Probe at 3 arbitrary points
  3234. // probe 1
  3235. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3236. // probe 2
  3237. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3238. // probe 3
  3239. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3240. clean_up_after_endstop_move();
  3241. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3242. #endif // AUTO_BED_LEVELING_GRID
  3243. st_synchronize();
  3244. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3245. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3246. // When the bed is uneven, this height must be corrected.
  3247. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3248. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3249. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3250. z_tmp = current_position[Z_AXIS];
  3251. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3252. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3254. }
  3255. break;
  3256. #ifndef Z_PROBE_SLED
  3257. case 30: // G30 Single Z Probe
  3258. {
  3259. st_synchronize();
  3260. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3261. setup_for_endstop_move();
  3262. feedrate = homing_feedrate[Z_AXIS];
  3263. run_z_probe();
  3264. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3265. SERIAL_PROTOCOLPGM(" X: ");
  3266. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3267. SERIAL_PROTOCOLPGM(" Y: ");
  3268. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3269. SERIAL_PROTOCOLPGM(" Z: ");
  3270. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3271. SERIAL_PROTOCOLPGM("\n");
  3272. clean_up_after_endstop_move();
  3273. }
  3274. break;
  3275. #else
  3276. case 31: // dock the sled
  3277. dock_sled(true);
  3278. break;
  3279. case 32: // undock the sled
  3280. dock_sled(false);
  3281. break;
  3282. #endif // Z_PROBE_SLED
  3283. #endif // ENABLE_AUTO_BED_LEVELING
  3284. #ifdef MESH_BED_LEVELING
  3285. case 30: // G30 Single Z Probe
  3286. {
  3287. st_synchronize();
  3288. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3289. setup_for_endstop_move();
  3290. feedrate = homing_feedrate[Z_AXIS];
  3291. find_bed_induction_sensor_point_z(-10.f, 3);
  3292. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3293. clean_up_after_endstop_move();
  3294. }
  3295. break;
  3296. case 75:
  3297. {
  3298. for (int i = 40; i <= 110; i++)
  3299. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3300. }
  3301. break;
  3302. case 76: //PINDA probe temperature calibration
  3303. {
  3304. #ifdef PINDA_THERMISTOR
  3305. if (true)
  3306. {
  3307. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3308. //we need to know accurate position of first calibration point
  3309. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3310. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3311. break;
  3312. }
  3313. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3314. {
  3315. // We don't know where we are! HOME!
  3316. // Push the commands to the front of the message queue in the reverse order!
  3317. // There shall be always enough space reserved for these commands.
  3318. repeatcommand_front(); // repeat G76 with all its parameters
  3319. enquecommand_front_P((PSTR("G28 W0")));
  3320. break;
  3321. }
  3322. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3323. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3324. if (result)
  3325. {
  3326. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3328. current_position[Z_AXIS] = 50;
  3329. current_position[Y_AXIS] = 180;
  3330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3331. st_synchronize();
  3332. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3333. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3334. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3336. st_synchronize();
  3337. gcode_G28(false, false, true, false);
  3338. }
  3339. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3340. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3341. current_position[Z_AXIS] = 100;
  3342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3343. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3344. lcd_temp_cal_show_result(false);
  3345. break;
  3346. }
  3347. }
  3348. lcd_update_enable(true);
  3349. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3350. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3351. float zero_z;
  3352. int z_shift = 0; //unit: steps
  3353. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3354. if (start_temp < 35) start_temp = 35;
  3355. if (start_temp < current_temperature_pinda) start_temp += 5;
  3356. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3357. // setTargetHotend(200, 0);
  3358. setTargetBed(70 + (start_temp - 30));
  3359. custom_message = true;
  3360. custom_message_type = 4;
  3361. custom_message_state = 1;
  3362. custom_message = _T(MSG_TEMP_CALIBRATION);
  3363. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3365. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3366. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3368. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3370. st_synchronize();
  3371. while (current_temperature_pinda < start_temp)
  3372. {
  3373. delay_keep_alive(1000);
  3374. serialecho_temperatures();
  3375. }
  3376. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3377. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3378. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3379. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3380. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3382. st_synchronize();
  3383. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3384. if (find_z_result == false) {
  3385. lcd_temp_cal_show_result(find_z_result);
  3386. break;
  3387. }
  3388. zero_z = current_position[Z_AXIS];
  3389. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3390. int i = -1; for (; i < 5; i++)
  3391. {
  3392. float temp = (40 + i * 5);
  3393. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3394. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3395. if (start_temp <= temp) break;
  3396. }
  3397. for (i++; i < 5; i++)
  3398. {
  3399. float temp = (40 + i * 5);
  3400. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3401. custom_message_state = i + 2;
  3402. setTargetBed(50 + 10 * (temp - 30) / 5);
  3403. // setTargetHotend(255, 0);
  3404. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3406. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3407. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3409. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3411. st_synchronize();
  3412. while (current_temperature_pinda < temp)
  3413. {
  3414. delay_keep_alive(1000);
  3415. serialecho_temperatures();
  3416. }
  3417. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3419. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3420. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. st_synchronize();
  3423. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3424. if (find_z_result == false) {
  3425. lcd_temp_cal_show_result(find_z_result);
  3426. break;
  3427. }
  3428. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3429. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3430. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3431. }
  3432. lcd_temp_cal_show_result(true);
  3433. break;
  3434. }
  3435. #endif //PINDA_THERMISTOR
  3436. setTargetBed(PINDA_MIN_T);
  3437. float zero_z;
  3438. int z_shift = 0; //unit: steps
  3439. int t_c; // temperature
  3440. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3441. // We don't know where we are! HOME!
  3442. // Push the commands to the front of the message queue in the reverse order!
  3443. // There shall be always enough space reserved for these commands.
  3444. repeatcommand_front(); // repeat G76 with all its parameters
  3445. enquecommand_front_P((PSTR("G28 W0")));
  3446. break;
  3447. }
  3448. puts_P(_N("PINDA probe calibration start"));
  3449. custom_message = true;
  3450. custom_message_type = 4;
  3451. custom_message_state = 1;
  3452. custom_message = _T(MSG_TEMP_CALIBRATION);
  3453. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3454. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3455. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3457. st_synchronize();
  3458. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3459. delay_keep_alive(1000);
  3460. serialecho_temperatures();
  3461. }
  3462. //enquecommand_P(PSTR("M190 S50"));
  3463. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3464. delay_keep_alive(1000);
  3465. serialecho_temperatures();
  3466. }
  3467. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3468. current_position[Z_AXIS] = 5;
  3469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3470. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3471. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. find_bed_induction_sensor_point_z(-1.f);
  3475. zero_z = current_position[Z_AXIS];
  3476. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3477. for (int i = 0; i<5; i++) {
  3478. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3479. custom_message_state = i + 2;
  3480. t_c = 60 + i * 10;
  3481. setTargetBed(t_c);
  3482. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3483. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3484. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. st_synchronize();
  3487. while (degBed() < t_c) {
  3488. delay_keep_alive(1000);
  3489. serialecho_temperatures();
  3490. }
  3491. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3492. delay_keep_alive(1000);
  3493. serialecho_temperatures();
  3494. }
  3495. current_position[Z_AXIS] = 5;
  3496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3497. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3498. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3500. st_synchronize();
  3501. find_bed_induction_sensor_point_z(-1.f);
  3502. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3503. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3504. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3505. }
  3506. custom_message_type = 0;
  3507. custom_message = false;
  3508. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3509. puts_P(_N("Temperature calibration done."));
  3510. disable_x();
  3511. disable_y();
  3512. disable_z();
  3513. disable_e0();
  3514. disable_e1();
  3515. disable_e2();
  3516. setTargetBed(0); //set bed target temperature back to 0
  3517. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3518. temp_cal_active = true;
  3519. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3520. lcd_update_enable(true);
  3521. lcd_update(2);
  3522. }
  3523. break;
  3524. #ifdef DIS
  3525. case 77:
  3526. {
  3527. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3528. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3529. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3530. float dimension_x = 40;
  3531. float dimension_y = 40;
  3532. int points_x = 40;
  3533. int points_y = 40;
  3534. float offset_x = 74;
  3535. float offset_y = 33;
  3536. if (code_seen('X')) dimension_x = code_value();
  3537. if (code_seen('Y')) dimension_y = code_value();
  3538. if (code_seen('XP')) points_x = code_value();
  3539. if (code_seen('YP')) points_y = code_value();
  3540. if (code_seen('XO')) offset_x = code_value();
  3541. if (code_seen('YO')) offset_y = code_value();
  3542. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3543. } break;
  3544. #endif
  3545. case 79: {
  3546. for (int i = 255; i > 0; i = i - 5) {
  3547. fanSpeed = i;
  3548. //delay_keep_alive(2000);
  3549. for (int j = 0; j < 100; j++) {
  3550. delay_keep_alive(100);
  3551. }
  3552. fan_speed[1];
  3553. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3554. }
  3555. }break;
  3556. /**
  3557. * G80: Mesh-based Z probe, probes a grid and produces a
  3558. * mesh to compensate for variable bed height
  3559. *
  3560. * The S0 report the points as below
  3561. *
  3562. * +----> X-axis
  3563. * |
  3564. * |
  3565. * v Y-axis
  3566. *
  3567. */
  3568. case 80:
  3569. #ifdef MK1BP
  3570. break;
  3571. #endif //MK1BP
  3572. case_G80:
  3573. {
  3574. mesh_bed_leveling_flag = true;
  3575. int8_t verbosity_level = 0;
  3576. static bool run = false;
  3577. if (code_seen('V')) {
  3578. // Just 'V' without a number counts as V1.
  3579. char c = strchr_pointer[1];
  3580. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3581. }
  3582. // Firstly check if we know where we are
  3583. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3584. // We don't know where we are! HOME!
  3585. // Push the commands to the front of the message queue in the reverse order!
  3586. // There shall be always enough space reserved for these commands.
  3587. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3588. repeatcommand_front(); // repeat G80 with all its parameters
  3589. enquecommand_front_P((PSTR("G28 W0")));
  3590. }
  3591. else {
  3592. mesh_bed_leveling_flag = false;
  3593. }
  3594. break;
  3595. }
  3596. bool temp_comp_start = true;
  3597. #ifdef PINDA_THERMISTOR
  3598. temp_comp_start = false;
  3599. #endif //PINDA_THERMISTOR
  3600. if (temp_comp_start)
  3601. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3602. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3603. temp_compensation_start();
  3604. run = true;
  3605. repeatcommand_front(); // repeat G80 with all its parameters
  3606. enquecommand_front_P((PSTR("G28 W0")));
  3607. }
  3608. else {
  3609. mesh_bed_leveling_flag = false;
  3610. }
  3611. break;
  3612. }
  3613. run = false;
  3614. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3615. mesh_bed_leveling_flag = false;
  3616. break;
  3617. }
  3618. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3619. bool custom_message_old = custom_message;
  3620. unsigned int custom_message_type_old = custom_message_type;
  3621. unsigned int custom_message_state_old = custom_message_state;
  3622. custom_message = true;
  3623. custom_message_type = 1;
  3624. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3625. lcd_update(1);
  3626. mbl.reset(); //reset mesh bed leveling
  3627. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3628. // consumed during the first movements following this statement.
  3629. babystep_undo();
  3630. // Cycle through all points and probe them
  3631. // First move up. During this first movement, the babystepping will be reverted.
  3632. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3634. // The move to the first calibration point.
  3635. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3636. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3637. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3638. #ifdef SUPPORT_VERBOSITY
  3639. if (verbosity_level >= 1) {
  3640. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3641. }
  3642. #endif //SUPPORT_VERBOSITY
  3643. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3645. // Wait until the move is finished.
  3646. st_synchronize();
  3647. int mesh_point = 0; //index number of calibration point
  3648. int ix = 0;
  3649. int iy = 0;
  3650. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3651. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3652. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3653. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3654. #ifdef SUPPORT_VERBOSITY
  3655. if (verbosity_level >= 1) {
  3656. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3657. }
  3658. #endif // SUPPORT_VERBOSITY
  3659. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3660. const char *kill_message = NULL;
  3661. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3662. // Get coords of a measuring point.
  3663. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3664. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3665. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3666. float z0 = 0.f;
  3667. if (has_z && mesh_point > 0) {
  3668. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3669. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3670. //#if 0
  3671. #ifdef SUPPORT_VERBOSITY
  3672. if (verbosity_level >= 1) {
  3673. SERIAL_ECHOLNPGM("");
  3674. SERIAL_ECHOPGM("Bed leveling, point: ");
  3675. MYSERIAL.print(mesh_point);
  3676. SERIAL_ECHOPGM(", calibration z: ");
  3677. MYSERIAL.print(z0, 5);
  3678. SERIAL_ECHOLNPGM("");
  3679. }
  3680. #endif // SUPPORT_VERBOSITY
  3681. //#endif
  3682. }
  3683. // Move Z up to MESH_HOME_Z_SEARCH.
  3684. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3686. st_synchronize();
  3687. // Move to XY position of the sensor point.
  3688. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3689. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3690. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3691. #ifdef SUPPORT_VERBOSITY
  3692. if (verbosity_level >= 1) {
  3693. SERIAL_PROTOCOL(mesh_point);
  3694. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3695. }
  3696. #endif // SUPPORT_VERBOSITY
  3697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3698. st_synchronize();
  3699. // Go down until endstop is hit
  3700. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3701. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3702. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3703. break;
  3704. }
  3705. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3706. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3707. break;
  3708. }
  3709. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3710. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3711. break;
  3712. }
  3713. #ifdef SUPPORT_VERBOSITY
  3714. if (verbosity_level >= 10) {
  3715. SERIAL_ECHOPGM("X: ");
  3716. MYSERIAL.print(current_position[X_AXIS], 5);
  3717. SERIAL_ECHOLNPGM("");
  3718. SERIAL_ECHOPGM("Y: ");
  3719. MYSERIAL.print(current_position[Y_AXIS], 5);
  3720. SERIAL_PROTOCOLPGM("\n");
  3721. }
  3722. #endif // SUPPORT_VERBOSITY
  3723. float offset_z = 0;
  3724. #ifdef PINDA_THERMISTOR
  3725. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3726. #endif //PINDA_THERMISTOR
  3727. // #ifdef SUPPORT_VERBOSITY
  3728. /* if (verbosity_level >= 1)
  3729. {
  3730. SERIAL_ECHOPGM("mesh bed leveling: ");
  3731. MYSERIAL.print(current_position[Z_AXIS], 5);
  3732. SERIAL_ECHOPGM(" offset: ");
  3733. MYSERIAL.print(offset_z, 5);
  3734. SERIAL_ECHOLNPGM("");
  3735. }*/
  3736. // #endif // SUPPORT_VERBOSITY
  3737. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3738. custom_message_state--;
  3739. mesh_point++;
  3740. lcd_update(1);
  3741. }
  3742. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3743. #ifdef SUPPORT_VERBOSITY
  3744. if (verbosity_level >= 20) {
  3745. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3746. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3747. MYSERIAL.print(current_position[Z_AXIS], 5);
  3748. }
  3749. #endif // SUPPORT_VERBOSITY
  3750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3751. st_synchronize();
  3752. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3753. kill(kill_message);
  3754. SERIAL_ECHOLNPGM("killed");
  3755. }
  3756. clean_up_after_endstop_move();
  3757. // SERIAL_ECHOLNPGM("clean up finished ");
  3758. bool apply_temp_comp = true;
  3759. #ifdef PINDA_THERMISTOR
  3760. apply_temp_comp = false;
  3761. #endif
  3762. if (apply_temp_comp)
  3763. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3764. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3765. // SERIAL_ECHOLNPGM("babystep applied");
  3766. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3767. #ifdef SUPPORT_VERBOSITY
  3768. if (verbosity_level >= 1) {
  3769. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3770. }
  3771. #endif // SUPPORT_VERBOSITY
  3772. for (uint8_t i = 0; i < 4; ++i) {
  3773. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3774. long correction = 0;
  3775. if (code_seen(codes[i]))
  3776. correction = code_value_long();
  3777. else if (eeprom_bed_correction_valid) {
  3778. unsigned char *addr = (i < 2) ?
  3779. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3780. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3781. correction = eeprom_read_int8(addr);
  3782. }
  3783. if (correction == 0)
  3784. continue;
  3785. float offset = float(correction) * 0.001f;
  3786. if (fabs(offset) > 0.101f) {
  3787. SERIAL_ERROR_START;
  3788. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3789. SERIAL_ECHO(offset);
  3790. SERIAL_ECHOLNPGM(" microns");
  3791. }
  3792. else {
  3793. switch (i) {
  3794. case 0:
  3795. for (uint8_t row = 0; row < 3; ++row) {
  3796. mbl.z_values[row][1] += 0.5f * offset;
  3797. mbl.z_values[row][0] += offset;
  3798. }
  3799. break;
  3800. case 1:
  3801. for (uint8_t row = 0; row < 3; ++row) {
  3802. mbl.z_values[row][1] += 0.5f * offset;
  3803. mbl.z_values[row][2] += offset;
  3804. }
  3805. break;
  3806. case 2:
  3807. for (uint8_t col = 0; col < 3; ++col) {
  3808. mbl.z_values[1][col] += 0.5f * offset;
  3809. mbl.z_values[0][col] += offset;
  3810. }
  3811. break;
  3812. case 3:
  3813. for (uint8_t col = 0; col < 3; ++col) {
  3814. mbl.z_values[1][col] += 0.5f * offset;
  3815. mbl.z_values[2][col] += offset;
  3816. }
  3817. break;
  3818. }
  3819. }
  3820. }
  3821. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3822. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3823. // SERIAL_ECHOLNPGM("Upsample finished");
  3824. mbl.active = 1; //activate mesh bed leveling
  3825. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3826. go_home_with_z_lift();
  3827. // SERIAL_ECHOLNPGM("Go home finished");
  3828. //unretract (after PINDA preheat retraction)
  3829. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3830. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3832. }
  3833. KEEPALIVE_STATE(NOT_BUSY);
  3834. // Restore custom message state
  3835. lcd_setstatuspgm(_T(WELCOME_MSG));
  3836. custom_message = custom_message_old;
  3837. custom_message_type = custom_message_type_old;
  3838. custom_message_state = custom_message_state_old;
  3839. mesh_bed_leveling_flag = false;
  3840. mesh_bed_run_from_menu = false;
  3841. lcd_update(2);
  3842. }
  3843. break;
  3844. /**
  3845. * G81: Print mesh bed leveling status and bed profile if activated
  3846. */
  3847. case 81:
  3848. if (mbl.active) {
  3849. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3850. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3851. SERIAL_PROTOCOLPGM(",");
  3852. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3853. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3854. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3855. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3856. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3857. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3858. SERIAL_PROTOCOLPGM(" ");
  3859. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3860. }
  3861. SERIAL_PROTOCOLPGM("\n");
  3862. }
  3863. }
  3864. else
  3865. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3866. break;
  3867. #if 0
  3868. /**
  3869. * G82: Single Z probe at current location
  3870. *
  3871. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3872. *
  3873. */
  3874. case 82:
  3875. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3876. setup_for_endstop_move();
  3877. find_bed_induction_sensor_point_z();
  3878. clean_up_after_endstop_move();
  3879. SERIAL_PROTOCOLPGM("Bed found at: ");
  3880. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3881. SERIAL_PROTOCOLPGM("\n");
  3882. break;
  3883. /**
  3884. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3885. */
  3886. case 83:
  3887. {
  3888. int babystepz = code_seen('S') ? code_value() : 0;
  3889. int BabyPosition = code_seen('P') ? code_value() : 0;
  3890. if (babystepz != 0) {
  3891. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3892. // Is the axis indexed starting with zero or one?
  3893. if (BabyPosition > 4) {
  3894. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3895. }else{
  3896. // Save it to the eeprom
  3897. babystepLoadZ = babystepz;
  3898. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3899. // adjust the Z
  3900. babystepsTodoZadd(babystepLoadZ);
  3901. }
  3902. }
  3903. }
  3904. break;
  3905. /**
  3906. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3907. */
  3908. case 84:
  3909. babystepsTodoZsubtract(babystepLoadZ);
  3910. // babystepLoadZ = 0;
  3911. break;
  3912. /**
  3913. * G85: Prusa3D specific: Pick best babystep
  3914. */
  3915. case 85:
  3916. lcd_pick_babystep();
  3917. break;
  3918. #endif
  3919. /**
  3920. * G86: Prusa3D specific: Disable babystep correction after home.
  3921. * This G-code will be performed at the start of a calibration script.
  3922. */
  3923. case 86:
  3924. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3925. break;
  3926. /**
  3927. * G87: Prusa3D specific: Enable babystep correction after home
  3928. * This G-code will be performed at the end of a calibration script.
  3929. */
  3930. case 87:
  3931. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3932. break;
  3933. /**
  3934. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3935. */
  3936. case 88:
  3937. break;
  3938. #endif // ENABLE_MESH_BED_LEVELING
  3939. case 90: // G90
  3940. relative_mode = false;
  3941. break;
  3942. case 91: // G91
  3943. relative_mode = true;
  3944. break;
  3945. case 92: // G92
  3946. if(!code_seen(axis_codes[E_AXIS]))
  3947. st_synchronize();
  3948. for(int8_t i=0; i < NUM_AXIS; i++) {
  3949. if(code_seen(axis_codes[i])) {
  3950. if(i == E_AXIS) {
  3951. current_position[i] = code_value();
  3952. plan_set_e_position(current_position[E_AXIS]);
  3953. }
  3954. else {
  3955. current_position[i] = code_value()+add_homing[i];
  3956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3957. }
  3958. }
  3959. }
  3960. break;
  3961. case 98: // G98 (activate farm mode)
  3962. farm_mode = 1;
  3963. PingTime = millis();
  3964. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3965. SilentModeMenu = SILENT_MODE_OFF;
  3966. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3967. break;
  3968. case 99: // G99 (deactivate farm mode)
  3969. farm_mode = 0;
  3970. lcd_printer_connected();
  3971. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3972. lcd_update(2);
  3973. break;
  3974. default:
  3975. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3976. }
  3977. } // end if(code_seen('G'))
  3978. else if(code_seen('M'))
  3979. {
  3980. int index;
  3981. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3982. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3983. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3984. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3985. } else
  3986. switch((int)code_value())
  3987. {
  3988. #ifdef ULTIPANEL
  3989. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3990. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3991. {
  3992. char *src = strchr_pointer + 2;
  3993. codenum = 0;
  3994. bool hasP = false, hasS = false;
  3995. if (code_seen('P')) {
  3996. codenum = code_value(); // milliseconds to wait
  3997. hasP = codenum > 0;
  3998. }
  3999. if (code_seen('S')) {
  4000. codenum = code_value() * 1000; // seconds to wait
  4001. hasS = codenum > 0;
  4002. }
  4003. starpos = strchr(src, '*');
  4004. if (starpos != NULL) *(starpos) = '\0';
  4005. while (*src == ' ') ++src;
  4006. if (!hasP && !hasS && *src != '\0') {
  4007. lcd_setstatus(src);
  4008. } else {
  4009. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4010. }
  4011. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4012. st_synchronize();
  4013. previous_millis_cmd = millis();
  4014. if (codenum > 0){
  4015. codenum += millis(); // keep track of when we started waiting
  4016. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4017. while(millis() < codenum && !lcd_clicked()){
  4018. manage_heater();
  4019. manage_inactivity(true);
  4020. lcd_update();
  4021. }
  4022. KEEPALIVE_STATE(IN_HANDLER);
  4023. lcd_ignore_click(false);
  4024. }else{
  4025. if (!lcd_detected())
  4026. break;
  4027. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4028. while(!lcd_clicked()){
  4029. manage_heater();
  4030. manage_inactivity(true);
  4031. lcd_update();
  4032. }
  4033. KEEPALIVE_STATE(IN_HANDLER);
  4034. }
  4035. if (IS_SD_PRINTING)
  4036. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4037. else
  4038. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4039. }
  4040. break;
  4041. #endif
  4042. case 17:
  4043. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4044. enable_x();
  4045. enable_y();
  4046. enable_z();
  4047. enable_e0();
  4048. enable_e1();
  4049. enable_e2();
  4050. break;
  4051. #ifdef SDSUPPORT
  4052. case 20: // M20 - list SD card
  4053. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4054. card.ls();
  4055. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4056. break;
  4057. case 21: // M21 - init SD card
  4058. card.initsd();
  4059. break;
  4060. case 22: //M22 - release SD card
  4061. card.release();
  4062. break;
  4063. case 23: //M23 - Select file
  4064. starpos = (strchr(strchr_pointer + 4,'*'));
  4065. if(starpos!=NULL)
  4066. *(starpos)='\0';
  4067. card.openFile(strchr_pointer + 4,true);
  4068. break;
  4069. case 24: //M24 - Start SD print
  4070. if (!card.paused)
  4071. failstats_reset_print();
  4072. card.startFileprint();
  4073. starttime=millis();
  4074. break;
  4075. case 25: //M25 - Pause SD print
  4076. card.pauseSDPrint();
  4077. break;
  4078. case 26: //M26 - Set SD index
  4079. if(card.cardOK && code_seen('S')) {
  4080. card.setIndex(code_value_long());
  4081. }
  4082. break;
  4083. case 27: //M27 - Get SD status
  4084. card.getStatus();
  4085. break;
  4086. case 28: //M28 - Start SD write
  4087. starpos = (strchr(strchr_pointer + 4,'*'));
  4088. if(starpos != NULL){
  4089. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4090. strchr_pointer = strchr(npos,' ') + 1;
  4091. *(starpos) = '\0';
  4092. }
  4093. card.openFile(strchr_pointer+4,false);
  4094. break;
  4095. case 29: //M29 - Stop SD write
  4096. //processed in write to file routine above
  4097. //card,saving = false;
  4098. break;
  4099. case 30: //M30 <filename> Delete File
  4100. if (card.cardOK){
  4101. card.closefile();
  4102. starpos = (strchr(strchr_pointer + 4,'*'));
  4103. if(starpos != NULL){
  4104. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4105. strchr_pointer = strchr(npos,' ') + 1;
  4106. *(starpos) = '\0';
  4107. }
  4108. card.removeFile(strchr_pointer + 4);
  4109. }
  4110. break;
  4111. case 32: //M32 - Select file and start SD print
  4112. {
  4113. if(card.sdprinting) {
  4114. st_synchronize();
  4115. }
  4116. starpos = (strchr(strchr_pointer + 4,'*'));
  4117. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4118. if(namestartpos==NULL)
  4119. {
  4120. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4121. }
  4122. else
  4123. namestartpos++; //to skip the '!'
  4124. if(starpos!=NULL)
  4125. *(starpos)='\0';
  4126. bool call_procedure=(code_seen('P'));
  4127. if(strchr_pointer>namestartpos)
  4128. call_procedure=false; //false alert, 'P' found within filename
  4129. if( card.cardOK )
  4130. {
  4131. card.openFile(namestartpos,true,!call_procedure);
  4132. if(code_seen('S'))
  4133. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4134. card.setIndex(code_value_long());
  4135. card.startFileprint();
  4136. if(!call_procedure)
  4137. starttime=millis(); //procedure calls count as normal print time.
  4138. }
  4139. } break;
  4140. case 928: //M928 - Start SD write
  4141. starpos = (strchr(strchr_pointer + 5,'*'));
  4142. if(starpos != NULL){
  4143. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4144. strchr_pointer = strchr(npos,' ') + 1;
  4145. *(starpos) = '\0';
  4146. }
  4147. card.openLogFile(strchr_pointer+5);
  4148. break;
  4149. #endif //SDSUPPORT
  4150. case 31: //M31 take time since the start of the SD print or an M109 command
  4151. {
  4152. stoptime=millis();
  4153. char time[30];
  4154. unsigned long t=(stoptime-starttime)/1000;
  4155. int sec,min;
  4156. min=t/60;
  4157. sec=t%60;
  4158. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4159. SERIAL_ECHO_START;
  4160. SERIAL_ECHOLN(time);
  4161. lcd_setstatus(time);
  4162. autotempShutdown();
  4163. }
  4164. break;
  4165. #ifndef _DISABLE_M42_M226
  4166. case 42: //M42 -Change pin status via gcode
  4167. if (code_seen('S'))
  4168. {
  4169. int pin_status = code_value();
  4170. int pin_number = LED_PIN;
  4171. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4172. pin_number = code_value();
  4173. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4174. {
  4175. if (sensitive_pins[i] == pin_number)
  4176. {
  4177. pin_number = -1;
  4178. break;
  4179. }
  4180. }
  4181. #if defined(FAN_PIN) && FAN_PIN > -1
  4182. if (pin_number == FAN_PIN)
  4183. fanSpeed = pin_status;
  4184. #endif
  4185. if (pin_number > -1)
  4186. {
  4187. pinMode(pin_number, OUTPUT);
  4188. digitalWrite(pin_number, pin_status);
  4189. analogWrite(pin_number, pin_status);
  4190. }
  4191. }
  4192. break;
  4193. #endif //_DISABLE_M42_M226
  4194. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4195. // Reset the baby step value and the baby step applied flag.
  4196. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4197. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4198. // Reset the skew and offset in both RAM and EEPROM.
  4199. reset_bed_offset_and_skew();
  4200. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4201. // the planner will not perform any adjustments in the XY plane.
  4202. // Wait for the motors to stop and update the current position with the absolute values.
  4203. world2machine_revert_to_uncorrected();
  4204. break;
  4205. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4206. {
  4207. int8_t verbosity_level = 0;
  4208. bool only_Z = code_seen('Z');
  4209. #ifdef SUPPORT_VERBOSITY
  4210. if (code_seen('V'))
  4211. {
  4212. // Just 'V' without a number counts as V1.
  4213. char c = strchr_pointer[1];
  4214. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4215. }
  4216. #endif //SUPPORT_VERBOSITY
  4217. gcode_M45(only_Z, verbosity_level);
  4218. }
  4219. break;
  4220. /*
  4221. case 46:
  4222. {
  4223. // M46: Prusa3D: Show the assigned IP address.
  4224. uint8_t ip[4];
  4225. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4226. if (hasIP) {
  4227. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4228. SERIAL_ECHO(int(ip[0]));
  4229. SERIAL_ECHOPGM(".");
  4230. SERIAL_ECHO(int(ip[1]));
  4231. SERIAL_ECHOPGM(".");
  4232. SERIAL_ECHO(int(ip[2]));
  4233. SERIAL_ECHOPGM(".");
  4234. SERIAL_ECHO(int(ip[3]));
  4235. SERIAL_ECHOLNPGM("");
  4236. } else {
  4237. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4238. }
  4239. break;
  4240. }
  4241. */
  4242. case 47:
  4243. // M47: Prusa3D: Show end stops dialog on the display.
  4244. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4245. lcd_diag_show_end_stops();
  4246. KEEPALIVE_STATE(IN_HANDLER);
  4247. break;
  4248. #if 0
  4249. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4250. {
  4251. // Disable the default update procedure of the display. We will do a modal dialog.
  4252. lcd_update_enable(false);
  4253. // Let the planner use the uncorrected coordinates.
  4254. mbl.reset();
  4255. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4256. // the planner will not perform any adjustments in the XY plane.
  4257. // Wait for the motors to stop and update the current position with the absolute values.
  4258. world2machine_revert_to_uncorrected();
  4259. // Move the print head close to the bed.
  4260. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4262. st_synchronize();
  4263. // Home in the XY plane.
  4264. set_destination_to_current();
  4265. setup_for_endstop_move();
  4266. home_xy();
  4267. int8_t verbosity_level = 0;
  4268. if (code_seen('V')) {
  4269. // Just 'V' without a number counts as V1.
  4270. char c = strchr_pointer[1];
  4271. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4272. }
  4273. bool success = scan_bed_induction_points(verbosity_level);
  4274. clean_up_after_endstop_move();
  4275. // Print head up.
  4276. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4278. st_synchronize();
  4279. lcd_update_enable(true);
  4280. break;
  4281. }
  4282. #endif
  4283. // M48 Z-Probe repeatability measurement function.
  4284. //
  4285. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4286. //
  4287. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4288. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4289. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4290. // regenerated.
  4291. //
  4292. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4293. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4294. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4295. //
  4296. #ifdef ENABLE_AUTO_BED_LEVELING
  4297. #ifdef Z_PROBE_REPEATABILITY_TEST
  4298. case 48: // M48 Z-Probe repeatability
  4299. {
  4300. #if Z_MIN_PIN == -1
  4301. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4302. #endif
  4303. double sum=0.0;
  4304. double mean=0.0;
  4305. double sigma=0.0;
  4306. double sample_set[50];
  4307. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4308. double X_current, Y_current, Z_current;
  4309. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4310. if (code_seen('V') || code_seen('v')) {
  4311. verbose_level = code_value();
  4312. if (verbose_level<0 || verbose_level>4 ) {
  4313. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4314. goto Sigma_Exit;
  4315. }
  4316. }
  4317. if (verbose_level > 0) {
  4318. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4319. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4320. }
  4321. if (code_seen('n')) {
  4322. n_samples = code_value();
  4323. if (n_samples<4 || n_samples>50 ) {
  4324. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4325. goto Sigma_Exit;
  4326. }
  4327. }
  4328. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4329. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4330. Z_current = st_get_position_mm(Z_AXIS);
  4331. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4332. ext_position = st_get_position_mm(E_AXIS);
  4333. if (code_seen('X') || code_seen('x') ) {
  4334. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4335. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4336. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4337. goto Sigma_Exit;
  4338. }
  4339. }
  4340. if (code_seen('Y') || code_seen('y') ) {
  4341. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4342. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4343. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4344. goto Sigma_Exit;
  4345. }
  4346. }
  4347. if (code_seen('L') || code_seen('l') ) {
  4348. n_legs = code_value();
  4349. if ( n_legs==1 )
  4350. n_legs = 2;
  4351. if ( n_legs<0 || n_legs>15 ) {
  4352. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4353. goto Sigma_Exit;
  4354. }
  4355. }
  4356. //
  4357. // Do all the preliminary setup work. First raise the probe.
  4358. //
  4359. st_synchronize();
  4360. plan_bed_level_matrix.set_to_identity();
  4361. plan_buffer_line( X_current, Y_current, Z_start_location,
  4362. ext_position,
  4363. homing_feedrate[Z_AXIS]/60,
  4364. active_extruder);
  4365. st_synchronize();
  4366. //
  4367. // Now get everything to the specified probe point So we can safely do a probe to
  4368. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4369. // use that as a starting point for each probe.
  4370. //
  4371. if (verbose_level > 2)
  4372. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4373. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4374. ext_position,
  4375. homing_feedrate[X_AXIS]/60,
  4376. active_extruder);
  4377. st_synchronize();
  4378. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4379. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4380. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4381. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4382. //
  4383. // OK, do the inital probe to get us close to the bed.
  4384. // Then retrace the right amount and use that in subsequent probes
  4385. //
  4386. setup_for_endstop_move();
  4387. run_z_probe();
  4388. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4389. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4390. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4391. ext_position,
  4392. homing_feedrate[X_AXIS]/60,
  4393. active_extruder);
  4394. st_synchronize();
  4395. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4396. for( n=0; n<n_samples; n++) {
  4397. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4398. if ( n_legs) {
  4399. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4400. int rotational_direction, l;
  4401. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4402. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4403. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4404. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4405. //SERIAL_ECHOPAIR(" theta: ",theta);
  4406. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4407. //SERIAL_PROTOCOLLNPGM("");
  4408. for( l=0; l<n_legs-1; l++) {
  4409. if (rotational_direction==1)
  4410. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4411. else
  4412. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4413. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4414. if ( radius<0.0 )
  4415. radius = -radius;
  4416. X_current = X_probe_location + cos(theta) * radius;
  4417. Y_current = Y_probe_location + sin(theta) * radius;
  4418. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4419. X_current = X_MIN_POS;
  4420. if ( X_current>X_MAX_POS)
  4421. X_current = X_MAX_POS;
  4422. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4423. Y_current = Y_MIN_POS;
  4424. if ( Y_current>Y_MAX_POS)
  4425. Y_current = Y_MAX_POS;
  4426. if (verbose_level>3 ) {
  4427. SERIAL_ECHOPAIR("x: ", X_current);
  4428. SERIAL_ECHOPAIR("y: ", Y_current);
  4429. SERIAL_PROTOCOLLNPGM("");
  4430. }
  4431. do_blocking_move_to( X_current, Y_current, Z_current );
  4432. }
  4433. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4434. }
  4435. setup_for_endstop_move();
  4436. run_z_probe();
  4437. sample_set[n] = current_position[Z_AXIS];
  4438. //
  4439. // Get the current mean for the data points we have so far
  4440. //
  4441. sum=0.0;
  4442. for( j=0; j<=n; j++) {
  4443. sum = sum + sample_set[j];
  4444. }
  4445. mean = sum / (double (n+1));
  4446. //
  4447. // Now, use that mean to calculate the standard deviation for the
  4448. // data points we have so far
  4449. //
  4450. sum=0.0;
  4451. for( j=0; j<=n; j++) {
  4452. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4453. }
  4454. sigma = sqrt( sum / (double (n+1)) );
  4455. if (verbose_level > 1) {
  4456. SERIAL_PROTOCOL(n+1);
  4457. SERIAL_PROTOCOL(" of ");
  4458. SERIAL_PROTOCOL(n_samples);
  4459. SERIAL_PROTOCOLPGM(" z: ");
  4460. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4461. }
  4462. if (verbose_level > 2) {
  4463. SERIAL_PROTOCOL(" mean: ");
  4464. SERIAL_PROTOCOL_F(mean,6);
  4465. SERIAL_PROTOCOL(" sigma: ");
  4466. SERIAL_PROTOCOL_F(sigma,6);
  4467. }
  4468. if (verbose_level > 0)
  4469. SERIAL_PROTOCOLPGM("\n");
  4470. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4471. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4472. st_synchronize();
  4473. }
  4474. delay(1000);
  4475. clean_up_after_endstop_move();
  4476. // enable_endstops(true);
  4477. if (verbose_level > 0) {
  4478. SERIAL_PROTOCOLPGM("Mean: ");
  4479. SERIAL_PROTOCOL_F(mean, 6);
  4480. SERIAL_PROTOCOLPGM("\n");
  4481. }
  4482. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4483. SERIAL_PROTOCOL_F(sigma, 6);
  4484. SERIAL_PROTOCOLPGM("\n\n");
  4485. Sigma_Exit:
  4486. break;
  4487. }
  4488. #endif // Z_PROBE_REPEATABILITY_TEST
  4489. #endif // ENABLE_AUTO_BED_LEVELING
  4490. case 73: //M73 show percent done and time remaining
  4491. if(code_seen('P')) print_percent_done_normal = code_value();
  4492. if(code_seen('R')) print_time_remaining_normal = code_value();
  4493. if(code_seen('Q')) print_percent_done_silent = code_value();
  4494. if(code_seen('S')) print_time_remaining_silent = code_value();
  4495. {
  4496. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4497. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4498. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4499. }
  4500. break;
  4501. case 104: // M104
  4502. if(setTargetedHotend(104)){
  4503. break;
  4504. }
  4505. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4506. setWatch();
  4507. break;
  4508. case 112: // M112 -Emergency Stop
  4509. kill(_n(""), 3);
  4510. break;
  4511. case 140: // M140 set bed temp
  4512. if (code_seen('S')) setTargetBed(code_value());
  4513. break;
  4514. case 105 : // M105
  4515. if(setTargetedHotend(105)){
  4516. break;
  4517. }
  4518. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4519. SERIAL_PROTOCOLPGM("ok T:");
  4520. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4521. SERIAL_PROTOCOLPGM(" /");
  4522. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4523. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4524. SERIAL_PROTOCOLPGM(" B:");
  4525. SERIAL_PROTOCOL_F(degBed(),1);
  4526. SERIAL_PROTOCOLPGM(" /");
  4527. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4528. #endif //TEMP_BED_PIN
  4529. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4530. SERIAL_PROTOCOLPGM(" T");
  4531. SERIAL_PROTOCOL(cur_extruder);
  4532. SERIAL_PROTOCOLPGM(":");
  4533. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4534. SERIAL_PROTOCOLPGM(" /");
  4535. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4536. }
  4537. #else
  4538. SERIAL_ERROR_START;
  4539. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4540. #endif
  4541. SERIAL_PROTOCOLPGM(" @:");
  4542. #ifdef EXTRUDER_WATTS
  4543. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4544. SERIAL_PROTOCOLPGM("W");
  4545. #else
  4546. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4547. #endif
  4548. SERIAL_PROTOCOLPGM(" B@:");
  4549. #ifdef BED_WATTS
  4550. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4551. SERIAL_PROTOCOLPGM("W");
  4552. #else
  4553. SERIAL_PROTOCOL(getHeaterPower(-1));
  4554. #endif
  4555. #ifdef PINDA_THERMISTOR
  4556. SERIAL_PROTOCOLPGM(" P:");
  4557. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4558. #endif //PINDA_THERMISTOR
  4559. #ifdef AMBIENT_THERMISTOR
  4560. SERIAL_PROTOCOLPGM(" A:");
  4561. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4562. #endif //AMBIENT_THERMISTOR
  4563. #ifdef SHOW_TEMP_ADC_VALUES
  4564. {float raw = 0.0;
  4565. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4566. SERIAL_PROTOCOLPGM(" ADC B:");
  4567. SERIAL_PROTOCOL_F(degBed(),1);
  4568. SERIAL_PROTOCOLPGM("C->");
  4569. raw = rawBedTemp();
  4570. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4571. SERIAL_PROTOCOLPGM(" Rb->");
  4572. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4573. SERIAL_PROTOCOLPGM(" Rxb->");
  4574. SERIAL_PROTOCOL_F(raw, 5);
  4575. #endif
  4576. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4577. SERIAL_PROTOCOLPGM(" T");
  4578. SERIAL_PROTOCOL(cur_extruder);
  4579. SERIAL_PROTOCOLPGM(":");
  4580. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4581. SERIAL_PROTOCOLPGM("C->");
  4582. raw = rawHotendTemp(cur_extruder);
  4583. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4584. SERIAL_PROTOCOLPGM(" Rt");
  4585. SERIAL_PROTOCOL(cur_extruder);
  4586. SERIAL_PROTOCOLPGM("->");
  4587. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4588. SERIAL_PROTOCOLPGM(" Rx");
  4589. SERIAL_PROTOCOL(cur_extruder);
  4590. SERIAL_PROTOCOLPGM("->");
  4591. SERIAL_PROTOCOL_F(raw, 5);
  4592. }}
  4593. #endif
  4594. SERIAL_PROTOCOLLN("");
  4595. KEEPALIVE_STATE(NOT_BUSY);
  4596. return;
  4597. break;
  4598. case 109:
  4599. {// M109 - Wait for extruder heater to reach target.
  4600. if(setTargetedHotend(109)){
  4601. break;
  4602. }
  4603. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4604. heating_status = 1;
  4605. if (farm_mode) { prusa_statistics(1); };
  4606. #ifdef AUTOTEMP
  4607. autotemp_enabled=false;
  4608. #endif
  4609. if (code_seen('S')) {
  4610. setTargetHotend(code_value(), tmp_extruder);
  4611. CooldownNoWait = true;
  4612. } else if (code_seen('R')) {
  4613. setTargetHotend(code_value(), tmp_extruder);
  4614. CooldownNoWait = false;
  4615. }
  4616. #ifdef AUTOTEMP
  4617. if (code_seen('S')) autotemp_min=code_value();
  4618. if (code_seen('B')) autotemp_max=code_value();
  4619. if (code_seen('F'))
  4620. {
  4621. autotemp_factor=code_value();
  4622. autotemp_enabled=true;
  4623. }
  4624. #endif
  4625. setWatch();
  4626. codenum = millis();
  4627. /* See if we are heating up or cooling down */
  4628. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4629. KEEPALIVE_STATE(NOT_BUSY);
  4630. cancel_heatup = false;
  4631. wait_for_heater(codenum); //loops until target temperature is reached
  4632. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4633. KEEPALIVE_STATE(IN_HANDLER);
  4634. heating_status = 2;
  4635. if (farm_mode) { prusa_statistics(2); };
  4636. //starttime=millis();
  4637. previous_millis_cmd = millis();
  4638. }
  4639. break;
  4640. case 190: // M190 - Wait for bed heater to reach target.
  4641. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4642. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4643. heating_status = 3;
  4644. if (farm_mode) { prusa_statistics(1); };
  4645. if (code_seen('S'))
  4646. {
  4647. setTargetBed(code_value());
  4648. CooldownNoWait = true;
  4649. }
  4650. else if (code_seen('R'))
  4651. {
  4652. setTargetBed(code_value());
  4653. CooldownNoWait = false;
  4654. }
  4655. codenum = millis();
  4656. cancel_heatup = false;
  4657. target_direction = isHeatingBed(); // true if heating, false if cooling
  4658. KEEPALIVE_STATE(NOT_BUSY);
  4659. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4660. {
  4661. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4662. {
  4663. if (!farm_mode) {
  4664. float tt = degHotend(active_extruder);
  4665. SERIAL_PROTOCOLPGM("T:");
  4666. SERIAL_PROTOCOL(tt);
  4667. SERIAL_PROTOCOLPGM(" E:");
  4668. SERIAL_PROTOCOL((int)active_extruder);
  4669. SERIAL_PROTOCOLPGM(" B:");
  4670. SERIAL_PROTOCOL_F(degBed(), 1);
  4671. SERIAL_PROTOCOLLN("");
  4672. }
  4673. codenum = millis();
  4674. }
  4675. manage_heater();
  4676. manage_inactivity();
  4677. lcd_update();
  4678. }
  4679. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4680. KEEPALIVE_STATE(IN_HANDLER);
  4681. heating_status = 4;
  4682. previous_millis_cmd = millis();
  4683. #endif
  4684. break;
  4685. #if defined(FAN_PIN) && FAN_PIN > -1
  4686. case 106: //M106 Fan On
  4687. if (code_seen('S')){
  4688. fanSpeed=constrain(code_value(),0,255);
  4689. }
  4690. else {
  4691. fanSpeed=255;
  4692. }
  4693. break;
  4694. case 107: //M107 Fan Off
  4695. fanSpeed = 0;
  4696. break;
  4697. #endif //FAN_PIN
  4698. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4699. case 80: // M80 - Turn on Power Supply
  4700. SET_OUTPUT(PS_ON_PIN); //GND
  4701. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4702. // If you have a switch on suicide pin, this is useful
  4703. // if you want to start another print with suicide feature after
  4704. // a print without suicide...
  4705. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4706. SET_OUTPUT(SUICIDE_PIN);
  4707. WRITE(SUICIDE_PIN, HIGH);
  4708. #endif
  4709. #ifdef ULTIPANEL
  4710. powersupply = true;
  4711. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4712. lcd_update();
  4713. #endif
  4714. break;
  4715. #endif
  4716. case 81: // M81 - Turn off Power Supply
  4717. disable_heater();
  4718. st_synchronize();
  4719. disable_e0();
  4720. disable_e1();
  4721. disable_e2();
  4722. finishAndDisableSteppers();
  4723. fanSpeed = 0;
  4724. delay(1000); // Wait a little before to switch off
  4725. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4726. st_synchronize();
  4727. suicide();
  4728. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4729. SET_OUTPUT(PS_ON_PIN);
  4730. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4731. #endif
  4732. #ifdef ULTIPANEL
  4733. powersupply = false;
  4734. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4735. lcd_update();
  4736. #endif
  4737. break;
  4738. case 82:
  4739. axis_relative_modes[3] = false;
  4740. break;
  4741. case 83:
  4742. axis_relative_modes[3] = true;
  4743. break;
  4744. case 18: //compatibility
  4745. case 84: // M84
  4746. if(code_seen('S')){
  4747. stepper_inactive_time = code_value() * 1000;
  4748. }
  4749. else
  4750. {
  4751. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4752. if(all_axis)
  4753. {
  4754. st_synchronize();
  4755. disable_e0();
  4756. disable_e1();
  4757. disable_e2();
  4758. finishAndDisableSteppers();
  4759. }
  4760. else
  4761. {
  4762. st_synchronize();
  4763. if (code_seen('X')) disable_x();
  4764. if (code_seen('Y')) disable_y();
  4765. if (code_seen('Z')) disable_z();
  4766. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4767. if (code_seen('E')) {
  4768. disable_e0();
  4769. disable_e1();
  4770. disable_e2();
  4771. }
  4772. #endif
  4773. }
  4774. }
  4775. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4776. print_time_remaining_init();
  4777. snmm_filaments_used = 0;
  4778. break;
  4779. case 85: // M85
  4780. if(code_seen('S')) {
  4781. max_inactive_time = code_value() * 1000;
  4782. }
  4783. break;
  4784. #ifdef SAFETYTIMER
  4785. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4786. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4787. if (code_seen('S')) {
  4788. safetytimer_inactive_time = code_value() * 1000;
  4789. safetyTimer.start();
  4790. }
  4791. break;
  4792. #endif
  4793. case 92: // M92
  4794. for(int8_t i=0; i < NUM_AXIS; i++)
  4795. {
  4796. if(code_seen(axis_codes[i]))
  4797. {
  4798. if(i == 3) { // E
  4799. float value = code_value();
  4800. if(value < 20.0) {
  4801. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4802. max_jerk[E_AXIS] *= factor;
  4803. max_feedrate[i] *= factor;
  4804. axis_steps_per_sqr_second[i] *= factor;
  4805. }
  4806. axis_steps_per_unit[i] = value;
  4807. }
  4808. else {
  4809. axis_steps_per_unit[i] = code_value();
  4810. }
  4811. }
  4812. }
  4813. break;
  4814. case 110: // M110 - reset line pos
  4815. if (code_seen('N'))
  4816. gcode_LastN = code_value_long();
  4817. break;
  4818. #ifdef HOST_KEEPALIVE_FEATURE
  4819. case 113: // M113 - Get or set Host Keepalive interval
  4820. if (code_seen('S')) {
  4821. host_keepalive_interval = (uint8_t)code_value_short();
  4822. // NOMORE(host_keepalive_interval, 60);
  4823. }
  4824. else {
  4825. SERIAL_ECHO_START;
  4826. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4827. SERIAL_PROTOCOLLN("");
  4828. }
  4829. break;
  4830. #endif
  4831. case 115: // M115
  4832. if (code_seen('V')) {
  4833. // Report the Prusa version number.
  4834. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4835. } else if (code_seen('U')) {
  4836. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4837. // pause the print and ask the user to upgrade the firmware.
  4838. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4839. } else {
  4840. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4841. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4842. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4843. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4844. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4845. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4846. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4847. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4848. SERIAL_ECHOPGM(" UUID:");
  4849. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4850. }
  4851. break;
  4852. /* case 117: // M117 display message
  4853. starpos = (strchr(strchr_pointer + 5,'*'));
  4854. if(starpos!=NULL)
  4855. *(starpos)='\0';
  4856. lcd_setstatus(strchr_pointer + 5);
  4857. break;*/
  4858. case 114: // M114
  4859. gcode_M114();
  4860. break;
  4861. case 120: // M120
  4862. enable_endstops(false) ;
  4863. break;
  4864. case 121: // M121
  4865. enable_endstops(true) ;
  4866. break;
  4867. case 119: // M119
  4868. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4869. SERIAL_PROTOCOLLN("");
  4870. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4871. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4872. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4873. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4874. }else{
  4875. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4876. }
  4877. SERIAL_PROTOCOLLN("");
  4878. #endif
  4879. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4880. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4881. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4882. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4883. }else{
  4884. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4885. }
  4886. SERIAL_PROTOCOLLN("");
  4887. #endif
  4888. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4889. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4890. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4891. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4892. }else{
  4893. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4894. }
  4895. SERIAL_PROTOCOLLN("");
  4896. #endif
  4897. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4898. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4899. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4900. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4901. }else{
  4902. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4903. }
  4904. SERIAL_PROTOCOLLN("");
  4905. #endif
  4906. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4907. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4908. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4909. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4910. }else{
  4911. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4912. }
  4913. SERIAL_PROTOCOLLN("");
  4914. #endif
  4915. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4916. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4917. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4918. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4919. }else{
  4920. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4921. }
  4922. SERIAL_PROTOCOLLN("");
  4923. #endif
  4924. break;
  4925. //TODO: update for all axis, use for loop
  4926. #ifdef BLINKM
  4927. case 150: // M150
  4928. {
  4929. byte red;
  4930. byte grn;
  4931. byte blu;
  4932. if(code_seen('R')) red = code_value();
  4933. if(code_seen('U')) grn = code_value();
  4934. if(code_seen('B')) blu = code_value();
  4935. SendColors(red,grn,blu);
  4936. }
  4937. break;
  4938. #endif //BLINKM
  4939. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4940. {
  4941. tmp_extruder = active_extruder;
  4942. if(code_seen('T')) {
  4943. tmp_extruder = code_value();
  4944. if(tmp_extruder >= EXTRUDERS) {
  4945. SERIAL_ECHO_START;
  4946. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4947. break;
  4948. }
  4949. }
  4950. float area = .0;
  4951. if(code_seen('D')) {
  4952. float diameter = (float)code_value();
  4953. if (diameter == 0.0) {
  4954. // setting any extruder filament size disables volumetric on the assumption that
  4955. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4956. // for all extruders
  4957. volumetric_enabled = false;
  4958. } else {
  4959. filament_size[tmp_extruder] = (float)code_value();
  4960. // make sure all extruders have some sane value for the filament size
  4961. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4962. #if EXTRUDERS > 1
  4963. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4964. #if EXTRUDERS > 2
  4965. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4966. #endif
  4967. #endif
  4968. volumetric_enabled = true;
  4969. }
  4970. } else {
  4971. //reserved for setting filament diameter via UFID or filament measuring device
  4972. break;
  4973. }
  4974. calculate_extruder_multipliers();
  4975. }
  4976. break;
  4977. case 201: // M201
  4978. for(int8_t i=0; i < NUM_AXIS; i++)
  4979. {
  4980. if(code_seen(axis_codes[i]))
  4981. {
  4982. max_acceleration_units_per_sq_second[i] = code_value();
  4983. }
  4984. }
  4985. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4986. reset_acceleration_rates();
  4987. break;
  4988. #if 0 // Not used for Sprinter/grbl gen6
  4989. case 202: // M202
  4990. for(int8_t i=0; i < NUM_AXIS; i++) {
  4991. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4992. }
  4993. break;
  4994. #endif
  4995. case 203: // M203 max feedrate mm/sec
  4996. for(int8_t i=0; i < NUM_AXIS; i++) {
  4997. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4998. }
  4999. break;
  5000. case 204: // M204 acclereration S normal moves T filmanent only moves
  5001. {
  5002. if(code_seen('S')) acceleration = code_value() ;
  5003. if(code_seen('T')) retract_acceleration = code_value() ;
  5004. }
  5005. break;
  5006. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5007. {
  5008. if(code_seen('S')) minimumfeedrate = code_value();
  5009. if(code_seen('T')) mintravelfeedrate = code_value();
  5010. if(code_seen('B')) minsegmenttime = code_value() ;
  5011. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5012. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5013. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5014. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5015. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5016. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5017. }
  5018. break;
  5019. case 206: // M206 additional homing offset
  5020. for(int8_t i=0; i < 3; i++)
  5021. {
  5022. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5023. }
  5024. break;
  5025. #ifdef FWRETRACT
  5026. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5027. {
  5028. if(code_seen('S'))
  5029. {
  5030. retract_length = code_value() ;
  5031. }
  5032. if(code_seen('F'))
  5033. {
  5034. retract_feedrate = code_value()/60 ;
  5035. }
  5036. if(code_seen('Z'))
  5037. {
  5038. retract_zlift = code_value() ;
  5039. }
  5040. }break;
  5041. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5042. {
  5043. if(code_seen('S'))
  5044. {
  5045. retract_recover_length = code_value() ;
  5046. }
  5047. if(code_seen('F'))
  5048. {
  5049. retract_recover_feedrate = code_value()/60 ;
  5050. }
  5051. }break;
  5052. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5053. {
  5054. if(code_seen('S'))
  5055. {
  5056. int t= code_value() ;
  5057. switch(t)
  5058. {
  5059. case 0:
  5060. {
  5061. autoretract_enabled=false;
  5062. retracted[0]=false;
  5063. #if EXTRUDERS > 1
  5064. retracted[1]=false;
  5065. #endif
  5066. #if EXTRUDERS > 2
  5067. retracted[2]=false;
  5068. #endif
  5069. }break;
  5070. case 1:
  5071. {
  5072. autoretract_enabled=true;
  5073. retracted[0]=false;
  5074. #if EXTRUDERS > 1
  5075. retracted[1]=false;
  5076. #endif
  5077. #if EXTRUDERS > 2
  5078. retracted[2]=false;
  5079. #endif
  5080. }break;
  5081. default:
  5082. SERIAL_ECHO_START;
  5083. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5084. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5085. SERIAL_ECHOLNPGM("\"(1)");
  5086. }
  5087. }
  5088. }break;
  5089. #endif // FWRETRACT
  5090. #if EXTRUDERS > 1
  5091. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5092. {
  5093. if(setTargetedHotend(218)){
  5094. break;
  5095. }
  5096. if(code_seen('X'))
  5097. {
  5098. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5099. }
  5100. if(code_seen('Y'))
  5101. {
  5102. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5103. }
  5104. SERIAL_ECHO_START;
  5105. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5106. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5107. {
  5108. SERIAL_ECHO(" ");
  5109. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5110. SERIAL_ECHO(",");
  5111. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5112. }
  5113. SERIAL_ECHOLN("");
  5114. }break;
  5115. #endif
  5116. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5117. {
  5118. if(code_seen('S'))
  5119. {
  5120. feedmultiply = code_value() ;
  5121. }
  5122. }
  5123. break;
  5124. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5125. {
  5126. if(code_seen('S'))
  5127. {
  5128. int tmp_code = code_value();
  5129. if (code_seen('T'))
  5130. {
  5131. if(setTargetedHotend(221)){
  5132. break;
  5133. }
  5134. extruder_multiply[tmp_extruder] = tmp_code;
  5135. }
  5136. else
  5137. {
  5138. extrudemultiply = tmp_code ;
  5139. }
  5140. }
  5141. calculate_extruder_multipliers();
  5142. }
  5143. break;
  5144. #ifndef _DISABLE_M42_M226
  5145. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5146. {
  5147. if(code_seen('P')){
  5148. int pin_number = code_value(); // pin number
  5149. int pin_state = -1; // required pin state - default is inverted
  5150. if(code_seen('S')) pin_state = code_value(); // required pin state
  5151. if(pin_state >= -1 && pin_state <= 1){
  5152. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5153. {
  5154. if (sensitive_pins[i] == pin_number)
  5155. {
  5156. pin_number = -1;
  5157. break;
  5158. }
  5159. }
  5160. if (pin_number > -1)
  5161. {
  5162. int target = LOW;
  5163. st_synchronize();
  5164. pinMode(pin_number, INPUT);
  5165. switch(pin_state){
  5166. case 1:
  5167. target = HIGH;
  5168. break;
  5169. case 0:
  5170. target = LOW;
  5171. break;
  5172. case -1:
  5173. target = !digitalRead(pin_number);
  5174. break;
  5175. }
  5176. while(digitalRead(pin_number) != target){
  5177. manage_heater();
  5178. manage_inactivity();
  5179. lcd_update();
  5180. }
  5181. }
  5182. }
  5183. }
  5184. }
  5185. break;
  5186. #endif //_DISABLE_M42_M226
  5187. #if NUM_SERVOS > 0
  5188. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5189. {
  5190. int servo_index = -1;
  5191. int servo_position = 0;
  5192. if (code_seen('P'))
  5193. servo_index = code_value();
  5194. if (code_seen('S')) {
  5195. servo_position = code_value();
  5196. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5197. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5198. servos[servo_index].attach(0);
  5199. #endif
  5200. servos[servo_index].write(servo_position);
  5201. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5202. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5203. servos[servo_index].detach();
  5204. #endif
  5205. }
  5206. else {
  5207. SERIAL_ECHO_START;
  5208. SERIAL_ECHO("Servo ");
  5209. SERIAL_ECHO(servo_index);
  5210. SERIAL_ECHOLN(" out of range");
  5211. }
  5212. }
  5213. else if (servo_index >= 0) {
  5214. SERIAL_PROTOCOL(_T(MSG_OK));
  5215. SERIAL_PROTOCOL(" Servo ");
  5216. SERIAL_PROTOCOL(servo_index);
  5217. SERIAL_PROTOCOL(": ");
  5218. SERIAL_PROTOCOL(servos[servo_index].read());
  5219. SERIAL_PROTOCOLLN("");
  5220. }
  5221. }
  5222. break;
  5223. #endif // NUM_SERVOS > 0
  5224. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5225. case 300: // M300
  5226. {
  5227. int beepS = code_seen('S') ? code_value() : 110;
  5228. int beepP = code_seen('P') ? code_value() : 1000;
  5229. if (beepS > 0)
  5230. {
  5231. #if BEEPER > 0
  5232. tone(BEEPER, beepS);
  5233. delay(beepP);
  5234. noTone(BEEPER);
  5235. #elif defined(ULTRALCD)
  5236. lcd_buzz(beepS, beepP);
  5237. #elif defined(LCD_USE_I2C_BUZZER)
  5238. lcd_buzz(beepP, beepS);
  5239. #endif
  5240. }
  5241. else
  5242. {
  5243. delay(beepP);
  5244. }
  5245. }
  5246. break;
  5247. #endif // M300
  5248. #ifdef PIDTEMP
  5249. case 301: // M301
  5250. {
  5251. if(code_seen('P')) Kp = code_value();
  5252. if(code_seen('I')) Ki = scalePID_i(code_value());
  5253. if(code_seen('D')) Kd = scalePID_d(code_value());
  5254. #ifdef PID_ADD_EXTRUSION_RATE
  5255. if(code_seen('C')) Kc = code_value();
  5256. #endif
  5257. updatePID();
  5258. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5259. SERIAL_PROTOCOL(" p:");
  5260. SERIAL_PROTOCOL(Kp);
  5261. SERIAL_PROTOCOL(" i:");
  5262. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5263. SERIAL_PROTOCOL(" d:");
  5264. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5265. #ifdef PID_ADD_EXTRUSION_RATE
  5266. SERIAL_PROTOCOL(" c:");
  5267. //Kc does not have scaling applied above, or in resetting defaults
  5268. SERIAL_PROTOCOL(Kc);
  5269. #endif
  5270. SERIAL_PROTOCOLLN("");
  5271. }
  5272. break;
  5273. #endif //PIDTEMP
  5274. #ifdef PIDTEMPBED
  5275. case 304: // M304
  5276. {
  5277. if(code_seen('P')) bedKp = code_value();
  5278. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5279. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5280. updatePID();
  5281. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5282. SERIAL_PROTOCOL(" p:");
  5283. SERIAL_PROTOCOL(bedKp);
  5284. SERIAL_PROTOCOL(" i:");
  5285. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5286. SERIAL_PROTOCOL(" d:");
  5287. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5288. SERIAL_PROTOCOLLN("");
  5289. }
  5290. break;
  5291. #endif //PIDTEMP
  5292. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5293. {
  5294. #ifdef CHDK
  5295. SET_OUTPUT(CHDK);
  5296. WRITE(CHDK, HIGH);
  5297. chdkHigh = millis();
  5298. chdkActive = true;
  5299. #else
  5300. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5301. const uint8_t NUM_PULSES=16;
  5302. const float PULSE_LENGTH=0.01524;
  5303. for(int i=0; i < NUM_PULSES; i++) {
  5304. WRITE(PHOTOGRAPH_PIN, HIGH);
  5305. _delay_ms(PULSE_LENGTH);
  5306. WRITE(PHOTOGRAPH_PIN, LOW);
  5307. _delay_ms(PULSE_LENGTH);
  5308. }
  5309. delay(7.33);
  5310. for(int i=0; i < NUM_PULSES; i++) {
  5311. WRITE(PHOTOGRAPH_PIN, HIGH);
  5312. _delay_ms(PULSE_LENGTH);
  5313. WRITE(PHOTOGRAPH_PIN, LOW);
  5314. _delay_ms(PULSE_LENGTH);
  5315. }
  5316. #endif
  5317. #endif //chdk end if
  5318. }
  5319. break;
  5320. #ifdef DOGLCD
  5321. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5322. {
  5323. if (code_seen('C')) {
  5324. lcd_setcontrast( ((int)code_value())&63 );
  5325. }
  5326. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5327. SERIAL_PROTOCOL(lcd_contrast);
  5328. SERIAL_PROTOCOLLN("");
  5329. }
  5330. break;
  5331. #endif
  5332. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5333. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5334. {
  5335. float temp = .0;
  5336. if (code_seen('S')) temp=code_value();
  5337. set_extrude_min_temp(temp);
  5338. }
  5339. break;
  5340. #endif
  5341. case 303: // M303 PID autotune
  5342. {
  5343. float temp = 150.0;
  5344. int e=0;
  5345. int c=5;
  5346. if (code_seen('E')) e=code_value();
  5347. if (e<0)
  5348. temp=70;
  5349. if (code_seen('S')) temp=code_value();
  5350. if (code_seen('C')) c=code_value();
  5351. PID_autotune(temp, e, c);
  5352. }
  5353. break;
  5354. case 400: // M400 finish all moves
  5355. {
  5356. st_synchronize();
  5357. }
  5358. break;
  5359. case 500: // M500 Store settings in EEPROM
  5360. {
  5361. Config_StoreSettings(EEPROM_OFFSET);
  5362. }
  5363. break;
  5364. case 501: // M501 Read settings from EEPROM
  5365. {
  5366. Config_RetrieveSettings(EEPROM_OFFSET);
  5367. }
  5368. break;
  5369. case 502: // M502 Revert to default settings
  5370. {
  5371. Config_ResetDefault();
  5372. }
  5373. break;
  5374. case 503: // M503 print settings currently in memory
  5375. {
  5376. Config_PrintSettings();
  5377. }
  5378. break;
  5379. case 509: //M509 Force language selection
  5380. {
  5381. lang_reset();
  5382. SERIAL_ECHO_START;
  5383. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5384. }
  5385. break;
  5386. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5387. case 540:
  5388. {
  5389. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5390. }
  5391. break;
  5392. #endif
  5393. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5394. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5395. {
  5396. float value;
  5397. if (code_seen('Z'))
  5398. {
  5399. value = code_value();
  5400. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5401. {
  5402. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5403. SERIAL_ECHO_START;
  5404. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5405. SERIAL_PROTOCOLLN("");
  5406. }
  5407. else
  5408. {
  5409. SERIAL_ECHO_START;
  5410. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5411. SERIAL_ECHORPGM(MSG_Z_MIN);
  5412. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5413. SERIAL_ECHORPGM(MSG_Z_MAX);
  5414. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5415. SERIAL_PROTOCOLLN("");
  5416. }
  5417. }
  5418. else
  5419. {
  5420. SERIAL_ECHO_START;
  5421. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5422. SERIAL_ECHO(-zprobe_zoffset);
  5423. SERIAL_PROTOCOLLN("");
  5424. }
  5425. break;
  5426. }
  5427. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5428. #ifdef FILAMENTCHANGEENABLE
  5429. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5430. {
  5431. #ifdef PAT9125
  5432. bool old_fsensor_enabled = fsensor_enabled;
  5433. fsensor_enabled = false; //temporary solution for unexpected restarting
  5434. #endif //PAT9125
  5435. st_synchronize();
  5436. float target[4];
  5437. float lastpos[4];
  5438. if (farm_mode)
  5439. {
  5440. prusa_statistics(22);
  5441. }
  5442. feedmultiplyBckp=feedmultiply;
  5443. int8_t TooLowZ = 0;
  5444. float HotendTempBckp = degTargetHotend(active_extruder);
  5445. int fanSpeedBckp = fanSpeed;
  5446. target[X_AXIS]=current_position[X_AXIS];
  5447. target[Y_AXIS]=current_position[Y_AXIS];
  5448. target[Z_AXIS]=current_position[Z_AXIS];
  5449. target[E_AXIS]=current_position[E_AXIS];
  5450. lastpos[X_AXIS]=current_position[X_AXIS];
  5451. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5452. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5453. lastpos[E_AXIS]=current_position[E_AXIS];
  5454. //Restract extruder
  5455. if(code_seen('E'))
  5456. {
  5457. target[E_AXIS]+= code_value();
  5458. }
  5459. else
  5460. {
  5461. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5462. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5463. #endif
  5464. }
  5465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5466. //Lift Z
  5467. if(code_seen('Z'))
  5468. {
  5469. target[Z_AXIS]+= code_value();
  5470. }
  5471. else
  5472. {
  5473. #ifdef FILAMENTCHANGE_ZADD
  5474. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5475. if(target[Z_AXIS] < 10){
  5476. target[Z_AXIS]+= 10 ;
  5477. TooLowZ = 1;
  5478. }else{
  5479. TooLowZ = 0;
  5480. }
  5481. #endif
  5482. }
  5483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5484. //Move XY to side
  5485. if(code_seen('X'))
  5486. {
  5487. target[X_AXIS]+= code_value();
  5488. }
  5489. else
  5490. {
  5491. #ifdef FILAMENTCHANGE_XPOS
  5492. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5493. #endif
  5494. }
  5495. if(code_seen('Y'))
  5496. {
  5497. target[Y_AXIS]= code_value();
  5498. }
  5499. else
  5500. {
  5501. #ifdef FILAMENTCHANGE_YPOS
  5502. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5503. #endif
  5504. }
  5505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5506. st_synchronize();
  5507. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5508. uint8_t cnt = 0;
  5509. int counterBeep = 0;
  5510. fanSpeed = 0;
  5511. unsigned long waiting_start_time = millis();
  5512. uint8_t wait_for_user_state = 0;
  5513. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5514. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5515. //cnt++;
  5516. manage_heater();
  5517. manage_inactivity(true);
  5518. /*#ifdef SNMM
  5519. target[E_AXIS] += 0.002;
  5520. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5521. #endif // SNMM*/
  5522. //if (cnt == 0)
  5523. {
  5524. #if BEEPER > 0
  5525. if (counterBeep == 500) {
  5526. counterBeep = 0;
  5527. }
  5528. SET_OUTPUT(BEEPER);
  5529. if (counterBeep == 0) {
  5530. WRITE(BEEPER, HIGH);
  5531. }
  5532. if (counterBeep == 20) {
  5533. WRITE(BEEPER, LOW);
  5534. }
  5535. counterBeep++;
  5536. #else
  5537. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5538. lcd_buzz(1000 / 6, 100);
  5539. #else
  5540. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5541. #endif
  5542. #endif
  5543. }
  5544. switch (wait_for_user_state) {
  5545. case 0:
  5546. delay_keep_alive(4);
  5547. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5548. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5549. wait_for_user_state = 1;
  5550. setTargetHotend(0, 0);
  5551. setTargetHotend(0, 1);
  5552. setTargetHotend(0, 2);
  5553. st_synchronize();
  5554. disable_e0();
  5555. disable_e1();
  5556. disable_e2();
  5557. }
  5558. break;
  5559. case 1:
  5560. delay_keep_alive(4);
  5561. if (lcd_clicked()) {
  5562. setTargetHotend(HotendTempBckp, active_extruder);
  5563. lcd_wait_for_heater();
  5564. wait_for_user_state = 2;
  5565. }
  5566. break;
  5567. case 2:
  5568. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5569. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5570. waiting_start_time = millis();
  5571. wait_for_user_state = 0;
  5572. }
  5573. else {
  5574. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5575. lcd.setCursor(1, 4);
  5576. lcd.print(ftostr3(degHotend(active_extruder)));
  5577. }
  5578. break;
  5579. }
  5580. }
  5581. WRITE(BEEPER, LOW);
  5582. lcd_change_fil_state = 0;
  5583. // Unload filament
  5584. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5585. KEEPALIVE_STATE(IN_HANDLER);
  5586. custom_message = true;
  5587. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5588. if (code_seen('L'))
  5589. {
  5590. target[E_AXIS] += code_value();
  5591. }
  5592. else
  5593. {
  5594. #ifdef SNMM
  5595. #else
  5596. #ifdef FILAMENTCHANGE_FINALRETRACT
  5597. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5598. #endif
  5599. #endif // SNMM
  5600. }
  5601. #ifdef SNMM
  5602. target[E_AXIS] += 12;
  5603. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5604. target[E_AXIS] += 6;
  5605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5606. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5608. st_synchronize();
  5609. target[E_AXIS] += (FIL_COOLING);
  5610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5611. target[E_AXIS] += (FIL_COOLING*-1);
  5612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5613. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5615. st_synchronize();
  5616. #else
  5617. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5618. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5619. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5620. st_synchronize();
  5621. #ifdef TMC2130
  5622. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5623. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5624. #else
  5625. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5626. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5627. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5628. #endif //TMC2130
  5629. target[E_AXIS] -= 45;
  5630. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5631. st_synchronize();
  5632. target[E_AXIS] -= 15;
  5633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5634. st_synchronize();
  5635. target[E_AXIS] -= 20;
  5636. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5637. st_synchronize();
  5638. #ifdef TMC2130
  5639. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5640. #else
  5641. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5642. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5643. else st_current_set(2, tmp_motor_loud[2]);
  5644. #endif //TMC2130
  5645. #endif // SNMM
  5646. //finish moves
  5647. st_synchronize();
  5648. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5649. //disable extruder steppers so filament can be removed
  5650. disable_e0();
  5651. disable_e1();
  5652. disable_e2();
  5653. delay(100);
  5654. WRITE(BEEPER, HIGH);
  5655. counterBeep = 0;
  5656. while(!lcd_clicked() && (counterBeep < 50)) {
  5657. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5658. delay_keep_alive(100);
  5659. counterBeep++;
  5660. }
  5661. WRITE(BEEPER, LOW);
  5662. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5663. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5664. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5665. //lcd_return_to_status();
  5666. lcd_update_enable(true);
  5667. //Wait for user to insert filament
  5668. lcd_wait_interact();
  5669. //load_filament_time = millis();
  5670. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5671. #ifdef PAT9125
  5672. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5673. #endif //PAT9125
  5674. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5675. while(!lcd_clicked())
  5676. {
  5677. manage_heater();
  5678. manage_inactivity(true);
  5679. #ifdef PAT9125
  5680. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5681. {
  5682. tone(BEEPER, 1000);
  5683. delay_keep_alive(50);
  5684. noTone(BEEPER);
  5685. break;
  5686. }
  5687. #endif //PAT9125
  5688. /*#ifdef SNMM
  5689. target[E_AXIS] += 0.002;
  5690. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5691. #endif // SNMM*/
  5692. }
  5693. #ifdef PAT9125
  5694. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5695. #endif //PAT9125
  5696. //WRITE(BEEPER, LOW);
  5697. KEEPALIVE_STATE(IN_HANDLER);
  5698. #ifdef SNMM
  5699. display_loading();
  5700. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5701. do {
  5702. target[E_AXIS] += 0.002;
  5703. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5704. delay_keep_alive(2);
  5705. } while (!lcd_clicked());
  5706. KEEPALIVE_STATE(IN_HANDLER);
  5707. /*if (millis() - load_filament_time > 2) {
  5708. load_filament_time = millis();
  5709. target[E_AXIS] += 0.001;
  5710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5711. }*/
  5712. //Filament inserted
  5713. //Feed the filament to the end of nozzle quickly
  5714. st_synchronize();
  5715. target[E_AXIS] += bowden_length[snmm_extruder];
  5716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5717. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5719. target[E_AXIS] += 40;
  5720. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5721. target[E_AXIS] += 10;
  5722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5723. #else
  5724. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5725. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5726. #endif // SNMM
  5727. //Extrude some filament
  5728. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5730. //Wait for user to check the state
  5731. lcd_change_fil_state = 0;
  5732. lcd_loading_filament();
  5733. tone(BEEPER, 500);
  5734. delay_keep_alive(50);
  5735. noTone(BEEPER);
  5736. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5737. lcd_change_fil_state = 0;
  5738. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5739. lcd_alright();
  5740. KEEPALIVE_STATE(IN_HANDLER);
  5741. switch(lcd_change_fil_state){
  5742. // Filament failed to load so load it again
  5743. case 2:
  5744. #ifdef SNMM
  5745. display_loading();
  5746. do {
  5747. target[E_AXIS] += 0.002;
  5748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5749. delay_keep_alive(2);
  5750. } while (!lcd_clicked());
  5751. st_synchronize();
  5752. target[E_AXIS] += bowden_length[snmm_extruder];
  5753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5754. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5756. target[E_AXIS] += 40;
  5757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5758. target[E_AXIS] += 10;
  5759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5760. #else
  5761. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5762. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5763. #endif
  5764. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5765. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5766. lcd_loading_filament();
  5767. break;
  5768. // Filament loaded properly but color is not clear
  5769. case 3:
  5770. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5771. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5772. lcd_loading_color();
  5773. break;
  5774. // Everything good
  5775. default:
  5776. lcd_change_success();
  5777. lcd_update_enable(true);
  5778. break;
  5779. }
  5780. }
  5781. //Not let's go back to print
  5782. fanSpeed = fanSpeedBckp;
  5783. //Feed a little of filament to stabilize pressure
  5784. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5785. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5786. //Retract
  5787. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5789. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5790. //Move XY back
  5791. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5792. //Move Z back
  5793. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5794. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5795. //Unretract
  5796. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5797. //Set E position to original
  5798. plan_set_e_position(lastpos[E_AXIS]);
  5799. //Recover feed rate
  5800. feedmultiply=feedmultiplyBckp;
  5801. char cmd[9];
  5802. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5803. enquecommand(cmd);
  5804. lcd_setstatuspgm(_T(WELCOME_MSG));
  5805. custom_message = false;
  5806. custom_message_type = 0;
  5807. #ifdef PAT9125
  5808. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5809. if (fsensor_M600)
  5810. {
  5811. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5812. st_synchronize();
  5813. while (!is_buffer_empty())
  5814. {
  5815. process_commands();
  5816. cmdqueue_pop_front();
  5817. }
  5818. KEEPALIVE_STATE(IN_HANDLER);
  5819. fsensor_enable();
  5820. fsensor_restore_print_and_continue();
  5821. }
  5822. #endif //PAT9125
  5823. }
  5824. break;
  5825. #endif //FILAMENTCHANGEENABLE
  5826. case 601: {
  5827. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5828. }
  5829. break;
  5830. case 602: {
  5831. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5832. }
  5833. break;
  5834. #ifdef PINDA_THERMISTOR
  5835. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5836. {
  5837. int set_target_pinda = 0;
  5838. if (code_seen('S')) {
  5839. set_target_pinda = code_value();
  5840. }
  5841. else {
  5842. break;
  5843. }
  5844. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5845. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5846. SERIAL_PROTOCOL(set_target_pinda);
  5847. SERIAL_PROTOCOLLN("");
  5848. codenum = millis();
  5849. cancel_heatup = false;
  5850. bool is_pinda_cooling = false;
  5851. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5852. is_pinda_cooling = true;
  5853. }
  5854. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5855. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5856. {
  5857. SERIAL_PROTOCOLPGM("P:");
  5858. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5859. SERIAL_PROTOCOLPGM("/");
  5860. SERIAL_PROTOCOL(set_target_pinda);
  5861. SERIAL_PROTOCOLLN("");
  5862. codenum = millis();
  5863. }
  5864. manage_heater();
  5865. manage_inactivity();
  5866. lcd_update();
  5867. }
  5868. LCD_MESSAGERPGM(_T(MSG_OK));
  5869. break;
  5870. }
  5871. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5872. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5873. uint8_t cal_status = calibration_status_pinda();
  5874. int16_t usteps = 0;
  5875. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5876. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5877. for (uint8_t i = 0; i < 6; i++)
  5878. {
  5879. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5880. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5881. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5882. SERIAL_PROTOCOLPGM(", ");
  5883. SERIAL_PROTOCOL(35 + (i * 5));
  5884. SERIAL_PROTOCOLPGM(", ");
  5885. SERIAL_PROTOCOL(usteps);
  5886. SERIAL_PROTOCOLPGM(", ");
  5887. SERIAL_PROTOCOL(mm * 1000);
  5888. SERIAL_PROTOCOLLN("");
  5889. }
  5890. }
  5891. else if (code_seen('!')) { // ! - Set factory default values
  5892. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5893. int16_t z_shift = 8; //40C - 20um - 8usteps
  5894. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5895. z_shift = 24; //45C - 60um - 24usteps
  5896. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5897. z_shift = 48; //50C - 120um - 48usteps
  5898. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5899. z_shift = 80; //55C - 200um - 80usteps
  5900. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5901. z_shift = 120; //60C - 300um - 120usteps
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5903. SERIAL_PROTOCOLLN("factory restored");
  5904. }
  5905. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5906. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5907. int16_t z_shift = 0;
  5908. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5909. SERIAL_PROTOCOLLN("zerorized");
  5910. }
  5911. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5912. int16_t usteps = code_value();
  5913. if (code_seen('I')) {
  5914. byte index = code_value();
  5915. if ((index >= 0) && (index < 5)) {
  5916. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5917. SERIAL_PROTOCOLLN("OK");
  5918. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5919. for (uint8_t i = 0; i < 6; i++)
  5920. {
  5921. usteps = 0;
  5922. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5923. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5924. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5925. SERIAL_PROTOCOLPGM(", ");
  5926. SERIAL_PROTOCOL(35 + (i * 5));
  5927. SERIAL_PROTOCOLPGM(", ");
  5928. SERIAL_PROTOCOL(usteps);
  5929. SERIAL_PROTOCOLPGM(", ");
  5930. SERIAL_PROTOCOL(mm * 1000);
  5931. SERIAL_PROTOCOLLN("");
  5932. }
  5933. }
  5934. }
  5935. }
  5936. else {
  5937. SERIAL_PROTOCOLPGM("no valid command");
  5938. }
  5939. break;
  5940. #endif //PINDA_THERMISTOR
  5941. #ifdef LIN_ADVANCE
  5942. case 900: // M900: Set LIN_ADVANCE options.
  5943. gcode_M900();
  5944. break;
  5945. #endif
  5946. case 907: // M907 Set digital trimpot motor current using axis codes.
  5947. {
  5948. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5949. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5950. if(code_seen('B')) st_current_set(4,code_value());
  5951. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5952. #endif
  5953. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5954. if(code_seen('X')) st_current_set(0, code_value());
  5955. #endif
  5956. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5957. if(code_seen('Z')) st_current_set(1, code_value());
  5958. #endif
  5959. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5960. if(code_seen('E')) st_current_set(2, code_value());
  5961. #endif
  5962. }
  5963. break;
  5964. case 908: // M908 Control digital trimpot directly.
  5965. {
  5966. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5967. uint8_t channel,current;
  5968. if(code_seen('P')) channel=code_value();
  5969. if(code_seen('S')) current=code_value();
  5970. digitalPotWrite(channel, current);
  5971. #endif
  5972. }
  5973. break;
  5974. #ifdef TMC2130
  5975. case 910: // M910 TMC2130 init
  5976. {
  5977. tmc2130_init();
  5978. }
  5979. break;
  5980. case 911: // M911 Set TMC2130 holding currents
  5981. {
  5982. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5983. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5984. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5985. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5986. }
  5987. break;
  5988. case 912: // M912 Set TMC2130 running currents
  5989. {
  5990. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5991. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5992. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5993. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5994. }
  5995. break;
  5996. case 913: // M913 Print TMC2130 currents
  5997. {
  5998. tmc2130_print_currents();
  5999. }
  6000. break;
  6001. case 914: // M914 Set normal mode
  6002. {
  6003. tmc2130_mode = TMC2130_MODE_NORMAL;
  6004. tmc2130_init();
  6005. }
  6006. break;
  6007. case 915: // M915 Set silent mode
  6008. {
  6009. tmc2130_mode = TMC2130_MODE_SILENT;
  6010. tmc2130_init();
  6011. }
  6012. break;
  6013. case 916: // M916 Set sg_thrs
  6014. {
  6015. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6016. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6017. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6018. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6019. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6020. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6021. }
  6022. break;
  6023. case 917: // M917 Set TMC2130 pwm_ampl
  6024. {
  6025. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6026. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6027. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6028. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6029. }
  6030. break;
  6031. case 918: // M918 Set TMC2130 pwm_grad
  6032. {
  6033. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6034. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6035. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6036. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6037. }
  6038. break;
  6039. #endif //TMC2130
  6040. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6041. {
  6042. #ifdef TMC2130
  6043. if(code_seen('E'))
  6044. {
  6045. uint16_t res_new = code_value();
  6046. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6047. {
  6048. st_synchronize();
  6049. uint8_t axis = E_AXIS;
  6050. uint16_t res = tmc2130_get_res(axis);
  6051. tmc2130_set_res(axis, res_new);
  6052. if (res_new > res)
  6053. {
  6054. uint16_t fac = (res_new / res);
  6055. axis_steps_per_unit[axis] *= fac;
  6056. position[E_AXIS] *= fac;
  6057. }
  6058. else
  6059. {
  6060. uint16_t fac = (res / res_new);
  6061. axis_steps_per_unit[axis] /= fac;
  6062. position[E_AXIS] /= fac;
  6063. }
  6064. }
  6065. }
  6066. #else //TMC2130
  6067. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6068. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6069. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6070. if(code_seen('B')) microstep_mode(4,code_value());
  6071. microstep_readings();
  6072. #endif
  6073. #endif //TMC2130
  6074. }
  6075. break;
  6076. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6077. {
  6078. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6079. if(code_seen('S')) switch((int)code_value())
  6080. {
  6081. case 1:
  6082. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6083. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6084. break;
  6085. case 2:
  6086. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6087. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6088. break;
  6089. }
  6090. microstep_readings();
  6091. #endif
  6092. }
  6093. break;
  6094. case 701: //M701: load filament
  6095. {
  6096. gcode_M701();
  6097. }
  6098. break;
  6099. case 702:
  6100. {
  6101. #ifdef SNMM
  6102. if (code_seen('U')) {
  6103. extr_unload_used(); //unload all filaments which were used in current print
  6104. }
  6105. else if (code_seen('C')) {
  6106. extr_unload(); //unload just current filament
  6107. }
  6108. else {
  6109. extr_unload_all(); //unload all filaments
  6110. }
  6111. #else
  6112. #ifdef PAT9125
  6113. bool old_fsensor_enabled = fsensor_enabled;
  6114. fsensor_enabled = false;
  6115. #endif //PAT9125
  6116. custom_message = true;
  6117. custom_message_type = 2;
  6118. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6119. // extr_unload2();
  6120. current_position[E_AXIS] -= 45;
  6121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6122. st_synchronize();
  6123. current_position[E_AXIS] -= 15;
  6124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6125. st_synchronize();
  6126. current_position[E_AXIS] -= 20;
  6127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6128. st_synchronize();
  6129. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6130. //disable extruder steppers so filament can be removed
  6131. disable_e0();
  6132. disable_e1();
  6133. disable_e2();
  6134. delay(100);
  6135. WRITE(BEEPER, HIGH);
  6136. uint8_t counterBeep = 0;
  6137. while (!lcd_clicked() && (counterBeep < 50)) {
  6138. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6139. delay_keep_alive(100);
  6140. counterBeep++;
  6141. }
  6142. WRITE(BEEPER, LOW);
  6143. st_synchronize();
  6144. while (lcd_clicked()) delay_keep_alive(100);
  6145. lcd_update_enable(true);
  6146. lcd_setstatuspgm(_T(WELCOME_MSG));
  6147. custom_message = false;
  6148. custom_message_type = 0;
  6149. #ifdef PAT9125
  6150. fsensor_enabled = old_fsensor_enabled;
  6151. #endif //PAT9125
  6152. #endif
  6153. }
  6154. break;
  6155. case 999: // M999: Restart after being stopped
  6156. Stopped = false;
  6157. lcd_reset_alert_level();
  6158. gcode_LastN = Stopped_gcode_LastN;
  6159. FlushSerialRequestResend();
  6160. break;
  6161. default:
  6162. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6163. }
  6164. } // end if(code_seen('M')) (end of M codes)
  6165. else if(code_seen('T'))
  6166. {
  6167. int index;
  6168. st_synchronize();
  6169. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6170. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6171. SERIAL_ECHOLNPGM("Invalid T code.");
  6172. }
  6173. else {
  6174. if (*(strchr_pointer + index) == '?') {
  6175. tmp_extruder = choose_extruder_menu();
  6176. }
  6177. else {
  6178. tmp_extruder = code_value();
  6179. }
  6180. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6181. #ifdef SNMM_V2
  6182. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6183. switch (tmp_extruder)
  6184. {
  6185. case 1:
  6186. fprintf_P(uart2io, PSTR("T1\n"));
  6187. break;
  6188. case 2:
  6189. fprintf_P(uart2io, PSTR("T2\n"));
  6190. break;
  6191. case 3:
  6192. fprintf_P(uart2io, PSTR("T3\n"));
  6193. break;
  6194. case 4:
  6195. fprintf_P(uart2io, PSTR("T4\n"));
  6196. break;
  6197. default:
  6198. fprintf_P(uart2io, PSTR("T0\n"));
  6199. break;
  6200. }
  6201. // get response
  6202. uart2_rx_clr();
  6203. while (!uart2_rx_ok())
  6204. {
  6205. //printf_P(PSTR("waiting..\n"));
  6206. delay_keep_alive(100);
  6207. }
  6208. #endif
  6209. #ifdef SNMM
  6210. #ifdef LIN_ADVANCE
  6211. if (snmm_extruder != tmp_extruder)
  6212. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6213. #endif
  6214. snmm_extruder = tmp_extruder;
  6215. delay(100);
  6216. disable_e0();
  6217. disable_e1();
  6218. disable_e2();
  6219. pinMode(E_MUX0_PIN, OUTPUT);
  6220. pinMode(E_MUX1_PIN, OUTPUT);
  6221. delay(100);
  6222. SERIAL_ECHO_START;
  6223. SERIAL_ECHO("T:");
  6224. SERIAL_ECHOLN((int)tmp_extruder);
  6225. switch (tmp_extruder) {
  6226. case 1:
  6227. WRITE(E_MUX0_PIN, HIGH);
  6228. WRITE(E_MUX1_PIN, LOW);
  6229. break;
  6230. case 2:
  6231. WRITE(E_MUX0_PIN, LOW);
  6232. WRITE(E_MUX1_PIN, HIGH);
  6233. break;
  6234. case 3:
  6235. WRITE(E_MUX0_PIN, HIGH);
  6236. WRITE(E_MUX1_PIN, HIGH);
  6237. break;
  6238. default:
  6239. WRITE(E_MUX0_PIN, LOW);
  6240. WRITE(E_MUX1_PIN, LOW);
  6241. break;
  6242. }
  6243. delay(100);
  6244. #else
  6245. if (tmp_extruder >= EXTRUDERS) {
  6246. SERIAL_ECHO_START;
  6247. SERIAL_ECHOPGM("T");
  6248. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6249. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6250. }
  6251. else {
  6252. boolean make_move = false;
  6253. if (code_seen('F')) {
  6254. make_move = true;
  6255. next_feedrate = code_value();
  6256. if (next_feedrate > 0.0) {
  6257. feedrate = next_feedrate;
  6258. }
  6259. }
  6260. #if EXTRUDERS > 1
  6261. if (tmp_extruder != active_extruder) {
  6262. // Save current position to return to after applying extruder offset
  6263. memcpy(destination, current_position, sizeof(destination));
  6264. // Offset extruder (only by XY)
  6265. int i;
  6266. for (i = 0; i < 2; i++) {
  6267. current_position[i] = current_position[i] -
  6268. extruder_offset[i][active_extruder] +
  6269. extruder_offset[i][tmp_extruder];
  6270. }
  6271. // Set the new active extruder and position
  6272. active_extruder = tmp_extruder;
  6273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6274. // Move to the old position if 'F' was in the parameters
  6275. if (make_move && Stopped == false) {
  6276. prepare_move();
  6277. }
  6278. }
  6279. #endif
  6280. SERIAL_ECHO_START;
  6281. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6282. SERIAL_PROTOCOLLN((int)active_extruder);
  6283. }
  6284. #endif
  6285. }
  6286. } // end if(code_seen('T')) (end of T codes)
  6287. #ifdef DEBUG_DCODES
  6288. else if (code_seen('D')) // D codes (debug)
  6289. {
  6290. switch((int)code_value())
  6291. {
  6292. case -1: // D-1 - Endless loop
  6293. dcode__1(); break;
  6294. case 0: // D0 - Reset
  6295. dcode_0(); break;
  6296. case 1: // D1 - Clear EEPROM
  6297. dcode_1(); break;
  6298. case 2: // D2 - Read/Write RAM
  6299. dcode_2(); break;
  6300. case 3: // D3 - Read/Write EEPROM
  6301. dcode_3(); break;
  6302. case 4: // D4 - Read/Write PIN
  6303. dcode_4(); break;
  6304. case 5: // D5 - Read/Write FLASH
  6305. // dcode_5(); break;
  6306. break;
  6307. case 6: // D6 - Read/Write external FLASH
  6308. dcode_6(); break;
  6309. case 7: // D7 - Read/Write Bootloader
  6310. dcode_7(); break;
  6311. case 8: // D8 - Read/Write PINDA
  6312. dcode_8(); break;
  6313. case 9: // D9 - Read/Write ADC
  6314. dcode_9(); break;
  6315. case 10: // D10 - XYZ calibration = OK
  6316. dcode_10(); break;
  6317. #ifdef TMC2130
  6318. case 2130: // D9125 - TMC2130
  6319. dcode_2130(); break;
  6320. #endif //TMC2130
  6321. #ifdef PAT9125
  6322. case 9125: // D9125 - PAT9125
  6323. dcode_9125(); break;
  6324. #endif //PAT9125
  6325. }
  6326. }
  6327. #endif //DEBUG_DCODES
  6328. else
  6329. {
  6330. SERIAL_ECHO_START;
  6331. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6332. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6333. SERIAL_ECHOLNPGM("\"(2)");
  6334. }
  6335. KEEPALIVE_STATE(NOT_BUSY);
  6336. ClearToSend();
  6337. }
  6338. void FlushSerialRequestResend()
  6339. {
  6340. //char cmdbuffer[bufindr][100]="Resend:";
  6341. MYSERIAL.flush();
  6342. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6343. }
  6344. // Confirm the execution of a command, if sent from a serial line.
  6345. // Execution of a command from a SD card will not be confirmed.
  6346. void ClearToSend()
  6347. {
  6348. previous_millis_cmd = millis();
  6349. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6350. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6351. }
  6352. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6353. void update_currents() {
  6354. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6355. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6356. float tmp_motor[3];
  6357. //SERIAL_ECHOLNPGM("Currents updated: ");
  6358. if (destination[Z_AXIS] < Z_SILENT) {
  6359. //SERIAL_ECHOLNPGM("LOW");
  6360. for (uint8_t i = 0; i < 3; i++) {
  6361. st_current_set(i, current_low[i]);
  6362. /*MYSERIAL.print(int(i));
  6363. SERIAL_ECHOPGM(": ");
  6364. MYSERIAL.println(current_low[i]);*/
  6365. }
  6366. }
  6367. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6368. //SERIAL_ECHOLNPGM("HIGH");
  6369. for (uint8_t i = 0; i < 3; i++) {
  6370. st_current_set(i, current_high[i]);
  6371. /*MYSERIAL.print(int(i));
  6372. SERIAL_ECHOPGM(": ");
  6373. MYSERIAL.println(current_high[i]);*/
  6374. }
  6375. }
  6376. else {
  6377. for (uint8_t i = 0; i < 3; i++) {
  6378. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6379. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6380. st_current_set(i, tmp_motor[i]);
  6381. /*MYSERIAL.print(int(i));
  6382. SERIAL_ECHOPGM(": ");
  6383. MYSERIAL.println(tmp_motor[i]);*/
  6384. }
  6385. }
  6386. }
  6387. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6388. void get_coordinates()
  6389. {
  6390. bool seen[4]={false,false,false,false};
  6391. for(int8_t i=0; i < NUM_AXIS; i++) {
  6392. if(code_seen(axis_codes[i]))
  6393. {
  6394. bool relative = axis_relative_modes[i] || relative_mode;
  6395. destination[i] = (float)code_value();
  6396. if (i == E_AXIS) {
  6397. float emult = extruder_multiplier[active_extruder];
  6398. if (emult != 1.) {
  6399. if (! relative) {
  6400. destination[i] -= current_position[i];
  6401. relative = true;
  6402. }
  6403. destination[i] *= emult;
  6404. }
  6405. }
  6406. if (relative)
  6407. destination[i] += current_position[i];
  6408. seen[i]=true;
  6409. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6410. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6411. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6412. }
  6413. else destination[i] = current_position[i]; //Are these else lines really needed?
  6414. }
  6415. if(code_seen('F')) {
  6416. next_feedrate = code_value();
  6417. #ifdef MAX_SILENT_FEEDRATE
  6418. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6419. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6420. #endif //MAX_SILENT_FEEDRATE
  6421. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6422. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6423. {
  6424. // float e_max_speed =
  6425. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6426. }
  6427. }
  6428. }
  6429. void get_arc_coordinates()
  6430. {
  6431. #ifdef SF_ARC_FIX
  6432. bool relative_mode_backup = relative_mode;
  6433. relative_mode = true;
  6434. #endif
  6435. get_coordinates();
  6436. #ifdef SF_ARC_FIX
  6437. relative_mode=relative_mode_backup;
  6438. #endif
  6439. if(code_seen('I')) {
  6440. offset[0] = code_value();
  6441. }
  6442. else {
  6443. offset[0] = 0.0;
  6444. }
  6445. if(code_seen('J')) {
  6446. offset[1] = code_value();
  6447. }
  6448. else {
  6449. offset[1] = 0.0;
  6450. }
  6451. }
  6452. void clamp_to_software_endstops(float target[3])
  6453. {
  6454. #ifdef DEBUG_DISABLE_SWLIMITS
  6455. return;
  6456. #endif //DEBUG_DISABLE_SWLIMITS
  6457. world2machine_clamp(target[0], target[1]);
  6458. // Clamp the Z coordinate.
  6459. if (min_software_endstops) {
  6460. float negative_z_offset = 0;
  6461. #ifdef ENABLE_AUTO_BED_LEVELING
  6462. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6463. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6464. #endif
  6465. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6466. }
  6467. if (max_software_endstops) {
  6468. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6469. }
  6470. }
  6471. #ifdef MESH_BED_LEVELING
  6472. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6473. float dx = x - current_position[X_AXIS];
  6474. float dy = y - current_position[Y_AXIS];
  6475. float dz = z - current_position[Z_AXIS];
  6476. int n_segments = 0;
  6477. if (mbl.active) {
  6478. float len = abs(dx) + abs(dy);
  6479. if (len > 0)
  6480. // Split to 3cm segments or shorter.
  6481. n_segments = int(ceil(len / 30.f));
  6482. }
  6483. if (n_segments > 1) {
  6484. float de = e - current_position[E_AXIS];
  6485. for (int i = 1; i < n_segments; ++ i) {
  6486. float t = float(i) / float(n_segments);
  6487. if (saved_printing || (mbl.active == false)) return;
  6488. plan_buffer_line(
  6489. current_position[X_AXIS] + t * dx,
  6490. current_position[Y_AXIS] + t * dy,
  6491. current_position[Z_AXIS] + t * dz,
  6492. current_position[E_AXIS] + t * de,
  6493. feed_rate, extruder);
  6494. }
  6495. }
  6496. // The rest of the path.
  6497. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6498. current_position[X_AXIS] = x;
  6499. current_position[Y_AXIS] = y;
  6500. current_position[Z_AXIS] = z;
  6501. current_position[E_AXIS] = e;
  6502. }
  6503. #endif // MESH_BED_LEVELING
  6504. void prepare_move()
  6505. {
  6506. clamp_to_software_endstops(destination);
  6507. previous_millis_cmd = millis();
  6508. // Do not use feedmultiply for E or Z only moves
  6509. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6511. }
  6512. else {
  6513. #ifdef MESH_BED_LEVELING
  6514. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6515. #else
  6516. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6517. #endif
  6518. }
  6519. for(int8_t i=0; i < NUM_AXIS; i++) {
  6520. current_position[i] = destination[i];
  6521. }
  6522. }
  6523. void prepare_arc_move(char isclockwise) {
  6524. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6525. // Trace the arc
  6526. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6527. // As far as the parser is concerned, the position is now == target. In reality the
  6528. // motion control system might still be processing the action and the real tool position
  6529. // in any intermediate location.
  6530. for(int8_t i=0; i < NUM_AXIS; i++) {
  6531. current_position[i] = destination[i];
  6532. }
  6533. previous_millis_cmd = millis();
  6534. }
  6535. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6536. #if defined(FAN_PIN)
  6537. #if CONTROLLERFAN_PIN == FAN_PIN
  6538. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6539. #endif
  6540. #endif
  6541. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6542. unsigned long lastMotorCheck = 0;
  6543. void controllerFan()
  6544. {
  6545. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6546. {
  6547. lastMotorCheck = millis();
  6548. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6549. #if EXTRUDERS > 2
  6550. || !READ(E2_ENABLE_PIN)
  6551. #endif
  6552. #if EXTRUDER > 1
  6553. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6554. || !READ(X2_ENABLE_PIN)
  6555. #endif
  6556. || !READ(E1_ENABLE_PIN)
  6557. #endif
  6558. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6559. {
  6560. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6561. }
  6562. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6563. {
  6564. digitalWrite(CONTROLLERFAN_PIN, 0);
  6565. analogWrite(CONTROLLERFAN_PIN, 0);
  6566. }
  6567. else
  6568. {
  6569. // allows digital or PWM fan output to be used (see M42 handling)
  6570. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6571. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6572. }
  6573. }
  6574. }
  6575. #endif
  6576. #ifdef TEMP_STAT_LEDS
  6577. static bool blue_led = false;
  6578. static bool red_led = false;
  6579. static uint32_t stat_update = 0;
  6580. void handle_status_leds(void) {
  6581. float max_temp = 0.0;
  6582. if(millis() > stat_update) {
  6583. stat_update += 500; // Update every 0.5s
  6584. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6585. max_temp = max(max_temp, degHotend(cur_extruder));
  6586. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6587. }
  6588. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6589. max_temp = max(max_temp, degTargetBed());
  6590. max_temp = max(max_temp, degBed());
  6591. #endif
  6592. if((max_temp > 55.0) && (red_led == false)) {
  6593. digitalWrite(STAT_LED_RED, 1);
  6594. digitalWrite(STAT_LED_BLUE, 0);
  6595. red_led = true;
  6596. blue_led = false;
  6597. }
  6598. if((max_temp < 54.0) && (blue_led == false)) {
  6599. digitalWrite(STAT_LED_RED, 0);
  6600. digitalWrite(STAT_LED_BLUE, 1);
  6601. red_led = false;
  6602. blue_led = true;
  6603. }
  6604. }
  6605. }
  6606. #endif
  6607. #ifdef SAFETYTIMER
  6608. /**
  6609. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6610. *
  6611. * Full screen blocking notification message is shown after heater turning off.
  6612. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6613. * damage print.
  6614. *
  6615. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6616. */
  6617. static void handleSafetyTimer()
  6618. {
  6619. #if (EXTRUDERS > 1)
  6620. #error Implemented only for one extruder.
  6621. #endif //(EXTRUDERS > 1)
  6622. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6623. {
  6624. safetyTimer.stop();
  6625. }
  6626. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6627. {
  6628. safetyTimer.start();
  6629. }
  6630. else if (safetyTimer.expired(safetytimer_inactive_time))
  6631. {
  6632. setTargetBed(0);
  6633. setTargetHotend(0, 0);
  6634. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6635. }
  6636. }
  6637. #endif //SAFETYTIMER
  6638. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6639. {
  6640. #ifdef PAT9125
  6641. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6642. {
  6643. if (fsensor_autoload_enabled)
  6644. {
  6645. if (fsensor_check_autoload())
  6646. {
  6647. if (degHotend0() > EXTRUDE_MINTEMP)
  6648. {
  6649. fsensor_autoload_check_stop();
  6650. tone(BEEPER, 1000);
  6651. delay_keep_alive(50);
  6652. noTone(BEEPER);
  6653. loading_flag = true;
  6654. enquecommand_front_P((PSTR("M701")));
  6655. }
  6656. else
  6657. {
  6658. lcd_update_enable(false);
  6659. lcd_implementation_clear();
  6660. lcd.setCursor(0, 0);
  6661. lcd_printPGM(_T(MSG_ERROR));
  6662. lcd.setCursor(0, 2);
  6663. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6664. delay(2000);
  6665. lcd_implementation_clear();
  6666. lcd_update_enable(true);
  6667. }
  6668. }
  6669. }
  6670. else
  6671. fsensor_autoload_check_start();
  6672. }
  6673. else
  6674. if (fsensor_autoload_enabled)
  6675. fsensor_autoload_check_stop();
  6676. #endif //PAT9125
  6677. #ifdef SAFETYTIMER
  6678. handleSafetyTimer();
  6679. #endif //SAFETYTIMER
  6680. #if defined(KILL_PIN) && KILL_PIN > -1
  6681. static int killCount = 0; // make the inactivity button a bit less responsive
  6682. const int KILL_DELAY = 10000;
  6683. #endif
  6684. if(buflen < (BUFSIZE-1)){
  6685. get_command();
  6686. }
  6687. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6688. if(max_inactive_time)
  6689. kill(_n(""), 4);
  6690. if(stepper_inactive_time) {
  6691. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6692. {
  6693. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6694. disable_x();
  6695. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6696. disable_y();
  6697. disable_z();
  6698. disable_e0();
  6699. disable_e1();
  6700. disable_e2();
  6701. }
  6702. }
  6703. }
  6704. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6705. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6706. {
  6707. chdkActive = false;
  6708. WRITE(CHDK, LOW);
  6709. }
  6710. #endif
  6711. #if defined(KILL_PIN) && KILL_PIN > -1
  6712. // Check if the kill button was pressed and wait just in case it was an accidental
  6713. // key kill key press
  6714. // -------------------------------------------------------------------------------
  6715. if( 0 == READ(KILL_PIN) )
  6716. {
  6717. killCount++;
  6718. }
  6719. else if (killCount > 0)
  6720. {
  6721. killCount--;
  6722. }
  6723. // Exceeded threshold and we can confirm that it was not accidental
  6724. // KILL the machine
  6725. // ----------------------------------------------------------------
  6726. if ( killCount >= KILL_DELAY)
  6727. {
  6728. kill("", 5);
  6729. }
  6730. #endif
  6731. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6732. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6733. #endif
  6734. #ifdef EXTRUDER_RUNOUT_PREVENT
  6735. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6736. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6737. {
  6738. bool oldstatus=READ(E0_ENABLE_PIN);
  6739. enable_e0();
  6740. float oldepos=current_position[E_AXIS];
  6741. float oldedes=destination[E_AXIS];
  6742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6743. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6744. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6745. current_position[E_AXIS]=oldepos;
  6746. destination[E_AXIS]=oldedes;
  6747. plan_set_e_position(oldepos);
  6748. previous_millis_cmd=millis();
  6749. st_synchronize();
  6750. WRITE(E0_ENABLE_PIN,oldstatus);
  6751. }
  6752. #endif
  6753. #ifdef TEMP_STAT_LEDS
  6754. handle_status_leds();
  6755. #endif
  6756. check_axes_activity();
  6757. }
  6758. void kill(const char *full_screen_message, unsigned char id)
  6759. {
  6760. printf_P(_N("KILL: %d\n"), id);
  6761. //return;
  6762. cli(); // Stop interrupts
  6763. disable_heater();
  6764. disable_x();
  6765. // SERIAL_ECHOLNPGM("kill - disable Y");
  6766. disable_y();
  6767. disable_z();
  6768. disable_e0();
  6769. disable_e1();
  6770. disable_e2();
  6771. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6772. pinMode(PS_ON_PIN,INPUT);
  6773. #endif
  6774. SERIAL_ERROR_START;
  6775. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6776. if (full_screen_message != NULL) {
  6777. SERIAL_ERRORLNRPGM(full_screen_message);
  6778. lcd_display_message_fullscreen_P(full_screen_message);
  6779. } else {
  6780. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6781. }
  6782. // FMC small patch to update the LCD before ending
  6783. sei(); // enable interrupts
  6784. for ( int i=5; i--; lcd_update())
  6785. {
  6786. delay(200);
  6787. }
  6788. cli(); // disable interrupts
  6789. suicide();
  6790. while(1)
  6791. {
  6792. #ifdef WATCHDOG
  6793. wdt_reset();
  6794. #endif //WATCHDOG
  6795. /* Intentionally left empty */
  6796. } // Wait for reset
  6797. }
  6798. void Stop()
  6799. {
  6800. disable_heater();
  6801. if(Stopped == false) {
  6802. Stopped = true;
  6803. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6804. SERIAL_ERROR_START;
  6805. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6806. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6807. }
  6808. }
  6809. bool IsStopped() { return Stopped; };
  6810. #ifdef FAST_PWM_FAN
  6811. void setPwmFrequency(uint8_t pin, int val)
  6812. {
  6813. val &= 0x07;
  6814. switch(digitalPinToTimer(pin))
  6815. {
  6816. #if defined(TCCR0A)
  6817. case TIMER0A:
  6818. case TIMER0B:
  6819. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6820. // TCCR0B |= val;
  6821. break;
  6822. #endif
  6823. #if defined(TCCR1A)
  6824. case TIMER1A:
  6825. case TIMER1B:
  6826. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6827. // TCCR1B |= val;
  6828. break;
  6829. #endif
  6830. #if defined(TCCR2)
  6831. case TIMER2:
  6832. case TIMER2:
  6833. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6834. TCCR2 |= val;
  6835. break;
  6836. #endif
  6837. #if defined(TCCR2A)
  6838. case TIMER2A:
  6839. case TIMER2B:
  6840. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6841. TCCR2B |= val;
  6842. break;
  6843. #endif
  6844. #if defined(TCCR3A)
  6845. case TIMER3A:
  6846. case TIMER3B:
  6847. case TIMER3C:
  6848. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6849. TCCR3B |= val;
  6850. break;
  6851. #endif
  6852. #if defined(TCCR4A)
  6853. case TIMER4A:
  6854. case TIMER4B:
  6855. case TIMER4C:
  6856. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6857. TCCR4B |= val;
  6858. break;
  6859. #endif
  6860. #if defined(TCCR5A)
  6861. case TIMER5A:
  6862. case TIMER5B:
  6863. case TIMER5C:
  6864. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6865. TCCR5B |= val;
  6866. break;
  6867. #endif
  6868. }
  6869. }
  6870. #endif //FAST_PWM_FAN
  6871. bool setTargetedHotend(int code){
  6872. tmp_extruder = active_extruder;
  6873. if(code_seen('T')) {
  6874. tmp_extruder = code_value();
  6875. if(tmp_extruder >= EXTRUDERS) {
  6876. SERIAL_ECHO_START;
  6877. switch(code){
  6878. case 104:
  6879. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6880. break;
  6881. case 105:
  6882. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6883. break;
  6884. case 109:
  6885. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6886. break;
  6887. case 218:
  6888. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6889. break;
  6890. case 221:
  6891. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6892. break;
  6893. }
  6894. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6895. return true;
  6896. }
  6897. }
  6898. return false;
  6899. }
  6900. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6901. {
  6902. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6903. {
  6904. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6905. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6906. }
  6907. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6908. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6909. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6910. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6911. total_filament_used = 0;
  6912. }
  6913. float calculate_extruder_multiplier(float diameter) {
  6914. float out = 1.f;
  6915. if (volumetric_enabled && diameter > 0.f) {
  6916. float area = M_PI * diameter * diameter * 0.25;
  6917. out = 1.f / area;
  6918. }
  6919. if (extrudemultiply != 100)
  6920. out *= float(extrudemultiply) * 0.01f;
  6921. return out;
  6922. }
  6923. void calculate_extruder_multipliers() {
  6924. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6925. #if EXTRUDERS > 1
  6926. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6927. #if EXTRUDERS > 2
  6928. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6929. #endif
  6930. #endif
  6931. }
  6932. void delay_keep_alive(unsigned int ms)
  6933. {
  6934. for (;;) {
  6935. manage_heater();
  6936. // Manage inactivity, but don't disable steppers on timeout.
  6937. manage_inactivity(true);
  6938. lcd_update();
  6939. if (ms == 0)
  6940. break;
  6941. else if (ms >= 50) {
  6942. delay(50);
  6943. ms -= 50;
  6944. } else {
  6945. delay(ms);
  6946. ms = 0;
  6947. }
  6948. }
  6949. }
  6950. void wait_for_heater(long codenum) {
  6951. #ifdef TEMP_RESIDENCY_TIME
  6952. long residencyStart;
  6953. residencyStart = -1;
  6954. /* continue to loop until we have reached the target temp
  6955. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6956. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6957. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6958. #else
  6959. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6960. #endif //TEMP_RESIDENCY_TIME
  6961. if ((millis() - codenum) > 1000UL)
  6962. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6963. if (!farm_mode) {
  6964. SERIAL_PROTOCOLPGM("T:");
  6965. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6966. SERIAL_PROTOCOLPGM(" E:");
  6967. SERIAL_PROTOCOL((int)tmp_extruder);
  6968. #ifdef TEMP_RESIDENCY_TIME
  6969. SERIAL_PROTOCOLPGM(" W:");
  6970. if (residencyStart > -1)
  6971. {
  6972. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6973. SERIAL_PROTOCOLLN(codenum);
  6974. }
  6975. else
  6976. {
  6977. SERIAL_PROTOCOLLN("?");
  6978. }
  6979. }
  6980. #else
  6981. SERIAL_PROTOCOLLN("");
  6982. #endif
  6983. codenum = millis();
  6984. }
  6985. manage_heater();
  6986. manage_inactivity();
  6987. lcd_update();
  6988. #ifdef TEMP_RESIDENCY_TIME
  6989. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6990. or when current temp falls outside the hysteresis after target temp was reached */
  6991. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6992. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6993. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6994. {
  6995. residencyStart = millis();
  6996. }
  6997. #endif //TEMP_RESIDENCY_TIME
  6998. }
  6999. }
  7000. void check_babystep() {
  7001. int babystep_z;
  7002. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7003. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7004. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7005. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7006. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7007. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7008. lcd_update_enable(true);
  7009. }
  7010. }
  7011. #ifdef DIS
  7012. void d_setup()
  7013. {
  7014. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7015. pinMode(D_DATA, INPUT_PULLUP);
  7016. pinMode(D_REQUIRE, OUTPUT);
  7017. digitalWrite(D_REQUIRE, HIGH);
  7018. }
  7019. float d_ReadData()
  7020. {
  7021. int digit[13];
  7022. String mergeOutput;
  7023. float output;
  7024. digitalWrite(D_REQUIRE, HIGH);
  7025. for (int i = 0; i<13; i++)
  7026. {
  7027. for (int j = 0; j < 4; j++)
  7028. {
  7029. while (digitalRead(D_DATACLOCK) == LOW) {}
  7030. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7031. bitWrite(digit[i], j, digitalRead(D_DATA));
  7032. }
  7033. }
  7034. digitalWrite(D_REQUIRE, LOW);
  7035. mergeOutput = "";
  7036. output = 0;
  7037. for (int r = 5; r <= 10; r++) //Merge digits
  7038. {
  7039. mergeOutput += digit[r];
  7040. }
  7041. output = mergeOutput.toFloat();
  7042. if (digit[4] == 8) //Handle sign
  7043. {
  7044. output *= -1;
  7045. }
  7046. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7047. {
  7048. output /= 10;
  7049. }
  7050. return output;
  7051. }
  7052. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7053. int t1 = 0;
  7054. int t_delay = 0;
  7055. int digit[13];
  7056. int m;
  7057. char str[3];
  7058. //String mergeOutput;
  7059. char mergeOutput[15];
  7060. float output;
  7061. int mesh_point = 0; //index number of calibration point
  7062. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7063. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7064. float mesh_home_z_search = 4;
  7065. float row[x_points_num];
  7066. int ix = 0;
  7067. int iy = 0;
  7068. char* filename_wldsd = "wldsd.txt";
  7069. char data_wldsd[70];
  7070. char numb_wldsd[10];
  7071. d_setup();
  7072. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7073. // We don't know where we are! HOME!
  7074. // Push the commands to the front of the message queue in the reverse order!
  7075. // There shall be always enough space reserved for these commands.
  7076. repeatcommand_front(); // repeat G80 with all its parameters
  7077. enquecommand_front_P((PSTR("G28 W0")));
  7078. enquecommand_front_P((PSTR("G1 Z5")));
  7079. return;
  7080. }
  7081. bool custom_message_old = custom_message;
  7082. unsigned int custom_message_type_old = custom_message_type;
  7083. unsigned int custom_message_state_old = custom_message_state;
  7084. custom_message = true;
  7085. custom_message_type = 1;
  7086. custom_message_state = (x_points_num * y_points_num) + 10;
  7087. lcd_update(1);
  7088. mbl.reset();
  7089. babystep_undo();
  7090. card.openFile(filename_wldsd, false);
  7091. current_position[Z_AXIS] = mesh_home_z_search;
  7092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7093. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7094. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7095. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7096. setup_for_endstop_move(false);
  7097. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7098. SERIAL_PROTOCOL(x_points_num);
  7099. SERIAL_PROTOCOLPGM(",");
  7100. SERIAL_PROTOCOL(y_points_num);
  7101. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7102. SERIAL_PROTOCOL(mesh_home_z_search);
  7103. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7104. SERIAL_PROTOCOL(x_dimension);
  7105. SERIAL_PROTOCOLPGM(",");
  7106. SERIAL_PROTOCOL(y_dimension);
  7107. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7108. while (mesh_point != x_points_num * y_points_num) {
  7109. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7110. iy = mesh_point / x_points_num;
  7111. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7112. float z0 = 0.f;
  7113. current_position[Z_AXIS] = mesh_home_z_search;
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7115. st_synchronize();
  7116. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7117. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7119. st_synchronize();
  7120. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7121. break;
  7122. card.closefile();
  7123. }
  7124. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7125. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7126. //strcat(data_wldsd, numb_wldsd);
  7127. //MYSERIAL.println(data_wldsd);
  7128. //delay(1000);
  7129. //delay(3000);
  7130. //t1 = millis();
  7131. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7132. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7133. memset(digit, 0, sizeof(digit));
  7134. //cli();
  7135. digitalWrite(D_REQUIRE, LOW);
  7136. for (int i = 0; i<13; i++)
  7137. {
  7138. //t1 = millis();
  7139. for (int j = 0; j < 4; j++)
  7140. {
  7141. while (digitalRead(D_DATACLOCK) == LOW) {}
  7142. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7143. bitWrite(digit[i], j, digitalRead(D_DATA));
  7144. }
  7145. //t_delay = (millis() - t1);
  7146. //SERIAL_PROTOCOLPGM(" ");
  7147. //SERIAL_PROTOCOL_F(t_delay, 5);
  7148. //SERIAL_PROTOCOLPGM(" ");
  7149. }
  7150. //sei();
  7151. digitalWrite(D_REQUIRE, HIGH);
  7152. mergeOutput[0] = '\0';
  7153. output = 0;
  7154. for (int r = 5; r <= 10; r++) //Merge digits
  7155. {
  7156. sprintf(str, "%d", digit[r]);
  7157. strcat(mergeOutput, str);
  7158. }
  7159. output = atof(mergeOutput);
  7160. if (digit[4] == 8) //Handle sign
  7161. {
  7162. output *= -1;
  7163. }
  7164. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7165. {
  7166. output *= 0.1;
  7167. }
  7168. //output = d_ReadData();
  7169. //row[ix] = current_position[Z_AXIS];
  7170. memset(data_wldsd, 0, sizeof(data_wldsd));
  7171. for (int i = 0; i <3; i++) {
  7172. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7173. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7174. strcat(data_wldsd, numb_wldsd);
  7175. strcat(data_wldsd, ";");
  7176. }
  7177. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7178. dtostrf(output, 8, 5, numb_wldsd);
  7179. strcat(data_wldsd, numb_wldsd);
  7180. //strcat(data_wldsd, ";");
  7181. card.write_command(data_wldsd);
  7182. //row[ix] = d_ReadData();
  7183. row[ix] = output; // current_position[Z_AXIS];
  7184. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7185. for (int i = 0; i < x_points_num; i++) {
  7186. SERIAL_PROTOCOLPGM(" ");
  7187. SERIAL_PROTOCOL_F(row[i], 5);
  7188. }
  7189. SERIAL_PROTOCOLPGM("\n");
  7190. }
  7191. custom_message_state--;
  7192. mesh_point++;
  7193. lcd_update(1);
  7194. }
  7195. card.closefile();
  7196. }
  7197. #endif
  7198. void temp_compensation_start() {
  7199. custom_message = true;
  7200. custom_message_type = 5;
  7201. custom_message_state = PINDA_HEAT_T + 1;
  7202. lcd_update(2);
  7203. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7204. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7205. }
  7206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7207. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7208. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7209. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7211. st_synchronize();
  7212. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7213. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7214. delay_keep_alive(1000);
  7215. custom_message_state = PINDA_HEAT_T - i;
  7216. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7217. else lcd_update(1);
  7218. }
  7219. custom_message_type = 0;
  7220. custom_message_state = 0;
  7221. custom_message = false;
  7222. }
  7223. void temp_compensation_apply() {
  7224. int i_add;
  7225. int compensation_value;
  7226. int z_shift = 0;
  7227. float z_shift_mm;
  7228. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7229. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7230. i_add = (target_temperature_bed - 60) / 10;
  7231. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7232. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7233. }else {
  7234. //interpolation
  7235. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7236. }
  7237. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7239. st_synchronize();
  7240. plan_set_z_position(current_position[Z_AXIS]);
  7241. }
  7242. else {
  7243. //we have no temp compensation data
  7244. }
  7245. }
  7246. float temp_comp_interpolation(float inp_temperature) {
  7247. //cubic spline interpolation
  7248. int n, i, j, k;
  7249. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7250. int shift[10];
  7251. int temp_C[10];
  7252. n = 6; //number of measured points
  7253. shift[0] = 0;
  7254. for (i = 0; i < n; i++) {
  7255. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7256. temp_C[i] = 50 + i * 10; //temperature in C
  7257. #ifdef PINDA_THERMISTOR
  7258. temp_C[i] = 35 + i * 5; //temperature in C
  7259. #else
  7260. temp_C[i] = 50 + i * 10; //temperature in C
  7261. #endif
  7262. x[i] = (float)temp_C[i];
  7263. f[i] = (float)shift[i];
  7264. }
  7265. if (inp_temperature < x[0]) return 0;
  7266. for (i = n - 1; i>0; i--) {
  7267. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7268. h[i - 1] = x[i] - x[i - 1];
  7269. }
  7270. //*********** formation of h, s , f matrix **************
  7271. for (i = 1; i<n - 1; i++) {
  7272. m[i][i] = 2 * (h[i - 1] + h[i]);
  7273. if (i != 1) {
  7274. m[i][i - 1] = h[i - 1];
  7275. m[i - 1][i] = h[i - 1];
  7276. }
  7277. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7278. }
  7279. //*********** forward elimination **************
  7280. for (i = 1; i<n - 2; i++) {
  7281. temp = (m[i + 1][i] / m[i][i]);
  7282. for (j = 1; j <= n - 1; j++)
  7283. m[i + 1][j] -= temp*m[i][j];
  7284. }
  7285. //*********** backward substitution *********
  7286. for (i = n - 2; i>0; i--) {
  7287. sum = 0;
  7288. for (j = i; j <= n - 2; j++)
  7289. sum += m[i][j] * s[j];
  7290. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7291. }
  7292. for (i = 0; i<n - 1; i++)
  7293. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7294. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7295. b = s[i] / 2;
  7296. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7297. d = f[i];
  7298. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7299. }
  7300. return sum;
  7301. }
  7302. #ifdef PINDA_THERMISTOR
  7303. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7304. {
  7305. if (!temp_cal_active) return 0;
  7306. if (!calibration_status_pinda()) return 0;
  7307. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7308. }
  7309. #endif //PINDA_THERMISTOR
  7310. void long_pause() //long pause print
  7311. {
  7312. st_synchronize();
  7313. //save currently set parameters to global variables
  7314. saved_feedmultiply = feedmultiply;
  7315. HotendTempBckp = degTargetHotend(active_extruder);
  7316. fanSpeedBckp = fanSpeed;
  7317. start_pause_print = millis();
  7318. //save position
  7319. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7320. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7321. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7322. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7323. //retract
  7324. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7326. //lift z
  7327. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7328. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7330. //set nozzle target temperature to 0
  7331. setTargetHotend(0, 0);
  7332. setTargetHotend(0, 1);
  7333. setTargetHotend(0, 2);
  7334. //Move XY to side
  7335. current_position[X_AXIS] = X_PAUSE_POS;
  7336. current_position[Y_AXIS] = Y_PAUSE_POS;
  7337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7338. // Turn off the print fan
  7339. fanSpeed = 0;
  7340. st_synchronize();
  7341. }
  7342. void serialecho_temperatures() {
  7343. float tt = degHotend(active_extruder);
  7344. SERIAL_PROTOCOLPGM("T:");
  7345. SERIAL_PROTOCOL(tt);
  7346. SERIAL_PROTOCOLPGM(" E:");
  7347. SERIAL_PROTOCOL((int)active_extruder);
  7348. SERIAL_PROTOCOLPGM(" B:");
  7349. SERIAL_PROTOCOL_F(degBed(), 1);
  7350. SERIAL_PROTOCOLLN("");
  7351. }
  7352. extern uint32_t sdpos_atomic;
  7353. #ifdef UVLO_SUPPORT
  7354. void uvlo_()
  7355. {
  7356. unsigned long time_start = millis();
  7357. bool sd_print = card.sdprinting;
  7358. // Conserve power as soon as possible.
  7359. disable_x();
  7360. disable_y();
  7361. #ifdef TMC2130
  7362. tmc2130_set_current_h(Z_AXIS, 20);
  7363. tmc2130_set_current_r(Z_AXIS, 20);
  7364. tmc2130_set_current_h(E_AXIS, 20);
  7365. tmc2130_set_current_r(E_AXIS, 20);
  7366. #endif //TMC2130
  7367. // Indicate that the interrupt has been triggered.
  7368. // SERIAL_ECHOLNPGM("UVLO");
  7369. // Read out the current Z motor microstep counter. This will be later used
  7370. // for reaching the zero full step before powering off.
  7371. uint16_t z_microsteps = 0;
  7372. #ifdef TMC2130
  7373. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7374. #endif //TMC2130
  7375. // Calculate the file position, from which to resume this print.
  7376. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7377. {
  7378. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7379. sd_position -= sdlen_planner;
  7380. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7381. sd_position -= sdlen_cmdqueue;
  7382. if (sd_position < 0) sd_position = 0;
  7383. }
  7384. // Backup the feedrate in mm/min.
  7385. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7386. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7387. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7388. // are in action.
  7389. planner_abort_hard();
  7390. // Store the current extruder position.
  7391. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7392. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7393. // Clean the input command queue.
  7394. cmdqueue_reset();
  7395. card.sdprinting = false;
  7396. // card.closefile();
  7397. // Enable stepper driver interrupt to move Z axis.
  7398. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7399. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7400. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7401. sei();
  7402. plan_buffer_line(
  7403. current_position[X_AXIS],
  7404. current_position[Y_AXIS],
  7405. current_position[Z_AXIS],
  7406. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7407. 95, active_extruder);
  7408. st_synchronize();
  7409. disable_e0();
  7410. plan_buffer_line(
  7411. current_position[X_AXIS],
  7412. current_position[Y_AXIS],
  7413. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7414. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7415. 40, active_extruder);
  7416. st_synchronize();
  7417. disable_e0();
  7418. plan_buffer_line(
  7419. current_position[X_AXIS],
  7420. current_position[Y_AXIS],
  7421. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7422. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7423. 40, active_extruder);
  7424. st_synchronize();
  7425. disable_e0();
  7426. disable_z();
  7427. // Move Z up to the next 0th full step.
  7428. // Write the file position.
  7429. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7430. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7431. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7432. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7433. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7434. // Scale the z value to 1u resolution.
  7435. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7436. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7437. }
  7438. // Read out the current Z motor microstep counter. This will be later used
  7439. // for reaching the zero full step before powering off.
  7440. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7441. // Store the current position.
  7442. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7443. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7444. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7445. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7446. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7447. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7448. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7449. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7450. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7451. #if EXTRUDERS > 1
  7452. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7453. #if EXTRUDERS > 2
  7454. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7455. #endif
  7456. #endif
  7457. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7458. // Finaly store the "power outage" flag.
  7459. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7460. st_synchronize();
  7461. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7462. disable_z();
  7463. // Increment power failure counter
  7464. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7465. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7466. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7467. #if 0
  7468. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7469. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7471. st_synchronize();
  7472. #endif
  7473. cli();
  7474. volatile unsigned int ppcount = 0;
  7475. SET_OUTPUT(BEEPER);
  7476. WRITE(BEEPER, HIGH);
  7477. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7478. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7479. }
  7480. WRITE(BEEPER, LOW);
  7481. while(1){
  7482. #if 1
  7483. WRITE(BEEPER, LOW);
  7484. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7485. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7486. }
  7487. #endif
  7488. };
  7489. }
  7490. #endif //UVLO_SUPPORT
  7491. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7492. void setup_fan_interrupt() {
  7493. //INT7
  7494. DDRE &= ~(1 << 7); //input pin
  7495. PORTE &= ~(1 << 7); //no internal pull-up
  7496. //start with sensing rising edge
  7497. EICRB &= ~(1 << 6);
  7498. EICRB |= (1 << 7);
  7499. //enable INT7 interrupt
  7500. EIMSK |= (1 << 7);
  7501. }
  7502. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7503. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7504. ISR(INT7_vect) {
  7505. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7506. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7507. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7508. t_fan_rising_edge = millis_nc();
  7509. }
  7510. else { //interrupt was triggered by falling edge
  7511. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7512. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7513. }
  7514. }
  7515. EICRB ^= (1 << 6); //change edge
  7516. }
  7517. #endif
  7518. #ifdef UVLO_SUPPORT
  7519. void setup_uvlo_interrupt() {
  7520. DDRE &= ~(1 << 4); //input pin
  7521. PORTE &= ~(1 << 4); //no internal pull-up
  7522. //sensing falling edge
  7523. EICRB |= (1 << 0);
  7524. EICRB &= ~(1 << 1);
  7525. //enable INT4 interrupt
  7526. EIMSK |= (1 << 4);
  7527. }
  7528. ISR(INT4_vect) {
  7529. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7530. SERIAL_ECHOLNPGM("INT4");
  7531. if (IS_SD_PRINTING) uvlo_();
  7532. }
  7533. void recover_print(uint8_t automatic) {
  7534. char cmd[30];
  7535. lcd_update_enable(true);
  7536. lcd_update(2);
  7537. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7538. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7539. // Lift the print head, so one may remove the excess priming material.
  7540. if (current_position[Z_AXIS] < 25)
  7541. enquecommand_P(PSTR("G1 Z25 F800"));
  7542. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7543. enquecommand_P(PSTR("G28 X Y"));
  7544. // Set the target bed and nozzle temperatures and wait.
  7545. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7546. enquecommand(cmd);
  7547. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7548. enquecommand(cmd);
  7549. enquecommand_P(PSTR("M83")); //E axis relative mode
  7550. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7551. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7552. if(automatic == 0){
  7553. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7554. }
  7555. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7556. // Mark the power panic status as inactive.
  7557. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7558. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7559. delay_keep_alive(1000);
  7560. }*/
  7561. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7562. // Restart the print.
  7563. restore_print_from_eeprom();
  7564. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7565. }
  7566. void recover_machine_state_after_power_panic()
  7567. {
  7568. char cmd[30];
  7569. // 1) Recover the logical cordinates at the time of the power panic.
  7570. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7571. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7572. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7573. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7574. // The current position after power panic is moved to the next closest 0th full step.
  7575. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7576. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7577. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7578. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7579. sprintf_P(cmd, PSTR("G92 E"));
  7580. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7581. enquecommand(cmd);
  7582. }
  7583. memcpy(destination, current_position, sizeof(destination));
  7584. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7585. print_world_coordinates();
  7586. // 2) Initialize the logical to physical coordinate system transformation.
  7587. world2machine_initialize();
  7588. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7589. mbl.active = false;
  7590. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7591. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7592. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7593. // Scale the z value to 10u resolution.
  7594. int16_t v;
  7595. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7596. if (v != 0)
  7597. mbl.active = true;
  7598. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7599. }
  7600. if (mbl.active)
  7601. mbl.upsample_3x3();
  7602. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7603. // print_mesh_bed_leveling_table();
  7604. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7605. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7606. babystep_load();
  7607. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7608. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7609. // 6) Power up the motors, mark their positions as known.
  7610. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7611. axis_known_position[X_AXIS] = true; enable_x();
  7612. axis_known_position[Y_AXIS] = true; enable_y();
  7613. axis_known_position[Z_AXIS] = true; enable_z();
  7614. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7615. print_physical_coordinates();
  7616. // 7) Recover the target temperatures.
  7617. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7618. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7619. // 8) Recover extruder multipilers
  7620. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7621. #if EXTRUDERS > 1
  7622. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7623. #if EXTRUDERS > 2
  7624. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7625. #endif
  7626. #endif
  7627. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7628. }
  7629. void restore_print_from_eeprom() {
  7630. float x_rec, y_rec, z_pos;
  7631. int feedrate_rec;
  7632. uint8_t fan_speed_rec;
  7633. char cmd[30];
  7634. char* c;
  7635. char filename[13];
  7636. uint8_t depth = 0;
  7637. char dir_name[9];
  7638. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7639. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7640. SERIAL_ECHOPGM("Feedrate:");
  7641. MYSERIAL.println(feedrate_rec);
  7642. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7643. MYSERIAL.println(int(depth));
  7644. for (int i = 0; i < depth; i++) {
  7645. for (int j = 0; j < 8; j++) {
  7646. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7647. }
  7648. dir_name[8] = '\0';
  7649. MYSERIAL.println(dir_name);
  7650. strcpy(dir_names[i], dir_name);
  7651. card.chdir(dir_name);
  7652. }
  7653. for (int i = 0; i < 8; i++) {
  7654. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7655. }
  7656. filename[8] = '\0';
  7657. MYSERIAL.print(filename);
  7658. strcat_P(filename, PSTR(".gco"));
  7659. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7660. enquecommand(cmd);
  7661. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7662. SERIAL_ECHOPGM("Position read from eeprom:");
  7663. MYSERIAL.println(position);
  7664. // E axis relative mode.
  7665. enquecommand_P(PSTR("M83"));
  7666. // Move to the XY print position in logical coordinates, where the print has been killed.
  7667. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7668. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7669. strcat_P(cmd, PSTR(" F2000"));
  7670. enquecommand(cmd);
  7671. // Move the Z axis down to the print, in logical coordinates.
  7672. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7673. enquecommand(cmd);
  7674. // Unretract.
  7675. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7676. // Set the feedrate saved at the power panic.
  7677. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7678. enquecommand(cmd);
  7679. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7680. {
  7681. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7682. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7683. }
  7684. // Set the fan speed saved at the power panic.
  7685. strcpy_P(cmd, PSTR("M106 S"));
  7686. strcat(cmd, itostr3(int(fan_speed_rec)));
  7687. enquecommand(cmd);
  7688. // Set a position in the file.
  7689. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7690. enquecommand(cmd);
  7691. // Start SD print.
  7692. enquecommand_P(PSTR("M24"));
  7693. }
  7694. #endif //UVLO_SUPPORT
  7695. ////////////////////////////////////////////////////////////////////////////////
  7696. // save/restore printing
  7697. void stop_and_save_print_to_ram(float z_move, float e_move)
  7698. {
  7699. if (saved_printing) return;
  7700. unsigned char nplanner_blocks;
  7701. unsigned char nlines;
  7702. uint16_t sdlen_planner;
  7703. uint16_t sdlen_cmdqueue;
  7704. cli();
  7705. if (card.sdprinting) {
  7706. nplanner_blocks = number_of_blocks();
  7707. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7708. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7709. saved_sdpos -= sdlen_planner;
  7710. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7711. saved_sdpos -= sdlen_cmdqueue;
  7712. saved_printing_type = PRINTING_TYPE_SD;
  7713. }
  7714. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7715. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7716. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7717. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7718. saved_sdpos -= nlines;
  7719. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7720. saved_printing_type = PRINTING_TYPE_USB;
  7721. }
  7722. else {
  7723. //not sd printing nor usb printing
  7724. }
  7725. #if 0
  7726. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7727. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7728. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7729. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7730. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7731. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7732. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7733. {
  7734. card.setIndex(saved_sdpos);
  7735. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7736. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7737. MYSERIAL.print(char(card.get()));
  7738. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7739. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7740. MYSERIAL.print(char(card.get()));
  7741. SERIAL_ECHOLNPGM("End of command buffer");
  7742. }
  7743. {
  7744. // Print the content of the planner buffer, line by line:
  7745. card.setIndex(saved_sdpos);
  7746. int8_t iline = 0;
  7747. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7748. SERIAL_ECHOPGM("Planner line (from file): ");
  7749. MYSERIAL.print(int(iline), DEC);
  7750. SERIAL_ECHOPGM(", length: ");
  7751. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7752. SERIAL_ECHOPGM(", steps: (");
  7753. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7754. SERIAL_ECHOPGM(",");
  7755. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7756. SERIAL_ECHOPGM(",");
  7757. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7758. SERIAL_ECHOPGM(",");
  7759. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7760. SERIAL_ECHOPGM("), events: ");
  7761. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7762. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7763. MYSERIAL.print(char(card.get()));
  7764. }
  7765. }
  7766. {
  7767. // Print the content of the command buffer, line by line:
  7768. int8_t iline = 0;
  7769. union {
  7770. struct {
  7771. char lo;
  7772. char hi;
  7773. } lohi;
  7774. uint16_t value;
  7775. } sdlen_single;
  7776. int _bufindr = bufindr;
  7777. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7778. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7779. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7780. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7781. }
  7782. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7783. MYSERIAL.print(int(iline), DEC);
  7784. SERIAL_ECHOPGM(", type: ");
  7785. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7786. SERIAL_ECHOPGM(", len: ");
  7787. MYSERIAL.println(sdlen_single.value, DEC);
  7788. // Print the content of the buffer line.
  7789. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7790. SERIAL_ECHOPGM("Buffer line (from file): ");
  7791. MYSERIAL.println(int(iline), DEC);
  7792. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7793. MYSERIAL.print(char(card.get()));
  7794. if (-- _buflen == 0)
  7795. break;
  7796. // First skip the current command ID and iterate up to the end of the string.
  7797. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7798. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7799. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7800. // If the end of the buffer was empty,
  7801. if (_bufindr == sizeof(cmdbuffer)) {
  7802. // skip to the start and find the nonzero command.
  7803. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7804. }
  7805. }
  7806. }
  7807. #endif
  7808. #if 0
  7809. saved_feedrate2 = feedrate; //save feedrate
  7810. #else
  7811. // Try to deduce the feedrate from the first block of the planner.
  7812. // Speed is in mm/min.
  7813. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7814. #endif
  7815. planner_abort_hard(); //abort printing
  7816. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7817. saved_active_extruder = active_extruder; //save active_extruder
  7818. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7819. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7820. cmdqueue_reset(); //empty cmdqueue
  7821. card.sdprinting = false;
  7822. // card.closefile();
  7823. saved_printing = true;
  7824. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7825. st_reset_timer();
  7826. sei();
  7827. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7828. #if 1
  7829. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7830. char buf[48];
  7831. // First unretract (relative extrusion)
  7832. if(!saved_extruder_relative_mode){
  7833. strcpy_P(buf, PSTR("M83"));
  7834. enquecommand(buf, false);
  7835. }
  7836. //retract 45mm/s
  7837. strcpy_P(buf, PSTR("G1 E"));
  7838. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7839. strcat_P(buf, PSTR(" F"));
  7840. dtostrf(2700, 8, 3, buf + strlen(buf));
  7841. enquecommand(buf, false);
  7842. // Then lift Z axis
  7843. strcpy_P(buf, PSTR("G1 Z"));
  7844. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7845. strcat_P(buf, PSTR(" F"));
  7846. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7847. // At this point the command queue is empty.
  7848. enquecommand(buf, false);
  7849. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7850. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7851. repeatcommand_front();
  7852. #else
  7853. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7854. st_synchronize(); //wait moving
  7855. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7856. memcpy(destination, current_position, sizeof(destination));
  7857. #endif
  7858. }
  7859. }
  7860. void restore_print_from_ram_and_continue(float e_move)
  7861. {
  7862. if (!saved_printing) return;
  7863. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7864. // current_position[axis] = st_get_position_mm(axis);
  7865. active_extruder = saved_active_extruder; //restore active_extruder
  7866. feedrate = saved_feedrate2; //restore feedrate
  7867. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7868. float e = saved_pos[E_AXIS] - e_move;
  7869. plan_set_e_position(e);
  7870. //first move print head in XY to the saved position:
  7871. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7872. st_synchronize();
  7873. //then move Z
  7874. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7875. st_synchronize();
  7876. //and finaly unretract (35mm/s)
  7877. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7878. st_synchronize();
  7879. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7880. memcpy(destination, current_position, sizeof(destination));
  7881. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7882. card.setIndex(saved_sdpos);
  7883. sdpos_atomic = saved_sdpos;
  7884. card.sdprinting = true;
  7885. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7886. }
  7887. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7888. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7889. serial_count = 0;
  7890. FlushSerialRequestResend();
  7891. }
  7892. else {
  7893. //not sd printing nor usb printing
  7894. }
  7895. lcd_setstatuspgm(_T(WELCOME_MSG));
  7896. saved_printing = false;
  7897. }
  7898. void print_world_coordinates()
  7899. {
  7900. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7901. }
  7902. void print_physical_coordinates()
  7903. {
  7904. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7905. }
  7906. void print_mesh_bed_leveling_table()
  7907. {
  7908. SERIAL_ECHOPGM("mesh bed leveling: ");
  7909. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7910. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7911. MYSERIAL.print(mbl.z_values[y][x], 3);
  7912. SERIAL_ECHOPGM(" ");
  7913. }
  7914. SERIAL_ECHOLNPGM("");
  7915. }
  7916. uint16_t print_time_remaining() {
  7917. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7918. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7919. else print_t = print_time_remaining_silent;
  7920. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7921. return print_t;
  7922. }
  7923. uint8_t print_percent_done() {
  7924. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7925. uint8_t percent_done = 0;
  7926. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7927. percent_done = print_percent_done_normal;
  7928. }
  7929. else if (print_percent_done_silent <= 100) {
  7930. percent_done = print_percent_done_silent;
  7931. }
  7932. else {
  7933. percent_done = card.percentDone();
  7934. }
  7935. return percent_done;
  7936. }
  7937. static void print_time_remaining_init() {
  7938. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7939. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7940. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7941. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7942. }
  7943. #define FIL_LOAD_LENGTH 60