temperature.cpp 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. uint8_t fanSpeedBckp = 255;
  123. bool fan_measuring = false;
  124. #endif
  125. #if EXTRUDERS > 3
  126. # error Unsupported number of extruders
  127. #elif EXTRUDERS > 2
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  129. #elif EXTRUDERS > 1
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  131. #else
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  133. #endif
  134. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifndef SOFT_PWM_SCALE
  159. #define SOFT_PWM_SCALE 0
  160. #endif
  161. //===========================================================================
  162. //============================= functions ============================
  163. //===========================================================================
  164. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  165. static float temp_runaway_status[4];
  166. static float temp_runaway_target[4];
  167. static float temp_runaway_timer[4];
  168. static int temp_runaway_error_counter[4];
  169. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  170. static void temp_runaway_stop(bool isPreheat, bool isBed);
  171. #endif
  172. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  173. bool checkAllHotends(void)
  174. {
  175. bool result=false;
  176. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  177. return(result);
  178. }
  179. void PID_autotune(float temp, int extruder, int ncycles)
  180. {
  181. pid_number_of_cycles = ncycles;
  182. pid_tuning_finished = false;
  183. float input = 0.0;
  184. pid_cycle=0;
  185. bool heating = true;
  186. unsigned long temp_millis = _millis();
  187. unsigned long t1=temp_millis;
  188. unsigned long t2=temp_millis;
  189. long t_high = 0;
  190. long t_low = 0;
  191. long bias, d;
  192. float Ku, Tu;
  193. float max = 0, min = 10000;
  194. uint8_t safety_check_cycles = 0;
  195. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  196. float temp_ambient;
  197. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  198. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  200. unsigned long extruder_autofan_last_check = _millis();
  201. #endif
  202. if ((extruder >= EXTRUDERS)
  203. #if (TEMP_BED_PIN <= -1)
  204. ||(extruder < 0)
  205. #endif
  206. ){
  207. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  208. pid_tuning_finished = true;
  209. pid_cycle = 0;
  210. return;
  211. }
  212. SERIAL_ECHOLN("PID Autotune start");
  213. disable_heater(); // switch off all heaters.
  214. if (extruder<0)
  215. {
  216. soft_pwm_bed = (MAX_BED_POWER)/2;
  217. timer02_set_pwm0(soft_pwm_bed << 1);
  218. bias = d = (MAX_BED_POWER)/2;
  219. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  220. }
  221. else
  222. {
  223. soft_pwm[extruder] = (PID_MAX)/2;
  224. bias = d = (PID_MAX)/2;
  225. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  226. }
  227. for(;;) {
  228. #ifdef WATCHDOG
  229. wdt_reset();
  230. #endif //WATCHDOG
  231. if(temp_meas_ready == true) { // temp sample ready
  232. updateTemperaturesFromRawValues();
  233. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  234. max=max(max,input);
  235. min=min(min,input);
  236. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  237. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  239. if(_millis() - extruder_autofan_last_check > 2500) {
  240. checkExtruderAutoFans();
  241. extruder_autofan_last_check = _millis();
  242. }
  243. #endif
  244. if(heating == true && input > temp) {
  245. if(_millis() - t2 > 5000) {
  246. heating=false;
  247. if (extruder<0)
  248. {
  249. soft_pwm_bed = (bias - d) >> 1;
  250. timer02_set_pwm0(soft_pwm_bed << 1);
  251. }
  252. else
  253. soft_pwm[extruder] = (bias - d) >> 1;
  254. t1=_millis();
  255. t_high=t1 - t2;
  256. max=temp;
  257. }
  258. }
  259. if(heating == false && input < temp) {
  260. if(_millis() - t1 > 5000) {
  261. heating=true;
  262. t2=_millis();
  263. t_low=t2 - t1;
  264. if(pid_cycle > 0) {
  265. bias += (d*(t_high - t_low))/(t_low + t_high);
  266. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  267. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  268. else d = bias;
  269. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  270. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  271. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  272. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  273. if(pid_cycle > 2) {
  274. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  275. Tu = ((float)(t_low + t_high)/1000.0);
  276. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  277. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  278. _Kp = 0.6*Ku;
  279. _Ki = 2*_Kp/Tu;
  280. _Kd = _Kp*Tu/8;
  281. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  282. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  283. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  284. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  285. /*
  286. _Kp = 0.33*Ku;
  287. _Ki = _Kp/Tu;
  288. _Kd = _Kp*Tu/3;
  289. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  290. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  291. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  292. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  293. _Kp = 0.2*Ku;
  294. _Ki = 2*_Kp/Tu;
  295. _Kd = _Kp*Tu/3;
  296. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  297. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  298. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  299. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  300. */
  301. }
  302. }
  303. if (extruder<0)
  304. {
  305. soft_pwm_bed = (bias + d) >> 1;
  306. timer02_set_pwm0(soft_pwm_bed << 1);
  307. }
  308. else
  309. soft_pwm[extruder] = (bias + d) >> 1;
  310. pid_cycle++;
  311. min=temp;
  312. }
  313. }
  314. }
  315. if(input > (temp + 20)) {
  316. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  317. pid_tuning_finished = true;
  318. pid_cycle = 0;
  319. return;
  320. }
  321. if(_millis() - temp_millis > 2000) {
  322. int p;
  323. if (extruder<0){
  324. p=soft_pwm_bed;
  325. SERIAL_PROTOCOLPGM("B:");
  326. }else{
  327. p=soft_pwm[extruder];
  328. SERIAL_PROTOCOLPGM("T:");
  329. }
  330. SERIAL_PROTOCOL(input);
  331. SERIAL_PROTOCOLPGM(" @:");
  332. SERIAL_PROTOCOLLN(p);
  333. if (safety_check_cycles == 0) { //save ambient temp
  334. temp_ambient = input;
  335. //SERIAL_ECHOPGM("Ambient T: ");
  336. //MYSERIAL.println(temp_ambient);
  337. safety_check_cycles++;
  338. }
  339. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  340. safety_check_cycles++;
  341. }
  342. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  343. safety_check_cycles++;
  344. //SERIAL_ECHOPGM("Time from beginning: ");
  345. //MYSERIAL.print(safety_check_cycles_count * 2);
  346. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  347. //MYSERIAL.println(input - temp_ambient);
  348. if (abs(input - temp_ambient) < 5.0) {
  349. temp_runaway_stop(false, (extruder<0));
  350. pid_tuning_finished = true;
  351. return;
  352. }
  353. }
  354. temp_millis = _millis();
  355. }
  356. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  357. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  358. pid_tuning_finished = true;
  359. pid_cycle = 0;
  360. return;
  361. }
  362. if(pid_cycle > ncycles) {
  363. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  364. pid_tuning_finished = true;
  365. pid_cycle = 0;
  366. return;
  367. }
  368. lcd_update(0);
  369. }
  370. }
  371. void updatePID()
  372. {
  373. #ifdef PIDTEMP
  374. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  375. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  376. }
  377. #endif
  378. #ifdef PIDTEMPBED
  379. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  380. #endif
  381. }
  382. int getHeaterPower(int heater) {
  383. if (heater<0)
  384. return soft_pwm_bed;
  385. return soft_pwm[heater];
  386. }
  387. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  388. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  390. #if defined(FAN_PIN) && FAN_PIN > -1
  391. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  392. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  393. #endif
  394. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  395. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  396. #endif
  397. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  398. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  399. #endif
  400. #endif
  401. void setExtruderAutoFanState(int pin, bool state)
  402. {
  403. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  404. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  405. pinMode(pin, OUTPUT);
  406. digitalWrite(pin, newFanSpeed);
  407. //analogWrite(pin, newFanSpeed);
  408. }
  409. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  410. void countFanSpeed()
  411. {
  412. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  413. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  414. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  416. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  417. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  418. SERIAL_ECHOLNPGM(" ");*/
  419. fan_edge_counter[0] = 0;
  420. fan_edge_counter[1] = 0;
  421. }
  422. void checkFanSpeed()
  423. {
  424. uint8_t max_print_fan_errors = 0;
  425. uint8_t max_extruder_fan_errors = 0;
  426. #ifdef FAN_SOFT_PWM
  427. max_print_fan_errors = 3; //15 seconds
  428. max_extruder_fan_errors = 2; //10seconds
  429. #else //FAN_SOFT_PWM
  430. max_print_fan_errors = 15; //15 seconds
  431. max_extruder_fan_errors = 5; //5 seconds
  432. #endif //FAN_SOFT_PWM
  433. if(fans_check_enabled != false)
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  438. else{
  439. fan_speed_errors[0] = 0;
  440. host_keepalive();
  441. }
  442. #endif
  443. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  444. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  445. else fan_speed_errors[1] = 0;
  446. #endif
  447. // drop the fan_check_error flag when both fans are ok
  448. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  449. // we may even send some info to the LCD from here
  450. fan_check_error = EFCE_FIXED;
  451. }
  452. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  453. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  454. lcd_reset_alert_level(); //for another fan speed error
  455. }
  456. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  457. fan_speed_errors[0] = 0;
  458. fanSpeedError(0); //extruder fan
  459. }
  460. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  461. fan_speed_errors[1] = 0;
  462. fanSpeedError(1); //print fan
  463. }
  464. }
  465. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  466. //! Extracted from fanSpeedError to save some space.
  467. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  468. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  469. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  470. SERIAL_ECHOLNRPGM(serialMsg);
  471. if (get_message_level() == 0) {
  472. Sound_MakeCustom(200,0,true);
  473. LCD_ALERTMESSAGERPGM(lcdMsg);
  474. }
  475. }
  476. void fanSpeedError(unsigned char _fan) {
  477. if (get_message_level() != 0 && isPrintPaused) return;
  478. //to ensure that target temp. is not set to zero in case that we are resuming print
  479. if (card.sdprinting || is_usb_printing) {
  480. if (heating_status != 0) {
  481. lcd_print_stop();
  482. }
  483. else {
  484. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  485. }
  486. }
  487. else {
  488. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  489. setTargetHotend0(0);
  490. heating_status = 0;
  491. fan_check_error = EFCE_REPORTED;
  492. }
  493. switch (_fan) {
  494. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  495. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  496. break;
  497. case 1:
  498. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  499. break;
  500. }
  501. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  502. }
  503. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  504. void checkExtruderAutoFans()
  505. {
  506. uint8_t fanState = 0;
  507. // which fan pins need to be turned on?
  508. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  509. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  510. fanState |= 1;
  511. #endif
  512. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  513. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  514. {
  515. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  516. fanState |= 1;
  517. else
  518. fanState |= 2;
  519. }
  520. #endif
  521. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  522. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  523. {
  524. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  525. fanState |= 1;
  526. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  527. fanState |= 2;
  528. else
  529. fanState |= 4;
  530. }
  531. #endif
  532. // update extruder auto fan states
  533. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  534. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  535. #endif
  536. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  537. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  538. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  539. #endif
  540. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  541. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  542. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  543. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  544. #endif
  545. }
  546. #endif // any extruder auto fan pins set
  547. // ready for eventually parameters adjusting
  548. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  549. //void resetPID(uint8_t extruder)
  550. {
  551. }
  552. void manage_heater()
  553. {
  554. #ifdef WATCHDOG
  555. wdt_reset();
  556. #endif //WATCHDOG
  557. float pid_input;
  558. float pid_output;
  559. if(temp_meas_ready != true) //better readability
  560. return;
  561. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  562. updateTemperaturesFromRawValues();
  563. check_max_temp();
  564. check_min_temp();
  565. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  566. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  567. #endif
  568. for(int e = 0; e < EXTRUDERS; e++)
  569. {
  570. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  571. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  572. #endif
  573. #ifdef PIDTEMP
  574. pid_input = current_temperature[e];
  575. #ifndef PID_OPENLOOP
  576. if(target_temperature[e] == 0) {
  577. pid_output = 0;
  578. pid_reset[e] = true;
  579. } else {
  580. pid_error[e] = target_temperature[e] - pid_input;
  581. if(pid_reset[e]) {
  582. iState_sum[e] = 0.0;
  583. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  584. pid_reset[e] = false;
  585. }
  586. #ifndef PonM
  587. pTerm[e] = cs.Kp * pid_error[e];
  588. iState_sum[e] += pid_error[e];
  589. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  590. iTerm[e] = cs.Ki * iState_sum[e];
  591. // PID_K1 defined in Configuration.h in the PID settings
  592. #define K2 (1.0-PID_K1)
  593. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  594. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  595. if (pid_output > PID_MAX) {
  596. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  597. pid_output=PID_MAX;
  598. } else if (pid_output < 0) {
  599. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  600. pid_output=0;
  601. }
  602. #else // PonM ("Proportional on Measurement" method)
  603. iState_sum[e] += cs.Ki * pid_error[e];
  604. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  605. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  606. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  607. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  608. pid_output = constrain(pid_output, 0, PID_MAX);
  609. #endif // PonM
  610. }
  611. dState_last[e] = pid_input;
  612. #else
  613. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  614. #endif //PID_OPENLOOP
  615. #ifdef PID_DEBUG
  616. SERIAL_ECHO_START;
  617. SERIAL_ECHO(" PID_DEBUG ");
  618. SERIAL_ECHO(e);
  619. SERIAL_ECHO(": Input ");
  620. SERIAL_ECHO(pid_input);
  621. SERIAL_ECHO(" Output ");
  622. SERIAL_ECHO(pid_output);
  623. SERIAL_ECHO(" pTerm ");
  624. SERIAL_ECHO(pTerm[e]);
  625. SERIAL_ECHO(" iTerm ");
  626. SERIAL_ECHO(iTerm[e]);
  627. SERIAL_ECHO(" dTerm ");
  628. SERIAL_ECHOLN(-dTerm[e]);
  629. #endif //PID_DEBUG
  630. #else /* PID off */
  631. pid_output = 0;
  632. if(current_temperature[e] < target_temperature[e]) {
  633. pid_output = PID_MAX;
  634. }
  635. #endif
  636. // Check if temperature is within the correct range
  637. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  638. {
  639. soft_pwm[e] = (int)pid_output >> 1;
  640. }
  641. else
  642. {
  643. soft_pwm[e] = 0;
  644. }
  645. } // End extruder for loop
  646. #define FAN_CHECK_PERIOD 5000 //5s
  647. #define FAN_CHECK_DURATION 100 //100ms
  648. #ifndef DEBUG_DISABLE_FANCHECK
  649. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  650. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  651. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  652. #ifdef FAN_SOFT_PWM
  653. #ifdef FANCHECK
  654. if (fans_check_enabled) {
  655. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  656. extruder_autofan_last_check = _millis();
  657. fanSpeedBckp = fanSpeedSoftPwm;
  658. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  659. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  660. fanSpeedSoftPwm = 255;
  661. }
  662. fan_measuring = true;
  663. }
  664. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  665. countFanSpeed();
  666. checkFanSpeed();
  667. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  668. fanSpeedSoftPwm = fanSpeedBckp;
  669. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  670. extruder_autofan_last_check = _millis();
  671. fan_measuring = false;
  672. }
  673. }
  674. #endif //FANCHECK
  675. checkExtruderAutoFans();
  676. #else //FAN_SOFT_PWM
  677. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  678. {
  679. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  680. countFanSpeed();
  681. checkFanSpeed();
  682. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  683. checkExtruderAutoFans();
  684. extruder_autofan_last_check = _millis();
  685. }
  686. #endif //FAN_SOFT_PWM
  687. #endif
  688. #endif //DEBUG_DISABLE_FANCHECK
  689. #ifndef PIDTEMPBED
  690. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  691. return;
  692. previous_millis_bed_heater = _millis();
  693. #endif
  694. #if TEMP_SENSOR_BED != 0
  695. #ifdef PIDTEMPBED
  696. pid_input = current_temperature_bed;
  697. #ifndef PID_OPENLOOP
  698. pid_error_bed = target_temperature_bed - pid_input;
  699. pTerm_bed = cs.bedKp * pid_error_bed;
  700. temp_iState_bed += pid_error_bed;
  701. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  702. iTerm_bed = cs.bedKi * temp_iState_bed;
  703. //PID_K1 defined in Configuration.h in the PID settings
  704. #define K2 (1.0-PID_K1)
  705. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  706. temp_dState_bed = pid_input;
  707. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  708. if (pid_output > MAX_BED_POWER) {
  709. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  710. pid_output=MAX_BED_POWER;
  711. } else if (pid_output < 0){
  712. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  713. pid_output=0;
  714. }
  715. #else
  716. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  717. #endif //PID_OPENLOOP
  718. if(current_temperature_bed < BED_MAXTEMP)
  719. {
  720. soft_pwm_bed = (int)pid_output >> 1;
  721. timer02_set_pwm0(soft_pwm_bed << 1);
  722. }
  723. else {
  724. soft_pwm_bed = 0;
  725. timer02_set_pwm0(soft_pwm_bed << 1);
  726. }
  727. #elif !defined(BED_LIMIT_SWITCHING)
  728. // Check if temperature is within the correct range
  729. if(current_temperature_bed < BED_MAXTEMP)
  730. {
  731. if(current_temperature_bed >= target_temperature_bed)
  732. {
  733. soft_pwm_bed = 0;
  734. timer02_set_pwm0(soft_pwm_bed << 1);
  735. }
  736. else
  737. {
  738. soft_pwm_bed = MAX_BED_POWER>>1;
  739. timer02_set_pwm0(soft_pwm_bed << 1);
  740. }
  741. }
  742. else
  743. {
  744. soft_pwm_bed = 0;
  745. timer02_set_pwm0(soft_pwm_bed << 1);
  746. WRITE(HEATER_BED_PIN,LOW);
  747. }
  748. #else //#ifdef BED_LIMIT_SWITCHING
  749. // Check if temperature is within the correct band
  750. if(current_temperature_bed < BED_MAXTEMP)
  751. {
  752. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  753. {
  754. soft_pwm_bed = 0;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. }
  757. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  758. {
  759. soft_pwm_bed = MAX_BED_POWER>>1;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. }
  762. }
  763. else
  764. {
  765. soft_pwm_bed = 0;
  766. timer02_set_pwm0(soft_pwm_bed << 1);
  767. WRITE(HEATER_BED_PIN,LOW);
  768. }
  769. #endif
  770. if(target_temperature_bed==0)
  771. {
  772. soft_pwm_bed = 0;
  773. timer02_set_pwm0(soft_pwm_bed << 1);
  774. }
  775. #endif
  776. host_keepalive();
  777. }
  778. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  779. // Derived from RepRap FiveD extruder::getTemperature()
  780. // For hot end temperature measurement.
  781. static float analog2temp(int raw, uint8_t e) {
  782. if(e >= EXTRUDERS)
  783. {
  784. SERIAL_ERROR_START;
  785. SERIAL_ERROR((int)e);
  786. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  787. kill(NULL, 6);
  788. return 0.0;
  789. }
  790. #ifdef HEATER_0_USES_MAX6675
  791. if (e == 0)
  792. {
  793. return 0.25 * raw;
  794. }
  795. #endif
  796. if(heater_ttbl_map[e] != NULL)
  797. {
  798. float celsius = 0;
  799. uint8_t i;
  800. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  801. for (i=1; i<heater_ttbllen_map[e]; i++)
  802. {
  803. if (PGM_RD_W((*tt)[i][0]) > raw)
  804. {
  805. celsius = PGM_RD_W((*tt)[i-1][1]) +
  806. (raw - PGM_RD_W((*tt)[i-1][0])) *
  807. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  808. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  809. break;
  810. }
  811. }
  812. // Overflow: Set to last value in the table
  813. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  814. return celsius;
  815. }
  816. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  817. }
  818. // Derived from RepRap FiveD extruder::getTemperature()
  819. // For bed temperature measurement.
  820. static float analog2tempBed(int raw) {
  821. #ifdef BED_USES_THERMISTOR
  822. float celsius = 0;
  823. byte i;
  824. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  825. {
  826. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  827. {
  828. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  829. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  830. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  831. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  832. break;
  833. }
  834. }
  835. // Overflow: Set to last value in the table
  836. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  837. // temperature offset adjustment
  838. #ifdef BED_OFFSET
  839. float _offset = BED_OFFSET;
  840. float _offset_center = BED_OFFSET_CENTER;
  841. float _offset_start = BED_OFFSET_START;
  842. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  843. float _second_koef = (_offset / 2) / (100 - _offset_center);
  844. if (celsius >= _offset_start && celsius <= _offset_center)
  845. {
  846. celsius = celsius + (_first_koef * (celsius - _offset_start));
  847. }
  848. else if (celsius > _offset_center && celsius <= 100)
  849. {
  850. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  851. }
  852. else if (celsius > 100)
  853. {
  854. celsius = celsius + _offset;
  855. }
  856. #endif
  857. return celsius;
  858. #elif defined BED_USES_AD595
  859. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  860. #else
  861. return 0;
  862. #endif
  863. }
  864. #ifdef AMBIENT_THERMISTOR
  865. static float analog2tempAmbient(int raw)
  866. {
  867. float celsius = 0;
  868. byte i;
  869. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  870. {
  871. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  872. {
  873. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  874. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  875. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  876. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  877. break;
  878. }
  879. }
  880. // Overflow: Set to last value in the table
  881. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  882. return celsius;
  883. }
  884. #endif //AMBIENT_THERMISTOR
  885. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  886. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  887. static void updateTemperaturesFromRawValues()
  888. {
  889. for(uint8_t e=0;e<EXTRUDERS;e++)
  890. {
  891. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  892. }
  893. #ifdef PINDA_THERMISTOR
  894. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  895. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  896. #endif
  897. #ifdef AMBIENT_THERMISTOR
  898. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  899. #endif
  900. #ifdef DEBUG_HEATER_BED_SIM
  901. current_temperature_bed = target_temperature_bed;
  902. #else //DEBUG_HEATER_BED_SIM
  903. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  904. #endif //DEBUG_HEATER_BED_SIM
  905. CRITICAL_SECTION_START;
  906. temp_meas_ready = false;
  907. CRITICAL_SECTION_END;
  908. }
  909. void tp_init()
  910. {
  911. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  912. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  913. MCUCR=(1<<JTD);
  914. MCUCR=(1<<JTD);
  915. #endif
  916. // Finish init of mult extruder arrays
  917. for(int e = 0; e < EXTRUDERS; e++) {
  918. // populate with the first value
  919. maxttemp[e] = maxttemp[0];
  920. #ifdef PIDTEMP
  921. iState_sum_min[e] = 0.0;
  922. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  923. #endif //PIDTEMP
  924. #ifdef PIDTEMPBED
  925. temp_iState_min_bed = 0.0;
  926. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  927. #endif //PIDTEMPBED
  928. }
  929. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  930. SET_OUTPUT(HEATER_0_PIN);
  931. #endif
  932. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  933. SET_OUTPUT(HEATER_1_PIN);
  934. #endif
  935. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  936. SET_OUTPUT(HEATER_2_PIN);
  937. #endif
  938. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  939. SET_OUTPUT(HEATER_BED_PIN);
  940. #endif
  941. #if defined(FAN_PIN) && (FAN_PIN > -1)
  942. SET_OUTPUT(FAN_PIN);
  943. #ifdef FAST_PWM_FAN
  944. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  945. #endif
  946. #ifdef FAN_SOFT_PWM
  947. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  948. #endif
  949. #endif
  950. #ifdef HEATER_0_USES_MAX6675
  951. #ifndef SDSUPPORT
  952. SET_OUTPUT(SCK_PIN);
  953. WRITE(SCK_PIN,0);
  954. SET_OUTPUT(MOSI_PIN);
  955. WRITE(MOSI_PIN,1);
  956. SET_INPUT(MISO_PIN);
  957. WRITE(MISO_PIN,1);
  958. #endif
  959. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  960. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  961. pinMode(SS_PIN, OUTPUT);
  962. digitalWrite(SS_PIN,0);
  963. pinMode(MAX6675_SS, OUTPUT);
  964. digitalWrite(MAX6675_SS,1);
  965. #endif
  966. adc_init();
  967. timer0_init();
  968. OCR2B = 128;
  969. TIMSK2 |= (1<<OCIE2B);
  970. // Wait for temperature measurement to settle
  971. _delay(250);
  972. #ifdef HEATER_0_MINTEMP
  973. minttemp[0] = HEATER_0_MINTEMP;
  974. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  975. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  976. minttemp_raw[0] += OVERSAMPLENR;
  977. #else
  978. minttemp_raw[0] -= OVERSAMPLENR;
  979. #endif
  980. }
  981. #endif //MINTEMP
  982. #ifdef HEATER_0_MAXTEMP
  983. maxttemp[0] = HEATER_0_MAXTEMP;
  984. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  985. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  986. maxttemp_raw[0] -= OVERSAMPLENR;
  987. #else
  988. maxttemp_raw[0] += OVERSAMPLENR;
  989. #endif
  990. }
  991. #endif //MAXTEMP
  992. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  993. minttemp[1] = HEATER_1_MINTEMP;
  994. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  995. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  996. minttemp_raw[1] += OVERSAMPLENR;
  997. #else
  998. minttemp_raw[1] -= OVERSAMPLENR;
  999. #endif
  1000. }
  1001. #endif // MINTEMP 1
  1002. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1003. maxttemp[1] = HEATER_1_MAXTEMP;
  1004. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1005. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1006. maxttemp_raw[1] -= OVERSAMPLENR;
  1007. #else
  1008. maxttemp_raw[1] += OVERSAMPLENR;
  1009. #endif
  1010. }
  1011. #endif //MAXTEMP 1
  1012. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1013. minttemp[2] = HEATER_2_MINTEMP;
  1014. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1015. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1016. minttemp_raw[2] += OVERSAMPLENR;
  1017. #else
  1018. minttemp_raw[2] -= OVERSAMPLENR;
  1019. #endif
  1020. }
  1021. #endif //MINTEMP 2
  1022. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1023. maxttemp[2] = HEATER_2_MAXTEMP;
  1024. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1025. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1026. maxttemp_raw[2] -= OVERSAMPLENR;
  1027. #else
  1028. maxttemp_raw[2] += OVERSAMPLENR;
  1029. #endif
  1030. }
  1031. #endif //MAXTEMP 2
  1032. #ifdef BED_MINTEMP
  1033. /* No bed MINTEMP error implemented?!? */
  1034. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1035. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1036. bed_minttemp_raw += OVERSAMPLENR;
  1037. #else
  1038. bed_minttemp_raw -= OVERSAMPLENR;
  1039. #endif
  1040. }
  1041. #endif //BED_MINTEMP
  1042. #ifdef BED_MAXTEMP
  1043. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1044. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1045. bed_maxttemp_raw -= OVERSAMPLENR;
  1046. #else
  1047. bed_maxttemp_raw += OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //BED_MAXTEMP
  1051. }
  1052. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1053. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1054. {
  1055. float __delta;
  1056. float __hysteresis = 0;
  1057. int __timeout = 0;
  1058. bool temp_runaway_check_active = false;
  1059. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1060. static int __preheat_counter[2] = { 0,0};
  1061. static int __preheat_errors[2] = { 0,0};
  1062. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1063. {
  1064. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1065. if (_isbed)
  1066. {
  1067. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1068. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1069. }
  1070. #endif
  1071. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1072. if (!_isbed)
  1073. {
  1074. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1075. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1076. }
  1077. #endif
  1078. temp_runaway_timer[_heater_id] = _millis();
  1079. if (_output == 0)
  1080. {
  1081. temp_runaway_check_active = false;
  1082. temp_runaway_error_counter[_heater_id] = 0;
  1083. }
  1084. if (temp_runaway_target[_heater_id] != _target_temperature)
  1085. {
  1086. if (_target_temperature > 0)
  1087. {
  1088. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1089. temp_runaway_target[_heater_id] = _target_temperature;
  1090. __preheat_start[_heater_id] = _current_temperature;
  1091. __preheat_counter[_heater_id] = 0;
  1092. }
  1093. else
  1094. {
  1095. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1096. temp_runaway_target[_heater_id] = _target_temperature;
  1097. }
  1098. }
  1099. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1100. {
  1101. __preheat_counter[_heater_id]++;
  1102. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1103. {
  1104. /*SERIAL_ECHOPGM("Heater:");
  1105. MYSERIAL.print(_heater_id);
  1106. SERIAL_ECHOPGM(" T:");
  1107. MYSERIAL.print(_current_temperature);
  1108. SERIAL_ECHOPGM(" Tstart:");
  1109. MYSERIAL.print(__preheat_start[_heater_id]);
  1110. SERIAL_ECHOPGM(" delta:");
  1111. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1112. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1113. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1114. __delta=2.0;
  1115. if(_isbed)
  1116. {
  1117. __delta=3.0;
  1118. if(_current_temperature>90.0) __delta=2.0;
  1119. if(_current_temperature>105.0) __delta=0.6;
  1120. }
  1121. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1122. __preheat_errors[_heater_id]++;
  1123. /*SERIAL_ECHOPGM(" Preheat errors:");
  1124. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1125. }
  1126. else {
  1127. //SERIAL_ECHOLNPGM("");
  1128. __preheat_errors[_heater_id] = 0;
  1129. }
  1130. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1131. {
  1132. if (farm_mode) { prusa_statistics(0); }
  1133. temp_runaway_stop(true, _isbed);
  1134. if (farm_mode) { prusa_statistics(91); }
  1135. }
  1136. __preheat_start[_heater_id] = _current_temperature;
  1137. __preheat_counter[_heater_id] = 0;
  1138. }
  1139. }
  1140. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1141. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1142. {
  1143. /*SERIAL_ECHOPGM("Heater:");
  1144. MYSERIAL.print(_heater_id);
  1145. MYSERIAL.println(" ->tempRunaway");*/
  1146. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1147. temp_runaway_check_active = false;
  1148. temp_runaway_error_counter[_heater_id] = 0;
  1149. }
  1150. if (_output > 0)
  1151. {
  1152. temp_runaway_check_active = true;
  1153. }
  1154. if (temp_runaway_check_active)
  1155. {
  1156. // we are in range
  1157. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1158. {
  1159. temp_runaway_check_active = false;
  1160. temp_runaway_error_counter[_heater_id] = 0;
  1161. }
  1162. else
  1163. {
  1164. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1165. {
  1166. temp_runaway_error_counter[_heater_id]++;
  1167. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1168. {
  1169. if (farm_mode) { prusa_statistics(0); }
  1170. temp_runaway_stop(false, _isbed);
  1171. if (farm_mode) { prusa_statistics(90); }
  1172. }
  1173. }
  1174. }
  1175. }
  1176. }
  1177. }
  1178. void temp_runaway_stop(bool isPreheat, bool isBed)
  1179. {
  1180. cancel_heatup = true;
  1181. quickStop();
  1182. if (card.sdprinting)
  1183. {
  1184. card.sdprinting = false;
  1185. card.closefile();
  1186. }
  1187. // Clean the input command queue
  1188. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1189. cmdqueue_reset();
  1190. disable_heater();
  1191. disable_x();
  1192. disable_y();
  1193. disable_e0();
  1194. disable_e1();
  1195. disable_e2();
  1196. manage_heater();
  1197. lcd_update(0);
  1198. Sound_MakeCustom(200,0,true);
  1199. if (isPreheat)
  1200. {
  1201. Stop();
  1202. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1203. SERIAL_ERROR_START;
  1204. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1205. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1206. SET_OUTPUT(FAN_PIN);
  1207. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1208. #ifdef FAN_SOFT_PWM
  1209. fanSpeedSoftPwm = 255;
  1210. #else //FAN_SOFT_PWM
  1211. analogWrite(FAN_PIN, 255);
  1212. #endif //FAN_SOFT_PWM
  1213. fanSpeed = 255;
  1214. delayMicroseconds(2000);
  1215. }
  1216. else
  1217. {
  1218. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1219. SERIAL_ERROR_START;
  1220. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1221. }
  1222. }
  1223. #endif
  1224. void disable_heater()
  1225. {
  1226. setAllTargetHotends(0);
  1227. setTargetBed(0);
  1228. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1229. target_temperature[0]=0;
  1230. soft_pwm[0]=0;
  1231. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1232. WRITE(HEATER_0_PIN,LOW);
  1233. #endif
  1234. #endif
  1235. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1236. target_temperature[1]=0;
  1237. soft_pwm[1]=0;
  1238. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1239. WRITE(HEATER_1_PIN,LOW);
  1240. #endif
  1241. #endif
  1242. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1243. target_temperature[2]=0;
  1244. soft_pwm[2]=0;
  1245. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1246. WRITE(HEATER_2_PIN,LOW);
  1247. #endif
  1248. #endif
  1249. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1250. target_temperature_bed=0;
  1251. soft_pwm_bed=0;
  1252. timer02_set_pwm0(soft_pwm_bed << 1);
  1253. bedPWMDisabled = 0;
  1254. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1255. //WRITE(HEATER_BED_PIN,LOW);
  1256. #endif
  1257. #endif
  1258. }
  1259. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1260. //! than raw const char * of the messages themselves.
  1261. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1262. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1263. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1264. //! remember the last alert message sent to the LCD
  1265. //! to prevent flicker and improve speed
  1266. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1267. void max_temp_error(uint8_t e) {
  1268. disable_heater();
  1269. if(IsStopped() == false) {
  1270. SERIAL_ERROR_START;
  1271. SERIAL_ERRORLN((int)e);
  1272. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1273. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1274. }
  1275. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1276. Stop();
  1277. #endif
  1278. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1279. SET_OUTPUT(FAN_PIN);
  1280. SET_OUTPUT(BEEPER);
  1281. WRITE(FAN_PIN, 1);
  1282. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1283. WRITE(BEEPER, 1);
  1284. // fanSpeed will consumed by the check_axes_activity() routine.
  1285. fanSpeed=255;
  1286. if (farm_mode) { prusa_statistics(93); }
  1287. }
  1288. void min_temp_error(uint8_t e) {
  1289. #ifdef DEBUG_DISABLE_MINTEMP
  1290. return;
  1291. #endif
  1292. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1293. disable_heater();
  1294. static const char err[] PROGMEM = "Err: MINTEMP";
  1295. if(IsStopped() == false) {
  1296. SERIAL_ERROR_START;
  1297. SERIAL_ERRORLN((int)e);
  1298. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1299. lcd_setalertstatuspgm(err);
  1300. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1301. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1302. // we are already stopped due to some error, only update the status message without flickering
  1303. lcd_updatestatuspgm(err);
  1304. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1305. }
  1306. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1307. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1308. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1309. // lcd_print_stop();
  1310. // }
  1311. Stop();
  1312. #endif
  1313. if (farm_mode) { prusa_statistics(92); }
  1314. }
  1315. void bed_max_temp_error(void) {
  1316. #if HEATER_BED_PIN > -1
  1317. //WRITE(HEATER_BED_PIN, 0);
  1318. #endif
  1319. if(IsStopped() == false) {
  1320. SERIAL_ERROR_START;
  1321. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1322. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1323. }
  1324. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1325. Stop();
  1326. #endif
  1327. }
  1328. void bed_min_temp_error(void) {
  1329. #ifdef DEBUG_DISABLE_MINTEMP
  1330. return;
  1331. #endif
  1332. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1333. #if HEATER_BED_PIN > -1
  1334. //WRITE(HEATER_BED_PIN, 0);
  1335. #endif
  1336. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1337. if(IsStopped() == false) {
  1338. SERIAL_ERROR_START;
  1339. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1340. lcd_setalertstatuspgm(err);
  1341. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1342. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1343. // we are already stopped due to some error, only update the status message without flickering
  1344. lcd_updatestatuspgm(err);
  1345. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1346. }
  1347. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1348. Stop();
  1349. #endif
  1350. }
  1351. #ifdef HEATER_0_USES_MAX6675
  1352. #define MAX6675_HEAT_INTERVAL 250
  1353. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1354. int max6675_temp = 2000;
  1355. int read_max6675()
  1356. {
  1357. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1358. return max6675_temp;
  1359. max6675_previous_millis = _millis();
  1360. max6675_temp = 0;
  1361. #ifdef PRR
  1362. PRR &= ~(1<<PRSPI);
  1363. #elif defined PRR0
  1364. PRR0 &= ~(1<<PRSPI);
  1365. #endif
  1366. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1367. // enable TT_MAX6675
  1368. WRITE(MAX6675_SS, 0);
  1369. // ensure 100ns delay - a bit extra is fine
  1370. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1371. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1372. // read MSB
  1373. SPDR = 0;
  1374. for (;(SPSR & (1<<SPIF)) == 0;);
  1375. max6675_temp = SPDR;
  1376. max6675_temp <<= 8;
  1377. // read LSB
  1378. SPDR = 0;
  1379. for (;(SPSR & (1<<SPIF)) == 0;);
  1380. max6675_temp |= SPDR;
  1381. // disable TT_MAX6675
  1382. WRITE(MAX6675_SS, 1);
  1383. if (max6675_temp & 4)
  1384. {
  1385. // thermocouple open
  1386. max6675_temp = 2000;
  1387. }
  1388. else
  1389. {
  1390. max6675_temp = max6675_temp >> 3;
  1391. }
  1392. return max6675_temp;
  1393. }
  1394. #endif
  1395. extern "C" {
  1396. void adc_ready(void) //callback from adc when sampling finished
  1397. {
  1398. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1399. #ifdef PINDA_THERMISTOR
  1400. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1401. #endif //PINDA_THERMISTOR
  1402. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1403. #ifdef VOLT_PWR_PIN
  1404. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1405. #endif
  1406. #ifdef AMBIENT_THERMISTOR
  1407. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1408. #endif //AMBIENT_THERMISTOR
  1409. #ifdef VOLT_BED_PIN
  1410. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1411. #endif
  1412. #ifdef IR_SENSOR_ANALOG
  1413. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1414. #endif //IR_SENSOR_ANALOG
  1415. temp_meas_ready = true;
  1416. }
  1417. } // extern "C"
  1418. // Timer2 (originaly timer0) is shared with millies
  1419. #ifdef SYSTEM_TIMER_2
  1420. ISR(TIMER2_COMPB_vect)
  1421. #else //SYSTEM_TIMER_2
  1422. ISR(TIMER0_COMPB_vect)
  1423. #endif //SYSTEM_TIMER_2
  1424. {
  1425. static bool _lock = false;
  1426. if (_lock) return;
  1427. _lock = true;
  1428. asm("sei");
  1429. if (!temp_meas_ready) adc_cycle();
  1430. lcd_buttons_update();
  1431. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1432. static uint8_t soft_pwm_0;
  1433. #ifdef SLOW_PWM_HEATERS
  1434. static unsigned char slow_pwm_count = 0;
  1435. static unsigned char state_heater_0 = 0;
  1436. static unsigned char state_timer_heater_0 = 0;
  1437. #endif
  1438. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1439. static unsigned char soft_pwm_1;
  1440. #ifdef SLOW_PWM_HEATERS
  1441. static unsigned char state_heater_1 = 0;
  1442. static unsigned char state_timer_heater_1 = 0;
  1443. #endif
  1444. #endif
  1445. #if EXTRUDERS > 2
  1446. static unsigned char soft_pwm_2;
  1447. #ifdef SLOW_PWM_HEATERS
  1448. static unsigned char state_heater_2 = 0;
  1449. static unsigned char state_timer_heater_2 = 0;
  1450. #endif
  1451. #endif
  1452. #if HEATER_BED_PIN > -1
  1453. // @@DR static unsigned char soft_pwm_b;
  1454. #ifdef SLOW_PWM_HEATERS
  1455. static unsigned char state_heater_b = 0;
  1456. static unsigned char state_timer_heater_b = 0;
  1457. #endif
  1458. #endif
  1459. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1460. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1461. #endif
  1462. #ifndef SLOW_PWM_HEATERS
  1463. /*
  1464. * standard PWM modulation
  1465. */
  1466. if (pwm_count == 0)
  1467. {
  1468. soft_pwm_0 = soft_pwm[0];
  1469. if(soft_pwm_0 > 0)
  1470. {
  1471. WRITE(HEATER_0_PIN,1);
  1472. #ifdef HEATERS_PARALLEL
  1473. WRITE(HEATER_1_PIN,1);
  1474. #endif
  1475. } else WRITE(HEATER_0_PIN,0);
  1476. #if EXTRUDERS > 1
  1477. soft_pwm_1 = soft_pwm[1];
  1478. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1479. #endif
  1480. #if EXTRUDERS > 2
  1481. soft_pwm_2 = soft_pwm[2];
  1482. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1483. #endif
  1484. }
  1485. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1486. #if 0 // @@DR vypnuto pro hw pwm bedu
  1487. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1488. // teoreticky by se tato cast uz vubec nemusela poustet
  1489. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1490. {
  1491. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1492. # ifndef SYSTEM_TIMER_2
  1493. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1494. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1495. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1496. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1497. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1498. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1499. # endif //SYSTEM_TIMER_2
  1500. }
  1501. #endif
  1502. #endif
  1503. #ifdef FAN_SOFT_PWM
  1504. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1505. {
  1506. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1507. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1508. }
  1509. #endif
  1510. if(soft_pwm_0 < pwm_count)
  1511. {
  1512. WRITE(HEATER_0_PIN,0);
  1513. #ifdef HEATERS_PARALLEL
  1514. WRITE(HEATER_1_PIN,0);
  1515. #endif
  1516. }
  1517. #if EXTRUDERS > 1
  1518. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1519. #endif
  1520. #if EXTRUDERS > 2
  1521. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1522. #endif
  1523. #if 0 // @@DR
  1524. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1525. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1526. //WRITE(HEATER_BED_PIN,0);
  1527. }
  1528. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1529. #endif
  1530. #endif
  1531. #ifdef FAN_SOFT_PWM
  1532. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1533. #endif
  1534. pwm_count += (1 << SOFT_PWM_SCALE);
  1535. pwm_count &= 0x7f;
  1536. #else //ifndef SLOW_PWM_HEATERS
  1537. /*
  1538. * SLOW PWM HEATERS
  1539. *
  1540. * for heaters drived by relay
  1541. */
  1542. #ifndef MIN_STATE_TIME
  1543. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1544. #endif
  1545. if (slow_pwm_count == 0) {
  1546. // EXTRUDER 0
  1547. soft_pwm_0 = soft_pwm[0];
  1548. if (soft_pwm_0 > 0) {
  1549. // turn ON heather only if the minimum time is up
  1550. if (state_timer_heater_0 == 0) {
  1551. // if change state set timer
  1552. if (state_heater_0 == 0) {
  1553. state_timer_heater_0 = MIN_STATE_TIME;
  1554. }
  1555. state_heater_0 = 1;
  1556. WRITE(HEATER_0_PIN, 1);
  1557. #ifdef HEATERS_PARALLEL
  1558. WRITE(HEATER_1_PIN, 1);
  1559. #endif
  1560. }
  1561. } else {
  1562. // turn OFF heather only if the minimum time is up
  1563. if (state_timer_heater_0 == 0) {
  1564. // if change state set timer
  1565. if (state_heater_0 == 1) {
  1566. state_timer_heater_0 = MIN_STATE_TIME;
  1567. }
  1568. state_heater_0 = 0;
  1569. WRITE(HEATER_0_PIN, 0);
  1570. #ifdef HEATERS_PARALLEL
  1571. WRITE(HEATER_1_PIN, 0);
  1572. #endif
  1573. }
  1574. }
  1575. #if EXTRUDERS > 1
  1576. // EXTRUDER 1
  1577. soft_pwm_1 = soft_pwm[1];
  1578. if (soft_pwm_1 > 0) {
  1579. // turn ON heather only if the minimum time is up
  1580. if (state_timer_heater_1 == 0) {
  1581. // if change state set timer
  1582. if (state_heater_1 == 0) {
  1583. state_timer_heater_1 = MIN_STATE_TIME;
  1584. }
  1585. state_heater_1 = 1;
  1586. WRITE(HEATER_1_PIN, 1);
  1587. }
  1588. } else {
  1589. // turn OFF heather only if the minimum time is up
  1590. if (state_timer_heater_1 == 0) {
  1591. // if change state set timer
  1592. if (state_heater_1 == 1) {
  1593. state_timer_heater_1 = MIN_STATE_TIME;
  1594. }
  1595. state_heater_1 = 0;
  1596. WRITE(HEATER_1_PIN, 0);
  1597. }
  1598. }
  1599. #endif
  1600. #if EXTRUDERS > 2
  1601. // EXTRUDER 2
  1602. soft_pwm_2 = soft_pwm[2];
  1603. if (soft_pwm_2 > 0) {
  1604. // turn ON heather only if the minimum time is up
  1605. if (state_timer_heater_2 == 0) {
  1606. // if change state set timer
  1607. if (state_heater_2 == 0) {
  1608. state_timer_heater_2 = MIN_STATE_TIME;
  1609. }
  1610. state_heater_2 = 1;
  1611. WRITE(HEATER_2_PIN, 1);
  1612. }
  1613. } else {
  1614. // turn OFF heather only if the minimum time is up
  1615. if (state_timer_heater_2 == 0) {
  1616. // if change state set timer
  1617. if (state_heater_2 == 1) {
  1618. state_timer_heater_2 = MIN_STATE_TIME;
  1619. }
  1620. state_heater_2 = 0;
  1621. WRITE(HEATER_2_PIN, 0);
  1622. }
  1623. }
  1624. #endif
  1625. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1626. // BED
  1627. soft_pwm_b = soft_pwm_bed;
  1628. if (soft_pwm_b > 0) {
  1629. // turn ON heather only if the minimum time is up
  1630. if (state_timer_heater_b == 0) {
  1631. // if change state set timer
  1632. if (state_heater_b == 0) {
  1633. state_timer_heater_b = MIN_STATE_TIME;
  1634. }
  1635. state_heater_b = 1;
  1636. //WRITE(HEATER_BED_PIN, 1);
  1637. }
  1638. } else {
  1639. // turn OFF heather only if the minimum time is up
  1640. if (state_timer_heater_b == 0) {
  1641. // if change state set timer
  1642. if (state_heater_b == 1) {
  1643. state_timer_heater_b = MIN_STATE_TIME;
  1644. }
  1645. state_heater_b = 0;
  1646. WRITE(HEATER_BED_PIN, 0);
  1647. }
  1648. }
  1649. #endif
  1650. } // if (slow_pwm_count == 0)
  1651. // EXTRUDER 0
  1652. if (soft_pwm_0 < slow_pwm_count) {
  1653. // turn OFF heather only if the minimum time is up
  1654. if (state_timer_heater_0 == 0) {
  1655. // if change state set timer
  1656. if (state_heater_0 == 1) {
  1657. state_timer_heater_0 = MIN_STATE_TIME;
  1658. }
  1659. state_heater_0 = 0;
  1660. WRITE(HEATER_0_PIN, 0);
  1661. #ifdef HEATERS_PARALLEL
  1662. WRITE(HEATER_1_PIN, 0);
  1663. #endif
  1664. }
  1665. }
  1666. #if EXTRUDERS > 1
  1667. // EXTRUDER 1
  1668. if (soft_pwm_1 < slow_pwm_count) {
  1669. // turn OFF heather only if the minimum time is up
  1670. if (state_timer_heater_1 == 0) {
  1671. // if change state set timer
  1672. if (state_heater_1 == 1) {
  1673. state_timer_heater_1 = MIN_STATE_TIME;
  1674. }
  1675. state_heater_1 = 0;
  1676. WRITE(HEATER_1_PIN, 0);
  1677. }
  1678. }
  1679. #endif
  1680. #if EXTRUDERS > 2
  1681. // EXTRUDER 2
  1682. if (soft_pwm_2 < slow_pwm_count) {
  1683. // turn OFF heather only if the minimum time is up
  1684. if (state_timer_heater_2 == 0) {
  1685. // if change state set timer
  1686. if (state_heater_2 == 1) {
  1687. state_timer_heater_2 = MIN_STATE_TIME;
  1688. }
  1689. state_heater_2 = 0;
  1690. WRITE(HEATER_2_PIN, 0);
  1691. }
  1692. }
  1693. #endif
  1694. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1695. // BED
  1696. if (soft_pwm_b < slow_pwm_count) {
  1697. // turn OFF heather only if the minimum time is up
  1698. if (state_timer_heater_b == 0) {
  1699. // if change state set timer
  1700. if (state_heater_b == 1) {
  1701. state_timer_heater_b = MIN_STATE_TIME;
  1702. }
  1703. state_heater_b = 0;
  1704. WRITE(HEATER_BED_PIN, 0);
  1705. }
  1706. }
  1707. #endif
  1708. #ifdef FAN_SOFT_PWM
  1709. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1710. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1711. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1712. }
  1713. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1714. #endif
  1715. pwm_count += (1 << SOFT_PWM_SCALE);
  1716. pwm_count &= 0x7f;
  1717. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1718. if ((pwm_count % 64) == 0) {
  1719. slow_pwm_count++;
  1720. slow_pwm_count &= 0x7f;
  1721. // Extruder 0
  1722. if (state_timer_heater_0 > 0) {
  1723. state_timer_heater_0--;
  1724. }
  1725. #if EXTRUDERS > 1
  1726. // Extruder 1
  1727. if (state_timer_heater_1 > 0)
  1728. state_timer_heater_1--;
  1729. #endif
  1730. #if EXTRUDERS > 2
  1731. // Extruder 2
  1732. if (state_timer_heater_2 > 0)
  1733. state_timer_heater_2--;
  1734. #endif
  1735. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1736. // Bed
  1737. if (state_timer_heater_b > 0)
  1738. state_timer_heater_b--;
  1739. #endif
  1740. } //if ((pwm_count % 64) == 0) {
  1741. #endif //ifndef SLOW_PWM_HEATERS
  1742. #ifdef BABYSTEPPING
  1743. for(uint8_t axis=0;axis<3;axis++)
  1744. {
  1745. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1746. if(curTodo>0)
  1747. {
  1748. asm("cli");
  1749. babystep(axis,/*fwd*/true);
  1750. babystepsTodo[axis]--; //less to do next time
  1751. asm("sei");
  1752. }
  1753. else
  1754. if(curTodo<0)
  1755. {
  1756. asm("cli");
  1757. babystep(axis,/*fwd*/false);
  1758. babystepsTodo[axis]++; //less to do next time
  1759. asm("sei");
  1760. }
  1761. }
  1762. #endif //BABYSTEPPING
  1763. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  1764. check_fans();
  1765. #endif //(defined(TACH_0))
  1766. _lock = false;
  1767. }
  1768. void check_max_temp()
  1769. {
  1770. //heater
  1771. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1772. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1773. #else
  1774. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1775. #endif
  1776. max_temp_error(0);
  1777. }
  1778. //bed
  1779. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1780. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1781. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1782. #else
  1783. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1784. #endif
  1785. target_temperature_bed = 0;
  1786. bed_max_temp_error();
  1787. }
  1788. #endif
  1789. }
  1790. //! number of repeating the same state with consecutive step() calls
  1791. //! used to slow down text switching
  1792. struct alert_automaton_mintemp {
  1793. const char *m2;
  1794. alert_automaton_mintemp(const char *m2):m2(m2){}
  1795. private:
  1796. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1797. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1798. States state = States::Init;
  1799. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1800. void substep(States next_state){
  1801. if( repeat == 0 ){
  1802. state = next_state; // advance to the next state
  1803. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1804. } else {
  1805. --repeat;
  1806. }
  1807. }
  1808. public:
  1809. //! brief state automaton step routine
  1810. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1811. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1812. void step(float current_temp, float mintemp){
  1813. static const char m1[] PROGMEM = "Please restart";
  1814. switch(state){
  1815. case States::Init: // initial state - check hysteresis
  1816. if( current_temp > mintemp ){
  1817. state = States::TempAboveMintemp;
  1818. }
  1819. // otherwise keep the Err MINTEMP alert message on the display,
  1820. // i.e. do not transfer to state 1
  1821. break;
  1822. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1823. lcd_setalertstatuspgm(m2);
  1824. substep(States::ShowMintemp);
  1825. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1826. break;
  1827. case States::ShowPleaseRestart: // displaying "Please restart"
  1828. lcd_updatestatuspgm(m1);
  1829. substep(States::ShowMintemp);
  1830. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1831. break;
  1832. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1833. lcd_updatestatuspgm(m2);
  1834. substep(States::ShowPleaseRestart);
  1835. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1836. break;
  1837. }
  1838. }
  1839. };
  1840. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1841. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1842. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1843. void check_min_temp_heater0()
  1844. {
  1845. //heater
  1846. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1847. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1848. #else
  1849. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1850. #endif
  1851. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1852. min_temp_error(0);
  1853. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1854. // no recovery, just force the user to restart the printer
  1855. // which is a safer variant than just continuing printing
  1856. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1857. // we shall signalize, that MINTEMP has been fixed
  1858. // Code notice: normally the alert_automaton instance would have been placed here
  1859. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1860. // due to stupid compiler that takes 16 more bytes.
  1861. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1862. }
  1863. }
  1864. void check_min_temp_bed()
  1865. {
  1866. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1867. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1868. #else
  1869. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1870. #endif
  1871. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1872. bed_min_temp_error();
  1873. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1874. // no recovery, just force the user to restart the printer
  1875. // which is a safer variant than just continuing printing
  1876. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1877. }
  1878. }
  1879. void check_min_temp()
  1880. {
  1881. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1882. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1883. #ifdef AMBIENT_THERMISTOR
  1884. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1885. { // ambient temperature is low
  1886. #endif //AMBIENT_THERMISTOR
  1887. // *** 'common' part of code for MK2.5 & MK3
  1888. // * nozzle checking
  1889. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1890. { // ~ nozzle heating is on
  1891. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1892. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1893. {
  1894. bCheckingOnHeater=true; // not necessary
  1895. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1896. }
  1897. }
  1898. else { // ~ nozzle heating is off
  1899. oTimer4minTempHeater.start();
  1900. bCheckingOnHeater=false;
  1901. }
  1902. // * bed checking
  1903. if(target_temperature_bed>BED_MINTEMP)
  1904. { // ~ bed heating is on
  1905. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1906. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1907. {
  1908. bCheckingOnBed=true; // not necessary
  1909. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1910. }
  1911. }
  1912. else { // ~ bed heating is off
  1913. oTimer4minTempBed.start();
  1914. bCheckingOnBed=false;
  1915. }
  1916. // *** end of 'common' part
  1917. #ifdef AMBIENT_THERMISTOR
  1918. }
  1919. else { // ambient temperature is standard
  1920. check_min_temp_heater0();
  1921. check_min_temp_bed();
  1922. }
  1923. #endif //AMBIENT_THERMISTOR
  1924. }
  1925. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  1926. void check_fans() {
  1927. #ifdef FAN_SOFT_PWM
  1928. if (READ(TACH_0) != fan_state[0]) {
  1929. if(fan_measuring) fan_edge_counter[0] ++;
  1930. fan_state[0] = !fan_state[0];
  1931. }
  1932. if (READ(TACH_1) != fan_state[1]) {
  1933. if(fan_measuring) fan_edge_counter[1] ++;
  1934. fan_state[1] = !fan_state[1];
  1935. }
  1936. #else //FAN_SOFT_PWM
  1937. if (READ(TACH_0) != fan_state[0]) {
  1938. fan_edge_counter[0] ++;
  1939. fan_state[0] = !fan_state[0];
  1940. }
  1941. if (READ(TACH_1) != fan_state[1]) {
  1942. fan_edge_counter[1] ++;
  1943. fan_state[1] = !fan_state[1];
  1944. }
  1945. #endif
  1946. }
  1947. #endif //TACH_0
  1948. #ifdef PIDTEMP
  1949. // Apply the scale factors to the PID values
  1950. float scalePID_i(float i)
  1951. {
  1952. return i*PID_dT;
  1953. }
  1954. float unscalePID_i(float i)
  1955. {
  1956. return i/PID_dT;
  1957. }
  1958. float scalePID_d(float d)
  1959. {
  1960. return d/PID_dT;
  1961. }
  1962. float unscalePID_d(float d)
  1963. {
  1964. return d*PID_dT;
  1965. }
  1966. #endif //PIDTEMP