Marlin_main.cpp 300 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "cmdqueue.h"
  106. // Macros for bit masks
  107. #define BIT(b) (1<<(b))
  108. #define TEST(n,b) (((n)&BIT(b))!=0)
  109. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  110. //Macro for print fan speed
  111. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  112. #define PRINTING_TYPE_SD 0
  113. #define PRINTING_TYPE_USB 1
  114. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  115. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  116. //Implemented Codes
  117. //-------------------
  118. // PRUSA CODES
  119. // P F - Returns FW versions
  120. // P R - Returns revision of printer
  121. // G0 -> G1
  122. // G1 - Coordinated Movement X Y Z E
  123. // G2 - CW ARC
  124. // G3 - CCW ARC
  125. // G4 - Dwell S<seconds> or P<milliseconds>
  126. // G10 - retract filament according to settings of M207
  127. // G11 - retract recover filament according to settings of M208
  128. // G28 - Home all Axis
  129. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  130. // G30 - Single Z Probe, probes bed at current XY location.
  131. // G31 - Dock sled (Z_PROBE_SLED only)
  132. // G32 - Undock sled (Z_PROBE_SLED only)
  133. // G80 - Automatic mesh bed leveling
  134. // G81 - Print bed profile
  135. // G90 - Use Absolute Coordinates
  136. // G91 - Use Relative Coordinates
  137. // G92 - Set current position to coordinates given
  138. // M Codes
  139. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  140. // M1 - Same as M0
  141. // M17 - Enable/Power all stepper motors
  142. // M18 - Disable all stepper motors; same as M84
  143. // M20 - List SD card
  144. // M21 - Init SD card
  145. // M22 - Release SD card
  146. // M23 - Select SD file (M23 filename.g)
  147. // M24 - Start/resume SD print
  148. // M25 - Pause SD print
  149. // M26 - Set SD position in bytes (M26 S12345)
  150. // M27 - Report SD print status
  151. // M28 - Start SD write (M28 filename.g)
  152. // M29 - Stop SD write
  153. // M30 - Delete file from SD (M30 filename.g)
  154. // M31 - Output time since last M109 or SD card start to serial
  155. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  156. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  157. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  158. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  159. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  160. // M73 - Show percent done and print time remaining
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. static LongTimer crashDetTimer;
  284. //unsigned long load_filament_time;
  285. bool mesh_bed_leveling_flag = false;
  286. bool mesh_bed_run_from_menu = false;
  287. int8_t FarmMode = 0;
  288. bool prusa_sd_card_upload = false;
  289. unsigned int status_number = 0;
  290. unsigned long total_filament_used;
  291. unsigned int heating_status;
  292. unsigned int heating_status_counter;
  293. bool custom_message;
  294. bool loading_flag = false;
  295. unsigned int custom_message_type;
  296. unsigned int custom_message_state;
  297. char snmm_filaments_used = 0;
  298. bool fan_state[2];
  299. int fan_edge_counter[2];
  300. int fan_speed[2];
  301. char dir_names[3][9];
  302. bool sortAlpha = false;
  303. bool volumetric_enabled = false;
  304. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 1
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 2
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #endif
  310. #endif
  311. };
  312. float extruder_multiplier[EXTRUDERS] = {1.0
  313. #if EXTRUDERS > 1
  314. , 1.0
  315. #if EXTRUDERS > 2
  316. , 1.0
  317. #endif
  318. #endif
  319. };
  320. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  321. //shortcuts for more readable code
  322. #define _x current_position[X_AXIS]
  323. #define _y current_position[Y_AXIS]
  324. #define _z current_position[Z_AXIS]
  325. #define _e current_position[E_AXIS]
  326. float add_homing[3]={0,0,0};
  327. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  328. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  329. bool axis_known_position[3] = {false, false, false};
  330. float zprobe_zoffset;
  331. // Extruder offset
  332. #if EXTRUDERS > 1
  333. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  334. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  335. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  336. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  337. #endif
  338. };
  339. #endif
  340. uint8_t active_extruder = 0;
  341. int fanSpeed=0;
  342. #ifdef FWRETRACT
  343. bool autoretract_enabled=false;
  344. bool retracted[EXTRUDERS]={false
  345. #if EXTRUDERS > 1
  346. , false
  347. #if EXTRUDERS > 2
  348. , false
  349. #endif
  350. #endif
  351. };
  352. bool retracted_swap[EXTRUDERS]={false
  353. #if EXTRUDERS > 1
  354. , false
  355. #if EXTRUDERS > 2
  356. , false
  357. #endif
  358. #endif
  359. };
  360. float retract_length = RETRACT_LENGTH;
  361. float retract_length_swap = RETRACT_LENGTH_SWAP;
  362. float retract_feedrate = RETRACT_FEEDRATE;
  363. float retract_zlift = RETRACT_ZLIFT;
  364. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  365. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  366. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  367. #endif
  368. #ifdef ULTIPANEL
  369. #ifdef PS_DEFAULT_OFF
  370. bool powersupply = false;
  371. #else
  372. bool powersupply = true;
  373. #endif
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. unsigned long starttime=0;
  418. unsigned long stoptime=0;
  419. unsigned long _usb_timer = 0;
  420. static uint8_t tmp_extruder;
  421. bool extruder_under_pressure = true;
  422. bool Stopped=false;
  423. #if NUM_SERVOS > 0
  424. Servo servos[NUM_SERVOS];
  425. #endif
  426. bool CooldownNoWait = true;
  427. bool target_direction;
  428. //Insert variables if CHDK is defined
  429. #ifdef CHDK
  430. unsigned long chdkHigh = 0;
  431. boolean chdkActive = false;
  432. #endif
  433. // save/restore printing
  434. static uint32_t saved_sdpos = 0;
  435. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  436. static float saved_pos[4] = { 0, 0, 0, 0 };
  437. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  438. static float saved_feedrate2 = 0;
  439. static uint8_t saved_active_extruder = 0;
  440. static bool saved_extruder_under_pressure = false;
  441. //===========================================================================
  442. //=============================Routines======================================
  443. //===========================================================================
  444. void get_arc_coordinates();
  445. bool setTargetedHotend(int code);
  446. void serial_echopair_P(const char *s_P, float v)
  447. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. void serial_echopair_P(const char *s_P, double v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, unsigned long v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. #ifdef SDSUPPORT
  453. #include "SdFatUtil.h"
  454. int freeMemory() { return SdFatUtil::FreeRam(); }
  455. #else
  456. extern "C" {
  457. extern unsigned int __bss_end;
  458. extern unsigned int __heap_start;
  459. extern void *__brkval;
  460. int freeMemory() {
  461. int free_memory;
  462. if ((int)__brkval == 0)
  463. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  464. else
  465. free_memory = ((int)&free_memory) - ((int)__brkval);
  466. return free_memory;
  467. }
  468. }
  469. #endif //!SDSUPPORT
  470. void setup_killpin()
  471. {
  472. #if defined(KILL_PIN) && KILL_PIN > -1
  473. SET_INPUT(KILL_PIN);
  474. WRITE(KILL_PIN,HIGH);
  475. #endif
  476. }
  477. // Set home pin
  478. void setup_homepin(void)
  479. {
  480. #if defined(HOME_PIN) && HOME_PIN > -1
  481. SET_INPUT(HOME_PIN);
  482. WRITE(HOME_PIN,HIGH);
  483. #endif
  484. }
  485. void setup_photpin()
  486. {
  487. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  488. SET_OUTPUT(PHOTOGRAPH_PIN);
  489. WRITE(PHOTOGRAPH_PIN, LOW);
  490. #endif
  491. }
  492. void setup_powerhold()
  493. {
  494. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  495. SET_OUTPUT(SUICIDE_PIN);
  496. WRITE(SUICIDE_PIN, HIGH);
  497. #endif
  498. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  499. SET_OUTPUT(PS_ON_PIN);
  500. #if defined(PS_DEFAULT_OFF)
  501. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  502. #else
  503. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  504. #endif
  505. #endif
  506. }
  507. void suicide()
  508. {
  509. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  510. SET_OUTPUT(SUICIDE_PIN);
  511. WRITE(SUICIDE_PIN, LOW);
  512. #endif
  513. }
  514. void servo_init()
  515. {
  516. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  517. servos[0].attach(SERVO0_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  520. servos[1].attach(SERVO1_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  523. servos[2].attach(SERVO2_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  526. servos[3].attach(SERVO3_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 5)
  529. #error "TODO: enter initalisation code for more servos"
  530. #endif
  531. }
  532. void stop_and_save_print_to_ram(float z_move, float e_move);
  533. void restore_print_from_ram_and_continue(float e_move);
  534. bool fans_check_enabled = true;
  535. bool filament_autoload_enabled = true;
  536. #ifdef TMC2130
  537. extern int8_t CrashDetectMenu;
  538. void crashdet_enable()
  539. {
  540. tmc2130_sg_stop_on_crash = true;
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  542. CrashDetectMenu = 1;
  543. }
  544. void crashdet_disable()
  545. {
  546. tmc2130_sg_stop_on_crash = false;
  547. tmc2130_sg_crash = 0;
  548. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  549. CrashDetectMenu = 0;
  550. }
  551. void crashdet_stop_and_save_print()
  552. {
  553. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  554. }
  555. void crashdet_restore_print_and_continue()
  556. {
  557. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  558. // babystep_apply();
  559. }
  560. void crashdet_stop_and_save_print2()
  561. {
  562. cli();
  563. planner_abort_hard(); //abort printing
  564. cmdqueue_reset(); //empty cmdqueue
  565. card.sdprinting = false;
  566. card.closefile();
  567. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  568. st_reset_timer();
  569. sei();
  570. }
  571. void crashdet_detected(uint8_t mask)
  572. {
  573. // printf("CRASH_DETECTED");
  574. /* while (!is_buffer_empty())
  575. {
  576. process_commands();
  577. cmdqueue_pop_front();
  578. }*/
  579. st_synchronize();
  580. static uint8_t crashDet_counter = 0;
  581. bool automatic_recovery_after_crash = true;
  582. if (crashDet_counter++ == 0) {
  583. crashDetTimer.start();
  584. }
  585. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  590. automatic_recovery_after_crash = false;
  591. crashDetTimer.stop();
  592. crashDet_counter = 0;
  593. }
  594. else {
  595. crashDetTimer.start();
  596. }
  597. lcd_update_enable(true);
  598. lcd_implementation_clear();
  599. lcd_update(2);
  600. if (mask & X_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  604. }
  605. if (mask & Y_AXIS_MASK)
  606. {
  607. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  608. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  609. }
  610. lcd_update_enable(true);
  611. lcd_update(2);
  612. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  613. gcode_G28(true, true, false, false); //home X and Y
  614. st_synchronize();
  615. if (automatic_recovery_after_crash) {
  616. enquecommand_P(PSTR("CRASH_RECOVER"));
  617. }else{
  618. HotendTempBckp = degTargetHotend(active_extruder);
  619. setTargetHotend(0, active_extruder);
  620. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  621. lcd_update_enable(true);
  622. if (yesno)
  623. {
  624. char cmd1[10];
  625. strcpy(cmd1, "M109 S");
  626. strcat(cmd1, ftostr3(HotendTempBckp));
  627. enquecommand(cmd1);
  628. enquecommand_P(PSTR("CRASH_RECOVER"));
  629. }
  630. else
  631. {
  632. enquecommand_P(PSTR("CRASH_CANCEL"));
  633. }
  634. }
  635. }
  636. void crashdet_recover()
  637. {
  638. crashdet_restore_print_and_continue();
  639. tmc2130_sg_stop_on_crash = true;
  640. }
  641. void crashdet_cancel()
  642. {
  643. tmc2130_sg_stop_on_crash = true;
  644. if (saved_printing_type == PRINTING_TYPE_SD) {
  645. lcd_print_stop();
  646. }else if(saved_printing_type == PRINTING_TYPE_USB){
  647. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  648. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  649. }
  650. }
  651. #endif //TMC2130
  652. void failstats_reset_print()
  653. {
  654. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  656. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  658. }
  659. #ifdef MESH_BED_LEVELING
  660. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  661. #endif
  662. // Factory reset function
  663. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  664. // Level input parameter sets depth of reset
  665. // Quiet parameter masks all waitings for user interact.
  666. int er_progress = 0;
  667. void factory_reset(char level, bool quiet)
  668. {
  669. lcd_implementation_clear();
  670. int cursor_pos = 0;
  671. switch (level) {
  672. // Level 0: Language reset
  673. case 0:
  674. WRITE(BEEPER, HIGH);
  675. _delay_ms(100);
  676. WRITE(BEEPER, LOW);
  677. lang_reset();
  678. break;
  679. //Level 1: Reset statistics
  680. case 1:
  681. WRITE(BEEPER, HIGH);
  682. _delay_ms(100);
  683. WRITE(BEEPER, LOW);
  684. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  685. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  694. lcd_menu_statistics();
  695. break;
  696. // Level 2: Prepare for shipping
  697. case 2:
  698. //lcd_printPGM(PSTR("Factory RESET"));
  699. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  700. // Force language selection at the next boot up.
  701. lang_reset();
  702. // Force the "Follow calibration flow" message at the next boot up.
  703. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  704. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  705. farm_no = 0;
  706. farm_mode = false;
  707. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  708. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  709. WRITE(BEEPER, HIGH);
  710. _delay_ms(100);
  711. WRITE(BEEPER, LOW);
  712. //_delay_ms(2000);
  713. break;
  714. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  715. case 3:
  716. lcd_printPGM(PSTR("Factory RESET"));
  717. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. er_progress = 0;
  722. lcd_print_at_PGM(3, 3, PSTR(" "));
  723. lcd_implementation_print_at(3, 3, er_progress);
  724. // Erase EEPROM
  725. for (int i = 0; i < 4096; i++) {
  726. eeprom_write_byte((uint8_t*)i, 0xFF);
  727. if (i % 41 == 0) {
  728. er_progress++;
  729. lcd_print_at_PGM(3, 3, PSTR(" "));
  730. lcd_implementation_print_at(3, 3, er_progress);
  731. lcd_printPGM(PSTR("%"));
  732. }
  733. }
  734. break;
  735. case 4:
  736. bowden_menu();
  737. break;
  738. default:
  739. break;
  740. }
  741. }
  742. #include "LiquidCrystal_Prusa.h"
  743. extern LiquidCrystal_Prusa lcd;
  744. FILE _lcdout = {0};
  745. int lcd_putchar(char c, FILE *stream)
  746. {
  747. lcd.write(c);
  748. return 0;
  749. }
  750. FILE _uartout = {0};
  751. int uart_putchar(char c, FILE *stream)
  752. {
  753. MYSERIAL.write(c);
  754. return 0;
  755. }
  756. void lcd_splash()
  757. {
  758. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  759. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  760. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  761. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  762. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  763. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  764. }
  765. void factory_reset()
  766. {
  767. KEEPALIVE_STATE(PAUSED_FOR_USER);
  768. if (!READ(BTN_ENC))
  769. {
  770. _delay_ms(1000);
  771. if (!READ(BTN_ENC))
  772. {
  773. lcd_implementation_clear();
  774. lcd_printPGM(PSTR("Factory RESET"));
  775. SET_OUTPUT(BEEPER);
  776. WRITE(BEEPER, HIGH);
  777. while (!READ(BTN_ENC));
  778. WRITE(BEEPER, LOW);
  779. _delay_ms(2000);
  780. char level = reset_menu();
  781. factory_reset(level, false);
  782. switch (level) {
  783. case 0: _delay_ms(0); break;
  784. case 1: _delay_ms(0); break;
  785. case 2: _delay_ms(0); break;
  786. case 3: _delay_ms(0); break;
  787. }
  788. // _delay_ms(100);
  789. /*
  790. #ifdef MESH_BED_LEVELING
  791. _delay_ms(2000);
  792. if (!READ(BTN_ENC))
  793. {
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. _delay_ms(200);
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. int _z = 0;
  802. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  803. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  804. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  805. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  806. }
  807. else
  808. {
  809. WRITE(BEEPER, HIGH);
  810. _delay_ms(100);
  811. WRITE(BEEPER, LOW);
  812. }
  813. #endif // mesh */
  814. }
  815. }
  816. else
  817. {
  818. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  819. }
  820. KEEPALIVE_STATE(IN_HANDLER);
  821. }
  822. void show_fw_version_warnings() {
  823. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  824. switch (FW_DEV_VERSION) {
  825. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  826. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  827. case(FW_VERSION_DEVEL):
  828. case(FW_VERSION_DEBUG):
  829. lcd_update_enable(false);
  830. lcd_implementation_clear();
  831. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  832. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  833. #else
  834. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  835. #endif
  836. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  837. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  838. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  839. lcd_wait_for_click();
  840. break;
  841. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  842. }
  843. lcd_update_enable(true);
  844. }
  845. uint8_t check_printer_version()
  846. {
  847. uint8_t version_changed = 0;
  848. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  849. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  850. if (printer_type != PRINTER_TYPE) {
  851. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  852. else version_changed |= 0b10;
  853. }
  854. if (motherboard != MOTHERBOARD) {
  855. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  856. else version_changed |= 0b01;
  857. }
  858. return version_changed;
  859. }
  860. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  861. {
  862. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  863. }
  864. #if (LANG_MODE != 0) //secondary language support
  865. #ifdef W25X20CL
  866. #include "bootapp.h" //bootloader support
  867. // language update from external flash
  868. #define LANGBOOT_BLOCKSIZE 0x1000
  869. #define LANGBOOT_RAMBUFFER 0x0800
  870. void update_sec_lang_from_external_flash()
  871. {
  872. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  873. {
  874. uint8_t lang = boot_reserved >> 4;
  875. uint8_t state = boot_reserved & 0xf;
  876. lang_table_header_t header;
  877. uint32_t src_addr;
  878. if (lang_get_header(lang, &header, &src_addr))
  879. {
  880. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  881. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  882. delay(100);
  883. boot_reserved = (state + 1) | (lang << 4);
  884. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  885. {
  886. cli();
  887. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  888. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  889. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  890. if (state == 0)
  891. {
  892. //TODO - check header integrity
  893. }
  894. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  895. }
  896. else
  897. {
  898. //TODO - check sec lang data integrity
  899. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  900. }
  901. }
  902. }
  903. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  904. }
  905. #ifdef DEBUG_W25X20CL
  906. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  907. {
  908. lang_table_header_t header;
  909. uint8_t count = 0;
  910. uint32_t addr = 0x00000;
  911. while (1)
  912. {
  913. printf_P(_n("LANGTABLE%d:"), count);
  914. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  915. if (header.magic != LANG_MAGIC)
  916. {
  917. printf_P(_n("NG!\n"));
  918. break;
  919. }
  920. printf_P(_n("OK\n"));
  921. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  922. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  923. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  924. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  925. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  926. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  927. addr += header.size;
  928. codes[count] = header.code;
  929. count ++;
  930. }
  931. return count;
  932. }
  933. void list_sec_lang_from_external_flash()
  934. {
  935. uint16_t codes[8];
  936. uint8_t count = lang_xflash_enum_codes(codes);
  937. printf_P(_n("XFlash lang count = %hhd\n"), count);
  938. }
  939. #endif //DEBUG_W25X20CL
  940. #endif //W25X20CL
  941. #endif //(LANG_MODE != 0)
  942. // "Setup" function is called by the Arduino framework on startup.
  943. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  944. // are initialized by the main() routine provided by the Arduino framework.
  945. void setup()
  946. {
  947. #ifdef W25X20CL
  948. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  949. optiboot_w25x20cl_enter();
  950. #endif
  951. lcd_init();
  952. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  953. spi_init();
  954. lcd_splash();
  955. #if (LANG_MODE != 0) //secondary language support
  956. #ifdef W25X20CL
  957. if (w25x20cl_init())
  958. update_sec_lang_from_external_flash();
  959. else
  960. kill(_i("External SPI flash W25X20CL not responding."));
  961. #endif //W25X20CL
  962. #endif //(LANG_MODE != 0)
  963. setup_killpin();
  964. setup_powerhold();
  965. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  966. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  967. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  968. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  969. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  970. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  971. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  972. if (farm_mode)
  973. {
  974. no_response = true; //we need confirmation by recieving PRUSA thx
  975. important_status = 8;
  976. prusa_statistics(8);
  977. selectedSerialPort = 1;
  978. }
  979. MYSERIAL.begin(BAUDRATE);
  980. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  981. stdout = uartout;
  982. SERIAL_PROTOCOLLNPGM("start");
  983. SERIAL_ECHO_START;
  984. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  985. #ifdef DEBUG_SEC_LANG
  986. lang_table_header_t header;
  987. uint32_t src_addr = 0x00000;
  988. if (lang_get_header(3, &header, &src_addr))
  989. {
  990. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  991. #define LT_PRINT_TEST 2
  992. // flash usage
  993. // total p.test
  994. //0 252718 t+c text code
  995. //1 253142 424 170 254
  996. //2 253040 322 164 158
  997. //3 253248 530 135 395
  998. #if (LT_PRINT_TEST==1) //not optimized printf
  999. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1000. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1001. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1002. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1003. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1004. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1005. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  1006. #elif (LT_PRINT_TEST==2) //optimized printf
  1007. printf_P(
  1008. _n(
  1009. " _src_addr = 0x%08lx\n"
  1010. " _lt_magic = 0x%08lx %S\n"
  1011. " _lt_size = 0x%04x (%d)\n"
  1012. " _lt_count = 0x%04x (%d)\n"
  1013. " _lt_chsum = 0x%04x\n"
  1014. " _lt_code = 0x%04x (%c%c)\n"
  1015. " _lt_resv1 = 0x%08lx\n"
  1016. ),
  1017. src_addr,
  1018. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1019. header.size, header.size,
  1020. header.count, header.count,
  1021. header.checksum,
  1022. header.code, header.code >> 8, header.code & 0xff,
  1023. header.reserved1
  1024. );
  1025. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1026. MYSERIAL.print(" _src_addr = 0x");
  1027. MYSERIAL.println(src_addr, 16);
  1028. MYSERIAL.print(" _lt_magic = 0x");
  1029. MYSERIAL.print(header.magic, 16);
  1030. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1031. MYSERIAL.print(" _lt_size = 0x");
  1032. MYSERIAL.print(header.size, 16);
  1033. MYSERIAL.print(" (");
  1034. MYSERIAL.print(header.size, 10);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_count = 0x");
  1037. MYSERIAL.print(header.count, 16);
  1038. MYSERIAL.print(" (");
  1039. MYSERIAL.print(header.count, 10);
  1040. MYSERIAL.println(")");
  1041. MYSERIAL.print(" _lt_chsum = 0x");
  1042. MYSERIAL.println(header.checksum, 16);
  1043. MYSERIAL.print(" _lt_code = 0x");
  1044. MYSERIAL.print(header.code, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print((char)(header.code >> 8), 0);
  1047. MYSERIAL.print((char)(header.code & 0xff), 0);
  1048. MYSERIAL.println(")");
  1049. MYSERIAL.print(" _lt_resv1 = 0x");
  1050. MYSERIAL.println(header.reserved1, 16);
  1051. #endif //(LT_PRINT_TEST==)
  1052. #undef LT_PRINT_TEST
  1053. #if 0
  1054. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1055. for (uint16_t i = 0; i < 1024; i++)
  1056. {
  1057. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1058. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1059. if ((i % 16) == 15) putchar('\n');
  1060. }
  1061. #endif
  1062. #if 1
  1063. for (uint16_t i = 0; i < 1024*10; i++)
  1064. {
  1065. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1066. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1067. if ((i % 16) == 15) putchar('\n');
  1068. }
  1069. #endif
  1070. }
  1071. else
  1072. printf_P(_n("lang_get_header failed!\n"));
  1073. #if 0
  1074. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1075. for (int i = 0; i < 4096; ++i) {
  1076. int b = eeprom_read_byte((unsigned char*)i);
  1077. if (b != 255) {
  1078. SERIAL_ECHO(i);
  1079. SERIAL_ECHO(":");
  1080. SERIAL_ECHO(b);
  1081. SERIAL_ECHOLN("");
  1082. }
  1083. }
  1084. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1085. #endif
  1086. #endif //DEBUG_SEC_LANG
  1087. // Check startup - does nothing if bootloader sets MCUSR to 0
  1088. byte mcu = MCUSR;
  1089. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1090. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1091. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1092. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1093. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1094. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1095. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1096. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1097. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1098. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1099. MCUSR = 0;
  1100. //SERIAL_ECHORPGM(MSG_MARLIN);
  1101. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1102. #ifdef STRING_VERSION_CONFIG_H
  1103. #ifdef STRING_CONFIG_H_AUTHOR
  1104. SERIAL_ECHO_START;
  1105. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1106. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1107. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1108. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1109. SERIAL_ECHOPGM("Compiled: ");
  1110. SERIAL_ECHOLNPGM(__DATE__);
  1111. #endif
  1112. #endif
  1113. SERIAL_ECHO_START;
  1114. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1115. SERIAL_ECHO(freeMemory());
  1116. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1117. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1118. //lcd_update_enable(false); // why do we need this?? - andre
  1119. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1120. bool previous_settings_retrieved = false;
  1121. uint8_t hw_changed = check_printer_version();
  1122. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1123. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1124. }
  1125. else { //printer version was changed so use default settings
  1126. Config_ResetDefault();
  1127. }
  1128. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1129. tp_init(); // Initialize temperature loop
  1130. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1131. plan_init(); // Initialize planner;
  1132. factory_reset();
  1133. #ifdef TMC2130
  1134. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1135. if (silentMode == 0xff) silentMode = 0;
  1136. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1137. tmc2130_mode = TMC2130_MODE_NORMAL;
  1138. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1139. if (crashdet && !farm_mode)
  1140. {
  1141. crashdet_enable();
  1142. puts_P(_N("CrashDetect ENABLED!"));
  1143. }
  1144. else
  1145. {
  1146. crashdet_disable();
  1147. puts_P(_N("CrashDetect DISABLED"));
  1148. }
  1149. #ifdef TMC2130_LINEARITY_CORRECTION
  1150. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1151. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1152. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1153. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1154. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1155. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1156. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1157. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1158. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1159. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1160. #endif //TMC2130_LINEARITY_CORRECTION
  1161. #ifdef TMC2130_VARIABLE_RESOLUTION
  1162. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1163. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1164. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1165. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1166. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1167. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1168. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1169. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1171. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1172. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1173. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1174. #else //TMC2130_VARIABLE_RESOLUTION
  1175. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1176. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1177. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1178. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1179. #endif //TMC2130_VARIABLE_RESOLUTION
  1180. #endif //TMC2130
  1181. st_init(); // Initialize stepper, this enables interrupts!
  1182. #ifdef TMC2130
  1183. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1184. tmc2130_init();
  1185. #endif //TMC2130
  1186. setup_photpin();
  1187. servo_init();
  1188. // Reset the machine correction matrix.
  1189. // It does not make sense to load the correction matrix until the machine is homed.
  1190. world2machine_reset();
  1191. #ifdef PAT9125
  1192. fsensor_init();
  1193. #endif //PAT9125
  1194. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1195. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1196. #endif
  1197. setup_homepin();
  1198. #ifdef TMC2130
  1199. if (1) {
  1200. // try to run to zero phase before powering the Z motor.
  1201. // Move in negative direction
  1202. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1203. // Round the current micro-micro steps to micro steps.
  1204. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1205. // Until the phase counter is reset to zero.
  1206. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1207. delay(2);
  1208. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1209. delay(2);
  1210. }
  1211. }
  1212. #endif //TMC2130
  1213. #if defined(Z_AXIS_ALWAYS_ON)
  1214. enable_z();
  1215. #endif
  1216. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1217. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1218. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1219. if (farm_no == 0xFFFF) farm_no = 0;
  1220. if (farm_mode)
  1221. {
  1222. prusa_statistics(8);
  1223. }
  1224. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1225. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1226. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1227. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1228. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1229. // where all the EEPROM entries are set to 0x0ff.
  1230. // Once a firmware boots up, it forces at least a language selection, which changes
  1231. // EEPROM_LANG to number lower than 0x0ff.
  1232. // 1) Set a high power mode.
  1233. #ifdef TMC2130
  1234. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1235. tmc2130_mode = TMC2130_MODE_NORMAL;
  1236. #endif //TMC2130
  1237. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1238. }
  1239. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1240. // but this times out if a blocking dialog is shown in setup().
  1241. card.initsd();
  1242. #ifdef DEBUG_SD_SPEED_TEST
  1243. if (card.cardOK)
  1244. {
  1245. uint8_t* buff = (uint8_t*)block_buffer;
  1246. uint32_t block = 0;
  1247. uint32_t sumr = 0;
  1248. uint32_t sumw = 0;
  1249. for (int i = 0; i < 1024; i++)
  1250. {
  1251. uint32_t u = micros();
  1252. bool res = card.card.readBlock(i, buff);
  1253. u = micros() - u;
  1254. if (res)
  1255. {
  1256. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1257. sumr += u;
  1258. u = micros();
  1259. res = card.card.writeBlock(i, buff);
  1260. u = micros() - u;
  1261. if (res)
  1262. {
  1263. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1264. sumw += u;
  1265. }
  1266. else
  1267. {
  1268. printf_P(PSTR("writeBlock %4d error\n"), i);
  1269. break;
  1270. }
  1271. }
  1272. else
  1273. {
  1274. printf_P(PSTR("readBlock %4d error\n"), i);
  1275. break;
  1276. }
  1277. }
  1278. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1279. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1280. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1281. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1282. }
  1283. else
  1284. printf_P(PSTR("Card NG!\n"));
  1285. #endif //DEBUG_SD_SPEED_TEST
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1288. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1289. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1291. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1292. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1293. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1294. #ifdef SNMM
  1295. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1296. int _z = BOWDEN_LENGTH;
  1297. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1298. }
  1299. #endif
  1300. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1301. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1302. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1303. #if (LANG_MODE != 0) //secondary language support
  1304. #ifdef DEBUG_W25X20CL
  1305. W25X20CL_SPI_ENTER();
  1306. uint8_t uid[8]; // 64bit unique id
  1307. w25x20cl_rd_uid(uid);
  1308. puts_P(_n("W25X20CL UID="));
  1309. for (uint8_t i = 0; i < 8; i ++)
  1310. printf_P(PSTR("%02hhx"), uid[i]);
  1311. putchar('\n');
  1312. list_sec_lang_from_external_flash();
  1313. #endif //DEBUG_W25X20CL
  1314. // lang_reset();
  1315. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1316. lcd_language();
  1317. #ifdef DEBUG_SEC_LANG
  1318. uint16_t sec_lang_code = lang_get_code(1);
  1319. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1320. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1321. // lang_print_sec_lang(uartout);
  1322. #endif //DEBUG_SEC_LANG
  1323. #endif //(LANG_MODE != 0)
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1325. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1326. temp_cal_active = false;
  1327. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1329. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1330. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1331. int16_t z_shift = 0;
  1332. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1333. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1334. temp_cal_active = false;
  1335. }
  1336. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1337. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1338. }
  1339. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1340. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1341. }
  1342. check_babystep(); //checking if Z babystep is in allowed range
  1343. #ifdef UVLO_SUPPORT
  1344. setup_uvlo_interrupt();
  1345. #endif //UVLO_SUPPORT
  1346. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1347. setup_fan_interrupt();
  1348. #endif //DEBUG_DISABLE_FANCHECK
  1349. #ifdef PAT9125
  1350. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1351. fsensor_setup_interrupt();
  1352. #endif //DEBUG_DISABLE_FSENSORCHECK
  1353. #endif //PAT9125
  1354. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1355. #ifndef DEBUG_DISABLE_STARTMSGS
  1356. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1357. show_fw_version_warnings();
  1358. switch (hw_changed) {
  1359. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1360. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1361. case(0b01):
  1362. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1363. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1364. break;
  1365. case(0b10):
  1366. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1367. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1368. break;
  1369. case(0b11):
  1370. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1371. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1372. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1373. break;
  1374. default: break; //no change, show no message
  1375. }
  1376. if (!previous_settings_retrieved) {
  1377. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1378. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1379. }
  1380. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1381. lcd_wizard(0);
  1382. }
  1383. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1384. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1385. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1386. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1387. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1388. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1389. // Show the message.
  1390. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1391. }
  1392. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1393. // Show the message.
  1394. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1395. lcd_update_enable(true);
  1396. }
  1397. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1398. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1399. lcd_update_enable(true);
  1400. }
  1401. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1402. // Show the message.
  1403. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1404. }
  1405. }
  1406. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1407. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1408. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1409. update_current_firmware_version_to_eeprom();
  1410. lcd_selftest();
  1411. }
  1412. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1413. KEEPALIVE_STATE(IN_PROCESS);
  1414. #endif //DEBUG_DISABLE_STARTMSGS
  1415. lcd_update_enable(true);
  1416. lcd_implementation_clear();
  1417. lcd_update(2);
  1418. // Store the currently running firmware into an eeprom,
  1419. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1420. update_current_firmware_version_to_eeprom();
  1421. #ifdef TMC2130
  1422. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1423. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1424. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1425. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1426. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1427. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1428. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1429. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1430. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1431. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1432. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1433. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1434. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1435. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1436. #endif //TMC2130
  1437. #ifdef UVLO_SUPPORT
  1438. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1439. /*
  1440. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1441. else {
  1442. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1443. lcd_update_enable(true);
  1444. lcd_update(2);
  1445. lcd_setstatuspgm(_T(WELCOME_MSG));
  1446. }
  1447. */
  1448. manage_heater(); // Update temperatures
  1449. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1450. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1451. #endif
  1452. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1453. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1454. puts_P(_N("Automatic recovery!"));
  1455. #endif
  1456. recover_print(1);
  1457. }
  1458. else{
  1459. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1460. puts_P(_N("Normal recovery!"));
  1461. #endif
  1462. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1463. else {
  1464. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1465. lcd_update_enable(true);
  1466. lcd_update(2);
  1467. lcd_setstatuspgm(_T(WELCOME_MSG));
  1468. }
  1469. }
  1470. }
  1471. #endif //UVLO_SUPPORT
  1472. KEEPALIVE_STATE(NOT_BUSY);
  1473. #ifdef WATCHDOG
  1474. wdt_enable(WDTO_4S);
  1475. #endif //WATCHDOG
  1476. }
  1477. #ifdef PAT9125
  1478. void fsensor_init() {
  1479. int pat9125 = pat9125_init();
  1480. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1481. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1482. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1483. if (!pat9125)
  1484. {
  1485. fsensor = 0; //disable sensor
  1486. fsensor_not_responding = true;
  1487. }
  1488. else {
  1489. fsensor_not_responding = false;
  1490. }
  1491. puts_P(PSTR("FSensor "));
  1492. if (fsensor)
  1493. {
  1494. puts_P(PSTR("ENABLED\n"));
  1495. fsensor_enable();
  1496. }
  1497. else
  1498. {
  1499. puts_P(PSTR("DISABLED\n"));
  1500. fsensor_disable();
  1501. }
  1502. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1503. filament_autoload_enabled = false;
  1504. fsensor_disable();
  1505. #endif //DEBUG_DISABLE_FSENSORCHECK
  1506. }
  1507. #endif //PAT9125
  1508. void trace();
  1509. #define CHUNK_SIZE 64 // bytes
  1510. #define SAFETY_MARGIN 1
  1511. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1512. int chunkHead = 0;
  1513. int serial_read_stream() {
  1514. setTargetHotend(0, 0);
  1515. setTargetBed(0);
  1516. lcd_implementation_clear();
  1517. lcd_printPGM(PSTR(" Upload in progress"));
  1518. // first wait for how many bytes we will receive
  1519. uint32_t bytesToReceive;
  1520. // receive the four bytes
  1521. char bytesToReceiveBuffer[4];
  1522. for (int i=0; i<4; i++) {
  1523. int data;
  1524. while ((data = MYSERIAL.read()) == -1) {};
  1525. bytesToReceiveBuffer[i] = data;
  1526. }
  1527. // make it a uint32
  1528. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1529. // we're ready, notify the sender
  1530. MYSERIAL.write('+');
  1531. // lock in the routine
  1532. uint32_t receivedBytes = 0;
  1533. while (prusa_sd_card_upload) {
  1534. int i;
  1535. for (i=0; i<CHUNK_SIZE; i++) {
  1536. int data;
  1537. // check if we're not done
  1538. if (receivedBytes == bytesToReceive) {
  1539. break;
  1540. }
  1541. // read the next byte
  1542. while ((data = MYSERIAL.read()) == -1) {};
  1543. receivedBytes++;
  1544. // save it to the chunk
  1545. chunk[i] = data;
  1546. }
  1547. // write the chunk to SD
  1548. card.write_command_no_newline(&chunk[0]);
  1549. // notify the sender we're ready for more data
  1550. MYSERIAL.write('+');
  1551. // for safety
  1552. manage_heater();
  1553. // check if we're done
  1554. if(receivedBytes == bytesToReceive) {
  1555. trace(); // beep
  1556. card.closefile();
  1557. prusa_sd_card_upload = false;
  1558. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1559. return 0;
  1560. }
  1561. }
  1562. }
  1563. #ifdef HOST_KEEPALIVE_FEATURE
  1564. /**
  1565. * Output a "busy" message at regular intervals
  1566. * while the machine is not accepting commands.
  1567. */
  1568. void host_keepalive() {
  1569. if (farm_mode) return;
  1570. long ms = millis();
  1571. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1572. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1573. switch (busy_state) {
  1574. case IN_HANDLER:
  1575. case IN_PROCESS:
  1576. SERIAL_ECHO_START;
  1577. SERIAL_ECHOLNPGM("busy: processing");
  1578. break;
  1579. case PAUSED_FOR_USER:
  1580. SERIAL_ECHO_START;
  1581. SERIAL_ECHOLNPGM("busy: paused for user");
  1582. break;
  1583. case PAUSED_FOR_INPUT:
  1584. SERIAL_ECHO_START;
  1585. SERIAL_ECHOLNPGM("busy: paused for input");
  1586. break;
  1587. default:
  1588. break;
  1589. }
  1590. }
  1591. prev_busy_signal_ms = ms;
  1592. }
  1593. #endif
  1594. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1595. // Before loop(), the setup() function is called by the main() routine.
  1596. void loop()
  1597. {
  1598. KEEPALIVE_STATE(NOT_BUSY);
  1599. bool stack_integrity = true;
  1600. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1601. {
  1602. is_usb_printing = true;
  1603. usb_printing_counter--;
  1604. _usb_timer = millis();
  1605. }
  1606. if (usb_printing_counter == 0)
  1607. {
  1608. is_usb_printing = false;
  1609. }
  1610. if (prusa_sd_card_upload)
  1611. {
  1612. //we read byte-by byte
  1613. serial_read_stream();
  1614. } else
  1615. {
  1616. get_command();
  1617. #ifdef SDSUPPORT
  1618. card.checkautostart(false);
  1619. #endif
  1620. if(buflen)
  1621. {
  1622. cmdbuffer_front_already_processed = false;
  1623. #ifdef SDSUPPORT
  1624. if(card.saving)
  1625. {
  1626. // Saving a G-code file onto an SD-card is in progress.
  1627. // Saving starts with M28, saving until M29 is seen.
  1628. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1629. card.write_command(CMDBUFFER_CURRENT_STRING);
  1630. if(card.logging)
  1631. process_commands();
  1632. else
  1633. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1634. } else {
  1635. card.closefile();
  1636. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1637. }
  1638. } else {
  1639. process_commands();
  1640. }
  1641. #else
  1642. process_commands();
  1643. #endif //SDSUPPORT
  1644. if (! cmdbuffer_front_already_processed && buflen)
  1645. {
  1646. // ptr points to the start of the block currently being processed.
  1647. // The first character in the block is the block type.
  1648. char *ptr = cmdbuffer + bufindr;
  1649. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1650. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1651. union {
  1652. struct {
  1653. char lo;
  1654. char hi;
  1655. } lohi;
  1656. uint16_t value;
  1657. } sdlen;
  1658. sdlen.value = 0;
  1659. {
  1660. // This block locks the interrupts globally for 3.25 us,
  1661. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1662. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1663. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1664. cli();
  1665. // Reset the command to something, which will be ignored by the power panic routine,
  1666. // so this buffer length will not be counted twice.
  1667. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1668. // Extract the current buffer length.
  1669. sdlen.lohi.lo = *ptr ++;
  1670. sdlen.lohi.hi = *ptr;
  1671. // and pass it to the planner queue.
  1672. planner_add_sd_length(sdlen.value);
  1673. sei();
  1674. }
  1675. }
  1676. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1677. cli();
  1678. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1679. // and one for each command to previous block in the planner queue.
  1680. planner_add_sd_length(1);
  1681. sei();
  1682. }
  1683. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1684. // this block's SD card length will not be counted twice as its command type has been replaced
  1685. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1686. cmdqueue_pop_front();
  1687. }
  1688. host_keepalive();
  1689. }
  1690. }
  1691. //check heater every n milliseconds
  1692. manage_heater();
  1693. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1694. checkHitEndstops();
  1695. lcd_update();
  1696. #ifdef PAT9125
  1697. fsensor_update();
  1698. #endif //PAT9125
  1699. #ifdef TMC2130
  1700. tmc2130_check_overtemp();
  1701. if (tmc2130_sg_crash)
  1702. {
  1703. uint8_t crash = tmc2130_sg_crash;
  1704. tmc2130_sg_crash = 0;
  1705. // crashdet_stop_and_save_print();
  1706. switch (crash)
  1707. {
  1708. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1709. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1710. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1711. }
  1712. }
  1713. #endif //TMC2130
  1714. }
  1715. #define DEFINE_PGM_READ_ANY(type, reader) \
  1716. static inline type pgm_read_any(const type *p) \
  1717. { return pgm_read_##reader##_near(p); }
  1718. DEFINE_PGM_READ_ANY(float, float);
  1719. DEFINE_PGM_READ_ANY(signed char, byte);
  1720. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1721. static const PROGMEM type array##_P[3] = \
  1722. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1723. static inline type array(int axis) \
  1724. { return pgm_read_any(&array##_P[axis]); } \
  1725. type array##_ext(int axis) \
  1726. { return pgm_read_any(&array##_P[axis]); }
  1727. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1728. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1729. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1730. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1731. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1732. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1733. static void axis_is_at_home(int axis) {
  1734. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1735. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1736. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1737. }
  1738. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1739. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1740. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1741. saved_feedrate = feedrate;
  1742. saved_feedmultiply = feedmultiply;
  1743. feedmultiply = 100;
  1744. previous_millis_cmd = millis();
  1745. enable_endstops(enable_endstops_now);
  1746. }
  1747. static void clean_up_after_endstop_move() {
  1748. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1749. enable_endstops(false);
  1750. #endif
  1751. feedrate = saved_feedrate;
  1752. feedmultiply = saved_feedmultiply;
  1753. previous_millis_cmd = millis();
  1754. }
  1755. #ifdef ENABLE_AUTO_BED_LEVELING
  1756. #ifdef AUTO_BED_LEVELING_GRID
  1757. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1758. {
  1759. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1760. planeNormal.debug("planeNormal");
  1761. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1762. //bedLevel.debug("bedLevel");
  1763. //plan_bed_level_matrix.debug("bed level before");
  1764. //vector_3 uncorrected_position = plan_get_position_mm();
  1765. //uncorrected_position.debug("position before");
  1766. vector_3 corrected_position = plan_get_position();
  1767. // corrected_position.debug("position after");
  1768. current_position[X_AXIS] = corrected_position.x;
  1769. current_position[Y_AXIS] = corrected_position.y;
  1770. current_position[Z_AXIS] = corrected_position.z;
  1771. // put the bed at 0 so we don't go below it.
  1772. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1774. }
  1775. #else // not AUTO_BED_LEVELING_GRID
  1776. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1777. plan_bed_level_matrix.set_to_identity();
  1778. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1779. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1780. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1781. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1782. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1783. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1784. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1785. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1786. vector_3 corrected_position = plan_get_position();
  1787. current_position[X_AXIS] = corrected_position.x;
  1788. current_position[Y_AXIS] = corrected_position.y;
  1789. current_position[Z_AXIS] = corrected_position.z;
  1790. // put the bed at 0 so we don't go below it.
  1791. current_position[Z_AXIS] = zprobe_zoffset;
  1792. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1793. }
  1794. #endif // AUTO_BED_LEVELING_GRID
  1795. static void run_z_probe() {
  1796. plan_bed_level_matrix.set_to_identity();
  1797. feedrate = homing_feedrate[Z_AXIS];
  1798. // move down until you find the bed
  1799. float zPosition = -10;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1801. st_synchronize();
  1802. // we have to let the planner know where we are right now as it is not where we said to go.
  1803. zPosition = st_get_position_mm(Z_AXIS);
  1804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1805. // move up the retract distance
  1806. zPosition += home_retract_mm(Z_AXIS);
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. // move back down slowly to find bed
  1810. feedrate = homing_feedrate[Z_AXIS]/4;
  1811. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1815. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1817. }
  1818. static void do_blocking_move_to(float x, float y, float z) {
  1819. float oldFeedRate = feedrate;
  1820. feedrate = homing_feedrate[Z_AXIS];
  1821. current_position[Z_AXIS] = z;
  1822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1823. st_synchronize();
  1824. feedrate = XY_TRAVEL_SPEED;
  1825. current_position[X_AXIS] = x;
  1826. current_position[Y_AXIS] = y;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1828. st_synchronize();
  1829. feedrate = oldFeedRate;
  1830. }
  1831. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1832. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1833. }
  1834. /// Probe bed height at position (x,y), returns the measured z value
  1835. static float probe_pt(float x, float y, float z_before) {
  1836. // move to right place
  1837. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1838. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1839. run_z_probe();
  1840. float measured_z = current_position[Z_AXIS];
  1841. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1842. SERIAL_PROTOCOLPGM(" x: ");
  1843. SERIAL_PROTOCOL(x);
  1844. SERIAL_PROTOCOLPGM(" y: ");
  1845. SERIAL_PROTOCOL(y);
  1846. SERIAL_PROTOCOLPGM(" z: ");
  1847. SERIAL_PROTOCOL(measured_z);
  1848. SERIAL_PROTOCOLPGM("\n");
  1849. return measured_z;
  1850. }
  1851. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1852. #ifdef LIN_ADVANCE
  1853. /**
  1854. * M900: Set and/or Get advance K factor and WH/D ratio
  1855. *
  1856. * K<factor> Set advance K factor
  1857. * R<ratio> Set ratio directly (overrides WH/D)
  1858. * W<width> H<height> D<diam> Set ratio from WH/D
  1859. */
  1860. inline void gcode_M900() {
  1861. st_synchronize();
  1862. const float newK = code_seen('K') ? code_value_float() : -1;
  1863. if (newK >= 0) extruder_advance_k = newK;
  1864. float newR = code_seen('R') ? code_value_float() : -1;
  1865. if (newR < 0) {
  1866. const float newD = code_seen('D') ? code_value_float() : -1,
  1867. newW = code_seen('W') ? code_value_float() : -1,
  1868. newH = code_seen('H') ? code_value_float() : -1;
  1869. if (newD >= 0 && newW >= 0 && newH >= 0)
  1870. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1871. }
  1872. if (newR >= 0) advance_ed_ratio = newR;
  1873. SERIAL_ECHO_START;
  1874. SERIAL_ECHOPGM("Advance K=");
  1875. SERIAL_ECHOLN(extruder_advance_k);
  1876. SERIAL_ECHOPGM(" E/D=");
  1877. const float ratio = advance_ed_ratio;
  1878. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1879. }
  1880. #endif // LIN_ADVANCE
  1881. bool check_commands() {
  1882. bool end_command_found = false;
  1883. while (buflen)
  1884. {
  1885. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1886. if (!cmdbuffer_front_already_processed)
  1887. cmdqueue_pop_front();
  1888. cmdbuffer_front_already_processed = false;
  1889. }
  1890. return end_command_found;
  1891. }
  1892. #ifdef TMC2130
  1893. bool calibrate_z_auto()
  1894. {
  1895. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1896. lcd_implementation_clear();
  1897. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1898. bool endstops_enabled = enable_endstops(true);
  1899. int axis_up_dir = -home_dir(Z_AXIS);
  1900. tmc2130_home_enter(Z_AXIS_MASK);
  1901. current_position[Z_AXIS] = 0;
  1902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1903. set_destination_to_current();
  1904. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1905. feedrate = homing_feedrate[Z_AXIS];
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. // current_position[axis] = 0;
  1909. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. tmc2130_home_exit();
  1911. enable_endstops(false);
  1912. current_position[Z_AXIS] = 0;
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. set_destination_to_current();
  1915. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1916. feedrate = homing_feedrate[Z_AXIS] / 2;
  1917. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1918. st_synchronize();
  1919. enable_endstops(endstops_enabled);
  1920. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1921. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1922. return true;
  1923. }
  1924. #endif //TMC2130
  1925. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1926. {
  1927. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1928. #define HOMEAXIS_DO(LETTER) \
  1929. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1930. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1931. {
  1932. int axis_home_dir = home_dir(axis);
  1933. feedrate = homing_feedrate[axis];
  1934. #ifdef TMC2130
  1935. tmc2130_home_enter(X_AXIS_MASK << axis);
  1936. #endif //TMC2130
  1937. // Move right a bit, so that the print head does not touch the left end position,
  1938. // and the following left movement has a chance to achieve the required velocity
  1939. // for the stall guard to work.
  1940. current_position[axis] = 0;
  1941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. set_destination_to_current();
  1943. // destination[axis] = 11.f;
  1944. destination[axis] = 3.f;
  1945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1946. st_synchronize();
  1947. // Move left away from the possible collision with the collision detection disabled.
  1948. endstops_hit_on_purpose();
  1949. enable_endstops(false);
  1950. current_position[axis] = 0;
  1951. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1952. destination[axis] = - 1.;
  1953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1954. st_synchronize();
  1955. // Now continue to move up to the left end stop with the collision detection enabled.
  1956. enable_endstops(true);
  1957. destination[axis] = - 1.1 * max_length(axis);
  1958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1959. st_synchronize();
  1960. for (uint8_t i = 0; i < cnt; i++)
  1961. {
  1962. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1963. endstops_hit_on_purpose();
  1964. enable_endstops(false);
  1965. current_position[axis] = 0;
  1966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1967. destination[axis] = 10.f;
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1969. st_synchronize();
  1970. endstops_hit_on_purpose();
  1971. // Now move left up to the collision, this time with a repeatable velocity.
  1972. enable_endstops(true);
  1973. destination[axis] = - 11.f;
  1974. #ifdef TMC2130
  1975. feedrate = homing_feedrate[axis];
  1976. #else //TMC2130
  1977. feedrate = homing_feedrate[axis] / 2;
  1978. #endif //TMC2130
  1979. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1980. st_synchronize();
  1981. #ifdef TMC2130
  1982. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1983. if (pstep) pstep[i] = mscnt >> 4;
  1984. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1985. #endif //TMC2130
  1986. }
  1987. endstops_hit_on_purpose();
  1988. enable_endstops(false);
  1989. #ifdef TMC2130
  1990. uint8_t orig = tmc2130_home_origin[axis];
  1991. uint8_t back = tmc2130_home_bsteps[axis];
  1992. if (tmc2130_home_enabled && (orig <= 63))
  1993. {
  1994. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1995. if (back > 0)
  1996. tmc2130_do_steps(axis, back, 1, 1000);
  1997. }
  1998. else
  1999. tmc2130_do_steps(axis, 8, 2, 1000);
  2000. tmc2130_home_exit();
  2001. #endif //TMC2130
  2002. axis_is_at_home(axis);
  2003. axis_known_position[axis] = true;
  2004. // Move from minimum
  2005. #ifdef TMC2130
  2006. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2007. #else //TMC2130
  2008. float dist = 0.01f * 64;
  2009. #endif //TMC2130
  2010. current_position[axis] -= dist;
  2011. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2012. current_position[axis] += dist;
  2013. destination[axis] = current_position[axis];
  2014. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2015. st_synchronize();
  2016. feedrate = 0.0;
  2017. }
  2018. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2019. {
  2020. #ifdef TMC2130
  2021. FORCE_HIGH_POWER_START;
  2022. #endif
  2023. int axis_home_dir = home_dir(axis);
  2024. current_position[axis] = 0;
  2025. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2026. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2027. feedrate = homing_feedrate[axis];
  2028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2029. st_synchronize();
  2030. #ifdef TMC2130
  2031. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2032. FORCE_HIGH_POWER_END;
  2033. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2034. return;
  2035. }
  2036. #endif //TMC2130
  2037. current_position[axis] = 0;
  2038. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2039. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2041. st_synchronize();
  2042. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2043. feedrate = homing_feedrate[axis]/2 ;
  2044. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2045. st_synchronize();
  2046. #ifdef TMC2130
  2047. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2048. FORCE_HIGH_POWER_END;
  2049. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2050. return;
  2051. }
  2052. #endif //TMC2130
  2053. axis_is_at_home(axis);
  2054. destination[axis] = current_position[axis];
  2055. feedrate = 0.0;
  2056. endstops_hit_on_purpose();
  2057. axis_known_position[axis] = true;
  2058. #ifdef TMC2130
  2059. FORCE_HIGH_POWER_END;
  2060. #endif
  2061. }
  2062. enable_endstops(endstops_enabled);
  2063. }
  2064. /**/
  2065. void home_xy()
  2066. {
  2067. set_destination_to_current();
  2068. homeaxis(X_AXIS);
  2069. homeaxis(Y_AXIS);
  2070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2071. endstops_hit_on_purpose();
  2072. }
  2073. void refresh_cmd_timeout(void)
  2074. {
  2075. previous_millis_cmd = millis();
  2076. }
  2077. #ifdef FWRETRACT
  2078. void retract(bool retracting, bool swapretract = false) {
  2079. if(retracting && !retracted[active_extruder]) {
  2080. destination[X_AXIS]=current_position[X_AXIS];
  2081. destination[Y_AXIS]=current_position[Y_AXIS];
  2082. destination[Z_AXIS]=current_position[Z_AXIS];
  2083. destination[E_AXIS]=current_position[E_AXIS];
  2084. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2085. plan_set_e_position(current_position[E_AXIS]);
  2086. float oldFeedrate = feedrate;
  2087. feedrate=retract_feedrate*60;
  2088. retracted[active_extruder]=true;
  2089. prepare_move();
  2090. current_position[Z_AXIS]-=retract_zlift;
  2091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2092. prepare_move();
  2093. feedrate = oldFeedrate;
  2094. } else if(!retracting && retracted[active_extruder]) {
  2095. destination[X_AXIS]=current_position[X_AXIS];
  2096. destination[Y_AXIS]=current_position[Y_AXIS];
  2097. destination[Z_AXIS]=current_position[Z_AXIS];
  2098. destination[E_AXIS]=current_position[E_AXIS];
  2099. current_position[Z_AXIS]+=retract_zlift;
  2100. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2101. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2102. plan_set_e_position(current_position[E_AXIS]);
  2103. float oldFeedrate = feedrate;
  2104. feedrate=retract_recover_feedrate*60;
  2105. retracted[active_extruder]=false;
  2106. prepare_move();
  2107. feedrate = oldFeedrate;
  2108. }
  2109. } //retract
  2110. #endif //FWRETRACT
  2111. void trace() {
  2112. tone(BEEPER, 440);
  2113. delay(25);
  2114. noTone(BEEPER);
  2115. delay(20);
  2116. }
  2117. /*
  2118. void ramming() {
  2119. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2120. if (current_temperature[0] < 230) {
  2121. //PLA
  2122. max_feedrate[E_AXIS] = 50;
  2123. //current_position[E_AXIS] -= 8;
  2124. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2125. //current_position[E_AXIS] += 8;
  2126. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2127. current_position[E_AXIS] += 5.4;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2129. current_position[E_AXIS] += 3.2;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2131. current_position[E_AXIS] += 3;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2133. st_synchronize();
  2134. max_feedrate[E_AXIS] = 80;
  2135. current_position[E_AXIS] -= 82;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2137. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2138. current_position[E_AXIS] -= 20;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2140. current_position[E_AXIS] += 5;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2142. current_position[E_AXIS] += 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2144. current_position[E_AXIS] -= 10;
  2145. st_synchronize();
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2147. current_position[E_AXIS] += 10;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2149. current_position[E_AXIS] -= 10;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2151. current_position[E_AXIS] += 10;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2153. current_position[E_AXIS] -= 10;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2155. st_synchronize();
  2156. }
  2157. else {
  2158. //ABS
  2159. max_feedrate[E_AXIS] = 50;
  2160. //current_position[E_AXIS] -= 8;
  2161. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2162. //current_position[E_AXIS] += 8;
  2163. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2164. current_position[E_AXIS] += 3.1;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2166. current_position[E_AXIS] += 3.1;
  2167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2168. current_position[E_AXIS] += 4;
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2170. st_synchronize();
  2171. //current_position[X_AXIS] += 23; //delay
  2172. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2173. //current_position[X_AXIS] -= 23; //delay
  2174. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2175. delay(4700);
  2176. max_feedrate[E_AXIS] = 80;
  2177. current_position[E_AXIS] -= 92;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2179. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2180. current_position[E_AXIS] -= 5;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2182. current_position[E_AXIS] += 5;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2184. current_position[E_AXIS] -= 5;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2186. st_synchronize();
  2187. current_position[E_AXIS] += 5;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2189. current_position[E_AXIS] -= 5;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2191. current_position[E_AXIS] += 5;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2193. current_position[E_AXIS] -= 5;
  2194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2195. st_synchronize();
  2196. }
  2197. }
  2198. */
  2199. #ifdef TMC2130
  2200. void force_high_power_mode(bool start_high_power_section) {
  2201. uint8_t silent;
  2202. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2203. if (silent == 1) {
  2204. //we are in silent mode, set to normal mode to enable crash detection
  2205. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2206. st_synchronize();
  2207. cli();
  2208. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2209. tmc2130_init();
  2210. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2211. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2212. st_reset_timer();
  2213. sei();
  2214. }
  2215. }
  2216. #endif //TMC2130
  2217. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2218. st_synchronize();
  2219. #if 0
  2220. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2221. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2222. #endif
  2223. // Flag for the display update routine and to disable the print cancelation during homing.
  2224. homing_flag = true;
  2225. // Either all X,Y,Z codes are present, or none of them.
  2226. bool home_all_axes = home_x == home_y && home_x == home_z;
  2227. if (home_all_axes)
  2228. // No X/Y/Z code provided means to home all axes.
  2229. home_x = home_y = home_z = true;
  2230. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2231. if (home_all_axes) {
  2232. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2233. feedrate = homing_feedrate[Z_AXIS];
  2234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2235. st_synchronize();
  2236. }
  2237. #ifdef ENABLE_AUTO_BED_LEVELING
  2238. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2239. #endif //ENABLE_AUTO_BED_LEVELING
  2240. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2241. // the planner will not perform any adjustments in the XY plane.
  2242. // Wait for the motors to stop and update the current position with the absolute values.
  2243. world2machine_revert_to_uncorrected();
  2244. // For mesh bed leveling deactivate the matrix temporarily.
  2245. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2246. // in a single axis only.
  2247. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2248. #ifdef MESH_BED_LEVELING
  2249. uint8_t mbl_was_active = mbl.active;
  2250. mbl.active = 0;
  2251. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2252. #endif
  2253. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2254. // consumed during the first movements following this statement.
  2255. if (home_z)
  2256. babystep_undo();
  2257. saved_feedrate = feedrate;
  2258. saved_feedmultiply = feedmultiply;
  2259. feedmultiply = 100;
  2260. previous_millis_cmd = millis();
  2261. enable_endstops(true);
  2262. memcpy(destination, current_position, sizeof(destination));
  2263. feedrate = 0.0;
  2264. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2265. if(home_z)
  2266. homeaxis(Z_AXIS);
  2267. #endif
  2268. #ifdef QUICK_HOME
  2269. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2270. if(home_x && home_y) //first diagonal move
  2271. {
  2272. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2273. int x_axis_home_dir = home_dir(X_AXIS);
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2276. feedrate = homing_feedrate[X_AXIS];
  2277. if(homing_feedrate[Y_AXIS]<feedrate)
  2278. feedrate = homing_feedrate[Y_AXIS];
  2279. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2280. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2281. } else {
  2282. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2283. }
  2284. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2285. st_synchronize();
  2286. axis_is_at_home(X_AXIS);
  2287. axis_is_at_home(Y_AXIS);
  2288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2289. destination[X_AXIS] = current_position[X_AXIS];
  2290. destination[Y_AXIS] = current_position[Y_AXIS];
  2291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2292. feedrate = 0.0;
  2293. st_synchronize();
  2294. endstops_hit_on_purpose();
  2295. current_position[X_AXIS] = destination[X_AXIS];
  2296. current_position[Y_AXIS] = destination[Y_AXIS];
  2297. current_position[Z_AXIS] = destination[Z_AXIS];
  2298. }
  2299. #endif /* QUICK_HOME */
  2300. #ifdef TMC2130
  2301. if(home_x)
  2302. {
  2303. if (!calib)
  2304. homeaxis(X_AXIS);
  2305. else
  2306. tmc2130_home_calibrate(X_AXIS);
  2307. }
  2308. if(home_y)
  2309. {
  2310. if (!calib)
  2311. homeaxis(Y_AXIS);
  2312. else
  2313. tmc2130_home_calibrate(Y_AXIS);
  2314. }
  2315. #endif //TMC2130
  2316. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2317. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2318. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2319. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2320. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2321. #ifndef Z_SAFE_HOMING
  2322. if(home_z) {
  2323. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2324. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2325. feedrate = max_feedrate[Z_AXIS];
  2326. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2327. st_synchronize();
  2328. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2329. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2330. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2331. {
  2332. homeaxis(X_AXIS);
  2333. homeaxis(Y_AXIS);
  2334. }
  2335. // 1st mesh bed leveling measurement point, corrected.
  2336. world2machine_initialize();
  2337. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2338. world2machine_reset();
  2339. if (destination[Y_AXIS] < Y_MIN_POS)
  2340. destination[Y_AXIS] = Y_MIN_POS;
  2341. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2342. feedrate = homing_feedrate[Z_AXIS]/10;
  2343. current_position[Z_AXIS] = 0;
  2344. enable_endstops(false);
  2345. #ifdef DEBUG_BUILD
  2346. SERIAL_ECHOLNPGM("plan_set_position()");
  2347. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2348. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2349. #endif
  2350. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2351. #ifdef DEBUG_BUILD
  2352. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2353. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2354. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2355. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2356. #endif
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2358. st_synchronize();
  2359. current_position[X_AXIS] = destination[X_AXIS];
  2360. current_position[Y_AXIS] = destination[Y_AXIS];
  2361. enable_endstops(true);
  2362. endstops_hit_on_purpose();
  2363. homeaxis(Z_AXIS);
  2364. #else // MESH_BED_LEVELING
  2365. homeaxis(Z_AXIS);
  2366. #endif // MESH_BED_LEVELING
  2367. }
  2368. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2369. if(home_all_axes) {
  2370. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2371. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2372. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2373. feedrate = XY_TRAVEL_SPEED/60;
  2374. current_position[Z_AXIS] = 0;
  2375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2377. st_synchronize();
  2378. current_position[X_AXIS] = destination[X_AXIS];
  2379. current_position[Y_AXIS] = destination[Y_AXIS];
  2380. homeaxis(Z_AXIS);
  2381. }
  2382. // Let's see if X and Y are homed and probe is inside bed area.
  2383. if(home_z) {
  2384. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2385. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2386. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2387. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2388. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2389. current_position[Z_AXIS] = 0;
  2390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2391. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2392. feedrate = max_feedrate[Z_AXIS];
  2393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2394. st_synchronize();
  2395. homeaxis(Z_AXIS);
  2396. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2397. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2398. SERIAL_ECHO_START;
  2399. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2400. } else {
  2401. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2402. SERIAL_ECHO_START;
  2403. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2404. }
  2405. }
  2406. #endif // Z_SAFE_HOMING
  2407. #endif // Z_HOME_DIR < 0
  2408. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2409. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2410. #ifdef ENABLE_AUTO_BED_LEVELING
  2411. if(home_z)
  2412. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2413. #endif
  2414. // Set the planner and stepper routine positions.
  2415. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2416. // contains the machine coordinates.
  2417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2418. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2419. enable_endstops(false);
  2420. #endif
  2421. feedrate = saved_feedrate;
  2422. feedmultiply = saved_feedmultiply;
  2423. previous_millis_cmd = millis();
  2424. endstops_hit_on_purpose();
  2425. #ifndef MESH_BED_LEVELING
  2426. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2427. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2428. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2429. lcd_adjust_z();
  2430. #endif
  2431. // Load the machine correction matrix
  2432. world2machine_initialize();
  2433. // and correct the current_position XY axes to match the transformed coordinate system.
  2434. world2machine_update_current();
  2435. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2436. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2437. {
  2438. if (! home_z && mbl_was_active) {
  2439. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2440. mbl.active = true;
  2441. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2442. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2443. }
  2444. }
  2445. else
  2446. {
  2447. st_synchronize();
  2448. homing_flag = false;
  2449. // Push the commands to the front of the message queue in the reverse order!
  2450. // There shall be always enough space reserved for these commands.
  2451. enquecommand_front_P((PSTR("G80")));
  2452. //goto case_G80;
  2453. }
  2454. #endif
  2455. if (farm_mode) { prusa_statistics(20); };
  2456. homing_flag = false;
  2457. #if 0
  2458. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2459. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2460. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2461. #endif
  2462. }
  2463. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2464. {
  2465. bool final_result = false;
  2466. #ifdef TMC2130
  2467. FORCE_HIGH_POWER_START;
  2468. #endif // TMC2130
  2469. // Only Z calibration?
  2470. if (!onlyZ)
  2471. {
  2472. setTargetBed(0);
  2473. setTargetHotend(0, 0);
  2474. setTargetHotend(0, 1);
  2475. setTargetHotend(0, 2);
  2476. adjust_bed_reset(); //reset bed level correction
  2477. }
  2478. // Disable the default update procedure of the display. We will do a modal dialog.
  2479. lcd_update_enable(false);
  2480. // Let the planner use the uncorrected coordinates.
  2481. mbl.reset();
  2482. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2483. // the planner will not perform any adjustments in the XY plane.
  2484. // Wait for the motors to stop and update the current position with the absolute values.
  2485. world2machine_revert_to_uncorrected();
  2486. // Reset the baby step value applied without moving the axes.
  2487. babystep_reset();
  2488. // Mark all axes as in a need for homing.
  2489. memset(axis_known_position, 0, sizeof(axis_known_position));
  2490. // Home in the XY plane.
  2491. //set_destination_to_current();
  2492. setup_for_endstop_move();
  2493. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2494. home_xy();
  2495. enable_endstops(false);
  2496. current_position[X_AXIS] += 5;
  2497. current_position[Y_AXIS] += 5;
  2498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2499. st_synchronize();
  2500. // Let the user move the Z axes up to the end stoppers.
  2501. #ifdef TMC2130
  2502. if (calibrate_z_auto())
  2503. {
  2504. #else //TMC2130
  2505. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2506. {
  2507. #endif //TMC2130
  2508. refresh_cmd_timeout();
  2509. #ifndef STEEL_SHEET
  2510. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2511. {
  2512. lcd_wait_for_cool_down();
  2513. }
  2514. #endif //STEEL_SHEET
  2515. if(!onlyZ)
  2516. {
  2517. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2518. #ifdef STEEL_SHEET
  2519. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2520. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2521. #endif //STEEL_SHEET
  2522. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2523. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2524. KEEPALIVE_STATE(IN_HANDLER);
  2525. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2526. lcd_implementation_print_at(0, 2, 1);
  2527. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2528. }
  2529. // Move the print head close to the bed.
  2530. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2531. bool endstops_enabled = enable_endstops(true);
  2532. #ifdef TMC2130
  2533. tmc2130_home_enter(Z_AXIS_MASK);
  2534. #endif //TMC2130
  2535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2536. st_synchronize();
  2537. #ifdef TMC2130
  2538. tmc2130_home_exit();
  2539. #endif //TMC2130
  2540. enable_endstops(endstops_enabled);
  2541. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2542. {
  2543. int8_t verbosity_level = 0;
  2544. if (code_seen('V'))
  2545. {
  2546. // Just 'V' without a number counts as V1.
  2547. char c = strchr_pointer[1];
  2548. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2549. }
  2550. if (onlyZ)
  2551. {
  2552. clean_up_after_endstop_move();
  2553. // Z only calibration.
  2554. // Load the machine correction matrix
  2555. world2machine_initialize();
  2556. // and correct the current_position to match the transformed coordinate system.
  2557. world2machine_update_current();
  2558. //FIXME
  2559. bool result = sample_mesh_and_store_reference();
  2560. if (result)
  2561. {
  2562. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2563. // Shipped, the nozzle height has been set already. The user can start printing now.
  2564. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2565. final_result = true;
  2566. // babystep_apply();
  2567. }
  2568. }
  2569. else
  2570. {
  2571. // Reset the baby step value and the baby step applied flag.
  2572. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2573. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2574. // Complete XYZ calibration.
  2575. uint8_t point_too_far_mask = 0;
  2576. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2577. clean_up_after_endstop_move();
  2578. // Print head up.
  2579. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2581. st_synchronize();
  2582. //#ifndef NEW_XYZCAL
  2583. if (result >= 0)
  2584. {
  2585. #ifdef HEATBED_V2
  2586. sample_z();
  2587. #else //HEATBED_V2
  2588. point_too_far_mask = 0;
  2589. // Second half: The fine adjustment.
  2590. // Let the planner use the uncorrected coordinates.
  2591. mbl.reset();
  2592. world2machine_reset();
  2593. // Home in the XY plane.
  2594. setup_for_endstop_move();
  2595. home_xy();
  2596. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2597. clean_up_after_endstop_move();
  2598. // Print head up.
  2599. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2601. st_synchronize();
  2602. // if (result >= 0) babystep_apply();
  2603. #endif //HEATBED_V2
  2604. }
  2605. //#endif //NEW_XYZCAL
  2606. lcd_update_enable(true);
  2607. lcd_update(2);
  2608. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2609. if (result >= 0)
  2610. {
  2611. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2612. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2613. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2614. final_result = true;
  2615. }
  2616. }
  2617. #ifdef TMC2130
  2618. tmc2130_home_exit();
  2619. #endif
  2620. }
  2621. else
  2622. {
  2623. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2624. final_result = false;
  2625. }
  2626. }
  2627. else
  2628. {
  2629. // Timeouted.
  2630. }
  2631. lcd_update_enable(true);
  2632. #ifdef TMC2130
  2633. FORCE_HIGH_POWER_END;
  2634. #endif // TMC2130
  2635. return final_result;
  2636. }
  2637. void gcode_M114()
  2638. {
  2639. SERIAL_PROTOCOLPGM("X:");
  2640. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2641. SERIAL_PROTOCOLPGM(" Y:");
  2642. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2643. SERIAL_PROTOCOLPGM(" Z:");
  2644. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2645. SERIAL_PROTOCOLPGM(" E:");
  2646. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2647. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2648. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2649. SERIAL_PROTOCOLPGM(" Y:");
  2650. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2651. SERIAL_PROTOCOLPGM(" Z:");
  2652. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2653. SERIAL_PROTOCOLPGM(" E:");
  2654. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2655. SERIAL_PROTOCOLLN("");
  2656. }
  2657. void gcode_M701()
  2658. {
  2659. #ifdef SNMM
  2660. extr_adj(snmm_extruder);//loads current extruder
  2661. #else
  2662. enable_z();
  2663. custom_message = true;
  2664. custom_message_type = 2;
  2665. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2666. current_position[E_AXIS] += 70;
  2667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2668. current_position[E_AXIS] += 25;
  2669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2670. st_synchronize();
  2671. tone(BEEPER, 500);
  2672. delay_keep_alive(50);
  2673. noTone(BEEPER);
  2674. if (!farm_mode && loading_flag) {
  2675. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2676. while (!clean) {
  2677. lcd_update_enable(true);
  2678. lcd_update(2);
  2679. current_position[E_AXIS] += 25;
  2680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2681. st_synchronize();
  2682. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2683. }
  2684. }
  2685. lcd_update_enable(true);
  2686. lcd_update(2);
  2687. lcd_setstatuspgm(_T(WELCOME_MSG));
  2688. disable_z();
  2689. loading_flag = false;
  2690. custom_message = false;
  2691. custom_message_type = 0;
  2692. #endif
  2693. }
  2694. /**
  2695. * @brief Get serial number from 32U2 processor
  2696. *
  2697. * Typical format of S/N is:CZPX0917X003XC13518
  2698. *
  2699. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2700. *
  2701. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2702. * reply is transmitted to serial port 1 character by character.
  2703. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2704. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2705. * in any case.
  2706. */
  2707. static void gcode_PRUSA_SN()
  2708. {
  2709. if (farm_mode) {
  2710. selectedSerialPort = 0;
  2711. putchar(';');
  2712. putchar('S');
  2713. int numbersRead = 0;
  2714. ShortTimer timeout;
  2715. timeout.start();
  2716. while (numbersRead < 19) {
  2717. while (MSerial.available() > 0) {
  2718. uint8_t serial_char = MSerial.read();
  2719. selectedSerialPort = 1;
  2720. putchar(serial_char);
  2721. numbersRead++;
  2722. selectedSerialPort = 0;
  2723. }
  2724. if (timeout.expired(100u)) break;
  2725. }
  2726. selectedSerialPort = 1;
  2727. putchar('\n');
  2728. #if 0
  2729. for (int b = 0; b < 3; b++) {
  2730. tone(BEEPER, 110);
  2731. delay(50);
  2732. noTone(BEEPER);
  2733. delay(50);
  2734. }
  2735. #endif
  2736. } else {
  2737. puts_P(_N("Not in farm mode."));
  2738. }
  2739. }
  2740. void process_commands()
  2741. {
  2742. if (!buflen) return; //empty command
  2743. #ifdef FILAMENT_RUNOUT_SUPPORT
  2744. SET_INPUT(FR_SENS);
  2745. #endif
  2746. #ifdef CMDBUFFER_DEBUG
  2747. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2748. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2749. SERIAL_ECHOLNPGM("");
  2750. SERIAL_ECHOPGM("In cmdqueue: ");
  2751. SERIAL_ECHO(buflen);
  2752. SERIAL_ECHOLNPGM("");
  2753. #endif /* CMDBUFFER_DEBUG */
  2754. unsigned long codenum; //throw away variable
  2755. char *starpos = NULL;
  2756. #ifdef ENABLE_AUTO_BED_LEVELING
  2757. float x_tmp, y_tmp, z_tmp, real_z;
  2758. #endif
  2759. // PRUSA GCODES
  2760. KEEPALIVE_STATE(IN_HANDLER);
  2761. #ifdef SNMM
  2762. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2763. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2764. int8_t SilentMode;
  2765. #endif
  2766. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2767. starpos = (strchr(strchr_pointer + 5, '*'));
  2768. if (starpos != NULL)
  2769. *(starpos) = '\0';
  2770. lcd_setstatus(strchr_pointer + 5);
  2771. }
  2772. #ifdef TMC2130
  2773. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2774. {
  2775. if(code_seen("CRASH_DETECTED"))
  2776. {
  2777. uint8_t mask = 0;
  2778. if (code_seen("X")) mask |= X_AXIS_MASK;
  2779. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2780. crashdet_detected(mask);
  2781. }
  2782. else if(code_seen("CRASH_RECOVER"))
  2783. crashdet_recover();
  2784. else if(code_seen("CRASH_CANCEL"))
  2785. crashdet_cancel();
  2786. }
  2787. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2788. {
  2789. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2790. {
  2791. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2792. tmc2130_set_wave(E_AXIS, 247, fac);
  2793. }
  2794. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2795. {
  2796. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2797. uint16_t res = tmc2130_get_res(E_AXIS);
  2798. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2799. }
  2800. }
  2801. #endif //TMC2130
  2802. else if(code_seen("PRUSA")){
  2803. if (code_seen("Ping")) { //PRUSA Ping
  2804. if (farm_mode) {
  2805. PingTime = millis();
  2806. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2807. }
  2808. }
  2809. else if (code_seen("PRN")) {
  2810. printf_P(_N("%d"), status_number);
  2811. }else if (code_seen("FAN")) {
  2812. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2813. }else if (code_seen("fn")) {
  2814. if (farm_mode) {
  2815. printf_P(_N("%d"), farm_no);
  2816. }
  2817. else {
  2818. puts_P(_N("Not in farm mode."));
  2819. }
  2820. }
  2821. else if (code_seen("thx")) {
  2822. no_response = false;
  2823. }else if (code_seen("fv")) {
  2824. // get file version
  2825. #ifdef SDSUPPORT
  2826. card.openFile(strchr_pointer + 3,true);
  2827. while (true) {
  2828. uint16_t readByte = card.get();
  2829. MYSERIAL.write(readByte);
  2830. if (readByte=='\n') {
  2831. break;
  2832. }
  2833. }
  2834. card.closefile();
  2835. #endif // SDSUPPORT
  2836. } else if (code_seen("M28")) {
  2837. trace();
  2838. prusa_sd_card_upload = true;
  2839. card.openFile(strchr_pointer+4,false);
  2840. } else if (code_seen("SN")) {
  2841. gcode_PRUSA_SN();
  2842. } else if(code_seen("Fir")){
  2843. SERIAL_PROTOCOLLN(FW_VERSION);
  2844. } else if(code_seen("Rev")){
  2845. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2846. } else if(code_seen("Lang")) {
  2847. lang_reset();
  2848. } else if(code_seen("Lz")) {
  2849. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2850. } else if(code_seen("Beat")) {
  2851. // Kick farm link timer
  2852. kicktime = millis();
  2853. } else if(code_seen("FR")) {
  2854. // Factory full reset
  2855. factory_reset(0,true);
  2856. }
  2857. //else if (code_seen('Cal')) {
  2858. // lcd_calibration();
  2859. // }
  2860. }
  2861. else if (code_seen('^')) {
  2862. // nothing, this is a version line
  2863. } else if(code_seen('G'))
  2864. {
  2865. switch((int)code_value())
  2866. {
  2867. case 0: // G0 -> G1
  2868. case 1: // G1
  2869. if(Stopped == false) {
  2870. #ifdef FILAMENT_RUNOUT_SUPPORT
  2871. if(READ(FR_SENS)){
  2872. feedmultiplyBckp=feedmultiply;
  2873. float target[4];
  2874. float lastpos[4];
  2875. target[X_AXIS]=current_position[X_AXIS];
  2876. target[Y_AXIS]=current_position[Y_AXIS];
  2877. target[Z_AXIS]=current_position[Z_AXIS];
  2878. target[E_AXIS]=current_position[E_AXIS];
  2879. lastpos[X_AXIS]=current_position[X_AXIS];
  2880. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2881. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2882. lastpos[E_AXIS]=current_position[E_AXIS];
  2883. //retract by E
  2884. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2886. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2888. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2889. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2891. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2893. //finish moves
  2894. st_synchronize();
  2895. //disable extruder steppers so filament can be removed
  2896. disable_e0();
  2897. disable_e1();
  2898. disable_e2();
  2899. delay(100);
  2900. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2901. uint8_t cnt=0;
  2902. int counterBeep = 0;
  2903. lcd_wait_interact();
  2904. while(!lcd_clicked()){
  2905. cnt++;
  2906. manage_heater();
  2907. manage_inactivity(true);
  2908. //lcd_update();
  2909. if(cnt==0)
  2910. {
  2911. #if BEEPER > 0
  2912. if (counterBeep== 500){
  2913. counterBeep = 0;
  2914. }
  2915. SET_OUTPUT(BEEPER);
  2916. if (counterBeep== 0){
  2917. WRITE(BEEPER,HIGH);
  2918. }
  2919. if (counterBeep== 20){
  2920. WRITE(BEEPER,LOW);
  2921. }
  2922. counterBeep++;
  2923. #else
  2924. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2925. lcd_buzz(1000/6,100);
  2926. #else
  2927. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2928. #endif
  2929. #endif
  2930. }
  2931. }
  2932. WRITE(BEEPER,LOW);
  2933. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2935. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2936. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2937. lcd_change_fil_state = 0;
  2938. lcd_loading_filament();
  2939. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2940. lcd_change_fil_state = 0;
  2941. lcd_alright();
  2942. switch(lcd_change_fil_state){
  2943. case 2:
  2944. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2946. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2948. lcd_loading_filament();
  2949. break;
  2950. case 3:
  2951. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2952. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2953. lcd_loading_color();
  2954. break;
  2955. default:
  2956. lcd_change_success();
  2957. break;
  2958. }
  2959. }
  2960. target[E_AXIS]+= 5;
  2961. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2962. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2964. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2965. //plan_set_e_position(current_position[E_AXIS]);
  2966. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2967. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2968. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2969. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2970. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2971. plan_set_e_position(lastpos[E_AXIS]);
  2972. feedmultiply=feedmultiplyBckp;
  2973. char cmd[9];
  2974. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2975. enquecommand(cmd);
  2976. }
  2977. #endif
  2978. get_coordinates(); // For X Y Z E F
  2979. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2980. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2981. }
  2982. #ifdef FWRETRACT
  2983. if(autoretract_enabled)
  2984. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2985. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2986. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2987. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2988. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2989. retract(!retracted[active_extruder]);
  2990. return;
  2991. }
  2992. }
  2993. #endif //FWRETRACT
  2994. prepare_move();
  2995. //ClearToSend();
  2996. }
  2997. break;
  2998. case 2: // G2 - CW ARC
  2999. if(Stopped == false) {
  3000. get_arc_coordinates();
  3001. prepare_arc_move(true);
  3002. }
  3003. break;
  3004. case 3: // G3 - CCW ARC
  3005. if(Stopped == false) {
  3006. get_arc_coordinates();
  3007. prepare_arc_move(false);
  3008. }
  3009. break;
  3010. case 4: // G4 dwell
  3011. codenum = 0;
  3012. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3013. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3014. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3015. st_synchronize();
  3016. codenum += millis(); // keep track of when we started waiting
  3017. previous_millis_cmd = millis();
  3018. while(millis() < codenum) {
  3019. manage_heater();
  3020. manage_inactivity();
  3021. lcd_update();
  3022. }
  3023. break;
  3024. #ifdef FWRETRACT
  3025. case 10: // G10 retract
  3026. #if EXTRUDERS > 1
  3027. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3028. retract(true,retracted_swap[active_extruder]);
  3029. #else
  3030. retract(true);
  3031. #endif
  3032. break;
  3033. case 11: // G11 retract_recover
  3034. #if EXTRUDERS > 1
  3035. retract(false,retracted_swap[active_extruder]);
  3036. #else
  3037. retract(false);
  3038. #endif
  3039. break;
  3040. #endif //FWRETRACT
  3041. case 28: //G28 Home all Axis one at a time
  3042. {
  3043. // Which axes should be homed?
  3044. bool home_x = code_seen(axis_codes[X_AXIS]);
  3045. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3046. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3047. // calibrate?
  3048. bool calib = code_seen('C');
  3049. gcode_G28(home_x, home_y, home_z, calib);
  3050. break;
  3051. }
  3052. #ifdef ENABLE_AUTO_BED_LEVELING
  3053. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3054. {
  3055. #if Z_MIN_PIN == -1
  3056. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3057. #endif
  3058. // Prevent user from running a G29 without first homing in X and Y
  3059. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3060. {
  3061. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3062. SERIAL_ECHO_START;
  3063. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3064. break; // abort G29, since we don't know where we are
  3065. }
  3066. st_synchronize();
  3067. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3068. //vector_3 corrected_position = plan_get_position_mm();
  3069. //corrected_position.debug("position before G29");
  3070. plan_bed_level_matrix.set_to_identity();
  3071. vector_3 uncorrected_position = plan_get_position();
  3072. //uncorrected_position.debug("position durring G29");
  3073. current_position[X_AXIS] = uncorrected_position.x;
  3074. current_position[Y_AXIS] = uncorrected_position.y;
  3075. current_position[Z_AXIS] = uncorrected_position.z;
  3076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3077. setup_for_endstop_move();
  3078. feedrate = homing_feedrate[Z_AXIS];
  3079. #ifdef AUTO_BED_LEVELING_GRID
  3080. // probe at the points of a lattice grid
  3081. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3082. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3083. // solve the plane equation ax + by + d = z
  3084. // A is the matrix with rows [x y 1] for all the probed points
  3085. // B is the vector of the Z positions
  3086. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3087. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3088. // "A" matrix of the linear system of equations
  3089. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3090. // "B" vector of Z points
  3091. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3092. int probePointCounter = 0;
  3093. bool zig = true;
  3094. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3095. {
  3096. int xProbe, xInc;
  3097. if (zig)
  3098. {
  3099. xProbe = LEFT_PROBE_BED_POSITION;
  3100. //xEnd = RIGHT_PROBE_BED_POSITION;
  3101. xInc = xGridSpacing;
  3102. zig = false;
  3103. } else // zag
  3104. {
  3105. xProbe = RIGHT_PROBE_BED_POSITION;
  3106. //xEnd = LEFT_PROBE_BED_POSITION;
  3107. xInc = -xGridSpacing;
  3108. zig = true;
  3109. }
  3110. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3111. {
  3112. float z_before;
  3113. if (probePointCounter == 0)
  3114. {
  3115. // raise before probing
  3116. z_before = Z_RAISE_BEFORE_PROBING;
  3117. } else
  3118. {
  3119. // raise extruder
  3120. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3121. }
  3122. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3123. eqnBVector[probePointCounter] = measured_z;
  3124. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3125. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3126. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3127. probePointCounter++;
  3128. xProbe += xInc;
  3129. }
  3130. }
  3131. clean_up_after_endstop_move();
  3132. // solve lsq problem
  3133. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3134. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3135. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3136. SERIAL_PROTOCOLPGM(" b: ");
  3137. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3138. SERIAL_PROTOCOLPGM(" d: ");
  3139. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3140. set_bed_level_equation_lsq(plane_equation_coefficients);
  3141. free(plane_equation_coefficients);
  3142. #else // AUTO_BED_LEVELING_GRID not defined
  3143. // Probe at 3 arbitrary points
  3144. // probe 1
  3145. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3146. // probe 2
  3147. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3148. // probe 3
  3149. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3150. clean_up_after_endstop_move();
  3151. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3152. #endif // AUTO_BED_LEVELING_GRID
  3153. st_synchronize();
  3154. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3155. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3156. // When the bed is uneven, this height must be corrected.
  3157. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3158. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3159. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3160. z_tmp = current_position[Z_AXIS];
  3161. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3162. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3164. }
  3165. break;
  3166. #ifndef Z_PROBE_SLED
  3167. case 30: // G30 Single Z Probe
  3168. {
  3169. st_synchronize();
  3170. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3171. setup_for_endstop_move();
  3172. feedrate = homing_feedrate[Z_AXIS];
  3173. run_z_probe();
  3174. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3175. SERIAL_PROTOCOLPGM(" X: ");
  3176. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3177. SERIAL_PROTOCOLPGM(" Y: ");
  3178. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3179. SERIAL_PROTOCOLPGM(" Z: ");
  3180. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3181. SERIAL_PROTOCOLPGM("\n");
  3182. clean_up_after_endstop_move();
  3183. }
  3184. break;
  3185. #else
  3186. case 31: // dock the sled
  3187. dock_sled(true);
  3188. break;
  3189. case 32: // undock the sled
  3190. dock_sled(false);
  3191. break;
  3192. #endif // Z_PROBE_SLED
  3193. #endif // ENABLE_AUTO_BED_LEVELING
  3194. #ifdef MESH_BED_LEVELING
  3195. case 30: // G30 Single Z Probe
  3196. {
  3197. st_synchronize();
  3198. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3199. setup_for_endstop_move();
  3200. feedrate = homing_feedrate[Z_AXIS];
  3201. find_bed_induction_sensor_point_z(-10.f, 3);
  3202. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3203. clean_up_after_endstop_move();
  3204. }
  3205. break;
  3206. case 75:
  3207. {
  3208. for (int i = 40; i <= 110; i++)
  3209. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3210. }
  3211. break;
  3212. case 76: //PINDA probe temperature calibration
  3213. {
  3214. #ifdef PINDA_THERMISTOR
  3215. if (true)
  3216. {
  3217. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3218. //we need to know accurate position of first calibration point
  3219. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3220. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3221. break;
  3222. }
  3223. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3224. {
  3225. // We don't know where we are! HOME!
  3226. // Push the commands to the front of the message queue in the reverse order!
  3227. // There shall be always enough space reserved for these commands.
  3228. repeatcommand_front(); // repeat G76 with all its parameters
  3229. enquecommand_front_P((PSTR("G28 W0")));
  3230. break;
  3231. }
  3232. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3233. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3234. if (result)
  3235. {
  3236. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3238. current_position[Z_AXIS] = 50;
  3239. current_position[Y_AXIS] = 180;
  3240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3241. st_synchronize();
  3242. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3243. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3244. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3245. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3246. st_synchronize();
  3247. gcode_G28(false, false, true, false);
  3248. }
  3249. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3250. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3251. current_position[Z_AXIS] = 100;
  3252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3253. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3254. lcd_temp_cal_show_result(false);
  3255. break;
  3256. }
  3257. }
  3258. lcd_update_enable(true);
  3259. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3260. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3261. float zero_z;
  3262. int z_shift = 0; //unit: steps
  3263. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3264. if (start_temp < 35) start_temp = 35;
  3265. if (start_temp < current_temperature_pinda) start_temp += 5;
  3266. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3267. // setTargetHotend(200, 0);
  3268. setTargetBed(70 + (start_temp - 30));
  3269. custom_message = true;
  3270. custom_message_type = 4;
  3271. custom_message_state = 1;
  3272. custom_message = _T(MSG_TEMP_CALIBRATION);
  3273. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3275. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3276. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3278. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3280. st_synchronize();
  3281. while (current_temperature_pinda < start_temp)
  3282. {
  3283. delay_keep_alive(1000);
  3284. serialecho_temperatures();
  3285. }
  3286. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3287. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3289. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3290. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3292. st_synchronize();
  3293. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3294. if (find_z_result == false) {
  3295. lcd_temp_cal_show_result(find_z_result);
  3296. break;
  3297. }
  3298. zero_z = current_position[Z_AXIS];
  3299. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3300. int i = -1; for (; i < 5; i++)
  3301. {
  3302. float temp = (40 + i * 5);
  3303. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3304. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3305. if (start_temp <= temp) break;
  3306. }
  3307. for (i++; i < 5; i++)
  3308. {
  3309. float temp = (40 + i * 5);
  3310. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3311. custom_message_state = i + 2;
  3312. setTargetBed(50 + 10 * (temp - 30) / 5);
  3313. // setTargetHotend(255, 0);
  3314. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3316. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3317. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3319. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3321. st_synchronize();
  3322. while (current_temperature_pinda < temp)
  3323. {
  3324. delay_keep_alive(1000);
  3325. serialecho_temperatures();
  3326. }
  3327. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3329. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3330. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3332. st_synchronize();
  3333. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3334. if (find_z_result == false) {
  3335. lcd_temp_cal_show_result(find_z_result);
  3336. break;
  3337. }
  3338. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3339. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3340. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3341. }
  3342. lcd_temp_cal_show_result(true);
  3343. break;
  3344. }
  3345. #endif //PINDA_THERMISTOR
  3346. setTargetBed(PINDA_MIN_T);
  3347. float zero_z;
  3348. int z_shift = 0; //unit: steps
  3349. int t_c; // temperature
  3350. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3351. // We don't know where we are! HOME!
  3352. // Push the commands to the front of the message queue in the reverse order!
  3353. // There shall be always enough space reserved for these commands.
  3354. repeatcommand_front(); // repeat G76 with all its parameters
  3355. enquecommand_front_P((PSTR("G28 W0")));
  3356. break;
  3357. }
  3358. puts_P(_N("PINDA probe calibration start"));
  3359. custom_message = true;
  3360. custom_message_type = 4;
  3361. custom_message_state = 1;
  3362. custom_message = _T(MSG_TEMP_CALIBRATION);
  3363. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3364. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3365. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3367. st_synchronize();
  3368. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3369. delay_keep_alive(1000);
  3370. serialecho_temperatures();
  3371. }
  3372. //enquecommand_P(PSTR("M190 S50"));
  3373. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3374. delay_keep_alive(1000);
  3375. serialecho_temperatures();
  3376. }
  3377. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3378. current_position[Z_AXIS] = 5;
  3379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3380. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3381. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3383. st_synchronize();
  3384. find_bed_induction_sensor_point_z(-1.f);
  3385. zero_z = current_position[Z_AXIS];
  3386. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3387. for (int i = 0; i<5; i++) {
  3388. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3389. custom_message_state = i + 2;
  3390. t_c = 60 + i * 10;
  3391. setTargetBed(t_c);
  3392. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3393. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3394. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3396. st_synchronize();
  3397. while (degBed() < t_c) {
  3398. delay_keep_alive(1000);
  3399. serialecho_temperatures();
  3400. }
  3401. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3402. delay_keep_alive(1000);
  3403. serialecho_temperatures();
  3404. }
  3405. current_position[Z_AXIS] = 5;
  3406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3407. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3408. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3410. st_synchronize();
  3411. find_bed_induction_sensor_point_z(-1.f);
  3412. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3413. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3414. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3415. }
  3416. custom_message_type = 0;
  3417. custom_message = false;
  3418. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3419. puts_P(_N("Temperature calibration done."));
  3420. disable_x();
  3421. disable_y();
  3422. disable_z();
  3423. disable_e0();
  3424. disable_e1();
  3425. disable_e2();
  3426. setTargetBed(0); //set bed target temperature back to 0
  3427. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3428. temp_cal_active = true;
  3429. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3430. lcd_update_enable(true);
  3431. lcd_update(2);
  3432. }
  3433. break;
  3434. #ifdef DIS
  3435. case 77:
  3436. {
  3437. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3438. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3439. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3440. float dimension_x = 40;
  3441. float dimension_y = 40;
  3442. int points_x = 40;
  3443. int points_y = 40;
  3444. float offset_x = 74;
  3445. float offset_y = 33;
  3446. if (code_seen('X')) dimension_x = code_value();
  3447. if (code_seen('Y')) dimension_y = code_value();
  3448. if (code_seen('XP')) points_x = code_value();
  3449. if (code_seen('YP')) points_y = code_value();
  3450. if (code_seen('XO')) offset_x = code_value();
  3451. if (code_seen('YO')) offset_y = code_value();
  3452. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3453. } break;
  3454. #endif
  3455. case 79: {
  3456. for (int i = 255; i > 0; i = i - 5) {
  3457. fanSpeed = i;
  3458. //delay_keep_alive(2000);
  3459. for (int j = 0; j < 100; j++) {
  3460. delay_keep_alive(100);
  3461. }
  3462. fan_speed[1];
  3463. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3464. }
  3465. }break;
  3466. /**
  3467. * G80: Mesh-based Z probe, probes a grid and produces a
  3468. * mesh to compensate for variable bed height
  3469. *
  3470. * The S0 report the points as below
  3471. *
  3472. * +----> X-axis
  3473. * |
  3474. * |
  3475. * v Y-axis
  3476. *
  3477. */
  3478. case 80:
  3479. #ifdef MK1BP
  3480. break;
  3481. #endif //MK1BP
  3482. case_G80:
  3483. {
  3484. mesh_bed_leveling_flag = true;
  3485. int8_t verbosity_level = 0;
  3486. static bool run = false;
  3487. if (code_seen('V')) {
  3488. // Just 'V' without a number counts as V1.
  3489. char c = strchr_pointer[1];
  3490. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3491. }
  3492. // Firstly check if we know where we are
  3493. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3494. // We don't know where we are! HOME!
  3495. // Push the commands to the front of the message queue in the reverse order!
  3496. // There shall be always enough space reserved for these commands.
  3497. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3498. repeatcommand_front(); // repeat G80 with all its parameters
  3499. enquecommand_front_P((PSTR("G28 W0")));
  3500. }
  3501. else {
  3502. mesh_bed_leveling_flag = false;
  3503. }
  3504. break;
  3505. }
  3506. bool temp_comp_start = true;
  3507. #ifdef PINDA_THERMISTOR
  3508. temp_comp_start = false;
  3509. #endif //PINDA_THERMISTOR
  3510. if (temp_comp_start)
  3511. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3512. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3513. temp_compensation_start();
  3514. run = true;
  3515. repeatcommand_front(); // repeat G80 with all its parameters
  3516. enquecommand_front_P((PSTR("G28 W0")));
  3517. }
  3518. else {
  3519. mesh_bed_leveling_flag = false;
  3520. }
  3521. break;
  3522. }
  3523. run = false;
  3524. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3525. mesh_bed_leveling_flag = false;
  3526. break;
  3527. }
  3528. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3529. bool custom_message_old = custom_message;
  3530. unsigned int custom_message_type_old = custom_message_type;
  3531. unsigned int custom_message_state_old = custom_message_state;
  3532. custom_message = true;
  3533. custom_message_type = 1;
  3534. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3535. lcd_update(1);
  3536. mbl.reset(); //reset mesh bed leveling
  3537. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3538. // consumed during the first movements following this statement.
  3539. babystep_undo();
  3540. // Cycle through all points and probe them
  3541. // First move up. During this first movement, the babystepping will be reverted.
  3542. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3544. // The move to the first calibration point.
  3545. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3546. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3547. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3548. #ifdef SUPPORT_VERBOSITY
  3549. if (verbosity_level >= 1) {
  3550. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3551. }
  3552. #endif //SUPPORT_VERBOSITY
  3553. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3555. // Wait until the move is finished.
  3556. st_synchronize();
  3557. int mesh_point = 0; //index number of calibration point
  3558. int ix = 0;
  3559. int iy = 0;
  3560. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3561. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3562. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3563. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3564. #ifdef SUPPORT_VERBOSITY
  3565. if (verbosity_level >= 1) {
  3566. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3567. }
  3568. #endif // SUPPORT_VERBOSITY
  3569. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3570. const char *kill_message = NULL;
  3571. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3572. // Get coords of a measuring point.
  3573. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3574. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3575. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3576. float z0 = 0.f;
  3577. if (has_z && mesh_point > 0) {
  3578. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3579. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3580. //#if 0
  3581. #ifdef SUPPORT_VERBOSITY
  3582. if (verbosity_level >= 1) {
  3583. SERIAL_ECHOLNPGM("");
  3584. SERIAL_ECHOPGM("Bed leveling, point: ");
  3585. MYSERIAL.print(mesh_point);
  3586. SERIAL_ECHOPGM(", calibration z: ");
  3587. MYSERIAL.print(z0, 5);
  3588. SERIAL_ECHOLNPGM("");
  3589. }
  3590. #endif // SUPPORT_VERBOSITY
  3591. //#endif
  3592. }
  3593. // Move Z up to MESH_HOME_Z_SEARCH.
  3594. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3596. st_synchronize();
  3597. // Move to XY position of the sensor point.
  3598. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3599. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3600. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3601. #ifdef SUPPORT_VERBOSITY
  3602. if (verbosity_level >= 1) {
  3603. SERIAL_PROTOCOL(mesh_point);
  3604. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3605. }
  3606. #endif // SUPPORT_VERBOSITY
  3607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3608. st_synchronize();
  3609. // Go down until endstop is hit
  3610. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3611. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3612. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3613. break;
  3614. }
  3615. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3616. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3617. break;
  3618. }
  3619. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3620. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3621. break;
  3622. }
  3623. #ifdef SUPPORT_VERBOSITY
  3624. if (verbosity_level >= 10) {
  3625. SERIAL_ECHOPGM("X: ");
  3626. MYSERIAL.print(current_position[X_AXIS], 5);
  3627. SERIAL_ECHOLNPGM("");
  3628. SERIAL_ECHOPGM("Y: ");
  3629. MYSERIAL.print(current_position[Y_AXIS], 5);
  3630. SERIAL_PROTOCOLPGM("\n");
  3631. }
  3632. #endif // SUPPORT_VERBOSITY
  3633. float offset_z = 0;
  3634. #ifdef PINDA_THERMISTOR
  3635. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3636. #endif //PINDA_THERMISTOR
  3637. // #ifdef SUPPORT_VERBOSITY
  3638. /* if (verbosity_level >= 1)
  3639. {
  3640. SERIAL_ECHOPGM("mesh bed leveling: ");
  3641. MYSERIAL.print(current_position[Z_AXIS], 5);
  3642. SERIAL_ECHOPGM(" offset: ");
  3643. MYSERIAL.print(offset_z, 5);
  3644. SERIAL_ECHOLNPGM("");
  3645. }*/
  3646. // #endif // SUPPORT_VERBOSITY
  3647. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3648. custom_message_state--;
  3649. mesh_point++;
  3650. lcd_update(1);
  3651. }
  3652. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3653. #ifdef SUPPORT_VERBOSITY
  3654. if (verbosity_level >= 20) {
  3655. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3656. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3657. MYSERIAL.print(current_position[Z_AXIS], 5);
  3658. }
  3659. #endif // SUPPORT_VERBOSITY
  3660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3661. st_synchronize();
  3662. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3663. kill(kill_message);
  3664. SERIAL_ECHOLNPGM("killed");
  3665. }
  3666. clean_up_after_endstop_move();
  3667. // SERIAL_ECHOLNPGM("clean up finished ");
  3668. bool apply_temp_comp = true;
  3669. #ifdef PINDA_THERMISTOR
  3670. apply_temp_comp = false;
  3671. #endif
  3672. if (apply_temp_comp)
  3673. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3674. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3675. // SERIAL_ECHOLNPGM("babystep applied");
  3676. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3677. #ifdef SUPPORT_VERBOSITY
  3678. if (verbosity_level >= 1) {
  3679. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3680. }
  3681. #endif // SUPPORT_VERBOSITY
  3682. for (uint8_t i = 0; i < 4; ++i) {
  3683. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3684. long correction = 0;
  3685. if (code_seen(codes[i]))
  3686. correction = code_value_long();
  3687. else if (eeprom_bed_correction_valid) {
  3688. unsigned char *addr = (i < 2) ?
  3689. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3690. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3691. correction = eeprom_read_int8(addr);
  3692. }
  3693. if (correction == 0)
  3694. continue;
  3695. float offset = float(correction) * 0.001f;
  3696. if (fabs(offset) > 0.101f) {
  3697. SERIAL_ERROR_START;
  3698. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3699. SERIAL_ECHO(offset);
  3700. SERIAL_ECHOLNPGM(" microns");
  3701. }
  3702. else {
  3703. switch (i) {
  3704. case 0:
  3705. for (uint8_t row = 0; row < 3; ++row) {
  3706. mbl.z_values[row][1] += 0.5f * offset;
  3707. mbl.z_values[row][0] += offset;
  3708. }
  3709. break;
  3710. case 1:
  3711. for (uint8_t row = 0; row < 3; ++row) {
  3712. mbl.z_values[row][1] += 0.5f * offset;
  3713. mbl.z_values[row][2] += offset;
  3714. }
  3715. break;
  3716. case 2:
  3717. for (uint8_t col = 0; col < 3; ++col) {
  3718. mbl.z_values[1][col] += 0.5f * offset;
  3719. mbl.z_values[0][col] += offset;
  3720. }
  3721. break;
  3722. case 3:
  3723. for (uint8_t col = 0; col < 3; ++col) {
  3724. mbl.z_values[1][col] += 0.5f * offset;
  3725. mbl.z_values[2][col] += offset;
  3726. }
  3727. break;
  3728. }
  3729. }
  3730. }
  3731. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3732. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3733. // SERIAL_ECHOLNPGM("Upsample finished");
  3734. mbl.active = 1; //activate mesh bed leveling
  3735. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3736. go_home_with_z_lift();
  3737. // SERIAL_ECHOLNPGM("Go home finished");
  3738. //unretract (after PINDA preheat retraction)
  3739. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3740. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3742. }
  3743. KEEPALIVE_STATE(NOT_BUSY);
  3744. // Restore custom message state
  3745. custom_message = custom_message_old;
  3746. custom_message_type = custom_message_type_old;
  3747. custom_message_state = custom_message_state_old;
  3748. mesh_bed_leveling_flag = false;
  3749. mesh_bed_run_from_menu = false;
  3750. lcd_update(2);
  3751. }
  3752. break;
  3753. /**
  3754. * G81: Print mesh bed leveling status and bed profile if activated
  3755. */
  3756. case 81:
  3757. if (mbl.active) {
  3758. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3759. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3760. SERIAL_PROTOCOLPGM(",");
  3761. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3762. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3763. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3764. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3765. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3766. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3767. SERIAL_PROTOCOLPGM(" ");
  3768. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3769. }
  3770. SERIAL_PROTOCOLPGM("\n");
  3771. }
  3772. }
  3773. else
  3774. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3775. break;
  3776. #if 0
  3777. /**
  3778. * G82: Single Z probe at current location
  3779. *
  3780. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3781. *
  3782. */
  3783. case 82:
  3784. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3785. setup_for_endstop_move();
  3786. find_bed_induction_sensor_point_z();
  3787. clean_up_after_endstop_move();
  3788. SERIAL_PROTOCOLPGM("Bed found at: ");
  3789. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3790. SERIAL_PROTOCOLPGM("\n");
  3791. break;
  3792. /**
  3793. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3794. */
  3795. case 83:
  3796. {
  3797. int babystepz = code_seen('S') ? code_value() : 0;
  3798. int BabyPosition = code_seen('P') ? code_value() : 0;
  3799. if (babystepz != 0) {
  3800. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3801. // Is the axis indexed starting with zero or one?
  3802. if (BabyPosition > 4) {
  3803. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3804. }else{
  3805. // Save it to the eeprom
  3806. babystepLoadZ = babystepz;
  3807. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3808. // adjust the Z
  3809. babystepsTodoZadd(babystepLoadZ);
  3810. }
  3811. }
  3812. }
  3813. break;
  3814. /**
  3815. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3816. */
  3817. case 84:
  3818. babystepsTodoZsubtract(babystepLoadZ);
  3819. // babystepLoadZ = 0;
  3820. break;
  3821. /**
  3822. * G85: Prusa3D specific: Pick best babystep
  3823. */
  3824. case 85:
  3825. lcd_pick_babystep();
  3826. break;
  3827. #endif
  3828. /**
  3829. * G86: Prusa3D specific: Disable babystep correction after home.
  3830. * This G-code will be performed at the start of a calibration script.
  3831. */
  3832. case 86:
  3833. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3834. break;
  3835. /**
  3836. * G87: Prusa3D specific: Enable babystep correction after home
  3837. * This G-code will be performed at the end of a calibration script.
  3838. */
  3839. case 87:
  3840. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3841. break;
  3842. /**
  3843. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3844. */
  3845. case 88:
  3846. break;
  3847. #endif // ENABLE_MESH_BED_LEVELING
  3848. case 90: // G90
  3849. relative_mode = false;
  3850. break;
  3851. case 91: // G91
  3852. relative_mode = true;
  3853. break;
  3854. case 92: // G92
  3855. if(!code_seen(axis_codes[E_AXIS]))
  3856. st_synchronize();
  3857. for(int8_t i=0; i < NUM_AXIS; i++) {
  3858. if(code_seen(axis_codes[i])) {
  3859. if(i == E_AXIS) {
  3860. current_position[i] = code_value();
  3861. plan_set_e_position(current_position[E_AXIS]);
  3862. }
  3863. else {
  3864. current_position[i] = code_value()+add_homing[i];
  3865. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3866. }
  3867. }
  3868. }
  3869. break;
  3870. case 98: // G98 (activate farm mode)
  3871. farm_mode = 1;
  3872. PingTime = millis();
  3873. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3874. SilentModeMenu = SILENT_MODE_OFF;
  3875. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3876. break;
  3877. case 99: // G99 (deactivate farm mode)
  3878. farm_mode = 0;
  3879. lcd_printer_connected();
  3880. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3881. lcd_update(2);
  3882. break;
  3883. default:
  3884. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3885. }
  3886. } // end if(code_seen('G'))
  3887. else if(code_seen('M'))
  3888. {
  3889. int index;
  3890. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3891. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3892. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3893. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3894. } else
  3895. switch((int)code_value())
  3896. {
  3897. #ifdef ULTIPANEL
  3898. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3899. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3900. {
  3901. char *src = strchr_pointer + 2;
  3902. codenum = 0;
  3903. bool hasP = false, hasS = false;
  3904. if (code_seen('P')) {
  3905. codenum = code_value(); // milliseconds to wait
  3906. hasP = codenum > 0;
  3907. }
  3908. if (code_seen('S')) {
  3909. codenum = code_value() * 1000; // seconds to wait
  3910. hasS = codenum > 0;
  3911. }
  3912. starpos = strchr(src, '*');
  3913. if (starpos != NULL) *(starpos) = '\0';
  3914. while (*src == ' ') ++src;
  3915. if (!hasP && !hasS && *src != '\0') {
  3916. lcd_setstatus(src);
  3917. } else {
  3918. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3919. }
  3920. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3921. st_synchronize();
  3922. previous_millis_cmd = millis();
  3923. if (codenum > 0){
  3924. codenum += millis(); // keep track of when we started waiting
  3925. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3926. while(millis() < codenum && !lcd_clicked()){
  3927. manage_heater();
  3928. manage_inactivity(true);
  3929. lcd_update();
  3930. }
  3931. KEEPALIVE_STATE(IN_HANDLER);
  3932. lcd_ignore_click(false);
  3933. }else{
  3934. if (!lcd_detected())
  3935. break;
  3936. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3937. while(!lcd_clicked()){
  3938. manage_heater();
  3939. manage_inactivity(true);
  3940. lcd_update();
  3941. }
  3942. KEEPALIVE_STATE(IN_HANDLER);
  3943. }
  3944. if (IS_SD_PRINTING)
  3945. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3946. else
  3947. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3948. }
  3949. break;
  3950. #endif
  3951. case 17:
  3952. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3953. enable_x();
  3954. enable_y();
  3955. enable_z();
  3956. enable_e0();
  3957. enable_e1();
  3958. enable_e2();
  3959. break;
  3960. #ifdef SDSUPPORT
  3961. case 20: // M20 - list SD card
  3962. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3963. card.ls();
  3964. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3965. break;
  3966. case 21: // M21 - init SD card
  3967. card.initsd();
  3968. break;
  3969. case 22: //M22 - release SD card
  3970. card.release();
  3971. break;
  3972. case 23: //M23 - Select file
  3973. starpos = (strchr(strchr_pointer + 4,'*'));
  3974. if(starpos!=NULL)
  3975. *(starpos)='\0';
  3976. card.openFile(strchr_pointer + 4,true);
  3977. break;
  3978. case 24: //M24 - Start SD print
  3979. if (!card.paused)
  3980. failstats_reset_print();
  3981. card.startFileprint();
  3982. starttime=millis();
  3983. break;
  3984. case 25: //M25 - Pause SD print
  3985. card.pauseSDPrint();
  3986. break;
  3987. case 26: //M26 - Set SD index
  3988. if(card.cardOK && code_seen('S')) {
  3989. card.setIndex(code_value_long());
  3990. }
  3991. break;
  3992. case 27: //M27 - Get SD status
  3993. card.getStatus();
  3994. break;
  3995. case 28: //M28 - Start SD write
  3996. starpos = (strchr(strchr_pointer + 4,'*'));
  3997. if(starpos != NULL){
  3998. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3999. strchr_pointer = strchr(npos,' ') + 1;
  4000. *(starpos) = '\0';
  4001. }
  4002. card.openFile(strchr_pointer+4,false);
  4003. break;
  4004. case 29: //M29 - Stop SD write
  4005. //processed in write to file routine above
  4006. //card,saving = false;
  4007. break;
  4008. case 30: //M30 <filename> Delete File
  4009. if (card.cardOK){
  4010. card.closefile();
  4011. starpos = (strchr(strchr_pointer + 4,'*'));
  4012. if(starpos != NULL){
  4013. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4014. strchr_pointer = strchr(npos,' ') + 1;
  4015. *(starpos) = '\0';
  4016. }
  4017. card.removeFile(strchr_pointer + 4);
  4018. }
  4019. break;
  4020. case 32: //M32 - Select file and start SD print
  4021. {
  4022. if(card.sdprinting) {
  4023. st_synchronize();
  4024. }
  4025. starpos = (strchr(strchr_pointer + 4,'*'));
  4026. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4027. if(namestartpos==NULL)
  4028. {
  4029. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4030. }
  4031. else
  4032. namestartpos++; //to skip the '!'
  4033. if(starpos!=NULL)
  4034. *(starpos)='\0';
  4035. bool call_procedure=(code_seen('P'));
  4036. if(strchr_pointer>namestartpos)
  4037. call_procedure=false; //false alert, 'P' found within filename
  4038. if( card.cardOK )
  4039. {
  4040. card.openFile(namestartpos,true,!call_procedure);
  4041. if(code_seen('S'))
  4042. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4043. card.setIndex(code_value_long());
  4044. card.startFileprint();
  4045. if(!call_procedure)
  4046. starttime=millis(); //procedure calls count as normal print time.
  4047. }
  4048. } break;
  4049. case 928: //M928 - Start SD write
  4050. starpos = (strchr(strchr_pointer + 5,'*'));
  4051. if(starpos != NULL){
  4052. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4053. strchr_pointer = strchr(npos,' ') + 1;
  4054. *(starpos) = '\0';
  4055. }
  4056. card.openLogFile(strchr_pointer+5);
  4057. break;
  4058. #endif //SDSUPPORT
  4059. case 31: //M31 take time since the start of the SD print or an M109 command
  4060. {
  4061. stoptime=millis();
  4062. char time[30];
  4063. unsigned long t=(stoptime-starttime)/1000;
  4064. int sec,min;
  4065. min=t/60;
  4066. sec=t%60;
  4067. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4068. SERIAL_ECHO_START;
  4069. SERIAL_ECHOLN(time);
  4070. lcd_setstatus(time);
  4071. autotempShutdown();
  4072. }
  4073. break;
  4074. #ifndef _DISABLE_M42_M226
  4075. case 42: //M42 -Change pin status via gcode
  4076. if (code_seen('S'))
  4077. {
  4078. int pin_status = code_value();
  4079. int pin_number = LED_PIN;
  4080. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4081. pin_number = code_value();
  4082. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4083. {
  4084. if (sensitive_pins[i] == pin_number)
  4085. {
  4086. pin_number = -1;
  4087. break;
  4088. }
  4089. }
  4090. #if defined(FAN_PIN) && FAN_PIN > -1
  4091. if (pin_number == FAN_PIN)
  4092. fanSpeed = pin_status;
  4093. #endif
  4094. if (pin_number > -1)
  4095. {
  4096. pinMode(pin_number, OUTPUT);
  4097. digitalWrite(pin_number, pin_status);
  4098. analogWrite(pin_number, pin_status);
  4099. }
  4100. }
  4101. break;
  4102. #endif //_DISABLE_M42_M226
  4103. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4104. // Reset the baby step value and the baby step applied flag.
  4105. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4106. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4107. // Reset the skew and offset in both RAM and EEPROM.
  4108. reset_bed_offset_and_skew();
  4109. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4110. // the planner will not perform any adjustments in the XY plane.
  4111. // Wait for the motors to stop and update the current position with the absolute values.
  4112. world2machine_revert_to_uncorrected();
  4113. break;
  4114. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4115. {
  4116. int8_t verbosity_level = 0;
  4117. bool only_Z = code_seen('Z');
  4118. #ifdef SUPPORT_VERBOSITY
  4119. if (code_seen('V'))
  4120. {
  4121. // Just 'V' without a number counts as V1.
  4122. char c = strchr_pointer[1];
  4123. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4124. }
  4125. #endif //SUPPORT_VERBOSITY
  4126. gcode_M45(only_Z, verbosity_level);
  4127. }
  4128. break;
  4129. /*
  4130. case 46:
  4131. {
  4132. // M46: Prusa3D: Show the assigned IP address.
  4133. uint8_t ip[4];
  4134. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4135. if (hasIP) {
  4136. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4137. SERIAL_ECHO(int(ip[0]));
  4138. SERIAL_ECHOPGM(".");
  4139. SERIAL_ECHO(int(ip[1]));
  4140. SERIAL_ECHOPGM(".");
  4141. SERIAL_ECHO(int(ip[2]));
  4142. SERIAL_ECHOPGM(".");
  4143. SERIAL_ECHO(int(ip[3]));
  4144. SERIAL_ECHOLNPGM("");
  4145. } else {
  4146. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4147. }
  4148. break;
  4149. }
  4150. */
  4151. case 47:
  4152. // M47: Prusa3D: Show end stops dialog on the display.
  4153. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4154. lcd_diag_show_end_stops();
  4155. KEEPALIVE_STATE(IN_HANDLER);
  4156. break;
  4157. #if 0
  4158. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4159. {
  4160. // Disable the default update procedure of the display. We will do a modal dialog.
  4161. lcd_update_enable(false);
  4162. // Let the planner use the uncorrected coordinates.
  4163. mbl.reset();
  4164. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4165. // the planner will not perform any adjustments in the XY plane.
  4166. // Wait for the motors to stop and update the current position with the absolute values.
  4167. world2machine_revert_to_uncorrected();
  4168. // Move the print head close to the bed.
  4169. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4171. st_synchronize();
  4172. // Home in the XY plane.
  4173. set_destination_to_current();
  4174. setup_for_endstop_move();
  4175. home_xy();
  4176. int8_t verbosity_level = 0;
  4177. if (code_seen('V')) {
  4178. // Just 'V' without a number counts as V1.
  4179. char c = strchr_pointer[1];
  4180. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4181. }
  4182. bool success = scan_bed_induction_points(verbosity_level);
  4183. clean_up_after_endstop_move();
  4184. // Print head up.
  4185. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4187. st_synchronize();
  4188. lcd_update_enable(true);
  4189. break;
  4190. }
  4191. #endif
  4192. // M48 Z-Probe repeatability measurement function.
  4193. //
  4194. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4195. //
  4196. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4197. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4198. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4199. // regenerated.
  4200. //
  4201. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4202. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4203. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4204. //
  4205. #ifdef ENABLE_AUTO_BED_LEVELING
  4206. #ifdef Z_PROBE_REPEATABILITY_TEST
  4207. case 48: // M48 Z-Probe repeatability
  4208. {
  4209. #if Z_MIN_PIN == -1
  4210. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4211. #endif
  4212. double sum=0.0;
  4213. double mean=0.0;
  4214. double sigma=0.0;
  4215. double sample_set[50];
  4216. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4217. double X_current, Y_current, Z_current;
  4218. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4219. if (code_seen('V') || code_seen('v')) {
  4220. verbose_level = code_value();
  4221. if (verbose_level<0 || verbose_level>4 ) {
  4222. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4223. goto Sigma_Exit;
  4224. }
  4225. }
  4226. if (verbose_level > 0) {
  4227. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4228. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4229. }
  4230. if (code_seen('n')) {
  4231. n_samples = code_value();
  4232. if (n_samples<4 || n_samples>50 ) {
  4233. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4234. goto Sigma_Exit;
  4235. }
  4236. }
  4237. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4238. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4239. Z_current = st_get_position_mm(Z_AXIS);
  4240. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4241. ext_position = st_get_position_mm(E_AXIS);
  4242. if (code_seen('X') || code_seen('x') ) {
  4243. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4244. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4245. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4246. goto Sigma_Exit;
  4247. }
  4248. }
  4249. if (code_seen('Y') || code_seen('y') ) {
  4250. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4251. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4252. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4253. goto Sigma_Exit;
  4254. }
  4255. }
  4256. if (code_seen('L') || code_seen('l') ) {
  4257. n_legs = code_value();
  4258. if ( n_legs==1 )
  4259. n_legs = 2;
  4260. if ( n_legs<0 || n_legs>15 ) {
  4261. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4262. goto Sigma_Exit;
  4263. }
  4264. }
  4265. //
  4266. // Do all the preliminary setup work. First raise the probe.
  4267. //
  4268. st_synchronize();
  4269. plan_bed_level_matrix.set_to_identity();
  4270. plan_buffer_line( X_current, Y_current, Z_start_location,
  4271. ext_position,
  4272. homing_feedrate[Z_AXIS]/60,
  4273. active_extruder);
  4274. st_synchronize();
  4275. //
  4276. // Now get everything to the specified probe point So we can safely do a probe to
  4277. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4278. // use that as a starting point for each probe.
  4279. //
  4280. if (verbose_level > 2)
  4281. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4282. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4283. ext_position,
  4284. homing_feedrate[X_AXIS]/60,
  4285. active_extruder);
  4286. st_synchronize();
  4287. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4288. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4289. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4290. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4291. //
  4292. // OK, do the inital probe to get us close to the bed.
  4293. // Then retrace the right amount and use that in subsequent probes
  4294. //
  4295. setup_for_endstop_move();
  4296. run_z_probe();
  4297. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4298. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4299. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4300. ext_position,
  4301. homing_feedrate[X_AXIS]/60,
  4302. active_extruder);
  4303. st_synchronize();
  4304. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4305. for( n=0; n<n_samples; n++) {
  4306. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4307. if ( n_legs) {
  4308. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4309. int rotational_direction, l;
  4310. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4311. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4312. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4313. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4314. //SERIAL_ECHOPAIR(" theta: ",theta);
  4315. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4316. //SERIAL_PROTOCOLLNPGM("");
  4317. for( l=0; l<n_legs-1; l++) {
  4318. if (rotational_direction==1)
  4319. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4320. else
  4321. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4322. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4323. if ( radius<0.0 )
  4324. radius = -radius;
  4325. X_current = X_probe_location + cos(theta) * radius;
  4326. Y_current = Y_probe_location + sin(theta) * radius;
  4327. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4328. X_current = X_MIN_POS;
  4329. if ( X_current>X_MAX_POS)
  4330. X_current = X_MAX_POS;
  4331. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4332. Y_current = Y_MIN_POS;
  4333. if ( Y_current>Y_MAX_POS)
  4334. Y_current = Y_MAX_POS;
  4335. if (verbose_level>3 ) {
  4336. SERIAL_ECHOPAIR("x: ", X_current);
  4337. SERIAL_ECHOPAIR("y: ", Y_current);
  4338. SERIAL_PROTOCOLLNPGM("");
  4339. }
  4340. do_blocking_move_to( X_current, Y_current, Z_current );
  4341. }
  4342. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4343. }
  4344. setup_for_endstop_move();
  4345. run_z_probe();
  4346. sample_set[n] = current_position[Z_AXIS];
  4347. //
  4348. // Get the current mean for the data points we have so far
  4349. //
  4350. sum=0.0;
  4351. for( j=0; j<=n; j++) {
  4352. sum = sum + sample_set[j];
  4353. }
  4354. mean = sum / (double (n+1));
  4355. //
  4356. // Now, use that mean to calculate the standard deviation for the
  4357. // data points we have so far
  4358. //
  4359. sum=0.0;
  4360. for( j=0; j<=n; j++) {
  4361. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4362. }
  4363. sigma = sqrt( sum / (double (n+1)) );
  4364. if (verbose_level > 1) {
  4365. SERIAL_PROTOCOL(n+1);
  4366. SERIAL_PROTOCOL(" of ");
  4367. SERIAL_PROTOCOL(n_samples);
  4368. SERIAL_PROTOCOLPGM(" z: ");
  4369. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4370. }
  4371. if (verbose_level > 2) {
  4372. SERIAL_PROTOCOL(" mean: ");
  4373. SERIAL_PROTOCOL_F(mean,6);
  4374. SERIAL_PROTOCOL(" sigma: ");
  4375. SERIAL_PROTOCOL_F(sigma,6);
  4376. }
  4377. if (verbose_level > 0)
  4378. SERIAL_PROTOCOLPGM("\n");
  4379. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4380. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4381. st_synchronize();
  4382. }
  4383. delay(1000);
  4384. clean_up_after_endstop_move();
  4385. // enable_endstops(true);
  4386. if (verbose_level > 0) {
  4387. SERIAL_PROTOCOLPGM("Mean: ");
  4388. SERIAL_PROTOCOL_F(mean, 6);
  4389. SERIAL_PROTOCOLPGM("\n");
  4390. }
  4391. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4392. SERIAL_PROTOCOL_F(sigma, 6);
  4393. SERIAL_PROTOCOLPGM("\n\n");
  4394. Sigma_Exit:
  4395. break;
  4396. }
  4397. #endif // Z_PROBE_REPEATABILITY_TEST
  4398. #endif // ENABLE_AUTO_BED_LEVELING
  4399. case 73: //M73 show percent done and time remaining
  4400. if(code_seen('P')) print_percent_done_normal = code_value();
  4401. if(code_seen('R')) print_time_remaining_normal = code_value();
  4402. if(code_seen('Q')) print_percent_done_silent = code_value();
  4403. if(code_seen('S')) print_time_remaining_silent = code_value();
  4404. {
  4405. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4406. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4407. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4408. }
  4409. break;
  4410. case 104: // M104
  4411. if(setTargetedHotend(104)){
  4412. break;
  4413. }
  4414. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4415. setWatch();
  4416. break;
  4417. case 112: // M112 -Emergency Stop
  4418. kill(_n(""), 3);
  4419. break;
  4420. case 140: // M140 set bed temp
  4421. if (code_seen('S')) setTargetBed(code_value());
  4422. break;
  4423. case 105 : // M105
  4424. if(setTargetedHotend(105)){
  4425. break;
  4426. }
  4427. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4428. SERIAL_PROTOCOLPGM("ok T:");
  4429. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4430. SERIAL_PROTOCOLPGM(" /");
  4431. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4432. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4433. SERIAL_PROTOCOLPGM(" B:");
  4434. SERIAL_PROTOCOL_F(degBed(),1);
  4435. SERIAL_PROTOCOLPGM(" /");
  4436. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4437. #endif //TEMP_BED_PIN
  4438. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4439. SERIAL_PROTOCOLPGM(" T");
  4440. SERIAL_PROTOCOL(cur_extruder);
  4441. SERIAL_PROTOCOLPGM(":");
  4442. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4443. SERIAL_PROTOCOLPGM(" /");
  4444. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4445. }
  4446. #else
  4447. SERIAL_ERROR_START;
  4448. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4449. #endif
  4450. SERIAL_PROTOCOLPGM(" @:");
  4451. #ifdef EXTRUDER_WATTS
  4452. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4453. SERIAL_PROTOCOLPGM("W");
  4454. #else
  4455. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4456. #endif
  4457. SERIAL_PROTOCOLPGM(" B@:");
  4458. #ifdef BED_WATTS
  4459. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4460. SERIAL_PROTOCOLPGM("W");
  4461. #else
  4462. SERIAL_PROTOCOL(getHeaterPower(-1));
  4463. #endif
  4464. #ifdef PINDA_THERMISTOR
  4465. SERIAL_PROTOCOLPGM(" P:");
  4466. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4467. #endif //PINDA_THERMISTOR
  4468. #ifdef AMBIENT_THERMISTOR
  4469. SERIAL_PROTOCOLPGM(" A:");
  4470. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4471. #endif //AMBIENT_THERMISTOR
  4472. #ifdef SHOW_TEMP_ADC_VALUES
  4473. {float raw = 0.0;
  4474. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4475. SERIAL_PROTOCOLPGM(" ADC B:");
  4476. SERIAL_PROTOCOL_F(degBed(),1);
  4477. SERIAL_PROTOCOLPGM("C->");
  4478. raw = rawBedTemp();
  4479. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4480. SERIAL_PROTOCOLPGM(" Rb->");
  4481. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4482. SERIAL_PROTOCOLPGM(" Rxb->");
  4483. SERIAL_PROTOCOL_F(raw, 5);
  4484. #endif
  4485. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4486. SERIAL_PROTOCOLPGM(" T");
  4487. SERIAL_PROTOCOL(cur_extruder);
  4488. SERIAL_PROTOCOLPGM(":");
  4489. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4490. SERIAL_PROTOCOLPGM("C->");
  4491. raw = rawHotendTemp(cur_extruder);
  4492. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4493. SERIAL_PROTOCOLPGM(" Rt");
  4494. SERIAL_PROTOCOL(cur_extruder);
  4495. SERIAL_PROTOCOLPGM("->");
  4496. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4497. SERIAL_PROTOCOLPGM(" Rx");
  4498. SERIAL_PROTOCOL(cur_extruder);
  4499. SERIAL_PROTOCOLPGM("->");
  4500. SERIAL_PROTOCOL_F(raw, 5);
  4501. }}
  4502. #endif
  4503. SERIAL_PROTOCOLLN("");
  4504. KEEPALIVE_STATE(NOT_BUSY);
  4505. return;
  4506. break;
  4507. case 109:
  4508. {// M109 - Wait for extruder heater to reach target.
  4509. if(setTargetedHotend(109)){
  4510. break;
  4511. }
  4512. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4513. heating_status = 1;
  4514. if (farm_mode) { prusa_statistics(1); };
  4515. #ifdef AUTOTEMP
  4516. autotemp_enabled=false;
  4517. #endif
  4518. if (code_seen('S')) {
  4519. setTargetHotend(code_value(), tmp_extruder);
  4520. CooldownNoWait = true;
  4521. } else if (code_seen('R')) {
  4522. setTargetHotend(code_value(), tmp_extruder);
  4523. CooldownNoWait = false;
  4524. }
  4525. #ifdef AUTOTEMP
  4526. if (code_seen('S')) autotemp_min=code_value();
  4527. if (code_seen('B')) autotemp_max=code_value();
  4528. if (code_seen('F'))
  4529. {
  4530. autotemp_factor=code_value();
  4531. autotemp_enabled=true;
  4532. }
  4533. #endif
  4534. setWatch();
  4535. codenum = millis();
  4536. /* See if we are heating up or cooling down */
  4537. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4538. KEEPALIVE_STATE(NOT_BUSY);
  4539. cancel_heatup = false;
  4540. wait_for_heater(codenum); //loops until target temperature is reached
  4541. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4542. KEEPALIVE_STATE(IN_HANDLER);
  4543. heating_status = 2;
  4544. if (farm_mode) { prusa_statistics(2); };
  4545. //starttime=millis();
  4546. previous_millis_cmd = millis();
  4547. }
  4548. break;
  4549. case 190: // M190 - Wait for bed heater to reach target.
  4550. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4551. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4552. heating_status = 3;
  4553. if (farm_mode) { prusa_statistics(1); };
  4554. if (code_seen('S'))
  4555. {
  4556. setTargetBed(code_value());
  4557. CooldownNoWait = true;
  4558. }
  4559. else if (code_seen('R'))
  4560. {
  4561. setTargetBed(code_value());
  4562. CooldownNoWait = false;
  4563. }
  4564. codenum = millis();
  4565. cancel_heatup = false;
  4566. target_direction = isHeatingBed(); // true if heating, false if cooling
  4567. KEEPALIVE_STATE(NOT_BUSY);
  4568. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4569. {
  4570. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4571. {
  4572. if (!farm_mode) {
  4573. float tt = degHotend(active_extruder);
  4574. SERIAL_PROTOCOLPGM("T:");
  4575. SERIAL_PROTOCOL(tt);
  4576. SERIAL_PROTOCOLPGM(" E:");
  4577. SERIAL_PROTOCOL((int)active_extruder);
  4578. SERIAL_PROTOCOLPGM(" B:");
  4579. SERIAL_PROTOCOL_F(degBed(), 1);
  4580. SERIAL_PROTOCOLLN("");
  4581. }
  4582. codenum = millis();
  4583. }
  4584. manage_heater();
  4585. manage_inactivity();
  4586. lcd_update();
  4587. }
  4588. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4589. KEEPALIVE_STATE(IN_HANDLER);
  4590. heating_status = 4;
  4591. previous_millis_cmd = millis();
  4592. #endif
  4593. break;
  4594. #if defined(FAN_PIN) && FAN_PIN > -1
  4595. case 106: //M106 Fan On
  4596. if (code_seen('S')){
  4597. fanSpeed=constrain(code_value(),0,255);
  4598. }
  4599. else {
  4600. fanSpeed=255;
  4601. }
  4602. break;
  4603. case 107: //M107 Fan Off
  4604. fanSpeed = 0;
  4605. break;
  4606. #endif //FAN_PIN
  4607. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4608. case 80: // M80 - Turn on Power Supply
  4609. SET_OUTPUT(PS_ON_PIN); //GND
  4610. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4611. // If you have a switch on suicide pin, this is useful
  4612. // if you want to start another print with suicide feature after
  4613. // a print without suicide...
  4614. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4615. SET_OUTPUT(SUICIDE_PIN);
  4616. WRITE(SUICIDE_PIN, HIGH);
  4617. #endif
  4618. #ifdef ULTIPANEL
  4619. powersupply = true;
  4620. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4621. lcd_update();
  4622. #endif
  4623. break;
  4624. #endif
  4625. case 81: // M81 - Turn off Power Supply
  4626. disable_heater();
  4627. st_synchronize();
  4628. disable_e0();
  4629. disable_e1();
  4630. disable_e2();
  4631. finishAndDisableSteppers();
  4632. fanSpeed = 0;
  4633. delay(1000); // Wait a little before to switch off
  4634. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4635. st_synchronize();
  4636. suicide();
  4637. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4638. SET_OUTPUT(PS_ON_PIN);
  4639. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4640. #endif
  4641. #ifdef ULTIPANEL
  4642. powersupply = false;
  4643. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4644. lcd_update();
  4645. #endif
  4646. break;
  4647. case 82:
  4648. axis_relative_modes[3] = false;
  4649. break;
  4650. case 83:
  4651. axis_relative_modes[3] = true;
  4652. break;
  4653. case 18: //compatibility
  4654. case 84: // M84
  4655. if(code_seen('S')){
  4656. stepper_inactive_time = code_value() * 1000;
  4657. }
  4658. else
  4659. {
  4660. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4661. if(all_axis)
  4662. {
  4663. st_synchronize();
  4664. disable_e0();
  4665. disable_e1();
  4666. disable_e2();
  4667. finishAndDisableSteppers();
  4668. }
  4669. else
  4670. {
  4671. st_synchronize();
  4672. if (code_seen('X')) disable_x();
  4673. if (code_seen('Y')) disable_y();
  4674. if (code_seen('Z')) disable_z();
  4675. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4676. if (code_seen('E')) {
  4677. disable_e0();
  4678. disable_e1();
  4679. disable_e2();
  4680. }
  4681. #endif
  4682. }
  4683. }
  4684. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4685. print_time_remaining_init();
  4686. snmm_filaments_used = 0;
  4687. break;
  4688. case 85: // M85
  4689. if(code_seen('S')) {
  4690. max_inactive_time = code_value() * 1000;
  4691. }
  4692. break;
  4693. case 92: // M92
  4694. for(int8_t i=0; i < NUM_AXIS; i++)
  4695. {
  4696. if(code_seen(axis_codes[i]))
  4697. {
  4698. if(i == 3) { // E
  4699. float value = code_value();
  4700. if(value < 20.0) {
  4701. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4702. max_jerk[E_AXIS] *= factor;
  4703. max_feedrate[i] *= factor;
  4704. axis_steps_per_sqr_second[i] *= factor;
  4705. }
  4706. axis_steps_per_unit[i] = value;
  4707. }
  4708. else {
  4709. axis_steps_per_unit[i] = code_value();
  4710. }
  4711. }
  4712. }
  4713. break;
  4714. case 110: // M110 - reset line pos
  4715. if (code_seen('N'))
  4716. gcode_LastN = code_value_long();
  4717. break;
  4718. #ifdef HOST_KEEPALIVE_FEATURE
  4719. case 113: // M113 - Get or set Host Keepalive interval
  4720. if (code_seen('S')) {
  4721. host_keepalive_interval = (uint8_t)code_value_short();
  4722. // NOMORE(host_keepalive_interval, 60);
  4723. }
  4724. else {
  4725. SERIAL_ECHO_START;
  4726. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4727. SERIAL_PROTOCOLLN("");
  4728. }
  4729. break;
  4730. #endif
  4731. case 115: // M115
  4732. if (code_seen('V')) {
  4733. // Report the Prusa version number.
  4734. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4735. } else if (code_seen('U')) {
  4736. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4737. // pause the print and ask the user to upgrade the firmware.
  4738. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4739. } else {
  4740. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4741. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4742. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4743. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4744. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4745. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4746. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4747. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4748. SERIAL_ECHOPGM(" UUID:");
  4749. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4750. }
  4751. break;
  4752. /* case 117: // M117 display message
  4753. starpos = (strchr(strchr_pointer + 5,'*'));
  4754. if(starpos!=NULL)
  4755. *(starpos)='\0';
  4756. lcd_setstatus(strchr_pointer + 5);
  4757. break;*/
  4758. case 114: // M114
  4759. gcode_M114();
  4760. break;
  4761. case 120: // M120
  4762. enable_endstops(false) ;
  4763. break;
  4764. case 121: // M121
  4765. enable_endstops(true) ;
  4766. break;
  4767. case 119: // M119
  4768. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4769. SERIAL_PROTOCOLLN("");
  4770. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4771. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4772. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4773. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4774. }else{
  4775. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4776. }
  4777. SERIAL_PROTOCOLLN("");
  4778. #endif
  4779. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4780. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4781. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4782. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4783. }else{
  4784. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4785. }
  4786. SERIAL_PROTOCOLLN("");
  4787. #endif
  4788. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4789. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4790. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4791. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4792. }else{
  4793. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4794. }
  4795. SERIAL_PROTOCOLLN("");
  4796. #endif
  4797. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4798. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4799. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4800. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4801. }else{
  4802. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4803. }
  4804. SERIAL_PROTOCOLLN("");
  4805. #endif
  4806. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4807. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4808. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4809. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4810. }else{
  4811. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4812. }
  4813. SERIAL_PROTOCOLLN("");
  4814. #endif
  4815. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4816. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4817. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4818. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4819. }else{
  4820. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4821. }
  4822. SERIAL_PROTOCOLLN("");
  4823. #endif
  4824. break;
  4825. //TODO: update for all axis, use for loop
  4826. #ifdef BLINKM
  4827. case 150: // M150
  4828. {
  4829. byte red;
  4830. byte grn;
  4831. byte blu;
  4832. if(code_seen('R')) red = code_value();
  4833. if(code_seen('U')) grn = code_value();
  4834. if(code_seen('B')) blu = code_value();
  4835. SendColors(red,grn,blu);
  4836. }
  4837. break;
  4838. #endif //BLINKM
  4839. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4840. {
  4841. tmp_extruder = active_extruder;
  4842. if(code_seen('T')) {
  4843. tmp_extruder = code_value();
  4844. if(tmp_extruder >= EXTRUDERS) {
  4845. SERIAL_ECHO_START;
  4846. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4847. break;
  4848. }
  4849. }
  4850. float area = .0;
  4851. if(code_seen('D')) {
  4852. float diameter = (float)code_value();
  4853. if (diameter == 0.0) {
  4854. // setting any extruder filament size disables volumetric on the assumption that
  4855. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4856. // for all extruders
  4857. volumetric_enabled = false;
  4858. } else {
  4859. filament_size[tmp_extruder] = (float)code_value();
  4860. // make sure all extruders have some sane value for the filament size
  4861. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4862. #if EXTRUDERS > 1
  4863. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4864. #if EXTRUDERS > 2
  4865. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4866. #endif
  4867. #endif
  4868. volumetric_enabled = true;
  4869. }
  4870. } else {
  4871. //reserved for setting filament diameter via UFID or filament measuring device
  4872. break;
  4873. }
  4874. calculate_extruder_multipliers();
  4875. }
  4876. break;
  4877. case 201: // M201
  4878. for(int8_t i=0; i < NUM_AXIS; i++)
  4879. {
  4880. if(code_seen(axis_codes[i]))
  4881. {
  4882. max_acceleration_units_per_sq_second[i] = code_value();
  4883. }
  4884. }
  4885. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4886. reset_acceleration_rates();
  4887. break;
  4888. #if 0 // Not used for Sprinter/grbl gen6
  4889. case 202: // M202
  4890. for(int8_t i=0; i < NUM_AXIS; i++) {
  4891. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4892. }
  4893. break;
  4894. #endif
  4895. case 203: // M203 max feedrate mm/sec
  4896. for(int8_t i=0; i < NUM_AXIS; i++) {
  4897. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4898. }
  4899. break;
  4900. case 204: // M204 acclereration S normal moves T filmanent only moves
  4901. {
  4902. if(code_seen('S')) acceleration = code_value() ;
  4903. if(code_seen('T')) retract_acceleration = code_value() ;
  4904. }
  4905. break;
  4906. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4907. {
  4908. if(code_seen('S')) minimumfeedrate = code_value();
  4909. if(code_seen('T')) mintravelfeedrate = code_value();
  4910. if(code_seen('B')) minsegmenttime = code_value() ;
  4911. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4912. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4913. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4914. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4915. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4916. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4917. }
  4918. break;
  4919. case 206: // M206 additional homing offset
  4920. for(int8_t i=0; i < 3; i++)
  4921. {
  4922. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4923. }
  4924. break;
  4925. #ifdef FWRETRACT
  4926. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4927. {
  4928. if(code_seen('S'))
  4929. {
  4930. retract_length = code_value() ;
  4931. }
  4932. if(code_seen('F'))
  4933. {
  4934. retract_feedrate = code_value()/60 ;
  4935. }
  4936. if(code_seen('Z'))
  4937. {
  4938. retract_zlift = code_value() ;
  4939. }
  4940. }break;
  4941. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4942. {
  4943. if(code_seen('S'))
  4944. {
  4945. retract_recover_length = code_value() ;
  4946. }
  4947. if(code_seen('F'))
  4948. {
  4949. retract_recover_feedrate = code_value()/60 ;
  4950. }
  4951. }break;
  4952. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4953. {
  4954. if(code_seen('S'))
  4955. {
  4956. int t= code_value() ;
  4957. switch(t)
  4958. {
  4959. case 0:
  4960. {
  4961. autoretract_enabled=false;
  4962. retracted[0]=false;
  4963. #if EXTRUDERS > 1
  4964. retracted[1]=false;
  4965. #endif
  4966. #if EXTRUDERS > 2
  4967. retracted[2]=false;
  4968. #endif
  4969. }break;
  4970. case 1:
  4971. {
  4972. autoretract_enabled=true;
  4973. retracted[0]=false;
  4974. #if EXTRUDERS > 1
  4975. retracted[1]=false;
  4976. #endif
  4977. #if EXTRUDERS > 2
  4978. retracted[2]=false;
  4979. #endif
  4980. }break;
  4981. default:
  4982. SERIAL_ECHO_START;
  4983. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4984. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4985. SERIAL_ECHOLNPGM("\"(1)");
  4986. }
  4987. }
  4988. }break;
  4989. #endif // FWRETRACT
  4990. #if EXTRUDERS > 1
  4991. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4992. {
  4993. if(setTargetedHotend(218)){
  4994. break;
  4995. }
  4996. if(code_seen('X'))
  4997. {
  4998. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4999. }
  5000. if(code_seen('Y'))
  5001. {
  5002. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5003. }
  5004. SERIAL_ECHO_START;
  5005. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5006. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5007. {
  5008. SERIAL_ECHO(" ");
  5009. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5010. SERIAL_ECHO(",");
  5011. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5012. }
  5013. SERIAL_ECHOLN("");
  5014. }break;
  5015. #endif
  5016. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5017. {
  5018. if(code_seen('S'))
  5019. {
  5020. feedmultiply = code_value() ;
  5021. }
  5022. }
  5023. break;
  5024. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5025. {
  5026. if(code_seen('S'))
  5027. {
  5028. int tmp_code = code_value();
  5029. if (code_seen('T'))
  5030. {
  5031. if(setTargetedHotend(221)){
  5032. break;
  5033. }
  5034. extruder_multiply[tmp_extruder] = tmp_code;
  5035. }
  5036. else
  5037. {
  5038. extrudemultiply = tmp_code ;
  5039. }
  5040. }
  5041. calculate_extruder_multipliers();
  5042. }
  5043. break;
  5044. #ifndef _DISABLE_M42_M226
  5045. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5046. {
  5047. if(code_seen('P')){
  5048. int pin_number = code_value(); // pin number
  5049. int pin_state = -1; // required pin state - default is inverted
  5050. if(code_seen('S')) pin_state = code_value(); // required pin state
  5051. if(pin_state >= -1 && pin_state <= 1){
  5052. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5053. {
  5054. if (sensitive_pins[i] == pin_number)
  5055. {
  5056. pin_number = -1;
  5057. break;
  5058. }
  5059. }
  5060. if (pin_number > -1)
  5061. {
  5062. int target = LOW;
  5063. st_synchronize();
  5064. pinMode(pin_number, INPUT);
  5065. switch(pin_state){
  5066. case 1:
  5067. target = HIGH;
  5068. break;
  5069. case 0:
  5070. target = LOW;
  5071. break;
  5072. case -1:
  5073. target = !digitalRead(pin_number);
  5074. break;
  5075. }
  5076. while(digitalRead(pin_number) != target){
  5077. manage_heater();
  5078. manage_inactivity();
  5079. lcd_update();
  5080. }
  5081. }
  5082. }
  5083. }
  5084. }
  5085. break;
  5086. #endif //_DISABLE_M42_M226
  5087. #if NUM_SERVOS > 0
  5088. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5089. {
  5090. int servo_index = -1;
  5091. int servo_position = 0;
  5092. if (code_seen('P'))
  5093. servo_index = code_value();
  5094. if (code_seen('S')) {
  5095. servo_position = code_value();
  5096. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5097. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5098. servos[servo_index].attach(0);
  5099. #endif
  5100. servos[servo_index].write(servo_position);
  5101. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5102. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5103. servos[servo_index].detach();
  5104. #endif
  5105. }
  5106. else {
  5107. SERIAL_ECHO_START;
  5108. SERIAL_ECHO("Servo ");
  5109. SERIAL_ECHO(servo_index);
  5110. SERIAL_ECHOLN(" out of range");
  5111. }
  5112. }
  5113. else if (servo_index >= 0) {
  5114. SERIAL_PROTOCOL(_T(MSG_OK));
  5115. SERIAL_PROTOCOL(" Servo ");
  5116. SERIAL_PROTOCOL(servo_index);
  5117. SERIAL_PROTOCOL(": ");
  5118. SERIAL_PROTOCOL(servos[servo_index].read());
  5119. SERIAL_PROTOCOLLN("");
  5120. }
  5121. }
  5122. break;
  5123. #endif // NUM_SERVOS > 0
  5124. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5125. case 300: // M300
  5126. {
  5127. int beepS = code_seen('S') ? code_value() : 110;
  5128. int beepP = code_seen('P') ? code_value() : 1000;
  5129. if (beepS > 0)
  5130. {
  5131. #if BEEPER > 0
  5132. tone(BEEPER, beepS);
  5133. delay(beepP);
  5134. noTone(BEEPER);
  5135. #elif defined(ULTRALCD)
  5136. lcd_buzz(beepS, beepP);
  5137. #elif defined(LCD_USE_I2C_BUZZER)
  5138. lcd_buzz(beepP, beepS);
  5139. #endif
  5140. }
  5141. else
  5142. {
  5143. delay(beepP);
  5144. }
  5145. }
  5146. break;
  5147. #endif // M300
  5148. #ifdef PIDTEMP
  5149. case 301: // M301
  5150. {
  5151. if(code_seen('P')) Kp = code_value();
  5152. if(code_seen('I')) Ki = scalePID_i(code_value());
  5153. if(code_seen('D')) Kd = scalePID_d(code_value());
  5154. #ifdef PID_ADD_EXTRUSION_RATE
  5155. if(code_seen('C')) Kc = code_value();
  5156. #endif
  5157. updatePID();
  5158. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5159. SERIAL_PROTOCOL(" p:");
  5160. SERIAL_PROTOCOL(Kp);
  5161. SERIAL_PROTOCOL(" i:");
  5162. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5163. SERIAL_PROTOCOL(" d:");
  5164. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5165. #ifdef PID_ADD_EXTRUSION_RATE
  5166. SERIAL_PROTOCOL(" c:");
  5167. //Kc does not have scaling applied above, or in resetting defaults
  5168. SERIAL_PROTOCOL(Kc);
  5169. #endif
  5170. SERIAL_PROTOCOLLN("");
  5171. }
  5172. break;
  5173. #endif //PIDTEMP
  5174. #ifdef PIDTEMPBED
  5175. case 304: // M304
  5176. {
  5177. if(code_seen('P')) bedKp = code_value();
  5178. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5179. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5180. updatePID();
  5181. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5182. SERIAL_PROTOCOL(" p:");
  5183. SERIAL_PROTOCOL(bedKp);
  5184. SERIAL_PROTOCOL(" i:");
  5185. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5186. SERIAL_PROTOCOL(" d:");
  5187. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5188. SERIAL_PROTOCOLLN("");
  5189. }
  5190. break;
  5191. #endif //PIDTEMP
  5192. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5193. {
  5194. #ifdef CHDK
  5195. SET_OUTPUT(CHDK);
  5196. WRITE(CHDK, HIGH);
  5197. chdkHigh = millis();
  5198. chdkActive = true;
  5199. #else
  5200. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5201. const uint8_t NUM_PULSES=16;
  5202. const float PULSE_LENGTH=0.01524;
  5203. for(int i=0; i < NUM_PULSES; i++) {
  5204. WRITE(PHOTOGRAPH_PIN, HIGH);
  5205. _delay_ms(PULSE_LENGTH);
  5206. WRITE(PHOTOGRAPH_PIN, LOW);
  5207. _delay_ms(PULSE_LENGTH);
  5208. }
  5209. delay(7.33);
  5210. for(int i=0; i < NUM_PULSES; i++) {
  5211. WRITE(PHOTOGRAPH_PIN, HIGH);
  5212. _delay_ms(PULSE_LENGTH);
  5213. WRITE(PHOTOGRAPH_PIN, LOW);
  5214. _delay_ms(PULSE_LENGTH);
  5215. }
  5216. #endif
  5217. #endif //chdk end if
  5218. }
  5219. break;
  5220. #ifdef DOGLCD
  5221. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5222. {
  5223. if (code_seen('C')) {
  5224. lcd_setcontrast( ((int)code_value())&63 );
  5225. }
  5226. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5227. SERIAL_PROTOCOL(lcd_contrast);
  5228. SERIAL_PROTOCOLLN("");
  5229. }
  5230. break;
  5231. #endif
  5232. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5233. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5234. {
  5235. float temp = .0;
  5236. if (code_seen('S')) temp=code_value();
  5237. set_extrude_min_temp(temp);
  5238. }
  5239. break;
  5240. #endif
  5241. case 303: // M303 PID autotune
  5242. {
  5243. float temp = 150.0;
  5244. int e=0;
  5245. int c=5;
  5246. if (code_seen('E')) e=code_value();
  5247. if (e<0)
  5248. temp=70;
  5249. if (code_seen('S')) temp=code_value();
  5250. if (code_seen('C')) c=code_value();
  5251. PID_autotune(temp, e, c);
  5252. }
  5253. break;
  5254. case 400: // M400 finish all moves
  5255. {
  5256. st_synchronize();
  5257. }
  5258. break;
  5259. case 500: // M500 Store settings in EEPROM
  5260. {
  5261. Config_StoreSettings(EEPROM_OFFSET);
  5262. }
  5263. break;
  5264. case 501: // M501 Read settings from EEPROM
  5265. {
  5266. Config_RetrieveSettings(EEPROM_OFFSET);
  5267. }
  5268. break;
  5269. case 502: // M502 Revert to default settings
  5270. {
  5271. Config_ResetDefault();
  5272. }
  5273. break;
  5274. case 503: // M503 print settings currently in memory
  5275. {
  5276. Config_PrintSettings();
  5277. }
  5278. break;
  5279. case 509: //M509 Force language selection
  5280. {
  5281. lang_reset();
  5282. SERIAL_ECHO_START;
  5283. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5284. }
  5285. break;
  5286. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5287. case 540:
  5288. {
  5289. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5290. }
  5291. break;
  5292. #endif
  5293. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5294. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5295. {
  5296. float value;
  5297. if (code_seen('Z'))
  5298. {
  5299. value = code_value();
  5300. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5301. {
  5302. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5303. SERIAL_ECHO_START;
  5304. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5305. SERIAL_PROTOCOLLN("");
  5306. }
  5307. else
  5308. {
  5309. SERIAL_ECHO_START;
  5310. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5311. SERIAL_ECHORPGM(MSG_Z_MIN);
  5312. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5313. SERIAL_ECHORPGM(MSG_Z_MAX);
  5314. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5315. SERIAL_PROTOCOLLN("");
  5316. }
  5317. }
  5318. else
  5319. {
  5320. SERIAL_ECHO_START;
  5321. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5322. SERIAL_ECHO(-zprobe_zoffset);
  5323. SERIAL_PROTOCOLLN("");
  5324. }
  5325. break;
  5326. }
  5327. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5328. #ifdef FILAMENTCHANGEENABLE
  5329. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5330. {
  5331. #ifdef PAT9125
  5332. bool old_fsensor_enabled = fsensor_enabled;
  5333. fsensor_enabled = false; //temporary solution for unexpected restarting
  5334. #endif //PAT9125
  5335. st_synchronize();
  5336. float target[4];
  5337. float lastpos[4];
  5338. if (farm_mode)
  5339. {
  5340. prusa_statistics(22);
  5341. }
  5342. feedmultiplyBckp=feedmultiply;
  5343. int8_t TooLowZ = 0;
  5344. float HotendTempBckp = degTargetHotend(active_extruder);
  5345. int fanSpeedBckp = fanSpeed;
  5346. target[X_AXIS]=current_position[X_AXIS];
  5347. target[Y_AXIS]=current_position[Y_AXIS];
  5348. target[Z_AXIS]=current_position[Z_AXIS];
  5349. target[E_AXIS]=current_position[E_AXIS];
  5350. lastpos[X_AXIS]=current_position[X_AXIS];
  5351. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5352. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5353. lastpos[E_AXIS]=current_position[E_AXIS];
  5354. //Restract extruder
  5355. if(code_seen('E'))
  5356. {
  5357. target[E_AXIS]+= code_value();
  5358. }
  5359. else
  5360. {
  5361. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5363. #endif
  5364. }
  5365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5366. //Lift Z
  5367. if(code_seen('Z'))
  5368. {
  5369. target[Z_AXIS]+= code_value();
  5370. }
  5371. else
  5372. {
  5373. #ifdef FILAMENTCHANGE_ZADD
  5374. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5375. if(target[Z_AXIS] < 10){
  5376. target[Z_AXIS]+= 10 ;
  5377. TooLowZ = 1;
  5378. }else{
  5379. TooLowZ = 0;
  5380. }
  5381. #endif
  5382. }
  5383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5384. //Move XY to side
  5385. if(code_seen('X'))
  5386. {
  5387. target[X_AXIS]+= code_value();
  5388. }
  5389. else
  5390. {
  5391. #ifdef FILAMENTCHANGE_XPOS
  5392. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5393. #endif
  5394. }
  5395. if(code_seen('Y'))
  5396. {
  5397. target[Y_AXIS]= code_value();
  5398. }
  5399. else
  5400. {
  5401. #ifdef FILAMENTCHANGE_YPOS
  5402. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5403. #endif
  5404. }
  5405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5406. st_synchronize();
  5407. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5408. uint8_t cnt = 0;
  5409. int counterBeep = 0;
  5410. fanSpeed = 0;
  5411. unsigned long waiting_start_time = millis();
  5412. uint8_t wait_for_user_state = 0;
  5413. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5414. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5415. //cnt++;
  5416. manage_heater();
  5417. manage_inactivity(true);
  5418. /*#ifdef SNMM
  5419. target[E_AXIS] += 0.002;
  5420. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5421. #endif // SNMM*/
  5422. //if (cnt == 0)
  5423. {
  5424. #if BEEPER > 0
  5425. if (counterBeep == 500) {
  5426. counterBeep = 0;
  5427. }
  5428. SET_OUTPUT(BEEPER);
  5429. if (counterBeep == 0) {
  5430. WRITE(BEEPER, HIGH);
  5431. }
  5432. if (counterBeep == 20) {
  5433. WRITE(BEEPER, LOW);
  5434. }
  5435. counterBeep++;
  5436. #else
  5437. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5438. lcd_buzz(1000 / 6, 100);
  5439. #else
  5440. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5441. #endif
  5442. #endif
  5443. }
  5444. switch (wait_for_user_state) {
  5445. case 0:
  5446. delay_keep_alive(4);
  5447. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5448. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5449. wait_for_user_state = 1;
  5450. setTargetHotend(0, 0);
  5451. setTargetHotend(0, 1);
  5452. setTargetHotend(0, 2);
  5453. st_synchronize();
  5454. disable_e0();
  5455. disable_e1();
  5456. disable_e2();
  5457. }
  5458. break;
  5459. case 1:
  5460. delay_keep_alive(4);
  5461. if (lcd_clicked()) {
  5462. setTargetHotend(HotendTempBckp, active_extruder);
  5463. lcd_wait_for_heater();
  5464. wait_for_user_state = 2;
  5465. }
  5466. break;
  5467. case 2:
  5468. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5469. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5470. waiting_start_time = millis();
  5471. wait_for_user_state = 0;
  5472. }
  5473. else {
  5474. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5475. lcd.setCursor(1, 4);
  5476. lcd.print(ftostr3(degHotend(active_extruder)));
  5477. }
  5478. break;
  5479. }
  5480. }
  5481. WRITE(BEEPER, LOW);
  5482. lcd_change_fil_state = 0;
  5483. // Unload filament
  5484. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5485. KEEPALIVE_STATE(IN_HANDLER);
  5486. custom_message = true;
  5487. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5488. if (code_seen('L'))
  5489. {
  5490. target[E_AXIS] += code_value();
  5491. }
  5492. else
  5493. {
  5494. #ifdef SNMM
  5495. #else
  5496. #ifdef FILAMENTCHANGE_FINALRETRACT
  5497. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5498. #endif
  5499. #endif // SNMM
  5500. }
  5501. #ifdef SNMM
  5502. target[E_AXIS] += 12;
  5503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5504. target[E_AXIS] += 6;
  5505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5506. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5508. st_synchronize();
  5509. target[E_AXIS] += (FIL_COOLING);
  5510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5511. target[E_AXIS] += (FIL_COOLING*-1);
  5512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5513. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5514. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5515. st_synchronize();
  5516. #else
  5517. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5518. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5519. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5520. st_synchronize();
  5521. #ifdef TMC2130
  5522. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5523. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5524. #else
  5525. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5526. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5527. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5528. #endif //TMC2130
  5529. target[E_AXIS] -= 45;
  5530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5531. st_synchronize();
  5532. target[E_AXIS] -= 15;
  5533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5534. st_synchronize();
  5535. target[E_AXIS] -= 20;
  5536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5537. st_synchronize();
  5538. #ifdef TMC2130
  5539. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5540. #else
  5541. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5542. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5543. else st_current_set(2, tmp_motor_loud[2]);
  5544. #endif //TMC2130
  5545. #endif // SNMM
  5546. //finish moves
  5547. st_synchronize();
  5548. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5549. //disable extruder steppers so filament can be removed
  5550. disable_e0();
  5551. disable_e1();
  5552. disable_e2();
  5553. delay(100);
  5554. WRITE(BEEPER, HIGH);
  5555. counterBeep = 0;
  5556. while(!lcd_clicked() && (counterBeep < 50)) {
  5557. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5558. delay_keep_alive(100);
  5559. counterBeep++;
  5560. }
  5561. WRITE(BEEPER, LOW);
  5562. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5563. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5564. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5565. //lcd_return_to_status();
  5566. lcd_update_enable(true);
  5567. //Wait for user to insert filament
  5568. lcd_wait_interact();
  5569. //load_filament_time = millis();
  5570. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5571. #ifdef PAT9125
  5572. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5573. #endif //PAT9125
  5574. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5575. while(!lcd_clicked())
  5576. {
  5577. manage_heater();
  5578. manage_inactivity(true);
  5579. #ifdef PAT9125
  5580. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5581. {
  5582. tone(BEEPER, 1000);
  5583. delay_keep_alive(50);
  5584. noTone(BEEPER);
  5585. break;
  5586. }
  5587. #endif //PAT9125
  5588. /*#ifdef SNMM
  5589. target[E_AXIS] += 0.002;
  5590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5591. #endif // SNMM*/
  5592. }
  5593. #ifdef PAT9125
  5594. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5595. #endif //PAT9125
  5596. //WRITE(BEEPER, LOW);
  5597. KEEPALIVE_STATE(IN_HANDLER);
  5598. #ifdef SNMM
  5599. display_loading();
  5600. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5601. do {
  5602. target[E_AXIS] += 0.002;
  5603. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5604. delay_keep_alive(2);
  5605. } while (!lcd_clicked());
  5606. KEEPALIVE_STATE(IN_HANDLER);
  5607. /*if (millis() - load_filament_time > 2) {
  5608. load_filament_time = millis();
  5609. target[E_AXIS] += 0.001;
  5610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5611. }*/
  5612. //Filament inserted
  5613. //Feed the filament to the end of nozzle quickly
  5614. st_synchronize();
  5615. target[E_AXIS] += bowden_length[snmm_extruder];
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5617. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5618. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5619. target[E_AXIS] += 40;
  5620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5621. target[E_AXIS] += 10;
  5622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5623. #else
  5624. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5625. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5626. #endif // SNMM
  5627. //Extrude some filament
  5628. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5629. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5630. //Wait for user to check the state
  5631. lcd_change_fil_state = 0;
  5632. lcd_loading_filament();
  5633. tone(BEEPER, 500);
  5634. delay_keep_alive(50);
  5635. noTone(BEEPER);
  5636. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5637. lcd_change_fil_state = 0;
  5638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5639. lcd_alright();
  5640. KEEPALIVE_STATE(IN_HANDLER);
  5641. switch(lcd_change_fil_state){
  5642. // Filament failed to load so load it again
  5643. case 2:
  5644. #ifdef SNMM
  5645. display_loading();
  5646. do {
  5647. target[E_AXIS] += 0.002;
  5648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5649. delay_keep_alive(2);
  5650. } while (!lcd_clicked());
  5651. st_synchronize();
  5652. target[E_AXIS] += bowden_length[snmm_extruder];
  5653. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5654. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5655. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5656. target[E_AXIS] += 40;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5658. target[E_AXIS] += 10;
  5659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5660. #else
  5661. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5662. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5663. #endif
  5664. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5666. lcd_loading_filament();
  5667. break;
  5668. // Filament loaded properly but color is not clear
  5669. case 3:
  5670. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5672. lcd_loading_color();
  5673. break;
  5674. // Everything good
  5675. default:
  5676. lcd_change_success();
  5677. lcd_update_enable(true);
  5678. break;
  5679. }
  5680. }
  5681. //Not let's go back to print
  5682. fanSpeed = fanSpeedBckp;
  5683. //Feed a little of filament to stabilize pressure
  5684. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5686. //Retract
  5687. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5689. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5690. //Move XY back
  5691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5692. //Move Z back
  5693. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5694. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5695. //Unretract
  5696. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5697. //Set E position to original
  5698. plan_set_e_position(lastpos[E_AXIS]);
  5699. //Recover feed rate
  5700. feedmultiply=feedmultiplyBckp;
  5701. char cmd[9];
  5702. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5703. enquecommand(cmd);
  5704. lcd_setstatuspgm(_T(WELCOME_MSG));
  5705. custom_message = false;
  5706. custom_message_type = 0;
  5707. #ifdef PAT9125
  5708. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5709. if (fsensor_M600)
  5710. {
  5711. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5712. st_synchronize();
  5713. while (!is_buffer_empty())
  5714. {
  5715. process_commands();
  5716. cmdqueue_pop_front();
  5717. }
  5718. KEEPALIVE_STATE(IN_HANDLER);
  5719. fsensor_enable();
  5720. fsensor_restore_print_and_continue();
  5721. }
  5722. #endif //PAT9125
  5723. }
  5724. break;
  5725. #endif //FILAMENTCHANGEENABLE
  5726. case 601: {
  5727. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5728. }
  5729. break;
  5730. case 602: {
  5731. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5732. }
  5733. break;
  5734. #ifdef PINDA_THERMISTOR
  5735. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5736. {
  5737. int set_target_pinda = 0;
  5738. if (code_seen('S')) {
  5739. set_target_pinda = code_value();
  5740. }
  5741. else {
  5742. break;
  5743. }
  5744. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5745. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5746. SERIAL_PROTOCOL(set_target_pinda);
  5747. SERIAL_PROTOCOLLN("");
  5748. codenum = millis();
  5749. cancel_heatup = false;
  5750. bool is_pinda_cooling = false;
  5751. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5752. is_pinda_cooling = true;
  5753. }
  5754. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5755. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5756. {
  5757. SERIAL_PROTOCOLPGM("P:");
  5758. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5759. SERIAL_PROTOCOLPGM("/");
  5760. SERIAL_PROTOCOL(set_target_pinda);
  5761. SERIAL_PROTOCOLLN("");
  5762. codenum = millis();
  5763. }
  5764. manage_heater();
  5765. manage_inactivity();
  5766. lcd_update();
  5767. }
  5768. LCD_MESSAGERPGM(_T(MSG_OK));
  5769. break;
  5770. }
  5771. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5772. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5773. uint8_t cal_status = calibration_status_pinda();
  5774. int16_t usteps = 0;
  5775. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5776. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5777. for (uint8_t i = 0; i < 6; i++)
  5778. {
  5779. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5780. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5781. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5782. SERIAL_PROTOCOLPGM(", ");
  5783. SERIAL_PROTOCOL(35 + (i * 5));
  5784. SERIAL_PROTOCOLPGM(", ");
  5785. SERIAL_PROTOCOL(usteps);
  5786. SERIAL_PROTOCOLPGM(", ");
  5787. SERIAL_PROTOCOL(mm * 1000);
  5788. SERIAL_PROTOCOLLN("");
  5789. }
  5790. }
  5791. else if (code_seen('!')) { // ! - Set factory default values
  5792. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5793. int16_t z_shift = 8; //40C - 20um - 8usteps
  5794. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5795. z_shift = 24; //45C - 60um - 24usteps
  5796. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5797. z_shift = 48; //50C - 120um - 48usteps
  5798. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5799. z_shift = 80; //55C - 200um - 80usteps
  5800. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5801. z_shift = 120; //60C - 300um - 120usteps
  5802. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5803. SERIAL_PROTOCOLLN("factory restored");
  5804. }
  5805. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5806. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5807. int16_t z_shift = 0;
  5808. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5809. SERIAL_PROTOCOLLN("zerorized");
  5810. }
  5811. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5812. int16_t usteps = code_value();
  5813. if (code_seen('I')) {
  5814. byte index = code_value();
  5815. if ((index >= 0) && (index < 5)) {
  5816. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5817. SERIAL_PROTOCOLLN("OK");
  5818. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5819. for (uint8_t i = 0; i < 6; i++)
  5820. {
  5821. usteps = 0;
  5822. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5823. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5824. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5825. SERIAL_PROTOCOLPGM(", ");
  5826. SERIAL_PROTOCOL(35 + (i * 5));
  5827. SERIAL_PROTOCOLPGM(", ");
  5828. SERIAL_PROTOCOL(usteps);
  5829. SERIAL_PROTOCOLPGM(", ");
  5830. SERIAL_PROTOCOL(mm * 1000);
  5831. SERIAL_PROTOCOLLN("");
  5832. }
  5833. }
  5834. }
  5835. }
  5836. else {
  5837. SERIAL_PROTOCOLPGM("no valid command");
  5838. }
  5839. break;
  5840. #endif //PINDA_THERMISTOR
  5841. #ifdef LIN_ADVANCE
  5842. case 900: // M900: Set LIN_ADVANCE options.
  5843. gcode_M900();
  5844. break;
  5845. #endif
  5846. case 907: // M907 Set digital trimpot motor current using axis codes.
  5847. {
  5848. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5849. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5850. if(code_seen('B')) st_current_set(4,code_value());
  5851. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5852. #endif
  5853. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5854. if(code_seen('X')) st_current_set(0, code_value());
  5855. #endif
  5856. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5857. if(code_seen('Z')) st_current_set(1, code_value());
  5858. #endif
  5859. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5860. if(code_seen('E')) st_current_set(2, code_value());
  5861. #endif
  5862. }
  5863. break;
  5864. case 908: // M908 Control digital trimpot directly.
  5865. {
  5866. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5867. uint8_t channel,current;
  5868. if(code_seen('P')) channel=code_value();
  5869. if(code_seen('S')) current=code_value();
  5870. digitalPotWrite(channel, current);
  5871. #endif
  5872. }
  5873. break;
  5874. #ifdef TMC2130
  5875. case 910: // M910 TMC2130 init
  5876. {
  5877. tmc2130_init();
  5878. }
  5879. break;
  5880. case 911: // M911 Set TMC2130 holding currents
  5881. {
  5882. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5883. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5884. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5885. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5886. }
  5887. break;
  5888. case 912: // M912 Set TMC2130 running currents
  5889. {
  5890. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5891. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5892. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5893. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5894. }
  5895. break;
  5896. case 913: // M913 Print TMC2130 currents
  5897. {
  5898. tmc2130_print_currents();
  5899. }
  5900. break;
  5901. case 914: // M914 Set normal mode
  5902. {
  5903. tmc2130_mode = TMC2130_MODE_NORMAL;
  5904. tmc2130_init();
  5905. }
  5906. break;
  5907. case 915: // M915 Set silent mode
  5908. {
  5909. tmc2130_mode = TMC2130_MODE_SILENT;
  5910. tmc2130_init();
  5911. }
  5912. break;
  5913. case 916: // M916 Set sg_thrs
  5914. {
  5915. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5916. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5917. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5918. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5919. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5920. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5921. }
  5922. break;
  5923. case 917: // M917 Set TMC2130 pwm_ampl
  5924. {
  5925. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5926. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5927. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5928. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5929. }
  5930. break;
  5931. case 918: // M918 Set TMC2130 pwm_grad
  5932. {
  5933. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5934. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5935. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5936. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5937. }
  5938. break;
  5939. #endif //TMC2130
  5940. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5941. {
  5942. #ifdef TMC2130
  5943. if(code_seen('E'))
  5944. {
  5945. uint16_t res_new = code_value();
  5946. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5947. {
  5948. st_synchronize();
  5949. uint8_t axis = E_AXIS;
  5950. uint16_t res = tmc2130_get_res(axis);
  5951. tmc2130_set_res(axis, res_new);
  5952. if (res_new > res)
  5953. {
  5954. uint16_t fac = (res_new / res);
  5955. axis_steps_per_unit[axis] *= fac;
  5956. position[E_AXIS] *= fac;
  5957. }
  5958. else
  5959. {
  5960. uint16_t fac = (res / res_new);
  5961. axis_steps_per_unit[axis] /= fac;
  5962. position[E_AXIS] /= fac;
  5963. }
  5964. }
  5965. }
  5966. #else //TMC2130
  5967. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5968. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5969. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5970. if(code_seen('B')) microstep_mode(4,code_value());
  5971. microstep_readings();
  5972. #endif
  5973. #endif //TMC2130
  5974. }
  5975. break;
  5976. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5977. {
  5978. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5979. if(code_seen('S')) switch((int)code_value())
  5980. {
  5981. case 1:
  5982. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5983. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5984. break;
  5985. case 2:
  5986. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5987. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5988. break;
  5989. }
  5990. microstep_readings();
  5991. #endif
  5992. }
  5993. break;
  5994. case 701: //M701: load filament
  5995. {
  5996. gcode_M701();
  5997. }
  5998. break;
  5999. case 702:
  6000. {
  6001. #ifdef SNMM
  6002. if (code_seen('U')) {
  6003. extr_unload_used(); //unload all filaments which were used in current print
  6004. }
  6005. else if (code_seen('C')) {
  6006. extr_unload(); //unload just current filament
  6007. }
  6008. else {
  6009. extr_unload_all(); //unload all filaments
  6010. }
  6011. #else
  6012. #ifdef PAT9125
  6013. bool old_fsensor_enabled = fsensor_enabled;
  6014. fsensor_enabled = false;
  6015. #endif //PAT9125
  6016. custom_message = true;
  6017. custom_message_type = 2;
  6018. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6019. // extr_unload2();
  6020. current_position[E_AXIS] -= 45;
  6021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6022. st_synchronize();
  6023. current_position[E_AXIS] -= 15;
  6024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6025. st_synchronize();
  6026. current_position[E_AXIS] -= 20;
  6027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6028. st_synchronize();
  6029. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6030. //disable extruder steppers so filament can be removed
  6031. disable_e0();
  6032. disable_e1();
  6033. disable_e2();
  6034. delay(100);
  6035. WRITE(BEEPER, HIGH);
  6036. uint8_t counterBeep = 0;
  6037. while (!lcd_clicked() && (counterBeep < 50)) {
  6038. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6039. delay_keep_alive(100);
  6040. counterBeep++;
  6041. }
  6042. WRITE(BEEPER, LOW);
  6043. st_synchronize();
  6044. while (lcd_clicked()) delay_keep_alive(100);
  6045. lcd_update_enable(true);
  6046. lcd_setstatuspgm(_T(WELCOME_MSG));
  6047. custom_message = false;
  6048. custom_message_type = 0;
  6049. #ifdef PAT9125
  6050. fsensor_enabled = old_fsensor_enabled;
  6051. #endif //PAT9125
  6052. #endif
  6053. }
  6054. break;
  6055. case 999: // M999: Restart after being stopped
  6056. Stopped = false;
  6057. lcd_reset_alert_level();
  6058. gcode_LastN = Stopped_gcode_LastN;
  6059. FlushSerialRequestResend();
  6060. break;
  6061. default:
  6062. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6063. }
  6064. } // end if(code_seen('M')) (end of M codes)
  6065. else if(code_seen('T'))
  6066. {
  6067. int index;
  6068. st_synchronize();
  6069. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6070. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6071. SERIAL_ECHOLNPGM("Invalid T code.");
  6072. }
  6073. else {
  6074. if (*(strchr_pointer + index) == '?') {
  6075. tmp_extruder = choose_extruder_menu();
  6076. }
  6077. else {
  6078. tmp_extruder = code_value();
  6079. }
  6080. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6081. #ifdef SNMM
  6082. #ifdef LIN_ADVANCE
  6083. if (snmm_extruder != tmp_extruder)
  6084. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6085. #endif
  6086. snmm_extruder = tmp_extruder;
  6087. delay(100);
  6088. disable_e0();
  6089. disable_e1();
  6090. disable_e2();
  6091. pinMode(E_MUX0_PIN, OUTPUT);
  6092. pinMode(E_MUX1_PIN, OUTPUT);
  6093. delay(100);
  6094. SERIAL_ECHO_START;
  6095. SERIAL_ECHO("T:");
  6096. SERIAL_ECHOLN((int)tmp_extruder);
  6097. switch (tmp_extruder) {
  6098. case 1:
  6099. WRITE(E_MUX0_PIN, HIGH);
  6100. WRITE(E_MUX1_PIN, LOW);
  6101. break;
  6102. case 2:
  6103. WRITE(E_MUX0_PIN, LOW);
  6104. WRITE(E_MUX1_PIN, HIGH);
  6105. break;
  6106. case 3:
  6107. WRITE(E_MUX0_PIN, HIGH);
  6108. WRITE(E_MUX1_PIN, HIGH);
  6109. break;
  6110. default:
  6111. WRITE(E_MUX0_PIN, LOW);
  6112. WRITE(E_MUX1_PIN, LOW);
  6113. break;
  6114. }
  6115. delay(100);
  6116. #else
  6117. if (tmp_extruder >= EXTRUDERS) {
  6118. SERIAL_ECHO_START;
  6119. SERIAL_ECHOPGM("T");
  6120. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6121. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6122. }
  6123. else {
  6124. boolean make_move = false;
  6125. if (code_seen('F')) {
  6126. make_move = true;
  6127. next_feedrate = code_value();
  6128. if (next_feedrate > 0.0) {
  6129. feedrate = next_feedrate;
  6130. }
  6131. }
  6132. #if EXTRUDERS > 1
  6133. if (tmp_extruder != active_extruder) {
  6134. // Save current position to return to after applying extruder offset
  6135. memcpy(destination, current_position, sizeof(destination));
  6136. // Offset extruder (only by XY)
  6137. int i;
  6138. for (i = 0; i < 2; i++) {
  6139. current_position[i] = current_position[i] -
  6140. extruder_offset[i][active_extruder] +
  6141. extruder_offset[i][tmp_extruder];
  6142. }
  6143. // Set the new active extruder and position
  6144. active_extruder = tmp_extruder;
  6145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6146. // Move to the old position if 'F' was in the parameters
  6147. if (make_move && Stopped == false) {
  6148. prepare_move();
  6149. }
  6150. }
  6151. #endif
  6152. SERIAL_ECHO_START;
  6153. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6154. SERIAL_PROTOCOLLN((int)active_extruder);
  6155. }
  6156. #endif
  6157. }
  6158. } // end if(code_seen('T')) (end of T codes)
  6159. #ifdef DEBUG_DCODES
  6160. else if (code_seen('D')) // D codes (debug)
  6161. {
  6162. switch((int)code_value())
  6163. {
  6164. case -1: // D-1 - Endless loop
  6165. dcode__1(); break;
  6166. case 0: // D0 - Reset
  6167. dcode_0(); break;
  6168. case 1: // D1 - Clear EEPROM
  6169. dcode_1(); break;
  6170. case 2: // D2 - Read/Write RAM
  6171. dcode_2(); break;
  6172. case 3: // D3 - Read/Write EEPROM
  6173. dcode_3(); break;
  6174. case 4: // D4 - Read/Write PIN
  6175. dcode_4(); break;
  6176. case 5: // D5 - Read/Write FLASH
  6177. // dcode_5(); break;
  6178. break;
  6179. case 6: // D6 - Read/Write external FLASH
  6180. dcode_6(); break;
  6181. case 7: // D7 - Read/Write Bootloader
  6182. dcode_7(); break;
  6183. case 8: // D8 - Read/Write PINDA
  6184. dcode_8(); break;
  6185. case 9: // D9 - Read/Write ADC
  6186. dcode_9(); break;
  6187. case 10: // D10 - XYZ calibration = OK
  6188. dcode_10(); break;
  6189. #ifdef TMC2130
  6190. case 2130: // D9125 - TMC2130
  6191. dcode_2130(); break;
  6192. #endif //TMC2130
  6193. #ifdef PAT9125
  6194. case 9125: // D9125 - PAT9125
  6195. dcode_9125(); break;
  6196. #endif //PAT9125
  6197. }
  6198. }
  6199. #endif //DEBUG_DCODES
  6200. else
  6201. {
  6202. SERIAL_ECHO_START;
  6203. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6204. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6205. SERIAL_ECHOLNPGM("\"(2)");
  6206. }
  6207. KEEPALIVE_STATE(NOT_BUSY);
  6208. ClearToSend();
  6209. }
  6210. void FlushSerialRequestResend()
  6211. {
  6212. //char cmdbuffer[bufindr][100]="Resend:";
  6213. MYSERIAL.flush();
  6214. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6215. }
  6216. // Confirm the execution of a command, if sent from a serial line.
  6217. // Execution of a command from a SD card will not be confirmed.
  6218. void ClearToSend()
  6219. {
  6220. previous_millis_cmd = millis();
  6221. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6222. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6223. }
  6224. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6225. void update_currents() {
  6226. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6227. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6228. float tmp_motor[3];
  6229. //SERIAL_ECHOLNPGM("Currents updated: ");
  6230. if (destination[Z_AXIS] < Z_SILENT) {
  6231. //SERIAL_ECHOLNPGM("LOW");
  6232. for (uint8_t i = 0; i < 3; i++) {
  6233. st_current_set(i, current_low[i]);
  6234. /*MYSERIAL.print(int(i));
  6235. SERIAL_ECHOPGM(": ");
  6236. MYSERIAL.println(current_low[i]);*/
  6237. }
  6238. }
  6239. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6240. //SERIAL_ECHOLNPGM("HIGH");
  6241. for (uint8_t i = 0; i < 3; i++) {
  6242. st_current_set(i, current_high[i]);
  6243. /*MYSERIAL.print(int(i));
  6244. SERIAL_ECHOPGM(": ");
  6245. MYSERIAL.println(current_high[i]);*/
  6246. }
  6247. }
  6248. else {
  6249. for (uint8_t i = 0; i < 3; i++) {
  6250. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6251. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6252. st_current_set(i, tmp_motor[i]);
  6253. /*MYSERIAL.print(int(i));
  6254. SERIAL_ECHOPGM(": ");
  6255. MYSERIAL.println(tmp_motor[i]);*/
  6256. }
  6257. }
  6258. }
  6259. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6260. void get_coordinates()
  6261. {
  6262. bool seen[4]={false,false,false,false};
  6263. for(int8_t i=0; i < NUM_AXIS; i++) {
  6264. if(code_seen(axis_codes[i]))
  6265. {
  6266. bool relative = axis_relative_modes[i] || relative_mode;
  6267. destination[i] = (float)code_value();
  6268. if (i == E_AXIS) {
  6269. float emult = extruder_multiplier[active_extruder];
  6270. if (emult != 1.) {
  6271. if (! relative) {
  6272. destination[i] -= current_position[i];
  6273. relative = true;
  6274. }
  6275. destination[i] *= emult;
  6276. }
  6277. }
  6278. if (relative)
  6279. destination[i] += current_position[i];
  6280. seen[i]=true;
  6281. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6282. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6283. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6284. }
  6285. else destination[i] = current_position[i]; //Are these else lines really needed?
  6286. }
  6287. if(code_seen('F')) {
  6288. next_feedrate = code_value();
  6289. #ifdef MAX_SILENT_FEEDRATE
  6290. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6291. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6292. #endif //MAX_SILENT_FEEDRATE
  6293. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6294. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6295. {
  6296. // float e_max_speed =
  6297. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6298. }
  6299. }
  6300. }
  6301. void get_arc_coordinates()
  6302. {
  6303. #ifdef SF_ARC_FIX
  6304. bool relative_mode_backup = relative_mode;
  6305. relative_mode = true;
  6306. #endif
  6307. get_coordinates();
  6308. #ifdef SF_ARC_FIX
  6309. relative_mode=relative_mode_backup;
  6310. #endif
  6311. if(code_seen('I')) {
  6312. offset[0] = code_value();
  6313. }
  6314. else {
  6315. offset[0] = 0.0;
  6316. }
  6317. if(code_seen('J')) {
  6318. offset[1] = code_value();
  6319. }
  6320. else {
  6321. offset[1] = 0.0;
  6322. }
  6323. }
  6324. void clamp_to_software_endstops(float target[3])
  6325. {
  6326. #ifdef DEBUG_DISABLE_SWLIMITS
  6327. return;
  6328. #endif //DEBUG_DISABLE_SWLIMITS
  6329. world2machine_clamp(target[0], target[1]);
  6330. // Clamp the Z coordinate.
  6331. if (min_software_endstops) {
  6332. float negative_z_offset = 0;
  6333. #ifdef ENABLE_AUTO_BED_LEVELING
  6334. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6335. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6336. #endif
  6337. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6338. }
  6339. if (max_software_endstops) {
  6340. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6341. }
  6342. }
  6343. #ifdef MESH_BED_LEVELING
  6344. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6345. float dx = x - current_position[X_AXIS];
  6346. float dy = y - current_position[Y_AXIS];
  6347. float dz = z - current_position[Z_AXIS];
  6348. int n_segments = 0;
  6349. if (mbl.active) {
  6350. float len = abs(dx) + abs(dy);
  6351. if (len > 0)
  6352. // Split to 3cm segments or shorter.
  6353. n_segments = int(ceil(len / 30.f));
  6354. }
  6355. if (n_segments > 1) {
  6356. float de = e - current_position[E_AXIS];
  6357. for (int i = 1; i < n_segments; ++ i) {
  6358. float t = float(i) / float(n_segments);
  6359. plan_buffer_line(
  6360. current_position[X_AXIS] + t * dx,
  6361. current_position[Y_AXIS] + t * dy,
  6362. current_position[Z_AXIS] + t * dz,
  6363. current_position[E_AXIS] + t * de,
  6364. feed_rate, extruder);
  6365. }
  6366. }
  6367. // The rest of the path.
  6368. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6369. current_position[X_AXIS] = x;
  6370. current_position[Y_AXIS] = y;
  6371. current_position[Z_AXIS] = z;
  6372. current_position[E_AXIS] = e;
  6373. }
  6374. #endif // MESH_BED_LEVELING
  6375. void prepare_move()
  6376. {
  6377. clamp_to_software_endstops(destination);
  6378. previous_millis_cmd = millis();
  6379. // Do not use feedmultiply for E or Z only moves
  6380. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6381. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6382. }
  6383. else {
  6384. #ifdef MESH_BED_LEVELING
  6385. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6386. #else
  6387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6388. #endif
  6389. }
  6390. for(int8_t i=0; i < NUM_AXIS; i++) {
  6391. current_position[i] = destination[i];
  6392. }
  6393. }
  6394. void prepare_arc_move(char isclockwise) {
  6395. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6396. // Trace the arc
  6397. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6398. // As far as the parser is concerned, the position is now == target. In reality the
  6399. // motion control system might still be processing the action and the real tool position
  6400. // in any intermediate location.
  6401. for(int8_t i=0; i < NUM_AXIS; i++) {
  6402. current_position[i] = destination[i];
  6403. }
  6404. previous_millis_cmd = millis();
  6405. }
  6406. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6407. #if defined(FAN_PIN)
  6408. #if CONTROLLERFAN_PIN == FAN_PIN
  6409. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6410. #endif
  6411. #endif
  6412. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6413. unsigned long lastMotorCheck = 0;
  6414. void controllerFan()
  6415. {
  6416. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6417. {
  6418. lastMotorCheck = millis();
  6419. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6420. #if EXTRUDERS > 2
  6421. || !READ(E2_ENABLE_PIN)
  6422. #endif
  6423. #if EXTRUDER > 1
  6424. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6425. || !READ(X2_ENABLE_PIN)
  6426. #endif
  6427. || !READ(E1_ENABLE_PIN)
  6428. #endif
  6429. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6430. {
  6431. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6432. }
  6433. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6434. {
  6435. digitalWrite(CONTROLLERFAN_PIN, 0);
  6436. analogWrite(CONTROLLERFAN_PIN, 0);
  6437. }
  6438. else
  6439. {
  6440. // allows digital or PWM fan output to be used (see M42 handling)
  6441. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6442. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6443. }
  6444. }
  6445. }
  6446. #endif
  6447. #ifdef TEMP_STAT_LEDS
  6448. static bool blue_led = false;
  6449. static bool red_led = false;
  6450. static uint32_t stat_update = 0;
  6451. void handle_status_leds(void) {
  6452. float max_temp = 0.0;
  6453. if(millis() > stat_update) {
  6454. stat_update += 500; // Update every 0.5s
  6455. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6456. max_temp = max(max_temp, degHotend(cur_extruder));
  6457. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6458. }
  6459. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6460. max_temp = max(max_temp, degTargetBed());
  6461. max_temp = max(max_temp, degBed());
  6462. #endif
  6463. if((max_temp > 55.0) && (red_led == false)) {
  6464. digitalWrite(STAT_LED_RED, 1);
  6465. digitalWrite(STAT_LED_BLUE, 0);
  6466. red_led = true;
  6467. blue_led = false;
  6468. }
  6469. if((max_temp < 54.0) && (blue_led == false)) {
  6470. digitalWrite(STAT_LED_RED, 0);
  6471. digitalWrite(STAT_LED_BLUE, 1);
  6472. red_led = false;
  6473. blue_led = true;
  6474. }
  6475. }
  6476. }
  6477. #endif
  6478. #ifdef SAFETYTIMER
  6479. /**
  6480. * @brief Turn off heating after 30 minutes of inactivity
  6481. *
  6482. * Full screen blocking notification message is shown after heater turning off.
  6483. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6484. * damage print.
  6485. */
  6486. static void handleSafetyTimer()
  6487. {
  6488. #if (EXTRUDERS > 1)
  6489. #error Implemented only for one extruder.
  6490. #endif //(EXTRUDERS > 1)
  6491. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6492. {
  6493. safetyTimer.stop();
  6494. }
  6495. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6496. {
  6497. safetyTimer.start();
  6498. }
  6499. else if (safetyTimer.expired(1800000ul)) //30 min
  6500. {
  6501. setTargetBed(0);
  6502. setTargetHotend(0, 0);
  6503. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6504. }
  6505. }
  6506. #endif //SAFETYTIMER
  6507. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6508. {
  6509. #ifdef PAT9125
  6510. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6511. {
  6512. if (fsensor_autoload_enabled)
  6513. {
  6514. if (fsensor_check_autoload())
  6515. {
  6516. if (degHotend0() > EXTRUDE_MINTEMP)
  6517. {
  6518. fsensor_autoload_check_stop();
  6519. tone(BEEPER, 1000);
  6520. delay_keep_alive(50);
  6521. noTone(BEEPER);
  6522. loading_flag = true;
  6523. enquecommand_front_P((PSTR("M701")));
  6524. }
  6525. else
  6526. {
  6527. lcd_update_enable(false);
  6528. lcd_implementation_clear();
  6529. lcd.setCursor(0, 0);
  6530. lcd_printPGM(_T(MSG_ERROR));
  6531. lcd.setCursor(0, 2);
  6532. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6533. delay(2000);
  6534. lcd_implementation_clear();
  6535. lcd_update_enable(true);
  6536. }
  6537. }
  6538. }
  6539. else
  6540. fsensor_autoload_check_start();
  6541. }
  6542. else
  6543. if (fsensor_autoload_enabled)
  6544. fsensor_autoload_check_stop();
  6545. #endif //PAT9125
  6546. #ifdef SAFETYTIMER
  6547. handleSafetyTimer();
  6548. #endif //SAFETYTIMER
  6549. #if defined(KILL_PIN) && KILL_PIN > -1
  6550. static int killCount = 0; // make the inactivity button a bit less responsive
  6551. const int KILL_DELAY = 10000;
  6552. #endif
  6553. if(buflen < (BUFSIZE-1)){
  6554. get_command();
  6555. }
  6556. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6557. if(max_inactive_time)
  6558. kill(_n(""), 4);
  6559. if(stepper_inactive_time) {
  6560. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6561. {
  6562. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6563. disable_x();
  6564. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6565. disable_y();
  6566. disable_z();
  6567. disable_e0();
  6568. disable_e1();
  6569. disable_e2();
  6570. }
  6571. }
  6572. }
  6573. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6574. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6575. {
  6576. chdkActive = false;
  6577. WRITE(CHDK, LOW);
  6578. }
  6579. #endif
  6580. #if defined(KILL_PIN) && KILL_PIN > -1
  6581. // Check if the kill button was pressed and wait just in case it was an accidental
  6582. // key kill key press
  6583. // -------------------------------------------------------------------------------
  6584. if( 0 == READ(KILL_PIN) )
  6585. {
  6586. killCount++;
  6587. }
  6588. else if (killCount > 0)
  6589. {
  6590. killCount--;
  6591. }
  6592. // Exceeded threshold and we can confirm that it was not accidental
  6593. // KILL the machine
  6594. // ----------------------------------------------------------------
  6595. if ( killCount >= KILL_DELAY)
  6596. {
  6597. kill("", 5);
  6598. }
  6599. #endif
  6600. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6601. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6602. #endif
  6603. #ifdef EXTRUDER_RUNOUT_PREVENT
  6604. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6605. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6606. {
  6607. bool oldstatus=READ(E0_ENABLE_PIN);
  6608. enable_e0();
  6609. float oldepos=current_position[E_AXIS];
  6610. float oldedes=destination[E_AXIS];
  6611. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6612. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6613. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6614. current_position[E_AXIS]=oldepos;
  6615. destination[E_AXIS]=oldedes;
  6616. plan_set_e_position(oldepos);
  6617. previous_millis_cmd=millis();
  6618. st_synchronize();
  6619. WRITE(E0_ENABLE_PIN,oldstatus);
  6620. }
  6621. #endif
  6622. #ifdef TEMP_STAT_LEDS
  6623. handle_status_leds();
  6624. #endif
  6625. check_axes_activity();
  6626. }
  6627. void kill(const char *full_screen_message, unsigned char id)
  6628. {
  6629. printf_P(_N("KILL: %d\n"), id);
  6630. //return;
  6631. cli(); // Stop interrupts
  6632. disable_heater();
  6633. disable_x();
  6634. // SERIAL_ECHOLNPGM("kill - disable Y");
  6635. disable_y();
  6636. disable_z();
  6637. disable_e0();
  6638. disable_e1();
  6639. disable_e2();
  6640. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6641. pinMode(PS_ON_PIN,INPUT);
  6642. #endif
  6643. SERIAL_ERROR_START;
  6644. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6645. if (full_screen_message != NULL) {
  6646. SERIAL_ERRORLNRPGM(full_screen_message);
  6647. lcd_display_message_fullscreen_P(full_screen_message);
  6648. } else {
  6649. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6650. }
  6651. // FMC small patch to update the LCD before ending
  6652. sei(); // enable interrupts
  6653. for ( int i=5; i--; lcd_update())
  6654. {
  6655. delay(200);
  6656. }
  6657. cli(); // disable interrupts
  6658. suicide();
  6659. while(1)
  6660. {
  6661. #ifdef WATCHDOG
  6662. wdt_reset();
  6663. #endif //WATCHDOG
  6664. /* Intentionally left empty */
  6665. } // Wait for reset
  6666. }
  6667. void Stop()
  6668. {
  6669. disable_heater();
  6670. if(Stopped == false) {
  6671. Stopped = true;
  6672. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6673. SERIAL_ERROR_START;
  6674. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6675. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6676. }
  6677. }
  6678. bool IsStopped() { return Stopped; };
  6679. #ifdef FAST_PWM_FAN
  6680. void setPwmFrequency(uint8_t pin, int val)
  6681. {
  6682. val &= 0x07;
  6683. switch(digitalPinToTimer(pin))
  6684. {
  6685. #if defined(TCCR0A)
  6686. case TIMER0A:
  6687. case TIMER0B:
  6688. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6689. // TCCR0B |= val;
  6690. break;
  6691. #endif
  6692. #if defined(TCCR1A)
  6693. case TIMER1A:
  6694. case TIMER1B:
  6695. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6696. // TCCR1B |= val;
  6697. break;
  6698. #endif
  6699. #if defined(TCCR2)
  6700. case TIMER2:
  6701. case TIMER2:
  6702. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6703. TCCR2 |= val;
  6704. break;
  6705. #endif
  6706. #if defined(TCCR2A)
  6707. case TIMER2A:
  6708. case TIMER2B:
  6709. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6710. TCCR2B |= val;
  6711. break;
  6712. #endif
  6713. #if defined(TCCR3A)
  6714. case TIMER3A:
  6715. case TIMER3B:
  6716. case TIMER3C:
  6717. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6718. TCCR3B |= val;
  6719. break;
  6720. #endif
  6721. #if defined(TCCR4A)
  6722. case TIMER4A:
  6723. case TIMER4B:
  6724. case TIMER4C:
  6725. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6726. TCCR4B |= val;
  6727. break;
  6728. #endif
  6729. #if defined(TCCR5A)
  6730. case TIMER5A:
  6731. case TIMER5B:
  6732. case TIMER5C:
  6733. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6734. TCCR5B |= val;
  6735. break;
  6736. #endif
  6737. }
  6738. }
  6739. #endif //FAST_PWM_FAN
  6740. bool setTargetedHotend(int code){
  6741. tmp_extruder = active_extruder;
  6742. if(code_seen('T')) {
  6743. tmp_extruder = code_value();
  6744. if(tmp_extruder >= EXTRUDERS) {
  6745. SERIAL_ECHO_START;
  6746. switch(code){
  6747. case 104:
  6748. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6749. break;
  6750. case 105:
  6751. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6752. break;
  6753. case 109:
  6754. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6755. break;
  6756. case 218:
  6757. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6758. break;
  6759. case 221:
  6760. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6761. break;
  6762. }
  6763. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6764. return true;
  6765. }
  6766. }
  6767. return false;
  6768. }
  6769. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6770. {
  6771. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6772. {
  6773. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6774. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6775. }
  6776. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6777. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6778. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6779. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6780. total_filament_used = 0;
  6781. }
  6782. float calculate_extruder_multiplier(float diameter) {
  6783. float out = 1.f;
  6784. if (volumetric_enabled && diameter > 0.f) {
  6785. float area = M_PI * diameter * diameter * 0.25;
  6786. out = 1.f / area;
  6787. }
  6788. if (extrudemultiply != 100)
  6789. out *= float(extrudemultiply) * 0.01f;
  6790. return out;
  6791. }
  6792. void calculate_extruder_multipliers() {
  6793. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6794. #if EXTRUDERS > 1
  6795. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6796. #if EXTRUDERS > 2
  6797. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6798. #endif
  6799. #endif
  6800. }
  6801. void delay_keep_alive(unsigned int ms)
  6802. {
  6803. for (;;) {
  6804. manage_heater();
  6805. // Manage inactivity, but don't disable steppers on timeout.
  6806. manage_inactivity(true);
  6807. lcd_update();
  6808. if (ms == 0)
  6809. break;
  6810. else if (ms >= 50) {
  6811. delay(50);
  6812. ms -= 50;
  6813. } else {
  6814. delay(ms);
  6815. ms = 0;
  6816. }
  6817. }
  6818. }
  6819. void wait_for_heater(long codenum) {
  6820. #ifdef TEMP_RESIDENCY_TIME
  6821. long residencyStart;
  6822. residencyStart = -1;
  6823. /* continue to loop until we have reached the target temp
  6824. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6825. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6826. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6827. #else
  6828. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6829. #endif //TEMP_RESIDENCY_TIME
  6830. if ((millis() - codenum) > 1000UL)
  6831. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6832. if (!farm_mode) {
  6833. SERIAL_PROTOCOLPGM("T:");
  6834. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6835. SERIAL_PROTOCOLPGM(" E:");
  6836. SERIAL_PROTOCOL((int)tmp_extruder);
  6837. #ifdef TEMP_RESIDENCY_TIME
  6838. SERIAL_PROTOCOLPGM(" W:");
  6839. if (residencyStart > -1)
  6840. {
  6841. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6842. SERIAL_PROTOCOLLN(codenum);
  6843. }
  6844. else
  6845. {
  6846. SERIAL_PROTOCOLLN("?");
  6847. }
  6848. }
  6849. #else
  6850. SERIAL_PROTOCOLLN("");
  6851. #endif
  6852. codenum = millis();
  6853. }
  6854. manage_heater();
  6855. manage_inactivity();
  6856. lcd_update();
  6857. #ifdef TEMP_RESIDENCY_TIME
  6858. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6859. or when current temp falls outside the hysteresis after target temp was reached */
  6860. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6861. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6862. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6863. {
  6864. residencyStart = millis();
  6865. }
  6866. #endif //TEMP_RESIDENCY_TIME
  6867. }
  6868. }
  6869. void check_babystep() {
  6870. int babystep_z;
  6871. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6872. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6873. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6874. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6875. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6876. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6877. lcd_update_enable(true);
  6878. }
  6879. }
  6880. #ifdef DIS
  6881. void d_setup()
  6882. {
  6883. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6884. pinMode(D_DATA, INPUT_PULLUP);
  6885. pinMode(D_REQUIRE, OUTPUT);
  6886. digitalWrite(D_REQUIRE, HIGH);
  6887. }
  6888. float d_ReadData()
  6889. {
  6890. int digit[13];
  6891. String mergeOutput;
  6892. float output;
  6893. digitalWrite(D_REQUIRE, HIGH);
  6894. for (int i = 0; i<13; i++)
  6895. {
  6896. for (int j = 0; j < 4; j++)
  6897. {
  6898. while (digitalRead(D_DATACLOCK) == LOW) {}
  6899. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6900. bitWrite(digit[i], j, digitalRead(D_DATA));
  6901. }
  6902. }
  6903. digitalWrite(D_REQUIRE, LOW);
  6904. mergeOutput = "";
  6905. output = 0;
  6906. for (int r = 5; r <= 10; r++) //Merge digits
  6907. {
  6908. mergeOutput += digit[r];
  6909. }
  6910. output = mergeOutput.toFloat();
  6911. if (digit[4] == 8) //Handle sign
  6912. {
  6913. output *= -1;
  6914. }
  6915. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6916. {
  6917. output /= 10;
  6918. }
  6919. return output;
  6920. }
  6921. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6922. int t1 = 0;
  6923. int t_delay = 0;
  6924. int digit[13];
  6925. int m;
  6926. char str[3];
  6927. //String mergeOutput;
  6928. char mergeOutput[15];
  6929. float output;
  6930. int mesh_point = 0; //index number of calibration point
  6931. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6932. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6933. float mesh_home_z_search = 4;
  6934. float row[x_points_num];
  6935. int ix = 0;
  6936. int iy = 0;
  6937. char* filename_wldsd = "wldsd.txt";
  6938. char data_wldsd[70];
  6939. char numb_wldsd[10];
  6940. d_setup();
  6941. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6942. // We don't know where we are! HOME!
  6943. // Push the commands to the front of the message queue in the reverse order!
  6944. // There shall be always enough space reserved for these commands.
  6945. repeatcommand_front(); // repeat G80 with all its parameters
  6946. enquecommand_front_P((PSTR("G28 W0")));
  6947. enquecommand_front_P((PSTR("G1 Z5")));
  6948. return;
  6949. }
  6950. bool custom_message_old = custom_message;
  6951. unsigned int custom_message_type_old = custom_message_type;
  6952. unsigned int custom_message_state_old = custom_message_state;
  6953. custom_message = true;
  6954. custom_message_type = 1;
  6955. custom_message_state = (x_points_num * y_points_num) + 10;
  6956. lcd_update(1);
  6957. mbl.reset();
  6958. babystep_undo();
  6959. card.openFile(filename_wldsd, false);
  6960. current_position[Z_AXIS] = mesh_home_z_search;
  6961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6962. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6963. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6964. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6965. setup_for_endstop_move(false);
  6966. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6967. SERIAL_PROTOCOL(x_points_num);
  6968. SERIAL_PROTOCOLPGM(",");
  6969. SERIAL_PROTOCOL(y_points_num);
  6970. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6971. SERIAL_PROTOCOL(mesh_home_z_search);
  6972. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6973. SERIAL_PROTOCOL(x_dimension);
  6974. SERIAL_PROTOCOLPGM(",");
  6975. SERIAL_PROTOCOL(y_dimension);
  6976. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6977. while (mesh_point != x_points_num * y_points_num) {
  6978. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6979. iy = mesh_point / x_points_num;
  6980. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6981. float z0 = 0.f;
  6982. current_position[Z_AXIS] = mesh_home_z_search;
  6983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6984. st_synchronize();
  6985. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6986. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6988. st_synchronize();
  6989. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6990. break;
  6991. card.closefile();
  6992. }
  6993. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6994. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6995. //strcat(data_wldsd, numb_wldsd);
  6996. //MYSERIAL.println(data_wldsd);
  6997. //delay(1000);
  6998. //delay(3000);
  6999. //t1 = millis();
  7000. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7001. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7002. memset(digit, 0, sizeof(digit));
  7003. //cli();
  7004. digitalWrite(D_REQUIRE, LOW);
  7005. for (int i = 0; i<13; i++)
  7006. {
  7007. //t1 = millis();
  7008. for (int j = 0; j < 4; j++)
  7009. {
  7010. while (digitalRead(D_DATACLOCK) == LOW) {}
  7011. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7012. bitWrite(digit[i], j, digitalRead(D_DATA));
  7013. }
  7014. //t_delay = (millis() - t1);
  7015. //SERIAL_PROTOCOLPGM(" ");
  7016. //SERIAL_PROTOCOL_F(t_delay, 5);
  7017. //SERIAL_PROTOCOLPGM(" ");
  7018. }
  7019. //sei();
  7020. digitalWrite(D_REQUIRE, HIGH);
  7021. mergeOutput[0] = '\0';
  7022. output = 0;
  7023. for (int r = 5; r <= 10; r++) //Merge digits
  7024. {
  7025. sprintf(str, "%d", digit[r]);
  7026. strcat(mergeOutput, str);
  7027. }
  7028. output = atof(mergeOutput);
  7029. if (digit[4] == 8) //Handle sign
  7030. {
  7031. output *= -1;
  7032. }
  7033. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7034. {
  7035. output *= 0.1;
  7036. }
  7037. //output = d_ReadData();
  7038. //row[ix] = current_position[Z_AXIS];
  7039. memset(data_wldsd, 0, sizeof(data_wldsd));
  7040. for (int i = 0; i <3; i++) {
  7041. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7042. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7043. strcat(data_wldsd, numb_wldsd);
  7044. strcat(data_wldsd, ";");
  7045. }
  7046. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7047. dtostrf(output, 8, 5, numb_wldsd);
  7048. strcat(data_wldsd, numb_wldsd);
  7049. //strcat(data_wldsd, ";");
  7050. card.write_command(data_wldsd);
  7051. //row[ix] = d_ReadData();
  7052. row[ix] = output; // current_position[Z_AXIS];
  7053. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7054. for (int i = 0; i < x_points_num; i++) {
  7055. SERIAL_PROTOCOLPGM(" ");
  7056. SERIAL_PROTOCOL_F(row[i], 5);
  7057. }
  7058. SERIAL_PROTOCOLPGM("\n");
  7059. }
  7060. custom_message_state--;
  7061. mesh_point++;
  7062. lcd_update(1);
  7063. }
  7064. card.closefile();
  7065. }
  7066. #endif
  7067. void temp_compensation_start() {
  7068. custom_message = true;
  7069. custom_message_type = 5;
  7070. custom_message_state = PINDA_HEAT_T + 1;
  7071. lcd_update(2);
  7072. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7073. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7074. }
  7075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7076. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7077. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7078. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7080. st_synchronize();
  7081. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7082. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7083. delay_keep_alive(1000);
  7084. custom_message_state = PINDA_HEAT_T - i;
  7085. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7086. else lcd_update(1);
  7087. }
  7088. custom_message_type = 0;
  7089. custom_message_state = 0;
  7090. custom_message = false;
  7091. }
  7092. void temp_compensation_apply() {
  7093. int i_add;
  7094. int compensation_value;
  7095. int z_shift = 0;
  7096. float z_shift_mm;
  7097. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7098. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7099. i_add = (target_temperature_bed - 60) / 10;
  7100. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7101. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7102. }else {
  7103. //interpolation
  7104. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7105. }
  7106. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7108. st_synchronize();
  7109. plan_set_z_position(current_position[Z_AXIS]);
  7110. }
  7111. else {
  7112. //we have no temp compensation data
  7113. }
  7114. }
  7115. float temp_comp_interpolation(float inp_temperature) {
  7116. //cubic spline interpolation
  7117. int n, i, j, k;
  7118. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7119. int shift[10];
  7120. int temp_C[10];
  7121. n = 6; //number of measured points
  7122. shift[0] = 0;
  7123. for (i = 0; i < n; i++) {
  7124. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7125. temp_C[i] = 50 + i * 10; //temperature in C
  7126. #ifdef PINDA_THERMISTOR
  7127. temp_C[i] = 35 + i * 5; //temperature in C
  7128. #else
  7129. temp_C[i] = 50 + i * 10; //temperature in C
  7130. #endif
  7131. x[i] = (float)temp_C[i];
  7132. f[i] = (float)shift[i];
  7133. }
  7134. if (inp_temperature < x[0]) return 0;
  7135. for (i = n - 1; i>0; i--) {
  7136. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7137. h[i - 1] = x[i] - x[i - 1];
  7138. }
  7139. //*********** formation of h, s , f matrix **************
  7140. for (i = 1; i<n - 1; i++) {
  7141. m[i][i] = 2 * (h[i - 1] + h[i]);
  7142. if (i != 1) {
  7143. m[i][i - 1] = h[i - 1];
  7144. m[i - 1][i] = h[i - 1];
  7145. }
  7146. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7147. }
  7148. //*********** forward elimination **************
  7149. for (i = 1; i<n - 2; i++) {
  7150. temp = (m[i + 1][i] / m[i][i]);
  7151. for (j = 1; j <= n - 1; j++)
  7152. m[i + 1][j] -= temp*m[i][j];
  7153. }
  7154. //*********** backward substitution *********
  7155. for (i = n - 2; i>0; i--) {
  7156. sum = 0;
  7157. for (j = i; j <= n - 2; j++)
  7158. sum += m[i][j] * s[j];
  7159. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7160. }
  7161. for (i = 0; i<n - 1; i++)
  7162. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7163. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7164. b = s[i] / 2;
  7165. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7166. d = f[i];
  7167. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7168. }
  7169. return sum;
  7170. }
  7171. #ifdef PINDA_THERMISTOR
  7172. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7173. {
  7174. if (!temp_cal_active) return 0;
  7175. if (!calibration_status_pinda()) return 0;
  7176. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7177. }
  7178. #endif //PINDA_THERMISTOR
  7179. void long_pause() //long pause print
  7180. {
  7181. st_synchronize();
  7182. //save currently set parameters to global variables
  7183. saved_feedmultiply = feedmultiply;
  7184. HotendTempBckp = degTargetHotend(active_extruder);
  7185. fanSpeedBckp = fanSpeed;
  7186. start_pause_print = millis();
  7187. //save position
  7188. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7189. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7190. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7191. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7192. //retract
  7193. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7195. //lift z
  7196. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7197. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7199. //set nozzle target temperature to 0
  7200. setTargetHotend(0, 0);
  7201. setTargetHotend(0, 1);
  7202. setTargetHotend(0, 2);
  7203. //Move XY to side
  7204. current_position[X_AXIS] = X_PAUSE_POS;
  7205. current_position[Y_AXIS] = Y_PAUSE_POS;
  7206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7207. // Turn off the print fan
  7208. fanSpeed = 0;
  7209. st_synchronize();
  7210. }
  7211. void serialecho_temperatures() {
  7212. float tt = degHotend(active_extruder);
  7213. SERIAL_PROTOCOLPGM("T:");
  7214. SERIAL_PROTOCOL(tt);
  7215. SERIAL_PROTOCOLPGM(" E:");
  7216. SERIAL_PROTOCOL((int)active_extruder);
  7217. SERIAL_PROTOCOLPGM(" B:");
  7218. SERIAL_PROTOCOL_F(degBed(), 1);
  7219. SERIAL_PROTOCOLLN("");
  7220. }
  7221. extern uint32_t sdpos_atomic;
  7222. #ifdef UVLO_SUPPORT
  7223. void uvlo_()
  7224. {
  7225. unsigned long time_start = millis();
  7226. bool sd_print = card.sdprinting;
  7227. // Conserve power as soon as possible.
  7228. disable_x();
  7229. disable_y();
  7230. #ifdef TMC2130
  7231. tmc2130_set_current_h(Z_AXIS, 20);
  7232. tmc2130_set_current_r(Z_AXIS, 20);
  7233. tmc2130_set_current_h(E_AXIS, 20);
  7234. tmc2130_set_current_r(E_AXIS, 20);
  7235. #endif //TMC2130
  7236. // Indicate that the interrupt has been triggered.
  7237. // SERIAL_ECHOLNPGM("UVLO");
  7238. // Read out the current Z motor microstep counter. This will be later used
  7239. // for reaching the zero full step before powering off.
  7240. uint16_t z_microsteps = 0;
  7241. #ifdef TMC2130
  7242. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7243. #endif //TMC2130
  7244. // Calculate the file position, from which to resume this print.
  7245. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7246. {
  7247. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7248. sd_position -= sdlen_planner;
  7249. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7250. sd_position -= sdlen_cmdqueue;
  7251. if (sd_position < 0) sd_position = 0;
  7252. }
  7253. // Backup the feedrate in mm/min.
  7254. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7255. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7256. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7257. // are in action.
  7258. planner_abort_hard();
  7259. // Store the current extruder position.
  7260. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7261. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7262. // Clean the input command queue.
  7263. cmdqueue_reset();
  7264. card.sdprinting = false;
  7265. // card.closefile();
  7266. // Enable stepper driver interrupt to move Z axis.
  7267. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7268. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7269. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7270. sei();
  7271. plan_buffer_line(
  7272. current_position[X_AXIS],
  7273. current_position[Y_AXIS],
  7274. current_position[Z_AXIS],
  7275. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7276. 95, active_extruder);
  7277. st_synchronize();
  7278. disable_e0();
  7279. plan_buffer_line(
  7280. current_position[X_AXIS],
  7281. current_position[Y_AXIS],
  7282. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7283. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7284. 40, active_extruder);
  7285. st_synchronize();
  7286. disable_e0();
  7287. plan_buffer_line(
  7288. current_position[X_AXIS],
  7289. current_position[Y_AXIS],
  7290. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7291. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7292. 40, active_extruder);
  7293. st_synchronize();
  7294. disable_e0();
  7295. disable_z();
  7296. // Move Z up to the next 0th full step.
  7297. // Write the file position.
  7298. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7299. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7300. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7301. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7302. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7303. // Scale the z value to 1u resolution.
  7304. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7305. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7306. }
  7307. // Read out the current Z motor microstep counter. This will be later used
  7308. // for reaching the zero full step before powering off.
  7309. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7310. // Store the current position.
  7311. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7312. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7313. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7314. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7315. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7316. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7317. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7318. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7319. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7320. #if EXTRUDERS > 1
  7321. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7322. #if EXTRUDERS > 2
  7323. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7324. #endif
  7325. #endif
  7326. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7327. // Finaly store the "power outage" flag.
  7328. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7329. st_synchronize();
  7330. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7331. disable_z();
  7332. // Increment power failure counter
  7333. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7334. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7335. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7336. #if 0
  7337. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7338. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7340. st_synchronize();
  7341. #endif
  7342. cli();
  7343. volatile unsigned int ppcount = 0;
  7344. SET_OUTPUT(BEEPER);
  7345. WRITE(BEEPER, HIGH);
  7346. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7347. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7348. }
  7349. WRITE(BEEPER, LOW);
  7350. while(1){
  7351. #if 1
  7352. WRITE(BEEPER, LOW);
  7353. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7354. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7355. }
  7356. #endif
  7357. };
  7358. }
  7359. #endif //UVLO_SUPPORT
  7360. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7361. void setup_fan_interrupt() {
  7362. //INT7
  7363. DDRE &= ~(1 << 7); //input pin
  7364. PORTE &= ~(1 << 7); //no internal pull-up
  7365. //start with sensing rising edge
  7366. EICRB &= ~(1 << 6);
  7367. EICRB |= (1 << 7);
  7368. //enable INT7 interrupt
  7369. EIMSK |= (1 << 7);
  7370. }
  7371. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7372. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7373. ISR(INT7_vect) {
  7374. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7375. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7376. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7377. t_fan_rising_edge = millis_nc();
  7378. }
  7379. else { //interrupt was triggered by falling edge
  7380. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7381. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7382. }
  7383. }
  7384. EICRB ^= (1 << 6); //change edge
  7385. }
  7386. #endif
  7387. #ifdef UVLO_SUPPORT
  7388. void setup_uvlo_interrupt() {
  7389. DDRE &= ~(1 << 4); //input pin
  7390. PORTE &= ~(1 << 4); //no internal pull-up
  7391. //sensing falling edge
  7392. EICRB |= (1 << 0);
  7393. EICRB &= ~(1 << 1);
  7394. //enable INT4 interrupt
  7395. EIMSK |= (1 << 4);
  7396. }
  7397. ISR(INT4_vect) {
  7398. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7399. SERIAL_ECHOLNPGM("INT4");
  7400. if (IS_SD_PRINTING) uvlo_();
  7401. }
  7402. void recover_print(uint8_t automatic) {
  7403. char cmd[30];
  7404. lcd_update_enable(true);
  7405. lcd_update(2);
  7406. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7407. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7408. // Lift the print head, so one may remove the excess priming material.
  7409. if (current_position[Z_AXIS] < 25)
  7410. enquecommand_P(PSTR("G1 Z25 F800"));
  7411. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7412. enquecommand_P(PSTR("G28 X Y"));
  7413. // Set the target bed and nozzle temperatures and wait.
  7414. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7415. enquecommand(cmd);
  7416. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7417. enquecommand(cmd);
  7418. enquecommand_P(PSTR("M83")); //E axis relative mode
  7419. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7420. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7421. if(automatic == 0){
  7422. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7423. }
  7424. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7425. // Mark the power panic status as inactive.
  7426. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7427. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7428. delay_keep_alive(1000);
  7429. }*/
  7430. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7431. // Restart the print.
  7432. restore_print_from_eeprom();
  7433. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7434. }
  7435. void recover_machine_state_after_power_panic()
  7436. {
  7437. char cmd[30];
  7438. // 1) Recover the logical cordinates at the time of the power panic.
  7439. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7440. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7441. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7442. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7443. // The current position after power panic is moved to the next closest 0th full step.
  7444. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7445. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7446. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7447. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7448. sprintf_P(cmd, PSTR("G92 E"));
  7449. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7450. enquecommand(cmd);
  7451. }
  7452. memcpy(destination, current_position, sizeof(destination));
  7453. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7454. print_world_coordinates();
  7455. // 2) Initialize the logical to physical coordinate system transformation.
  7456. world2machine_initialize();
  7457. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7458. mbl.active = false;
  7459. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7460. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7461. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7462. // Scale the z value to 10u resolution.
  7463. int16_t v;
  7464. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7465. if (v != 0)
  7466. mbl.active = true;
  7467. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7468. }
  7469. if (mbl.active)
  7470. mbl.upsample_3x3();
  7471. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7472. // print_mesh_bed_leveling_table();
  7473. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7474. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7475. babystep_load();
  7476. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7478. // 6) Power up the motors, mark their positions as known.
  7479. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7480. axis_known_position[X_AXIS] = true; enable_x();
  7481. axis_known_position[Y_AXIS] = true; enable_y();
  7482. axis_known_position[Z_AXIS] = true; enable_z();
  7483. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7484. print_physical_coordinates();
  7485. // 7) Recover the target temperatures.
  7486. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7487. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7488. // 8) Recover extruder multipilers
  7489. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7490. #if EXTRUDERS > 1
  7491. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7492. #if EXTRUDERS > 2
  7493. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7494. #endif
  7495. #endif
  7496. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7497. }
  7498. void restore_print_from_eeprom() {
  7499. float x_rec, y_rec, z_pos;
  7500. int feedrate_rec;
  7501. uint8_t fan_speed_rec;
  7502. char cmd[30];
  7503. char* c;
  7504. char filename[13];
  7505. uint8_t depth = 0;
  7506. char dir_name[9];
  7507. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7508. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7509. SERIAL_ECHOPGM("Feedrate:");
  7510. MYSERIAL.println(feedrate_rec);
  7511. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7512. MYSERIAL.println(int(depth));
  7513. for (int i = 0; i < depth; i++) {
  7514. for (int j = 0; j < 8; j++) {
  7515. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7516. }
  7517. dir_name[8] = '\0';
  7518. MYSERIAL.println(dir_name);
  7519. strcpy(dir_names[i], dir_name);
  7520. card.chdir(dir_name);
  7521. }
  7522. for (int i = 0; i < 8; i++) {
  7523. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7524. }
  7525. filename[8] = '\0';
  7526. MYSERIAL.print(filename);
  7527. strcat_P(filename, PSTR(".gco"));
  7528. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7529. enquecommand(cmd);
  7530. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7531. SERIAL_ECHOPGM("Position read from eeprom:");
  7532. MYSERIAL.println(position);
  7533. // E axis relative mode.
  7534. enquecommand_P(PSTR("M83"));
  7535. // Move to the XY print position in logical coordinates, where the print has been killed.
  7536. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7537. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7538. strcat_P(cmd, PSTR(" F2000"));
  7539. enquecommand(cmd);
  7540. // Move the Z axis down to the print, in logical coordinates.
  7541. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7542. enquecommand(cmd);
  7543. // Unretract.
  7544. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7545. // Set the feedrate saved at the power panic.
  7546. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7547. enquecommand(cmd);
  7548. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7549. {
  7550. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7551. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7552. }
  7553. // Set the fan speed saved at the power panic.
  7554. strcpy_P(cmd, PSTR("M106 S"));
  7555. strcat(cmd, itostr3(int(fan_speed_rec)));
  7556. enquecommand(cmd);
  7557. // Set a position in the file.
  7558. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7559. enquecommand(cmd);
  7560. // Start SD print.
  7561. enquecommand_P(PSTR("M24"));
  7562. }
  7563. #endif //UVLO_SUPPORT
  7564. ////////////////////////////////////////////////////////////////////////////////
  7565. // save/restore printing
  7566. void stop_and_save_print_to_ram(float z_move, float e_move)
  7567. {
  7568. if (saved_printing) return;
  7569. unsigned char nplanner_blocks;
  7570. unsigned char nlines;
  7571. uint16_t sdlen_planner;
  7572. uint16_t sdlen_cmdqueue;
  7573. cli();
  7574. if (card.sdprinting) {
  7575. nplanner_blocks = number_of_blocks();
  7576. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7577. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7578. saved_sdpos -= sdlen_planner;
  7579. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7580. saved_sdpos -= sdlen_cmdqueue;
  7581. saved_printing_type = PRINTING_TYPE_SD;
  7582. }
  7583. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7584. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7585. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7586. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7587. saved_sdpos -= nlines;
  7588. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7589. saved_printing_type = PRINTING_TYPE_USB;
  7590. }
  7591. else {
  7592. //not sd printing nor usb printing
  7593. }
  7594. #if 0
  7595. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7596. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7597. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7598. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7599. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7600. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7601. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7602. {
  7603. card.setIndex(saved_sdpos);
  7604. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7605. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7606. MYSERIAL.print(char(card.get()));
  7607. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7608. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7609. MYSERIAL.print(char(card.get()));
  7610. SERIAL_ECHOLNPGM("End of command buffer");
  7611. }
  7612. {
  7613. // Print the content of the planner buffer, line by line:
  7614. card.setIndex(saved_sdpos);
  7615. int8_t iline = 0;
  7616. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7617. SERIAL_ECHOPGM("Planner line (from file): ");
  7618. MYSERIAL.print(int(iline), DEC);
  7619. SERIAL_ECHOPGM(", length: ");
  7620. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7621. SERIAL_ECHOPGM(", steps: (");
  7622. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7623. SERIAL_ECHOPGM(",");
  7624. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7625. SERIAL_ECHOPGM(",");
  7626. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7627. SERIAL_ECHOPGM(",");
  7628. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7629. SERIAL_ECHOPGM("), events: ");
  7630. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7631. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7632. MYSERIAL.print(char(card.get()));
  7633. }
  7634. }
  7635. {
  7636. // Print the content of the command buffer, line by line:
  7637. int8_t iline = 0;
  7638. union {
  7639. struct {
  7640. char lo;
  7641. char hi;
  7642. } lohi;
  7643. uint16_t value;
  7644. } sdlen_single;
  7645. int _bufindr = bufindr;
  7646. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7647. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7648. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7649. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7650. }
  7651. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7652. MYSERIAL.print(int(iline), DEC);
  7653. SERIAL_ECHOPGM(", type: ");
  7654. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7655. SERIAL_ECHOPGM(", len: ");
  7656. MYSERIAL.println(sdlen_single.value, DEC);
  7657. // Print the content of the buffer line.
  7658. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7659. SERIAL_ECHOPGM("Buffer line (from file): ");
  7660. MYSERIAL.print(int(iline), DEC);
  7661. MYSERIAL.println(int(iline), DEC);
  7662. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7663. MYSERIAL.print(char(card.get()));
  7664. if (-- _buflen == 0)
  7665. break;
  7666. // First skip the current command ID and iterate up to the end of the string.
  7667. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7668. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7669. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7670. // If the end of the buffer was empty,
  7671. if (_bufindr == sizeof(cmdbuffer)) {
  7672. // skip to the start and find the nonzero command.
  7673. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7674. }
  7675. }
  7676. }
  7677. #endif
  7678. #if 0
  7679. saved_feedrate2 = feedrate; //save feedrate
  7680. #else
  7681. // Try to deduce the feedrate from the first block of the planner.
  7682. // Speed is in mm/min.
  7683. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7684. #endif
  7685. planner_abort_hard(); //abort printing
  7686. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7687. saved_active_extruder = active_extruder; //save active_extruder
  7688. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7689. cmdqueue_reset(); //empty cmdqueue
  7690. card.sdprinting = false;
  7691. // card.closefile();
  7692. saved_printing = true;
  7693. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7694. st_reset_timer();
  7695. sei();
  7696. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7697. #if 1
  7698. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7699. char buf[48];
  7700. // First unretract (relative extrusion)
  7701. strcpy_P(buf, PSTR("G1 E"));
  7702. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7703. strcat_P(buf, PSTR(" F"));
  7704. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7705. enquecommand(buf, false);
  7706. // Then lift Z axis
  7707. strcpy_P(buf, PSTR("G1 Z"));
  7708. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7709. strcat_P(buf, PSTR(" F"));
  7710. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7711. // At this point the command queue is empty.
  7712. enquecommand(buf, false);
  7713. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7714. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7715. repeatcommand_front();
  7716. #else
  7717. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7718. st_synchronize(); //wait moving
  7719. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7720. memcpy(destination, current_position, sizeof(destination));
  7721. #endif
  7722. }
  7723. }
  7724. void restore_print_from_ram_and_continue(float e_move)
  7725. {
  7726. if (!saved_printing) return;
  7727. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7728. // current_position[axis] = st_get_position_mm(axis);
  7729. active_extruder = saved_active_extruder; //restore active_extruder
  7730. feedrate = saved_feedrate2; //restore feedrate
  7731. float e = saved_pos[E_AXIS] - e_move;
  7732. plan_set_e_position(e);
  7733. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7734. st_synchronize();
  7735. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7736. memcpy(destination, current_position, sizeof(destination));
  7737. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7738. card.setIndex(saved_sdpos);
  7739. sdpos_atomic = saved_sdpos;
  7740. card.sdprinting = true;
  7741. }
  7742. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7743. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7744. FlushSerialRequestResend();
  7745. }
  7746. else {
  7747. //not sd printing nor usb printing
  7748. }
  7749. saved_printing = false;
  7750. }
  7751. void print_world_coordinates()
  7752. {
  7753. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7754. }
  7755. void print_physical_coordinates()
  7756. {
  7757. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7758. }
  7759. void print_mesh_bed_leveling_table()
  7760. {
  7761. SERIAL_ECHOPGM("mesh bed leveling: ");
  7762. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7763. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7764. MYSERIAL.print(mbl.z_values[y][x], 3);
  7765. SERIAL_ECHOPGM(" ");
  7766. }
  7767. SERIAL_ECHOLNPGM("");
  7768. }
  7769. uint16_t print_time_remaining() {
  7770. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7771. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7772. else print_t = print_time_remaining_silent;
  7773. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7774. return print_t;
  7775. }
  7776. uint8_t print_percent_done() {
  7777. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7778. uint8_t percent_done = 0;
  7779. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7780. percent_done = print_percent_done_normal;
  7781. }
  7782. else if (print_percent_done_silent <= 100) {
  7783. percent_done = print_percent_done_silent;
  7784. }
  7785. else {
  7786. percent_done = card.percentDone();
  7787. }
  7788. return percent_done;
  7789. }
  7790. static void print_time_remaining_init() {
  7791. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7792. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7793. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7794. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7795. }
  7796. #define FIL_LOAD_LENGTH 60