Marlin_main.cpp 250 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. bool volumetric_enabled = false;
  268. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  269. #if EXTRUDERS > 1
  270. , DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 2
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #endif
  274. #endif
  275. };
  276. float volumetric_multiplier[EXTRUDERS] = {1.0
  277. #if EXTRUDERS > 1
  278. , 1.0
  279. #if EXTRUDERS > 2
  280. , 1.0
  281. #endif
  282. #endif
  283. };
  284. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  285. float add_homing[3]={0,0,0};
  286. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  287. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  288. bool axis_known_position[3] = {false, false, false};
  289. float zprobe_zoffset;
  290. // Extruder offset
  291. #if EXTRUDERS > 1
  292. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  293. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  294. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  295. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  296. #endif
  297. };
  298. #endif
  299. uint8_t active_extruder = 0;
  300. int fanSpeed=0;
  301. #ifdef FWRETRACT
  302. bool autoretract_enabled=false;
  303. bool retracted[EXTRUDERS]={false
  304. #if EXTRUDERS > 1
  305. , false
  306. #if EXTRUDERS > 2
  307. , false
  308. #endif
  309. #endif
  310. };
  311. bool retracted_swap[EXTRUDERS]={false
  312. #if EXTRUDERS > 1
  313. , false
  314. #if EXTRUDERS > 2
  315. , false
  316. #endif
  317. #endif
  318. };
  319. float retract_length = RETRACT_LENGTH;
  320. float retract_length_swap = RETRACT_LENGTH_SWAP;
  321. float retract_feedrate = RETRACT_FEEDRATE;
  322. float retract_zlift = RETRACT_ZLIFT;
  323. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  324. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  325. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  326. #endif
  327. #ifdef ULTIPANEL
  328. #ifdef PS_DEFAULT_OFF
  329. bool powersupply = false;
  330. #else
  331. bool powersupply = true;
  332. #endif
  333. #endif
  334. bool cancel_heatup = false ;
  335. #ifdef HOST_KEEPALIVE_FEATURE
  336. int busy_state = NOT_BUSY;
  337. static long prev_busy_signal_ms = -1;
  338. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  339. #else
  340. #define host_keepalive();
  341. #define KEEPALIVE_STATE(n);
  342. #endif
  343. #ifdef FILAMENT_SENSOR
  344. //Variables for Filament Sensor input
  345. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  346. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  347. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  348. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  349. int delay_index1=0; //index into ring buffer
  350. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  351. float delay_dist=0; //delay distance counter
  352. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  353. #endif
  354. const char errormagic[] PROGMEM = "Error:";
  355. const char echomagic[] PROGMEM = "echo:";
  356. //===========================================================================
  357. //=============================Private Variables=============================
  358. //===========================================================================
  359. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  360. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  361. static float delta[3] = {0.0, 0.0, 0.0};
  362. // For tracing an arc
  363. static float offset[3] = {0.0, 0.0, 0.0};
  364. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  365. // Determines Absolute or Relative Coordinates.
  366. // Also there is bool axis_relative_modes[] per axis flag.
  367. static bool relative_mode = false;
  368. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  369. //static float tt = 0;
  370. //static float bt = 0;
  371. //Inactivity shutdown variables
  372. static unsigned long previous_millis_cmd = 0;
  373. unsigned long max_inactive_time = 0;
  374. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  375. unsigned long starttime=0;
  376. unsigned long stoptime=0;
  377. unsigned long _usb_timer = 0;
  378. static uint8_t tmp_extruder;
  379. bool extruder_under_pressure = true;
  380. bool Stopped=false;
  381. #if NUM_SERVOS > 0
  382. Servo servos[NUM_SERVOS];
  383. #endif
  384. bool CooldownNoWait = true;
  385. bool target_direction;
  386. //Insert variables if CHDK is defined
  387. #ifdef CHDK
  388. unsigned long chdkHigh = 0;
  389. boolean chdkActive = false;
  390. #endif
  391. //===========================================================================
  392. //=============================Routines======================================
  393. //===========================================================================
  394. void get_arc_coordinates();
  395. bool setTargetedHotend(int code);
  396. void serial_echopair_P(const char *s_P, float v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, double v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, unsigned long v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. #ifdef SDSUPPORT
  403. #include "SdFatUtil.h"
  404. int freeMemory() { return SdFatUtil::FreeRam(); }
  405. #else
  406. extern "C" {
  407. extern unsigned int __bss_end;
  408. extern unsigned int __heap_start;
  409. extern void *__brkval;
  410. int freeMemory() {
  411. int free_memory;
  412. if ((int)__brkval == 0)
  413. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  414. else
  415. free_memory = ((int)&free_memory) - ((int)__brkval);
  416. return free_memory;
  417. }
  418. }
  419. #endif //!SDSUPPORT
  420. void setup_killpin()
  421. {
  422. #if defined(KILL_PIN) && KILL_PIN > -1
  423. SET_INPUT(KILL_PIN);
  424. WRITE(KILL_PIN,HIGH);
  425. #endif
  426. }
  427. // Set home pin
  428. void setup_homepin(void)
  429. {
  430. #if defined(HOME_PIN) && HOME_PIN > -1
  431. SET_INPUT(HOME_PIN);
  432. WRITE(HOME_PIN,HIGH);
  433. #endif
  434. }
  435. void setup_photpin()
  436. {
  437. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  438. SET_OUTPUT(PHOTOGRAPH_PIN);
  439. WRITE(PHOTOGRAPH_PIN, LOW);
  440. #endif
  441. }
  442. void setup_powerhold()
  443. {
  444. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  445. SET_OUTPUT(SUICIDE_PIN);
  446. WRITE(SUICIDE_PIN, HIGH);
  447. #endif
  448. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  449. SET_OUTPUT(PS_ON_PIN);
  450. #if defined(PS_DEFAULT_OFF)
  451. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. SET_OUTPUT(SUICIDE_PIN);
  461. WRITE(SUICIDE_PIN, LOW);
  462. #endif
  463. }
  464. void servo_init()
  465. {
  466. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  467. servos[0].attach(SERVO0_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  470. servos[1].attach(SERVO1_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  473. servos[2].attach(SERVO2_PIN);
  474. #endif
  475. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  476. servos[3].attach(SERVO3_PIN);
  477. #endif
  478. #if (NUM_SERVOS >= 5)
  479. #error "TODO: enter initalisation code for more servos"
  480. #endif
  481. }
  482. static void lcd_language_menu();
  483. void stop_and_save_print_to_ram(float z_move, float e_move);
  484. void restore_print_from_ram_and_continue(float e_move);
  485. extern int8_t CrashDetectMenu;
  486. void crashdet_enable()
  487. {
  488. MYSERIAL.println("crashdet_enable");
  489. tmc2130_sg_stop_on_crash = true;
  490. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  491. CrashDetectMenu = 1;
  492. }
  493. void crashdet_disable()
  494. {
  495. MYSERIAL.println("crashdet_disable");
  496. tmc2130_sg_stop_on_crash = false;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  498. CrashDetectMenu = 0;
  499. }
  500. void crashdet_stop_and_save_print()
  501. {
  502. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  503. }
  504. void crashdet_restore_print_and_continue()
  505. {
  506. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  507. // babystep_apply();
  508. }
  509. void crashdet_stop_and_save_print2()
  510. {
  511. cli();
  512. planner_abort_hard(); //abort printing
  513. cmdqueue_reset(); //empty cmdqueue
  514. card.sdprinting = false;
  515. card.closefile();
  516. sei();
  517. }
  518. void crashdet_detected()
  519. {
  520. printf("CRASH_DETECTED");
  521. /* while (!is_buffer_empty())
  522. {
  523. process_commands();
  524. cmdqueue_pop_front();
  525. }*/
  526. st_synchronize();
  527. lcd_update_enable(true);
  528. lcd_implementation_clear();
  529. lcd_update(2);
  530. // Increment crash counter
  531. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  532. crash_count++;
  533. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  534. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  535. bool yesno = true;
  536. #else
  537. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  538. #endif
  539. lcd_update_enable(true);
  540. lcd_update(2);
  541. lcd_setstatuspgm(WELCOME_MSG);
  542. if (yesno)
  543. {
  544. enquecommand_P(PSTR("G28 X"));
  545. enquecommand_P(PSTR("G28 Y"));
  546. enquecommand_P(PSTR("CRASH_RECOVER"));
  547. }
  548. else
  549. {
  550. enquecommand_P(PSTR("CRASH_CANCEL"));
  551. }
  552. }
  553. void crashdet_recover()
  554. {
  555. crashdet_restore_print_and_continue();
  556. tmc2130_sg_stop_on_crash = true;
  557. }
  558. void crashdet_cancel()
  559. {
  560. card.sdprinting = false;
  561. card.closefile();
  562. tmc2130_sg_stop_on_crash = true;
  563. }
  564. #ifdef MESH_BED_LEVELING
  565. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  566. #endif
  567. // Factory reset function
  568. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  569. // Level input parameter sets depth of reset
  570. // Quiet parameter masks all waitings for user interact.
  571. int er_progress = 0;
  572. void factory_reset(char level, bool quiet)
  573. {
  574. lcd_implementation_clear();
  575. int cursor_pos = 0;
  576. switch (level) {
  577. // Level 0: Language reset
  578. case 0:
  579. WRITE(BEEPER, HIGH);
  580. _delay_ms(100);
  581. WRITE(BEEPER, LOW);
  582. lcd_force_language_selection();
  583. break;
  584. //Level 1: Reset statistics
  585. case 1:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  590. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  591. lcd_menu_statistics();
  592. break;
  593. // Level 2: Prepare for shipping
  594. case 2:
  595. //lcd_printPGM(PSTR("Factory RESET"));
  596. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  597. // Force language selection at the next boot up.
  598. lcd_force_language_selection();
  599. // Force the "Follow calibration flow" message at the next boot up.
  600. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  601. farm_no = 0;
  602. farm_mode == false;
  603. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  604. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  605. WRITE(BEEPER, HIGH);
  606. _delay_ms(100);
  607. WRITE(BEEPER, LOW);
  608. //_delay_ms(2000);
  609. break;
  610. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  611. case 3:
  612. lcd_printPGM(PSTR("Factory RESET"));
  613. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  614. WRITE(BEEPER, HIGH);
  615. _delay_ms(100);
  616. WRITE(BEEPER, LOW);
  617. er_progress = 0;
  618. lcd_print_at_PGM(3, 3, PSTR(" "));
  619. lcd_implementation_print_at(3, 3, er_progress);
  620. // Erase EEPROM
  621. for (int i = 0; i < 4096; i++) {
  622. eeprom_write_byte((uint8_t*)i, 0xFF);
  623. if (i % 41 == 0) {
  624. er_progress++;
  625. lcd_print_at_PGM(3, 3, PSTR(" "));
  626. lcd_implementation_print_at(3, 3, er_progress);
  627. lcd_printPGM(PSTR("%"));
  628. }
  629. }
  630. break;
  631. case 4:
  632. bowden_menu();
  633. break;
  634. default:
  635. break;
  636. }
  637. }
  638. #include "LiquidCrystal.h"
  639. extern LiquidCrystal lcd;
  640. FILE _lcdout = {0};
  641. int lcd_putchar(char c, FILE *stream)
  642. {
  643. lcd.write(c);
  644. return 0;
  645. }
  646. FILE _uartout = {0};
  647. int uart_putchar(char c, FILE *stream)
  648. {
  649. MYSERIAL.write(c);
  650. return 0;
  651. }
  652. void lcd_splash()
  653. {
  654. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  655. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  656. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  657. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  658. }
  659. // "Setup" function is called by the Arduino framework on startup.
  660. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  661. // are initialized by the main() routine provided by the Arduino framework.
  662. void setup()
  663. {
  664. lcd_init();
  665. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  666. lcd_splash();
  667. setup_killpin();
  668. setup_powerhold();
  669. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  670. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  671. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  672. if (farm_no == 0xFFFF) farm_no = 0;
  673. if (farm_mode)
  674. {
  675. prusa_statistics(8);
  676. selectedSerialPort = 1;
  677. }
  678. else
  679. selectedSerialPort = 0;
  680. MYSERIAL.begin(BAUDRATE);
  681. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  682. stdout = uartout;
  683. SERIAL_PROTOCOLLNPGM("start");
  684. SERIAL_ECHO_START;
  685. #if 0
  686. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  687. for (int i = 0; i < 4096; ++i) {
  688. int b = eeprom_read_byte((unsigned char*)i);
  689. if (b != 255) {
  690. SERIAL_ECHO(i);
  691. SERIAL_ECHO(":");
  692. SERIAL_ECHO(b);
  693. SERIAL_ECHOLN("");
  694. }
  695. }
  696. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  697. #endif
  698. // Check startup - does nothing if bootloader sets MCUSR to 0
  699. byte mcu = MCUSR;
  700. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  701. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  702. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  703. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  704. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  705. MCUSR = 0;
  706. //SERIAL_ECHORPGM(MSG_MARLIN);
  707. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  708. #ifdef STRING_VERSION_CONFIG_H
  709. #ifdef STRING_CONFIG_H_AUTHOR
  710. SERIAL_ECHO_START;
  711. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  712. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  713. SERIAL_ECHORPGM(MSG_AUTHOR);
  714. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  715. SERIAL_ECHOPGM("Compiled: ");
  716. SERIAL_ECHOLNPGM(__DATE__);
  717. #endif
  718. #endif
  719. SERIAL_ECHO_START;
  720. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  721. SERIAL_ECHO(freeMemory());
  722. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  723. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  724. //lcd_update_enable(false); // why do we need this?? - andre
  725. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  726. Config_RetrieveSettings(EEPROM_OFFSET);
  727. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  728. tp_init(); // Initialize temperature loop
  729. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  730. plan_init(); // Initialize planner;
  731. watchdog_init();
  732. #ifdef TMC2130
  733. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  734. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  735. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  736. if (crashdet)
  737. {
  738. crashdet_enable();
  739. MYSERIAL.println("CrashDetect ENABLED!");
  740. }
  741. else
  742. {
  743. crashdet_disable();
  744. MYSERIAL.println("CrashDetect DISABLED");
  745. }
  746. #endif //TMC2130
  747. #ifdef PAT9125
  748. MYSERIAL.print("PAT9125_init:");
  749. int pat9125 = pat9125_init(200, 200);
  750. MYSERIAL.println(pat9125);
  751. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  752. if (!pat9125) fsensor = 0; //disable sensor
  753. if (fsensor)
  754. {
  755. fsensor_enable();
  756. MYSERIAL.println("Filament Sensor ENABLED!");
  757. }
  758. else
  759. {
  760. fsensor_disable();
  761. MYSERIAL.println("Filament Sensor DISABLED");
  762. }
  763. #endif //PAT9125
  764. st_init(); // Initialize stepper, this enables interrupts!
  765. setup_photpin();
  766. servo_init();
  767. // Reset the machine correction matrix.
  768. // It does not make sense to load the correction matrix until the machine is homed.
  769. world2machine_reset();
  770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  771. if (!READ(BTN_ENC))
  772. {
  773. _delay_ms(1000);
  774. if (!READ(BTN_ENC))
  775. {
  776. lcd_implementation_clear();
  777. lcd_printPGM(PSTR("Factory RESET"));
  778. SET_OUTPUT(BEEPER);
  779. WRITE(BEEPER, HIGH);
  780. while (!READ(BTN_ENC));
  781. WRITE(BEEPER, LOW);
  782. _delay_ms(2000);
  783. char level = reset_menu();
  784. factory_reset(level, false);
  785. switch (level) {
  786. case 0: _delay_ms(0); break;
  787. case 1: _delay_ms(0); break;
  788. case 2: _delay_ms(0); break;
  789. case 3: _delay_ms(0); break;
  790. }
  791. // _delay_ms(100);
  792. /*
  793. #ifdef MESH_BED_LEVELING
  794. _delay_ms(2000);
  795. if (!READ(BTN_ENC))
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(200);
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. int _z = 0;
  805. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  806. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  807. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  809. }
  810. else
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. }
  816. #endif // mesh */
  817. }
  818. }
  819. else
  820. {
  821. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  822. }
  823. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  824. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  825. #endif
  826. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  827. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  828. #endif
  829. #ifdef DIGIPOT_I2C
  830. digipot_i2c_init();
  831. #endif
  832. setup_homepin();
  833. if (1) {
  834. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  835. // try to run to zero phase before powering the Z motor.
  836. // Move in negative direction
  837. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  838. // Round the current micro-micro steps to micro steps.
  839. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  840. // Until the phase counter is reset to zero.
  841. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  842. delay(2);
  843. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  844. delay(2);
  845. }
  846. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  847. }
  848. #if defined(Z_AXIS_ALWAYS_ON)
  849. enable_z();
  850. #endif
  851. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  852. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  853. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  854. if (farm_no == 0xFFFF) farm_no = 0;
  855. if (farm_mode)
  856. {
  857. prusa_statistics(8);
  858. }
  859. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  860. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  861. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  862. // but this times out if a blocking dialog is shown in setup().
  863. card.initsd();
  864. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  865. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  866. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  867. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  868. // where all the EEPROM entries are set to 0x0ff.
  869. // Once a firmware boots up, it forces at least a language selection, which changes
  870. // EEPROM_LANG to number lower than 0x0ff.
  871. // 1) Set a high power mode.
  872. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  873. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  874. }
  875. #ifdef SNMM
  876. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  877. int _z = BOWDEN_LENGTH;
  878. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  879. }
  880. #endif
  881. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  882. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  883. // is being written into the EEPROM, so the update procedure will be triggered only once.
  884. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  885. if (lang_selected >= LANG_NUM){
  886. lcd_mylang();
  887. }
  888. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  889. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  890. temp_cal_active = false;
  891. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  892. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  893. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  894. }
  895. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  896. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  897. }
  898. check_babystep(); //checking if Z babystep is in allowed range
  899. setup_uvlo_interrupt();
  900. setup_fan_interrupt();
  901. fsensor_setup_interrupt();
  902. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  903. #ifndef DEBUG_DISABLE_STARTMSGS
  904. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  905. lcd_wizard(0);
  906. }
  907. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  908. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  909. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  910. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  911. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  912. // Show the message.
  913. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  914. }
  915. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  916. // Show the message.
  917. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  918. lcd_update_enable(true);
  919. }
  920. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  921. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  922. lcd_update_enable(true);
  923. }
  924. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  925. // Show the message.
  926. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  927. }
  928. }
  929. KEEPALIVE_STATE(IN_PROCESS);
  930. #endif //DEBUG_DISABLE_STARTMSGS
  931. lcd_update_enable(true);
  932. lcd_implementation_clear();
  933. lcd_update(2);
  934. // Store the currently running firmware into an eeprom,
  935. // so the next time the firmware gets updated, it will know from which version it has been updated.
  936. update_current_firmware_version_to_eeprom();
  937. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  938. /*
  939. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  940. else {
  941. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  942. lcd_update_enable(true);
  943. lcd_update(2);
  944. lcd_setstatuspgm(WELCOME_MSG);
  945. }
  946. */
  947. manage_heater(); // Update temperatures
  948. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  949. MYSERIAL.println("Power panic detected!");
  950. MYSERIAL.print("Current bed temp:");
  951. MYSERIAL.println(degBed());
  952. MYSERIAL.print("Saved bed temp:");
  953. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  954. #endif
  955. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  956. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  957. MYSERIAL.println("Automatic recovery!");
  958. #endif
  959. recover_print(1);
  960. }
  961. else{
  962. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  963. MYSERIAL.println("Normal recovery!");
  964. #endif
  965. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  966. else {
  967. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  968. lcd_update_enable(true);
  969. lcd_update(2);
  970. lcd_setstatuspgm(WELCOME_MSG);
  971. }
  972. }
  973. }
  974. KEEPALIVE_STATE(NOT_BUSY);
  975. wdt_enable(WDTO_4S);
  976. }
  977. void trace();
  978. #define CHUNK_SIZE 64 // bytes
  979. #define SAFETY_MARGIN 1
  980. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  981. int chunkHead = 0;
  982. int serial_read_stream() {
  983. setTargetHotend(0, 0);
  984. setTargetBed(0);
  985. lcd_implementation_clear();
  986. lcd_printPGM(PSTR(" Upload in progress"));
  987. // first wait for how many bytes we will receive
  988. uint32_t bytesToReceive;
  989. // receive the four bytes
  990. char bytesToReceiveBuffer[4];
  991. for (int i=0; i<4; i++) {
  992. int data;
  993. while ((data = MYSERIAL.read()) == -1) {};
  994. bytesToReceiveBuffer[i] = data;
  995. }
  996. // make it a uint32
  997. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  998. // we're ready, notify the sender
  999. MYSERIAL.write('+');
  1000. // lock in the routine
  1001. uint32_t receivedBytes = 0;
  1002. while (prusa_sd_card_upload) {
  1003. int i;
  1004. for (i=0; i<CHUNK_SIZE; i++) {
  1005. int data;
  1006. // check if we're not done
  1007. if (receivedBytes == bytesToReceive) {
  1008. break;
  1009. }
  1010. // read the next byte
  1011. while ((data = MYSERIAL.read()) == -1) {};
  1012. receivedBytes++;
  1013. // save it to the chunk
  1014. chunk[i] = data;
  1015. }
  1016. // write the chunk to SD
  1017. card.write_command_no_newline(&chunk[0]);
  1018. // notify the sender we're ready for more data
  1019. MYSERIAL.write('+');
  1020. // for safety
  1021. manage_heater();
  1022. // check if we're done
  1023. if(receivedBytes == bytesToReceive) {
  1024. trace(); // beep
  1025. card.closefile();
  1026. prusa_sd_card_upload = false;
  1027. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1028. return 0;
  1029. }
  1030. }
  1031. }
  1032. #ifdef HOST_KEEPALIVE_FEATURE
  1033. /**
  1034. * Output a "busy" message at regular intervals
  1035. * while the machine is not accepting commands.
  1036. */
  1037. void host_keepalive() {
  1038. if (farm_mode) return;
  1039. long ms = millis();
  1040. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1041. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1042. switch (busy_state) {
  1043. case IN_HANDLER:
  1044. case IN_PROCESS:
  1045. SERIAL_ECHO_START;
  1046. SERIAL_ECHOLNPGM("busy: processing");
  1047. break;
  1048. case PAUSED_FOR_USER:
  1049. SERIAL_ECHO_START;
  1050. SERIAL_ECHOLNPGM("busy: paused for user");
  1051. break;
  1052. case PAUSED_FOR_INPUT:
  1053. SERIAL_ECHO_START;
  1054. SERIAL_ECHOLNPGM("busy: paused for input");
  1055. break;
  1056. default:
  1057. break;
  1058. }
  1059. }
  1060. prev_busy_signal_ms = ms;
  1061. }
  1062. #endif
  1063. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1064. // Before loop(), the setup() function is called by the main() routine.
  1065. void loop()
  1066. {
  1067. KEEPALIVE_STATE(NOT_BUSY);
  1068. bool stack_integrity = true;
  1069. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1070. {
  1071. is_usb_printing = true;
  1072. usb_printing_counter--;
  1073. _usb_timer = millis();
  1074. }
  1075. if (usb_printing_counter == 0)
  1076. {
  1077. is_usb_printing = false;
  1078. }
  1079. if (prusa_sd_card_upload)
  1080. {
  1081. //we read byte-by byte
  1082. serial_read_stream();
  1083. } else
  1084. {
  1085. get_command();
  1086. #ifdef SDSUPPORT
  1087. card.checkautostart(false);
  1088. #endif
  1089. if(buflen)
  1090. {
  1091. cmdbuffer_front_already_processed = false;
  1092. #ifdef SDSUPPORT
  1093. if(card.saving)
  1094. {
  1095. // Saving a G-code file onto an SD-card is in progress.
  1096. // Saving starts with M28, saving until M29 is seen.
  1097. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1098. card.write_command(CMDBUFFER_CURRENT_STRING);
  1099. if(card.logging)
  1100. process_commands();
  1101. else
  1102. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1103. } else {
  1104. card.closefile();
  1105. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1106. }
  1107. } else {
  1108. process_commands();
  1109. }
  1110. #else
  1111. process_commands();
  1112. #endif //SDSUPPORT
  1113. if (! cmdbuffer_front_already_processed && buflen)
  1114. {
  1115. cli();
  1116. union {
  1117. struct {
  1118. char lo;
  1119. char hi;
  1120. } lohi;
  1121. uint16_t value;
  1122. } sdlen;
  1123. sdlen.value = 0;
  1124. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1125. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1126. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1127. }
  1128. cmdqueue_pop_front();
  1129. planner_add_sd_length(sdlen.value);
  1130. sei();
  1131. }
  1132. host_keepalive();
  1133. }
  1134. }
  1135. //check heater every n milliseconds
  1136. manage_heater();
  1137. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1138. checkHitEndstops();
  1139. lcd_update();
  1140. #ifdef PAT9125
  1141. fsensor_update();
  1142. #endif //PAT9125
  1143. #ifdef TMC2130
  1144. tmc2130_check_overtemp();
  1145. if (tmc2130_sg_crash)
  1146. {
  1147. tmc2130_sg_crash = false;
  1148. // crashdet_stop_and_save_print();
  1149. enquecommand_P((PSTR("CRASH_DETECTED")));
  1150. }
  1151. #endif //TMC2130
  1152. }
  1153. #define DEFINE_PGM_READ_ANY(type, reader) \
  1154. static inline type pgm_read_any(const type *p) \
  1155. { return pgm_read_##reader##_near(p); }
  1156. DEFINE_PGM_READ_ANY(float, float);
  1157. DEFINE_PGM_READ_ANY(signed char, byte);
  1158. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1159. static const PROGMEM type array##_P[3] = \
  1160. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1161. static inline type array(int axis) \
  1162. { return pgm_read_any(&array##_P[axis]); } \
  1163. type array##_ext(int axis) \
  1164. { return pgm_read_any(&array##_P[axis]); }
  1165. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1166. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1167. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1168. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1169. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1170. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1171. static void axis_is_at_home(int axis) {
  1172. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1173. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1174. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1175. }
  1176. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1177. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1178. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1179. saved_feedrate = feedrate;
  1180. saved_feedmultiply = feedmultiply;
  1181. feedmultiply = 100;
  1182. previous_millis_cmd = millis();
  1183. enable_endstops(enable_endstops_now);
  1184. }
  1185. static void clean_up_after_endstop_move() {
  1186. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1187. enable_endstops(false);
  1188. #endif
  1189. feedrate = saved_feedrate;
  1190. feedmultiply = saved_feedmultiply;
  1191. previous_millis_cmd = millis();
  1192. }
  1193. #ifdef ENABLE_AUTO_BED_LEVELING
  1194. #ifdef AUTO_BED_LEVELING_GRID
  1195. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1196. {
  1197. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1198. planeNormal.debug("planeNormal");
  1199. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1200. //bedLevel.debug("bedLevel");
  1201. //plan_bed_level_matrix.debug("bed level before");
  1202. //vector_3 uncorrected_position = plan_get_position_mm();
  1203. //uncorrected_position.debug("position before");
  1204. vector_3 corrected_position = plan_get_position();
  1205. // corrected_position.debug("position after");
  1206. current_position[X_AXIS] = corrected_position.x;
  1207. current_position[Y_AXIS] = corrected_position.y;
  1208. current_position[Z_AXIS] = corrected_position.z;
  1209. // put the bed at 0 so we don't go below it.
  1210. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1211. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1212. }
  1213. #else // not AUTO_BED_LEVELING_GRID
  1214. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1215. plan_bed_level_matrix.set_to_identity();
  1216. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1217. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1218. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1219. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1220. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1221. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1222. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1223. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1224. vector_3 corrected_position = plan_get_position();
  1225. current_position[X_AXIS] = corrected_position.x;
  1226. current_position[Y_AXIS] = corrected_position.y;
  1227. current_position[Z_AXIS] = corrected_position.z;
  1228. // put the bed at 0 so we don't go below it.
  1229. current_position[Z_AXIS] = zprobe_zoffset;
  1230. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1231. }
  1232. #endif // AUTO_BED_LEVELING_GRID
  1233. static void run_z_probe() {
  1234. plan_bed_level_matrix.set_to_identity();
  1235. feedrate = homing_feedrate[Z_AXIS];
  1236. // move down until you find the bed
  1237. float zPosition = -10;
  1238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1239. st_synchronize();
  1240. // we have to let the planner know where we are right now as it is not where we said to go.
  1241. zPosition = st_get_position_mm(Z_AXIS);
  1242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1243. // move up the retract distance
  1244. zPosition += home_retract_mm(Z_AXIS);
  1245. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1246. st_synchronize();
  1247. // move back down slowly to find bed
  1248. feedrate = homing_feedrate[Z_AXIS]/4;
  1249. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1251. st_synchronize();
  1252. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1253. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1255. }
  1256. static void do_blocking_move_to(float x, float y, float z) {
  1257. float oldFeedRate = feedrate;
  1258. feedrate = homing_feedrate[Z_AXIS];
  1259. current_position[Z_AXIS] = z;
  1260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1261. st_synchronize();
  1262. feedrate = XY_TRAVEL_SPEED;
  1263. current_position[X_AXIS] = x;
  1264. current_position[Y_AXIS] = y;
  1265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1266. st_synchronize();
  1267. feedrate = oldFeedRate;
  1268. }
  1269. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1270. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1271. }
  1272. /// Probe bed height at position (x,y), returns the measured z value
  1273. static float probe_pt(float x, float y, float z_before) {
  1274. // move to right place
  1275. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1276. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1277. run_z_probe();
  1278. float measured_z = current_position[Z_AXIS];
  1279. SERIAL_PROTOCOLRPGM(MSG_BED);
  1280. SERIAL_PROTOCOLPGM(" x: ");
  1281. SERIAL_PROTOCOL(x);
  1282. SERIAL_PROTOCOLPGM(" y: ");
  1283. SERIAL_PROTOCOL(y);
  1284. SERIAL_PROTOCOLPGM(" z: ");
  1285. SERIAL_PROTOCOL(measured_z);
  1286. SERIAL_PROTOCOLPGM("\n");
  1287. return measured_z;
  1288. }
  1289. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1290. #ifdef LIN_ADVANCE
  1291. /**
  1292. * M900: Set and/or Get advance K factor and WH/D ratio
  1293. *
  1294. * K<factor> Set advance K factor
  1295. * R<ratio> Set ratio directly (overrides WH/D)
  1296. * W<width> H<height> D<diam> Set ratio from WH/D
  1297. */
  1298. inline void gcode_M900() {
  1299. st_synchronize();
  1300. const float newK = code_seen('K') ? code_value_float() : -1;
  1301. if (newK >= 0) extruder_advance_k = newK;
  1302. float newR = code_seen('R') ? code_value_float() : -1;
  1303. if (newR < 0) {
  1304. const float newD = code_seen('D') ? code_value_float() : -1,
  1305. newW = code_seen('W') ? code_value_float() : -1,
  1306. newH = code_seen('H') ? code_value_float() : -1;
  1307. if (newD >= 0 && newW >= 0 && newH >= 0)
  1308. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1309. }
  1310. if (newR >= 0) advance_ed_ratio = newR;
  1311. SERIAL_ECHO_START;
  1312. SERIAL_ECHOPGM("Advance K=");
  1313. SERIAL_ECHOLN(extruder_advance_k);
  1314. SERIAL_ECHOPGM(" E/D=");
  1315. const float ratio = advance_ed_ratio;
  1316. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1317. }
  1318. #endif // LIN_ADVANCE
  1319. #ifdef TMC2130
  1320. bool calibrate_z_auto()
  1321. {
  1322. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1323. lcd_implementation_clear();
  1324. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1325. bool endstops_enabled = enable_endstops(true);
  1326. int axis_up_dir = -home_dir(Z_AXIS);
  1327. tmc2130_home_enter(Z_AXIS_MASK);
  1328. current_position[Z_AXIS] = 0;
  1329. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1330. set_destination_to_current();
  1331. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1332. feedrate = homing_feedrate[Z_AXIS];
  1333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1334. tmc2130_home_restart(Z_AXIS);
  1335. st_synchronize();
  1336. // current_position[axis] = 0;
  1337. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. tmc2130_home_exit();
  1339. enable_endstops(false);
  1340. current_position[Z_AXIS] = 0;
  1341. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1342. set_destination_to_current();
  1343. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1344. feedrate = homing_feedrate[Z_AXIS] / 2;
  1345. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1346. st_synchronize();
  1347. enable_endstops(endstops_enabled);
  1348. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. return true;
  1351. }
  1352. #endif //TMC2130
  1353. void homeaxis(int axis)
  1354. {
  1355. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1356. #define HOMEAXIS_DO(LETTER) \
  1357. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1358. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1359. {
  1360. int axis_home_dir = home_dir(axis);
  1361. feedrate = homing_feedrate[axis];
  1362. #ifdef TMC2130
  1363. tmc2130_home_enter(X_AXIS_MASK << axis);
  1364. #endif
  1365. // Move right a bit, so that the print head does not touch the left end position,
  1366. // and the following left movement has a chance to achieve the required velocity
  1367. // for the stall guard to work.
  1368. current_position[axis] = 0;
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. // destination[axis] = 11.f;
  1371. destination[axis] = 3.f;
  1372. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1373. st_synchronize();
  1374. // Move left away from the possible collision with the collision detection disabled.
  1375. endstops_hit_on_purpose();
  1376. enable_endstops(false);
  1377. current_position[axis] = 0;
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. destination[axis] = - 1.;
  1380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1381. st_synchronize();
  1382. // Now continue to move up to the left end stop with the collision detection enabled.
  1383. enable_endstops(true);
  1384. destination[axis] = - 1.1 * max_length(axis);
  1385. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1386. st_synchronize();
  1387. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1388. endstops_hit_on_purpose();
  1389. enable_endstops(false);
  1390. current_position[axis] = 0;
  1391. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1392. destination[axis] = 10.f;
  1393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1394. st_synchronize();
  1395. endstops_hit_on_purpose();
  1396. // Now move left up to the collision, this time with a repeatable velocity.
  1397. enable_endstops(true);
  1398. destination[axis] = - 15.f;
  1399. feedrate = homing_feedrate[axis]/2;
  1400. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1401. st_synchronize();
  1402. axis_is_at_home(axis);
  1403. axis_known_position[axis] = true;
  1404. #ifdef TMC2130
  1405. tmc2130_home_exit();
  1406. #endif
  1407. // Move the X carriage away from the collision.
  1408. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1409. endstops_hit_on_purpose();
  1410. enable_endstops(false);
  1411. {
  1412. // Two full periods (4 full steps).
  1413. float gap = 0.32f * 2.f;
  1414. current_position[axis] -= gap;
  1415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1416. current_position[axis] += gap;
  1417. }
  1418. destination[axis] = current_position[axis];
  1419. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1420. st_synchronize();
  1421. feedrate = 0.0;
  1422. }
  1423. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1424. {
  1425. int axis_home_dir = home_dir(axis);
  1426. current_position[axis] = 0;
  1427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1428. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1429. feedrate = homing_feedrate[axis];
  1430. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1431. st_synchronize();
  1432. current_position[axis] = 0;
  1433. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1434. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1435. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1436. st_synchronize();
  1437. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1438. feedrate = homing_feedrate[axis]/2 ;
  1439. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1440. st_synchronize();
  1441. axis_is_at_home(axis);
  1442. destination[axis] = current_position[axis];
  1443. feedrate = 0.0;
  1444. endstops_hit_on_purpose();
  1445. axis_known_position[axis] = true;
  1446. }
  1447. enable_endstops(endstops_enabled);
  1448. }
  1449. /**/
  1450. void home_xy()
  1451. {
  1452. set_destination_to_current();
  1453. homeaxis(X_AXIS);
  1454. homeaxis(Y_AXIS);
  1455. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1456. endstops_hit_on_purpose();
  1457. }
  1458. void refresh_cmd_timeout(void)
  1459. {
  1460. previous_millis_cmd = millis();
  1461. }
  1462. #ifdef FWRETRACT
  1463. void retract(bool retracting, bool swapretract = false) {
  1464. if(retracting && !retracted[active_extruder]) {
  1465. destination[X_AXIS]=current_position[X_AXIS];
  1466. destination[Y_AXIS]=current_position[Y_AXIS];
  1467. destination[Z_AXIS]=current_position[Z_AXIS];
  1468. destination[E_AXIS]=current_position[E_AXIS];
  1469. if (swapretract) {
  1470. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1471. } else {
  1472. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1473. }
  1474. plan_set_e_position(current_position[E_AXIS]);
  1475. float oldFeedrate = feedrate;
  1476. feedrate=retract_feedrate*60;
  1477. retracted[active_extruder]=true;
  1478. prepare_move();
  1479. current_position[Z_AXIS]-=retract_zlift;
  1480. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1481. prepare_move();
  1482. feedrate = oldFeedrate;
  1483. } else if(!retracting && retracted[active_extruder]) {
  1484. destination[X_AXIS]=current_position[X_AXIS];
  1485. destination[Y_AXIS]=current_position[Y_AXIS];
  1486. destination[Z_AXIS]=current_position[Z_AXIS];
  1487. destination[E_AXIS]=current_position[E_AXIS];
  1488. current_position[Z_AXIS]+=retract_zlift;
  1489. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1490. //prepare_move();
  1491. if (swapretract) {
  1492. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1493. } else {
  1494. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1495. }
  1496. plan_set_e_position(current_position[E_AXIS]);
  1497. float oldFeedrate = feedrate;
  1498. feedrate=retract_recover_feedrate*60;
  1499. retracted[active_extruder]=false;
  1500. prepare_move();
  1501. feedrate = oldFeedrate;
  1502. }
  1503. } //retract
  1504. #endif //FWRETRACT
  1505. void trace() {
  1506. tone(BEEPER, 440);
  1507. delay(25);
  1508. noTone(BEEPER);
  1509. delay(20);
  1510. }
  1511. /*
  1512. void ramming() {
  1513. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1514. if (current_temperature[0] < 230) {
  1515. //PLA
  1516. max_feedrate[E_AXIS] = 50;
  1517. //current_position[E_AXIS] -= 8;
  1518. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1519. //current_position[E_AXIS] += 8;
  1520. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1521. current_position[E_AXIS] += 5.4;
  1522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1523. current_position[E_AXIS] += 3.2;
  1524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1525. current_position[E_AXIS] += 3;
  1526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1527. st_synchronize();
  1528. max_feedrate[E_AXIS] = 80;
  1529. current_position[E_AXIS] -= 82;
  1530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1531. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1532. current_position[E_AXIS] -= 20;
  1533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1534. current_position[E_AXIS] += 5;
  1535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1536. current_position[E_AXIS] += 5;
  1537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1538. current_position[E_AXIS] -= 10;
  1539. st_synchronize();
  1540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1541. current_position[E_AXIS] += 10;
  1542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1543. current_position[E_AXIS] -= 10;
  1544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1545. current_position[E_AXIS] += 10;
  1546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1547. current_position[E_AXIS] -= 10;
  1548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1549. st_synchronize();
  1550. }
  1551. else {
  1552. //ABS
  1553. max_feedrate[E_AXIS] = 50;
  1554. //current_position[E_AXIS] -= 8;
  1555. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1556. //current_position[E_AXIS] += 8;
  1557. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1558. current_position[E_AXIS] += 3.1;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1560. current_position[E_AXIS] += 3.1;
  1561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1562. current_position[E_AXIS] += 4;
  1563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1564. st_synchronize();
  1565. //current_position[X_AXIS] += 23; //delay
  1566. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1567. //current_position[X_AXIS] -= 23; //delay
  1568. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1569. delay(4700);
  1570. max_feedrate[E_AXIS] = 80;
  1571. current_position[E_AXIS] -= 92;
  1572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1573. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1574. current_position[E_AXIS] -= 5;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1576. current_position[E_AXIS] += 5;
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1578. current_position[E_AXIS] -= 5;
  1579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1580. st_synchronize();
  1581. current_position[E_AXIS] += 5;
  1582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1583. current_position[E_AXIS] -= 5;
  1584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1585. current_position[E_AXIS] += 5;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1587. current_position[E_AXIS] -= 5;
  1588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1589. st_synchronize();
  1590. }
  1591. }
  1592. */
  1593. bool gcode_M45(bool onlyZ) {
  1594. bool final_result = false;
  1595. // Only Z calibration?
  1596. if (!onlyZ) {
  1597. setTargetBed(0);
  1598. setTargetHotend(0, 0);
  1599. setTargetHotend(0, 1);
  1600. setTargetHotend(0, 2);
  1601. adjust_bed_reset(); //reset bed level correction
  1602. }
  1603. // Disable the default update procedure of the display. We will do a modal dialog.
  1604. lcd_update_enable(false);
  1605. // Let the planner use the uncorrected coordinates.
  1606. mbl.reset();
  1607. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1608. // the planner will not perform any adjustments in the XY plane.
  1609. // Wait for the motors to stop and update the current position with the absolute values.
  1610. world2machine_revert_to_uncorrected();
  1611. // Reset the baby step value applied without moving the axes.
  1612. babystep_reset();
  1613. // Mark all axes as in a need for homing.
  1614. memset(axis_known_position, 0, sizeof(axis_known_position));
  1615. // Home in the XY plane.
  1616. //set_destination_to_current();
  1617. setup_for_endstop_move();
  1618. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1619. home_xy();
  1620. // Let the user move the Z axes up to the end stoppers.
  1621. #ifdef TMC2130
  1622. if (calibrate_z_auto()) {
  1623. #else //TMC2130
  1624. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1625. #endif //TMC2130
  1626. refresh_cmd_timeout();
  1627. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1628. // lcd_wait_for_cool_down();
  1629. //}
  1630. if(!onlyZ){
  1631. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1632. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1633. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1634. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1635. KEEPALIVE_STATE(IN_HANDLER);
  1636. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1637. lcd_implementation_print_at(0, 2, 1);
  1638. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1639. }
  1640. // Move the print head close to the bed.
  1641. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1643. st_synchronize();
  1644. //#ifdef TMC2130
  1645. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1646. //#endif
  1647. int8_t verbosity_level = 0;
  1648. if (code_seen('V')) {
  1649. // Just 'V' without a number counts as V1.
  1650. char c = strchr_pointer[1];
  1651. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1652. }
  1653. if (onlyZ) {
  1654. clean_up_after_endstop_move();
  1655. // Z only calibration.
  1656. // Load the machine correction matrix
  1657. world2machine_initialize();
  1658. // and correct the current_position to match the transformed coordinate system.
  1659. world2machine_update_current();
  1660. //FIXME
  1661. bool result = sample_mesh_and_store_reference();
  1662. if (result) {
  1663. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1664. // Shipped, the nozzle height has been set already. The user can start printing now.
  1665. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1666. // babystep_apply();
  1667. }
  1668. }
  1669. else {
  1670. // Reset the baby step value and the baby step applied flag.
  1671. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1672. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1673. // Complete XYZ calibration.
  1674. uint8_t point_too_far_mask = 0;
  1675. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1676. clean_up_after_endstop_move();
  1677. // Print head up.
  1678. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1680. st_synchronize();
  1681. if (result >= 0) {
  1682. point_too_far_mask = 0;
  1683. // Second half: The fine adjustment.
  1684. // Let the planner use the uncorrected coordinates.
  1685. mbl.reset();
  1686. world2machine_reset();
  1687. // Home in the XY plane.
  1688. setup_for_endstop_move();
  1689. home_xy();
  1690. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1691. clean_up_after_endstop_move();
  1692. // Print head up.
  1693. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1695. st_synchronize();
  1696. // if (result >= 0) babystep_apply();
  1697. }
  1698. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1699. if (result >= 0) {
  1700. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1701. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1702. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1703. final_result = true;
  1704. }
  1705. }
  1706. #ifdef TMC2130
  1707. tmc2130_home_exit();
  1708. #endif
  1709. }
  1710. else {
  1711. // Timeouted.
  1712. }
  1713. lcd_update_enable(true);
  1714. return final_result;
  1715. }
  1716. void gcode_M701() {
  1717. #ifdef SNMM
  1718. extr_adj(snmm_extruder);//loads current extruder
  1719. #else
  1720. enable_z();
  1721. custom_message = true;
  1722. custom_message_type = 2;
  1723. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1724. current_position[E_AXIS] += 70;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1726. current_position[E_AXIS] += 25;
  1727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1728. st_synchronize();
  1729. if (!farm_mode && loading_flag) {
  1730. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1731. while (!clean) {
  1732. lcd_update_enable(true);
  1733. lcd_update(2);
  1734. current_position[E_AXIS] += 25;
  1735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1736. st_synchronize();
  1737. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1738. }
  1739. }
  1740. lcd_update_enable(true);
  1741. lcd_update(2);
  1742. lcd_setstatuspgm(WELCOME_MSG);
  1743. disable_z();
  1744. loading_flag = false;
  1745. custom_message = false;
  1746. custom_message_type = 0;
  1747. #endif
  1748. }
  1749. void process_commands()
  1750. {
  1751. #ifdef FILAMENT_RUNOUT_SUPPORT
  1752. SET_INPUT(FR_SENS);
  1753. #endif
  1754. #ifdef CMDBUFFER_DEBUG
  1755. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1756. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1757. SERIAL_ECHOLNPGM("");
  1758. SERIAL_ECHOPGM("In cmdqueue: ");
  1759. SERIAL_ECHO(buflen);
  1760. SERIAL_ECHOLNPGM("");
  1761. #endif /* CMDBUFFER_DEBUG */
  1762. unsigned long codenum; //throw away variable
  1763. char *starpos = NULL;
  1764. #ifdef ENABLE_AUTO_BED_LEVELING
  1765. float x_tmp, y_tmp, z_tmp, real_z;
  1766. #endif
  1767. // PRUSA GCODES
  1768. KEEPALIVE_STATE(IN_HANDLER);
  1769. #ifdef SNMM
  1770. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1771. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1772. int8_t SilentMode;
  1773. #endif
  1774. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1775. starpos = (strchr(strchr_pointer + 5, '*'));
  1776. if (starpos != NULL)
  1777. *(starpos) = '\0';
  1778. lcd_setstatus(strchr_pointer + 5);
  1779. }
  1780. else if(code_seen("CRASH_DETECTED"))
  1781. crashdet_detected();
  1782. else if(code_seen("CRASH_RECOVER"))
  1783. crashdet_recover();
  1784. else if(code_seen("CRASH_CANCEL"))
  1785. crashdet_cancel();
  1786. else if(code_seen("PRUSA")){
  1787. if (code_seen("Ping")) { //PRUSA Ping
  1788. if (farm_mode) {
  1789. PingTime = millis();
  1790. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1791. }
  1792. }
  1793. else if (code_seen("PRN")) {
  1794. MYSERIAL.println(status_number);
  1795. }else if (code_seen("FAN")) {
  1796. MYSERIAL.print("E0:");
  1797. MYSERIAL.print(60*fan_speed[0]);
  1798. MYSERIAL.println(" RPM");
  1799. MYSERIAL.print("PRN0:");
  1800. MYSERIAL.print(60*fan_speed[1]);
  1801. MYSERIAL.println(" RPM");
  1802. }else if (code_seen("fn")) {
  1803. if (farm_mode) {
  1804. MYSERIAL.println(farm_no);
  1805. }
  1806. else {
  1807. MYSERIAL.println("Not in farm mode.");
  1808. }
  1809. }else if (code_seen("fv")) {
  1810. // get file version
  1811. #ifdef SDSUPPORT
  1812. card.openFile(strchr_pointer + 3,true);
  1813. while (true) {
  1814. uint16_t readByte = card.get();
  1815. MYSERIAL.write(readByte);
  1816. if (readByte=='\n') {
  1817. break;
  1818. }
  1819. }
  1820. card.closefile();
  1821. #endif // SDSUPPORT
  1822. } else if (code_seen("M28")) {
  1823. trace();
  1824. prusa_sd_card_upload = true;
  1825. card.openFile(strchr_pointer+4,false);
  1826. } else if (code_seen("SN")) {
  1827. if (farm_mode) {
  1828. selectedSerialPort = 0;
  1829. MSerial.write(";S");
  1830. // S/N is:CZPX0917X003XC13518
  1831. int numbersRead = 0;
  1832. while (numbersRead < 19) {
  1833. while (MSerial.available() > 0) {
  1834. uint8_t serial_char = MSerial.read();
  1835. selectedSerialPort = 1;
  1836. MSerial.write(serial_char);
  1837. numbersRead++;
  1838. selectedSerialPort = 0;
  1839. }
  1840. }
  1841. selectedSerialPort = 1;
  1842. MSerial.write('\n');
  1843. /*for (int b = 0; b < 3; b++) {
  1844. tone(BEEPER, 110);
  1845. delay(50);
  1846. noTone(BEEPER);
  1847. delay(50);
  1848. }*/
  1849. } else {
  1850. MYSERIAL.println("Not in farm mode.");
  1851. }
  1852. } else if(code_seen("Fir")){
  1853. SERIAL_PROTOCOLLN(FW_version);
  1854. } else if(code_seen("Rev")){
  1855. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1856. } else if(code_seen("Lang")) {
  1857. lcd_force_language_selection();
  1858. } else if(code_seen("Lz")) {
  1859. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1860. } else if (code_seen("SERIAL LOW")) {
  1861. MYSERIAL.println("SERIAL LOW");
  1862. MYSERIAL.begin(BAUDRATE);
  1863. return;
  1864. } else if (code_seen("SERIAL HIGH")) {
  1865. MYSERIAL.println("SERIAL HIGH");
  1866. MYSERIAL.begin(1152000);
  1867. return;
  1868. } else if(code_seen("Beat")) {
  1869. // Kick farm link timer
  1870. kicktime = millis();
  1871. } else if(code_seen("FR")) {
  1872. // Factory full reset
  1873. factory_reset(0,true);
  1874. }
  1875. //else if (code_seen('Cal')) {
  1876. // lcd_calibration();
  1877. // }
  1878. }
  1879. else if (code_seen('^')) {
  1880. // nothing, this is a version line
  1881. } else if(code_seen('G'))
  1882. {
  1883. switch((int)code_value())
  1884. {
  1885. case 0: // G0 -> G1
  1886. case 1: // G1
  1887. if(Stopped == false) {
  1888. #ifdef FILAMENT_RUNOUT_SUPPORT
  1889. if(READ(FR_SENS)){
  1890. feedmultiplyBckp=feedmultiply;
  1891. float target[4];
  1892. float lastpos[4];
  1893. target[X_AXIS]=current_position[X_AXIS];
  1894. target[Y_AXIS]=current_position[Y_AXIS];
  1895. target[Z_AXIS]=current_position[Z_AXIS];
  1896. target[E_AXIS]=current_position[E_AXIS];
  1897. lastpos[X_AXIS]=current_position[X_AXIS];
  1898. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1899. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1900. lastpos[E_AXIS]=current_position[E_AXIS];
  1901. //retract by E
  1902. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1904. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1906. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1907. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1908. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1909. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1911. //finish moves
  1912. st_synchronize();
  1913. //disable extruder steppers so filament can be removed
  1914. disable_e0();
  1915. disable_e1();
  1916. disable_e2();
  1917. delay(100);
  1918. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1919. uint8_t cnt=0;
  1920. int counterBeep = 0;
  1921. lcd_wait_interact();
  1922. while(!lcd_clicked()){
  1923. cnt++;
  1924. manage_heater();
  1925. manage_inactivity(true);
  1926. //lcd_update();
  1927. if(cnt==0)
  1928. {
  1929. #if BEEPER > 0
  1930. if (counterBeep== 500){
  1931. counterBeep = 0;
  1932. }
  1933. SET_OUTPUT(BEEPER);
  1934. if (counterBeep== 0){
  1935. WRITE(BEEPER,HIGH);
  1936. }
  1937. if (counterBeep== 20){
  1938. WRITE(BEEPER,LOW);
  1939. }
  1940. counterBeep++;
  1941. #else
  1942. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1943. lcd_buzz(1000/6,100);
  1944. #else
  1945. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1946. #endif
  1947. #endif
  1948. }
  1949. }
  1950. WRITE(BEEPER,LOW);
  1951. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1952. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1953. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1954. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1955. lcd_change_fil_state = 0;
  1956. lcd_loading_filament();
  1957. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1958. lcd_change_fil_state = 0;
  1959. lcd_alright();
  1960. switch(lcd_change_fil_state){
  1961. case 2:
  1962. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1964. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1965. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1966. lcd_loading_filament();
  1967. break;
  1968. case 3:
  1969. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1970. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1971. lcd_loading_color();
  1972. break;
  1973. default:
  1974. lcd_change_success();
  1975. break;
  1976. }
  1977. }
  1978. target[E_AXIS]+= 5;
  1979. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1980. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1982. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1983. //plan_set_e_position(current_position[E_AXIS]);
  1984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1985. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1986. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1987. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1988. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1989. plan_set_e_position(lastpos[E_AXIS]);
  1990. feedmultiply=feedmultiplyBckp;
  1991. char cmd[9];
  1992. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1993. enquecommand(cmd);
  1994. }
  1995. #endif
  1996. get_coordinates(); // For X Y Z E F
  1997. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1998. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1999. }
  2000. #ifdef FWRETRACT
  2001. if(autoretract_enabled)
  2002. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2003. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2004. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2005. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2006. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2007. retract(!retracted);
  2008. return;
  2009. }
  2010. }
  2011. #endif //FWRETRACT
  2012. prepare_move();
  2013. //ClearToSend();
  2014. }
  2015. break;
  2016. case 2: // G2 - CW ARC
  2017. if(Stopped == false) {
  2018. get_arc_coordinates();
  2019. prepare_arc_move(true);
  2020. }
  2021. break;
  2022. case 3: // G3 - CCW ARC
  2023. if(Stopped == false) {
  2024. get_arc_coordinates();
  2025. prepare_arc_move(false);
  2026. }
  2027. break;
  2028. case 4: // G4 dwell
  2029. codenum = 0;
  2030. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2031. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2032. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2033. st_synchronize();
  2034. codenum += millis(); // keep track of when we started waiting
  2035. previous_millis_cmd = millis();
  2036. while(millis() < codenum) {
  2037. manage_heater();
  2038. manage_inactivity();
  2039. lcd_update();
  2040. }
  2041. break;
  2042. #ifdef FWRETRACT
  2043. case 10: // G10 retract
  2044. #if EXTRUDERS > 1
  2045. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2046. retract(true,retracted_swap[active_extruder]);
  2047. #else
  2048. retract(true);
  2049. #endif
  2050. break;
  2051. case 11: // G11 retract_recover
  2052. #if EXTRUDERS > 1
  2053. retract(false,retracted_swap[active_extruder]);
  2054. #else
  2055. retract(false);
  2056. #endif
  2057. break;
  2058. #endif //FWRETRACT
  2059. case 28: //G28 Home all Axis one at a time
  2060. {
  2061. st_synchronize();
  2062. #if 1
  2063. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2064. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2065. #endif
  2066. // Flag for the display update routine and to disable the print cancelation during homing.
  2067. homing_flag = true;
  2068. // Which axes should be homed?
  2069. bool home_x = code_seen(axis_codes[X_AXIS]);
  2070. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2071. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2072. // Either all X,Y,Z codes are present, or none of them.
  2073. bool home_all_axes = home_x == home_y && home_x == home_z;
  2074. if (home_all_axes)
  2075. // No X/Y/Z code provided means to home all axes.
  2076. home_x = home_y = home_z = true;
  2077. #ifdef ENABLE_AUTO_BED_LEVELING
  2078. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2079. #endif //ENABLE_AUTO_BED_LEVELING
  2080. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2081. // the planner will not perform any adjustments in the XY plane.
  2082. // Wait for the motors to stop and update the current position with the absolute values.
  2083. world2machine_revert_to_uncorrected();
  2084. // For mesh bed leveling deactivate the matrix temporarily.
  2085. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2086. // in a single axis only.
  2087. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2088. #ifdef MESH_BED_LEVELING
  2089. uint8_t mbl_was_active = mbl.active;
  2090. mbl.active = 0;
  2091. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2092. #endif
  2093. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2094. // consumed during the first movements following this statement.
  2095. if (home_z)
  2096. babystep_undo();
  2097. saved_feedrate = feedrate;
  2098. saved_feedmultiply = feedmultiply;
  2099. feedmultiply = 100;
  2100. previous_millis_cmd = millis();
  2101. enable_endstops(true);
  2102. memcpy(destination, current_position, sizeof(destination));
  2103. feedrate = 0.0;
  2104. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2105. if(home_z)
  2106. homeaxis(Z_AXIS);
  2107. #endif
  2108. #ifdef QUICK_HOME
  2109. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2110. if(home_x && home_y) //first diagonal move
  2111. {
  2112. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2113. int x_axis_home_dir = home_dir(X_AXIS);
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2116. feedrate = homing_feedrate[X_AXIS];
  2117. if(homing_feedrate[Y_AXIS]<feedrate)
  2118. feedrate = homing_feedrate[Y_AXIS];
  2119. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2120. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2121. } else {
  2122. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2123. }
  2124. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2125. st_synchronize();
  2126. axis_is_at_home(X_AXIS);
  2127. axis_is_at_home(Y_AXIS);
  2128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2129. destination[X_AXIS] = current_position[X_AXIS];
  2130. destination[Y_AXIS] = current_position[Y_AXIS];
  2131. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2132. feedrate = 0.0;
  2133. st_synchronize();
  2134. endstops_hit_on_purpose();
  2135. current_position[X_AXIS] = destination[X_AXIS];
  2136. current_position[Y_AXIS] = destination[Y_AXIS];
  2137. current_position[Z_AXIS] = destination[Z_AXIS];
  2138. }
  2139. #endif /* QUICK_HOME */
  2140. if(home_x)
  2141. homeaxis(X_AXIS);
  2142. if(home_y)
  2143. homeaxis(Y_AXIS);
  2144. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2145. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2146. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2147. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2148. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2149. #ifndef Z_SAFE_HOMING
  2150. if(home_z) {
  2151. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2152. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2153. feedrate = max_feedrate[Z_AXIS];
  2154. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2155. st_synchronize();
  2156. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2157. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2158. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2159. {
  2160. homeaxis(X_AXIS);
  2161. homeaxis(Y_AXIS);
  2162. }
  2163. // 1st mesh bed leveling measurement point, corrected.
  2164. world2machine_initialize();
  2165. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2166. world2machine_reset();
  2167. if (destination[Y_AXIS] < Y_MIN_POS)
  2168. destination[Y_AXIS] = Y_MIN_POS;
  2169. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2170. feedrate = homing_feedrate[Z_AXIS]/10;
  2171. current_position[Z_AXIS] = 0;
  2172. enable_endstops(false);
  2173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2174. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2175. st_synchronize();
  2176. current_position[X_AXIS] = destination[X_AXIS];
  2177. current_position[Y_AXIS] = destination[Y_AXIS];
  2178. enable_endstops(true);
  2179. endstops_hit_on_purpose();
  2180. homeaxis(Z_AXIS);
  2181. #else // MESH_BED_LEVELING
  2182. homeaxis(Z_AXIS);
  2183. #endif // MESH_BED_LEVELING
  2184. }
  2185. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2186. if(home_all_axes) {
  2187. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2188. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2189. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2190. feedrate = XY_TRAVEL_SPEED/60;
  2191. current_position[Z_AXIS] = 0;
  2192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2193. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2194. st_synchronize();
  2195. current_position[X_AXIS] = destination[X_AXIS];
  2196. current_position[Y_AXIS] = destination[Y_AXIS];
  2197. homeaxis(Z_AXIS);
  2198. }
  2199. // Let's see if X and Y are homed and probe is inside bed area.
  2200. if(home_z) {
  2201. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2202. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2203. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2204. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2205. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2206. current_position[Z_AXIS] = 0;
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2209. feedrate = max_feedrate[Z_AXIS];
  2210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2211. st_synchronize();
  2212. homeaxis(Z_AXIS);
  2213. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2214. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2215. SERIAL_ECHO_START;
  2216. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2217. } else {
  2218. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2219. SERIAL_ECHO_START;
  2220. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2221. }
  2222. }
  2223. #endif // Z_SAFE_HOMING
  2224. #endif // Z_HOME_DIR < 0
  2225. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2226. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2227. #ifdef ENABLE_AUTO_BED_LEVELING
  2228. if(home_z)
  2229. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2230. #endif
  2231. // Set the planner and stepper routine positions.
  2232. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2233. // contains the machine coordinates.
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2236. enable_endstops(false);
  2237. #endif
  2238. feedrate = saved_feedrate;
  2239. feedmultiply = saved_feedmultiply;
  2240. previous_millis_cmd = millis();
  2241. endstops_hit_on_purpose();
  2242. #ifndef MESH_BED_LEVELING
  2243. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2244. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2245. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2246. lcd_adjust_z();
  2247. #endif
  2248. // Load the machine correction matrix
  2249. world2machine_initialize();
  2250. // and correct the current_position XY axes to match the transformed coordinate system.
  2251. world2machine_update_current();
  2252. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2253. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2254. {
  2255. if (! home_z && mbl_was_active) {
  2256. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2257. mbl.active = true;
  2258. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2259. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2260. }
  2261. }
  2262. else
  2263. {
  2264. st_synchronize();
  2265. homing_flag = false;
  2266. // Push the commands to the front of the message queue in the reverse order!
  2267. // There shall be always enough space reserved for these commands.
  2268. // enquecommand_front_P((PSTR("G80")));
  2269. goto case_G80;
  2270. }
  2271. #endif
  2272. if (farm_mode) { prusa_statistics(20); };
  2273. homing_flag = false;
  2274. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2275. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2276. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2277. break;
  2278. }
  2279. #ifdef ENABLE_AUTO_BED_LEVELING
  2280. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2281. {
  2282. #if Z_MIN_PIN == -1
  2283. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2284. #endif
  2285. // Prevent user from running a G29 without first homing in X and Y
  2286. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2287. {
  2288. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2289. SERIAL_ECHO_START;
  2290. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2291. break; // abort G29, since we don't know where we are
  2292. }
  2293. st_synchronize();
  2294. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2295. //vector_3 corrected_position = plan_get_position_mm();
  2296. //corrected_position.debug("position before G29");
  2297. plan_bed_level_matrix.set_to_identity();
  2298. vector_3 uncorrected_position = plan_get_position();
  2299. //uncorrected_position.debug("position durring G29");
  2300. current_position[X_AXIS] = uncorrected_position.x;
  2301. current_position[Y_AXIS] = uncorrected_position.y;
  2302. current_position[Z_AXIS] = uncorrected_position.z;
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. setup_for_endstop_move();
  2305. feedrate = homing_feedrate[Z_AXIS];
  2306. #ifdef AUTO_BED_LEVELING_GRID
  2307. // probe at the points of a lattice grid
  2308. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2309. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2310. // solve the plane equation ax + by + d = z
  2311. // A is the matrix with rows [x y 1] for all the probed points
  2312. // B is the vector of the Z positions
  2313. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2314. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2315. // "A" matrix of the linear system of equations
  2316. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2317. // "B" vector of Z points
  2318. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2319. int probePointCounter = 0;
  2320. bool zig = true;
  2321. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2322. {
  2323. int xProbe, xInc;
  2324. if (zig)
  2325. {
  2326. xProbe = LEFT_PROBE_BED_POSITION;
  2327. //xEnd = RIGHT_PROBE_BED_POSITION;
  2328. xInc = xGridSpacing;
  2329. zig = false;
  2330. } else // zag
  2331. {
  2332. xProbe = RIGHT_PROBE_BED_POSITION;
  2333. //xEnd = LEFT_PROBE_BED_POSITION;
  2334. xInc = -xGridSpacing;
  2335. zig = true;
  2336. }
  2337. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2338. {
  2339. float z_before;
  2340. if (probePointCounter == 0)
  2341. {
  2342. // raise before probing
  2343. z_before = Z_RAISE_BEFORE_PROBING;
  2344. } else
  2345. {
  2346. // raise extruder
  2347. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2348. }
  2349. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2350. eqnBVector[probePointCounter] = measured_z;
  2351. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2352. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2353. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2354. probePointCounter++;
  2355. xProbe += xInc;
  2356. }
  2357. }
  2358. clean_up_after_endstop_move();
  2359. // solve lsq problem
  2360. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2361. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2362. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2363. SERIAL_PROTOCOLPGM(" b: ");
  2364. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2365. SERIAL_PROTOCOLPGM(" d: ");
  2366. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2367. set_bed_level_equation_lsq(plane_equation_coefficients);
  2368. free(plane_equation_coefficients);
  2369. #else // AUTO_BED_LEVELING_GRID not defined
  2370. // Probe at 3 arbitrary points
  2371. // probe 1
  2372. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2373. // probe 2
  2374. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2375. // probe 3
  2376. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2377. clean_up_after_endstop_move();
  2378. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2379. #endif // AUTO_BED_LEVELING_GRID
  2380. st_synchronize();
  2381. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2382. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2383. // When the bed is uneven, this height must be corrected.
  2384. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2385. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2386. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2387. z_tmp = current_position[Z_AXIS];
  2388. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2389. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2391. }
  2392. break;
  2393. #ifndef Z_PROBE_SLED
  2394. case 30: // G30 Single Z Probe
  2395. {
  2396. st_synchronize();
  2397. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2398. setup_for_endstop_move();
  2399. feedrate = homing_feedrate[Z_AXIS];
  2400. run_z_probe();
  2401. SERIAL_PROTOCOLPGM(MSG_BED);
  2402. SERIAL_PROTOCOLPGM(" X: ");
  2403. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2404. SERIAL_PROTOCOLPGM(" Y: ");
  2405. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2406. SERIAL_PROTOCOLPGM(" Z: ");
  2407. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2408. SERIAL_PROTOCOLPGM("\n");
  2409. clean_up_after_endstop_move();
  2410. }
  2411. break;
  2412. #else
  2413. case 31: // dock the sled
  2414. dock_sled(true);
  2415. break;
  2416. case 32: // undock the sled
  2417. dock_sled(false);
  2418. break;
  2419. #endif // Z_PROBE_SLED
  2420. #endif // ENABLE_AUTO_BED_LEVELING
  2421. #ifdef MESH_BED_LEVELING
  2422. case 30: // G30 Single Z Probe
  2423. {
  2424. st_synchronize();
  2425. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2426. setup_for_endstop_move();
  2427. feedrate = homing_feedrate[Z_AXIS];
  2428. find_bed_induction_sensor_point_z(-10.f, 3);
  2429. SERIAL_PROTOCOLRPGM(MSG_BED);
  2430. SERIAL_PROTOCOLPGM(" X: ");
  2431. MYSERIAL.print(current_position[X_AXIS], 5);
  2432. SERIAL_PROTOCOLPGM(" Y: ");
  2433. MYSERIAL.print(current_position[Y_AXIS], 5);
  2434. SERIAL_PROTOCOLPGM(" Z: ");
  2435. MYSERIAL.print(current_position[Z_AXIS], 5);
  2436. SERIAL_PROTOCOLPGM("\n");
  2437. clean_up_after_endstop_move();
  2438. }
  2439. break;
  2440. case 75:
  2441. {
  2442. for (int i = 40; i <= 110; i++) {
  2443. MYSERIAL.print(i);
  2444. MYSERIAL.print(" ");
  2445. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2446. }
  2447. }
  2448. break;
  2449. case 76: //PINDA probe temperature calibration
  2450. {
  2451. #ifdef PINDA_THERMISTOR
  2452. if (true)
  2453. {
  2454. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2455. // We don't know where we are! HOME!
  2456. // Push the commands to the front of the message queue in the reverse order!
  2457. // There shall be always enough space reserved for these commands.
  2458. repeatcommand_front(); // repeat G76 with all its parameters
  2459. enquecommand_front_P((PSTR("G28 W0")));
  2460. break;
  2461. }
  2462. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2463. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2464. float zero_z;
  2465. int z_shift = 0; //unit: steps
  2466. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2467. if (start_temp < 35) start_temp = 35;
  2468. if (start_temp < current_temperature_pinda) start_temp += 5;
  2469. SERIAL_ECHOPGM("start temperature: ");
  2470. MYSERIAL.println(start_temp);
  2471. // setTargetHotend(200, 0);
  2472. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2473. custom_message = true;
  2474. custom_message_type = 4;
  2475. custom_message_state = 1;
  2476. custom_message = MSG_TEMP_CALIBRATION;
  2477. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2478. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2479. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2481. st_synchronize();
  2482. while (current_temperature_pinda < start_temp)
  2483. {
  2484. delay_keep_alive(1000);
  2485. serialecho_temperatures();
  2486. }
  2487. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2488. current_position[Z_AXIS] = 5;
  2489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2490. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2491. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2493. st_synchronize();
  2494. find_bed_induction_sensor_point_z(-1.f);
  2495. zero_z = current_position[Z_AXIS];
  2496. //current_position[Z_AXIS]
  2497. SERIAL_ECHOLNPGM("");
  2498. SERIAL_ECHOPGM("ZERO: ");
  2499. MYSERIAL.print(current_position[Z_AXIS]);
  2500. SERIAL_ECHOLNPGM("");
  2501. int i = -1; for (; i < 5; i++)
  2502. {
  2503. float temp = (40 + i * 5);
  2504. SERIAL_ECHOPGM("Step: ");
  2505. MYSERIAL.print(i + 2);
  2506. SERIAL_ECHOLNPGM("/6 (skipped)");
  2507. SERIAL_ECHOPGM("PINDA temperature: ");
  2508. MYSERIAL.print((40 + i*5));
  2509. SERIAL_ECHOPGM(" Z shift (mm):");
  2510. MYSERIAL.print(0);
  2511. SERIAL_ECHOLNPGM("");
  2512. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2513. if (start_temp <= temp) break;
  2514. }
  2515. for (i++; i < 5; i++)
  2516. {
  2517. float temp = (40 + i * 5);
  2518. SERIAL_ECHOPGM("Step: ");
  2519. MYSERIAL.print(i + 2);
  2520. SERIAL_ECHOLNPGM("/6");
  2521. custom_message_state = i + 2;
  2522. setTargetBed(50 + 10 * (temp - 30) / 5);
  2523. // setTargetHotend(255, 0);
  2524. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2525. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2526. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2528. st_synchronize();
  2529. while (current_temperature_pinda < temp)
  2530. {
  2531. delay_keep_alive(1000);
  2532. serialecho_temperatures();
  2533. }
  2534. current_position[Z_AXIS] = 5;
  2535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2536. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2537. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2539. st_synchronize();
  2540. find_bed_induction_sensor_point_z(-1.f);
  2541. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2542. SERIAL_ECHOLNPGM("");
  2543. SERIAL_ECHOPGM("PINDA temperature: ");
  2544. MYSERIAL.print(current_temperature_pinda);
  2545. SERIAL_ECHOPGM(" Z shift (mm):");
  2546. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2547. SERIAL_ECHOLNPGM("");
  2548. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2549. }
  2550. custom_message_type = 0;
  2551. custom_message = false;
  2552. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2553. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2554. disable_x();
  2555. disable_y();
  2556. disable_z();
  2557. disable_e0();
  2558. disable_e1();
  2559. disable_e2();
  2560. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. setTargetBed(0); //set bed target temperature back to 0
  2564. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2565. break;
  2566. }
  2567. #endif //PINDA_THERMISTOR
  2568. setTargetBed(PINDA_MIN_T);
  2569. float zero_z;
  2570. int z_shift = 0; //unit: steps
  2571. int t_c; // temperature
  2572. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2573. // We don't know where we are! HOME!
  2574. // Push the commands to the front of the message queue in the reverse order!
  2575. // There shall be always enough space reserved for these commands.
  2576. repeatcommand_front(); // repeat G76 with all its parameters
  2577. enquecommand_front_P((PSTR("G28 W0")));
  2578. break;
  2579. }
  2580. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2581. custom_message = true;
  2582. custom_message_type = 4;
  2583. custom_message_state = 1;
  2584. custom_message = MSG_TEMP_CALIBRATION;
  2585. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2586. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2587. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2589. st_synchronize();
  2590. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2591. delay_keep_alive(1000);
  2592. serialecho_temperatures();
  2593. }
  2594. //enquecommand_P(PSTR("M190 S50"));
  2595. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2596. delay_keep_alive(1000);
  2597. serialecho_temperatures();
  2598. }
  2599. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2600. current_position[Z_AXIS] = 5;
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2602. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2603. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2605. st_synchronize();
  2606. find_bed_induction_sensor_point_z(-1.f);
  2607. zero_z = current_position[Z_AXIS];
  2608. //current_position[Z_AXIS]
  2609. SERIAL_ECHOLNPGM("");
  2610. SERIAL_ECHOPGM("ZERO: ");
  2611. MYSERIAL.print(current_position[Z_AXIS]);
  2612. SERIAL_ECHOLNPGM("");
  2613. for (int i = 0; i<5; i++) {
  2614. SERIAL_ECHOPGM("Step: ");
  2615. MYSERIAL.print(i+2);
  2616. SERIAL_ECHOLNPGM("/6");
  2617. custom_message_state = i + 2;
  2618. t_c = 60 + i * 10;
  2619. setTargetBed(t_c);
  2620. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2621. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2622. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2624. st_synchronize();
  2625. while (degBed() < t_c) {
  2626. delay_keep_alive(1000);
  2627. serialecho_temperatures();
  2628. }
  2629. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2630. delay_keep_alive(1000);
  2631. serialecho_temperatures();
  2632. }
  2633. current_position[Z_AXIS] = 5;
  2634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2635. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2636. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2638. st_synchronize();
  2639. find_bed_induction_sensor_point_z(-1.f);
  2640. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2641. SERIAL_ECHOLNPGM("");
  2642. SERIAL_ECHOPGM("Temperature: ");
  2643. MYSERIAL.print(t_c);
  2644. SERIAL_ECHOPGM(" Z shift (mm):");
  2645. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2646. SERIAL_ECHOLNPGM("");
  2647. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2648. }
  2649. custom_message_type = 0;
  2650. custom_message = false;
  2651. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2652. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2653. disable_x();
  2654. disable_y();
  2655. disable_z();
  2656. disable_e0();
  2657. disable_e1();
  2658. disable_e2();
  2659. setTargetBed(0); //set bed target temperature back to 0
  2660. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2661. lcd_update_enable(true);
  2662. lcd_update(2);
  2663. }
  2664. break;
  2665. #ifdef DIS
  2666. case 77:
  2667. {
  2668. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2669. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2670. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2671. float dimension_x = 40;
  2672. float dimension_y = 40;
  2673. int points_x = 40;
  2674. int points_y = 40;
  2675. float offset_x = 74;
  2676. float offset_y = 33;
  2677. if (code_seen('X')) dimension_x = code_value();
  2678. if (code_seen('Y')) dimension_y = code_value();
  2679. if (code_seen('XP')) points_x = code_value();
  2680. if (code_seen('YP')) points_y = code_value();
  2681. if (code_seen('XO')) offset_x = code_value();
  2682. if (code_seen('YO')) offset_y = code_value();
  2683. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2684. } break;
  2685. #endif
  2686. case 79: {
  2687. for (int i = 255; i > 0; i = i - 5) {
  2688. fanSpeed = i;
  2689. //delay_keep_alive(2000);
  2690. for (int j = 0; j < 100; j++) {
  2691. delay_keep_alive(100);
  2692. }
  2693. fan_speed[1];
  2694. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2695. }
  2696. }break;
  2697. /**
  2698. * G80: Mesh-based Z probe, probes a grid and produces a
  2699. * mesh to compensate for variable bed height
  2700. *
  2701. * The S0 report the points as below
  2702. *
  2703. * +----> X-axis
  2704. * |
  2705. * |
  2706. * v Y-axis
  2707. *
  2708. */
  2709. case 80:
  2710. #ifdef MK1BP
  2711. break;
  2712. #endif //MK1BP
  2713. case_G80:
  2714. {
  2715. mesh_bed_leveling_flag = true;
  2716. int8_t verbosity_level = 0;
  2717. static bool run = false;
  2718. if (code_seen('V')) {
  2719. // Just 'V' without a number counts as V1.
  2720. char c = strchr_pointer[1];
  2721. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2722. }
  2723. // Firstly check if we know where we are
  2724. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2725. // We don't know where we are! HOME!
  2726. // Push the commands to the front of the message queue in the reverse order!
  2727. // There shall be always enough space reserved for these commands.
  2728. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2729. repeatcommand_front(); // repeat G80 with all its parameters
  2730. enquecommand_front_P((PSTR("G28 W0")));
  2731. }
  2732. else {
  2733. mesh_bed_leveling_flag = false;
  2734. }
  2735. break;
  2736. }
  2737. bool temp_comp_start = true;
  2738. #ifdef PINDA_THERMISTOR
  2739. temp_comp_start = false;
  2740. #endif //PINDA_THERMISTOR
  2741. if (temp_comp_start)
  2742. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2743. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2744. temp_compensation_start();
  2745. run = true;
  2746. repeatcommand_front(); // repeat G80 with all its parameters
  2747. enquecommand_front_P((PSTR("G28 W0")));
  2748. }
  2749. else {
  2750. mesh_bed_leveling_flag = false;
  2751. }
  2752. break;
  2753. }
  2754. run = false;
  2755. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2756. mesh_bed_leveling_flag = false;
  2757. break;
  2758. }
  2759. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2760. bool custom_message_old = custom_message;
  2761. unsigned int custom_message_type_old = custom_message_type;
  2762. unsigned int custom_message_state_old = custom_message_state;
  2763. custom_message = true;
  2764. custom_message_type = 1;
  2765. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2766. lcd_update(1);
  2767. mbl.reset(); //reset mesh bed leveling
  2768. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2769. // consumed during the first movements following this statement.
  2770. babystep_undo();
  2771. // Cycle through all points and probe them
  2772. // First move up. During this first movement, the babystepping will be reverted.
  2773. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2775. // The move to the first calibration point.
  2776. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2777. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2778. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2779. #ifdef SUPPORT_VERBOSITY
  2780. if (verbosity_level >= 1) {
  2781. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2782. }
  2783. #endif //SUPPORT_VERBOSITY
  2784. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2786. // Wait until the move is finished.
  2787. st_synchronize();
  2788. int mesh_point = 0; //index number of calibration point
  2789. int ix = 0;
  2790. int iy = 0;
  2791. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2792. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2793. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2794. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2795. #ifdef SUPPORT_VERBOSITY
  2796. if (verbosity_level >= 1) {
  2797. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2798. }
  2799. #endif // SUPPORT_VERBOSITY
  2800. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2801. const char *kill_message = NULL;
  2802. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2803. // Get coords of a measuring point.
  2804. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2805. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2806. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2807. float z0 = 0.f;
  2808. if (has_z && mesh_point > 0) {
  2809. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2810. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2811. //#if 0
  2812. #ifdef SUPPORT_VERBOSITY
  2813. if (verbosity_level >= 1) {
  2814. SERIAL_ECHOLNPGM("");
  2815. SERIAL_ECHOPGM("Bed leveling, point: ");
  2816. MYSERIAL.print(mesh_point);
  2817. SERIAL_ECHOPGM(", calibration z: ");
  2818. MYSERIAL.print(z0, 5);
  2819. SERIAL_ECHOLNPGM("");
  2820. }
  2821. #endif // SUPPORT_VERBOSITY
  2822. //#endif
  2823. }
  2824. // Move Z up to MESH_HOME_Z_SEARCH.
  2825. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2827. st_synchronize();
  2828. // Move to XY position of the sensor point.
  2829. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2830. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2831. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2832. #ifdef SUPPORT_VERBOSITY
  2833. if (verbosity_level >= 1) {
  2834. SERIAL_PROTOCOL(mesh_point);
  2835. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2836. }
  2837. #endif // SUPPORT_VERBOSITY
  2838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2839. st_synchronize();
  2840. // Go down until endstop is hit
  2841. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2842. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2843. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2844. break;
  2845. }
  2846. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2847. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2848. break;
  2849. }
  2850. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2851. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2852. break;
  2853. }
  2854. #ifdef SUPPORT_VERBOSITY
  2855. if (verbosity_level >= 10) {
  2856. SERIAL_ECHOPGM("X: ");
  2857. MYSERIAL.print(current_position[X_AXIS], 5);
  2858. SERIAL_ECHOLNPGM("");
  2859. SERIAL_ECHOPGM("Y: ");
  2860. MYSERIAL.print(current_position[Y_AXIS], 5);
  2861. SERIAL_PROTOCOLPGM("\n");
  2862. }
  2863. #endif // SUPPORT_VERBOSITY
  2864. float offset_z = 0;
  2865. #ifdef PINDA_THERMISTOR
  2866. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2867. #endif //PINDA_THERMISTOR
  2868. // #ifdef SUPPORT_VERBOSITY
  2869. // if (verbosity_level >= 1)
  2870. {
  2871. SERIAL_ECHOPGM("mesh bed leveling: ");
  2872. MYSERIAL.print(current_position[Z_AXIS], 5);
  2873. SERIAL_ECHOPGM(" offset: ");
  2874. MYSERIAL.print(offset_z, 5);
  2875. SERIAL_ECHOLNPGM("");
  2876. }
  2877. // #endif // SUPPORT_VERBOSITY
  2878. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2879. custom_message_state--;
  2880. mesh_point++;
  2881. lcd_update(1);
  2882. }
  2883. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2884. #ifdef SUPPORT_VERBOSITY
  2885. if (verbosity_level >= 20) {
  2886. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2887. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2888. MYSERIAL.print(current_position[Z_AXIS], 5);
  2889. }
  2890. #endif // SUPPORT_VERBOSITY
  2891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2892. st_synchronize();
  2893. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2894. kill(kill_message);
  2895. SERIAL_ECHOLNPGM("killed");
  2896. }
  2897. clean_up_after_endstop_move();
  2898. SERIAL_ECHOLNPGM("clean up finished ");
  2899. bool apply_temp_comp = true;
  2900. #ifdef PINDA_THERMISTOR
  2901. apply_temp_comp = false;
  2902. #endif
  2903. if (apply_temp_comp)
  2904. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2905. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2906. SERIAL_ECHOLNPGM("babystep applied");
  2907. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2908. #ifdef SUPPORT_VERBOSITY
  2909. if (verbosity_level >= 1) {
  2910. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2911. }
  2912. #endif // SUPPORT_VERBOSITY
  2913. for (uint8_t i = 0; i < 4; ++i) {
  2914. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2915. long correction = 0;
  2916. if (code_seen(codes[i]))
  2917. correction = code_value_long();
  2918. else if (eeprom_bed_correction_valid) {
  2919. unsigned char *addr = (i < 2) ?
  2920. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2921. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2922. correction = eeprom_read_int8(addr);
  2923. }
  2924. if (correction == 0)
  2925. continue;
  2926. float offset = float(correction) * 0.001f;
  2927. if (fabs(offset) > 0.101f) {
  2928. SERIAL_ERROR_START;
  2929. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2930. SERIAL_ECHO(offset);
  2931. SERIAL_ECHOLNPGM(" microns");
  2932. }
  2933. else {
  2934. switch (i) {
  2935. case 0:
  2936. for (uint8_t row = 0; row < 3; ++row) {
  2937. mbl.z_values[row][1] += 0.5f * offset;
  2938. mbl.z_values[row][0] += offset;
  2939. }
  2940. break;
  2941. case 1:
  2942. for (uint8_t row = 0; row < 3; ++row) {
  2943. mbl.z_values[row][1] += 0.5f * offset;
  2944. mbl.z_values[row][2] += offset;
  2945. }
  2946. break;
  2947. case 2:
  2948. for (uint8_t col = 0; col < 3; ++col) {
  2949. mbl.z_values[1][col] += 0.5f * offset;
  2950. mbl.z_values[0][col] += offset;
  2951. }
  2952. break;
  2953. case 3:
  2954. for (uint8_t col = 0; col < 3; ++col) {
  2955. mbl.z_values[1][col] += 0.5f * offset;
  2956. mbl.z_values[2][col] += offset;
  2957. }
  2958. break;
  2959. }
  2960. }
  2961. }
  2962. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2963. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2964. SERIAL_ECHOLNPGM("Upsample finished");
  2965. mbl.active = 1; //activate mesh bed leveling
  2966. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2967. go_home_with_z_lift();
  2968. SERIAL_ECHOLNPGM("Go home finished");
  2969. //unretract (after PINDA preheat retraction)
  2970. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2971. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2973. }
  2974. KEEPALIVE_STATE(NOT_BUSY);
  2975. // Restore custom message state
  2976. custom_message = custom_message_old;
  2977. custom_message_type = custom_message_type_old;
  2978. custom_message_state = custom_message_state_old;
  2979. mesh_bed_leveling_flag = false;
  2980. mesh_bed_run_from_menu = false;
  2981. lcd_update(2);
  2982. }
  2983. break;
  2984. /**
  2985. * G81: Print mesh bed leveling status and bed profile if activated
  2986. */
  2987. case 81:
  2988. if (mbl.active) {
  2989. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2990. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2991. SERIAL_PROTOCOLPGM(",");
  2992. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2993. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2994. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2995. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2996. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2997. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2998. SERIAL_PROTOCOLPGM(" ");
  2999. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3000. }
  3001. SERIAL_PROTOCOLPGM("\n");
  3002. }
  3003. }
  3004. else
  3005. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3006. break;
  3007. #if 0
  3008. /**
  3009. * G82: Single Z probe at current location
  3010. *
  3011. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3012. *
  3013. */
  3014. case 82:
  3015. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3016. setup_for_endstop_move();
  3017. find_bed_induction_sensor_point_z();
  3018. clean_up_after_endstop_move();
  3019. SERIAL_PROTOCOLPGM("Bed found at: ");
  3020. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3021. SERIAL_PROTOCOLPGM("\n");
  3022. break;
  3023. /**
  3024. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3025. */
  3026. case 83:
  3027. {
  3028. int babystepz = code_seen('S') ? code_value() : 0;
  3029. int BabyPosition = code_seen('P') ? code_value() : 0;
  3030. if (babystepz != 0) {
  3031. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3032. // Is the axis indexed starting with zero or one?
  3033. if (BabyPosition > 4) {
  3034. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3035. }else{
  3036. // Save it to the eeprom
  3037. babystepLoadZ = babystepz;
  3038. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3039. // adjust the Z
  3040. babystepsTodoZadd(babystepLoadZ);
  3041. }
  3042. }
  3043. }
  3044. break;
  3045. /**
  3046. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3047. */
  3048. case 84:
  3049. babystepsTodoZsubtract(babystepLoadZ);
  3050. // babystepLoadZ = 0;
  3051. break;
  3052. /**
  3053. * G85: Prusa3D specific: Pick best babystep
  3054. */
  3055. case 85:
  3056. lcd_pick_babystep();
  3057. break;
  3058. #endif
  3059. /**
  3060. * G86: Prusa3D specific: Disable babystep correction after home.
  3061. * This G-code will be performed at the start of a calibration script.
  3062. */
  3063. case 86:
  3064. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3065. break;
  3066. /**
  3067. * G87: Prusa3D specific: Enable babystep correction after home
  3068. * This G-code will be performed at the end of a calibration script.
  3069. */
  3070. case 87:
  3071. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3072. break;
  3073. /**
  3074. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3075. */
  3076. case 88:
  3077. break;
  3078. #endif // ENABLE_MESH_BED_LEVELING
  3079. case 90: // G90
  3080. relative_mode = false;
  3081. break;
  3082. case 91: // G91
  3083. relative_mode = true;
  3084. break;
  3085. case 92: // G92
  3086. if(!code_seen(axis_codes[E_AXIS]))
  3087. st_synchronize();
  3088. for(int8_t i=0; i < NUM_AXIS; i++) {
  3089. if(code_seen(axis_codes[i])) {
  3090. if(i == E_AXIS) {
  3091. current_position[i] = code_value();
  3092. plan_set_e_position(current_position[E_AXIS]);
  3093. }
  3094. else {
  3095. current_position[i] = code_value()+add_homing[i];
  3096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3097. }
  3098. }
  3099. }
  3100. break;
  3101. case 98: //activate farm mode
  3102. farm_mode = 1;
  3103. PingTime = millis();
  3104. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3105. break;
  3106. case 99: //deactivate farm mode
  3107. farm_mode = 0;
  3108. lcd_printer_connected();
  3109. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3110. lcd_update(2);
  3111. break;
  3112. }
  3113. } // end if(code_seen('G'))
  3114. else if(code_seen('M'))
  3115. {
  3116. int index;
  3117. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3118. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3119. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3120. SERIAL_ECHOLNPGM("Invalid M code");
  3121. } else
  3122. switch((int)code_value())
  3123. {
  3124. #ifdef ULTIPANEL
  3125. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3126. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3127. {
  3128. char *src = strchr_pointer + 2;
  3129. codenum = 0;
  3130. bool hasP = false, hasS = false;
  3131. if (code_seen('P')) {
  3132. codenum = code_value(); // milliseconds to wait
  3133. hasP = codenum > 0;
  3134. }
  3135. if (code_seen('S')) {
  3136. codenum = code_value() * 1000; // seconds to wait
  3137. hasS = codenum > 0;
  3138. }
  3139. starpos = strchr(src, '*');
  3140. if (starpos != NULL) *(starpos) = '\0';
  3141. while (*src == ' ') ++src;
  3142. if (!hasP && !hasS && *src != '\0') {
  3143. lcd_setstatus(src);
  3144. } else {
  3145. LCD_MESSAGERPGM(MSG_USERWAIT);
  3146. }
  3147. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3148. st_synchronize();
  3149. previous_millis_cmd = millis();
  3150. if (codenum > 0){
  3151. codenum += millis(); // keep track of when we started waiting
  3152. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3153. while(millis() < codenum && !lcd_clicked()){
  3154. manage_heater();
  3155. manage_inactivity(true);
  3156. lcd_update();
  3157. }
  3158. KEEPALIVE_STATE(IN_HANDLER);
  3159. lcd_ignore_click(false);
  3160. }else{
  3161. if (!lcd_detected())
  3162. break;
  3163. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3164. while(!lcd_clicked()){
  3165. manage_heater();
  3166. manage_inactivity(true);
  3167. lcd_update();
  3168. }
  3169. KEEPALIVE_STATE(IN_HANDLER);
  3170. }
  3171. if (IS_SD_PRINTING)
  3172. LCD_MESSAGERPGM(MSG_RESUMING);
  3173. else
  3174. LCD_MESSAGERPGM(WELCOME_MSG);
  3175. }
  3176. break;
  3177. #endif
  3178. case 17:
  3179. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3180. enable_x();
  3181. enable_y();
  3182. enable_z();
  3183. enable_e0();
  3184. enable_e1();
  3185. enable_e2();
  3186. break;
  3187. #ifdef SDSUPPORT
  3188. case 20: // M20 - list SD card
  3189. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3190. card.ls();
  3191. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3192. break;
  3193. case 21: // M21 - init SD card
  3194. card.initsd();
  3195. break;
  3196. case 22: //M22 - release SD card
  3197. card.release();
  3198. break;
  3199. case 23: //M23 - Select file
  3200. starpos = (strchr(strchr_pointer + 4,'*'));
  3201. if(starpos!=NULL)
  3202. *(starpos)='\0';
  3203. card.openFile(strchr_pointer + 4,true);
  3204. break;
  3205. case 24: //M24 - Start SD print
  3206. card.startFileprint();
  3207. starttime=millis();
  3208. break;
  3209. case 25: //M25 - Pause SD print
  3210. card.pauseSDPrint();
  3211. break;
  3212. case 26: //M26 - Set SD index
  3213. if(card.cardOK && code_seen('S')) {
  3214. card.setIndex(code_value_long());
  3215. }
  3216. break;
  3217. case 27: //M27 - Get SD status
  3218. card.getStatus();
  3219. break;
  3220. case 28: //M28 - Start SD write
  3221. starpos = (strchr(strchr_pointer + 4,'*'));
  3222. if(starpos != NULL){
  3223. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3224. strchr_pointer = strchr(npos,' ') + 1;
  3225. *(starpos) = '\0';
  3226. }
  3227. card.openFile(strchr_pointer+4,false);
  3228. break;
  3229. case 29: //M29 - Stop SD write
  3230. //processed in write to file routine above
  3231. //card,saving = false;
  3232. break;
  3233. case 30: //M30 <filename> Delete File
  3234. if (card.cardOK){
  3235. card.closefile();
  3236. starpos = (strchr(strchr_pointer + 4,'*'));
  3237. if(starpos != NULL){
  3238. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3239. strchr_pointer = strchr(npos,' ') + 1;
  3240. *(starpos) = '\0';
  3241. }
  3242. card.removeFile(strchr_pointer + 4);
  3243. }
  3244. break;
  3245. case 32: //M32 - Select file and start SD print
  3246. {
  3247. if(card.sdprinting) {
  3248. st_synchronize();
  3249. }
  3250. starpos = (strchr(strchr_pointer + 4,'*'));
  3251. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3252. if(namestartpos==NULL)
  3253. {
  3254. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3255. }
  3256. else
  3257. namestartpos++; //to skip the '!'
  3258. if(starpos!=NULL)
  3259. *(starpos)='\0';
  3260. bool call_procedure=(code_seen('P'));
  3261. if(strchr_pointer>namestartpos)
  3262. call_procedure=false; //false alert, 'P' found within filename
  3263. if( card.cardOK )
  3264. {
  3265. card.openFile(namestartpos,true,!call_procedure);
  3266. if(code_seen('S'))
  3267. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3268. card.setIndex(code_value_long());
  3269. card.startFileprint();
  3270. if(!call_procedure)
  3271. starttime=millis(); //procedure calls count as normal print time.
  3272. }
  3273. } break;
  3274. case 928: //M928 - Start SD write
  3275. starpos = (strchr(strchr_pointer + 5,'*'));
  3276. if(starpos != NULL){
  3277. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3278. strchr_pointer = strchr(npos,' ') + 1;
  3279. *(starpos) = '\0';
  3280. }
  3281. card.openLogFile(strchr_pointer+5);
  3282. break;
  3283. #endif //SDSUPPORT
  3284. case 31: //M31 take time since the start of the SD print or an M109 command
  3285. {
  3286. stoptime=millis();
  3287. char time[30];
  3288. unsigned long t=(stoptime-starttime)/1000;
  3289. int sec,min;
  3290. min=t/60;
  3291. sec=t%60;
  3292. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3293. SERIAL_ECHO_START;
  3294. SERIAL_ECHOLN(time);
  3295. lcd_setstatus(time);
  3296. autotempShutdown();
  3297. }
  3298. break;
  3299. case 42: //M42 -Change pin status via gcode
  3300. if (code_seen('S'))
  3301. {
  3302. int pin_status = code_value();
  3303. int pin_number = LED_PIN;
  3304. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3305. pin_number = code_value();
  3306. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3307. {
  3308. if (sensitive_pins[i] == pin_number)
  3309. {
  3310. pin_number = -1;
  3311. break;
  3312. }
  3313. }
  3314. #if defined(FAN_PIN) && FAN_PIN > -1
  3315. if (pin_number == FAN_PIN)
  3316. fanSpeed = pin_status;
  3317. #endif
  3318. if (pin_number > -1)
  3319. {
  3320. pinMode(pin_number, OUTPUT);
  3321. digitalWrite(pin_number, pin_status);
  3322. analogWrite(pin_number, pin_status);
  3323. }
  3324. }
  3325. break;
  3326. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3327. // Reset the baby step value and the baby step applied flag.
  3328. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3329. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3330. // Reset the skew and offset in both RAM and EEPROM.
  3331. reset_bed_offset_and_skew();
  3332. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3333. // the planner will not perform any adjustments in the XY plane.
  3334. // Wait for the motors to stop and update the current position with the absolute values.
  3335. world2machine_revert_to_uncorrected();
  3336. break;
  3337. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3338. {
  3339. bool only_Z = code_seen('Z');
  3340. gcode_M45(only_Z);
  3341. }
  3342. break;
  3343. /*
  3344. case 46:
  3345. {
  3346. // M46: Prusa3D: Show the assigned IP address.
  3347. uint8_t ip[4];
  3348. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3349. if (hasIP) {
  3350. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3351. SERIAL_ECHO(int(ip[0]));
  3352. SERIAL_ECHOPGM(".");
  3353. SERIAL_ECHO(int(ip[1]));
  3354. SERIAL_ECHOPGM(".");
  3355. SERIAL_ECHO(int(ip[2]));
  3356. SERIAL_ECHOPGM(".");
  3357. SERIAL_ECHO(int(ip[3]));
  3358. SERIAL_ECHOLNPGM("");
  3359. } else {
  3360. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3361. }
  3362. break;
  3363. }
  3364. */
  3365. case 47:
  3366. // M47: Prusa3D: Show end stops dialog on the display.
  3367. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3368. lcd_diag_show_end_stops();
  3369. KEEPALIVE_STATE(IN_HANDLER);
  3370. break;
  3371. #if 0
  3372. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3373. {
  3374. // Disable the default update procedure of the display. We will do a modal dialog.
  3375. lcd_update_enable(false);
  3376. // Let the planner use the uncorrected coordinates.
  3377. mbl.reset();
  3378. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3379. // the planner will not perform any adjustments in the XY plane.
  3380. // Wait for the motors to stop and update the current position with the absolute values.
  3381. world2machine_revert_to_uncorrected();
  3382. // Move the print head close to the bed.
  3383. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3385. st_synchronize();
  3386. // Home in the XY plane.
  3387. set_destination_to_current();
  3388. setup_for_endstop_move();
  3389. home_xy();
  3390. int8_t verbosity_level = 0;
  3391. if (code_seen('V')) {
  3392. // Just 'V' without a number counts as V1.
  3393. char c = strchr_pointer[1];
  3394. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3395. }
  3396. bool success = scan_bed_induction_points(verbosity_level);
  3397. clean_up_after_endstop_move();
  3398. // Print head up.
  3399. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3401. st_synchronize();
  3402. lcd_update_enable(true);
  3403. break;
  3404. }
  3405. #endif
  3406. // M48 Z-Probe repeatability measurement function.
  3407. //
  3408. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3409. //
  3410. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3411. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3412. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3413. // regenerated.
  3414. //
  3415. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3416. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3417. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3418. //
  3419. #ifdef ENABLE_AUTO_BED_LEVELING
  3420. #ifdef Z_PROBE_REPEATABILITY_TEST
  3421. case 48: // M48 Z-Probe repeatability
  3422. {
  3423. #if Z_MIN_PIN == -1
  3424. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3425. #endif
  3426. double sum=0.0;
  3427. double mean=0.0;
  3428. double sigma=0.0;
  3429. double sample_set[50];
  3430. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3431. double X_current, Y_current, Z_current;
  3432. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3433. if (code_seen('V') || code_seen('v')) {
  3434. verbose_level = code_value();
  3435. if (verbose_level<0 || verbose_level>4 ) {
  3436. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3437. goto Sigma_Exit;
  3438. }
  3439. }
  3440. if (verbose_level > 0) {
  3441. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3442. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3443. }
  3444. if (code_seen('n')) {
  3445. n_samples = code_value();
  3446. if (n_samples<4 || n_samples>50 ) {
  3447. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3448. goto Sigma_Exit;
  3449. }
  3450. }
  3451. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3452. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3453. Z_current = st_get_position_mm(Z_AXIS);
  3454. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3455. ext_position = st_get_position_mm(E_AXIS);
  3456. if (code_seen('X') || code_seen('x') ) {
  3457. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3458. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3459. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3460. goto Sigma_Exit;
  3461. }
  3462. }
  3463. if (code_seen('Y') || code_seen('y') ) {
  3464. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3465. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3466. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3467. goto Sigma_Exit;
  3468. }
  3469. }
  3470. if (code_seen('L') || code_seen('l') ) {
  3471. n_legs = code_value();
  3472. if ( n_legs==1 )
  3473. n_legs = 2;
  3474. if ( n_legs<0 || n_legs>15 ) {
  3475. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3476. goto Sigma_Exit;
  3477. }
  3478. }
  3479. //
  3480. // Do all the preliminary setup work. First raise the probe.
  3481. //
  3482. st_synchronize();
  3483. plan_bed_level_matrix.set_to_identity();
  3484. plan_buffer_line( X_current, Y_current, Z_start_location,
  3485. ext_position,
  3486. homing_feedrate[Z_AXIS]/60,
  3487. active_extruder);
  3488. st_synchronize();
  3489. //
  3490. // Now get everything to the specified probe point So we can safely do a probe to
  3491. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3492. // use that as a starting point for each probe.
  3493. //
  3494. if (verbose_level > 2)
  3495. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3496. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3497. ext_position,
  3498. homing_feedrate[X_AXIS]/60,
  3499. active_extruder);
  3500. st_synchronize();
  3501. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3502. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3503. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3504. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3505. //
  3506. // OK, do the inital probe to get us close to the bed.
  3507. // Then retrace the right amount and use that in subsequent probes
  3508. //
  3509. setup_for_endstop_move();
  3510. run_z_probe();
  3511. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3512. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3513. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3514. ext_position,
  3515. homing_feedrate[X_AXIS]/60,
  3516. active_extruder);
  3517. st_synchronize();
  3518. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3519. for( n=0; n<n_samples; n++) {
  3520. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3521. if ( n_legs) {
  3522. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3523. int rotational_direction, l;
  3524. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3525. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3526. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3527. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3528. //SERIAL_ECHOPAIR(" theta: ",theta);
  3529. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3530. //SERIAL_PROTOCOLLNPGM("");
  3531. for( l=0; l<n_legs-1; l++) {
  3532. if (rotational_direction==1)
  3533. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3534. else
  3535. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3536. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3537. if ( radius<0.0 )
  3538. radius = -radius;
  3539. X_current = X_probe_location + cos(theta) * radius;
  3540. Y_current = Y_probe_location + sin(theta) * radius;
  3541. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3542. X_current = X_MIN_POS;
  3543. if ( X_current>X_MAX_POS)
  3544. X_current = X_MAX_POS;
  3545. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3546. Y_current = Y_MIN_POS;
  3547. if ( Y_current>Y_MAX_POS)
  3548. Y_current = Y_MAX_POS;
  3549. if (verbose_level>3 ) {
  3550. SERIAL_ECHOPAIR("x: ", X_current);
  3551. SERIAL_ECHOPAIR("y: ", Y_current);
  3552. SERIAL_PROTOCOLLNPGM("");
  3553. }
  3554. do_blocking_move_to( X_current, Y_current, Z_current );
  3555. }
  3556. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3557. }
  3558. setup_for_endstop_move();
  3559. run_z_probe();
  3560. sample_set[n] = current_position[Z_AXIS];
  3561. //
  3562. // Get the current mean for the data points we have so far
  3563. //
  3564. sum=0.0;
  3565. for( j=0; j<=n; j++) {
  3566. sum = sum + sample_set[j];
  3567. }
  3568. mean = sum / (double (n+1));
  3569. //
  3570. // Now, use that mean to calculate the standard deviation for the
  3571. // data points we have so far
  3572. //
  3573. sum=0.0;
  3574. for( j=0; j<=n; j++) {
  3575. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3576. }
  3577. sigma = sqrt( sum / (double (n+1)) );
  3578. if (verbose_level > 1) {
  3579. SERIAL_PROTOCOL(n+1);
  3580. SERIAL_PROTOCOL(" of ");
  3581. SERIAL_PROTOCOL(n_samples);
  3582. SERIAL_PROTOCOLPGM(" z: ");
  3583. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3584. }
  3585. if (verbose_level > 2) {
  3586. SERIAL_PROTOCOL(" mean: ");
  3587. SERIAL_PROTOCOL_F(mean,6);
  3588. SERIAL_PROTOCOL(" sigma: ");
  3589. SERIAL_PROTOCOL_F(sigma,6);
  3590. }
  3591. if (verbose_level > 0)
  3592. SERIAL_PROTOCOLPGM("\n");
  3593. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3594. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3595. st_synchronize();
  3596. }
  3597. delay(1000);
  3598. clean_up_after_endstop_move();
  3599. // enable_endstops(true);
  3600. if (verbose_level > 0) {
  3601. SERIAL_PROTOCOLPGM("Mean: ");
  3602. SERIAL_PROTOCOL_F(mean, 6);
  3603. SERIAL_PROTOCOLPGM("\n");
  3604. }
  3605. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3606. SERIAL_PROTOCOL_F(sigma, 6);
  3607. SERIAL_PROTOCOLPGM("\n\n");
  3608. Sigma_Exit:
  3609. break;
  3610. }
  3611. #endif // Z_PROBE_REPEATABILITY_TEST
  3612. #endif // ENABLE_AUTO_BED_LEVELING
  3613. case 104: // M104
  3614. if(setTargetedHotend(104)){
  3615. break;
  3616. }
  3617. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3618. setWatch();
  3619. break;
  3620. case 112: // M112 -Emergency Stop
  3621. kill("", 3);
  3622. break;
  3623. case 140: // M140 set bed temp
  3624. if (code_seen('S')) setTargetBed(code_value());
  3625. break;
  3626. case 105 : // M105
  3627. if(setTargetedHotend(105)){
  3628. break;
  3629. }
  3630. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3631. SERIAL_PROTOCOLPGM("ok T:");
  3632. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3633. SERIAL_PROTOCOLPGM(" /");
  3634. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3635. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3636. SERIAL_PROTOCOLPGM(" B:");
  3637. SERIAL_PROTOCOL_F(degBed(),1);
  3638. SERIAL_PROTOCOLPGM(" /");
  3639. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3640. #endif //TEMP_BED_PIN
  3641. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3642. SERIAL_PROTOCOLPGM(" T");
  3643. SERIAL_PROTOCOL(cur_extruder);
  3644. SERIAL_PROTOCOLPGM(":");
  3645. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3646. SERIAL_PROTOCOLPGM(" /");
  3647. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3648. }
  3649. #else
  3650. SERIAL_ERROR_START;
  3651. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3652. #endif
  3653. SERIAL_PROTOCOLPGM(" @:");
  3654. #ifdef EXTRUDER_WATTS
  3655. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3656. SERIAL_PROTOCOLPGM("W");
  3657. #else
  3658. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3659. #endif
  3660. SERIAL_PROTOCOLPGM(" B@:");
  3661. #ifdef BED_WATTS
  3662. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3663. SERIAL_PROTOCOLPGM("W");
  3664. #else
  3665. SERIAL_PROTOCOL(getHeaterPower(-1));
  3666. #endif
  3667. #ifdef PINDA_THERMISTOR
  3668. SERIAL_PROTOCOLPGM(" P:");
  3669. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3670. #endif //PINDA_THERMISTOR
  3671. #ifdef AMBIENT_THERMISTOR
  3672. SERIAL_PROTOCOLPGM(" A:");
  3673. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3674. #endif //AMBIENT_THERMISTOR
  3675. #ifdef SHOW_TEMP_ADC_VALUES
  3676. {float raw = 0.0;
  3677. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3678. SERIAL_PROTOCOLPGM(" ADC B:");
  3679. SERIAL_PROTOCOL_F(degBed(),1);
  3680. SERIAL_PROTOCOLPGM("C->");
  3681. raw = rawBedTemp();
  3682. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3683. SERIAL_PROTOCOLPGM(" Rb->");
  3684. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3685. SERIAL_PROTOCOLPGM(" Rxb->");
  3686. SERIAL_PROTOCOL_F(raw, 5);
  3687. #endif
  3688. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3689. SERIAL_PROTOCOLPGM(" T");
  3690. SERIAL_PROTOCOL(cur_extruder);
  3691. SERIAL_PROTOCOLPGM(":");
  3692. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3693. SERIAL_PROTOCOLPGM("C->");
  3694. raw = rawHotendTemp(cur_extruder);
  3695. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3696. SERIAL_PROTOCOLPGM(" Rt");
  3697. SERIAL_PROTOCOL(cur_extruder);
  3698. SERIAL_PROTOCOLPGM("->");
  3699. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3700. SERIAL_PROTOCOLPGM(" Rx");
  3701. SERIAL_PROTOCOL(cur_extruder);
  3702. SERIAL_PROTOCOLPGM("->");
  3703. SERIAL_PROTOCOL_F(raw, 5);
  3704. }}
  3705. #endif
  3706. SERIAL_PROTOCOLLN("");
  3707. KEEPALIVE_STATE(NOT_BUSY);
  3708. return;
  3709. break;
  3710. case 109:
  3711. {// M109 - Wait for extruder heater to reach target.
  3712. if(setTargetedHotend(109)){
  3713. break;
  3714. }
  3715. LCD_MESSAGERPGM(MSG_HEATING);
  3716. heating_status = 1;
  3717. if (farm_mode) { prusa_statistics(1); };
  3718. #ifdef AUTOTEMP
  3719. autotemp_enabled=false;
  3720. #endif
  3721. if (code_seen('S')) {
  3722. setTargetHotend(code_value(), tmp_extruder);
  3723. CooldownNoWait = true;
  3724. } else if (code_seen('R')) {
  3725. setTargetHotend(code_value(), tmp_extruder);
  3726. CooldownNoWait = false;
  3727. }
  3728. #ifdef AUTOTEMP
  3729. if (code_seen('S')) autotemp_min=code_value();
  3730. if (code_seen('B')) autotemp_max=code_value();
  3731. if (code_seen('F'))
  3732. {
  3733. autotemp_factor=code_value();
  3734. autotemp_enabled=true;
  3735. }
  3736. #endif
  3737. setWatch();
  3738. codenum = millis();
  3739. /* See if we are heating up or cooling down */
  3740. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3741. KEEPALIVE_STATE(NOT_BUSY);
  3742. cancel_heatup = false;
  3743. wait_for_heater(codenum); //loops until target temperature is reached
  3744. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3745. KEEPALIVE_STATE(IN_HANDLER);
  3746. heating_status = 2;
  3747. if (farm_mode) { prusa_statistics(2); };
  3748. //starttime=millis();
  3749. previous_millis_cmd = millis();
  3750. }
  3751. break;
  3752. case 190: // M190 - Wait for bed heater to reach target.
  3753. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3754. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3755. heating_status = 3;
  3756. if (farm_mode) { prusa_statistics(1); };
  3757. if (code_seen('S'))
  3758. {
  3759. setTargetBed(code_value());
  3760. CooldownNoWait = true;
  3761. }
  3762. else if (code_seen('R'))
  3763. {
  3764. setTargetBed(code_value());
  3765. CooldownNoWait = false;
  3766. }
  3767. codenum = millis();
  3768. cancel_heatup = false;
  3769. target_direction = isHeatingBed(); // true if heating, false if cooling
  3770. KEEPALIVE_STATE(NOT_BUSY);
  3771. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3772. {
  3773. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3774. {
  3775. if (!farm_mode) {
  3776. float tt = degHotend(active_extruder);
  3777. SERIAL_PROTOCOLPGM("T:");
  3778. SERIAL_PROTOCOL(tt);
  3779. SERIAL_PROTOCOLPGM(" E:");
  3780. SERIAL_PROTOCOL((int)active_extruder);
  3781. SERIAL_PROTOCOLPGM(" B:");
  3782. SERIAL_PROTOCOL_F(degBed(), 1);
  3783. SERIAL_PROTOCOLLN("");
  3784. }
  3785. codenum = millis();
  3786. }
  3787. manage_heater();
  3788. manage_inactivity();
  3789. lcd_update();
  3790. }
  3791. LCD_MESSAGERPGM(MSG_BED_DONE);
  3792. KEEPALIVE_STATE(IN_HANDLER);
  3793. heating_status = 4;
  3794. previous_millis_cmd = millis();
  3795. #endif
  3796. break;
  3797. #if defined(FAN_PIN) && FAN_PIN > -1
  3798. case 106: //M106 Fan On
  3799. if (code_seen('S')){
  3800. fanSpeed=constrain(code_value(),0,255);
  3801. }
  3802. else {
  3803. fanSpeed=255;
  3804. }
  3805. break;
  3806. case 107: //M107 Fan Off
  3807. fanSpeed = 0;
  3808. break;
  3809. #endif //FAN_PIN
  3810. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3811. case 80: // M80 - Turn on Power Supply
  3812. SET_OUTPUT(PS_ON_PIN); //GND
  3813. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3814. // If you have a switch on suicide pin, this is useful
  3815. // if you want to start another print with suicide feature after
  3816. // a print without suicide...
  3817. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3818. SET_OUTPUT(SUICIDE_PIN);
  3819. WRITE(SUICIDE_PIN, HIGH);
  3820. #endif
  3821. #ifdef ULTIPANEL
  3822. powersupply = true;
  3823. LCD_MESSAGERPGM(WELCOME_MSG);
  3824. lcd_update();
  3825. #endif
  3826. break;
  3827. #endif
  3828. case 81: // M81 - Turn off Power Supply
  3829. disable_heater();
  3830. st_synchronize();
  3831. disable_e0();
  3832. disable_e1();
  3833. disable_e2();
  3834. finishAndDisableSteppers();
  3835. fanSpeed = 0;
  3836. delay(1000); // Wait a little before to switch off
  3837. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3838. st_synchronize();
  3839. suicide();
  3840. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3841. SET_OUTPUT(PS_ON_PIN);
  3842. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3843. #endif
  3844. #ifdef ULTIPANEL
  3845. powersupply = false;
  3846. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3847. /*
  3848. MACHNAME = "Prusa i3"
  3849. MSGOFF = "Vypnuto"
  3850. "Prusai3"" ""vypnuto""."
  3851. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3852. */
  3853. lcd_update();
  3854. #endif
  3855. break;
  3856. case 82:
  3857. axis_relative_modes[3] = false;
  3858. break;
  3859. case 83:
  3860. axis_relative_modes[3] = true;
  3861. break;
  3862. case 18: //compatibility
  3863. case 84: // M84
  3864. if(code_seen('S')){
  3865. stepper_inactive_time = code_value() * 1000;
  3866. }
  3867. else
  3868. {
  3869. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3870. if(all_axis)
  3871. {
  3872. st_synchronize();
  3873. disable_e0();
  3874. disable_e1();
  3875. disable_e2();
  3876. finishAndDisableSteppers();
  3877. }
  3878. else
  3879. {
  3880. st_synchronize();
  3881. if (code_seen('X')) disable_x();
  3882. if (code_seen('Y')) disable_y();
  3883. if (code_seen('Z')) disable_z();
  3884. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3885. if (code_seen('E')) {
  3886. disable_e0();
  3887. disable_e1();
  3888. disable_e2();
  3889. }
  3890. #endif
  3891. }
  3892. }
  3893. snmm_filaments_used = 0;
  3894. break;
  3895. case 85: // M85
  3896. if(code_seen('S')) {
  3897. max_inactive_time = code_value() * 1000;
  3898. }
  3899. break;
  3900. case 92: // M92
  3901. for(int8_t i=0; i < NUM_AXIS; i++)
  3902. {
  3903. if(code_seen(axis_codes[i]))
  3904. {
  3905. if(i == 3) { // E
  3906. float value = code_value();
  3907. if(value < 20.0) {
  3908. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3909. max_jerk[E_AXIS] *= factor;
  3910. max_feedrate[i] *= factor;
  3911. axis_steps_per_sqr_second[i] *= factor;
  3912. }
  3913. axis_steps_per_unit[i] = value;
  3914. }
  3915. else {
  3916. axis_steps_per_unit[i] = code_value();
  3917. }
  3918. }
  3919. }
  3920. break;
  3921. #ifdef HOST_KEEPALIVE_FEATURE
  3922. case 113: // M113 - Get or set Host Keepalive interval
  3923. if (code_seen('S')) {
  3924. host_keepalive_interval = (uint8_t)code_value_short();
  3925. // NOMORE(host_keepalive_interval, 60);
  3926. }
  3927. else {
  3928. SERIAL_ECHO_START;
  3929. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3930. SERIAL_PROTOCOLLN("");
  3931. }
  3932. break;
  3933. #endif
  3934. case 115: // M115
  3935. if (code_seen('V')) {
  3936. // Report the Prusa version number.
  3937. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3938. } else if (code_seen('U')) {
  3939. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3940. // pause the print and ask the user to upgrade the firmware.
  3941. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3942. } else {
  3943. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3944. }
  3945. break;
  3946. /* case 117: // M117 display message
  3947. starpos = (strchr(strchr_pointer + 5,'*'));
  3948. if(starpos!=NULL)
  3949. *(starpos)='\0';
  3950. lcd_setstatus(strchr_pointer + 5);
  3951. break;*/
  3952. case 114: // M114
  3953. SERIAL_PROTOCOLPGM("X:");
  3954. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3955. SERIAL_PROTOCOLPGM(" Y:");
  3956. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3957. SERIAL_PROTOCOLPGM(" Z:");
  3958. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3959. SERIAL_PROTOCOLPGM(" E:");
  3960. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3961. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3962. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3963. SERIAL_PROTOCOLPGM(" Y:");
  3964. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3965. SERIAL_PROTOCOLPGM(" Z:");
  3966. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3967. SERIAL_PROTOCOLPGM(" E:");
  3968. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3969. SERIAL_PROTOCOLLN("");
  3970. break;
  3971. case 120: // M120
  3972. enable_endstops(false) ;
  3973. break;
  3974. case 121: // M121
  3975. enable_endstops(true) ;
  3976. break;
  3977. case 119: // M119
  3978. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3979. SERIAL_PROTOCOLLN("");
  3980. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3981. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3982. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3983. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3984. }else{
  3985. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3986. }
  3987. SERIAL_PROTOCOLLN("");
  3988. #endif
  3989. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3990. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3991. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3992. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3993. }else{
  3994. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3995. }
  3996. SERIAL_PROTOCOLLN("");
  3997. #endif
  3998. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3999. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4000. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4001. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4002. }else{
  4003. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4004. }
  4005. SERIAL_PROTOCOLLN("");
  4006. #endif
  4007. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4008. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4009. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4010. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4011. }else{
  4012. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4013. }
  4014. SERIAL_PROTOCOLLN("");
  4015. #endif
  4016. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4017. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4018. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4019. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4020. }else{
  4021. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4022. }
  4023. SERIAL_PROTOCOLLN("");
  4024. #endif
  4025. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4026. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4027. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4028. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4029. }else{
  4030. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4031. }
  4032. SERIAL_PROTOCOLLN("");
  4033. #endif
  4034. break;
  4035. //TODO: update for all axis, use for loop
  4036. #ifdef BLINKM
  4037. case 150: // M150
  4038. {
  4039. byte red;
  4040. byte grn;
  4041. byte blu;
  4042. if(code_seen('R')) red = code_value();
  4043. if(code_seen('U')) grn = code_value();
  4044. if(code_seen('B')) blu = code_value();
  4045. SendColors(red,grn,blu);
  4046. }
  4047. break;
  4048. #endif //BLINKM
  4049. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4050. {
  4051. tmp_extruder = active_extruder;
  4052. if(code_seen('T')) {
  4053. tmp_extruder = code_value();
  4054. if(tmp_extruder >= EXTRUDERS) {
  4055. SERIAL_ECHO_START;
  4056. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4057. break;
  4058. }
  4059. }
  4060. float area = .0;
  4061. if(code_seen('D')) {
  4062. float diameter = (float)code_value();
  4063. if (diameter == 0.0) {
  4064. // setting any extruder filament size disables volumetric on the assumption that
  4065. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4066. // for all extruders
  4067. volumetric_enabled = false;
  4068. } else {
  4069. filament_size[tmp_extruder] = (float)code_value();
  4070. // make sure all extruders have some sane value for the filament size
  4071. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4072. #if EXTRUDERS > 1
  4073. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4074. #if EXTRUDERS > 2
  4075. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4076. #endif
  4077. #endif
  4078. volumetric_enabled = true;
  4079. }
  4080. } else {
  4081. //reserved for setting filament diameter via UFID or filament measuring device
  4082. break;
  4083. }
  4084. calculate_volumetric_multipliers();
  4085. }
  4086. break;
  4087. case 201: // M201
  4088. for(int8_t i=0; i < NUM_AXIS; i++)
  4089. {
  4090. if(code_seen(axis_codes[i]))
  4091. {
  4092. max_acceleration_units_per_sq_second[i] = code_value();
  4093. }
  4094. }
  4095. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4096. reset_acceleration_rates();
  4097. break;
  4098. #if 0 // Not used for Sprinter/grbl gen6
  4099. case 202: // M202
  4100. for(int8_t i=0; i < NUM_AXIS; i++) {
  4101. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4102. }
  4103. break;
  4104. #endif
  4105. case 203: // M203 max feedrate mm/sec
  4106. for(int8_t i=0; i < NUM_AXIS; i++) {
  4107. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4108. }
  4109. break;
  4110. case 204: // M204 acclereration S normal moves T filmanent only moves
  4111. {
  4112. if(code_seen('S')) acceleration = code_value() ;
  4113. if(code_seen('T')) retract_acceleration = code_value() ;
  4114. }
  4115. break;
  4116. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4117. {
  4118. if(code_seen('S')) minimumfeedrate = code_value();
  4119. if(code_seen('T')) mintravelfeedrate = code_value();
  4120. if(code_seen('B')) minsegmenttime = code_value() ;
  4121. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4122. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4123. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4124. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4125. }
  4126. break;
  4127. case 206: // M206 additional homing offset
  4128. for(int8_t i=0; i < 3; i++)
  4129. {
  4130. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4131. }
  4132. break;
  4133. #ifdef FWRETRACT
  4134. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4135. {
  4136. if(code_seen('S'))
  4137. {
  4138. retract_length = code_value() ;
  4139. }
  4140. if(code_seen('F'))
  4141. {
  4142. retract_feedrate = code_value()/60 ;
  4143. }
  4144. if(code_seen('Z'))
  4145. {
  4146. retract_zlift = code_value() ;
  4147. }
  4148. }break;
  4149. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4150. {
  4151. if(code_seen('S'))
  4152. {
  4153. retract_recover_length = code_value() ;
  4154. }
  4155. if(code_seen('F'))
  4156. {
  4157. retract_recover_feedrate = code_value()/60 ;
  4158. }
  4159. }break;
  4160. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4161. {
  4162. if(code_seen('S'))
  4163. {
  4164. int t= code_value() ;
  4165. switch(t)
  4166. {
  4167. case 0:
  4168. {
  4169. autoretract_enabled=false;
  4170. retracted[0]=false;
  4171. #if EXTRUDERS > 1
  4172. retracted[1]=false;
  4173. #endif
  4174. #if EXTRUDERS > 2
  4175. retracted[2]=false;
  4176. #endif
  4177. }break;
  4178. case 1:
  4179. {
  4180. autoretract_enabled=true;
  4181. retracted[0]=false;
  4182. #if EXTRUDERS > 1
  4183. retracted[1]=false;
  4184. #endif
  4185. #if EXTRUDERS > 2
  4186. retracted[2]=false;
  4187. #endif
  4188. }break;
  4189. default:
  4190. SERIAL_ECHO_START;
  4191. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4192. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4193. SERIAL_ECHOLNPGM("\"(1)");
  4194. }
  4195. }
  4196. }break;
  4197. #endif // FWRETRACT
  4198. #if EXTRUDERS > 1
  4199. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4200. {
  4201. if(setTargetedHotend(218)){
  4202. break;
  4203. }
  4204. if(code_seen('X'))
  4205. {
  4206. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4207. }
  4208. if(code_seen('Y'))
  4209. {
  4210. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4211. }
  4212. SERIAL_ECHO_START;
  4213. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4214. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4215. {
  4216. SERIAL_ECHO(" ");
  4217. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4218. SERIAL_ECHO(",");
  4219. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4220. }
  4221. SERIAL_ECHOLN("");
  4222. }break;
  4223. #endif
  4224. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4225. {
  4226. if(code_seen('S'))
  4227. {
  4228. feedmultiply = code_value() ;
  4229. }
  4230. }
  4231. break;
  4232. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4233. {
  4234. if(code_seen('S'))
  4235. {
  4236. int tmp_code = code_value();
  4237. if (code_seen('T'))
  4238. {
  4239. if(setTargetedHotend(221)){
  4240. break;
  4241. }
  4242. extruder_multiply[tmp_extruder] = tmp_code;
  4243. }
  4244. else
  4245. {
  4246. extrudemultiply = tmp_code ;
  4247. }
  4248. }
  4249. }
  4250. break;
  4251. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4252. {
  4253. if(code_seen('P')){
  4254. int pin_number = code_value(); // pin number
  4255. int pin_state = -1; // required pin state - default is inverted
  4256. if(code_seen('S')) pin_state = code_value(); // required pin state
  4257. if(pin_state >= -1 && pin_state <= 1){
  4258. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4259. {
  4260. if (sensitive_pins[i] == pin_number)
  4261. {
  4262. pin_number = -1;
  4263. break;
  4264. }
  4265. }
  4266. if (pin_number > -1)
  4267. {
  4268. int target = LOW;
  4269. st_synchronize();
  4270. pinMode(pin_number, INPUT);
  4271. switch(pin_state){
  4272. case 1:
  4273. target = HIGH;
  4274. break;
  4275. case 0:
  4276. target = LOW;
  4277. break;
  4278. case -1:
  4279. target = !digitalRead(pin_number);
  4280. break;
  4281. }
  4282. while(digitalRead(pin_number) != target){
  4283. manage_heater();
  4284. manage_inactivity();
  4285. lcd_update();
  4286. }
  4287. }
  4288. }
  4289. }
  4290. }
  4291. break;
  4292. #if NUM_SERVOS > 0
  4293. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4294. {
  4295. int servo_index = -1;
  4296. int servo_position = 0;
  4297. if (code_seen('P'))
  4298. servo_index = code_value();
  4299. if (code_seen('S')) {
  4300. servo_position = code_value();
  4301. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4302. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4303. servos[servo_index].attach(0);
  4304. #endif
  4305. servos[servo_index].write(servo_position);
  4306. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4307. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4308. servos[servo_index].detach();
  4309. #endif
  4310. }
  4311. else {
  4312. SERIAL_ECHO_START;
  4313. SERIAL_ECHO("Servo ");
  4314. SERIAL_ECHO(servo_index);
  4315. SERIAL_ECHOLN(" out of range");
  4316. }
  4317. }
  4318. else if (servo_index >= 0) {
  4319. SERIAL_PROTOCOL(MSG_OK);
  4320. SERIAL_PROTOCOL(" Servo ");
  4321. SERIAL_PROTOCOL(servo_index);
  4322. SERIAL_PROTOCOL(": ");
  4323. SERIAL_PROTOCOL(servos[servo_index].read());
  4324. SERIAL_PROTOCOLLN("");
  4325. }
  4326. }
  4327. break;
  4328. #endif // NUM_SERVOS > 0
  4329. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4330. case 300: // M300
  4331. {
  4332. int beepS = code_seen('S') ? code_value() : 110;
  4333. int beepP = code_seen('P') ? code_value() : 1000;
  4334. if (beepS > 0)
  4335. {
  4336. #if BEEPER > 0
  4337. tone(BEEPER, beepS);
  4338. delay(beepP);
  4339. noTone(BEEPER);
  4340. #elif defined(ULTRALCD)
  4341. lcd_buzz(beepS, beepP);
  4342. #elif defined(LCD_USE_I2C_BUZZER)
  4343. lcd_buzz(beepP, beepS);
  4344. #endif
  4345. }
  4346. else
  4347. {
  4348. delay(beepP);
  4349. }
  4350. }
  4351. break;
  4352. #endif // M300
  4353. #ifdef PIDTEMP
  4354. case 301: // M301
  4355. {
  4356. if(code_seen('P')) Kp = code_value();
  4357. if(code_seen('I')) Ki = scalePID_i(code_value());
  4358. if(code_seen('D')) Kd = scalePID_d(code_value());
  4359. #ifdef PID_ADD_EXTRUSION_RATE
  4360. if(code_seen('C')) Kc = code_value();
  4361. #endif
  4362. updatePID();
  4363. SERIAL_PROTOCOLRPGM(MSG_OK);
  4364. SERIAL_PROTOCOL(" p:");
  4365. SERIAL_PROTOCOL(Kp);
  4366. SERIAL_PROTOCOL(" i:");
  4367. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4368. SERIAL_PROTOCOL(" d:");
  4369. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4370. #ifdef PID_ADD_EXTRUSION_RATE
  4371. SERIAL_PROTOCOL(" c:");
  4372. //Kc does not have scaling applied above, or in resetting defaults
  4373. SERIAL_PROTOCOL(Kc);
  4374. #endif
  4375. SERIAL_PROTOCOLLN("");
  4376. }
  4377. break;
  4378. #endif //PIDTEMP
  4379. #ifdef PIDTEMPBED
  4380. case 304: // M304
  4381. {
  4382. if(code_seen('P')) bedKp = code_value();
  4383. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4384. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4385. updatePID();
  4386. SERIAL_PROTOCOLRPGM(MSG_OK);
  4387. SERIAL_PROTOCOL(" p:");
  4388. SERIAL_PROTOCOL(bedKp);
  4389. SERIAL_PROTOCOL(" i:");
  4390. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4391. SERIAL_PROTOCOL(" d:");
  4392. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4393. SERIAL_PROTOCOLLN("");
  4394. }
  4395. break;
  4396. #endif //PIDTEMP
  4397. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4398. {
  4399. #ifdef CHDK
  4400. SET_OUTPUT(CHDK);
  4401. WRITE(CHDK, HIGH);
  4402. chdkHigh = millis();
  4403. chdkActive = true;
  4404. #else
  4405. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4406. const uint8_t NUM_PULSES=16;
  4407. const float PULSE_LENGTH=0.01524;
  4408. for(int i=0; i < NUM_PULSES; i++) {
  4409. WRITE(PHOTOGRAPH_PIN, HIGH);
  4410. _delay_ms(PULSE_LENGTH);
  4411. WRITE(PHOTOGRAPH_PIN, LOW);
  4412. _delay_ms(PULSE_LENGTH);
  4413. }
  4414. delay(7.33);
  4415. for(int i=0; i < NUM_PULSES; i++) {
  4416. WRITE(PHOTOGRAPH_PIN, HIGH);
  4417. _delay_ms(PULSE_LENGTH);
  4418. WRITE(PHOTOGRAPH_PIN, LOW);
  4419. _delay_ms(PULSE_LENGTH);
  4420. }
  4421. #endif
  4422. #endif //chdk end if
  4423. }
  4424. break;
  4425. #ifdef DOGLCD
  4426. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4427. {
  4428. if (code_seen('C')) {
  4429. lcd_setcontrast( ((int)code_value())&63 );
  4430. }
  4431. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4432. SERIAL_PROTOCOL(lcd_contrast);
  4433. SERIAL_PROTOCOLLN("");
  4434. }
  4435. break;
  4436. #endif
  4437. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4438. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4439. {
  4440. float temp = .0;
  4441. if (code_seen('S')) temp=code_value();
  4442. set_extrude_min_temp(temp);
  4443. }
  4444. break;
  4445. #endif
  4446. case 303: // M303 PID autotune
  4447. {
  4448. float temp = 150.0;
  4449. int e=0;
  4450. int c=5;
  4451. if (code_seen('E')) e=code_value();
  4452. if (e<0)
  4453. temp=70;
  4454. if (code_seen('S')) temp=code_value();
  4455. if (code_seen('C')) c=code_value();
  4456. PID_autotune(temp, e, c);
  4457. }
  4458. break;
  4459. case 400: // M400 finish all moves
  4460. {
  4461. st_synchronize();
  4462. }
  4463. break;
  4464. #ifdef FILAMENT_SENSOR
  4465. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4466. {
  4467. #if (FILWIDTH_PIN > -1)
  4468. if(code_seen('N')) filament_width_nominal=code_value();
  4469. else{
  4470. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4471. SERIAL_PROTOCOLLN(filament_width_nominal);
  4472. }
  4473. #endif
  4474. }
  4475. break;
  4476. case 405: //M405 Turn on filament sensor for control
  4477. {
  4478. if(code_seen('D')) meas_delay_cm=code_value();
  4479. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4480. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4481. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4482. {
  4483. int temp_ratio = widthFil_to_size_ratio();
  4484. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4485. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4486. }
  4487. delay_index1=0;
  4488. delay_index2=0;
  4489. }
  4490. filament_sensor = true ;
  4491. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4492. //SERIAL_PROTOCOL(filament_width_meas);
  4493. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4494. //SERIAL_PROTOCOL(extrudemultiply);
  4495. }
  4496. break;
  4497. case 406: //M406 Turn off filament sensor for control
  4498. {
  4499. filament_sensor = false ;
  4500. }
  4501. break;
  4502. case 407: //M407 Display measured filament diameter
  4503. {
  4504. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4505. SERIAL_PROTOCOLLN(filament_width_meas);
  4506. }
  4507. break;
  4508. #endif
  4509. case 500: // M500 Store settings in EEPROM
  4510. {
  4511. Config_StoreSettings(EEPROM_OFFSET);
  4512. }
  4513. break;
  4514. case 501: // M501 Read settings from EEPROM
  4515. {
  4516. Config_RetrieveSettings(EEPROM_OFFSET);
  4517. }
  4518. break;
  4519. case 502: // M502 Revert to default settings
  4520. {
  4521. Config_ResetDefault();
  4522. }
  4523. break;
  4524. case 503: // M503 print settings currently in memory
  4525. {
  4526. Config_PrintSettings();
  4527. }
  4528. break;
  4529. case 509: //M509 Force language selection
  4530. {
  4531. lcd_force_language_selection();
  4532. SERIAL_ECHO_START;
  4533. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4534. }
  4535. break;
  4536. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4537. case 540:
  4538. {
  4539. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4540. }
  4541. break;
  4542. #endif
  4543. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4544. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4545. {
  4546. float value;
  4547. if (code_seen('Z'))
  4548. {
  4549. value = code_value();
  4550. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4551. {
  4552. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4553. SERIAL_ECHO_START;
  4554. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4555. SERIAL_PROTOCOLLN("");
  4556. }
  4557. else
  4558. {
  4559. SERIAL_ECHO_START;
  4560. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4561. SERIAL_ECHORPGM(MSG_Z_MIN);
  4562. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4563. SERIAL_ECHORPGM(MSG_Z_MAX);
  4564. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4565. SERIAL_PROTOCOLLN("");
  4566. }
  4567. }
  4568. else
  4569. {
  4570. SERIAL_ECHO_START;
  4571. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4572. SERIAL_ECHO(-zprobe_zoffset);
  4573. SERIAL_PROTOCOLLN("");
  4574. }
  4575. break;
  4576. }
  4577. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4578. #ifdef FILAMENTCHANGEENABLE
  4579. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4580. {
  4581. MYSERIAL.println("!!!!M600!!!!");
  4582. st_synchronize();
  4583. float target[4];
  4584. float lastpos[4];
  4585. if (farm_mode)
  4586. {
  4587. prusa_statistics(22);
  4588. }
  4589. feedmultiplyBckp=feedmultiply;
  4590. int8_t TooLowZ = 0;
  4591. target[X_AXIS]=current_position[X_AXIS];
  4592. target[Y_AXIS]=current_position[Y_AXIS];
  4593. target[Z_AXIS]=current_position[Z_AXIS];
  4594. target[E_AXIS]=current_position[E_AXIS];
  4595. lastpos[X_AXIS]=current_position[X_AXIS];
  4596. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4597. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4598. lastpos[E_AXIS]=current_position[E_AXIS];
  4599. //Restract extruder
  4600. if(code_seen('E'))
  4601. {
  4602. target[E_AXIS]+= code_value();
  4603. }
  4604. else
  4605. {
  4606. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4607. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4608. #endif
  4609. }
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4611. //Lift Z
  4612. if(code_seen('Z'))
  4613. {
  4614. target[Z_AXIS]+= code_value();
  4615. }
  4616. else
  4617. {
  4618. #ifdef FILAMENTCHANGE_ZADD
  4619. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4620. if(target[Z_AXIS] < 10){
  4621. target[Z_AXIS]+= 10 ;
  4622. TooLowZ = 1;
  4623. }else{
  4624. TooLowZ = 0;
  4625. }
  4626. #endif
  4627. }
  4628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4629. //Move XY to side
  4630. if(code_seen('X'))
  4631. {
  4632. target[X_AXIS]+= code_value();
  4633. }
  4634. else
  4635. {
  4636. #ifdef FILAMENTCHANGE_XPOS
  4637. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4638. #endif
  4639. }
  4640. if(code_seen('Y'))
  4641. {
  4642. target[Y_AXIS]= code_value();
  4643. }
  4644. else
  4645. {
  4646. #ifdef FILAMENTCHANGE_YPOS
  4647. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4648. #endif
  4649. }
  4650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4651. st_synchronize();
  4652. custom_message = true;
  4653. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4654. // Unload filament
  4655. if(code_seen('L'))
  4656. {
  4657. target[E_AXIS]+= code_value();
  4658. }
  4659. else
  4660. {
  4661. #ifdef SNMM
  4662. #else
  4663. #ifdef FILAMENTCHANGE_FINALRETRACT
  4664. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4665. #endif
  4666. #endif // SNMM
  4667. }
  4668. #ifdef SNMM
  4669. target[E_AXIS] += 12;
  4670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4671. target[E_AXIS] += 6;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4673. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4674. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4675. st_synchronize();
  4676. target[E_AXIS] += (FIL_COOLING);
  4677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4678. target[E_AXIS] += (FIL_COOLING*-1);
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4680. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4682. st_synchronize();
  4683. #else
  4684. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500/60, active_extruder);
  4686. #endif // SNMM
  4687. //finish moves
  4688. st_synchronize();
  4689. //disable extruder steppers so filament can be removed
  4690. disable_e0();
  4691. disable_e1();
  4692. disable_e2();
  4693. delay(100);
  4694. //Wait for user to insert filament
  4695. uint8_t cnt=0;
  4696. int counterBeep = 0;
  4697. lcd_wait_interact();
  4698. load_filament_time = millis();
  4699. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4700. while(!lcd_clicked()){
  4701. cnt++;
  4702. manage_heater();
  4703. manage_inactivity(true);
  4704. /*#ifdef SNMM
  4705. target[E_AXIS] += 0.002;
  4706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4707. #endif // SNMM*/
  4708. if(cnt==0)
  4709. {
  4710. #if BEEPER > 0
  4711. if (counterBeep== 500){
  4712. counterBeep = 0;
  4713. }
  4714. SET_OUTPUT(BEEPER);
  4715. if (counterBeep== 0){
  4716. WRITE(BEEPER,HIGH);
  4717. }
  4718. if (counterBeep== 20){
  4719. WRITE(BEEPER,LOW);
  4720. }
  4721. counterBeep++;
  4722. #else
  4723. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4724. lcd_buzz(1000/6,100);
  4725. #else
  4726. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4727. #endif
  4728. #endif
  4729. }
  4730. }
  4731. WRITE(BEEPER, LOW);
  4732. KEEPALIVE_STATE(IN_HANDLER);
  4733. #ifdef SNMM
  4734. display_loading();
  4735. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4736. do {
  4737. target[E_AXIS] += 0.002;
  4738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4739. delay_keep_alive(2);
  4740. } while (!lcd_clicked());
  4741. KEEPALIVE_STATE(IN_HANDLER);
  4742. /*if (millis() - load_filament_time > 2) {
  4743. load_filament_time = millis();
  4744. target[E_AXIS] += 0.001;
  4745. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4746. }*/
  4747. //Filament inserted
  4748. //Feed the filament to the end of nozzle quickly
  4749. st_synchronize();
  4750. target[E_AXIS] += bowden_length[snmm_extruder];
  4751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4752. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4754. target[E_AXIS] += 40;
  4755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4756. target[E_AXIS] += 10;
  4757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4758. #else
  4759. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4760. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4761. #endif // SNMM
  4762. //Extrude some filament
  4763. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4765. //Wait for user to check the state
  4766. lcd_change_fil_state = 0;
  4767. lcd_loading_filament();
  4768. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4769. lcd_change_fil_state = 0;
  4770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4771. lcd_alright();
  4772. KEEPALIVE_STATE(IN_HANDLER);
  4773. switch(lcd_change_fil_state){
  4774. // Filament failed to load so load it again
  4775. case 2:
  4776. #ifdef SNMM
  4777. display_loading();
  4778. do {
  4779. target[E_AXIS] += 0.002;
  4780. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4781. delay_keep_alive(2);
  4782. } while (!lcd_clicked());
  4783. st_synchronize();
  4784. target[E_AXIS] += bowden_length[snmm_extruder];
  4785. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4786. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4788. target[E_AXIS] += 40;
  4789. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4790. target[E_AXIS] += 10;
  4791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4792. #else
  4793. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4795. #endif
  4796. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4797. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4798. lcd_loading_filament();
  4799. break;
  4800. // Filament loaded properly but color is not clear
  4801. case 3:
  4802. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4803. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4804. lcd_loading_color();
  4805. break;
  4806. // Everything good
  4807. default:
  4808. lcd_change_success();
  4809. lcd_update_enable(true);
  4810. break;
  4811. }
  4812. }
  4813. //Not let's go back to print
  4814. //Feed a little of filament to stabilize pressure
  4815. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4817. //Retract
  4818. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4819. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4820. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4821. //Move XY back
  4822. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4823. //Move Z back
  4824. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4825. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4826. //Unretract
  4827. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4828. //Set E position to original
  4829. plan_set_e_position(lastpos[E_AXIS]);
  4830. //Recover feed rate
  4831. feedmultiply=feedmultiplyBckp;
  4832. char cmd[9];
  4833. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4834. enquecommand(cmd);
  4835. lcd_setstatuspgm(WELCOME_MSG);
  4836. custom_message = false;
  4837. custom_message_type = 0;
  4838. #ifdef PAT9125
  4839. if (fsensor_M600)
  4840. {
  4841. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4842. st_synchronize();
  4843. while (!is_buffer_empty())
  4844. {
  4845. process_commands();
  4846. cmdqueue_pop_front();
  4847. }
  4848. fsensor_enable();
  4849. fsensor_restore_print_and_continue();
  4850. }
  4851. #endif //PAT9125
  4852. }
  4853. break;
  4854. #endif //FILAMENTCHANGEENABLE
  4855. case 601: {
  4856. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4857. }
  4858. break;
  4859. case 602: {
  4860. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4861. }
  4862. break;
  4863. #ifdef LIN_ADVANCE
  4864. case 900: // M900: Set LIN_ADVANCE options.
  4865. gcode_M900();
  4866. break;
  4867. #endif
  4868. case 907: // M907 Set digital trimpot motor current using axis codes.
  4869. {
  4870. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4871. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4872. if(code_seen('B')) digipot_current(4,code_value());
  4873. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4874. #endif
  4875. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4876. if(code_seen('X')) digipot_current(0, code_value());
  4877. #endif
  4878. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4879. if(code_seen('Z')) digipot_current(1, code_value());
  4880. #endif
  4881. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4882. if(code_seen('E')) digipot_current(2, code_value());
  4883. #endif
  4884. #ifdef DIGIPOT_I2C
  4885. // this one uses actual amps in floating point
  4886. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4887. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4888. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4889. #endif
  4890. }
  4891. break;
  4892. case 908: // M908 Control digital trimpot directly.
  4893. {
  4894. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4895. uint8_t channel,current;
  4896. if(code_seen('P')) channel=code_value();
  4897. if(code_seen('S')) current=code_value();
  4898. digitalPotWrite(channel, current);
  4899. #endif
  4900. }
  4901. break;
  4902. case 910: // M910 TMC2130 init
  4903. {
  4904. tmc2130_init();
  4905. }
  4906. break;
  4907. case 911: // M911 Set TMC2130 holding currents
  4908. {
  4909. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4910. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4911. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4912. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4913. }
  4914. break;
  4915. case 912: // M912 Set TMC2130 running currents
  4916. {
  4917. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4918. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4919. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4920. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4921. }
  4922. break;
  4923. case 913: // M913 Print TMC2130 currents
  4924. {
  4925. tmc2130_print_currents();
  4926. }
  4927. break;
  4928. case 914: // M914 Set normal mode
  4929. {
  4930. tmc2130_mode = TMC2130_MODE_NORMAL;
  4931. tmc2130_init();
  4932. }
  4933. break;
  4934. case 915: // M915 Set silent mode
  4935. {
  4936. tmc2130_mode = TMC2130_MODE_SILENT;
  4937. tmc2130_init();
  4938. }
  4939. break;
  4940. case 916: // M916 Set sg_thrs
  4941. {
  4942. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4943. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4944. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4945. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4946. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4947. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4948. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4949. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4950. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4951. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4952. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4953. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4954. }
  4955. break;
  4956. case 917: // M917 Set TMC2130 pwm_ampl
  4957. {
  4958. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4959. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4960. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4961. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4962. }
  4963. break;
  4964. case 918: // M918 Set TMC2130 pwm_grad
  4965. {
  4966. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4967. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4968. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4969. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4970. }
  4971. break;
  4972. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4973. {
  4974. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4975. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4976. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4977. if(code_seen('B')) microstep_mode(4,code_value());
  4978. microstep_readings();
  4979. #endif
  4980. }
  4981. break;
  4982. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4983. {
  4984. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4985. if(code_seen('S')) switch((int)code_value())
  4986. {
  4987. case 1:
  4988. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4989. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4990. break;
  4991. case 2:
  4992. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4993. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4994. break;
  4995. }
  4996. microstep_readings();
  4997. #endif
  4998. }
  4999. break;
  5000. case 701: //M701: load filament
  5001. {
  5002. gcode_M701();
  5003. }
  5004. break;
  5005. case 702:
  5006. {
  5007. #ifdef SNMM
  5008. if (code_seen('U')) {
  5009. extr_unload_used(); //unload all filaments which were used in current print
  5010. }
  5011. else if (code_seen('C')) {
  5012. extr_unload(); //unload just current filament
  5013. }
  5014. else {
  5015. extr_unload_all(); //unload all filaments
  5016. }
  5017. #else
  5018. bool old_fsensor_enabled = fsensor_enabled;
  5019. fsensor_enabled = false;
  5020. custom_message = true;
  5021. custom_message_type = 2;
  5022. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5023. current_position[E_AXIS] -= 80;
  5024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5025. st_synchronize();
  5026. lcd_setstatuspgm(WELCOME_MSG);
  5027. custom_message = false;
  5028. custom_message_type = 0;
  5029. fsensor_enabled = old_fsensor_enabled;
  5030. #endif
  5031. }
  5032. break;
  5033. case 999: // M999: Restart after being stopped
  5034. Stopped = false;
  5035. lcd_reset_alert_level();
  5036. gcode_LastN = Stopped_gcode_LastN;
  5037. FlushSerialRequestResend();
  5038. break;
  5039. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5040. }
  5041. } // end if(code_seen('M')) (end of M codes)
  5042. else if(code_seen('T'))
  5043. {
  5044. int index;
  5045. st_synchronize();
  5046. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5047. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5048. SERIAL_ECHOLNPGM("Invalid T code.");
  5049. }
  5050. else {
  5051. if (*(strchr_pointer + index) == '?') {
  5052. tmp_extruder = choose_extruder_menu();
  5053. }
  5054. else {
  5055. tmp_extruder = code_value();
  5056. }
  5057. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5058. #ifdef SNMM
  5059. #ifdef LIN_ADVANCE
  5060. if (snmm_extruder != tmp_extruder)
  5061. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5062. #endif
  5063. snmm_extruder = tmp_extruder;
  5064. delay(100);
  5065. disable_e0();
  5066. disable_e1();
  5067. disable_e2();
  5068. pinMode(E_MUX0_PIN, OUTPUT);
  5069. pinMode(E_MUX1_PIN, OUTPUT);
  5070. pinMode(E_MUX2_PIN, OUTPUT);
  5071. delay(100);
  5072. SERIAL_ECHO_START;
  5073. SERIAL_ECHO("T:");
  5074. SERIAL_ECHOLN((int)tmp_extruder);
  5075. switch (tmp_extruder) {
  5076. case 1:
  5077. WRITE(E_MUX0_PIN, HIGH);
  5078. WRITE(E_MUX1_PIN, LOW);
  5079. WRITE(E_MUX2_PIN, LOW);
  5080. break;
  5081. case 2:
  5082. WRITE(E_MUX0_PIN, LOW);
  5083. WRITE(E_MUX1_PIN, HIGH);
  5084. WRITE(E_MUX2_PIN, LOW);
  5085. break;
  5086. case 3:
  5087. WRITE(E_MUX0_PIN, HIGH);
  5088. WRITE(E_MUX1_PIN, HIGH);
  5089. WRITE(E_MUX2_PIN, LOW);
  5090. break;
  5091. default:
  5092. WRITE(E_MUX0_PIN, LOW);
  5093. WRITE(E_MUX1_PIN, LOW);
  5094. WRITE(E_MUX2_PIN, LOW);
  5095. break;
  5096. }
  5097. delay(100);
  5098. #else
  5099. if (tmp_extruder >= EXTRUDERS) {
  5100. SERIAL_ECHO_START;
  5101. SERIAL_ECHOPGM("T");
  5102. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5103. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5104. }
  5105. else {
  5106. boolean make_move = false;
  5107. if (code_seen('F')) {
  5108. make_move = true;
  5109. next_feedrate = code_value();
  5110. if (next_feedrate > 0.0) {
  5111. feedrate = next_feedrate;
  5112. }
  5113. }
  5114. #if EXTRUDERS > 1
  5115. if (tmp_extruder != active_extruder) {
  5116. // Save current position to return to after applying extruder offset
  5117. memcpy(destination, current_position, sizeof(destination));
  5118. // Offset extruder (only by XY)
  5119. int i;
  5120. for (i = 0; i < 2; i++) {
  5121. current_position[i] = current_position[i] -
  5122. extruder_offset[i][active_extruder] +
  5123. extruder_offset[i][tmp_extruder];
  5124. }
  5125. // Set the new active extruder and position
  5126. active_extruder = tmp_extruder;
  5127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5128. // Move to the old position if 'F' was in the parameters
  5129. if (make_move && Stopped == false) {
  5130. prepare_move();
  5131. }
  5132. }
  5133. #endif
  5134. SERIAL_ECHO_START;
  5135. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5136. SERIAL_PROTOCOLLN((int)active_extruder);
  5137. }
  5138. #endif
  5139. }
  5140. } // end if(code_seen('T')) (end of T codes)
  5141. #ifdef DEBUG_DCODES
  5142. else if (code_seen('D')) // D codes (debug)
  5143. {
  5144. switch((int)code_value())
  5145. {
  5146. case -1: // D-1 - Endless loop
  5147. dcode__1(); break;
  5148. case 0: // D0 - Reset
  5149. dcode_0(); break;
  5150. case 1: // D1 - Clear EEPROM
  5151. dcode_1(); break;
  5152. case 2: // D2 - Read/Write RAM
  5153. dcode_2(); break;
  5154. case 3: // D3 - Read/Write EEPROM
  5155. dcode_3(); break;
  5156. case 4: // D4 - Read/Write PIN
  5157. dcode_4(); break;
  5158. case 5: // D5 - Read/Write FLASH
  5159. // dcode_5(); break;
  5160. break;
  5161. case 6: // D6 - Read/Write external FLASH
  5162. dcode_6(); break;
  5163. case 7: // D7 - Read/Write Bootloader
  5164. dcode_7(); break;
  5165. case 8: // D8 - Read/Write PINDA
  5166. dcode_8(); break;
  5167. case 10: // D10 - XYZ calibration = OK
  5168. dcode_10(); break;
  5169. case 12: //D12 - Reset failstat counters
  5170. dcode_12(); break;
  5171. case 2130: // D9125 - TMC2130
  5172. dcode_2130(); break;
  5173. case 9125: // D9125 - PAT9125
  5174. dcode_9125(); break;
  5175. }
  5176. }
  5177. #endif //DEBUG_DCODES
  5178. else
  5179. {
  5180. SERIAL_ECHO_START;
  5181. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5182. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5183. SERIAL_ECHOLNPGM("\"(2)");
  5184. }
  5185. KEEPALIVE_STATE(NOT_BUSY);
  5186. ClearToSend();
  5187. }
  5188. void FlushSerialRequestResend()
  5189. {
  5190. //char cmdbuffer[bufindr][100]="Resend:";
  5191. MYSERIAL.flush();
  5192. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5193. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5194. ClearToSend();
  5195. }
  5196. // Confirm the execution of a command, if sent from a serial line.
  5197. // Execution of a command from a SD card will not be confirmed.
  5198. void ClearToSend()
  5199. {
  5200. previous_millis_cmd = millis();
  5201. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5202. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5203. }
  5204. void get_coordinates()
  5205. {
  5206. bool seen[4]={false,false,false,false};
  5207. for(int8_t i=0; i < NUM_AXIS; i++) {
  5208. if(code_seen(axis_codes[i]))
  5209. {
  5210. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5211. seen[i]=true;
  5212. }
  5213. else destination[i] = current_position[i]; //Are these else lines really needed?
  5214. }
  5215. if(code_seen('F')) {
  5216. next_feedrate = code_value();
  5217. #ifdef MAX_SILENT_FEEDRATE
  5218. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5219. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5220. #endif //MAX_SILENT_FEEDRATE
  5221. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5222. }
  5223. }
  5224. void get_arc_coordinates()
  5225. {
  5226. #ifdef SF_ARC_FIX
  5227. bool relative_mode_backup = relative_mode;
  5228. relative_mode = true;
  5229. #endif
  5230. get_coordinates();
  5231. #ifdef SF_ARC_FIX
  5232. relative_mode=relative_mode_backup;
  5233. #endif
  5234. if(code_seen('I')) {
  5235. offset[0] = code_value();
  5236. }
  5237. else {
  5238. offset[0] = 0.0;
  5239. }
  5240. if(code_seen('J')) {
  5241. offset[1] = code_value();
  5242. }
  5243. else {
  5244. offset[1] = 0.0;
  5245. }
  5246. }
  5247. void clamp_to_software_endstops(float target[3])
  5248. {
  5249. #ifdef DEBUG_DISABLE_SWLIMITS
  5250. return;
  5251. #endif //DEBUG_DISABLE_SWLIMITS
  5252. world2machine_clamp(target[0], target[1]);
  5253. // Clamp the Z coordinate.
  5254. if (min_software_endstops) {
  5255. float negative_z_offset = 0;
  5256. #ifdef ENABLE_AUTO_BED_LEVELING
  5257. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5258. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5259. #endif
  5260. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5261. }
  5262. if (max_software_endstops) {
  5263. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5264. }
  5265. }
  5266. #ifdef MESH_BED_LEVELING
  5267. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5268. float dx = x - current_position[X_AXIS];
  5269. float dy = y - current_position[Y_AXIS];
  5270. float dz = z - current_position[Z_AXIS];
  5271. int n_segments = 0;
  5272. if (mbl.active) {
  5273. float len = abs(dx) + abs(dy);
  5274. if (len > 0)
  5275. // Split to 3cm segments or shorter.
  5276. n_segments = int(ceil(len / 30.f));
  5277. }
  5278. if (n_segments > 1) {
  5279. float de = e - current_position[E_AXIS];
  5280. for (int i = 1; i < n_segments; ++ i) {
  5281. float t = float(i) / float(n_segments);
  5282. plan_buffer_line(
  5283. current_position[X_AXIS] + t * dx,
  5284. current_position[Y_AXIS] + t * dy,
  5285. current_position[Z_AXIS] + t * dz,
  5286. current_position[E_AXIS] + t * de,
  5287. feed_rate, extruder);
  5288. }
  5289. }
  5290. // The rest of the path.
  5291. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5292. current_position[X_AXIS] = x;
  5293. current_position[Y_AXIS] = y;
  5294. current_position[Z_AXIS] = z;
  5295. current_position[E_AXIS] = e;
  5296. }
  5297. #endif // MESH_BED_LEVELING
  5298. void prepare_move()
  5299. {
  5300. clamp_to_software_endstops(destination);
  5301. previous_millis_cmd = millis();
  5302. // Do not use feedmultiply for E or Z only moves
  5303. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5305. }
  5306. else {
  5307. #ifdef MESH_BED_LEVELING
  5308. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5309. #else
  5310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5311. #endif
  5312. }
  5313. for(int8_t i=0; i < NUM_AXIS; i++) {
  5314. current_position[i] = destination[i];
  5315. }
  5316. }
  5317. void prepare_arc_move(char isclockwise) {
  5318. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5319. // Trace the arc
  5320. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5321. // As far as the parser is concerned, the position is now == target. In reality the
  5322. // motion control system might still be processing the action and the real tool position
  5323. // in any intermediate location.
  5324. for(int8_t i=0; i < NUM_AXIS; i++) {
  5325. current_position[i] = destination[i];
  5326. }
  5327. previous_millis_cmd = millis();
  5328. }
  5329. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5330. #if defined(FAN_PIN)
  5331. #if CONTROLLERFAN_PIN == FAN_PIN
  5332. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5333. #endif
  5334. #endif
  5335. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5336. unsigned long lastMotorCheck = 0;
  5337. void controllerFan()
  5338. {
  5339. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5340. {
  5341. lastMotorCheck = millis();
  5342. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5343. #if EXTRUDERS > 2
  5344. || !READ(E2_ENABLE_PIN)
  5345. #endif
  5346. #if EXTRUDER > 1
  5347. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5348. || !READ(X2_ENABLE_PIN)
  5349. #endif
  5350. || !READ(E1_ENABLE_PIN)
  5351. #endif
  5352. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5353. {
  5354. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5355. }
  5356. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5357. {
  5358. digitalWrite(CONTROLLERFAN_PIN, 0);
  5359. analogWrite(CONTROLLERFAN_PIN, 0);
  5360. }
  5361. else
  5362. {
  5363. // allows digital or PWM fan output to be used (see M42 handling)
  5364. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5365. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5366. }
  5367. }
  5368. }
  5369. #endif
  5370. #ifdef TEMP_STAT_LEDS
  5371. static bool blue_led = false;
  5372. static bool red_led = false;
  5373. static uint32_t stat_update = 0;
  5374. void handle_status_leds(void) {
  5375. float max_temp = 0.0;
  5376. if(millis() > stat_update) {
  5377. stat_update += 500; // Update every 0.5s
  5378. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5379. max_temp = max(max_temp, degHotend(cur_extruder));
  5380. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5381. }
  5382. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5383. max_temp = max(max_temp, degTargetBed());
  5384. max_temp = max(max_temp, degBed());
  5385. #endif
  5386. if((max_temp > 55.0) && (red_led == false)) {
  5387. digitalWrite(STAT_LED_RED, 1);
  5388. digitalWrite(STAT_LED_BLUE, 0);
  5389. red_led = true;
  5390. blue_led = false;
  5391. }
  5392. if((max_temp < 54.0) && (blue_led == false)) {
  5393. digitalWrite(STAT_LED_RED, 0);
  5394. digitalWrite(STAT_LED_BLUE, 1);
  5395. red_led = false;
  5396. blue_led = true;
  5397. }
  5398. }
  5399. }
  5400. #endif
  5401. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5402. {
  5403. #if defined(KILL_PIN) && KILL_PIN > -1
  5404. static int killCount = 0; // make the inactivity button a bit less responsive
  5405. const int KILL_DELAY = 10000;
  5406. #endif
  5407. if(buflen < (BUFSIZE-1)){
  5408. get_command();
  5409. }
  5410. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5411. if(max_inactive_time)
  5412. kill("", 4);
  5413. if(stepper_inactive_time) {
  5414. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5415. {
  5416. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5417. disable_x();
  5418. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5419. disable_y();
  5420. disable_z();
  5421. disable_e0();
  5422. disable_e1();
  5423. disable_e2();
  5424. }
  5425. }
  5426. }
  5427. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5428. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5429. {
  5430. chdkActive = false;
  5431. WRITE(CHDK, LOW);
  5432. }
  5433. #endif
  5434. #if defined(KILL_PIN) && KILL_PIN > -1
  5435. // Check if the kill button was pressed and wait just in case it was an accidental
  5436. // key kill key press
  5437. // -------------------------------------------------------------------------------
  5438. if( 0 == READ(KILL_PIN) )
  5439. {
  5440. killCount++;
  5441. }
  5442. else if (killCount > 0)
  5443. {
  5444. killCount--;
  5445. }
  5446. // Exceeded threshold and we can confirm that it was not accidental
  5447. // KILL the machine
  5448. // ----------------------------------------------------------------
  5449. if ( killCount >= KILL_DELAY)
  5450. {
  5451. kill("", 5);
  5452. }
  5453. #endif
  5454. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5455. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5456. #endif
  5457. #ifdef EXTRUDER_RUNOUT_PREVENT
  5458. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5459. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5460. {
  5461. bool oldstatus=READ(E0_ENABLE_PIN);
  5462. enable_e0();
  5463. float oldepos=current_position[E_AXIS];
  5464. float oldedes=destination[E_AXIS];
  5465. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5466. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5467. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5468. current_position[E_AXIS]=oldepos;
  5469. destination[E_AXIS]=oldedes;
  5470. plan_set_e_position(oldepos);
  5471. previous_millis_cmd=millis();
  5472. st_synchronize();
  5473. WRITE(E0_ENABLE_PIN,oldstatus);
  5474. }
  5475. #endif
  5476. #ifdef TEMP_STAT_LEDS
  5477. handle_status_leds();
  5478. #endif
  5479. check_axes_activity();
  5480. }
  5481. void kill(const char *full_screen_message, unsigned char id)
  5482. {
  5483. SERIAL_ECHOPGM("KILL: ");
  5484. MYSERIAL.println(int(id));
  5485. //return;
  5486. cli(); // Stop interrupts
  5487. disable_heater();
  5488. disable_x();
  5489. // SERIAL_ECHOLNPGM("kill - disable Y");
  5490. disable_y();
  5491. disable_z();
  5492. disable_e0();
  5493. disable_e1();
  5494. disable_e2();
  5495. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5496. pinMode(PS_ON_PIN,INPUT);
  5497. #endif
  5498. SERIAL_ERROR_START;
  5499. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5500. if (full_screen_message != NULL) {
  5501. SERIAL_ERRORLNRPGM(full_screen_message);
  5502. lcd_display_message_fullscreen_P(full_screen_message);
  5503. } else {
  5504. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5505. }
  5506. // FMC small patch to update the LCD before ending
  5507. sei(); // enable interrupts
  5508. for ( int i=5; i--; lcd_update())
  5509. {
  5510. delay(200);
  5511. }
  5512. cli(); // disable interrupts
  5513. suicide();
  5514. while(1) { /* Intentionally left empty */ } // Wait for reset
  5515. }
  5516. void Stop()
  5517. {
  5518. disable_heater();
  5519. if(Stopped == false) {
  5520. Stopped = true;
  5521. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5522. SERIAL_ERROR_START;
  5523. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5524. LCD_MESSAGERPGM(MSG_STOPPED);
  5525. }
  5526. }
  5527. bool IsStopped() { return Stopped; };
  5528. #ifdef FAST_PWM_FAN
  5529. void setPwmFrequency(uint8_t pin, int val)
  5530. {
  5531. val &= 0x07;
  5532. switch(digitalPinToTimer(pin))
  5533. {
  5534. #if defined(TCCR0A)
  5535. case TIMER0A:
  5536. case TIMER0B:
  5537. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5538. // TCCR0B |= val;
  5539. break;
  5540. #endif
  5541. #if defined(TCCR1A)
  5542. case TIMER1A:
  5543. case TIMER1B:
  5544. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5545. // TCCR1B |= val;
  5546. break;
  5547. #endif
  5548. #if defined(TCCR2)
  5549. case TIMER2:
  5550. case TIMER2:
  5551. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5552. TCCR2 |= val;
  5553. break;
  5554. #endif
  5555. #if defined(TCCR2A)
  5556. case TIMER2A:
  5557. case TIMER2B:
  5558. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5559. TCCR2B |= val;
  5560. break;
  5561. #endif
  5562. #if defined(TCCR3A)
  5563. case TIMER3A:
  5564. case TIMER3B:
  5565. case TIMER3C:
  5566. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5567. TCCR3B |= val;
  5568. break;
  5569. #endif
  5570. #if defined(TCCR4A)
  5571. case TIMER4A:
  5572. case TIMER4B:
  5573. case TIMER4C:
  5574. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5575. TCCR4B |= val;
  5576. break;
  5577. #endif
  5578. #if defined(TCCR5A)
  5579. case TIMER5A:
  5580. case TIMER5B:
  5581. case TIMER5C:
  5582. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5583. TCCR5B |= val;
  5584. break;
  5585. #endif
  5586. }
  5587. }
  5588. #endif //FAST_PWM_FAN
  5589. bool setTargetedHotend(int code){
  5590. tmp_extruder = active_extruder;
  5591. if(code_seen('T')) {
  5592. tmp_extruder = code_value();
  5593. if(tmp_extruder >= EXTRUDERS) {
  5594. SERIAL_ECHO_START;
  5595. switch(code){
  5596. case 104:
  5597. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5598. break;
  5599. case 105:
  5600. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5601. break;
  5602. case 109:
  5603. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5604. break;
  5605. case 218:
  5606. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5607. break;
  5608. case 221:
  5609. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5610. break;
  5611. }
  5612. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5613. return true;
  5614. }
  5615. }
  5616. return false;
  5617. }
  5618. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5619. {
  5620. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5621. {
  5622. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5623. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5624. }
  5625. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5626. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5627. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5628. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5629. total_filament_used = 0;
  5630. }
  5631. float calculate_volumetric_multiplier(float diameter) {
  5632. float area = .0;
  5633. float radius = .0;
  5634. radius = diameter * .5;
  5635. if (! volumetric_enabled || radius == 0) {
  5636. area = 1;
  5637. }
  5638. else {
  5639. area = M_PI * pow(radius, 2);
  5640. }
  5641. return 1.0 / area;
  5642. }
  5643. void calculate_volumetric_multipliers() {
  5644. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5645. #if EXTRUDERS > 1
  5646. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5647. #if EXTRUDERS > 2
  5648. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5649. #endif
  5650. #endif
  5651. }
  5652. void delay_keep_alive(unsigned int ms)
  5653. {
  5654. for (;;) {
  5655. manage_heater();
  5656. // Manage inactivity, but don't disable steppers on timeout.
  5657. manage_inactivity(true);
  5658. lcd_update();
  5659. if (ms == 0)
  5660. break;
  5661. else if (ms >= 50) {
  5662. delay(50);
  5663. ms -= 50;
  5664. } else {
  5665. delay(ms);
  5666. ms = 0;
  5667. }
  5668. }
  5669. }
  5670. void wait_for_heater(long codenum) {
  5671. #ifdef TEMP_RESIDENCY_TIME
  5672. long residencyStart;
  5673. residencyStart = -1;
  5674. /* continue to loop until we have reached the target temp
  5675. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5676. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5677. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5678. #else
  5679. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5680. #endif //TEMP_RESIDENCY_TIME
  5681. if ((millis() - codenum) > 1000UL)
  5682. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5683. if (!farm_mode) {
  5684. SERIAL_PROTOCOLPGM("T:");
  5685. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5686. SERIAL_PROTOCOLPGM(" E:");
  5687. SERIAL_PROTOCOL((int)tmp_extruder);
  5688. #ifdef TEMP_RESIDENCY_TIME
  5689. SERIAL_PROTOCOLPGM(" W:");
  5690. if (residencyStart > -1)
  5691. {
  5692. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5693. SERIAL_PROTOCOLLN(codenum);
  5694. }
  5695. else
  5696. {
  5697. SERIAL_PROTOCOLLN("?");
  5698. }
  5699. }
  5700. #else
  5701. SERIAL_PROTOCOLLN("");
  5702. #endif
  5703. codenum = millis();
  5704. }
  5705. manage_heater();
  5706. manage_inactivity();
  5707. lcd_update();
  5708. #ifdef TEMP_RESIDENCY_TIME
  5709. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5710. or when current temp falls outside the hysteresis after target temp was reached */
  5711. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5712. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5713. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5714. {
  5715. residencyStart = millis();
  5716. }
  5717. #endif //TEMP_RESIDENCY_TIME
  5718. }
  5719. }
  5720. void check_babystep() {
  5721. int babystep_z;
  5722. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5723. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5724. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5725. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5726. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5727. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5728. lcd_update_enable(true);
  5729. }
  5730. }
  5731. #ifdef DIS
  5732. void d_setup()
  5733. {
  5734. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5735. pinMode(D_DATA, INPUT_PULLUP);
  5736. pinMode(D_REQUIRE, OUTPUT);
  5737. digitalWrite(D_REQUIRE, HIGH);
  5738. }
  5739. float d_ReadData()
  5740. {
  5741. int digit[13];
  5742. String mergeOutput;
  5743. float output;
  5744. digitalWrite(D_REQUIRE, HIGH);
  5745. for (int i = 0; i<13; i++)
  5746. {
  5747. for (int j = 0; j < 4; j++)
  5748. {
  5749. while (digitalRead(D_DATACLOCK) == LOW) {}
  5750. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5751. bitWrite(digit[i], j, digitalRead(D_DATA));
  5752. }
  5753. }
  5754. digitalWrite(D_REQUIRE, LOW);
  5755. mergeOutput = "";
  5756. output = 0;
  5757. for (int r = 5; r <= 10; r++) //Merge digits
  5758. {
  5759. mergeOutput += digit[r];
  5760. }
  5761. output = mergeOutput.toFloat();
  5762. if (digit[4] == 8) //Handle sign
  5763. {
  5764. output *= -1;
  5765. }
  5766. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5767. {
  5768. output /= 10;
  5769. }
  5770. return output;
  5771. }
  5772. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5773. int t1 = 0;
  5774. int t_delay = 0;
  5775. int digit[13];
  5776. int m;
  5777. char str[3];
  5778. //String mergeOutput;
  5779. char mergeOutput[15];
  5780. float output;
  5781. int mesh_point = 0; //index number of calibration point
  5782. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5783. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5784. float mesh_home_z_search = 4;
  5785. float row[x_points_num];
  5786. int ix = 0;
  5787. int iy = 0;
  5788. char* filename_wldsd = "wldsd.txt";
  5789. char data_wldsd[70];
  5790. char numb_wldsd[10];
  5791. d_setup();
  5792. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5793. // We don't know where we are! HOME!
  5794. // Push the commands to the front of the message queue in the reverse order!
  5795. // There shall be always enough space reserved for these commands.
  5796. repeatcommand_front(); // repeat G80 with all its parameters
  5797. enquecommand_front_P((PSTR("G28 W0")));
  5798. enquecommand_front_P((PSTR("G1 Z5")));
  5799. return;
  5800. }
  5801. bool custom_message_old = custom_message;
  5802. unsigned int custom_message_type_old = custom_message_type;
  5803. unsigned int custom_message_state_old = custom_message_state;
  5804. custom_message = true;
  5805. custom_message_type = 1;
  5806. custom_message_state = (x_points_num * y_points_num) + 10;
  5807. lcd_update(1);
  5808. mbl.reset();
  5809. babystep_undo();
  5810. card.openFile(filename_wldsd, false);
  5811. current_position[Z_AXIS] = mesh_home_z_search;
  5812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5813. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5814. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5815. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5816. setup_for_endstop_move(false);
  5817. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5818. SERIAL_PROTOCOL(x_points_num);
  5819. SERIAL_PROTOCOLPGM(",");
  5820. SERIAL_PROTOCOL(y_points_num);
  5821. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5822. SERIAL_PROTOCOL(mesh_home_z_search);
  5823. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5824. SERIAL_PROTOCOL(x_dimension);
  5825. SERIAL_PROTOCOLPGM(",");
  5826. SERIAL_PROTOCOL(y_dimension);
  5827. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5828. while (mesh_point != x_points_num * y_points_num) {
  5829. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5830. iy = mesh_point / x_points_num;
  5831. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5832. float z0 = 0.f;
  5833. current_position[Z_AXIS] = mesh_home_z_search;
  5834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5835. st_synchronize();
  5836. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5837. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5839. st_synchronize();
  5840. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5841. break;
  5842. card.closefile();
  5843. }
  5844. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5845. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5846. //strcat(data_wldsd, numb_wldsd);
  5847. //MYSERIAL.println(data_wldsd);
  5848. //delay(1000);
  5849. //delay(3000);
  5850. //t1 = millis();
  5851. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5852. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5853. memset(digit, 0, sizeof(digit));
  5854. //cli();
  5855. digitalWrite(D_REQUIRE, LOW);
  5856. for (int i = 0; i<13; i++)
  5857. {
  5858. //t1 = millis();
  5859. for (int j = 0; j < 4; j++)
  5860. {
  5861. while (digitalRead(D_DATACLOCK) == LOW) {}
  5862. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5863. bitWrite(digit[i], j, digitalRead(D_DATA));
  5864. }
  5865. //t_delay = (millis() - t1);
  5866. //SERIAL_PROTOCOLPGM(" ");
  5867. //SERIAL_PROTOCOL_F(t_delay, 5);
  5868. //SERIAL_PROTOCOLPGM(" ");
  5869. }
  5870. //sei();
  5871. digitalWrite(D_REQUIRE, HIGH);
  5872. mergeOutput[0] = '\0';
  5873. output = 0;
  5874. for (int r = 5; r <= 10; r++) //Merge digits
  5875. {
  5876. sprintf(str, "%d", digit[r]);
  5877. strcat(mergeOutput, str);
  5878. }
  5879. output = atof(mergeOutput);
  5880. if (digit[4] == 8) //Handle sign
  5881. {
  5882. output *= -1;
  5883. }
  5884. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5885. {
  5886. output *= 0.1;
  5887. }
  5888. //output = d_ReadData();
  5889. //row[ix] = current_position[Z_AXIS];
  5890. memset(data_wldsd, 0, sizeof(data_wldsd));
  5891. for (int i = 0; i <3; i++) {
  5892. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5893. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5894. strcat(data_wldsd, numb_wldsd);
  5895. strcat(data_wldsd, ";");
  5896. }
  5897. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5898. dtostrf(output, 8, 5, numb_wldsd);
  5899. strcat(data_wldsd, numb_wldsd);
  5900. //strcat(data_wldsd, ";");
  5901. card.write_command(data_wldsd);
  5902. //row[ix] = d_ReadData();
  5903. row[ix] = output; // current_position[Z_AXIS];
  5904. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5905. for (int i = 0; i < x_points_num; i++) {
  5906. SERIAL_PROTOCOLPGM(" ");
  5907. SERIAL_PROTOCOL_F(row[i], 5);
  5908. }
  5909. SERIAL_PROTOCOLPGM("\n");
  5910. }
  5911. custom_message_state--;
  5912. mesh_point++;
  5913. lcd_update(1);
  5914. }
  5915. card.closefile();
  5916. }
  5917. #endif
  5918. void temp_compensation_start() {
  5919. custom_message = true;
  5920. custom_message_type = 5;
  5921. custom_message_state = PINDA_HEAT_T + 1;
  5922. lcd_update(2);
  5923. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5924. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5925. }
  5926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5927. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5928. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5929. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5931. st_synchronize();
  5932. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5933. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5934. delay_keep_alive(1000);
  5935. custom_message_state = PINDA_HEAT_T - i;
  5936. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5937. else lcd_update(1);
  5938. }
  5939. custom_message_type = 0;
  5940. custom_message_state = 0;
  5941. custom_message = false;
  5942. }
  5943. void temp_compensation_apply() {
  5944. int i_add;
  5945. int compensation_value;
  5946. int z_shift = 0;
  5947. float z_shift_mm;
  5948. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5949. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5950. i_add = (target_temperature_bed - 60) / 10;
  5951. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5952. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5953. }else {
  5954. //interpolation
  5955. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5956. }
  5957. SERIAL_PROTOCOLPGM("\n");
  5958. SERIAL_PROTOCOLPGM("Z shift applied:");
  5959. MYSERIAL.print(z_shift_mm);
  5960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5961. st_synchronize();
  5962. plan_set_z_position(current_position[Z_AXIS]);
  5963. }
  5964. else {
  5965. //we have no temp compensation data
  5966. }
  5967. }
  5968. float temp_comp_interpolation(float inp_temperature) {
  5969. //cubic spline interpolation
  5970. int n, i, j, k;
  5971. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5972. int shift[10];
  5973. int temp_C[10];
  5974. n = 6; //number of measured points
  5975. shift[0] = 0;
  5976. for (i = 0; i < n; i++) {
  5977. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5978. temp_C[i] = 50 + i * 10; //temperature in C
  5979. #ifdef PINDA_THERMISTOR
  5980. temp_C[i] = 35 + i * 5; //temperature in C
  5981. #else
  5982. temp_C[i] = 50 + i * 10; //temperature in C
  5983. #endif
  5984. x[i] = (float)temp_C[i];
  5985. f[i] = (float)shift[i];
  5986. }
  5987. if (inp_temperature < x[0]) return 0;
  5988. for (i = n - 1; i>0; i--) {
  5989. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5990. h[i - 1] = x[i] - x[i - 1];
  5991. }
  5992. //*********** formation of h, s , f matrix **************
  5993. for (i = 1; i<n - 1; i++) {
  5994. m[i][i] = 2 * (h[i - 1] + h[i]);
  5995. if (i != 1) {
  5996. m[i][i - 1] = h[i - 1];
  5997. m[i - 1][i] = h[i - 1];
  5998. }
  5999. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6000. }
  6001. //*********** forward elimination **************
  6002. for (i = 1; i<n - 2; i++) {
  6003. temp = (m[i + 1][i] / m[i][i]);
  6004. for (j = 1; j <= n - 1; j++)
  6005. m[i + 1][j] -= temp*m[i][j];
  6006. }
  6007. //*********** backward substitution *********
  6008. for (i = n - 2; i>0; i--) {
  6009. sum = 0;
  6010. for (j = i; j <= n - 2; j++)
  6011. sum += m[i][j] * s[j];
  6012. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6013. }
  6014. for (i = 0; i<n - 1; i++)
  6015. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6016. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6017. b = s[i] / 2;
  6018. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6019. d = f[i];
  6020. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6021. }
  6022. return sum;
  6023. }
  6024. #ifdef PINDA_THERMISTOR
  6025. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6026. {
  6027. if (!temp_cal_active) return 0;
  6028. if (!calibration_status_pinda()) return 0;
  6029. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6030. }
  6031. #endif //PINDA_THERMISTOR
  6032. void long_pause() //long pause print
  6033. {
  6034. st_synchronize();
  6035. //save currently set parameters to global variables
  6036. saved_feedmultiply = feedmultiply;
  6037. HotendTempBckp = degTargetHotend(active_extruder);
  6038. fanSpeedBckp = fanSpeed;
  6039. start_pause_print = millis();
  6040. //save position
  6041. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6042. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6043. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6044. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6045. //retract
  6046. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6048. //lift z
  6049. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6050. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6052. //set nozzle target temperature to 0
  6053. setTargetHotend(0, 0);
  6054. setTargetHotend(0, 1);
  6055. setTargetHotend(0, 2);
  6056. //Move XY to side
  6057. current_position[X_AXIS] = X_PAUSE_POS;
  6058. current_position[Y_AXIS] = Y_PAUSE_POS;
  6059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6060. // Turn off the print fan
  6061. fanSpeed = 0;
  6062. st_synchronize();
  6063. }
  6064. void serialecho_temperatures() {
  6065. float tt = degHotend(active_extruder);
  6066. SERIAL_PROTOCOLPGM("T:");
  6067. SERIAL_PROTOCOL(tt);
  6068. SERIAL_PROTOCOLPGM(" E:");
  6069. SERIAL_PROTOCOL((int)active_extruder);
  6070. SERIAL_PROTOCOLPGM(" B:");
  6071. SERIAL_PROTOCOL_F(degBed(), 1);
  6072. SERIAL_PROTOCOLLN("");
  6073. }
  6074. extern uint32_t sdpos_atomic;
  6075. void uvlo_()
  6076. {
  6077. unsigned long time_start = millis();
  6078. // Conserve power as soon as possible.
  6079. disable_x();
  6080. disable_y();
  6081. // Indicate that the interrupt has been triggered.
  6082. SERIAL_ECHOLNPGM("UVLO");
  6083. // Read out the current Z motor microstep counter. This will be later used
  6084. // for reaching the zero full step before powering off.
  6085. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6086. // Calculate the file position, from which to resume this print.
  6087. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6088. {
  6089. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6090. sd_position -= sdlen_planner;
  6091. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6092. sd_position -= sdlen_cmdqueue;
  6093. if (sd_position < 0) sd_position = 0;
  6094. }
  6095. // Backup the feedrate in mm/min.
  6096. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6097. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6098. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6099. // are in action.
  6100. planner_abort_hard();
  6101. // Clean the input command queue.
  6102. cmdqueue_reset();
  6103. card.sdprinting = false;
  6104. // card.closefile();
  6105. // Enable stepper driver interrupt to move Z axis.
  6106. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6107. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6108. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6109. sei();
  6110. plan_buffer_line(
  6111. current_position[X_AXIS],
  6112. current_position[Y_AXIS],
  6113. current_position[Z_AXIS],
  6114. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6115. 400, active_extruder);
  6116. plan_buffer_line(
  6117. current_position[X_AXIS],
  6118. current_position[Y_AXIS],
  6119. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6120. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6121. 40, active_extruder);
  6122. // Move Z up to the next 0th full step.
  6123. // Write the file position.
  6124. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6125. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6126. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6127. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6128. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6129. // Scale the z value to 1u resolution.
  6130. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6131. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6132. }
  6133. // Read out the current Z motor microstep counter. This will be later used
  6134. // for reaching the zero full step before powering off.
  6135. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6136. // Store the current position.
  6137. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6138. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6139. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6140. // Store the current feed rate, temperatures and fan speed.
  6141. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6142. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6143. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6144. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6145. // Finaly store the "power outage" flag.
  6146. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6147. st_synchronize();
  6148. SERIAL_ECHOPGM("stps");
  6149. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6150. #if 0
  6151. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6152. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6154. st_synchronize();
  6155. #endif
  6156. disable_z();
  6157. // Increment power failure counter
  6158. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6159. power_count++;
  6160. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6161. SERIAL_ECHOLNPGM("UVLO - end");
  6162. MYSERIAL.println(millis() - time_start);
  6163. cli();
  6164. while(1);
  6165. }
  6166. void setup_fan_interrupt() {
  6167. //INT7
  6168. DDRE &= ~(1 << 7); //input pin
  6169. PORTE &= ~(1 << 7); //no internal pull-up
  6170. //start with sensing rising edge
  6171. EICRB &= ~(1 << 6);
  6172. EICRB |= (1 << 7);
  6173. //enable INT7 interrupt
  6174. EIMSK |= (1 << 7);
  6175. }
  6176. ISR(INT7_vect) {
  6177. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6178. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6179. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6180. t_fan_rising_edge = millis();
  6181. }
  6182. else { //interrupt was triggered by falling edge
  6183. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6184. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6185. }
  6186. }
  6187. EICRB ^= (1 << 6); //change edge
  6188. }
  6189. void setup_uvlo_interrupt() {
  6190. DDRE &= ~(1 << 4); //input pin
  6191. PORTE &= ~(1 << 4); //no internal pull-up
  6192. //sensing falling edge
  6193. EICRB |= (1 << 0);
  6194. EICRB &= ~(1 << 1);
  6195. //enable INT4 interrupt
  6196. EIMSK |= (1 << 4);
  6197. }
  6198. ISR(INT4_vect) {
  6199. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6200. SERIAL_ECHOLNPGM("INT4");
  6201. if (IS_SD_PRINTING) uvlo_();
  6202. }
  6203. void recover_print(uint8_t automatic) {
  6204. char cmd[30];
  6205. lcd_update_enable(true);
  6206. lcd_update(2);
  6207. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6208. recover_machine_state_after_power_panic();
  6209. // Set the target bed and nozzle temperatures.
  6210. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6211. enquecommand(cmd);
  6212. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6213. enquecommand(cmd);
  6214. // Lift the print head, so one may remove the excess priming material.
  6215. if (current_position[Z_AXIS] < 25)
  6216. enquecommand_P(PSTR("G1 Z25 F800"));
  6217. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6218. enquecommand_P(PSTR("G28 X Y"));
  6219. // Set the target bed and nozzle temperatures and wait.
  6220. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6221. enquecommand(cmd);
  6222. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6223. enquecommand(cmd);
  6224. enquecommand_P(PSTR("M83")); //E axis relative mode
  6225. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6226. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6227. if(automatic == 0){
  6228. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6229. }
  6230. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6231. // Mark the power panic status as inactive.
  6232. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6233. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6234. delay_keep_alive(1000);
  6235. }*/
  6236. SERIAL_ECHOPGM("After waiting for temp:");
  6237. SERIAL_ECHOPGM("Current position X_AXIS:");
  6238. MYSERIAL.println(current_position[X_AXIS]);
  6239. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6240. MYSERIAL.println(current_position[Y_AXIS]);
  6241. // Restart the print.
  6242. restore_print_from_eeprom();
  6243. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6244. MYSERIAL.print(current_position[Z_AXIS]);
  6245. }
  6246. void recover_machine_state_after_power_panic()
  6247. {
  6248. // 1) Recover the logical cordinates at the time of the power panic.
  6249. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6250. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6251. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6252. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6253. // The current position after power panic is moved to the next closest 0th full step.
  6254. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6255. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6256. memcpy(destination, current_position, sizeof(destination));
  6257. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6258. print_world_coordinates();
  6259. // 2) Initialize the logical to physical coordinate system transformation.
  6260. world2machine_initialize();
  6261. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6262. mbl.active = false;
  6263. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6264. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6265. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6266. // Scale the z value to 10u resolution.
  6267. int16_t v;
  6268. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6269. if (v != 0)
  6270. mbl.active = true;
  6271. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6272. }
  6273. if (mbl.active)
  6274. mbl.upsample_3x3();
  6275. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6276. print_mesh_bed_leveling_table();
  6277. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6278. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6279. babystep_load();
  6280. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6282. // 6) Power up the motors, mark their positions as known.
  6283. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6284. axis_known_position[X_AXIS] = true; enable_x();
  6285. axis_known_position[Y_AXIS] = true; enable_y();
  6286. axis_known_position[Z_AXIS] = true; enable_z();
  6287. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6288. print_physical_coordinates();
  6289. // 7) Recover the target temperatures.
  6290. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6291. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6292. }
  6293. void restore_print_from_eeprom() {
  6294. float x_rec, y_rec, z_pos;
  6295. int feedrate_rec;
  6296. uint8_t fan_speed_rec;
  6297. char cmd[30];
  6298. char* c;
  6299. char filename[13];
  6300. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6301. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6302. SERIAL_ECHOPGM("Feedrate:");
  6303. MYSERIAL.println(feedrate_rec);
  6304. for (int i = 0; i < 8; i++) {
  6305. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6306. }
  6307. filename[8] = '\0';
  6308. MYSERIAL.print(filename);
  6309. strcat_P(filename, PSTR(".gco"));
  6310. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6311. for (c = &cmd[4]; *c; c++)
  6312. *c = tolower(*c);
  6313. enquecommand(cmd);
  6314. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6315. SERIAL_ECHOPGM("Position read from eeprom:");
  6316. MYSERIAL.println(position);
  6317. // E axis relative mode.
  6318. enquecommand_P(PSTR("M83"));
  6319. // Move to the XY print position in logical coordinates, where the print has been killed.
  6320. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6321. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6322. strcat_P(cmd, PSTR(" F2000"));
  6323. enquecommand(cmd);
  6324. // Move the Z axis down to the print, in logical coordinates.
  6325. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6326. enquecommand(cmd);
  6327. // Unretract.
  6328. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6329. // Set the feedrate saved at the power panic.
  6330. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6331. enquecommand(cmd);
  6332. // Set the fan speed saved at the power panic.
  6333. strcpy_P(cmd, PSTR("M106 S"));
  6334. strcat(cmd, itostr3(int(fan_speed_rec)));
  6335. enquecommand(cmd);
  6336. // Set a position in the file.
  6337. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6338. enquecommand(cmd);
  6339. // Start SD print.
  6340. enquecommand_P(PSTR("M24"));
  6341. }
  6342. ////////////////////////////////////////////////////////////////////////////////
  6343. // new save/restore printing
  6344. //extern uint32_t sdpos_atomic;
  6345. bool saved_printing = false;
  6346. uint32_t saved_sdpos = 0;
  6347. float saved_pos[4] = {0, 0, 0, 0};
  6348. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6349. float saved_feedrate2 = 0;
  6350. uint8_t saved_active_extruder = 0;
  6351. bool saved_extruder_under_pressure = false;
  6352. void stop_and_save_print_to_ram(float z_move, float e_move)
  6353. {
  6354. if (saved_printing) return;
  6355. cli();
  6356. unsigned char nplanner_blocks = number_of_blocks();
  6357. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6358. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6359. saved_sdpos -= sdlen_planner;
  6360. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6361. saved_sdpos -= sdlen_cmdqueue;
  6362. #if 0
  6363. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6364. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6365. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6366. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6367. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6368. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6369. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6370. {
  6371. card.setIndex(saved_sdpos);
  6372. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6373. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6374. MYSERIAL.print(char(card.get()));
  6375. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6376. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6377. MYSERIAL.print(char(card.get()));
  6378. SERIAL_ECHOLNPGM("End of command buffer");
  6379. }
  6380. {
  6381. // Print the content of the planner buffer, line by line:
  6382. card.setIndex(saved_sdpos);
  6383. int8_t iline = 0;
  6384. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6385. SERIAL_ECHOPGM("Planner line (from file): ");
  6386. MYSERIAL.print(int(iline), DEC);
  6387. SERIAL_ECHOPGM(", length: ");
  6388. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6389. SERIAL_ECHOPGM(", steps: (");
  6390. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6391. SERIAL_ECHOPGM(",");
  6392. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6393. SERIAL_ECHOPGM(",");
  6394. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6395. SERIAL_ECHOPGM(",");
  6396. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6397. SERIAL_ECHOPGM("), events: ");
  6398. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6399. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6400. MYSERIAL.print(char(card.get()));
  6401. }
  6402. }
  6403. {
  6404. // Print the content of the command buffer, line by line:
  6405. int8_t iline = 0;
  6406. union {
  6407. struct {
  6408. char lo;
  6409. char hi;
  6410. } lohi;
  6411. uint16_t value;
  6412. } sdlen_single;
  6413. int _bufindr = bufindr;
  6414. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6415. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6416. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6417. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6418. }
  6419. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6420. MYSERIAL.print(int(iline), DEC);
  6421. SERIAL_ECHOPGM(", type: ");
  6422. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6423. SERIAL_ECHOPGM(", len: ");
  6424. MYSERIAL.println(sdlen_single.value, DEC);
  6425. // Print the content of the buffer line.
  6426. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6427. SERIAL_ECHOPGM("Buffer line (from file): ");
  6428. MYSERIAL.print(int(iline), DEC);
  6429. MYSERIAL.println(int(iline), DEC);
  6430. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6431. MYSERIAL.print(char(card.get()));
  6432. if (-- _buflen == 0)
  6433. break;
  6434. // First skip the current command ID and iterate up to the end of the string.
  6435. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6436. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6437. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6438. // If the end of the buffer was empty,
  6439. if (_bufindr == sizeof(cmdbuffer)) {
  6440. // skip to the start and find the nonzero command.
  6441. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6442. }
  6443. }
  6444. }
  6445. #endif
  6446. #if 0
  6447. saved_feedrate2 = feedrate; //save feedrate
  6448. #else
  6449. // Try to deduce the feedrate from the first block of the planner.
  6450. // Speed is in mm/min.
  6451. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6452. #endif
  6453. planner_abort_hard(); //abort printing
  6454. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6455. saved_active_extruder = active_extruder; //save active_extruder
  6456. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6457. cmdqueue_reset(); //empty cmdqueue
  6458. card.sdprinting = false;
  6459. // card.closefile();
  6460. saved_printing = true;
  6461. sei();
  6462. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6463. #if 1
  6464. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6465. char buf[48];
  6466. strcpy_P(buf, PSTR("G1 Z"));
  6467. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6468. strcat_P(buf, PSTR(" E"));
  6469. // Relative extrusion
  6470. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6471. strcat_P(buf, PSTR(" F"));
  6472. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6473. // At this point the command queue is empty.
  6474. enquecommand(buf, false);
  6475. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6476. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6477. repeatcommand_front();
  6478. #else
  6479. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6480. st_synchronize(); //wait moving
  6481. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6482. memcpy(destination, current_position, sizeof(destination));
  6483. #endif
  6484. }
  6485. }
  6486. void restore_print_from_ram_and_continue(float e_move)
  6487. {
  6488. if (!saved_printing) return;
  6489. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6490. // current_position[axis] = st_get_position_mm(axis);
  6491. active_extruder = saved_active_extruder; //restore active_extruder
  6492. feedrate = saved_feedrate2; //restore feedrate
  6493. float e = saved_pos[E_AXIS] - e_move;
  6494. plan_set_e_position(e);
  6495. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6496. st_synchronize();
  6497. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6498. memcpy(destination, current_position, sizeof(destination));
  6499. card.setIndex(saved_sdpos);
  6500. sdpos_atomic = saved_sdpos;
  6501. card.sdprinting = true;
  6502. saved_printing = false;
  6503. }
  6504. void print_world_coordinates()
  6505. {
  6506. SERIAL_ECHOPGM("world coordinates: (");
  6507. MYSERIAL.print(current_position[X_AXIS], 3);
  6508. SERIAL_ECHOPGM(", ");
  6509. MYSERIAL.print(current_position[Y_AXIS], 3);
  6510. SERIAL_ECHOPGM(", ");
  6511. MYSERIAL.print(current_position[Z_AXIS], 3);
  6512. SERIAL_ECHOLNPGM(")");
  6513. }
  6514. void print_physical_coordinates()
  6515. {
  6516. SERIAL_ECHOPGM("physical coordinates: (");
  6517. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6518. SERIAL_ECHOPGM(", ");
  6519. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6520. SERIAL_ECHOPGM(", ");
  6521. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6522. SERIAL_ECHOLNPGM(")");
  6523. }
  6524. void print_mesh_bed_leveling_table()
  6525. {
  6526. SERIAL_ECHOPGM("mesh bed leveling: ");
  6527. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6528. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6529. MYSERIAL.print(mbl.z_values[y][x], 3);
  6530. SERIAL_ECHOPGM(" ");
  6531. }
  6532. SERIAL_ECHOLNPGM("");
  6533. }