stepper.cpp 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  33. #include "fsensor.h"
  34. int fsensor_counter; //counter for e-steps
  35. #endif //FILAMENT_SENSOR
  36. #include "mmu.h"
  37. #include "ConfigurationStore.h"
  38. #ifdef DEBUG_STACK_MONITOR
  39. uint16_t SP_min = 0x21FF;
  40. #endif //DEBUG_STACK_MONITOR
  41. /*
  42. * Stepping macros
  43. */
  44. #define _STEP_PIN_X_AXIS X_STEP_PIN
  45. #define _STEP_PIN_Y_AXIS Y_STEP_PIN
  46. #define _STEP_PIN_Z_AXIS Z_STEP_PIN
  47. #define _STEP_PIN_E_AXIS E0_STEP_PIN
  48. #ifdef DEBUG_XSTEP_DUP_PIN
  49. #define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN
  50. #endif
  51. #ifdef DEBUG_YSTEP_DUP_PIN
  52. #define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN
  53. #endif
  54. #ifdef Y_DUAL_STEPPER_DRIVERS
  55. #error Y_DUAL_STEPPER_DRIVERS not fully implemented
  56. #define _STEP_PIN_Y2_AXIS Y2_STEP_PIN
  57. #endif
  58. #ifdef Z_DUAL_STEPPER_DRIVERS
  59. #error Z_DUAL_STEPPER_DRIVERS not fully implemented
  60. #define _STEP_PIN_Z2_AXIS Z2_STEP_PIN
  61. #endif
  62. #ifdef TMC2130
  63. #define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE
  64. #define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY
  65. #define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY
  66. #else
  67. #define STEPPER_MINIMUM_PULSE 2
  68. #define STEPPER_SET_DIR_DELAY 100
  69. #define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE)
  70. #endif
  71. #ifdef TMC2130_DEDGE_STEPPING
  72. static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty
  73. "DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY");
  74. #define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis)
  75. #define STEP_NC_LO(axis) //NOP
  76. #else
  77. #define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN
  78. #define _STEP_LO_X_AXIS INVERT_X_STEP_PIN
  79. #define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN
  80. #define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN
  81. #define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN
  82. #define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN
  83. #define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN
  84. #define _STEP_LO_E_AXIS INVERT_E_STEP_PIN
  85. #define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis)
  86. #define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis)
  87. #endif //TMC2130_DEDGE_STEPPING
  88. //===========================================================================
  89. //=============================public variables ============================
  90. //===========================================================================
  91. block_t *current_block; // A pointer to the block currently being traced
  92. //===========================================================================
  93. //=============================private variables ============================
  94. //===========================================================================
  95. //static makes it inpossible to be called from outside of this file by extern.!
  96. // Variables used by The Stepper Driver Interrupt
  97. static unsigned char out_bits; // The next stepping-bits to be output
  98. static dda_isteps_t
  99. counter_x, // Counter variables for the bresenham line tracer
  100. counter_y,
  101. counter_z,
  102. counter_e;
  103. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  104. static uint32_t acceleration_time, deceleration_time;
  105. static uint16_t acc_step_rate; // needed for deccelaration start point
  106. static uint8_t step_loops;
  107. static uint16_t OCR1A_nominal;
  108. static uint8_t step_loops_nominal;
  109. volatile long endstops_trigsteps[3]={0,0,0};
  110. static volatile uint8_t endstop_hit = 0;
  111. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  112. bool abort_on_endstop_hit = false;
  113. #endif
  114. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  115. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  116. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  117. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  118. #endif
  119. static uint8_t endstop = 0;
  120. static uint8_t old_endstop = 0;
  121. static bool check_endstops = true;
  122. static bool check_z_endstop = false;
  123. static bool z_endstop_invert = false;
  124. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  125. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  126. #ifdef LIN_ADVANCE
  127. void advance_isr_scheduler();
  128. void advance_isr();
  129. static const uint16_t ADV_NEVER = 0xFFFF;
  130. static const uint8_t ADV_INIT = 0b01; // initialize LA
  131. static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase
  132. static uint16_t nextMainISR;
  133. static uint16_t nextAdvanceISR;
  134. static uint16_t main_Rate;
  135. static uint16_t eISR_Rate;
  136. static uint32_t eISR_Err;
  137. static uint16_t current_adv_steps;
  138. static uint16_t target_adv_steps;
  139. static int8_t e_steps; // scheduled e-steps during each isr loop
  140. static uint8_t e_step_loops; // e-steps to execute at most in each isr loop
  141. static uint8_t e_extruding; // current move is an extrusion move
  142. static int8_t LA_phase; // LA compensation phase
  143. #define _NEXT_ISR(T) main_Rate = nextMainISR = T
  144. #else
  145. #define _NEXT_ISR(T) OCR1A = T
  146. #endif
  147. #ifdef DEBUG_STEPPER_TIMER_MISSED
  148. extern bool stepper_timer_overflow_state;
  149. extern uint16_t stepper_timer_overflow_last;
  150. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  151. //===========================================================================
  152. //=============================functions ============================
  153. //===========================================================================
  154. void checkHitEndstops()
  155. {
  156. if( endstop_hit) {
  157. SERIAL_ECHO_START;
  158. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  159. if(endstop_hit & _BV(X_AXIS)) {
  160. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
  161. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
  162. }
  163. if(endstop_hit & _BV(Y_AXIS)) {
  164. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
  165. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
  166. }
  167. if(endstop_hit & _BV(Z_AXIS)) {
  168. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
  169. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
  170. }
  171. SERIAL_ECHOLN("");
  172. endstop_hit = 0;
  173. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  174. if (abort_on_endstop_hit)
  175. {
  176. card.sdprinting = false;
  177. card.closefile();
  178. quickStop();
  179. setTargetHotend0(0);
  180. setTargetHotend1(0);
  181. setTargetHotend2(0);
  182. }
  183. #endif
  184. }
  185. }
  186. bool endstops_hit_on_purpose()
  187. {
  188. uint8_t old = endstop_hit;
  189. endstop_hit = 0;
  190. return old;
  191. }
  192. bool endstop_z_hit_on_purpose()
  193. {
  194. bool hit = endstop_hit & _BV(Z_AXIS);
  195. endstop_hit &= ~_BV(Z_AXIS);
  196. return hit;
  197. }
  198. bool enable_endstops(bool check)
  199. {
  200. bool old = check_endstops;
  201. check_endstops = check;
  202. return old;
  203. }
  204. bool enable_z_endstop(bool check)
  205. {
  206. bool old = check_z_endstop;
  207. check_z_endstop = check;
  208. endstop_hit &= ~_BV(Z_AXIS);
  209. return old;
  210. }
  211. void invert_z_endstop(bool endstop_invert)
  212. {
  213. z_endstop_invert = endstop_invert;
  214. }
  215. // __________________________
  216. // /| |\ _________________ ^
  217. // / | | \ /| |\ |
  218. // / | | \ / | | \ s
  219. // / | | | | | \ p
  220. // / | | | | | \ e
  221. // +-----+------------------------+---+--+---------------+----+ e
  222. // | BLOCK 1 | BLOCK 2 | d
  223. //
  224. // time ----->
  225. //
  226. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  227. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  228. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  229. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  230. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  231. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  232. ISR(TIMER1_COMPA_vect) {
  233. #ifdef DEBUG_STACK_MONITOR
  234. uint16_t sp = SPL + 256 * SPH;
  235. if (sp < SP_min) SP_min = sp;
  236. #endif //DEBUG_STACK_MONITOR
  237. #ifdef LIN_ADVANCE
  238. advance_isr_scheduler();
  239. #else
  240. isr();
  241. #endif
  242. // Don't run the ISR faster than possible
  243. // Is there a 8us time left before the next interrupt triggers?
  244. if (OCR1A < TCNT1 + 16) {
  245. #ifdef DEBUG_STEPPER_TIMER_MISSED
  246. // Verify whether the next planned timer interrupt has not been missed already.
  247. // This debugging test takes < 1.125us
  248. // This skews the profiling slightly as the fastest stepper timer
  249. // interrupt repeats at a 100us rate (10kHz).
  250. if (OCR1A + 40 < TCNT1) {
  251. // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
  252. // Give a warning.
  253. stepper_timer_overflow_state = true;
  254. stepper_timer_overflow_last = TCNT1 - OCR1A;
  255. // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
  256. WRITE(BEEPER, HIGH);
  257. }
  258. #endif
  259. // Fix the next interrupt to be executed after 8us from now.
  260. OCR1A = TCNT1 + 16;
  261. }
  262. }
  263. uint8_t last_dir_bits = 0;
  264. #ifdef BACKLASH_X
  265. uint8_t st_backlash_x = 0;
  266. #endif //BACKLASH_X
  267. #ifdef BACKLASH_Y
  268. uint8_t st_backlash_y = 0;
  269. #endif //BACKLASH_Y
  270. FORCE_INLINE void stepper_next_block()
  271. {
  272. // Anything in the buffer?
  273. //WRITE_NC(LOGIC_ANALYZER_CH2, true);
  274. current_block = plan_get_current_block();
  275. if (current_block != NULL) {
  276. #ifdef BACKLASH_X
  277. if (current_block->steps_x.wide)
  278. { //X-axis movement
  279. if ((current_block->direction_bits ^ last_dir_bits) & 1)
  280. {
  281. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
  282. if (current_block->direction_bits & 1)
  283. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  284. else
  285. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  286. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  287. for (uint8_t i = 0; i < st_backlash_x; i++)
  288. {
  289. STEP_NC_HI(X_AXIS);
  290. STEPPER_MINIMUM_DELAY;
  291. STEP_NC_LO(X_AXIS);
  292. _delay_us(900); // hard-coded jerk! *bad*
  293. }
  294. }
  295. last_dir_bits &= ~1;
  296. last_dir_bits |= current_block->direction_bits & 1;
  297. }
  298. #endif
  299. #ifdef BACKLASH_Y
  300. if (current_block->steps_y.wide)
  301. { //Y-axis movement
  302. if ((current_block->direction_bits ^ last_dir_bits) & 2)
  303. {
  304. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
  305. if (current_block->direction_bits & 2)
  306. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  307. else
  308. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  309. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  310. for (uint8_t i = 0; i < st_backlash_y; i++)
  311. {
  312. STEP_NC_HI(Y_AXIS);
  313. STEPPER_MINIMUM_DELAY;
  314. STEP_NC_LO(Y_AXIS);
  315. _delay_us(900); // hard-coded jerk! *bad*
  316. }
  317. }
  318. last_dir_bits &= ~2;
  319. last_dir_bits |= current_block->direction_bits & 2;
  320. }
  321. #endif
  322. // The busy flag is set by the plan_get_current_block() call.
  323. // current_block->busy = true;
  324. // Initializes the trapezoid generator from the current block. Called whenever a new
  325. // block begins.
  326. deceleration_time = 0;
  327. // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
  328. // That means, delay the initialization of nominal step rate and step loops until the steady
  329. // state is reached.
  330. step_loops_nominal = 0;
  331. acc_step_rate = uint16_t(current_block->initial_rate);
  332. acceleration_time = calc_timer(acc_step_rate, step_loops);
  333. #ifdef LIN_ADVANCE
  334. if (current_block->use_advance_lead) {
  335. target_adv_steps = current_block->max_adv_steps;
  336. }
  337. e_steps = 0;
  338. nextAdvanceISR = ADV_NEVER;
  339. LA_phase = -1;
  340. #endif
  341. if (current_block->flag & BLOCK_FLAG_E_RESET) {
  342. count_position[E_AXIS] = 0;
  343. }
  344. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  345. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  346. counter_y.lo = counter_x.lo;
  347. counter_z.lo = counter_x.lo;
  348. counter_e.lo = counter_x.lo;
  349. #ifdef LIN_ADVANCE
  350. e_extruding = current_block->steps_e.lo != 0;
  351. #endif
  352. } else {
  353. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  354. counter_y.wide = counter_x.wide;
  355. counter_z.wide = counter_x.wide;
  356. counter_e.wide = counter_x.wide;
  357. #ifdef LIN_ADVANCE
  358. e_extruding = current_block->steps_e.wide != 0;
  359. #endif
  360. }
  361. step_events_completed.wide = 0;
  362. // Set directions.
  363. out_bits = current_block->direction_bits;
  364. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  365. if((out_bits & (1<<X_AXIS))!=0){
  366. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  367. count_direction[X_AXIS]=-1;
  368. } else {
  369. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  370. count_direction[X_AXIS]=1;
  371. }
  372. if((out_bits & (1<<Y_AXIS))!=0){
  373. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  374. count_direction[Y_AXIS]=-1;
  375. } else {
  376. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  377. count_direction[Y_AXIS]=1;
  378. }
  379. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  380. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  381. count_direction[Z_AXIS]=-1;
  382. } else { // +direction
  383. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  384. count_direction[Z_AXIS]=1;
  385. }
  386. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  387. #ifndef LIN_ADVANCE
  388. WRITE(E0_DIR_PIN,
  389. #ifdef SNMM
  390. (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
  391. #endif // SNMM
  392. INVERT_E0_DIR);
  393. #endif /* LIN_ADVANCE */
  394. count_direction[E_AXIS] = -1;
  395. } else { // +direction
  396. #ifndef LIN_ADVANCE
  397. WRITE(E0_DIR_PIN,
  398. #ifdef SNMM
  399. (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
  400. #endif // SNMM
  401. !INVERT_E0_DIR);
  402. #endif /* LIN_ADVANCE */
  403. count_direction[E_AXIS] = 1;
  404. }
  405. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  406. fsensor_st_block_begin(count_direction[E_AXIS] < 0);
  407. #endif //FILAMENT_SENSOR
  408. }
  409. else {
  410. _NEXT_ISR(2000); // 1kHz.
  411. #ifdef LIN_ADVANCE
  412. // reset LA state when there's no block
  413. nextAdvanceISR = ADV_NEVER;
  414. e_steps = 0;
  415. // incrementally lose pressure to give a chance for
  416. // a new LA block to be scheduled and recover
  417. if(current_adv_steps)
  418. --current_adv_steps;
  419. #endif
  420. }
  421. //WRITE_NC(LOGIC_ANALYZER_CH2, false);
  422. }
  423. // Check limit switches.
  424. FORCE_INLINE void stepper_check_endstops()
  425. {
  426. if(check_endstops)
  427. {
  428. #ifndef COREXY
  429. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  430. #else
  431. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  432. #endif
  433. {
  434. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  435. #ifdef TMC2130_SG_HOMING
  436. // Stall guard homing turned on
  437. SET_BIT_TO(endstop, X_AXIS, (READ(X_TMC2130_DIAG) != 0));
  438. #else
  439. // Normal homing
  440. SET_BIT_TO(endstop, X_AXIS, (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING));
  441. #endif
  442. if((endstop & old_endstop & _BV(X_AXIS)) && (current_block->steps_x.wide > 0)) {
  443. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  444. endstop_hit |= _BV(X_AXIS);
  445. step_events_completed.wide = current_block->step_event_count.wide;
  446. }
  447. #endif
  448. } else { // +direction
  449. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  450. #ifdef TMC2130_SG_HOMING
  451. // Stall guard homing turned on
  452. SET_BIT_TO(endstop, X_AXIS + 4, (READ(X_TMC2130_DIAG) != 0));
  453. #else
  454. // Normal homing
  455. SET_BIT_TO(endstop, X_AXIS + 4, (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING));
  456. #endif
  457. if((endstop & old_endstop & _BV(X_AXIS + 4)) && (current_block->steps_x.wide > 0)){
  458. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  459. endstop_hit |= _BV(X_AXIS);
  460. step_events_completed.wide = current_block->step_event_count.wide;
  461. }
  462. #endif
  463. }
  464. #ifndef COREXY
  465. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  466. #else
  467. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  468. #endif
  469. {
  470. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  471. #ifdef TMC2130_SG_HOMING
  472. // Stall guard homing turned on
  473. SET_BIT_TO(endstop, Y_AXIS, (READ(Y_TMC2130_DIAG) != 0));
  474. #else
  475. // Normal homing
  476. SET_BIT_TO(endstop, Y_AXIS, (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING));
  477. #endif
  478. if((endstop & old_endstop & _BV(Y_AXIS)) && (current_block->steps_y.wide > 0)) {
  479. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  480. endstop_hit |= _BV(Y_AXIS);
  481. step_events_completed.wide = current_block->step_event_count.wide;
  482. }
  483. #endif
  484. } else { // +direction
  485. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  486. #ifdef TMC2130_SG_HOMING
  487. // Stall guard homing turned on
  488. SET_BIT_TO(endstop, Y_AXIS + 4, (READ(Y_TMC2130_DIAG) != 0));
  489. #else
  490. // Normal homing
  491. SET_BIT_TO(endstop, Y_AXIS + 4, (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING));
  492. #endif
  493. if((endstop & old_endstop & _BV(Y_AXIS + 4)) && (current_block->steps_y.wide > 0)){
  494. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  495. endstop_hit |= _BV(Y_AXIS);
  496. step_events_completed.wide = current_block->step_event_count.wide;
  497. }
  498. #endif
  499. }
  500. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  501. {
  502. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  503. if (! check_z_endstop) {
  504. #ifdef TMC2130_SG_HOMING
  505. // Stall guard homing turned on
  506. #ifdef TMC2130_STEALTH_Z
  507. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  508. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING));
  509. else
  510. #endif //TMC2130_STEALTH_Z
  511. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0));
  512. #else
  513. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING));
  514. #endif //TMC2130_SG_HOMING
  515. if((endstop & old_endstop & _BV(Z_AXIS)) && (current_block->steps_z.wide > 0)) {
  516. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  517. endstop_hit |= _BV(Z_AXIS);
  518. step_events_completed.wide = current_block->step_event_count.wide;
  519. }
  520. }
  521. #endif
  522. } else { // +direction
  523. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  524. #ifdef TMC2130_SG_HOMING
  525. // Stall guard homing turned on
  526. #ifdef TMC2130_STEALTH_Z
  527. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  528. SET_BIT_TO(endstop, Z_AXIS + 4, 0);
  529. else
  530. #endif //TMC2130_STEALTH_Z
  531. SET_BIT_TO(endstop, Z_AXIS + 4, (READ(Z_TMC2130_DIAG) != 0));
  532. #else
  533. SET_BIT_TO(endstop, Z_AXIS + 4, (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING));
  534. #endif //TMC2130_SG_HOMING
  535. if((endstop & old_endstop & _BV(Z_AXIS + 4)) && (current_block->steps_z.wide > 0)) {
  536. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  537. endstop_hit |= _BV(Z_AXIS);
  538. step_events_completed.wide = current_block->step_event_count.wide;
  539. }
  540. #endif
  541. }
  542. }
  543. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  544. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  545. if (check_z_endstop) {
  546. // Check the Z min end-stop no matter what.
  547. // Good for searching for the center of an induction target.
  548. #ifdef TMC2130_SG_HOMING
  549. // Stall guard homing turned on
  550. #ifdef TMC2130_STEALTH_Z
  551. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  552. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING));
  553. else
  554. #endif //TMC2130_STEALTH_Z
  555. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0));
  556. #else
  557. SET_BIT_TO(endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING));
  558. #endif //TMC2130_SG_HOMING
  559. if(endstop & old_endstop & _BV(Z_AXIS)) {
  560. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  561. endstop_hit |= _BV(Z_AXIS);
  562. step_events_completed.wide = current_block->step_event_count.wide;
  563. }
  564. }
  565. #endif
  566. old_endstop = endstop;
  567. }
  568. FORCE_INLINE void stepper_tick_lowres()
  569. {
  570. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  571. MSerial.checkRx(); // Check for serial chars.
  572. // Step in X axis
  573. counter_x.lo += current_block->steps_x.lo;
  574. if (counter_x.lo > 0) {
  575. STEP_NC_HI(X_AXIS);
  576. #ifdef DEBUG_XSTEP_DUP_PIN
  577. STEP_NC_HI(X_DUP_AXIS);
  578. #endif //DEBUG_XSTEP_DUP_PIN
  579. counter_x.lo -= current_block->step_event_count.lo;
  580. count_position[X_AXIS]+=count_direction[X_AXIS];
  581. STEP_NC_LO(X_AXIS);
  582. #ifdef DEBUG_XSTEP_DUP_PIN
  583. STEP_NC_LO(X_DUP_AXIS);
  584. #endif //DEBUG_XSTEP_DUP_PIN
  585. }
  586. // Step in Y axis
  587. counter_y.lo += current_block->steps_y.lo;
  588. if (counter_y.lo > 0) {
  589. STEP_NC_HI(Y_AXIS);
  590. #ifdef DEBUG_YSTEP_DUP_PIN
  591. STEP_NC_HI(Y_DUP_AXIS);
  592. #endif //DEBUG_YSTEP_DUP_PIN
  593. counter_y.lo -= current_block->step_event_count.lo;
  594. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  595. STEP_NC_LO(Y_AXIS);
  596. #ifdef DEBUG_YSTEP_DUP_PIN
  597. STEP_NC_LO(Y_DUP_AXIS);
  598. #endif //DEBUG_YSTEP_DUP_PIN
  599. }
  600. // Step in Z axis
  601. counter_z.lo += current_block->steps_z.lo;
  602. if (counter_z.lo > 0) {
  603. STEP_NC_HI(Z_AXIS);
  604. counter_z.lo -= current_block->step_event_count.lo;
  605. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  606. STEP_NC_LO(Z_AXIS);
  607. }
  608. // Step in E axis
  609. counter_e.lo += current_block->steps_e.lo;
  610. if (counter_e.lo > 0) {
  611. #ifndef LIN_ADVANCE
  612. STEP_NC_HI(E_AXIS);
  613. #endif /* LIN_ADVANCE */
  614. counter_e.lo -= current_block->step_event_count.lo;
  615. count_position[E_AXIS] += count_direction[E_AXIS];
  616. #ifdef LIN_ADVANCE
  617. e_steps += count_direction[E_AXIS];
  618. #else
  619. #ifdef FILAMENT_SENSOR
  620. fsensor_counter += count_direction[E_AXIS];
  621. #endif //FILAMENT_SENSOR
  622. STEP_NC_LO(E_AXIS);
  623. #endif
  624. }
  625. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  626. break;
  627. }
  628. }
  629. FORCE_INLINE void stepper_tick_highres()
  630. {
  631. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  632. MSerial.checkRx(); // Check for serial chars.
  633. // Step in X axis
  634. counter_x.wide += current_block->steps_x.wide;
  635. if (counter_x.wide > 0) {
  636. STEP_NC_HI(X_AXIS);
  637. #ifdef DEBUG_XSTEP_DUP_PIN
  638. STEP_NC_HI(X_DUP_AXIS);
  639. #endif //DEBUG_XSTEP_DUP_PIN
  640. counter_x.wide -= current_block->step_event_count.wide;
  641. count_position[X_AXIS]+=count_direction[X_AXIS];
  642. STEP_NC_LO(X_AXIS);
  643. #ifdef DEBUG_XSTEP_DUP_PIN
  644. STEP_NC_LO(X_DUP_AXIS);
  645. #endif //DEBUG_XSTEP_DUP_PIN
  646. }
  647. // Step in Y axis
  648. counter_y.wide += current_block->steps_y.wide;
  649. if (counter_y.wide > 0) {
  650. STEP_NC_HI(Y_AXIS);
  651. #ifdef DEBUG_YSTEP_DUP_PIN
  652. STEP_NC_HI(Y_DUP_AXIS);
  653. #endif //DEBUG_YSTEP_DUP_PIN
  654. counter_y.wide -= current_block->step_event_count.wide;
  655. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  656. STEP_NC_LO(Y_AXIS);
  657. #ifdef DEBUG_YSTEP_DUP_PIN
  658. STEP_NC_LO(Y_DUP_AXIS);
  659. #endif //DEBUG_YSTEP_DUP_PIN
  660. }
  661. // Step in Z axis
  662. counter_z.wide += current_block->steps_z.wide;
  663. if (counter_z.wide > 0) {
  664. STEP_NC_HI(Z_AXIS);
  665. counter_z.wide -= current_block->step_event_count.wide;
  666. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  667. STEP_NC_LO(Z_AXIS);
  668. }
  669. // Step in E axis
  670. counter_e.wide += current_block->steps_e.wide;
  671. if (counter_e.wide > 0) {
  672. #ifndef LIN_ADVANCE
  673. STEP_NC_HI(E_AXIS);
  674. #endif /* LIN_ADVANCE */
  675. counter_e.wide -= current_block->step_event_count.wide;
  676. count_position[E_AXIS]+=count_direction[E_AXIS];
  677. #ifdef LIN_ADVANCE
  678. e_steps += count_direction[E_AXIS];
  679. #else
  680. #ifdef FILAMENT_SENSOR
  681. fsensor_counter += count_direction[E_AXIS];
  682. #endif //FILAMENT_SENSOR
  683. STEP_NC_LO(E_AXIS);
  684. #endif
  685. }
  686. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  687. break;
  688. }
  689. }
  690. #ifdef LIN_ADVANCE
  691. // @wavexx: fast uint16_t division for small dividends<5
  692. // q/3 based on "Hacker's delight" formula
  693. FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
  694. {
  695. if(d != 3) return q >> (d / 2);
  696. else return ((uint32_t)0xAAAB * q) >> 17;
  697. }
  698. FORCE_INLINE void advance_spread(uint16_t timer)
  699. {
  700. eISR_Err += timer;
  701. uint8_t ticks = 0;
  702. while(eISR_Err >= current_block->advance_rate)
  703. {
  704. ++ticks;
  705. eISR_Err -= current_block->advance_rate;
  706. }
  707. if(!ticks)
  708. {
  709. eISR_Rate = timer;
  710. nextAdvanceISR = timer;
  711. return;
  712. }
  713. if (ticks <= 3)
  714. eISR_Rate = fastdiv(timer, ticks + 1);
  715. else
  716. {
  717. // >4 ticks are still possible on slow moves
  718. eISR_Rate = timer / (ticks + 1);
  719. }
  720. nextAdvanceISR = eISR_Rate;
  721. }
  722. #endif
  723. FORCE_INLINE void isr() {
  724. //WRITE_NC(LOGIC_ANALYZER_CH0, true);
  725. //if (UVLO) uvlo();
  726. // If there is no current block, attempt to pop one from the buffer
  727. if (current_block == NULL)
  728. stepper_next_block();
  729. if (current_block != NULL)
  730. {
  731. stepper_check_endstops();
  732. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  733. stepper_tick_lowres();
  734. else
  735. stepper_tick_highres();
  736. #ifdef LIN_ADVANCE
  737. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  738. uint8_t la_state = 0;
  739. #endif
  740. // Calculate new timer value
  741. // 13.38-14.63us for steady state,
  742. // 25.12us for acceleration / deceleration.
  743. {
  744. //WRITE_NC(LOGIC_ANALYZER_CH1, true);
  745. if (step_events_completed.wide <= current_block->accelerate_until) {
  746. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  747. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  748. acc_step_rate += uint16_t(current_block->initial_rate);
  749. // upper limit
  750. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  751. acc_step_rate = current_block->nominal_rate;
  752. // step_rate to timer interval
  753. uint16_t timer = calc_timer(acc_step_rate, step_loops);
  754. _NEXT_ISR(timer);
  755. acceleration_time += timer;
  756. #ifdef LIN_ADVANCE
  757. if (current_block->use_advance_lead) {
  758. if (step_events_completed.wide <= (unsigned long int)step_loops) {
  759. la_state = ADV_INIT | ADV_ACC_VARY;
  760. if (e_extruding && current_adv_steps > target_adv_steps)
  761. target_adv_steps = current_adv_steps;
  762. }
  763. }
  764. #endif
  765. }
  766. else if (step_events_completed.wide > current_block->decelerate_after) {
  767. uint16_t step_rate;
  768. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  769. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  770. step_rate = uint16_t(current_block->final_rate);
  771. }
  772. else {
  773. step_rate = acc_step_rate - step_rate; // Decelerate from acceleration end point.
  774. // lower limit
  775. if (step_rate < current_block->final_rate)
  776. step_rate = uint16_t(current_block->final_rate);
  777. }
  778. // Step_rate to timer interval.
  779. uint16_t timer = calc_timer(step_rate, step_loops);
  780. _NEXT_ISR(timer);
  781. deceleration_time += timer;
  782. #ifdef LIN_ADVANCE
  783. if (current_block->use_advance_lead) {
  784. if (step_events_completed.wide <= current_block->decelerate_after + step_loops) {
  785. target_adv_steps = current_block->final_adv_steps;
  786. la_state = ADV_INIT | ADV_ACC_VARY;
  787. if (e_extruding && current_adv_steps < target_adv_steps)
  788. target_adv_steps = current_adv_steps;
  789. }
  790. }
  791. #endif
  792. }
  793. else {
  794. if (! step_loops_nominal) {
  795. // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
  796. // the initial interrupt blocking.
  797. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
  798. step_loops_nominal = step_loops;
  799. #ifdef LIN_ADVANCE
  800. if(current_block->use_advance_lead) {
  801. // Due to E-jerk, there can be discontinuities in pressure state where an
  802. // acceleration or deceleration can be skipped or joined with the previous block.
  803. // If LA was not previously active, re-check the pressure level
  804. la_state = ADV_INIT;
  805. if (e_extruding)
  806. target_adv_steps = current_adv_steps;
  807. }
  808. #endif
  809. }
  810. _NEXT_ISR(OCR1A_nominal);
  811. }
  812. //WRITE_NC(LOGIC_ANALYZER_CH1, false);
  813. }
  814. #ifdef LIN_ADVANCE
  815. // avoid multiple instances or function calls to advance_spread
  816. if (la_state & ADV_INIT) {
  817. LA_phase = -1;
  818. if (current_adv_steps == target_adv_steps) {
  819. // nothing to be done in this phase, cancel any pending eisr
  820. la_state = 0;
  821. nextAdvanceISR = ADV_NEVER;
  822. }
  823. else {
  824. // reset error and iterations per loop for this phase
  825. eISR_Err = current_block->advance_rate;
  826. e_step_loops = current_block->advance_step_loops;
  827. if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) {
  828. // LA could reverse the direction of extrusion in this phase
  829. eISR_Err += current_block->advance_rate;
  830. LA_phase = 0;
  831. }
  832. }
  833. }
  834. if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
  835. // update timers & phase for the next iteration
  836. advance_spread(main_Rate);
  837. if (LA_phase >= 0) {
  838. if (step_loops == e_step_loops)
  839. LA_phase = (current_block->advance_rate < main_Rate);
  840. else {
  841. // avoid overflow through division. warning: we need to _guarantee_ step_loops
  842. // and e_step_loops are <= 4 due to fastdiv's limit
  843. auto adv_rate_n = fastdiv(current_block->advance_rate, step_loops);
  844. auto main_rate_n = fastdiv(main_Rate, e_step_loops);
  845. LA_phase = (adv_rate_n < main_rate_n);
  846. }
  847. }
  848. }
  849. // Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
  850. // entire isr, making this spot a much better choice than checking during esteps
  851. MSerial.checkRx();
  852. #endif
  853. // If current block is finished, reset pointer
  854. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  855. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  856. fsensor_st_block_chunk(fsensor_counter);
  857. fsensor_counter = 0;
  858. #endif //FILAMENT_SENSOR
  859. current_block = NULL;
  860. plan_discard_current_block();
  861. }
  862. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  863. else if ((abs(fsensor_counter) >= fsensor_chunk_len))
  864. {
  865. fsensor_st_block_chunk(fsensor_counter);
  866. fsensor_counter = 0;
  867. }
  868. #endif //FILAMENT_SENSOR
  869. }
  870. #ifdef TMC2130
  871. tmc2130_st_isr();
  872. #endif //TMC2130
  873. //WRITE_NC(LOGIC_ANALYZER_CH0, false);
  874. }
  875. #ifdef LIN_ADVANCE
  876. // Timer interrupt for E. e_steps is set in the main routine.
  877. FORCE_INLINE void advance_isr() {
  878. if (current_adv_steps > target_adv_steps) {
  879. // decompression
  880. if (e_step_loops != 1) {
  881. uint16_t d_steps = current_adv_steps - target_adv_steps;
  882. if (d_steps < e_step_loops)
  883. e_step_loops = d_steps;
  884. }
  885. e_steps -= e_step_loops;
  886. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  887. current_adv_steps -= e_step_loops;
  888. }
  889. else if (current_adv_steps < target_adv_steps) {
  890. // compression
  891. if (e_step_loops != 1) {
  892. uint16_t d_steps = target_adv_steps - current_adv_steps;
  893. if (d_steps < e_step_loops)
  894. e_step_loops = d_steps;
  895. }
  896. e_steps += e_step_loops;
  897. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  898. current_adv_steps += e_step_loops;
  899. }
  900. if (current_adv_steps == target_adv_steps) {
  901. // advance steps completed
  902. nextAdvanceISR = ADV_NEVER;
  903. }
  904. else {
  905. // schedule another tick
  906. nextAdvanceISR = eISR_Rate;
  907. }
  908. }
  909. FORCE_INLINE void advance_isr_scheduler() {
  910. // Integrate the final timer value, accounting for scheduling adjustments
  911. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  912. {
  913. if(nextAdvanceISR > OCR1A)
  914. nextAdvanceISR -= OCR1A;
  915. else
  916. nextAdvanceISR = 0;
  917. }
  918. if(nextMainISR > OCR1A)
  919. nextMainISR -= OCR1A;
  920. else
  921. nextMainISR = 0;
  922. // Run main stepping ISR if flagged
  923. if (!nextMainISR)
  924. {
  925. #ifdef LA_DEBUG_LOGIC
  926. WRITE_NC(LOGIC_ANALYZER_CH0, true);
  927. #endif
  928. isr();
  929. #ifdef LA_DEBUG_LOGIC
  930. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  931. #endif
  932. }
  933. // Run the next advance isr if triggered
  934. bool eisr = !nextAdvanceISR;
  935. if (eisr)
  936. {
  937. #ifdef LA_DEBUG_LOGIC
  938. WRITE_NC(LOGIC_ANALYZER_CH1, true);
  939. #endif
  940. advance_isr();
  941. #ifdef LA_DEBUG_LOGIC
  942. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  943. #endif
  944. }
  945. // Tick E steps if any
  946. if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
  947. uint8_t max_ticks = (eisr? e_step_loops: step_loops);
  948. max_ticks = min(abs(e_steps), max_ticks);
  949. bool rev = (e_steps < 0);
  950. do
  951. {
  952. STEP_NC_HI(E_AXIS);
  953. e_steps += (rev? 1: -1);
  954. STEP_NC_LO(E_AXIS);
  955. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  956. fsensor_counter += (rev? -1: 1);
  957. #endif
  958. }
  959. while(--max_ticks);
  960. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  961. if (abs(fsensor_counter) >= fsensor_chunk_len)
  962. {
  963. fsensor_st_block_chunk(fsensor_counter);
  964. fsensor_counter = 0;
  965. }
  966. #endif
  967. }
  968. // Schedule the next closest tick, ignoring advance if scheduled too
  969. // soon in order to avoid skewing the regular stepper acceleration
  970. if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + 40) < nextMainISR)
  971. OCR1A = nextAdvanceISR;
  972. else
  973. OCR1A = nextMainISR;
  974. }
  975. #endif // LIN_ADVANCE
  976. void st_init()
  977. {
  978. #ifdef TMC2130
  979. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  980. #endif //TMC2130
  981. st_current_init(); //Initialize Digipot Motor Current
  982. microstep_init(); //Initialize Microstepping Pins
  983. //Initialize Dir Pins
  984. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  985. SET_OUTPUT(X_DIR_PIN);
  986. #endif
  987. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  988. SET_OUTPUT(X2_DIR_PIN);
  989. #endif
  990. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  991. SET_OUTPUT(Y_DIR_PIN);
  992. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  993. SET_OUTPUT(Y2_DIR_PIN);
  994. #endif
  995. #endif
  996. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  997. SET_OUTPUT(Z_DIR_PIN);
  998. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  999. SET_OUTPUT(Z2_DIR_PIN);
  1000. #endif
  1001. #endif
  1002. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  1003. SET_OUTPUT(E0_DIR_PIN);
  1004. #endif
  1005. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  1006. SET_OUTPUT(E1_DIR_PIN);
  1007. #endif
  1008. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  1009. SET_OUTPUT(E2_DIR_PIN);
  1010. #endif
  1011. //Initialize Enable Pins - steppers default to disabled.
  1012. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  1013. SET_OUTPUT(X_ENABLE_PIN);
  1014. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  1015. #endif
  1016. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  1017. SET_OUTPUT(X2_ENABLE_PIN);
  1018. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  1019. #endif
  1020. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  1021. SET_OUTPUT(Y_ENABLE_PIN);
  1022. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  1023. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  1024. SET_OUTPUT(Y2_ENABLE_PIN);
  1025. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  1026. #endif
  1027. #endif
  1028. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  1029. SET_OUTPUT(Z_ENABLE_PIN);
  1030. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  1031. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  1032. SET_OUTPUT(Z2_ENABLE_PIN);
  1033. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  1034. #endif
  1035. #endif
  1036. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  1037. SET_OUTPUT(E0_ENABLE_PIN);
  1038. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  1039. #endif
  1040. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  1041. SET_OUTPUT(E1_ENABLE_PIN);
  1042. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  1043. #endif
  1044. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  1045. SET_OUTPUT(E2_ENABLE_PIN);
  1046. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  1047. #endif
  1048. //endstops and pullups
  1049. #ifdef TMC2130_SG_HOMING
  1050. SET_INPUT(X_TMC2130_DIAG);
  1051. WRITE(X_TMC2130_DIAG,HIGH);
  1052. SET_INPUT(Y_TMC2130_DIAG);
  1053. WRITE(Y_TMC2130_DIAG,HIGH);
  1054. SET_INPUT(Z_TMC2130_DIAG);
  1055. WRITE(Z_TMC2130_DIAG,HIGH);
  1056. SET_INPUT(E0_TMC2130_DIAG);
  1057. WRITE(E0_TMC2130_DIAG,HIGH);
  1058. #endif
  1059. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1060. SET_INPUT(X_MIN_PIN);
  1061. #ifdef ENDSTOPPULLUP_XMIN
  1062. WRITE(X_MIN_PIN,HIGH);
  1063. #endif
  1064. #endif
  1065. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1066. SET_INPUT(Y_MIN_PIN);
  1067. #ifdef ENDSTOPPULLUP_YMIN
  1068. WRITE(Y_MIN_PIN,HIGH);
  1069. #endif
  1070. #endif
  1071. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1072. SET_INPUT(Z_MIN_PIN);
  1073. #ifdef ENDSTOPPULLUP_ZMIN
  1074. WRITE(Z_MIN_PIN,HIGH);
  1075. #endif
  1076. #endif
  1077. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1078. SET_INPUT(X_MAX_PIN);
  1079. #ifdef ENDSTOPPULLUP_XMAX
  1080. WRITE(X_MAX_PIN,HIGH);
  1081. #endif
  1082. #endif
  1083. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1084. SET_INPUT(Y_MAX_PIN);
  1085. #ifdef ENDSTOPPULLUP_YMAX
  1086. WRITE(Y_MAX_PIN,HIGH);
  1087. #endif
  1088. #endif
  1089. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1090. SET_INPUT(Z_MAX_PIN);
  1091. #ifdef ENDSTOPPULLUP_ZMAX
  1092. WRITE(Z_MAX_PIN,HIGH);
  1093. #endif
  1094. #endif
  1095. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1096. SET_INPUT(TACH_0);
  1097. #ifdef TACH0PULLUP
  1098. WRITE(TACH_0, HIGH);
  1099. #endif
  1100. #endif
  1101. //Initialize Step Pins
  1102. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  1103. SET_OUTPUT(X_STEP_PIN);
  1104. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  1105. #ifdef DEBUG_XSTEP_DUP_PIN
  1106. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  1107. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1108. #endif //DEBUG_XSTEP_DUP_PIN
  1109. disable_x();
  1110. #endif
  1111. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  1112. SET_OUTPUT(X2_STEP_PIN);
  1113. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  1114. disable_x();
  1115. #endif
  1116. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  1117. SET_OUTPUT(Y_STEP_PIN);
  1118. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  1119. #ifdef DEBUG_YSTEP_DUP_PIN
  1120. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  1121. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1122. #endif //DEBUG_YSTEP_DUP_PIN
  1123. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  1124. SET_OUTPUT(Y2_STEP_PIN);
  1125. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  1126. #endif
  1127. disable_y();
  1128. #endif
  1129. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  1130. SET_OUTPUT(Z_STEP_PIN);
  1131. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  1132. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  1133. SET_OUTPUT(Z2_STEP_PIN);
  1134. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  1135. #endif
  1136. #ifdef PSU_Delta
  1137. init_force_z();
  1138. #endif // PSU_Delta
  1139. disable_z();
  1140. #endif
  1141. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  1142. SET_OUTPUT(E0_STEP_PIN);
  1143. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  1144. disable_e0();
  1145. #endif
  1146. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1147. SET_OUTPUT(E1_STEP_PIN);
  1148. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1149. disable_e1();
  1150. #endif
  1151. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1152. SET_OUTPUT(E2_STEP_PIN);
  1153. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1154. disable_e2();
  1155. #endif
  1156. // waveform generation = 0100 = CTC
  1157. TCCR1B &= ~(1<<WGM13);
  1158. TCCR1B |= (1<<WGM12);
  1159. TCCR1A &= ~(1<<WGM11);
  1160. TCCR1A &= ~(1<<WGM10);
  1161. // output mode = 00 (disconnected)
  1162. TCCR1A &= ~(3<<COM1A0);
  1163. TCCR1A &= ~(3<<COM1B0);
  1164. // Set the timer pre-scaler
  1165. // Generally we use a divider of 8, resulting in a 2MHz timer
  1166. // frequency on a 16MHz MCU. If you are going to change this, be
  1167. // sure to regenerate speed_lookuptable.h with
  1168. // create_speed_lookuptable.py
  1169. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1170. // Plan the first interrupt after 8ms from now.
  1171. OCR1A = 0x4000;
  1172. TCNT1 = 0;
  1173. #ifdef LIN_ADVANCE
  1174. #ifdef LA_DEBUG_LOGIC
  1175. LOGIC_ANALYZER_CH0_ENABLE;
  1176. LOGIC_ANALYZER_CH1_ENABLE;
  1177. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  1178. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  1179. #endif
  1180. // Initialize state for the linear advance scheduler
  1181. nextMainISR = 0;
  1182. nextAdvanceISR = ADV_NEVER;
  1183. main_Rate = ADV_NEVER;
  1184. current_adv_steps = 0;
  1185. #endif
  1186. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1187. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1188. sei();
  1189. }
  1190. void st_reset_timer()
  1191. {
  1192. // Clear a possible pending interrupt on OCR1A overflow.
  1193. TIFR1 |= 1 << OCF1A;
  1194. // Reset the counter.
  1195. TCNT1 = 0;
  1196. // Wake up after 1ms from now.
  1197. OCR1A = 2000;
  1198. #ifdef LIN_ADVANCE
  1199. nextMainISR = 0;
  1200. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  1201. nextAdvanceISR = 0;
  1202. #endif
  1203. }
  1204. // Block until all buffered steps are executed
  1205. void st_synchronize()
  1206. {
  1207. while(blocks_queued())
  1208. {
  1209. #ifdef TMC2130
  1210. manage_heater();
  1211. // Vojtech: Don't disable motors inside the planner!
  1212. if (!tmc2130_update_sg())
  1213. {
  1214. manage_inactivity(true);
  1215. lcd_update(0);
  1216. }
  1217. #else //TMC2130
  1218. manage_heater();
  1219. // Vojtech: Don't disable motors inside the planner!
  1220. manage_inactivity(true);
  1221. lcd_update(0);
  1222. #endif //TMC2130
  1223. }
  1224. }
  1225. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1226. {
  1227. CRITICAL_SECTION_START;
  1228. // Copy 4x4B.
  1229. // This block locks the interrupts globally for 4.56 us,
  1230. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1231. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1232. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1233. count_position[X_AXIS] = x;
  1234. count_position[Y_AXIS] = y;
  1235. count_position[Z_AXIS] = z;
  1236. count_position[E_AXIS] = e;
  1237. CRITICAL_SECTION_END;
  1238. }
  1239. void st_set_e_position(const long &e)
  1240. {
  1241. CRITICAL_SECTION_START;
  1242. count_position[E_AXIS] = e;
  1243. CRITICAL_SECTION_END;
  1244. }
  1245. long st_get_position(uint8_t axis)
  1246. {
  1247. long count_pos;
  1248. CRITICAL_SECTION_START;
  1249. count_pos = count_position[axis];
  1250. CRITICAL_SECTION_END;
  1251. return count_pos;
  1252. }
  1253. void st_get_position_xy(long &x, long &y)
  1254. {
  1255. CRITICAL_SECTION_START;
  1256. x = count_position[X_AXIS];
  1257. y = count_position[Y_AXIS];
  1258. CRITICAL_SECTION_END;
  1259. }
  1260. float st_get_position_mm(uint8_t axis)
  1261. {
  1262. float steper_position_in_steps = st_get_position(axis);
  1263. return steper_position_in_steps / cs.axis_steps_per_unit[axis];
  1264. }
  1265. void quickStop()
  1266. {
  1267. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1268. while (blocks_queued()) plan_discard_current_block();
  1269. current_block = NULL;
  1270. #ifdef LIN_ADVANCE
  1271. nextAdvanceISR = ADV_NEVER;
  1272. current_adv_steps = 0;
  1273. #endif
  1274. st_reset_timer();
  1275. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1276. }
  1277. #ifdef BABYSTEPPING
  1278. void babystep(const uint8_t axis,const bool direction)
  1279. {
  1280. // MUST ONLY BE CALLED BY A ISR as stepper pins are manipulated directly.
  1281. // note: when switching direction no delay is inserted at the end when the
  1282. // original is restored. We assume enough time passes as the function
  1283. // returns and the stepper is manipulated again (to avoid dead times)
  1284. switch(axis)
  1285. {
  1286. case X_AXIS:
  1287. {
  1288. enable_x();
  1289. uint8_t old_x_dir_pin = READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1290. uint8_t new_x_dir_pin = (INVERT_X_DIR)^direction;
  1291. //setup new step
  1292. if (new_x_dir_pin != old_x_dir_pin) {
  1293. WRITE_NC(X_DIR_PIN, new_x_dir_pin);
  1294. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1295. }
  1296. //perform step
  1297. STEP_NC_HI(X_AXIS);
  1298. #ifdef DEBUG_XSTEP_DUP_PIN
  1299. STEP_NC_HI(X_DUP_AXIS);
  1300. #endif
  1301. STEPPER_MINIMUM_DELAY;
  1302. STEP_NC_LO(X_AXIS);
  1303. #ifdef DEBUG_XSTEP_DUP_PIN
  1304. STEP_NC_LO(X_DUP_AXIS);
  1305. #endif
  1306. //get old pin state back.
  1307. WRITE_NC(X_DIR_PIN, old_x_dir_pin);
  1308. }
  1309. break;
  1310. case Y_AXIS:
  1311. {
  1312. enable_y();
  1313. uint8_t old_y_dir_pin = READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1314. uint8_t new_y_dir_pin = (INVERT_Y_DIR)^direction;
  1315. //setup new step
  1316. if (new_y_dir_pin != old_y_dir_pin) {
  1317. WRITE_NC(Y_DIR_PIN, new_y_dir_pin);
  1318. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1319. }
  1320. //perform step
  1321. STEP_NC_HI(Y_AXIS);
  1322. #ifdef DEBUG_YSTEP_DUP_PIN
  1323. STEP_NC_HI(Y_DUP_AXIS);
  1324. #endif
  1325. STEPPER_MINIMUM_DELAY;
  1326. STEP_NC_LO(Y_AXIS);
  1327. #ifdef DEBUG_YSTEP_DUP_PIN
  1328. STEP_NC_LO(Y_DUP_AXIS);
  1329. #endif
  1330. //get old pin state back.
  1331. WRITE_NC(Y_DIR_PIN, old_y_dir_pin);
  1332. }
  1333. break;
  1334. case Z_AXIS:
  1335. {
  1336. enable_z();
  1337. uint8_t old_z_dir_pin = READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1338. uint8_t new_z_dir_pin = (INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z;
  1339. //setup new step
  1340. if (new_z_dir_pin != old_z_dir_pin) {
  1341. WRITE_NC(Z_DIR_PIN, new_z_dir_pin);
  1342. #ifdef Z_DUAL_STEPPER_DRIVERS
  1343. WRITE_NC(Z2_DIR_PIN, new_z_dir_pin);
  1344. #endif
  1345. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1346. }
  1347. //perform step
  1348. STEP_NC_HI(Z_AXIS);
  1349. #ifdef Z_DUAL_STEPPER_DRIVERS
  1350. STEP_NC_HI(Z2_AXIS);
  1351. #endif
  1352. STEPPER_MINIMUM_DELAY;
  1353. STEP_NC_LO(Z_AXIS);
  1354. #ifdef Z_DUAL_STEPPER_DRIVERS
  1355. STEP_NC_LO(Z2_AXIS);
  1356. #endif
  1357. //get old pin state back.
  1358. if (new_z_dir_pin != old_z_dir_pin) {
  1359. WRITE_NC(Z_DIR_PIN, old_z_dir_pin);
  1360. #ifdef Z_DUAL_STEPPER_DRIVERS
  1361. WRITE_NC(Z2_DIR_PIN, old_z_dir_pin);
  1362. #endif
  1363. }
  1364. }
  1365. break;
  1366. default: break;
  1367. }
  1368. }
  1369. #endif //BABYSTEPPING
  1370. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1371. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1372. {
  1373. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1374. SPI.transfer(address); // send in the address and value via SPI:
  1375. SPI.transfer(value);
  1376. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1377. //_delay(10);
  1378. }
  1379. #endif
  1380. void st_current_init() //Initialize Digipot Motor Current
  1381. {
  1382. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1383. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1384. SilentModeMenu = SilentMode;
  1385. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1386. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1387. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1388. if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
  1389. motor_current_setting[0] = motor_current_setting_loud[0];
  1390. motor_current_setting[1] = motor_current_setting_loud[1];
  1391. motor_current_setting[2] = motor_current_setting_loud[2];
  1392. }else{
  1393. motor_current_setting[0] = motor_current_setting_silent[0];
  1394. motor_current_setting[1] = motor_current_setting_silent[1];
  1395. motor_current_setting[2] = motor_current_setting_silent[2];
  1396. }
  1397. st_current_set(0, motor_current_setting[0]);
  1398. st_current_set(1, motor_current_setting[1]);
  1399. st_current_set(2, motor_current_setting[2]);
  1400. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1401. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1402. #endif
  1403. }
  1404. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1405. void st_current_set(uint8_t driver, int current)
  1406. {
  1407. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1408. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1409. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1410. }
  1411. #else //MOTOR_CURRENT_PWM_XY_PIN
  1412. void st_current_set(uint8_t, int ){}
  1413. #endif //MOTOR_CURRENT_PWM_XY_PIN
  1414. void microstep_init()
  1415. {
  1416. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1417. SET_OUTPUT(E1_MS1_PIN);
  1418. SET_OUTPUT(E1_MS2_PIN);
  1419. #endif
  1420. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1421. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1422. SET_OUTPUT(X_MS1_PIN);
  1423. SET_OUTPUT(X_MS2_PIN);
  1424. SET_OUTPUT(Y_MS1_PIN);
  1425. SET_OUTPUT(Y_MS2_PIN);
  1426. SET_OUTPUT(Z_MS1_PIN);
  1427. SET_OUTPUT(Z_MS2_PIN);
  1428. SET_OUTPUT(E0_MS1_PIN);
  1429. SET_OUTPUT(E0_MS2_PIN);
  1430. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1431. #endif
  1432. }
  1433. #ifndef TMC2130
  1434. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1435. {
  1436. if(ms1 > -1) switch(driver)
  1437. {
  1438. case 0: WRITE( X_MS1_PIN,ms1); break;
  1439. case 1: WRITE( Y_MS1_PIN,ms1); break;
  1440. case 2: WRITE( Z_MS1_PIN,ms1); break;
  1441. case 3: WRITE(E0_MS1_PIN,ms1); break;
  1442. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1443. case 4: WRITE(E1_MS1_PIN,ms1); break;
  1444. #endif
  1445. }
  1446. if(ms2 > -1) switch(driver)
  1447. {
  1448. case 0: WRITE( X_MS2_PIN,ms2); break;
  1449. case 1: WRITE( Y_MS2_PIN,ms2); break;
  1450. case 2: WRITE( Z_MS2_PIN,ms2); break;
  1451. case 3: WRITE(E0_MS2_PIN,ms2); break;
  1452. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1453. case 4: WRITE(E1_MS2_PIN,ms2); break;
  1454. #endif
  1455. }
  1456. }
  1457. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1458. {
  1459. switch(stepping_mode)
  1460. {
  1461. case 1: microstep_ms(driver,MICROSTEP1); break;
  1462. case 2: microstep_ms(driver,MICROSTEP2); break;
  1463. case 4: microstep_ms(driver,MICROSTEP4); break;
  1464. case 8: microstep_ms(driver,MICROSTEP8); break;
  1465. case 16: microstep_ms(driver,MICROSTEP16); break;
  1466. }
  1467. }
  1468. void microstep_readings()
  1469. {
  1470. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1471. SERIAL_PROTOCOLPGM("X: ");
  1472. SERIAL_PROTOCOL( READ(X_MS1_PIN));
  1473. SERIAL_PROTOCOLLN( READ(X_MS2_PIN));
  1474. SERIAL_PROTOCOLPGM("Y: ");
  1475. SERIAL_PROTOCOL( READ(Y_MS1_PIN));
  1476. SERIAL_PROTOCOLLN( READ(Y_MS2_PIN));
  1477. SERIAL_PROTOCOLPGM("Z: ");
  1478. SERIAL_PROTOCOL( READ(Z_MS1_PIN));
  1479. SERIAL_PROTOCOLLN( READ(Z_MS2_PIN));
  1480. SERIAL_PROTOCOLPGM("E0: ");
  1481. SERIAL_PROTOCOL( READ(E0_MS1_PIN));
  1482. SERIAL_PROTOCOLLN( READ(E0_MS2_PIN));
  1483. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1484. SERIAL_PROTOCOLPGM("E1: ");
  1485. SERIAL_PROTOCOL( READ(E1_MS1_PIN));
  1486. SERIAL_PROTOCOLLN( READ(E1_MS2_PIN));
  1487. #endif
  1488. }
  1489. #endif //TMC2130
  1490. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  1491. void st_reset_fsensor()
  1492. {
  1493. CRITICAL_SECTION_START;
  1494. fsensor_counter = 0;
  1495. CRITICAL_SECTION_END;
  1496. }
  1497. #endif //FILAMENT_SENSOR