Marlin_main.cpp 298 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. float add_homing[3]={0,0,0};
  321. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  322. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  323. bool axis_known_position[3] = {false, false, false};
  324. float zprobe_zoffset;
  325. // Extruder offset
  326. #if EXTRUDERS > 1
  327. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  328. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  329. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  330. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  331. #endif
  332. };
  333. #endif
  334. uint8_t active_extruder = 0;
  335. int fanSpeed=0;
  336. #ifdef FWRETRACT
  337. bool autoretract_enabled=false;
  338. bool retracted[EXTRUDERS]={false
  339. #if EXTRUDERS > 1
  340. , false
  341. #if EXTRUDERS > 2
  342. , false
  343. #endif
  344. #endif
  345. };
  346. bool retracted_swap[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. float retract_length = RETRACT_LENGTH;
  355. float retract_length_swap = RETRACT_LENGTH_SWAP;
  356. float retract_feedrate = RETRACT_FEEDRATE;
  357. float retract_zlift = RETRACT_ZLIFT;
  358. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  359. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  360. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  361. #endif
  362. #ifdef ULTIPANEL
  363. #ifdef PS_DEFAULT_OFF
  364. bool powersupply = false;
  365. #else
  366. bool powersupply = true;
  367. #endif
  368. #endif
  369. bool cancel_heatup = false ;
  370. #ifdef HOST_KEEPALIVE_FEATURE
  371. int busy_state = NOT_BUSY;
  372. static long prev_busy_signal_ms = -1;
  373. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  374. #else
  375. #define host_keepalive();
  376. #define KEEPALIVE_STATE(n);
  377. #endif
  378. const char errormagic[] PROGMEM = "Error:";
  379. const char echomagic[] PROGMEM = "echo:";
  380. bool no_response = false;
  381. uint8_t important_status;
  382. uint8_t saved_filament_type;
  383. // save/restore printing
  384. bool saved_printing = false;
  385. //===========================================================================
  386. //=============================Private Variables=============================
  387. //===========================================================================
  388. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  389. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  390. static float delta[3] = {0.0, 0.0, 0.0};
  391. // For tracing an arc
  392. static float offset[3] = {0.0, 0.0, 0.0};
  393. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  394. // Determines Absolute or Relative Coordinates.
  395. // Also there is bool axis_relative_modes[] per axis flag.
  396. static bool relative_mode = false;
  397. #ifndef _DISABLE_M42_M226
  398. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  399. #endif //_DISABLE_M42_M226
  400. //static float tt = 0;
  401. //static float bt = 0;
  402. //Inactivity shutdown variables
  403. static unsigned long previous_millis_cmd = 0;
  404. unsigned long max_inactive_time = 0;
  405. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  406. unsigned long starttime=0;
  407. unsigned long stoptime=0;
  408. unsigned long _usb_timer = 0;
  409. static uint8_t tmp_extruder;
  410. bool extruder_under_pressure = true;
  411. bool Stopped=false;
  412. #if NUM_SERVOS > 0
  413. Servo servos[NUM_SERVOS];
  414. #endif
  415. bool CooldownNoWait = true;
  416. bool target_direction;
  417. //Insert variables if CHDK is defined
  418. #ifdef CHDK
  419. unsigned long chdkHigh = 0;
  420. boolean chdkActive = false;
  421. #endif
  422. // save/restore printing
  423. static uint32_t saved_sdpos = 0;
  424. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  425. static float saved_pos[4] = { 0, 0, 0, 0 };
  426. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  427. static float saved_feedrate2 = 0;
  428. static uint8_t saved_active_extruder = 0;
  429. static bool saved_extruder_under_pressure = false;
  430. //===========================================================================
  431. //=============================Routines======================================
  432. //===========================================================================
  433. void get_arc_coordinates();
  434. bool setTargetedHotend(int code);
  435. void serial_echopair_P(const char *s_P, float v)
  436. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  437. void serial_echopair_P(const char *s_P, double v)
  438. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  439. void serial_echopair_P(const char *s_P, unsigned long v)
  440. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  441. #ifdef SDSUPPORT
  442. #include "SdFatUtil.h"
  443. int freeMemory() { return SdFatUtil::FreeRam(); }
  444. #else
  445. extern "C" {
  446. extern unsigned int __bss_end;
  447. extern unsigned int __heap_start;
  448. extern void *__brkval;
  449. int freeMemory() {
  450. int free_memory;
  451. if ((int)__brkval == 0)
  452. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  453. else
  454. free_memory = ((int)&free_memory) - ((int)__brkval);
  455. return free_memory;
  456. }
  457. }
  458. #endif //!SDSUPPORT
  459. void setup_killpin()
  460. {
  461. #if defined(KILL_PIN) && KILL_PIN > -1
  462. SET_INPUT(KILL_PIN);
  463. WRITE(KILL_PIN,HIGH);
  464. #endif
  465. }
  466. // Set home pin
  467. void setup_homepin(void)
  468. {
  469. #if defined(HOME_PIN) && HOME_PIN > -1
  470. SET_INPUT(HOME_PIN);
  471. WRITE(HOME_PIN,HIGH);
  472. #endif
  473. }
  474. void setup_photpin()
  475. {
  476. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  477. SET_OUTPUT(PHOTOGRAPH_PIN);
  478. WRITE(PHOTOGRAPH_PIN, LOW);
  479. #endif
  480. }
  481. void setup_powerhold()
  482. {
  483. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  484. SET_OUTPUT(SUICIDE_PIN);
  485. WRITE(SUICIDE_PIN, HIGH);
  486. #endif
  487. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  488. SET_OUTPUT(PS_ON_PIN);
  489. #if defined(PS_DEFAULT_OFF)
  490. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  491. #else
  492. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  493. #endif
  494. #endif
  495. }
  496. void suicide()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, LOW);
  501. #endif
  502. }
  503. void servo_init()
  504. {
  505. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  506. servos[0].attach(SERVO0_PIN);
  507. #endif
  508. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  509. servos[1].attach(SERVO1_PIN);
  510. #endif
  511. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  512. servos[2].attach(SERVO2_PIN);
  513. #endif
  514. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  515. servos[3].attach(SERVO3_PIN);
  516. #endif
  517. #if (NUM_SERVOS >= 5)
  518. #error "TODO: enter initalisation code for more servos"
  519. #endif
  520. }
  521. static void lcd_language_menu();
  522. void stop_and_save_print_to_ram(float z_move, float e_move);
  523. void restore_print_from_ram_and_continue(float e_move);
  524. bool fans_check_enabled = true;
  525. bool filament_autoload_enabled = true;
  526. #ifdef TMC2130
  527. extern int8_t CrashDetectMenu;
  528. void crashdet_enable()
  529. {
  530. // MYSERIAL.println("crashdet_enable");
  531. tmc2130_sg_stop_on_crash = true;
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  533. CrashDetectMenu = 1;
  534. }
  535. void crashdet_disable()
  536. {
  537. // MYSERIAL.println("crashdet_disable");
  538. tmc2130_sg_stop_on_crash = false;
  539. tmc2130_sg_crash = 0;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  541. CrashDetectMenu = 0;
  542. }
  543. void crashdet_stop_and_save_print()
  544. {
  545. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  546. }
  547. void crashdet_restore_print_and_continue()
  548. {
  549. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  550. // babystep_apply();
  551. }
  552. void crashdet_stop_and_save_print2()
  553. {
  554. cli();
  555. planner_abort_hard(); //abort printing
  556. cmdqueue_reset(); //empty cmdqueue
  557. card.sdprinting = false;
  558. card.closefile();
  559. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  560. st_reset_timer();
  561. sei();
  562. }
  563. void crashdet_detected(uint8_t mask)
  564. {
  565. // printf("CRASH_DETECTED");
  566. /* while (!is_buffer_empty())
  567. {
  568. process_commands();
  569. cmdqueue_pop_front();
  570. }*/
  571. st_synchronize();
  572. lcd_update_enable(true);
  573. lcd_implementation_clear();
  574. lcd_update(2);
  575. if (mask & X_AXIS_MASK)
  576. {
  577. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  578. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  579. }
  580. if (mask & Y_AXIS_MASK)
  581. {
  582. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  583. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  584. }
  585. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  586. bool yesno = true;
  587. #else
  588. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  589. #endif
  590. lcd_update_enable(true);
  591. lcd_update(2);
  592. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  593. if (yesno)
  594. {
  595. enquecommand_P(PSTR("G28 X Y"));
  596. enquecommand_P(PSTR("CRASH_RECOVER"));
  597. }
  598. else
  599. {
  600. enquecommand_P(PSTR("CRASH_CANCEL"));
  601. }
  602. }
  603. void crashdet_recover()
  604. {
  605. crashdet_restore_print_and_continue();
  606. tmc2130_sg_stop_on_crash = true;
  607. }
  608. void crashdet_cancel()
  609. {
  610. card.sdprinting = false;
  611. card.closefile();
  612. tmc2130_sg_stop_on_crash = true;
  613. }
  614. #endif //TMC2130
  615. void failstats_reset_print()
  616. {
  617. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  618. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  619. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  620. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  621. }
  622. #ifdef MESH_BED_LEVELING
  623. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  624. #endif
  625. // Factory reset function
  626. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  627. // Level input parameter sets depth of reset
  628. // Quiet parameter masks all waitings for user interact.
  629. int er_progress = 0;
  630. void factory_reset(char level, bool quiet)
  631. {
  632. lcd_implementation_clear();
  633. int cursor_pos = 0;
  634. switch (level) {
  635. // Level 0: Language reset
  636. case 0:
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  641. break;
  642. //Level 1: Reset statistics
  643. case 1:
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  648. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  653. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  654. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  655. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  656. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  657. lcd_menu_statistics();
  658. break;
  659. // Level 2: Prepare for shipping
  660. case 2:
  661. //lcd_printPGM(PSTR("Factory RESET"));
  662. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  663. // Force language selection at the next boot up.
  664. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  665. // Force the "Follow calibration flow" message at the next boot up.
  666. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  667. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  668. farm_no = 0;
  669. //*** MaR::180501_01
  670. farm_mode = false;
  671. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  672. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. //_delay_ms(2000);
  677. break;
  678. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  679. case 3:
  680. lcd_printPGM(PSTR("Factory RESET"));
  681. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  682. WRITE(BEEPER, HIGH);
  683. _delay_ms(100);
  684. WRITE(BEEPER, LOW);
  685. er_progress = 0;
  686. lcd_print_at_PGM(3, 3, PSTR(" "));
  687. lcd_implementation_print_at(3, 3, er_progress);
  688. // Erase EEPROM
  689. for (int i = 0; i < 4096; i++) {
  690. eeprom_write_byte((uint8_t*)i, 0xFF);
  691. if (i % 41 == 0) {
  692. er_progress++;
  693. lcd_print_at_PGM(3, 3, PSTR(" "));
  694. lcd_implementation_print_at(3, 3, er_progress);
  695. lcd_printPGM(PSTR("%"));
  696. }
  697. }
  698. break;
  699. case 4:
  700. bowden_menu();
  701. break;
  702. default:
  703. break;
  704. }
  705. }
  706. #include "LiquidCrystal_Prusa.h"
  707. extern LiquidCrystal_Prusa lcd;
  708. FILE _lcdout = {0};
  709. int lcd_putchar(char c, FILE *stream)
  710. {
  711. lcd.write(c);
  712. return 0;
  713. }
  714. FILE _uartout = {0};
  715. int uart_putchar(char c, FILE *stream)
  716. {
  717. MYSERIAL.write(c);
  718. return 0;
  719. }
  720. void lcd_splash()
  721. {
  722. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  723. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  724. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  725. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  726. }
  727. void factory_reset()
  728. {
  729. KEEPALIVE_STATE(PAUSED_FOR_USER);
  730. if (!READ(BTN_ENC))
  731. {
  732. _delay_ms(1000);
  733. if (!READ(BTN_ENC))
  734. {
  735. lcd_implementation_clear();
  736. lcd_printPGM(PSTR("Factory RESET"));
  737. SET_OUTPUT(BEEPER);
  738. WRITE(BEEPER, HIGH);
  739. while (!READ(BTN_ENC));
  740. WRITE(BEEPER, LOW);
  741. _delay_ms(2000);
  742. char level = reset_menu();
  743. factory_reset(level, false);
  744. switch (level) {
  745. case 0: _delay_ms(0); break;
  746. case 1: _delay_ms(0); break;
  747. case 2: _delay_ms(0); break;
  748. case 3: _delay_ms(0); break;
  749. }
  750. // _delay_ms(100);
  751. /*
  752. #ifdef MESH_BED_LEVELING
  753. _delay_ms(2000);
  754. if (!READ(BTN_ENC))
  755. {
  756. WRITE(BEEPER, HIGH);
  757. _delay_ms(100);
  758. WRITE(BEEPER, LOW);
  759. _delay_ms(200);
  760. WRITE(BEEPER, HIGH);
  761. _delay_ms(100);
  762. WRITE(BEEPER, LOW);
  763. int _z = 0;
  764. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  765. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  766. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  767. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  768. }
  769. else
  770. {
  771. WRITE(BEEPER, HIGH);
  772. _delay_ms(100);
  773. WRITE(BEEPER, LOW);
  774. }
  775. #endif // mesh */
  776. }
  777. }
  778. else
  779. {
  780. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  781. }
  782. KEEPALIVE_STATE(IN_HANDLER);
  783. }
  784. void show_fw_version_warnings() {
  785. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  786. switch (FW_DEV_VERSION) {
  787. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  788. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  789. case(FW_VERSION_DEVEL):
  790. case(FW_VERSION_DEBUG):
  791. lcd_update_enable(false);
  792. lcd_implementation_clear();
  793. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  794. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  795. #else
  796. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  797. #endif
  798. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  799. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  800. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  801. lcd_wait_for_click();
  802. break;
  803. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  804. }
  805. lcd_update_enable(true);
  806. }
  807. uint8_t check_printer_version()
  808. {
  809. uint8_t version_changed = 0;
  810. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  811. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  812. if (printer_type != PRINTER_TYPE) {
  813. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  814. else version_changed |= 0b10;
  815. }
  816. if (motherboard != MOTHERBOARD) {
  817. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  818. else version_changed |= 0b01;
  819. }
  820. return version_changed;
  821. }
  822. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  823. {
  824. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  825. }
  826. #include "bootapp.h"
  827. #ifdef W25X20CL
  828. // language upgrade from external flash
  829. #define LANGBOOT_BLOCKSIZE 0x1000
  830. #define LANGBOOT_RAMBUFFER 0x0800
  831. void update_sec_lang_from_external_flash()
  832. {
  833. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  834. {
  835. uint8_t lang = boot_reserved >> 4;
  836. uint8_t state = boot_reserved & 0xf;
  837. lang_table_header_t header;
  838. uint32_t src_addr;
  839. if (lang_get_header(lang, &header, &src_addr))
  840. {
  841. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  842. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  843. delay(100);
  844. boot_reserved = (state + 1) | (lang << 4);
  845. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  846. {
  847. cli();
  848. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  849. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  850. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  851. if (state == 0)
  852. {
  853. //TODO - check header integrity
  854. }
  855. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  856. }
  857. else
  858. {
  859. //TODO - check sec lang data integrity
  860. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  861. }
  862. }
  863. }
  864. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  865. }
  866. #ifdef DEBUG_W25X20CL
  867. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  868. {
  869. lang_table_header_t header;
  870. uint8_t count = 0;
  871. uint32_t addr = 0x00000;
  872. while (1)
  873. {
  874. printf_P(_n("LANGTABLE%d:"), count);
  875. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  876. if (header.magic != LANG_MAGIC)
  877. {
  878. printf_P(_n("NG!\n"));
  879. break;
  880. }
  881. printf_P(_n("OK\n"));
  882. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  883. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  884. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  885. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  886. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  887. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  888. addr += header.size;
  889. codes[count] = header.code;
  890. count ++;
  891. }
  892. return count;
  893. }
  894. void list_sec_lang_from_external_flash()
  895. {
  896. uint16_t codes[8];
  897. uint8_t count = lang_xflash_enum_codes(codes);
  898. printf_P(_n("XFlash lang count = %hhd\n"), count);
  899. }
  900. #endif //DEBUG_W25X20CL
  901. #endif //W25X20CL
  902. // "Setup" function is called by the Arduino framework on startup.
  903. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  904. // are initialized by the main() routine provided by the Arduino framework.
  905. void setup()
  906. {
  907. lcd_init();
  908. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  909. #ifdef NEW_SPI
  910. spi_init();
  911. #endif //NEW_SPI
  912. lcd_splash();
  913. if (w25x20cl_init())
  914. update_sec_lang_from_external_flash();
  915. else
  916. kill(_i("External SPI flash W25X20CL not responding."));
  917. setup_killpin();
  918. setup_powerhold();
  919. //*** MaR::180501_02b
  920. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  921. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  922. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  923. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  924. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  925. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  926. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  927. if (farm_mode)
  928. {
  929. no_response = true; //we need confirmation by recieving PRUSA thx
  930. important_status = 8;
  931. prusa_statistics(8);
  932. selectedSerialPort = 1;
  933. }
  934. MYSERIAL.begin(BAUDRATE);
  935. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  936. stdout = uartout;
  937. SERIAL_PROTOCOLLNPGM("start");
  938. SERIAL_ECHO_START;
  939. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  940. #ifdef DEBUG_SEC_LANG
  941. lang_table_header_t header;
  942. uint32_t src_addr = 0x00000;
  943. if (lang_get_header(3, &header, &src_addr))
  944. {
  945. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  946. #define LT_PRINT_TEST 2
  947. // flash usage
  948. // total p.test
  949. //0 252718 t+c text code
  950. //1 253142 424 170 254
  951. //2 253040 322 164 158
  952. //3 253248 530 135 395
  953. #if (LT_PRINT_TEST==1) //not optimized printf
  954. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  955. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  956. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  957. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  958. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  959. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  960. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  961. #elif (LT_PRINT_TEST==2) //optimized printf
  962. printf_P(
  963. _n(
  964. " _src_addr = 0x%08lx\n"
  965. " _lt_magic = 0x%08lx %S\n"
  966. " _lt_size = 0x%04x (%d)\n"
  967. " _lt_count = 0x%04x (%d)\n"
  968. " _lt_chsum = 0x%04x\n"
  969. " _lt_code = 0x%04x (%c%c)\n"
  970. " _lt_resv1 = 0x%08lx\n"
  971. ),
  972. src_addr,
  973. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  974. header.size, header.size,
  975. header.count, header.count,
  976. header.checksum,
  977. header.code, header.code >> 8, header.code & 0xff,
  978. header.reserved1
  979. );
  980. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  981. MYSERIAL.print(" _src_addr = 0x");
  982. MYSERIAL.println(src_addr, 16);
  983. MYSERIAL.print(" _lt_magic = 0x");
  984. MYSERIAL.print(header.magic, 16);
  985. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  986. MYSERIAL.print(" _lt_size = 0x");
  987. MYSERIAL.print(header.size, 16);
  988. MYSERIAL.print(" (");
  989. MYSERIAL.print(header.size, 10);
  990. MYSERIAL.println(")");
  991. MYSERIAL.print(" _lt_count = 0x");
  992. MYSERIAL.print(header.count, 16);
  993. MYSERIAL.print(" (");
  994. MYSERIAL.print(header.count, 10);
  995. MYSERIAL.println(")");
  996. MYSERIAL.print(" _lt_chsum = 0x");
  997. MYSERIAL.println(header.checksum, 16);
  998. MYSERIAL.print(" _lt_code = 0x");
  999. MYSERIAL.print(header.code, 16);
  1000. MYSERIAL.print(" (");
  1001. MYSERIAL.print((char)(header.code >> 8), 0);
  1002. MYSERIAL.print((char)(header.code & 0xff), 0);
  1003. MYSERIAL.println(")");
  1004. MYSERIAL.print(" _lt_resv1 = 0x");
  1005. MYSERIAL.println(header.reserved1, 16);
  1006. #endif //(LT_PRINT_TEST==)
  1007. #undef LT_PRINT_TEST
  1008. #if 0
  1009. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1010. for (uint16_t i = 0; i < 1024; i++)
  1011. {
  1012. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1013. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1014. if ((i % 16) == 15) putchar('\n');
  1015. }
  1016. #endif
  1017. #if 1
  1018. for (uint16_t i = 0; i < 1024*10; i++)
  1019. {
  1020. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1021. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1022. if ((i % 16) == 15) putchar('\n');
  1023. }
  1024. #endif
  1025. }
  1026. else
  1027. printf_P(_n("lang_get_header failed!\n"));
  1028. #if 0
  1029. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1030. for (int i = 0; i < 4096; ++i) {
  1031. int b = eeprom_read_byte((unsigned char*)i);
  1032. if (b != 255) {
  1033. SERIAL_ECHO(i);
  1034. SERIAL_ECHO(":");
  1035. SERIAL_ECHO(b);
  1036. SERIAL_ECHOLN("");
  1037. }
  1038. }
  1039. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1040. #endif
  1041. #endif //DEBUG_SEC_LANG
  1042. // Check startup - does nothing if bootloader sets MCUSR to 0
  1043. byte mcu = MCUSR;
  1044. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1045. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1046. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1047. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1048. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1049. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1050. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1051. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1052. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1053. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1054. MCUSR = 0;
  1055. //SERIAL_ECHORPGM(MSG_MARLIN);
  1056. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1057. #ifdef STRING_VERSION_CONFIG_H
  1058. #ifdef STRING_CONFIG_H_AUTHOR
  1059. SERIAL_ECHO_START;
  1060. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1061. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1062. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1063. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1064. SERIAL_ECHOPGM("Compiled: ");
  1065. SERIAL_ECHOLNPGM(__DATE__);
  1066. #endif
  1067. #endif
  1068. SERIAL_ECHO_START;
  1069. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1070. SERIAL_ECHO(freeMemory());
  1071. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1072. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1073. //lcd_update_enable(false); // why do we need this?? - andre
  1074. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1075. bool previous_settings_retrieved = false;
  1076. uint8_t hw_changed = check_printer_version();
  1077. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1078. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1079. }
  1080. else { //printer version was changed so use default settings
  1081. Config_ResetDefault();
  1082. }
  1083. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1084. tp_init(); // Initialize temperature loop
  1085. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1086. plan_init(); // Initialize planner;
  1087. factory_reset();
  1088. #ifdef TMC2130
  1089. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1090. if (silentMode == 0xff) silentMode = 0;
  1091. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1092. tmc2130_mode = TMC2130_MODE_NORMAL;
  1093. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1094. if (crashdet && !farm_mode)
  1095. {
  1096. crashdet_enable();
  1097. MYSERIAL.println("CrashDetect ENABLED!");
  1098. }
  1099. else
  1100. {
  1101. crashdet_disable();
  1102. MYSERIAL.println("CrashDetect DISABLED");
  1103. }
  1104. #ifdef TMC2130_LINEARITY_CORRECTION
  1105. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1106. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1107. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1108. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1109. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1110. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1111. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1112. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1113. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1114. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1115. #endif //TMC2130_LINEARITY_CORRECTION
  1116. #ifdef TMC2130_VARIABLE_RESOLUTION
  1117. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1118. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1119. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1120. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1121. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1122. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1123. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1124. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1125. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1126. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1127. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1128. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1129. #else //TMC2130_VARIABLE_RESOLUTION
  1130. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1131. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1132. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1133. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1134. #endif //TMC2130_VARIABLE_RESOLUTION
  1135. #endif //TMC2130
  1136. st_init(); // Initialize stepper, this enables interrupts!
  1137. #ifdef TMC2130
  1138. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1139. tmc2130_init();
  1140. #endif //TMC2130
  1141. setup_photpin();
  1142. servo_init();
  1143. // Reset the machine correction matrix.
  1144. // It does not make sense to load the correction matrix until the machine is homed.
  1145. world2machine_reset();
  1146. #ifdef PAT9125
  1147. fsensor_init();
  1148. #endif //PAT9125
  1149. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1150. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1151. #endif
  1152. setup_homepin();
  1153. #ifdef TMC2130
  1154. if (1) {
  1155. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1156. // try to run to zero phase before powering the Z motor.
  1157. // Move in negative direction
  1158. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1159. // Round the current micro-micro steps to micro steps.
  1160. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1161. // Until the phase counter is reset to zero.
  1162. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1163. delay(2);
  1164. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1165. delay(2);
  1166. }
  1167. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1168. }
  1169. #endif //TMC2130
  1170. #if defined(Z_AXIS_ALWAYS_ON)
  1171. enable_z();
  1172. #endif
  1173. //*** MaR::180501_02
  1174. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1175. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1176. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1177. if (farm_no == 0xFFFF) farm_no = 0;
  1178. if (farm_mode)
  1179. {
  1180. prusa_statistics(8);
  1181. }
  1182. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1183. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1184. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1185. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1186. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1187. // where all the EEPROM entries are set to 0x0ff.
  1188. // Once a firmware boots up, it forces at least a language selection, which changes
  1189. // EEPROM_LANG to number lower than 0x0ff.
  1190. // 1) Set a high power mode.
  1191. #ifdef TMC2130
  1192. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1193. tmc2130_mode = TMC2130_MODE_NORMAL;
  1194. #endif //TMC2130
  1195. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1196. }
  1197. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1198. // but this times out if a blocking dialog is shown in setup().
  1199. card.initsd();
  1200. #ifdef DEBUG_SD_SPEED_TEST
  1201. if (card.cardOK)
  1202. {
  1203. uint8_t* buff = (uint8_t*)block_buffer;
  1204. uint32_t block = 0;
  1205. uint32_t sumr = 0;
  1206. uint32_t sumw = 0;
  1207. for (int i = 0; i < 1024; i++)
  1208. {
  1209. uint32_t u = micros();
  1210. bool res = card.card.readBlock(i, buff);
  1211. u = micros() - u;
  1212. if (res)
  1213. {
  1214. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1215. sumr += u;
  1216. u = micros();
  1217. res = card.card.writeBlock(i, buff);
  1218. u = micros() - u;
  1219. if (res)
  1220. {
  1221. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1222. sumw += u;
  1223. }
  1224. else
  1225. {
  1226. printf_P(PSTR("writeBlock %4d error\n"), i);
  1227. break;
  1228. }
  1229. }
  1230. else
  1231. {
  1232. printf_P(PSTR("readBlock %4d error\n"), i);
  1233. break;
  1234. }
  1235. }
  1236. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1237. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1238. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1239. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1240. }
  1241. else
  1242. printf_P(PSTR("Card NG!\n"));
  1243. #endif //DEBUG_SD_SPEED_TEST
  1244. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1245. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1246. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1247. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1248. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1249. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1250. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1251. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1252. #ifdef SNMM
  1253. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1254. int _z = BOWDEN_LENGTH;
  1255. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1256. }
  1257. #endif
  1258. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1259. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1260. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1261. #ifdef DEBUG_W25X20CL
  1262. W25X20CL_SPI_ENTER();
  1263. uint8_t uid[8]; // 64bit unique id
  1264. w25x20cl_rd_uid(uid);
  1265. puts_P(_n("W25X20CL UID="));
  1266. for (uint8_t i = 0; i < 8; i ++)
  1267. printf_P(PSTR("%02hhx"), uid[i]);
  1268. putchar('\n');
  1269. list_sec_lang_from_external_flash();
  1270. #endif //DEBUG_W25X20CL
  1271. lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG));
  1272. #ifdef DEBUG_SEC_LANG
  1273. uint16_t sec_lang_code = lang_get_code(1);
  1274. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1275. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1276. // lang_print_sec_lang(uartout);
  1277. #endif //DEBUG_SEC_LANG
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1279. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1280. temp_cal_active = false;
  1281. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1283. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1284. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1285. int16_t z_shift = 0;
  1286. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1287. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1288. temp_cal_active = false;
  1289. }
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1291. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1292. }
  1293. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1294. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1295. }
  1296. check_babystep(); //checking if Z babystep is in allowed range
  1297. #ifdef UVLO_SUPPORT
  1298. setup_uvlo_interrupt();
  1299. #endif //UVLO_SUPPORT
  1300. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1301. setup_fan_interrupt();
  1302. #endif //DEBUG_DISABLE_FANCHECK
  1303. #ifdef PAT9125
  1304. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1305. fsensor_setup_interrupt();
  1306. #endif //DEBUG_DISABLE_FSENSORCHECK
  1307. #endif //PAT9125
  1308. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1309. #ifndef DEBUG_DISABLE_STARTMSGS
  1310. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1311. show_fw_version_warnings();
  1312. switch (hw_changed) {
  1313. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1314. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1315. case(0b01):
  1316. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1317. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1318. break;
  1319. case(0b10):
  1320. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1321. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1322. break;
  1323. case(0b11):
  1324. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1325. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1326. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1327. break;
  1328. default: break; //no change, show no message
  1329. }
  1330. if (!previous_settings_retrieved) {
  1331. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1332. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1333. }
  1334. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1335. lcd_wizard(0);
  1336. }
  1337. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1338. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1339. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1340. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1341. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1342. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1343. // Show the message.
  1344. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1345. }
  1346. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1347. // Show the message.
  1348. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1349. lcd_update_enable(true);
  1350. }
  1351. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1352. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1353. lcd_update_enable(true);
  1354. }
  1355. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1356. // Show the message.
  1357. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1358. }
  1359. }
  1360. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1361. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1362. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1363. update_current_firmware_version_to_eeprom();
  1364. lcd_selftest();
  1365. }
  1366. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1367. KEEPALIVE_STATE(IN_PROCESS);
  1368. #endif //DEBUG_DISABLE_STARTMSGS
  1369. lcd_update_enable(true);
  1370. lcd_implementation_clear();
  1371. lcd_update(2);
  1372. // Store the currently running firmware into an eeprom,
  1373. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1374. update_current_firmware_version_to_eeprom();
  1375. #ifdef TMC2130
  1376. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1377. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1378. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1379. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1380. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1381. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1382. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1383. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1384. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1385. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1386. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1387. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1388. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1389. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1390. #endif //TMC2130
  1391. #ifdef UVLO_SUPPORT
  1392. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1393. /*
  1394. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1395. else {
  1396. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1397. lcd_update_enable(true);
  1398. lcd_update(2);
  1399. lcd_setstatuspgm(_T(WELCOME_MSG));
  1400. }
  1401. */
  1402. manage_heater(); // Update temperatures
  1403. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1404. MYSERIAL.println("Power panic detected!");
  1405. MYSERIAL.print("Current bed temp:");
  1406. MYSERIAL.println(degBed());
  1407. MYSERIAL.print("Saved bed temp:");
  1408. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1409. #endif
  1410. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1411. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1412. MYSERIAL.println("Automatic recovery!");
  1413. #endif
  1414. recover_print(1);
  1415. }
  1416. else{
  1417. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1418. MYSERIAL.println("Normal recovery!");
  1419. #endif
  1420. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1421. else {
  1422. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1423. lcd_update_enable(true);
  1424. lcd_update(2);
  1425. lcd_setstatuspgm(_T(WELCOME_MSG));
  1426. }
  1427. }
  1428. }
  1429. #endif //UVLO_SUPPORT
  1430. KEEPALIVE_STATE(NOT_BUSY);
  1431. #ifdef WATCHDOG
  1432. wdt_enable(WDTO_4S);
  1433. #endif //WATCHDOG
  1434. }
  1435. #ifdef PAT9125
  1436. void fsensor_init() {
  1437. int pat9125 = pat9125_init();
  1438. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1439. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1440. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1441. if (!pat9125)
  1442. {
  1443. fsensor = 0; //disable sensor
  1444. fsensor_not_responding = true;
  1445. }
  1446. else {
  1447. fsensor_not_responding = false;
  1448. }
  1449. puts_P(PSTR("FSensor "));
  1450. if (fsensor)
  1451. {
  1452. puts_P(PSTR("ENABLED\n"));
  1453. fsensor_enable();
  1454. }
  1455. else
  1456. {
  1457. puts_P(PSTR("DISABLED\n"));
  1458. fsensor_disable();
  1459. }
  1460. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1461. filament_autoload_enabled = false;
  1462. fsensor_disable();
  1463. #endif //DEBUG_DISABLE_FSENSORCHECK
  1464. }
  1465. #endif //PAT9125
  1466. void trace();
  1467. #define CHUNK_SIZE 64 // bytes
  1468. #define SAFETY_MARGIN 1
  1469. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1470. int chunkHead = 0;
  1471. int serial_read_stream() {
  1472. setTargetHotend(0, 0);
  1473. setTargetBed(0);
  1474. lcd_implementation_clear();
  1475. lcd_printPGM(PSTR(" Upload in progress"));
  1476. // first wait for how many bytes we will receive
  1477. uint32_t bytesToReceive;
  1478. // receive the four bytes
  1479. char bytesToReceiveBuffer[4];
  1480. for (int i=0; i<4; i++) {
  1481. int data;
  1482. while ((data = MYSERIAL.read()) == -1) {};
  1483. bytesToReceiveBuffer[i] = data;
  1484. }
  1485. // make it a uint32
  1486. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1487. // we're ready, notify the sender
  1488. MYSERIAL.write('+');
  1489. // lock in the routine
  1490. uint32_t receivedBytes = 0;
  1491. while (prusa_sd_card_upload) {
  1492. int i;
  1493. for (i=0; i<CHUNK_SIZE; i++) {
  1494. int data;
  1495. // check if we're not done
  1496. if (receivedBytes == bytesToReceive) {
  1497. break;
  1498. }
  1499. // read the next byte
  1500. while ((data = MYSERIAL.read()) == -1) {};
  1501. receivedBytes++;
  1502. // save it to the chunk
  1503. chunk[i] = data;
  1504. }
  1505. // write the chunk to SD
  1506. card.write_command_no_newline(&chunk[0]);
  1507. // notify the sender we're ready for more data
  1508. MYSERIAL.write('+');
  1509. // for safety
  1510. manage_heater();
  1511. // check if we're done
  1512. if(receivedBytes == bytesToReceive) {
  1513. trace(); // beep
  1514. card.closefile();
  1515. prusa_sd_card_upload = false;
  1516. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1517. return 0;
  1518. }
  1519. }
  1520. }
  1521. #ifdef HOST_KEEPALIVE_FEATURE
  1522. /**
  1523. * Output a "busy" message at regular intervals
  1524. * while the machine is not accepting commands.
  1525. */
  1526. void host_keepalive() {
  1527. if (farm_mode) return;
  1528. long ms = millis();
  1529. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1530. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1531. switch (busy_state) {
  1532. case IN_HANDLER:
  1533. case IN_PROCESS:
  1534. SERIAL_ECHO_START;
  1535. SERIAL_ECHOLNPGM("busy: processing");
  1536. break;
  1537. case PAUSED_FOR_USER:
  1538. SERIAL_ECHO_START;
  1539. SERIAL_ECHOLNPGM("busy: paused for user");
  1540. break;
  1541. case PAUSED_FOR_INPUT:
  1542. SERIAL_ECHO_START;
  1543. SERIAL_ECHOLNPGM("busy: paused for input");
  1544. break;
  1545. default:
  1546. break;
  1547. }
  1548. }
  1549. prev_busy_signal_ms = ms;
  1550. }
  1551. #endif
  1552. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1553. // Before loop(), the setup() function is called by the main() routine.
  1554. void loop()
  1555. {
  1556. KEEPALIVE_STATE(NOT_BUSY);
  1557. bool stack_integrity = true;
  1558. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1559. {
  1560. is_usb_printing = true;
  1561. usb_printing_counter--;
  1562. _usb_timer = millis();
  1563. }
  1564. if (usb_printing_counter == 0)
  1565. {
  1566. is_usb_printing = false;
  1567. }
  1568. if (prusa_sd_card_upload)
  1569. {
  1570. //we read byte-by byte
  1571. serial_read_stream();
  1572. } else
  1573. {
  1574. get_command();
  1575. #ifdef SDSUPPORT
  1576. card.checkautostart(false);
  1577. #endif
  1578. if(buflen)
  1579. {
  1580. cmdbuffer_front_already_processed = false;
  1581. #ifdef SDSUPPORT
  1582. if(card.saving)
  1583. {
  1584. // Saving a G-code file onto an SD-card is in progress.
  1585. // Saving starts with M28, saving until M29 is seen.
  1586. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1587. card.write_command(CMDBUFFER_CURRENT_STRING);
  1588. if(card.logging)
  1589. process_commands();
  1590. else
  1591. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1592. } else {
  1593. card.closefile();
  1594. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1595. }
  1596. } else {
  1597. process_commands();
  1598. }
  1599. #else
  1600. process_commands();
  1601. #endif //SDSUPPORT
  1602. if (! cmdbuffer_front_already_processed && buflen)
  1603. {
  1604. // ptr points to the start of the block currently being processed.
  1605. // The first character in the block is the block type.
  1606. char *ptr = cmdbuffer + bufindr;
  1607. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1608. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1609. union {
  1610. struct {
  1611. char lo;
  1612. char hi;
  1613. } lohi;
  1614. uint16_t value;
  1615. } sdlen;
  1616. sdlen.value = 0;
  1617. {
  1618. // This block locks the interrupts globally for 3.25 us,
  1619. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1620. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1621. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1622. cli();
  1623. // Reset the command to something, which will be ignored by the power panic routine,
  1624. // so this buffer length will not be counted twice.
  1625. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1626. // Extract the current buffer length.
  1627. sdlen.lohi.lo = *ptr ++;
  1628. sdlen.lohi.hi = *ptr;
  1629. // and pass it to the planner queue.
  1630. planner_add_sd_length(sdlen.value);
  1631. sei();
  1632. }
  1633. }
  1634. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1635. cli();
  1636. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1637. // and one for each command to previous block in the planner queue.
  1638. planner_add_sd_length(1);
  1639. sei();
  1640. }
  1641. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1642. // this block's SD card length will not be counted twice as its command type has been replaced
  1643. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1644. cmdqueue_pop_front();
  1645. }
  1646. host_keepalive();
  1647. }
  1648. }
  1649. //check heater every n milliseconds
  1650. manage_heater();
  1651. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1652. checkHitEndstops();
  1653. lcd_update();
  1654. #ifdef PAT9125
  1655. fsensor_update();
  1656. #endif //PAT9125
  1657. #ifdef TMC2130
  1658. tmc2130_check_overtemp();
  1659. if (tmc2130_sg_crash)
  1660. {
  1661. uint8_t crash = tmc2130_sg_crash;
  1662. tmc2130_sg_crash = 0;
  1663. // crashdet_stop_and_save_print();
  1664. switch (crash)
  1665. {
  1666. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1667. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1668. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1669. }
  1670. }
  1671. #endif //TMC2130
  1672. }
  1673. #define DEFINE_PGM_READ_ANY(type, reader) \
  1674. static inline type pgm_read_any(const type *p) \
  1675. { return pgm_read_##reader##_near(p); }
  1676. DEFINE_PGM_READ_ANY(float, float);
  1677. DEFINE_PGM_READ_ANY(signed char, byte);
  1678. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1679. static const PROGMEM type array##_P[3] = \
  1680. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1681. static inline type array(int axis) \
  1682. { return pgm_read_any(&array##_P[axis]); } \
  1683. type array##_ext(int axis) \
  1684. { return pgm_read_any(&array##_P[axis]); }
  1685. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1686. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1687. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1688. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1689. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1690. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1691. static void axis_is_at_home(int axis) {
  1692. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1693. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1694. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1695. }
  1696. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1697. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1698. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1699. saved_feedrate = feedrate;
  1700. saved_feedmultiply = feedmultiply;
  1701. feedmultiply = 100;
  1702. previous_millis_cmd = millis();
  1703. enable_endstops(enable_endstops_now);
  1704. }
  1705. static void clean_up_after_endstop_move() {
  1706. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1707. enable_endstops(false);
  1708. #endif
  1709. feedrate = saved_feedrate;
  1710. feedmultiply = saved_feedmultiply;
  1711. previous_millis_cmd = millis();
  1712. }
  1713. #ifdef ENABLE_AUTO_BED_LEVELING
  1714. #ifdef AUTO_BED_LEVELING_GRID
  1715. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1716. {
  1717. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1718. planeNormal.debug("planeNormal");
  1719. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1720. //bedLevel.debug("bedLevel");
  1721. //plan_bed_level_matrix.debug("bed level before");
  1722. //vector_3 uncorrected_position = plan_get_position_mm();
  1723. //uncorrected_position.debug("position before");
  1724. vector_3 corrected_position = plan_get_position();
  1725. // corrected_position.debug("position after");
  1726. current_position[X_AXIS] = corrected_position.x;
  1727. current_position[Y_AXIS] = corrected_position.y;
  1728. current_position[Z_AXIS] = corrected_position.z;
  1729. // put the bed at 0 so we don't go below it.
  1730. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. }
  1733. #else // not AUTO_BED_LEVELING_GRID
  1734. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1735. plan_bed_level_matrix.set_to_identity();
  1736. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1737. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1738. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1739. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1740. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1741. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1742. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1743. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1744. vector_3 corrected_position = plan_get_position();
  1745. current_position[X_AXIS] = corrected_position.x;
  1746. current_position[Y_AXIS] = corrected_position.y;
  1747. current_position[Z_AXIS] = corrected_position.z;
  1748. // put the bed at 0 so we don't go below it.
  1749. current_position[Z_AXIS] = zprobe_zoffset;
  1750. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1751. }
  1752. #endif // AUTO_BED_LEVELING_GRID
  1753. static void run_z_probe() {
  1754. plan_bed_level_matrix.set_to_identity();
  1755. feedrate = homing_feedrate[Z_AXIS];
  1756. // move down until you find the bed
  1757. float zPosition = -10;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1759. st_synchronize();
  1760. // we have to let the planner know where we are right now as it is not where we said to go.
  1761. zPosition = st_get_position_mm(Z_AXIS);
  1762. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1763. // move up the retract distance
  1764. zPosition += home_retract_mm(Z_AXIS);
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. // move back down slowly to find bed
  1768. feedrate = homing_feedrate[Z_AXIS]/4;
  1769. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1771. st_synchronize();
  1772. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1773. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. }
  1776. static void do_blocking_move_to(float x, float y, float z) {
  1777. float oldFeedRate = feedrate;
  1778. feedrate = homing_feedrate[Z_AXIS];
  1779. current_position[Z_AXIS] = z;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1781. st_synchronize();
  1782. feedrate = XY_TRAVEL_SPEED;
  1783. current_position[X_AXIS] = x;
  1784. current_position[Y_AXIS] = y;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1786. st_synchronize();
  1787. feedrate = oldFeedRate;
  1788. }
  1789. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1790. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1791. }
  1792. /// Probe bed height at position (x,y), returns the measured z value
  1793. static float probe_pt(float x, float y, float z_before) {
  1794. // move to right place
  1795. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1796. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1797. run_z_probe();
  1798. float measured_z = current_position[Z_AXIS];
  1799. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1800. SERIAL_PROTOCOLPGM(" x: ");
  1801. SERIAL_PROTOCOL(x);
  1802. SERIAL_PROTOCOLPGM(" y: ");
  1803. SERIAL_PROTOCOL(y);
  1804. SERIAL_PROTOCOLPGM(" z: ");
  1805. SERIAL_PROTOCOL(measured_z);
  1806. SERIAL_PROTOCOLPGM("\n");
  1807. return measured_z;
  1808. }
  1809. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1810. #ifdef LIN_ADVANCE
  1811. /**
  1812. * M900: Set and/or Get advance K factor and WH/D ratio
  1813. *
  1814. * K<factor> Set advance K factor
  1815. * R<ratio> Set ratio directly (overrides WH/D)
  1816. * W<width> H<height> D<diam> Set ratio from WH/D
  1817. */
  1818. inline void gcode_M900() {
  1819. st_synchronize();
  1820. const float newK = code_seen('K') ? code_value_float() : -1;
  1821. if (newK >= 0) extruder_advance_k = newK;
  1822. float newR = code_seen('R') ? code_value_float() : -1;
  1823. if (newR < 0) {
  1824. const float newD = code_seen('D') ? code_value_float() : -1,
  1825. newW = code_seen('W') ? code_value_float() : -1,
  1826. newH = code_seen('H') ? code_value_float() : -1;
  1827. if (newD >= 0 && newW >= 0 && newH >= 0)
  1828. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1829. }
  1830. if (newR >= 0) advance_ed_ratio = newR;
  1831. SERIAL_ECHO_START;
  1832. SERIAL_ECHOPGM("Advance K=");
  1833. SERIAL_ECHOLN(extruder_advance_k);
  1834. SERIAL_ECHOPGM(" E/D=");
  1835. const float ratio = advance_ed_ratio;
  1836. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1837. }
  1838. #endif // LIN_ADVANCE
  1839. bool check_commands() {
  1840. bool end_command_found = false;
  1841. while (buflen)
  1842. {
  1843. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1844. if (!cmdbuffer_front_already_processed)
  1845. cmdqueue_pop_front();
  1846. cmdbuffer_front_already_processed = false;
  1847. }
  1848. return end_command_found;
  1849. }
  1850. #ifdef TMC2130
  1851. bool calibrate_z_auto()
  1852. {
  1853. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1854. lcd_implementation_clear();
  1855. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1856. bool endstops_enabled = enable_endstops(true);
  1857. int axis_up_dir = -home_dir(Z_AXIS);
  1858. tmc2130_home_enter(Z_AXIS_MASK);
  1859. current_position[Z_AXIS] = 0;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. set_destination_to_current();
  1862. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1863. feedrate = homing_feedrate[Z_AXIS];
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. // current_position[axis] = 0;
  1867. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1868. tmc2130_home_exit();
  1869. enable_endstops(false);
  1870. current_position[Z_AXIS] = 0;
  1871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1872. set_destination_to_current();
  1873. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1874. feedrate = homing_feedrate[Z_AXIS] / 2;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. enable_endstops(endstops_enabled);
  1878. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1880. return true;
  1881. }
  1882. #endif //TMC2130
  1883. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1884. {
  1885. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1886. #define HOMEAXIS_DO(LETTER) \
  1887. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1888. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1889. {
  1890. int axis_home_dir = home_dir(axis);
  1891. feedrate = homing_feedrate[axis];
  1892. #ifdef TMC2130
  1893. tmc2130_home_enter(X_AXIS_MASK << axis);
  1894. #endif //TMC2130
  1895. // Move right a bit, so that the print head does not touch the left end position,
  1896. // and the following left movement has a chance to achieve the required velocity
  1897. // for the stall guard to work.
  1898. current_position[axis] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. set_destination_to_current();
  1901. // destination[axis] = 11.f;
  1902. destination[axis] = 3.f;
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. // Move left away from the possible collision with the collision detection disabled.
  1906. endstops_hit_on_purpose();
  1907. enable_endstops(false);
  1908. current_position[axis] = 0;
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. destination[axis] = - 1.;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. // Now continue to move up to the left end stop with the collision detection enabled.
  1914. enable_endstops(true);
  1915. destination[axis] = - 1.1 * max_length(axis);
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. for (uint8_t i = 0; i < cnt; i++)
  1919. {
  1920. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1921. endstops_hit_on_purpose();
  1922. enable_endstops(false);
  1923. current_position[axis] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. destination[axis] = 10.f;
  1926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1927. st_synchronize();
  1928. endstops_hit_on_purpose();
  1929. // Now move left up to the collision, this time with a repeatable velocity.
  1930. enable_endstops(true);
  1931. destination[axis] = - 11.f;
  1932. #ifdef TMC2130
  1933. feedrate = homing_feedrate[axis];
  1934. #else //TMC2130
  1935. feedrate = homing_feedrate[axis] / 2;
  1936. #endif //TMC2130
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. #ifdef TMC2130
  1940. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1941. if (pstep) pstep[i] = mscnt >> 4;
  1942. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1943. #endif //TMC2130
  1944. }
  1945. endstops_hit_on_purpose();
  1946. enable_endstops(false);
  1947. #ifdef TMC2130
  1948. uint8_t orig = tmc2130_home_origin[axis];
  1949. uint8_t back = tmc2130_home_bsteps[axis];
  1950. if (tmc2130_home_enabled && (orig <= 63))
  1951. {
  1952. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1953. if (back > 0)
  1954. tmc2130_do_steps(axis, back, 1, 1000);
  1955. }
  1956. else
  1957. tmc2130_do_steps(axis, 8, 2, 1000);
  1958. tmc2130_home_exit();
  1959. #endif //TMC2130
  1960. axis_is_at_home(axis);
  1961. axis_known_position[axis] = true;
  1962. // Move from minimum
  1963. #ifdef TMC2130
  1964. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1965. #else //TMC2130
  1966. float dist = 0.01f * 64;
  1967. #endif //TMC2130
  1968. current_position[axis] -= dist;
  1969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1970. current_position[axis] += dist;
  1971. destination[axis] = current_position[axis];
  1972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1973. st_synchronize();
  1974. feedrate = 0.0;
  1975. }
  1976. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1977. {
  1978. #ifdef TMC2130
  1979. FORCE_HIGH_POWER_START;
  1980. #endif
  1981. int axis_home_dir = home_dir(axis);
  1982. current_position[axis] = 0;
  1983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1984. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1985. feedrate = homing_feedrate[axis];
  1986. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1987. st_synchronize();
  1988. #ifdef TMC2130
  1989. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1990. FORCE_HIGH_POWER_END;
  1991. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1992. return;
  1993. }
  1994. #endif //TMC2130
  1995. current_position[axis] = 0;
  1996. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1997. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1999. st_synchronize();
  2000. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2001. feedrate = homing_feedrate[axis]/2 ;
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2006. FORCE_HIGH_POWER_END;
  2007. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2008. return;
  2009. }
  2010. #endif //TMC2130
  2011. axis_is_at_home(axis);
  2012. destination[axis] = current_position[axis];
  2013. feedrate = 0.0;
  2014. endstops_hit_on_purpose();
  2015. axis_known_position[axis] = true;
  2016. #ifdef TMC2130
  2017. FORCE_HIGH_POWER_END;
  2018. #endif
  2019. }
  2020. enable_endstops(endstops_enabled);
  2021. }
  2022. /**/
  2023. void home_xy()
  2024. {
  2025. set_destination_to_current();
  2026. homeaxis(X_AXIS);
  2027. homeaxis(Y_AXIS);
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. endstops_hit_on_purpose();
  2030. }
  2031. void refresh_cmd_timeout(void)
  2032. {
  2033. previous_millis_cmd = millis();
  2034. }
  2035. #ifdef FWRETRACT
  2036. void retract(bool retracting, bool swapretract = false) {
  2037. if(retracting && !retracted[active_extruder]) {
  2038. destination[X_AXIS]=current_position[X_AXIS];
  2039. destination[Y_AXIS]=current_position[Y_AXIS];
  2040. destination[Z_AXIS]=current_position[Z_AXIS];
  2041. destination[E_AXIS]=current_position[E_AXIS];
  2042. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2043. plan_set_e_position(current_position[E_AXIS]);
  2044. float oldFeedrate = feedrate;
  2045. feedrate=retract_feedrate*60;
  2046. retracted[active_extruder]=true;
  2047. prepare_move();
  2048. current_position[Z_AXIS]-=retract_zlift;
  2049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2050. prepare_move();
  2051. feedrate = oldFeedrate;
  2052. } else if(!retracting && retracted[active_extruder]) {
  2053. destination[X_AXIS]=current_position[X_AXIS];
  2054. destination[Y_AXIS]=current_position[Y_AXIS];
  2055. destination[Z_AXIS]=current_position[Z_AXIS];
  2056. destination[E_AXIS]=current_position[E_AXIS];
  2057. current_position[Z_AXIS]+=retract_zlift;
  2058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2059. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2060. plan_set_e_position(current_position[E_AXIS]);
  2061. float oldFeedrate = feedrate;
  2062. feedrate=retract_recover_feedrate*60;
  2063. retracted[active_extruder]=false;
  2064. prepare_move();
  2065. feedrate = oldFeedrate;
  2066. }
  2067. } //retract
  2068. #endif //FWRETRACT
  2069. void trace() {
  2070. tone(BEEPER, 440);
  2071. delay(25);
  2072. noTone(BEEPER);
  2073. delay(20);
  2074. }
  2075. /*
  2076. void ramming() {
  2077. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2078. if (current_temperature[0] < 230) {
  2079. //PLA
  2080. max_feedrate[E_AXIS] = 50;
  2081. //current_position[E_AXIS] -= 8;
  2082. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2083. //current_position[E_AXIS] += 8;
  2084. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2085. current_position[E_AXIS] += 5.4;
  2086. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2087. current_position[E_AXIS] += 3.2;
  2088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2089. current_position[E_AXIS] += 3;
  2090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2091. st_synchronize();
  2092. max_feedrate[E_AXIS] = 80;
  2093. current_position[E_AXIS] -= 82;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2095. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2096. current_position[E_AXIS] -= 20;
  2097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2098. current_position[E_AXIS] += 5;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2100. current_position[E_AXIS] += 5;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2102. current_position[E_AXIS] -= 10;
  2103. st_synchronize();
  2104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2105. current_position[E_AXIS] += 10;
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2107. current_position[E_AXIS] -= 10;
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2109. current_position[E_AXIS] += 10;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2111. current_position[E_AXIS] -= 10;
  2112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2113. st_synchronize();
  2114. }
  2115. else {
  2116. //ABS
  2117. max_feedrate[E_AXIS] = 50;
  2118. //current_position[E_AXIS] -= 8;
  2119. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2120. //current_position[E_AXIS] += 8;
  2121. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2122. current_position[E_AXIS] += 3.1;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2124. current_position[E_AXIS] += 3.1;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2126. current_position[E_AXIS] += 4;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2128. st_synchronize();
  2129. //current_position[X_AXIS] += 23; //delay
  2130. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2131. //current_position[X_AXIS] -= 23; //delay
  2132. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2133. delay(4700);
  2134. max_feedrate[E_AXIS] = 80;
  2135. current_position[E_AXIS] -= 92;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2137. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2138. current_position[E_AXIS] -= 5;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2140. current_position[E_AXIS] += 5;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2142. current_position[E_AXIS] -= 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2144. st_synchronize();
  2145. current_position[E_AXIS] += 5;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2147. current_position[E_AXIS] -= 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2149. current_position[E_AXIS] += 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2151. current_position[E_AXIS] -= 5;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2153. st_synchronize();
  2154. }
  2155. }
  2156. */
  2157. #ifdef TMC2130
  2158. void force_high_power_mode(bool start_high_power_section) {
  2159. uint8_t silent;
  2160. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2161. if (silent == 1) {
  2162. //we are in silent mode, set to normal mode to enable crash detection
  2163. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2164. st_synchronize();
  2165. cli();
  2166. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2167. tmc2130_init();
  2168. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2169. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2170. st_reset_timer();
  2171. sei();
  2172. }
  2173. }
  2174. #endif //TMC2130
  2175. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2176. st_synchronize();
  2177. #if 0
  2178. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2179. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2180. #endif
  2181. // Flag for the display update routine and to disable the print cancelation during homing.
  2182. homing_flag = true;
  2183. // Either all X,Y,Z codes are present, or none of them.
  2184. bool home_all_axes = home_x == home_y && home_x == home_z;
  2185. if (home_all_axes)
  2186. // No X/Y/Z code provided means to home all axes.
  2187. home_x = home_y = home_z = true;
  2188. #ifdef ENABLE_AUTO_BED_LEVELING
  2189. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2190. #endif //ENABLE_AUTO_BED_LEVELING
  2191. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2192. // the planner will not perform any adjustments in the XY plane.
  2193. // Wait for the motors to stop and update the current position with the absolute values.
  2194. world2machine_revert_to_uncorrected();
  2195. // For mesh bed leveling deactivate the matrix temporarily.
  2196. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2197. // in a single axis only.
  2198. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2199. #ifdef MESH_BED_LEVELING
  2200. uint8_t mbl_was_active = mbl.active;
  2201. mbl.active = 0;
  2202. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2203. #endif
  2204. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2205. // consumed during the first movements following this statement.
  2206. if (home_z)
  2207. babystep_undo();
  2208. saved_feedrate = feedrate;
  2209. saved_feedmultiply = feedmultiply;
  2210. feedmultiply = 100;
  2211. previous_millis_cmd = millis();
  2212. enable_endstops(true);
  2213. memcpy(destination, current_position, sizeof(destination));
  2214. feedrate = 0.0;
  2215. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2216. if(home_z)
  2217. homeaxis(Z_AXIS);
  2218. #endif
  2219. #ifdef QUICK_HOME
  2220. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2221. if(home_x && home_y) //first diagonal move
  2222. {
  2223. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2224. int x_axis_home_dir = home_dir(X_AXIS);
  2225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2226. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2227. feedrate = homing_feedrate[X_AXIS];
  2228. if(homing_feedrate[Y_AXIS]<feedrate)
  2229. feedrate = homing_feedrate[Y_AXIS];
  2230. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2231. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2232. } else {
  2233. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2234. }
  2235. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2236. st_synchronize();
  2237. axis_is_at_home(X_AXIS);
  2238. axis_is_at_home(Y_AXIS);
  2239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2240. destination[X_AXIS] = current_position[X_AXIS];
  2241. destination[Y_AXIS] = current_position[Y_AXIS];
  2242. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2243. feedrate = 0.0;
  2244. st_synchronize();
  2245. endstops_hit_on_purpose();
  2246. current_position[X_AXIS] = destination[X_AXIS];
  2247. current_position[Y_AXIS] = destination[Y_AXIS];
  2248. current_position[Z_AXIS] = destination[Z_AXIS];
  2249. }
  2250. #endif /* QUICK_HOME */
  2251. #ifdef TMC2130
  2252. if(home_x)
  2253. {
  2254. if (!calib)
  2255. homeaxis(X_AXIS);
  2256. else
  2257. tmc2130_home_calibrate(X_AXIS);
  2258. }
  2259. if(home_y)
  2260. {
  2261. if (!calib)
  2262. homeaxis(Y_AXIS);
  2263. else
  2264. tmc2130_home_calibrate(Y_AXIS);
  2265. }
  2266. #endif //TMC2130
  2267. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2268. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2269. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2270. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2271. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2272. #ifndef Z_SAFE_HOMING
  2273. if(home_z) {
  2274. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2275. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2276. feedrate = max_feedrate[Z_AXIS];
  2277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2278. st_synchronize();
  2279. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2280. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2281. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2282. {
  2283. homeaxis(X_AXIS);
  2284. homeaxis(Y_AXIS);
  2285. }
  2286. // 1st mesh bed leveling measurement point, corrected.
  2287. world2machine_initialize();
  2288. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2289. world2machine_reset();
  2290. if (destination[Y_AXIS] < Y_MIN_POS)
  2291. destination[Y_AXIS] = Y_MIN_POS;
  2292. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2293. feedrate = homing_feedrate[Z_AXIS]/10;
  2294. current_position[Z_AXIS] = 0;
  2295. enable_endstops(false);
  2296. #ifdef DEBUG_BUILD
  2297. SERIAL_ECHOLNPGM("plan_set_position()");
  2298. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2299. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2300. #endif
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. #ifdef DEBUG_BUILD
  2303. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2304. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2305. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2306. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2307. #endif
  2308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2309. st_synchronize();
  2310. current_position[X_AXIS] = destination[X_AXIS];
  2311. current_position[Y_AXIS] = destination[Y_AXIS];
  2312. enable_endstops(true);
  2313. endstops_hit_on_purpose();
  2314. homeaxis(Z_AXIS);
  2315. #else // MESH_BED_LEVELING
  2316. homeaxis(Z_AXIS);
  2317. #endif // MESH_BED_LEVELING
  2318. }
  2319. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2320. if(home_all_axes) {
  2321. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2322. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2323. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2324. feedrate = XY_TRAVEL_SPEED/60;
  2325. current_position[Z_AXIS] = 0;
  2326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2327. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2328. st_synchronize();
  2329. current_position[X_AXIS] = destination[X_AXIS];
  2330. current_position[Y_AXIS] = destination[Y_AXIS];
  2331. homeaxis(Z_AXIS);
  2332. }
  2333. // Let's see if X and Y are homed and probe is inside bed area.
  2334. if(home_z) {
  2335. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2336. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2337. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2338. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2339. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2340. current_position[Z_AXIS] = 0;
  2341. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2342. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2343. feedrate = max_feedrate[Z_AXIS];
  2344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2345. st_synchronize();
  2346. homeaxis(Z_AXIS);
  2347. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2348. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2349. SERIAL_ECHO_START;
  2350. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2351. } else {
  2352. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2353. SERIAL_ECHO_START;
  2354. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2355. }
  2356. }
  2357. #endif // Z_SAFE_HOMING
  2358. #endif // Z_HOME_DIR < 0
  2359. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2360. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2361. #ifdef ENABLE_AUTO_BED_LEVELING
  2362. if(home_z)
  2363. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2364. #endif
  2365. // Set the planner and stepper routine positions.
  2366. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2367. // contains the machine coordinates.
  2368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2369. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2370. enable_endstops(false);
  2371. #endif
  2372. feedrate = saved_feedrate;
  2373. feedmultiply = saved_feedmultiply;
  2374. previous_millis_cmd = millis();
  2375. endstops_hit_on_purpose();
  2376. #ifndef MESH_BED_LEVELING
  2377. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2378. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2379. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2380. lcd_adjust_z();
  2381. #endif
  2382. // Load the machine correction matrix
  2383. world2machine_initialize();
  2384. // and correct the current_position XY axes to match the transformed coordinate system.
  2385. world2machine_update_current();
  2386. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2387. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2388. {
  2389. if (! home_z && mbl_was_active) {
  2390. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2391. mbl.active = true;
  2392. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2393. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2394. }
  2395. }
  2396. else
  2397. {
  2398. st_synchronize();
  2399. homing_flag = false;
  2400. // Push the commands to the front of the message queue in the reverse order!
  2401. // There shall be always enough space reserved for these commands.
  2402. enquecommand_front_P((PSTR("G80")));
  2403. //goto case_G80;
  2404. }
  2405. #endif
  2406. if (farm_mode) { prusa_statistics(20); };
  2407. homing_flag = false;
  2408. #if 0
  2409. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2410. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2411. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2412. #endif
  2413. }
  2414. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2415. {
  2416. bool final_result = false;
  2417. #ifdef TMC2130
  2418. FORCE_HIGH_POWER_START;
  2419. #endif // TMC2130
  2420. // Only Z calibration?
  2421. if (!onlyZ)
  2422. {
  2423. setTargetBed(0);
  2424. setTargetHotend(0, 0);
  2425. setTargetHotend(0, 1);
  2426. setTargetHotend(0, 2);
  2427. adjust_bed_reset(); //reset bed level correction
  2428. }
  2429. // Disable the default update procedure of the display. We will do a modal dialog.
  2430. lcd_update_enable(false);
  2431. // Let the planner use the uncorrected coordinates.
  2432. mbl.reset();
  2433. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2434. // the planner will not perform any adjustments in the XY plane.
  2435. // Wait for the motors to stop and update the current position with the absolute values.
  2436. world2machine_revert_to_uncorrected();
  2437. // Reset the baby step value applied without moving the axes.
  2438. babystep_reset();
  2439. // Mark all axes as in a need for homing.
  2440. memset(axis_known_position, 0, sizeof(axis_known_position));
  2441. // Home in the XY plane.
  2442. //set_destination_to_current();
  2443. setup_for_endstop_move();
  2444. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2445. home_xy();
  2446. enable_endstops(false);
  2447. current_position[X_AXIS] += 5;
  2448. current_position[Y_AXIS] += 5;
  2449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2450. st_synchronize();
  2451. // Let the user move the Z axes up to the end stoppers.
  2452. #ifdef TMC2130
  2453. if (calibrate_z_auto())
  2454. {
  2455. #else //TMC2130
  2456. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2457. {
  2458. #endif //TMC2130
  2459. refresh_cmd_timeout();
  2460. #ifndef STEEL_SHEET
  2461. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2462. {
  2463. lcd_wait_for_cool_down();
  2464. }
  2465. #endif //STEEL_SHEET
  2466. if(!onlyZ)
  2467. {
  2468. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2469. #ifdef STEEL_SHEET
  2470. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2471. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2472. #endif //STEEL_SHEET
  2473. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2474. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2475. KEEPALIVE_STATE(IN_HANDLER);
  2476. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2477. lcd_implementation_print_at(0, 2, 1);
  2478. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2479. }
  2480. // Move the print head close to the bed.
  2481. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2482. bool endstops_enabled = enable_endstops(true);
  2483. #ifdef TMC2130
  2484. tmc2130_home_enter(Z_AXIS_MASK);
  2485. #endif //TMC2130
  2486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2487. st_synchronize();
  2488. #ifdef TMC2130
  2489. tmc2130_home_exit();
  2490. #endif //TMC2130
  2491. enable_endstops(endstops_enabled);
  2492. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2493. {
  2494. int8_t verbosity_level = 0;
  2495. if (code_seen('V'))
  2496. {
  2497. // Just 'V' without a number counts as V1.
  2498. char c = strchr_pointer[1];
  2499. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2500. }
  2501. if (onlyZ)
  2502. {
  2503. clean_up_after_endstop_move();
  2504. // Z only calibration.
  2505. // Load the machine correction matrix
  2506. world2machine_initialize();
  2507. // and correct the current_position to match the transformed coordinate system.
  2508. world2machine_update_current();
  2509. //FIXME
  2510. bool result = sample_mesh_and_store_reference();
  2511. if (result)
  2512. {
  2513. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2514. // Shipped, the nozzle height has been set already. The user can start printing now.
  2515. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2516. final_result = true;
  2517. // babystep_apply();
  2518. }
  2519. }
  2520. else
  2521. {
  2522. // Reset the baby step value and the baby step applied flag.
  2523. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2524. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2525. // Complete XYZ calibration.
  2526. uint8_t point_too_far_mask = 0;
  2527. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2528. clean_up_after_endstop_move();
  2529. // Print head up.
  2530. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2532. st_synchronize();
  2533. //#ifndef NEW_XYZCAL
  2534. if (result >= 0)
  2535. {
  2536. #ifdef HEATBED_V2
  2537. sample_z();
  2538. #else //HEATBED_V2
  2539. point_too_far_mask = 0;
  2540. // Second half: The fine adjustment.
  2541. // Let the planner use the uncorrected coordinates.
  2542. mbl.reset();
  2543. world2machine_reset();
  2544. // Home in the XY plane.
  2545. setup_for_endstop_move();
  2546. home_xy();
  2547. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2548. clean_up_after_endstop_move();
  2549. // Print head up.
  2550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2552. st_synchronize();
  2553. // if (result >= 0) babystep_apply();
  2554. #endif //HEATBED_V2
  2555. }
  2556. //#endif //NEW_XYZCAL
  2557. lcd_update_enable(true);
  2558. lcd_update(2);
  2559. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2560. if (result >= 0)
  2561. {
  2562. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2563. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2564. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2565. final_result = true;
  2566. }
  2567. }
  2568. #ifdef TMC2130
  2569. tmc2130_home_exit();
  2570. #endif
  2571. }
  2572. else
  2573. {
  2574. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2575. final_result = false;
  2576. }
  2577. }
  2578. else
  2579. {
  2580. // Timeouted.
  2581. }
  2582. lcd_update_enable(true);
  2583. #ifdef TMC2130
  2584. FORCE_HIGH_POWER_END;
  2585. #endif // TMC2130
  2586. return final_result;
  2587. }
  2588. void gcode_M114()
  2589. {
  2590. SERIAL_PROTOCOLPGM("X:");
  2591. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2592. SERIAL_PROTOCOLPGM(" Y:");
  2593. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2594. SERIAL_PROTOCOLPGM(" Z:");
  2595. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2596. SERIAL_PROTOCOLPGM(" E:");
  2597. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2598. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2599. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" Y:");
  2601. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2602. SERIAL_PROTOCOLPGM(" Z:");
  2603. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" E:");
  2605. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2606. SERIAL_PROTOCOLLN("");
  2607. }
  2608. void gcode_M701()
  2609. {
  2610. #ifdef SNMM
  2611. extr_adj(snmm_extruder);//loads current extruder
  2612. #else
  2613. enable_z();
  2614. custom_message = true;
  2615. custom_message_type = 2;
  2616. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2617. current_position[E_AXIS] += 70;
  2618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2619. current_position[E_AXIS] += 25;
  2620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2621. st_synchronize();
  2622. tone(BEEPER, 500);
  2623. delay_keep_alive(50);
  2624. noTone(BEEPER);
  2625. if (!farm_mode && loading_flag) {
  2626. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2627. while (!clean) {
  2628. lcd_update_enable(true);
  2629. lcd_update(2);
  2630. current_position[E_AXIS] += 25;
  2631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2632. st_synchronize();
  2633. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2634. }
  2635. }
  2636. lcd_update_enable(true);
  2637. lcd_update(2);
  2638. lcd_setstatuspgm(_T(WELCOME_MSG));
  2639. disable_z();
  2640. loading_flag = false;
  2641. custom_message = false;
  2642. custom_message_type = 0;
  2643. #endif
  2644. }
  2645. /**
  2646. * @brief Get serial number from 32U2 processor
  2647. *
  2648. * Typical format of S/N is:CZPX0917X003XC13518
  2649. *
  2650. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2651. *
  2652. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2653. * reply is transmitted to serial port 1 character by character.
  2654. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2655. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2656. * in any case.
  2657. */
  2658. static void gcode_PRUSA_SN()
  2659. {
  2660. if (farm_mode) {
  2661. selectedSerialPort = 0;
  2662. MSerial.write(";S");
  2663. int numbersRead = 0;
  2664. ShortTimer timeout;
  2665. timeout.start();
  2666. while (numbersRead < 19) {
  2667. while (MSerial.available() > 0) {
  2668. uint8_t serial_char = MSerial.read();
  2669. selectedSerialPort = 1;
  2670. MSerial.write(serial_char);
  2671. numbersRead++;
  2672. selectedSerialPort = 0;
  2673. }
  2674. if (timeout.expired(100u)) break;
  2675. }
  2676. selectedSerialPort = 1;
  2677. MSerial.write('\n');
  2678. #if 0
  2679. for (int b = 0; b < 3; b++) {
  2680. tone(BEEPER, 110);
  2681. delay(50);
  2682. noTone(BEEPER);
  2683. delay(50);
  2684. }
  2685. #endif
  2686. } else {
  2687. MYSERIAL.println("Not in farm mode.");
  2688. }
  2689. }
  2690. void process_commands()
  2691. {
  2692. if (!buflen) return; //empty command
  2693. #ifdef FILAMENT_RUNOUT_SUPPORT
  2694. SET_INPUT(FR_SENS);
  2695. #endif
  2696. #ifdef CMDBUFFER_DEBUG
  2697. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2698. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2699. SERIAL_ECHOLNPGM("");
  2700. SERIAL_ECHOPGM("In cmdqueue: ");
  2701. SERIAL_ECHO(buflen);
  2702. SERIAL_ECHOLNPGM("");
  2703. #endif /* CMDBUFFER_DEBUG */
  2704. unsigned long codenum; //throw away variable
  2705. char *starpos = NULL;
  2706. #ifdef ENABLE_AUTO_BED_LEVELING
  2707. float x_tmp, y_tmp, z_tmp, real_z;
  2708. #endif
  2709. // PRUSA GCODES
  2710. KEEPALIVE_STATE(IN_HANDLER);
  2711. #ifdef SNMM
  2712. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2713. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2714. int8_t SilentMode;
  2715. #endif
  2716. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2717. starpos = (strchr(strchr_pointer + 5, '*'));
  2718. if (starpos != NULL)
  2719. *(starpos) = '\0';
  2720. lcd_setstatus(strchr_pointer + 5);
  2721. }
  2722. #ifdef TMC2130
  2723. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2724. {
  2725. if(code_seen("CRASH_DETECTED"))
  2726. {
  2727. uint8_t mask = 0;
  2728. if (code_seen("X")) mask |= X_AXIS_MASK;
  2729. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2730. crashdet_detected(mask);
  2731. }
  2732. else if(code_seen("CRASH_RECOVER"))
  2733. crashdet_recover();
  2734. else if(code_seen("CRASH_CANCEL"))
  2735. crashdet_cancel();
  2736. }
  2737. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2738. {
  2739. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2740. {
  2741. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2742. tmc2130_set_wave(E_AXIS, 247, fac);
  2743. }
  2744. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2745. {
  2746. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2747. uint16_t res = tmc2130_get_res(E_AXIS);
  2748. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2749. }
  2750. }
  2751. #endif //TMC2130
  2752. else if(code_seen("PRUSA")){
  2753. if (code_seen("Ping")) { //PRUSA Ping
  2754. if (farm_mode) {
  2755. PingTime = millis();
  2756. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2757. }
  2758. }
  2759. else if (code_seen("PRN")) {
  2760. MYSERIAL.println(status_number);
  2761. }else if (code_seen("FAN")) {
  2762. MYSERIAL.print("E0:");
  2763. MYSERIAL.print(60*fan_speed[0]);
  2764. MYSERIAL.println(" RPM");
  2765. MYSERIAL.print("PRN0:");
  2766. MYSERIAL.print(60*fan_speed[1]);
  2767. MYSERIAL.println(" RPM");
  2768. }else if (code_seen("fn")) {
  2769. if (farm_mode) {
  2770. MYSERIAL.println(farm_no);
  2771. }
  2772. else {
  2773. MYSERIAL.println("Not in farm mode.");
  2774. }
  2775. }
  2776. else if (code_seen("thx")) {
  2777. no_response = false;
  2778. }else if (code_seen("fv")) {
  2779. // get file version
  2780. #ifdef SDSUPPORT
  2781. card.openFile(strchr_pointer + 3,true);
  2782. while (true) {
  2783. uint16_t readByte = card.get();
  2784. MYSERIAL.write(readByte);
  2785. if (readByte=='\n') {
  2786. break;
  2787. }
  2788. }
  2789. card.closefile();
  2790. #endif // SDSUPPORT
  2791. } else if (code_seen("M28")) {
  2792. trace();
  2793. prusa_sd_card_upload = true;
  2794. card.openFile(strchr_pointer+4,false);
  2795. } else if (code_seen("SN")) {
  2796. gcode_PRUSA_SN();
  2797. } else if(code_seen("Fir")){
  2798. SERIAL_PROTOCOLLN(FW_VERSION);
  2799. } else if(code_seen("Rev")){
  2800. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2801. } else if(code_seen("Lang")) {
  2802. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  2803. } else if(code_seen("Lz")) {
  2804. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2805. } else if(code_seen("Beat")) {
  2806. // Kick farm link timer
  2807. kicktime = millis();
  2808. } else if(code_seen("FR")) {
  2809. // Factory full reset
  2810. factory_reset(0,true);
  2811. }
  2812. //else if (code_seen('Cal')) {
  2813. // lcd_calibration();
  2814. // }
  2815. }
  2816. else if (code_seen('^')) {
  2817. // nothing, this is a version line
  2818. } else if(code_seen('G'))
  2819. {
  2820. switch((int)code_value())
  2821. {
  2822. case 0: // G0 -> G1
  2823. case 1: // G1
  2824. if(Stopped == false) {
  2825. #ifdef FILAMENT_RUNOUT_SUPPORT
  2826. if(READ(FR_SENS)){
  2827. feedmultiplyBckp=feedmultiply;
  2828. float target[4];
  2829. float lastpos[4];
  2830. target[X_AXIS]=current_position[X_AXIS];
  2831. target[Y_AXIS]=current_position[Y_AXIS];
  2832. target[Z_AXIS]=current_position[Z_AXIS];
  2833. target[E_AXIS]=current_position[E_AXIS];
  2834. lastpos[X_AXIS]=current_position[X_AXIS];
  2835. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2836. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2837. lastpos[E_AXIS]=current_position[E_AXIS];
  2838. //retract by E
  2839. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2840. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2841. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2842. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2843. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2844. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2845. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2846. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2847. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2848. //finish moves
  2849. st_synchronize();
  2850. //disable extruder steppers so filament can be removed
  2851. disable_e0();
  2852. disable_e1();
  2853. disable_e2();
  2854. delay(100);
  2855. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2856. uint8_t cnt=0;
  2857. int counterBeep = 0;
  2858. lcd_wait_interact();
  2859. while(!lcd_clicked()){
  2860. cnt++;
  2861. manage_heater();
  2862. manage_inactivity(true);
  2863. //lcd_update();
  2864. if(cnt==0)
  2865. {
  2866. #if BEEPER > 0
  2867. if (counterBeep== 500){
  2868. counterBeep = 0;
  2869. }
  2870. SET_OUTPUT(BEEPER);
  2871. if (counterBeep== 0){
  2872. WRITE(BEEPER,HIGH);
  2873. }
  2874. if (counterBeep== 20){
  2875. WRITE(BEEPER,LOW);
  2876. }
  2877. counterBeep++;
  2878. #else
  2879. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2880. lcd_buzz(1000/6,100);
  2881. #else
  2882. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2883. #endif
  2884. #endif
  2885. }
  2886. }
  2887. WRITE(BEEPER,LOW);
  2888. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2890. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2892. lcd_change_fil_state = 0;
  2893. lcd_loading_filament();
  2894. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2895. lcd_change_fil_state = 0;
  2896. lcd_alright();
  2897. switch(lcd_change_fil_state){
  2898. case 2:
  2899. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2900. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2901. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2903. lcd_loading_filament();
  2904. break;
  2905. case 3:
  2906. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2908. lcd_loading_color();
  2909. break;
  2910. default:
  2911. lcd_change_success();
  2912. break;
  2913. }
  2914. }
  2915. target[E_AXIS]+= 5;
  2916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2917. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2919. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2920. //plan_set_e_position(current_position[E_AXIS]);
  2921. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2922. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2923. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2924. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2925. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2926. plan_set_e_position(lastpos[E_AXIS]);
  2927. feedmultiply=feedmultiplyBckp;
  2928. char cmd[9];
  2929. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2930. enquecommand(cmd);
  2931. }
  2932. #endif
  2933. get_coordinates(); // For X Y Z E F
  2934. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2935. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2936. }
  2937. #ifdef FWRETRACT
  2938. if(autoretract_enabled)
  2939. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2940. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2941. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2942. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2943. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2944. retract(!retracted[active_extruder]);
  2945. return;
  2946. }
  2947. }
  2948. #endif //FWRETRACT
  2949. prepare_move();
  2950. //ClearToSend();
  2951. }
  2952. break;
  2953. case 2: // G2 - CW ARC
  2954. if(Stopped == false) {
  2955. get_arc_coordinates();
  2956. prepare_arc_move(true);
  2957. }
  2958. break;
  2959. case 3: // G3 - CCW ARC
  2960. if(Stopped == false) {
  2961. get_arc_coordinates();
  2962. prepare_arc_move(false);
  2963. }
  2964. break;
  2965. case 4: // G4 dwell
  2966. codenum = 0;
  2967. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2968. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2969. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2970. st_synchronize();
  2971. codenum += millis(); // keep track of when we started waiting
  2972. previous_millis_cmd = millis();
  2973. while(millis() < codenum) {
  2974. manage_heater();
  2975. manage_inactivity();
  2976. lcd_update();
  2977. }
  2978. break;
  2979. #ifdef FWRETRACT
  2980. case 10: // G10 retract
  2981. #if EXTRUDERS > 1
  2982. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2983. retract(true,retracted_swap[active_extruder]);
  2984. #else
  2985. retract(true);
  2986. #endif
  2987. break;
  2988. case 11: // G11 retract_recover
  2989. #if EXTRUDERS > 1
  2990. retract(false,retracted_swap[active_extruder]);
  2991. #else
  2992. retract(false);
  2993. #endif
  2994. break;
  2995. #endif //FWRETRACT
  2996. case 28: //G28 Home all Axis one at a time
  2997. {
  2998. // Which axes should be homed?
  2999. bool home_x = code_seen(axis_codes[X_AXIS]);
  3000. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3001. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3002. // calibrate?
  3003. bool calib = code_seen('C');
  3004. gcode_G28(home_x, home_y, home_z, calib);
  3005. break;
  3006. }
  3007. #ifdef ENABLE_AUTO_BED_LEVELING
  3008. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3009. {
  3010. #if Z_MIN_PIN == -1
  3011. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3012. #endif
  3013. // Prevent user from running a G29 without first homing in X and Y
  3014. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3015. {
  3016. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3017. SERIAL_ECHO_START;
  3018. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3019. break; // abort G29, since we don't know where we are
  3020. }
  3021. st_synchronize();
  3022. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3023. //vector_3 corrected_position = plan_get_position_mm();
  3024. //corrected_position.debug("position before G29");
  3025. plan_bed_level_matrix.set_to_identity();
  3026. vector_3 uncorrected_position = plan_get_position();
  3027. //uncorrected_position.debug("position durring G29");
  3028. current_position[X_AXIS] = uncorrected_position.x;
  3029. current_position[Y_AXIS] = uncorrected_position.y;
  3030. current_position[Z_AXIS] = uncorrected_position.z;
  3031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3032. setup_for_endstop_move();
  3033. feedrate = homing_feedrate[Z_AXIS];
  3034. #ifdef AUTO_BED_LEVELING_GRID
  3035. // probe at the points of a lattice grid
  3036. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3037. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3038. // solve the plane equation ax + by + d = z
  3039. // A is the matrix with rows [x y 1] for all the probed points
  3040. // B is the vector of the Z positions
  3041. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3042. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3043. // "A" matrix of the linear system of equations
  3044. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3045. // "B" vector of Z points
  3046. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3047. int probePointCounter = 0;
  3048. bool zig = true;
  3049. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3050. {
  3051. int xProbe, xInc;
  3052. if (zig)
  3053. {
  3054. xProbe = LEFT_PROBE_BED_POSITION;
  3055. //xEnd = RIGHT_PROBE_BED_POSITION;
  3056. xInc = xGridSpacing;
  3057. zig = false;
  3058. } else // zag
  3059. {
  3060. xProbe = RIGHT_PROBE_BED_POSITION;
  3061. //xEnd = LEFT_PROBE_BED_POSITION;
  3062. xInc = -xGridSpacing;
  3063. zig = true;
  3064. }
  3065. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3066. {
  3067. float z_before;
  3068. if (probePointCounter == 0)
  3069. {
  3070. // raise before probing
  3071. z_before = Z_RAISE_BEFORE_PROBING;
  3072. } else
  3073. {
  3074. // raise extruder
  3075. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3076. }
  3077. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3078. eqnBVector[probePointCounter] = measured_z;
  3079. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3080. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3081. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3082. probePointCounter++;
  3083. xProbe += xInc;
  3084. }
  3085. }
  3086. clean_up_after_endstop_move();
  3087. // solve lsq problem
  3088. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3089. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3090. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3091. SERIAL_PROTOCOLPGM(" b: ");
  3092. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3093. SERIAL_PROTOCOLPGM(" d: ");
  3094. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3095. set_bed_level_equation_lsq(plane_equation_coefficients);
  3096. free(plane_equation_coefficients);
  3097. #else // AUTO_BED_LEVELING_GRID not defined
  3098. // Probe at 3 arbitrary points
  3099. // probe 1
  3100. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3101. // probe 2
  3102. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3103. // probe 3
  3104. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3105. clean_up_after_endstop_move();
  3106. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3107. #endif // AUTO_BED_LEVELING_GRID
  3108. st_synchronize();
  3109. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3110. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3111. // When the bed is uneven, this height must be corrected.
  3112. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3113. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3114. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3115. z_tmp = current_position[Z_AXIS];
  3116. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3117. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3118. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3119. }
  3120. break;
  3121. #ifndef Z_PROBE_SLED
  3122. case 30: // G30 Single Z Probe
  3123. {
  3124. st_synchronize();
  3125. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3126. setup_for_endstop_move();
  3127. feedrate = homing_feedrate[Z_AXIS];
  3128. run_z_probe();
  3129. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3130. SERIAL_PROTOCOLPGM(" X: ");
  3131. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3132. SERIAL_PROTOCOLPGM(" Y: ");
  3133. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3134. SERIAL_PROTOCOLPGM(" Z: ");
  3135. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3136. SERIAL_PROTOCOLPGM("\n");
  3137. clean_up_after_endstop_move();
  3138. }
  3139. break;
  3140. #else
  3141. case 31: // dock the sled
  3142. dock_sled(true);
  3143. break;
  3144. case 32: // undock the sled
  3145. dock_sled(false);
  3146. break;
  3147. #endif // Z_PROBE_SLED
  3148. #endif // ENABLE_AUTO_BED_LEVELING
  3149. #ifdef MESH_BED_LEVELING
  3150. case 30: // G30 Single Z Probe
  3151. {
  3152. st_synchronize();
  3153. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3154. setup_for_endstop_move();
  3155. feedrate = homing_feedrate[Z_AXIS];
  3156. find_bed_induction_sensor_point_z(-10.f, 3);
  3157. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3158. SERIAL_PROTOCOLPGM(" X: ");
  3159. MYSERIAL.print(current_position[X_AXIS], 5);
  3160. SERIAL_PROTOCOLPGM(" Y: ");
  3161. MYSERIAL.print(current_position[Y_AXIS], 5);
  3162. SERIAL_PROTOCOLPGM(" Z: ");
  3163. MYSERIAL.print(current_position[Z_AXIS], 5);
  3164. SERIAL_PROTOCOLPGM("\n");
  3165. clean_up_after_endstop_move();
  3166. }
  3167. break;
  3168. case 75:
  3169. {
  3170. for (int i = 40; i <= 110; i++) {
  3171. MYSERIAL.print(i);
  3172. MYSERIAL.print(" ");
  3173. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3174. }
  3175. }
  3176. break;
  3177. case 76: //PINDA probe temperature calibration
  3178. {
  3179. #ifdef PINDA_THERMISTOR
  3180. if (true)
  3181. {
  3182. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3183. //we need to know accurate position of first calibration point
  3184. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3185. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3186. break;
  3187. }
  3188. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3189. {
  3190. // We don't know where we are! HOME!
  3191. // Push the commands to the front of the message queue in the reverse order!
  3192. // There shall be always enough space reserved for these commands.
  3193. repeatcommand_front(); // repeat G76 with all its parameters
  3194. enquecommand_front_P((PSTR("G28 W0")));
  3195. break;
  3196. }
  3197. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3198. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3199. if (result)
  3200. {
  3201. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3203. current_position[Z_AXIS] = 50;
  3204. current_position[Y_AXIS] = 180;
  3205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3206. st_synchronize();
  3207. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3208. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3209. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3211. st_synchronize();
  3212. gcode_G28(false, false, true, false);
  3213. }
  3214. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3215. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3216. current_position[Z_AXIS] = 100;
  3217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3218. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3219. lcd_temp_cal_show_result(false);
  3220. break;
  3221. }
  3222. }
  3223. lcd_update_enable(true);
  3224. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3225. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3226. float zero_z;
  3227. int z_shift = 0; //unit: steps
  3228. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3229. if (start_temp < 35) start_temp = 35;
  3230. if (start_temp < current_temperature_pinda) start_temp += 5;
  3231. SERIAL_ECHOPGM("start temperature: ");
  3232. MYSERIAL.println(start_temp);
  3233. // setTargetHotend(200, 0);
  3234. setTargetBed(70 + (start_temp - 30));
  3235. custom_message = true;
  3236. custom_message_type = 4;
  3237. custom_message_state = 1;
  3238. custom_message = _T(MSG_TEMP_CALIBRATION);
  3239. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3241. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3242. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3243. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3244. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3245. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3246. st_synchronize();
  3247. while (current_temperature_pinda < start_temp)
  3248. {
  3249. delay_keep_alive(1000);
  3250. serialecho_temperatures();
  3251. }
  3252. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3253. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3255. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3256. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3258. st_synchronize();
  3259. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3260. if (find_z_result == false) {
  3261. lcd_temp_cal_show_result(find_z_result);
  3262. break;
  3263. }
  3264. zero_z = current_position[Z_AXIS];
  3265. //current_position[Z_AXIS]
  3266. SERIAL_ECHOLNPGM("");
  3267. SERIAL_ECHOPGM("ZERO: ");
  3268. MYSERIAL.print(current_position[Z_AXIS]);
  3269. SERIAL_ECHOLNPGM("");
  3270. int i = -1; for (; i < 5; i++)
  3271. {
  3272. float temp = (40 + i * 5);
  3273. SERIAL_ECHOPGM("Step: ");
  3274. MYSERIAL.print(i + 2);
  3275. SERIAL_ECHOLNPGM("/6 (skipped)");
  3276. SERIAL_ECHOPGM("PINDA temperature: ");
  3277. MYSERIAL.print((40 + i*5));
  3278. SERIAL_ECHOPGM(" Z shift (mm):");
  3279. MYSERIAL.print(0);
  3280. SERIAL_ECHOLNPGM("");
  3281. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3282. if (start_temp <= temp) break;
  3283. }
  3284. for (i++; i < 5; i++)
  3285. {
  3286. float temp = (40 + i * 5);
  3287. SERIAL_ECHOPGM("Step: ");
  3288. MYSERIAL.print(i + 2);
  3289. SERIAL_ECHOLNPGM("/6");
  3290. custom_message_state = i + 2;
  3291. setTargetBed(50 + 10 * (temp - 30) / 5);
  3292. // setTargetHotend(255, 0);
  3293. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3295. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3296. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3298. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3300. st_synchronize();
  3301. while (current_temperature_pinda < temp)
  3302. {
  3303. delay_keep_alive(1000);
  3304. serialecho_temperatures();
  3305. }
  3306. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3308. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3309. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3311. st_synchronize();
  3312. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3313. if (find_z_result == false) {
  3314. lcd_temp_cal_show_result(find_z_result);
  3315. break;
  3316. }
  3317. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3318. SERIAL_ECHOLNPGM("");
  3319. SERIAL_ECHOPGM("PINDA temperature: ");
  3320. MYSERIAL.print(current_temperature_pinda);
  3321. SERIAL_ECHOPGM(" Z shift (mm):");
  3322. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3323. SERIAL_ECHOLNPGM("");
  3324. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3325. }
  3326. lcd_temp_cal_show_result(true);
  3327. break;
  3328. }
  3329. #endif //PINDA_THERMISTOR
  3330. setTargetBed(PINDA_MIN_T);
  3331. float zero_z;
  3332. int z_shift = 0; //unit: steps
  3333. int t_c; // temperature
  3334. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3335. // We don't know where we are! HOME!
  3336. // Push the commands to the front of the message queue in the reverse order!
  3337. // There shall be always enough space reserved for these commands.
  3338. repeatcommand_front(); // repeat G76 with all its parameters
  3339. enquecommand_front_P((PSTR("G28 W0")));
  3340. break;
  3341. }
  3342. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3343. custom_message = true;
  3344. custom_message_type = 4;
  3345. custom_message_state = 1;
  3346. custom_message = _T(MSG_TEMP_CALIBRATION);
  3347. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3348. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3349. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3351. st_synchronize();
  3352. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3353. delay_keep_alive(1000);
  3354. serialecho_temperatures();
  3355. }
  3356. //enquecommand_P(PSTR("M190 S50"));
  3357. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3358. delay_keep_alive(1000);
  3359. serialecho_temperatures();
  3360. }
  3361. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3362. current_position[Z_AXIS] = 5;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3365. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3367. st_synchronize();
  3368. find_bed_induction_sensor_point_z(-1.f);
  3369. zero_z = current_position[Z_AXIS];
  3370. //current_position[Z_AXIS]
  3371. SERIAL_ECHOLNPGM("");
  3372. SERIAL_ECHOPGM("ZERO: ");
  3373. MYSERIAL.print(current_position[Z_AXIS]);
  3374. SERIAL_ECHOLNPGM("");
  3375. for (int i = 0; i<5; i++) {
  3376. SERIAL_ECHOPGM("Step: ");
  3377. MYSERIAL.print(i+2);
  3378. SERIAL_ECHOLNPGM("/6");
  3379. custom_message_state = i + 2;
  3380. t_c = 60 + i * 10;
  3381. setTargetBed(t_c);
  3382. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3383. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3384. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3386. st_synchronize();
  3387. while (degBed() < t_c) {
  3388. delay_keep_alive(1000);
  3389. serialecho_temperatures();
  3390. }
  3391. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3392. delay_keep_alive(1000);
  3393. serialecho_temperatures();
  3394. }
  3395. current_position[Z_AXIS] = 5;
  3396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3397. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3398. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3400. st_synchronize();
  3401. find_bed_induction_sensor_point_z(-1.f);
  3402. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3403. SERIAL_ECHOLNPGM("");
  3404. SERIAL_ECHOPGM("Temperature: ");
  3405. MYSERIAL.print(t_c);
  3406. SERIAL_ECHOPGM(" Z shift (mm):");
  3407. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3408. SERIAL_ECHOLNPGM("");
  3409. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3410. }
  3411. custom_message_type = 0;
  3412. custom_message = false;
  3413. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3414. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3415. disable_x();
  3416. disable_y();
  3417. disable_z();
  3418. disable_e0();
  3419. disable_e1();
  3420. disable_e2();
  3421. setTargetBed(0); //set bed target temperature back to 0
  3422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3423. temp_cal_active = true;
  3424. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3425. lcd_update_enable(true);
  3426. lcd_update(2);
  3427. }
  3428. break;
  3429. #ifdef DIS
  3430. case 77:
  3431. {
  3432. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3433. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3434. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3435. float dimension_x = 40;
  3436. float dimension_y = 40;
  3437. int points_x = 40;
  3438. int points_y = 40;
  3439. float offset_x = 74;
  3440. float offset_y = 33;
  3441. if (code_seen('X')) dimension_x = code_value();
  3442. if (code_seen('Y')) dimension_y = code_value();
  3443. if (code_seen('XP')) points_x = code_value();
  3444. if (code_seen('YP')) points_y = code_value();
  3445. if (code_seen('XO')) offset_x = code_value();
  3446. if (code_seen('YO')) offset_y = code_value();
  3447. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3448. } break;
  3449. #endif
  3450. case 79: {
  3451. for (int i = 255; i > 0; i = i - 5) {
  3452. fanSpeed = i;
  3453. //delay_keep_alive(2000);
  3454. for (int j = 0; j < 100; j++) {
  3455. delay_keep_alive(100);
  3456. }
  3457. fan_speed[1];
  3458. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3459. }
  3460. }break;
  3461. /**
  3462. * G80: Mesh-based Z probe, probes a grid and produces a
  3463. * mesh to compensate for variable bed height
  3464. *
  3465. * The S0 report the points as below
  3466. *
  3467. * +----> X-axis
  3468. * |
  3469. * |
  3470. * v Y-axis
  3471. *
  3472. */
  3473. case 80:
  3474. #ifdef MK1BP
  3475. break;
  3476. #endif //MK1BP
  3477. case_G80:
  3478. {
  3479. mesh_bed_leveling_flag = true;
  3480. int8_t verbosity_level = 0;
  3481. static bool run = false;
  3482. if (code_seen('V')) {
  3483. // Just 'V' without a number counts as V1.
  3484. char c = strchr_pointer[1];
  3485. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3486. }
  3487. // Firstly check if we know where we are
  3488. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3489. // We don't know where we are! HOME!
  3490. // Push the commands to the front of the message queue in the reverse order!
  3491. // There shall be always enough space reserved for these commands.
  3492. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3493. repeatcommand_front(); // repeat G80 with all its parameters
  3494. enquecommand_front_P((PSTR("G28 W0")));
  3495. }
  3496. else {
  3497. mesh_bed_leveling_flag = false;
  3498. }
  3499. break;
  3500. }
  3501. bool temp_comp_start = true;
  3502. #ifdef PINDA_THERMISTOR
  3503. temp_comp_start = false;
  3504. #endif //PINDA_THERMISTOR
  3505. if (temp_comp_start)
  3506. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3507. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3508. temp_compensation_start();
  3509. run = true;
  3510. repeatcommand_front(); // repeat G80 with all its parameters
  3511. enquecommand_front_P((PSTR("G28 W0")));
  3512. }
  3513. else {
  3514. mesh_bed_leveling_flag = false;
  3515. }
  3516. break;
  3517. }
  3518. run = false;
  3519. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3520. mesh_bed_leveling_flag = false;
  3521. break;
  3522. }
  3523. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3524. bool custom_message_old = custom_message;
  3525. unsigned int custom_message_type_old = custom_message_type;
  3526. unsigned int custom_message_state_old = custom_message_state;
  3527. custom_message = true;
  3528. custom_message_type = 1;
  3529. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3530. lcd_update(1);
  3531. mbl.reset(); //reset mesh bed leveling
  3532. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3533. // consumed during the first movements following this statement.
  3534. babystep_undo();
  3535. // Cycle through all points and probe them
  3536. // First move up. During this first movement, the babystepping will be reverted.
  3537. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3539. // The move to the first calibration point.
  3540. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3541. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3542. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3543. #ifdef SUPPORT_VERBOSITY
  3544. if (verbosity_level >= 1) {
  3545. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3546. }
  3547. #endif //SUPPORT_VERBOSITY
  3548. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3550. // Wait until the move is finished.
  3551. st_synchronize();
  3552. int mesh_point = 0; //index number of calibration point
  3553. int ix = 0;
  3554. int iy = 0;
  3555. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3556. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3557. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3558. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3559. #ifdef SUPPORT_VERBOSITY
  3560. if (verbosity_level >= 1) {
  3561. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3562. }
  3563. #endif // SUPPORT_VERBOSITY
  3564. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3565. const char *kill_message = NULL;
  3566. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3567. // Get coords of a measuring point.
  3568. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3569. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3570. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3571. float z0 = 0.f;
  3572. if (has_z && mesh_point > 0) {
  3573. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3574. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3575. //#if 0
  3576. #ifdef SUPPORT_VERBOSITY
  3577. if (verbosity_level >= 1) {
  3578. SERIAL_ECHOLNPGM("");
  3579. SERIAL_ECHOPGM("Bed leveling, point: ");
  3580. MYSERIAL.print(mesh_point);
  3581. SERIAL_ECHOPGM(", calibration z: ");
  3582. MYSERIAL.print(z0, 5);
  3583. SERIAL_ECHOLNPGM("");
  3584. }
  3585. #endif // SUPPORT_VERBOSITY
  3586. //#endif
  3587. }
  3588. // Move Z up to MESH_HOME_Z_SEARCH.
  3589. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3591. st_synchronize();
  3592. // Move to XY position of the sensor point.
  3593. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3594. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3595. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3596. #ifdef SUPPORT_VERBOSITY
  3597. if (verbosity_level >= 1) {
  3598. SERIAL_PROTOCOL(mesh_point);
  3599. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3600. }
  3601. #endif // SUPPORT_VERBOSITY
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3603. st_synchronize();
  3604. // Go down until endstop is hit
  3605. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3606. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3607. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3608. break;
  3609. }
  3610. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3611. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3612. break;
  3613. }
  3614. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3615. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3616. break;
  3617. }
  3618. #ifdef SUPPORT_VERBOSITY
  3619. if (verbosity_level >= 10) {
  3620. SERIAL_ECHOPGM("X: ");
  3621. MYSERIAL.print(current_position[X_AXIS], 5);
  3622. SERIAL_ECHOLNPGM("");
  3623. SERIAL_ECHOPGM("Y: ");
  3624. MYSERIAL.print(current_position[Y_AXIS], 5);
  3625. SERIAL_PROTOCOLPGM("\n");
  3626. }
  3627. #endif // SUPPORT_VERBOSITY
  3628. float offset_z = 0;
  3629. #ifdef PINDA_THERMISTOR
  3630. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3631. #endif //PINDA_THERMISTOR
  3632. // #ifdef SUPPORT_VERBOSITY
  3633. /* if (verbosity_level >= 1)
  3634. {
  3635. SERIAL_ECHOPGM("mesh bed leveling: ");
  3636. MYSERIAL.print(current_position[Z_AXIS], 5);
  3637. SERIAL_ECHOPGM(" offset: ");
  3638. MYSERIAL.print(offset_z, 5);
  3639. SERIAL_ECHOLNPGM("");
  3640. }*/
  3641. // #endif // SUPPORT_VERBOSITY
  3642. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3643. custom_message_state--;
  3644. mesh_point++;
  3645. lcd_update(1);
  3646. }
  3647. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3648. #ifdef SUPPORT_VERBOSITY
  3649. if (verbosity_level >= 20) {
  3650. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3651. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3652. MYSERIAL.print(current_position[Z_AXIS], 5);
  3653. }
  3654. #endif // SUPPORT_VERBOSITY
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3656. st_synchronize();
  3657. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3658. kill(kill_message);
  3659. SERIAL_ECHOLNPGM("killed");
  3660. }
  3661. clean_up_after_endstop_move();
  3662. // SERIAL_ECHOLNPGM("clean up finished ");
  3663. bool apply_temp_comp = true;
  3664. #ifdef PINDA_THERMISTOR
  3665. apply_temp_comp = false;
  3666. #endif
  3667. if (apply_temp_comp)
  3668. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3669. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3670. // SERIAL_ECHOLNPGM("babystep applied");
  3671. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3672. #ifdef SUPPORT_VERBOSITY
  3673. if (verbosity_level >= 1) {
  3674. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3675. }
  3676. #endif // SUPPORT_VERBOSITY
  3677. for (uint8_t i = 0; i < 4; ++i) {
  3678. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3679. long correction = 0;
  3680. if (code_seen(codes[i]))
  3681. correction = code_value_long();
  3682. else if (eeprom_bed_correction_valid) {
  3683. unsigned char *addr = (i < 2) ?
  3684. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3685. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3686. correction = eeprom_read_int8(addr);
  3687. }
  3688. if (correction == 0)
  3689. continue;
  3690. float offset = float(correction) * 0.001f;
  3691. if (fabs(offset) > 0.101f) {
  3692. SERIAL_ERROR_START;
  3693. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3694. SERIAL_ECHO(offset);
  3695. SERIAL_ECHOLNPGM(" microns");
  3696. }
  3697. else {
  3698. switch (i) {
  3699. case 0:
  3700. for (uint8_t row = 0; row < 3; ++row) {
  3701. mbl.z_values[row][1] += 0.5f * offset;
  3702. mbl.z_values[row][0] += offset;
  3703. }
  3704. break;
  3705. case 1:
  3706. for (uint8_t row = 0; row < 3; ++row) {
  3707. mbl.z_values[row][1] += 0.5f * offset;
  3708. mbl.z_values[row][2] += offset;
  3709. }
  3710. break;
  3711. case 2:
  3712. for (uint8_t col = 0; col < 3; ++col) {
  3713. mbl.z_values[1][col] += 0.5f * offset;
  3714. mbl.z_values[0][col] += offset;
  3715. }
  3716. break;
  3717. case 3:
  3718. for (uint8_t col = 0; col < 3; ++col) {
  3719. mbl.z_values[1][col] += 0.5f * offset;
  3720. mbl.z_values[2][col] += offset;
  3721. }
  3722. break;
  3723. }
  3724. }
  3725. }
  3726. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3727. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3728. // SERIAL_ECHOLNPGM("Upsample finished");
  3729. mbl.active = 1; //activate mesh bed leveling
  3730. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3731. go_home_with_z_lift();
  3732. // SERIAL_ECHOLNPGM("Go home finished");
  3733. //unretract (after PINDA preheat retraction)
  3734. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3735. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3737. }
  3738. KEEPALIVE_STATE(NOT_BUSY);
  3739. // Restore custom message state
  3740. custom_message = custom_message_old;
  3741. custom_message_type = custom_message_type_old;
  3742. custom_message_state = custom_message_state_old;
  3743. mesh_bed_leveling_flag = false;
  3744. mesh_bed_run_from_menu = false;
  3745. lcd_update(2);
  3746. }
  3747. break;
  3748. /**
  3749. * G81: Print mesh bed leveling status and bed profile if activated
  3750. */
  3751. case 81:
  3752. if (mbl.active) {
  3753. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3754. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3755. SERIAL_PROTOCOLPGM(",");
  3756. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3757. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3758. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3759. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3760. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3761. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3762. SERIAL_PROTOCOLPGM(" ");
  3763. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3764. }
  3765. SERIAL_PROTOCOLPGM("\n");
  3766. }
  3767. }
  3768. else
  3769. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3770. break;
  3771. #if 0
  3772. /**
  3773. * G82: Single Z probe at current location
  3774. *
  3775. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3776. *
  3777. */
  3778. case 82:
  3779. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3780. setup_for_endstop_move();
  3781. find_bed_induction_sensor_point_z();
  3782. clean_up_after_endstop_move();
  3783. SERIAL_PROTOCOLPGM("Bed found at: ");
  3784. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3785. SERIAL_PROTOCOLPGM("\n");
  3786. break;
  3787. /**
  3788. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3789. */
  3790. case 83:
  3791. {
  3792. int babystepz = code_seen('S') ? code_value() : 0;
  3793. int BabyPosition = code_seen('P') ? code_value() : 0;
  3794. if (babystepz != 0) {
  3795. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3796. // Is the axis indexed starting with zero or one?
  3797. if (BabyPosition > 4) {
  3798. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3799. }else{
  3800. // Save it to the eeprom
  3801. babystepLoadZ = babystepz;
  3802. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3803. // adjust the Z
  3804. babystepsTodoZadd(babystepLoadZ);
  3805. }
  3806. }
  3807. }
  3808. break;
  3809. /**
  3810. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3811. */
  3812. case 84:
  3813. babystepsTodoZsubtract(babystepLoadZ);
  3814. // babystepLoadZ = 0;
  3815. break;
  3816. /**
  3817. * G85: Prusa3D specific: Pick best babystep
  3818. */
  3819. case 85:
  3820. lcd_pick_babystep();
  3821. break;
  3822. #endif
  3823. /**
  3824. * G86: Prusa3D specific: Disable babystep correction after home.
  3825. * This G-code will be performed at the start of a calibration script.
  3826. */
  3827. case 86:
  3828. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3829. break;
  3830. /**
  3831. * G87: Prusa3D specific: Enable babystep correction after home
  3832. * This G-code will be performed at the end of a calibration script.
  3833. */
  3834. case 87:
  3835. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3836. break;
  3837. /**
  3838. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3839. */
  3840. case 88:
  3841. break;
  3842. #endif // ENABLE_MESH_BED_LEVELING
  3843. case 90: // G90
  3844. relative_mode = false;
  3845. break;
  3846. case 91: // G91
  3847. relative_mode = true;
  3848. break;
  3849. case 92: // G92
  3850. if(!code_seen(axis_codes[E_AXIS]))
  3851. st_synchronize();
  3852. for(int8_t i=0; i < NUM_AXIS; i++) {
  3853. if(code_seen(axis_codes[i])) {
  3854. if(i == E_AXIS) {
  3855. current_position[i] = code_value();
  3856. plan_set_e_position(current_position[E_AXIS]);
  3857. }
  3858. else {
  3859. current_position[i] = code_value()+add_homing[i];
  3860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3861. }
  3862. }
  3863. }
  3864. break;
  3865. case 98: // G98 (activate farm mode)
  3866. farm_mode = 1;
  3867. PingTime = millis();
  3868. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3869. SilentModeMenu = SILENT_MODE_OFF;
  3870. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3871. break;
  3872. case 99: // G99 (deactivate farm mode)
  3873. farm_mode = 0;
  3874. lcd_printer_connected();
  3875. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3876. lcd_update(2);
  3877. break;
  3878. default:
  3879. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3880. }
  3881. } // end if(code_seen('G'))
  3882. else if(code_seen('M'))
  3883. {
  3884. int index;
  3885. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3886. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3887. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3888. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3889. } else
  3890. switch((int)code_value())
  3891. {
  3892. #ifdef ULTIPANEL
  3893. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3894. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3895. {
  3896. char *src = strchr_pointer + 2;
  3897. codenum = 0;
  3898. bool hasP = false, hasS = false;
  3899. if (code_seen('P')) {
  3900. codenum = code_value(); // milliseconds to wait
  3901. hasP = codenum > 0;
  3902. }
  3903. if (code_seen('S')) {
  3904. codenum = code_value() * 1000; // seconds to wait
  3905. hasS = codenum > 0;
  3906. }
  3907. starpos = strchr(src, '*');
  3908. if (starpos != NULL) *(starpos) = '\0';
  3909. while (*src == ' ') ++src;
  3910. if (!hasP && !hasS && *src != '\0') {
  3911. lcd_setstatus(src);
  3912. } else {
  3913. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3914. }
  3915. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3916. st_synchronize();
  3917. previous_millis_cmd = millis();
  3918. if (codenum > 0){
  3919. codenum += millis(); // keep track of when we started waiting
  3920. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3921. while(millis() < codenum && !lcd_clicked()){
  3922. manage_heater();
  3923. manage_inactivity(true);
  3924. lcd_update();
  3925. }
  3926. KEEPALIVE_STATE(IN_HANDLER);
  3927. lcd_ignore_click(false);
  3928. }else{
  3929. if (!lcd_detected())
  3930. break;
  3931. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3932. while(!lcd_clicked()){
  3933. manage_heater();
  3934. manage_inactivity(true);
  3935. lcd_update();
  3936. }
  3937. KEEPALIVE_STATE(IN_HANDLER);
  3938. }
  3939. if (IS_SD_PRINTING)
  3940. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3941. else
  3942. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3943. }
  3944. break;
  3945. #endif
  3946. case 17:
  3947. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3948. enable_x();
  3949. enable_y();
  3950. enable_z();
  3951. enable_e0();
  3952. enable_e1();
  3953. enable_e2();
  3954. break;
  3955. #ifdef SDSUPPORT
  3956. case 20: // M20 - list SD card
  3957. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3958. card.ls();
  3959. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3960. break;
  3961. case 21: // M21 - init SD card
  3962. card.initsd();
  3963. break;
  3964. case 22: //M22 - release SD card
  3965. card.release();
  3966. break;
  3967. case 23: //M23 - Select file
  3968. starpos = (strchr(strchr_pointer + 4,'*'));
  3969. if(starpos!=NULL)
  3970. *(starpos)='\0';
  3971. card.openFile(strchr_pointer + 4,true);
  3972. break;
  3973. case 24: //M24 - Start SD print
  3974. if (!card.paused)
  3975. failstats_reset_print();
  3976. card.startFileprint();
  3977. starttime=millis();
  3978. break;
  3979. case 25: //M25 - Pause SD print
  3980. card.pauseSDPrint();
  3981. break;
  3982. case 26: //M26 - Set SD index
  3983. if(card.cardOK && code_seen('S')) {
  3984. card.setIndex(code_value_long());
  3985. }
  3986. break;
  3987. case 27: //M27 - Get SD status
  3988. card.getStatus();
  3989. break;
  3990. case 28: //M28 - Start SD write
  3991. starpos = (strchr(strchr_pointer + 4,'*'));
  3992. if(starpos != NULL){
  3993. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3994. strchr_pointer = strchr(npos,' ') + 1;
  3995. *(starpos) = '\0';
  3996. }
  3997. card.openFile(strchr_pointer+4,false);
  3998. break;
  3999. case 29: //M29 - Stop SD write
  4000. //processed in write to file routine above
  4001. //card,saving = false;
  4002. break;
  4003. case 30: //M30 <filename> Delete File
  4004. if (card.cardOK){
  4005. card.closefile();
  4006. starpos = (strchr(strchr_pointer + 4,'*'));
  4007. if(starpos != NULL){
  4008. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4009. strchr_pointer = strchr(npos,' ') + 1;
  4010. *(starpos) = '\0';
  4011. }
  4012. card.removeFile(strchr_pointer + 4);
  4013. }
  4014. break;
  4015. case 32: //M32 - Select file and start SD print
  4016. {
  4017. if(card.sdprinting) {
  4018. st_synchronize();
  4019. }
  4020. starpos = (strchr(strchr_pointer + 4,'*'));
  4021. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4022. if(namestartpos==NULL)
  4023. {
  4024. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4025. }
  4026. else
  4027. namestartpos++; //to skip the '!'
  4028. if(starpos!=NULL)
  4029. *(starpos)='\0';
  4030. bool call_procedure=(code_seen('P'));
  4031. if(strchr_pointer>namestartpos)
  4032. call_procedure=false; //false alert, 'P' found within filename
  4033. if( card.cardOK )
  4034. {
  4035. card.openFile(namestartpos,true,!call_procedure);
  4036. if(code_seen('S'))
  4037. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4038. card.setIndex(code_value_long());
  4039. card.startFileprint();
  4040. if(!call_procedure)
  4041. starttime=millis(); //procedure calls count as normal print time.
  4042. }
  4043. } break;
  4044. case 928: //M928 - Start SD write
  4045. starpos = (strchr(strchr_pointer + 5,'*'));
  4046. if(starpos != NULL){
  4047. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4048. strchr_pointer = strchr(npos,' ') + 1;
  4049. *(starpos) = '\0';
  4050. }
  4051. card.openLogFile(strchr_pointer+5);
  4052. break;
  4053. #endif //SDSUPPORT
  4054. case 31: //M31 take time since the start of the SD print or an M109 command
  4055. {
  4056. stoptime=millis();
  4057. char time[30];
  4058. unsigned long t=(stoptime-starttime)/1000;
  4059. int sec,min;
  4060. min=t/60;
  4061. sec=t%60;
  4062. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4063. SERIAL_ECHO_START;
  4064. SERIAL_ECHOLN(time);
  4065. lcd_setstatus(time);
  4066. autotempShutdown();
  4067. }
  4068. break;
  4069. #ifndef _DISABLE_M42_M226
  4070. case 42: //M42 -Change pin status via gcode
  4071. if (code_seen('S'))
  4072. {
  4073. int pin_status = code_value();
  4074. int pin_number = LED_PIN;
  4075. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4076. pin_number = code_value();
  4077. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4078. {
  4079. if (sensitive_pins[i] == pin_number)
  4080. {
  4081. pin_number = -1;
  4082. break;
  4083. }
  4084. }
  4085. #if defined(FAN_PIN) && FAN_PIN > -1
  4086. if (pin_number == FAN_PIN)
  4087. fanSpeed = pin_status;
  4088. #endif
  4089. if (pin_number > -1)
  4090. {
  4091. pinMode(pin_number, OUTPUT);
  4092. digitalWrite(pin_number, pin_status);
  4093. analogWrite(pin_number, pin_status);
  4094. }
  4095. }
  4096. break;
  4097. #endif //_DISABLE_M42_M226
  4098. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4099. // Reset the baby step value and the baby step applied flag.
  4100. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4101. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4102. // Reset the skew and offset in both RAM and EEPROM.
  4103. reset_bed_offset_and_skew();
  4104. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4105. // the planner will not perform any adjustments in the XY plane.
  4106. // Wait for the motors to stop and update the current position with the absolute values.
  4107. world2machine_revert_to_uncorrected();
  4108. break;
  4109. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4110. {
  4111. int8_t verbosity_level = 0;
  4112. bool only_Z = code_seen('Z');
  4113. #ifdef SUPPORT_VERBOSITY
  4114. if (code_seen('V'))
  4115. {
  4116. // Just 'V' without a number counts as V1.
  4117. char c = strchr_pointer[1];
  4118. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4119. }
  4120. #endif //SUPPORT_VERBOSITY
  4121. gcode_M45(only_Z, verbosity_level);
  4122. }
  4123. break;
  4124. /*
  4125. case 46:
  4126. {
  4127. // M46: Prusa3D: Show the assigned IP address.
  4128. uint8_t ip[4];
  4129. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4130. if (hasIP) {
  4131. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4132. SERIAL_ECHO(int(ip[0]));
  4133. SERIAL_ECHOPGM(".");
  4134. SERIAL_ECHO(int(ip[1]));
  4135. SERIAL_ECHOPGM(".");
  4136. SERIAL_ECHO(int(ip[2]));
  4137. SERIAL_ECHOPGM(".");
  4138. SERIAL_ECHO(int(ip[3]));
  4139. SERIAL_ECHOLNPGM("");
  4140. } else {
  4141. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4142. }
  4143. break;
  4144. }
  4145. */
  4146. case 47:
  4147. // M47: Prusa3D: Show end stops dialog on the display.
  4148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4149. lcd_diag_show_end_stops();
  4150. KEEPALIVE_STATE(IN_HANDLER);
  4151. break;
  4152. #if 0
  4153. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4154. {
  4155. // Disable the default update procedure of the display. We will do a modal dialog.
  4156. lcd_update_enable(false);
  4157. // Let the planner use the uncorrected coordinates.
  4158. mbl.reset();
  4159. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4160. // the planner will not perform any adjustments in the XY plane.
  4161. // Wait for the motors to stop and update the current position with the absolute values.
  4162. world2machine_revert_to_uncorrected();
  4163. // Move the print head close to the bed.
  4164. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4166. st_synchronize();
  4167. // Home in the XY plane.
  4168. set_destination_to_current();
  4169. setup_for_endstop_move();
  4170. home_xy();
  4171. int8_t verbosity_level = 0;
  4172. if (code_seen('V')) {
  4173. // Just 'V' without a number counts as V1.
  4174. char c = strchr_pointer[1];
  4175. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4176. }
  4177. bool success = scan_bed_induction_points(verbosity_level);
  4178. clean_up_after_endstop_move();
  4179. // Print head up.
  4180. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4182. st_synchronize();
  4183. lcd_update_enable(true);
  4184. break;
  4185. }
  4186. #endif
  4187. // M48 Z-Probe repeatability measurement function.
  4188. //
  4189. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4190. //
  4191. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4192. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4193. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4194. // regenerated.
  4195. //
  4196. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4197. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4198. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4199. //
  4200. #ifdef ENABLE_AUTO_BED_LEVELING
  4201. #ifdef Z_PROBE_REPEATABILITY_TEST
  4202. case 48: // M48 Z-Probe repeatability
  4203. {
  4204. #if Z_MIN_PIN == -1
  4205. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4206. #endif
  4207. double sum=0.0;
  4208. double mean=0.0;
  4209. double sigma=0.0;
  4210. double sample_set[50];
  4211. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4212. double X_current, Y_current, Z_current;
  4213. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4214. if (code_seen('V') || code_seen('v')) {
  4215. verbose_level = code_value();
  4216. if (verbose_level<0 || verbose_level>4 ) {
  4217. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4218. goto Sigma_Exit;
  4219. }
  4220. }
  4221. if (verbose_level > 0) {
  4222. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4223. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4224. }
  4225. if (code_seen('n')) {
  4226. n_samples = code_value();
  4227. if (n_samples<4 || n_samples>50 ) {
  4228. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4229. goto Sigma_Exit;
  4230. }
  4231. }
  4232. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4233. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4234. Z_current = st_get_position_mm(Z_AXIS);
  4235. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4236. ext_position = st_get_position_mm(E_AXIS);
  4237. if (code_seen('X') || code_seen('x') ) {
  4238. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4239. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4240. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4241. goto Sigma_Exit;
  4242. }
  4243. }
  4244. if (code_seen('Y') || code_seen('y') ) {
  4245. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4246. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4247. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4248. goto Sigma_Exit;
  4249. }
  4250. }
  4251. if (code_seen('L') || code_seen('l') ) {
  4252. n_legs = code_value();
  4253. if ( n_legs==1 )
  4254. n_legs = 2;
  4255. if ( n_legs<0 || n_legs>15 ) {
  4256. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4257. goto Sigma_Exit;
  4258. }
  4259. }
  4260. //
  4261. // Do all the preliminary setup work. First raise the probe.
  4262. //
  4263. st_synchronize();
  4264. plan_bed_level_matrix.set_to_identity();
  4265. plan_buffer_line( X_current, Y_current, Z_start_location,
  4266. ext_position,
  4267. homing_feedrate[Z_AXIS]/60,
  4268. active_extruder);
  4269. st_synchronize();
  4270. //
  4271. // Now get everything to the specified probe point So we can safely do a probe to
  4272. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4273. // use that as a starting point for each probe.
  4274. //
  4275. if (verbose_level > 2)
  4276. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4277. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4278. ext_position,
  4279. homing_feedrate[X_AXIS]/60,
  4280. active_extruder);
  4281. st_synchronize();
  4282. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4283. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4284. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4285. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4286. //
  4287. // OK, do the inital probe to get us close to the bed.
  4288. // Then retrace the right amount and use that in subsequent probes
  4289. //
  4290. setup_for_endstop_move();
  4291. run_z_probe();
  4292. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4293. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4294. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4295. ext_position,
  4296. homing_feedrate[X_AXIS]/60,
  4297. active_extruder);
  4298. st_synchronize();
  4299. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4300. for( n=0; n<n_samples; n++) {
  4301. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4302. if ( n_legs) {
  4303. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4304. int rotational_direction, l;
  4305. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4306. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4307. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4308. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4309. //SERIAL_ECHOPAIR(" theta: ",theta);
  4310. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4311. //SERIAL_PROTOCOLLNPGM("");
  4312. for( l=0; l<n_legs-1; l++) {
  4313. if (rotational_direction==1)
  4314. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4315. else
  4316. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4317. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4318. if ( radius<0.0 )
  4319. radius = -radius;
  4320. X_current = X_probe_location + cos(theta) * radius;
  4321. Y_current = Y_probe_location + sin(theta) * radius;
  4322. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4323. X_current = X_MIN_POS;
  4324. if ( X_current>X_MAX_POS)
  4325. X_current = X_MAX_POS;
  4326. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4327. Y_current = Y_MIN_POS;
  4328. if ( Y_current>Y_MAX_POS)
  4329. Y_current = Y_MAX_POS;
  4330. if (verbose_level>3 ) {
  4331. SERIAL_ECHOPAIR("x: ", X_current);
  4332. SERIAL_ECHOPAIR("y: ", Y_current);
  4333. SERIAL_PROTOCOLLNPGM("");
  4334. }
  4335. do_blocking_move_to( X_current, Y_current, Z_current );
  4336. }
  4337. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4338. }
  4339. setup_for_endstop_move();
  4340. run_z_probe();
  4341. sample_set[n] = current_position[Z_AXIS];
  4342. //
  4343. // Get the current mean for the data points we have so far
  4344. //
  4345. sum=0.0;
  4346. for( j=0; j<=n; j++) {
  4347. sum = sum + sample_set[j];
  4348. }
  4349. mean = sum / (double (n+1));
  4350. //
  4351. // Now, use that mean to calculate the standard deviation for the
  4352. // data points we have so far
  4353. //
  4354. sum=0.0;
  4355. for( j=0; j<=n; j++) {
  4356. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4357. }
  4358. sigma = sqrt( sum / (double (n+1)) );
  4359. if (verbose_level > 1) {
  4360. SERIAL_PROTOCOL(n+1);
  4361. SERIAL_PROTOCOL(" of ");
  4362. SERIAL_PROTOCOL(n_samples);
  4363. SERIAL_PROTOCOLPGM(" z: ");
  4364. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4365. }
  4366. if (verbose_level > 2) {
  4367. SERIAL_PROTOCOL(" mean: ");
  4368. SERIAL_PROTOCOL_F(mean,6);
  4369. SERIAL_PROTOCOL(" sigma: ");
  4370. SERIAL_PROTOCOL_F(sigma,6);
  4371. }
  4372. if (verbose_level > 0)
  4373. SERIAL_PROTOCOLPGM("\n");
  4374. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4375. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4376. st_synchronize();
  4377. }
  4378. delay(1000);
  4379. clean_up_after_endstop_move();
  4380. // enable_endstops(true);
  4381. if (verbose_level > 0) {
  4382. SERIAL_PROTOCOLPGM("Mean: ");
  4383. SERIAL_PROTOCOL_F(mean, 6);
  4384. SERIAL_PROTOCOLPGM("\n");
  4385. }
  4386. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4387. SERIAL_PROTOCOL_F(sigma, 6);
  4388. SERIAL_PROTOCOLPGM("\n\n");
  4389. Sigma_Exit:
  4390. break;
  4391. }
  4392. #endif // Z_PROBE_REPEATABILITY_TEST
  4393. #endif // ENABLE_AUTO_BED_LEVELING
  4394. case 104: // M104
  4395. if(setTargetedHotend(104)){
  4396. break;
  4397. }
  4398. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4399. setWatch();
  4400. break;
  4401. case 112: // M112 -Emergency Stop
  4402. kill(_n(""), 3);
  4403. break;
  4404. case 140: // M140 set bed temp
  4405. if (code_seen('S')) setTargetBed(code_value());
  4406. break;
  4407. case 105 : // M105
  4408. if(setTargetedHotend(105)){
  4409. break;
  4410. }
  4411. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4412. SERIAL_PROTOCOLPGM("ok T:");
  4413. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4414. SERIAL_PROTOCOLPGM(" /");
  4415. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4416. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4417. SERIAL_PROTOCOLPGM(" B:");
  4418. SERIAL_PROTOCOL_F(degBed(),1);
  4419. SERIAL_PROTOCOLPGM(" /");
  4420. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4421. #endif //TEMP_BED_PIN
  4422. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4423. SERIAL_PROTOCOLPGM(" T");
  4424. SERIAL_PROTOCOL(cur_extruder);
  4425. SERIAL_PROTOCOLPGM(":");
  4426. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4427. SERIAL_PROTOCOLPGM(" /");
  4428. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4429. }
  4430. #else
  4431. SERIAL_ERROR_START;
  4432. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4433. #endif
  4434. SERIAL_PROTOCOLPGM(" @:");
  4435. #ifdef EXTRUDER_WATTS
  4436. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4437. SERIAL_PROTOCOLPGM("W");
  4438. #else
  4439. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4440. #endif
  4441. SERIAL_PROTOCOLPGM(" B@:");
  4442. #ifdef BED_WATTS
  4443. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4444. SERIAL_PROTOCOLPGM("W");
  4445. #else
  4446. SERIAL_PROTOCOL(getHeaterPower(-1));
  4447. #endif
  4448. #ifdef PINDA_THERMISTOR
  4449. SERIAL_PROTOCOLPGM(" P:");
  4450. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4451. #endif //PINDA_THERMISTOR
  4452. #ifdef AMBIENT_THERMISTOR
  4453. SERIAL_PROTOCOLPGM(" A:");
  4454. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4455. #endif //AMBIENT_THERMISTOR
  4456. #ifdef SHOW_TEMP_ADC_VALUES
  4457. {float raw = 0.0;
  4458. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4459. SERIAL_PROTOCOLPGM(" ADC B:");
  4460. SERIAL_PROTOCOL_F(degBed(),1);
  4461. SERIAL_PROTOCOLPGM("C->");
  4462. raw = rawBedTemp();
  4463. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4464. SERIAL_PROTOCOLPGM(" Rb->");
  4465. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4466. SERIAL_PROTOCOLPGM(" Rxb->");
  4467. SERIAL_PROTOCOL_F(raw, 5);
  4468. #endif
  4469. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4470. SERIAL_PROTOCOLPGM(" T");
  4471. SERIAL_PROTOCOL(cur_extruder);
  4472. SERIAL_PROTOCOLPGM(":");
  4473. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4474. SERIAL_PROTOCOLPGM("C->");
  4475. raw = rawHotendTemp(cur_extruder);
  4476. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4477. SERIAL_PROTOCOLPGM(" Rt");
  4478. SERIAL_PROTOCOL(cur_extruder);
  4479. SERIAL_PROTOCOLPGM("->");
  4480. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4481. SERIAL_PROTOCOLPGM(" Rx");
  4482. SERIAL_PROTOCOL(cur_extruder);
  4483. SERIAL_PROTOCOLPGM("->");
  4484. SERIAL_PROTOCOL_F(raw, 5);
  4485. }}
  4486. #endif
  4487. SERIAL_PROTOCOLLN("");
  4488. KEEPALIVE_STATE(NOT_BUSY);
  4489. return;
  4490. break;
  4491. case 109:
  4492. {// M109 - Wait for extruder heater to reach target.
  4493. if(setTargetedHotend(109)){
  4494. break;
  4495. }
  4496. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4497. heating_status = 1;
  4498. if (farm_mode) { prusa_statistics(1); };
  4499. #ifdef AUTOTEMP
  4500. autotemp_enabled=false;
  4501. #endif
  4502. if (code_seen('S')) {
  4503. setTargetHotend(code_value(), tmp_extruder);
  4504. CooldownNoWait = true;
  4505. } else if (code_seen('R')) {
  4506. setTargetHotend(code_value(), tmp_extruder);
  4507. CooldownNoWait = false;
  4508. }
  4509. #ifdef AUTOTEMP
  4510. if (code_seen('S')) autotemp_min=code_value();
  4511. if (code_seen('B')) autotemp_max=code_value();
  4512. if (code_seen('F'))
  4513. {
  4514. autotemp_factor=code_value();
  4515. autotemp_enabled=true;
  4516. }
  4517. #endif
  4518. setWatch();
  4519. codenum = millis();
  4520. /* See if we are heating up or cooling down */
  4521. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4522. KEEPALIVE_STATE(NOT_BUSY);
  4523. cancel_heatup = false;
  4524. wait_for_heater(codenum); //loops until target temperature is reached
  4525. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4526. KEEPALIVE_STATE(IN_HANDLER);
  4527. heating_status = 2;
  4528. if (farm_mode) { prusa_statistics(2); };
  4529. //starttime=millis();
  4530. previous_millis_cmd = millis();
  4531. }
  4532. break;
  4533. case 190: // M190 - Wait for bed heater to reach target.
  4534. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4535. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4536. heating_status = 3;
  4537. if (farm_mode) { prusa_statistics(1); };
  4538. if (code_seen('S'))
  4539. {
  4540. setTargetBed(code_value());
  4541. CooldownNoWait = true;
  4542. }
  4543. else if (code_seen('R'))
  4544. {
  4545. setTargetBed(code_value());
  4546. CooldownNoWait = false;
  4547. }
  4548. codenum = millis();
  4549. cancel_heatup = false;
  4550. target_direction = isHeatingBed(); // true if heating, false if cooling
  4551. KEEPALIVE_STATE(NOT_BUSY);
  4552. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4553. {
  4554. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4555. {
  4556. if (!farm_mode) {
  4557. float tt = degHotend(active_extruder);
  4558. SERIAL_PROTOCOLPGM("T:");
  4559. SERIAL_PROTOCOL(tt);
  4560. SERIAL_PROTOCOLPGM(" E:");
  4561. SERIAL_PROTOCOL((int)active_extruder);
  4562. SERIAL_PROTOCOLPGM(" B:");
  4563. SERIAL_PROTOCOL_F(degBed(), 1);
  4564. SERIAL_PROTOCOLLN("");
  4565. }
  4566. codenum = millis();
  4567. }
  4568. manage_heater();
  4569. manage_inactivity();
  4570. lcd_update();
  4571. }
  4572. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4573. KEEPALIVE_STATE(IN_HANDLER);
  4574. heating_status = 4;
  4575. previous_millis_cmd = millis();
  4576. #endif
  4577. break;
  4578. #if defined(FAN_PIN) && FAN_PIN > -1
  4579. case 106: //M106 Fan On
  4580. if (code_seen('S')){
  4581. fanSpeed=constrain(code_value(),0,255);
  4582. }
  4583. else {
  4584. fanSpeed=255;
  4585. }
  4586. break;
  4587. case 107: //M107 Fan Off
  4588. fanSpeed = 0;
  4589. break;
  4590. #endif //FAN_PIN
  4591. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4592. case 80: // M80 - Turn on Power Supply
  4593. SET_OUTPUT(PS_ON_PIN); //GND
  4594. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4595. // If you have a switch on suicide pin, this is useful
  4596. // if you want to start another print with suicide feature after
  4597. // a print without suicide...
  4598. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4599. SET_OUTPUT(SUICIDE_PIN);
  4600. WRITE(SUICIDE_PIN, HIGH);
  4601. #endif
  4602. #ifdef ULTIPANEL
  4603. powersupply = true;
  4604. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4605. lcd_update();
  4606. #endif
  4607. break;
  4608. #endif
  4609. case 81: // M81 - Turn off Power Supply
  4610. disable_heater();
  4611. st_synchronize();
  4612. disable_e0();
  4613. disable_e1();
  4614. disable_e2();
  4615. finishAndDisableSteppers();
  4616. fanSpeed = 0;
  4617. delay(1000); // Wait a little before to switch off
  4618. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4619. st_synchronize();
  4620. suicide();
  4621. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4622. SET_OUTPUT(PS_ON_PIN);
  4623. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4624. #endif
  4625. #ifdef ULTIPANEL
  4626. powersupply = false;
  4627. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4628. lcd_update();
  4629. #endif
  4630. break;
  4631. case 82:
  4632. axis_relative_modes[3] = false;
  4633. break;
  4634. case 83:
  4635. axis_relative_modes[3] = true;
  4636. break;
  4637. case 18: //compatibility
  4638. case 84: // M84
  4639. if(code_seen('S')){
  4640. stepper_inactive_time = code_value() * 1000;
  4641. }
  4642. else
  4643. {
  4644. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4645. if(all_axis)
  4646. {
  4647. st_synchronize();
  4648. disable_e0();
  4649. disable_e1();
  4650. disable_e2();
  4651. finishAndDisableSteppers();
  4652. }
  4653. else
  4654. {
  4655. st_synchronize();
  4656. if (code_seen('X')) disable_x();
  4657. if (code_seen('Y')) disable_y();
  4658. if (code_seen('Z')) disable_z();
  4659. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4660. if (code_seen('E')) {
  4661. disable_e0();
  4662. disable_e1();
  4663. disable_e2();
  4664. }
  4665. #endif
  4666. }
  4667. }
  4668. snmm_filaments_used = 0;
  4669. break;
  4670. case 85: // M85
  4671. if(code_seen('S')) {
  4672. max_inactive_time = code_value() * 1000;
  4673. }
  4674. break;
  4675. case 92: // M92
  4676. for(int8_t i=0; i < NUM_AXIS; i++)
  4677. {
  4678. if(code_seen(axis_codes[i]))
  4679. {
  4680. if(i == 3) { // E
  4681. float value = code_value();
  4682. if(value < 20.0) {
  4683. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4684. max_jerk[E_AXIS] *= factor;
  4685. max_feedrate[i] *= factor;
  4686. axis_steps_per_sqr_second[i] *= factor;
  4687. }
  4688. axis_steps_per_unit[i] = value;
  4689. }
  4690. else {
  4691. axis_steps_per_unit[i] = code_value();
  4692. }
  4693. }
  4694. }
  4695. break;
  4696. case 110: // M110 - reset line pos
  4697. if (code_seen('N'))
  4698. gcode_LastN = code_value_long();
  4699. break;
  4700. #ifdef HOST_KEEPALIVE_FEATURE
  4701. case 113: // M113 - Get or set Host Keepalive interval
  4702. if (code_seen('S')) {
  4703. host_keepalive_interval = (uint8_t)code_value_short();
  4704. // NOMORE(host_keepalive_interval, 60);
  4705. }
  4706. else {
  4707. SERIAL_ECHO_START;
  4708. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4709. SERIAL_PROTOCOLLN("");
  4710. }
  4711. break;
  4712. #endif
  4713. case 115: // M115
  4714. if (code_seen('V')) {
  4715. // Report the Prusa version number.
  4716. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4717. } else if (code_seen('U')) {
  4718. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4719. // pause the print and ask the user to upgrade the firmware.
  4720. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4721. } else {
  4722. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4723. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4724. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4725. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4726. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4727. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4728. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4729. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4730. SERIAL_ECHOPGM(" UUID:");
  4731. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4732. }
  4733. break;
  4734. /* case 117: // M117 display message
  4735. starpos = (strchr(strchr_pointer + 5,'*'));
  4736. if(starpos!=NULL)
  4737. *(starpos)='\0';
  4738. lcd_setstatus(strchr_pointer + 5);
  4739. break;*/
  4740. case 114: // M114
  4741. gcode_M114();
  4742. break;
  4743. case 120: // M120
  4744. enable_endstops(false) ;
  4745. break;
  4746. case 121: // M121
  4747. enable_endstops(true) ;
  4748. break;
  4749. case 119: // M119
  4750. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4751. SERIAL_PROTOCOLLN("");
  4752. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4753. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4754. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4755. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4756. }else{
  4757. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4758. }
  4759. SERIAL_PROTOCOLLN("");
  4760. #endif
  4761. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4762. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4763. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4764. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4765. }else{
  4766. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4767. }
  4768. SERIAL_PROTOCOLLN("");
  4769. #endif
  4770. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4771. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4772. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4773. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4774. }else{
  4775. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4776. }
  4777. SERIAL_PROTOCOLLN("");
  4778. #endif
  4779. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4780. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4781. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4782. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4783. }else{
  4784. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4785. }
  4786. SERIAL_PROTOCOLLN("");
  4787. #endif
  4788. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4789. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4790. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4791. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4792. }else{
  4793. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4794. }
  4795. SERIAL_PROTOCOLLN("");
  4796. #endif
  4797. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4798. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4799. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4800. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4801. }else{
  4802. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4803. }
  4804. SERIAL_PROTOCOLLN("");
  4805. #endif
  4806. break;
  4807. //TODO: update for all axis, use for loop
  4808. #ifdef BLINKM
  4809. case 150: // M150
  4810. {
  4811. byte red;
  4812. byte grn;
  4813. byte blu;
  4814. if(code_seen('R')) red = code_value();
  4815. if(code_seen('U')) grn = code_value();
  4816. if(code_seen('B')) blu = code_value();
  4817. SendColors(red,grn,blu);
  4818. }
  4819. break;
  4820. #endif //BLINKM
  4821. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4822. {
  4823. tmp_extruder = active_extruder;
  4824. if(code_seen('T')) {
  4825. tmp_extruder = code_value();
  4826. if(tmp_extruder >= EXTRUDERS) {
  4827. SERIAL_ECHO_START;
  4828. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4829. break;
  4830. }
  4831. }
  4832. float area = .0;
  4833. if(code_seen('D')) {
  4834. float diameter = (float)code_value();
  4835. if (diameter == 0.0) {
  4836. // setting any extruder filament size disables volumetric on the assumption that
  4837. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4838. // for all extruders
  4839. volumetric_enabled = false;
  4840. } else {
  4841. filament_size[tmp_extruder] = (float)code_value();
  4842. // make sure all extruders have some sane value for the filament size
  4843. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4844. #if EXTRUDERS > 1
  4845. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4846. #if EXTRUDERS > 2
  4847. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4848. #endif
  4849. #endif
  4850. volumetric_enabled = true;
  4851. }
  4852. } else {
  4853. //reserved for setting filament diameter via UFID or filament measuring device
  4854. break;
  4855. }
  4856. calculate_extruder_multipliers();
  4857. }
  4858. break;
  4859. case 201: // M201
  4860. for(int8_t i=0; i < NUM_AXIS; i++)
  4861. {
  4862. if(code_seen(axis_codes[i]))
  4863. {
  4864. max_acceleration_units_per_sq_second[i] = code_value();
  4865. }
  4866. }
  4867. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4868. reset_acceleration_rates();
  4869. break;
  4870. #if 0 // Not used for Sprinter/grbl gen6
  4871. case 202: // M202
  4872. for(int8_t i=0; i < NUM_AXIS; i++) {
  4873. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4874. }
  4875. break;
  4876. #endif
  4877. case 203: // M203 max feedrate mm/sec
  4878. for(int8_t i=0; i < NUM_AXIS; i++) {
  4879. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4880. }
  4881. break;
  4882. case 204: // M204 acclereration S normal moves T filmanent only moves
  4883. {
  4884. if(code_seen('S')) acceleration = code_value() ;
  4885. if(code_seen('T')) retract_acceleration = code_value() ;
  4886. }
  4887. break;
  4888. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4889. {
  4890. if(code_seen('S')) minimumfeedrate = code_value();
  4891. if(code_seen('T')) mintravelfeedrate = code_value();
  4892. if(code_seen('B')) minsegmenttime = code_value() ;
  4893. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4894. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4895. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4896. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4897. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4898. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4899. }
  4900. break;
  4901. case 206: // M206 additional homing offset
  4902. for(int8_t i=0; i < 3; i++)
  4903. {
  4904. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4905. }
  4906. break;
  4907. #ifdef FWRETRACT
  4908. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4909. {
  4910. if(code_seen('S'))
  4911. {
  4912. retract_length = code_value() ;
  4913. }
  4914. if(code_seen('F'))
  4915. {
  4916. retract_feedrate = code_value()/60 ;
  4917. }
  4918. if(code_seen('Z'))
  4919. {
  4920. retract_zlift = code_value() ;
  4921. }
  4922. }break;
  4923. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4924. {
  4925. if(code_seen('S'))
  4926. {
  4927. retract_recover_length = code_value() ;
  4928. }
  4929. if(code_seen('F'))
  4930. {
  4931. retract_recover_feedrate = code_value()/60 ;
  4932. }
  4933. }break;
  4934. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4935. {
  4936. if(code_seen('S'))
  4937. {
  4938. int t= code_value() ;
  4939. switch(t)
  4940. {
  4941. case 0:
  4942. {
  4943. autoretract_enabled=false;
  4944. retracted[0]=false;
  4945. #if EXTRUDERS > 1
  4946. retracted[1]=false;
  4947. #endif
  4948. #if EXTRUDERS > 2
  4949. retracted[2]=false;
  4950. #endif
  4951. }break;
  4952. case 1:
  4953. {
  4954. autoretract_enabled=true;
  4955. retracted[0]=false;
  4956. #if EXTRUDERS > 1
  4957. retracted[1]=false;
  4958. #endif
  4959. #if EXTRUDERS > 2
  4960. retracted[2]=false;
  4961. #endif
  4962. }break;
  4963. default:
  4964. SERIAL_ECHO_START;
  4965. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4966. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4967. SERIAL_ECHOLNPGM("\"(1)");
  4968. }
  4969. }
  4970. }break;
  4971. #endif // FWRETRACT
  4972. #if EXTRUDERS > 1
  4973. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4974. {
  4975. if(setTargetedHotend(218)){
  4976. break;
  4977. }
  4978. if(code_seen('X'))
  4979. {
  4980. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4981. }
  4982. if(code_seen('Y'))
  4983. {
  4984. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4985. }
  4986. SERIAL_ECHO_START;
  4987. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4988. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4989. {
  4990. SERIAL_ECHO(" ");
  4991. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4992. SERIAL_ECHO(",");
  4993. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4994. }
  4995. SERIAL_ECHOLN("");
  4996. }break;
  4997. #endif
  4998. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4999. {
  5000. if(code_seen('S'))
  5001. {
  5002. feedmultiply = code_value() ;
  5003. }
  5004. }
  5005. break;
  5006. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5007. {
  5008. if(code_seen('S'))
  5009. {
  5010. int tmp_code = code_value();
  5011. if (code_seen('T'))
  5012. {
  5013. if(setTargetedHotend(221)){
  5014. break;
  5015. }
  5016. extruder_multiply[tmp_extruder] = tmp_code;
  5017. }
  5018. else
  5019. {
  5020. extrudemultiply = tmp_code ;
  5021. }
  5022. }
  5023. calculate_extruder_multipliers();
  5024. }
  5025. break;
  5026. #ifndef _DISABLE_M42_M226
  5027. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5028. {
  5029. if(code_seen('P')){
  5030. int pin_number = code_value(); // pin number
  5031. int pin_state = -1; // required pin state - default is inverted
  5032. if(code_seen('S')) pin_state = code_value(); // required pin state
  5033. if(pin_state >= -1 && pin_state <= 1){
  5034. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5035. {
  5036. if (sensitive_pins[i] == pin_number)
  5037. {
  5038. pin_number = -1;
  5039. break;
  5040. }
  5041. }
  5042. if (pin_number > -1)
  5043. {
  5044. int target = LOW;
  5045. st_synchronize();
  5046. pinMode(pin_number, INPUT);
  5047. switch(pin_state){
  5048. case 1:
  5049. target = HIGH;
  5050. break;
  5051. case 0:
  5052. target = LOW;
  5053. break;
  5054. case -1:
  5055. target = !digitalRead(pin_number);
  5056. break;
  5057. }
  5058. while(digitalRead(pin_number) != target){
  5059. manage_heater();
  5060. manage_inactivity();
  5061. lcd_update();
  5062. }
  5063. }
  5064. }
  5065. }
  5066. }
  5067. break;
  5068. #endif //_DISABLE_M42_M226
  5069. #if NUM_SERVOS > 0
  5070. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5071. {
  5072. int servo_index = -1;
  5073. int servo_position = 0;
  5074. if (code_seen('P'))
  5075. servo_index = code_value();
  5076. if (code_seen('S')) {
  5077. servo_position = code_value();
  5078. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5079. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5080. servos[servo_index].attach(0);
  5081. #endif
  5082. servos[servo_index].write(servo_position);
  5083. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5084. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5085. servos[servo_index].detach();
  5086. #endif
  5087. }
  5088. else {
  5089. SERIAL_ECHO_START;
  5090. SERIAL_ECHO("Servo ");
  5091. SERIAL_ECHO(servo_index);
  5092. SERIAL_ECHOLN(" out of range");
  5093. }
  5094. }
  5095. else if (servo_index >= 0) {
  5096. SERIAL_PROTOCOL(_T(MSG_OK));
  5097. SERIAL_PROTOCOL(" Servo ");
  5098. SERIAL_PROTOCOL(servo_index);
  5099. SERIAL_PROTOCOL(": ");
  5100. SERIAL_PROTOCOL(servos[servo_index].read());
  5101. SERIAL_PROTOCOLLN("");
  5102. }
  5103. }
  5104. break;
  5105. #endif // NUM_SERVOS > 0
  5106. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5107. case 300: // M300
  5108. {
  5109. int beepS = code_seen('S') ? code_value() : 110;
  5110. int beepP = code_seen('P') ? code_value() : 1000;
  5111. if (beepS > 0)
  5112. {
  5113. #if BEEPER > 0
  5114. tone(BEEPER, beepS);
  5115. delay(beepP);
  5116. noTone(BEEPER);
  5117. #elif defined(ULTRALCD)
  5118. lcd_buzz(beepS, beepP);
  5119. #elif defined(LCD_USE_I2C_BUZZER)
  5120. lcd_buzz(beepP, beepS);
  5121. #endif
  5122. }
  5123. else
  5124. {
  5125. delay(beepP);
  5126. }
  5127. }
  5128. break;
  5129. #endif // M300
  5130. #ifdef PIDTEMP
  5131. case 301: // M301
  5132. {
  5133. if(code_seen('P')) Kp = code_value();
  5134. if(code_seen('I')) Ki = scalePID_i(code_value());
  5135. if(code_seen('D')) Kd = scalePID_d(code_value());
  5136. #ifdef PID_ADD_EXTRUSION_RATE
  5137. if(code_seen('C')) Kc = code_value();
  5138. #endif
  5139. updatePID();
  5140. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5141. SERIAL_PROTOCOL(" p:");
  5142. SERIAL_PROTOCOL(Kp);
  5143. SERIAL_PROTOCOL(" i:");
  5144. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5145. SERIAL_PROTOCOL(" d:");
  5146. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5147. #ifdef PID_ADD_EXTRUSION_RATE
  5148. SERIAL_PROTOCOL(" c:");
  5149. //Kc does not have scaling applied above, or in resetting defaults
  5150. SERIAL_PROTOCOL(Kc);
  5151. #endif
  5152. SERIAL_PROTOCOLLN("");
  5153. }
  5154. break;
  5155. #endif //PIDTEMP
  5156. #ifdef PIDTEMPBED
  5157. case 304: // M304
  5158. {
  5159. if(code_seen('P')) bedKp = code_value();
  5160. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5161. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5162. updatePID();
  5163. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5164. SERIAL_PROTOCOL(" p:");
  5165. SERIAL_PROTOCOL(bedKp);
  5166. SERIAL_PROTOCOL(" i:");
  5167. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5168. SERIAL_PROTOCOL(" d:");
  5169. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5170. SERIAL_PROTOCOLLN("");
  5171. }
  5172. break;
  5173. #endif //PIDTEMP
  5174. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5175. {
  5176. #ifdef CHDK
  5177. SET_OUTPUT(CHDK);
  5178. WRITE(CHDK, HIGH);
  5179. chdkHigh = millis();
  5180. chdkActive = true;
  5181. #else
  5182. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5183. const uint8_t NUM_PULSES=16;
  5184. const float PULSE_LENGTH=0.01524;
  5185. for(int i=0; i < NUM_PULSES; i++) {
  5186. WRITE(PHOTOGRAPH_PIN, HIGH);
  5187. _delay_ms(PULSE_LENGTH);
  5188. WRITE(PHOTOGRAPH_PIN, LOW);
  5189. _delay_ms(PULSE_LENGTH);
  5190. }
  5191. delay(7.33);
  5192. for(int i=0; i < NUM_PULSES; i++) {
  5193. WRITE(PHOTOGRAPH_PIN, HIGH);
  5194. _delay_ms(PULSE_LENGTH);
  5195. WRITE(PHOTOGRAPH_PIN, LOW);
  5196. _delay_ms(PULSE_LENGTH);
  5197. }
  5198. #endif
  5199. #endif //chdk end if
  5200. }
  5201. break;
  5202. #ifdef DOGLCD
  5203. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5204. {
  5205. if (code_seen('C')) {
  5206. lcd_setcontrast( ((int)code_value())&63 );
  5207. }
  5208. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5209. SERIAL_PROTOCOL(lcd_contrast);
  5210. SERIAL_PROTOCOLLN("");
  5211. }
  5212. break;
  5213. #endif
  5214. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5215. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5216. {
  5217. float temp = .0;
  5218. if (code_seen('S')) temp=code_value();
  5219. set_extrude_min_temp(temp);
  5220. }
  5221. break;
  5222. #endif
  5223. case 303: // M303 PID autotune
  5224. {
  5225. float temp = 150.0;
  5226. int e=0;
  5227. int c=5;
  5228. if (code_seen('E')) e=code_value();
  5229. if (e<0)
  5230. temp=70;
  5231. if (code_seen('S')) temp=code_value();
  5232. if (code_seen('C')) c=code_value();
  5233. PID_autotune(temp, e, c);
  5234. }
  5235. break;
  5236. case 400: // M400 finish all moves
  5237. {
  5238. st_synchronize();
  5239. }
  5240. break;
  5241. case 500: // M500 Store settings in EEPROM
  5242. {
  5243. Config_StoreSettings(EEPROM_OFFSET);
  5244. }
  5245. break;
  5246. case 501: // M501 Read settings from EEPROM
  5247. {
  5248. Config_RetrieveSettings(EEPROM_OFFSET);
  5249. }
  5250. break;
  5251. case 502: // M502 Revert to default settings
  5252. {
  5253. Config_ResetDefault();
  5254. }
  5255. break;
  5256. case 503: // M503 print settings currently in memory
  5257. {
  5258. Config_PrintSettings();
  5259. }
  5260. break;
  5261. case 509: //M509 Force language selection
  5262. {
  5263. eeprom_update_byte((unsigned char*)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
  5264. SERIAL_ECHO_START;
  5265. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5266. }
  5267. break;
  5268. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5269. case 540:
  5270. {
  5271. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5272. }
  5273. break;
  5274. #endif
  5275. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5276. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5277. {
  5278. float value;
  5279. if (code_seen('Z'))
  5280. {
  5281. value = code_value();
  5282. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5283. {
  5284. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5285. SERIAL_ECHO_START;
  5286. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5287. SERIAL_PROTOCOLLN("");
  5288. }
  5289. else
  5290. {
  5291. SERIAL_ECHO_START;
  5292. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5293. SERIAL_ECHORPGM(MSG_Z_MIN);
  5294. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5295. SERIAL_ECHORPGM(MSG_Z_MAX);
  5296. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5297. SERIAL_PROTOCOLLN("");
  5298. }
  5299. }
  5300. else
  5301. {
  5302. SERIAL_ECHO_START;
  5303. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5304. SERIAL_ECHO(-zprobe_zoffset);
  5305. SERIAL_PROTOCOLLN("");
  5306. }
  5307. break;
  5308. }
  5309. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5310. #ifdef FILAMENTCHANGEENABLE
  5311. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5312. {
  5313. #ifdef PAT9125
  5314. bool old_fsensor_enabled = fsensor_enabled;
  5315. fsensor_enabled = false; //temporary solution for unexpected restarting
  5316. #endif //PAT9125
  5317. st_synchronize();
  5318. float target[4];
  5319. float lastpos[4];
  5320. if (farm_mode)
  5321. {
  5322. prusa_statistics(22);
  5323. }
  5324. feedmultiplyBckp=feedmultiply;
  5325. int8_t TooLowZ = 0;
  5326. float HotendTempBckp = degTargetHotend(active_extruder);
  5327. int fanSpeedBckp = fanSpeed;
  5328. target[X_AXIS]=current_position[X_AXIS];
  5329. target[Y_AXIS]=current_position[Y_AXIS];
  5330. target[Z_AXIS]=current_position[Z_AXIS];
  5331. target[E_AXIS]=current_position[E_AXIS];
  5332. lastpos[X_AXIS]=current_position[X_AXIS];
  5333. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5334. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5335. lastpos[E_AXIS]=current_position[E_AXIS];
  5336. //Restract extruder
  5337. if(code_seen('E'))
  5338. {
  5339. target[E_AXIS]+= code_value();
  5340. }
  5341. else
  5342. {
  5343. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5344. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5345. #endif
  5346. }
  5347. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5348. //Lift Z
  5349. if(code_seen('Z'))
  5350. {
  5351. target[Z_AXIS]+= code_value();
  5352. }
  5353. else
  5354. {
  5355. #ifdef FILAMENTCHANGE_ZADD
  5356. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5357. if(target[Z_AXIS] < 10){
  5358. target[Z_AXIS]+= 10 ;
  5359. TooLowZ = 1;
  5360. }else{
  5361. TooLowZ = 0;
  5362. }
  5363. #endif
  5364. }
  5365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5366. //Move XY to side
  5367. if(code_seen('X'))
  5368. {
  5369. target[X_AXIS]+= code_value();
  5370. }
  5371. else
  5372. {
  5373. #ifdef FILAMENTCHANGE_XPOS
  5374. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5375. #endif
  5376. }
  5377. if(code_seen('Y'))
  5378. {
  5379. target[Y_AXIS]= code_value();
  5380. }
  5381. else
  5382. {
  5383. #ifdef FILAMENTCHANGE_YPOS
  5384. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5385. #endif
  5386. }
  5387. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5388. st_synchronize();
  5389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5390. uint8_t cnt = 0;
  5391. int counterBeep = 0;
  5392. fanSpeed = 0;
  5393. unsigned long waiting_start_time = millis();
  5394. uint8_t wait_for_user_state = 0;
  5395. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5396. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5397. //cnt++;
  5398. manage_heater();
  5399. manage_inactivity(true);
  5400. /*#ifdef SNMM
  5401. target[E_AXIS] += 0.002;
  5402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5403. #endif // SNMM*/
  5404. //if (cnt == 0)
  5405. {
  5406. #if BEEPER > 0
  5407. if (counterBeep == 500) {
  5408. counterBeep = 0;
  5409. }
  5410. SET_OUTPUT(BEEPER);
  5411. if (counterBeep == 0) {
  5412. WRITE(BEEPER, HIGH);
  5413. }
  5414. if (counterBeep == 20) {
  5415. WRITE(BEEPER, LOW);
  5416. }
  5417. counterBeep++;
  5418. #else
  5419. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5420. lcd_buzz(1000 / 6, 100);
  5421. #else
  5422. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5423. #endif
  5424. #endif
  5425. }
  5426. switch (wait_for_user_state) {
  5427. case 0:
  5428. delay_keep_alive(4);
  5429. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5430. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5431. wait_for_user_state = 1;
  5432. setTargetHotend(0, 0);
  5433. setTargetHotend(0, 1);
  5434. setTargetHotend(0, 2);
  5435. st_synchronize();
  5436. disable_e0();
  5437. disable_e1();
  5438. disable_e2();
  5439. }
  5440. break;
  5441. case 1:
  5442. delay_keep_alive(4);
  5443. if (lcd_clicked()) {
  5444. setTargetHotend(HotendTempBckp, active_extruder);
  5445. lcd_wait_for_heater();
  5446. wait_for_user_state = 2;
  5447. }
  5448. break;
  5449. case 2:
  5450. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5451. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5452. waiting_start_time = millis();
  5453. wait_for_user_state = 0;
  5454. }
  5455. else {
  5456. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5457. lcd.setCursor(1, 4);
  5458. lcd.print(ftostr3(degHotend(active_extruder)));
  5459. }
  5460. break;
  5461. }
  5462. }
  5463. WRITE(BEEPER, LOW);
  5464. lcd_change_fil_state = 0;
  5465. // Unload filament
  5466. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5467. KEEPALIVE_STATE(IN_HANDLER);
  5468. custom_message = true;
  5469. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5470. if (code_seen('L'))
  5471. {
  5472. target[E_AXIS] += code_value();
  5473. }
  5474. else
  5475. {
  5476. #ifdef SNMM
  5477. #else
  5478. #ifdef FILAMENTCHANGE_FINALRETRACT
  5479. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5480. #endif
  5481. #endif // SNMM
  5482. }
  5483. #ifdef SNMM
  5484. target[E_AXIS] += 12;
  5485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5486. target[E_AXIS] += 6;
  5487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5488. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5490. st_synchronize();
  5491. target[E_AXIS] += (FIL_COOLING);
  5492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5493. target[E_AXIS] += (FIL_COOLING*-1);
  5494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5495. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5497. st_synchronize();
  5498. #else
  5499. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5500. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5501. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5502. st_synchronize();
  5503. #ifdef TMC2130
  5504. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5505. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5506. #else
  5507. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5508. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5509. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5510. #endif //TMC2130
  5511. target[E_AXIS] -= 45;
  5512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5513. st_synchronize();
  5514. target[E_AXIS] -= 15;
  5515. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5516. st_synchronize();
  5517. target[E_AXIS] -= 20;
  5518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5519. st_synchronize();
  5520. #ifdef TMC2130
  5521. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5522. #else
  5523. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5524. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5525. else st_current_set(2, tmp_motor_loud[2]);
  5526. #endif //TMC2130
  5527. #endif // SNMM
  5528. //finish moves
  5529. st_synchronize();
  5530. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5531. //disable extruder steppers so filament can be removed
  5532. disable_e0();
  5533. disable_e1();
  5534. disable_e2();
  5535. delay(100);
  5536. WRITE(BEEPER, HIGH);
  5537. counterBeep = 0;
  5538. while(!lcd_clicked() && (counterBeep < 50)) {
  5539. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5540. delay_keep_alive(100);
  5541. counterBeep++;
  5542. }
  5543. WRITE(BEEPER, LOW);
  5544. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5545. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5546. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5547. //lcd_return_to_status();
  5548. lcd_update_enable(true);
  5549. //Wait for user to insert filament
  5550. lcd_wait_interact();
  5551. //load_filament_time = millis();
  5552. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5553. #ifdef PAT9125
  5554. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5555. #endif //PAT9125
  5556. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5557. while(!lcd_clicked())
  5558. {
  5559. manage_heater();
  5560. manage_inactivity(true);
  5561. #ifdef PAT9125
  5562. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5563. {
  5564. tone(BEEPER, 1000);
  5565. delay_keep_alive(50);
  5566. noTone(BEEPER);
  5567. break;
  5568. }
  5569. #endif //PAT9125
  5570. /*#ifdef SNMM
  5571. target[E_AXIS] += 0.002;
  5572. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5573. #endif // SNMM*/
  5574. }
  5575. #ifdef PAT9125
  5576. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5577. #endif //PAT9125
  5578. //WRITE(BEEPER, LOW);
  5579. KEEPALIVE_STATE(IN_HANDLER);
  5580. #ifdef SNMM
  5581. display_loading();
  5582. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5583. do {
  5584. target[E_AXIS] += 0.002;
  5585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5586. delay_keep_alive(2);
  5587. } while (!lcd_clicked());
  5588. KEEPALIVE_STATE(IN_HANDLER);
  5589. /*if (millis() - load_filament_time > 2) {
  5590. load_filament_time = millis();
  5591. target[E_AXIS] += 0.001;
  5592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5593. }*/
  5594. //Filament inserted
  5595. //Feed the filament to the end of nozzle quickly
  5596. st_synchronize();
  5597. target[E_AXIS] += bowden_length[snmm_extruder];
  5598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5599. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5601. target[E_AXIS] += 40;
  5602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5603. target[E_AXIS] += 10;
  5604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5605. #else
  5606. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5608. #endif // SNMM
  5609. //Extrude some filament
  5610. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5612. //Wait for user to check the state
  5613. lcd_change_fil_state = 0;
  5614. lcd_loading_filament();
  5615. tone(BEEPER, 500);
  5616. delay_keep_alive(50);
  5617. noTone(BEEPER);
  5618. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5619. lcd_change_fil_state = 0;
  5620. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5621. lcd_alright();
  5622. KEEPALIVE_STATE(IN_HANDLER);
  5623. switch(lcd_change_fil_state){
  5624. // Filament failed to load so load it again
  5625. case 2:
  5626. #ifdef SNMM
  5627. display_loading();
  5628. do {
  5629. target[E_AXIS] += 0.002;
  5630. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5631. delay_keep_alive(2);
  5632. } while (!lcd_clicked());
  5633. st_synchronize();
  5634. target[E_AXIS] += bowden_length[snmm_extruder];
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5636. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5638. target[E_AXIS] += 40;
  5639. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5640. target[E_AXIS] += 10;
  5641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5642. #else
  5643. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5645. #endif
  5646. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5648. lcd_loading_filament();
  5649. break;
  5650. // Filament loaded properly but color is not clear
  5651. case 3:
  5652. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5653. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5654. lcd_loading_color();
  5655. break;
  5656. // Everything good
  5657. default:
  5658. lcd_change_success();
  5659. lcd_update_enable(true);
  5660. break;
  5661. }
  5662. }
  5663. //Not let's go back to print
  5664. fanSpeed = fanSpeedBckp;
  5665. //Feed a little of filament to stabilize pressure
  5666. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5668. //Retract
  5669. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5671. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5672. //Move XY back
  5673. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5674. //Move Z back
  5675. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5676. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5677. //Unretract
  5678. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5679. //Set E position to original
  5680. plan_set_e_position(lastpos[E_AXIS]);
  5681. //Recover feed rate
  5682. feedmultiply=feedmultiplyBckp;
  5683. char cmd[9];
  5684. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5685. enquecommand(cmd);
  5686. lcd_setstatuspgm(_T(WELCOME_MSG));
  5687. custom_message = false;
  5688. custom_message_type = 0;
  5689. #ifdef PAT9125
  5690. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5691. if (fsensor_M600)
  5692. {
  5693. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5694. st_synchronize();
  5695. while (!is_buffer_empty())
  5696. {
  5697. process_commands();
  5698. cmdqueue_pop_front();
  5699. }
  5700. fsensor_enable();
  5701. fsensor_restore_print_and_continue();
  5702. }
  5703. #endif //PAT9125
  5704. }
  5705. break;
  5706. #endif //FILAMENTCHANGEENABLE
  5707. case 601: {
  5708. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5709. }
  5710. break;
  5711. case 602: {
  5712. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5713. }
  5714. break;
  5715. #ifdef PINDA_THERMISTOR
  5716. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5717. {
  5718. int set_target_pinda = 0;
  5719. if (code_seen('S')) {
  5720. set_target_pinda = code_value();
  5721. }
  5722. else {
  5723. break;
  5724. }
  5725. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5726. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5727. SERIAL_PROTOCOL(set_target_pinda);
  5728. SERIAL_PROTOCOLLN("");
  5729. codenum = millis();
  5730. cancel_heatup = false;
  5731. bool is_pinda_cooling = false;
  5732. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5733. is_pinda_cooling = true;
  5734. }
  5735. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5736. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5737. {
  5738. SERIAL_PROTOCOLPGM("P:");
  5739. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5740. SERIAL_PROTOCOLPGM("/");
  5741. SERIAL_PROTOCOL(set_target_pinda);
  5742. SERIAL_PROTOCOLLN("");
  5743. codenum = millis();
  5744. }
  5745. manage_heater();
  5746. manage_inactivity();
  5747. lcd_update();
  5748. }
  5749. LCD_MESSAGERPGM(_T(MSG_OK));
  5750. break;
  5751. }
  5752. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5753. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5754. uint8_t cal_status = calibration_status_pinda();
  5755. int16_t usteps = 0;
  5756. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5757. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5758. for (uint8_t i = 0; i < 6; i++)
  5759. {
  5760. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5761. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5762. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5763. SERIAL_PROTOCOLPGM(", ");
  5764. SERIAL_PROTOCOL(35 + (i * 5));
  5765. SERIAL_PROTOCOLPGM(", ");
  5766. SERIAL_PROTOCOL(usteps);
  5767. SERIAL_PROTOCOLPGM(", ");
  5768. SERIAL_PROTOCOL(mm * 1000);
  5769. SERIAL_PROTOCOLLN("");
  5770. }
  5771. }
  5772. else if (code_seen('!')) { // ! - Set factory default values
  5773. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5774. int16_t z_shift = 8; //40C - 20um - 8usteps
  5775. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5776. z_shift = 24; //45C - 60um - 24usteps
  5777. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5778. z_shift = 48; //50C - 120um - 48usteps
  5779. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5780. z_shift = 80; //55C - 200um - 80usteps
  5781. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5782. z_shift = 120; //60C - 300um - 120usteps
  5783. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5784. SERIAL_PROTOCOLLN("factory restored");
  5785. }
  5786. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5787. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5788. int16_t z_shift = 0;
  5789. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5790. SERIAL_PROTOCOLLN("zerorized");
  5791. }
  5792. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5793. int16_t usteps = code_value();
  5794. if (code_seen('I')) {
  5795. byte index = code_value();
  5796. if ((index >= 0) && (index < 5)) {
  5797. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5798. SERIAL_PROTOCOLLN("OK");
  5799. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5800. for (uint8_t i = 0; i < 6; i++)
  5801. {
  5802. usteps = 0;
  5803. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5804. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5805. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5806. SERIAL_PROTOCOLPGM(", ");
  5807. SERIAL_PROTOCOL(35 + (i * 5));
  5808. SERIAL_PROTOCOLPGM(", ");
  5809. SERIAL_PROTOCOL(usteps);
  5810. SERIAL_PROTOCOLPGM(", ");
  5811. SERIAL_PROTOCOL(mm * 1000);
  5812. SERIAL_PROTOCOLLN("");
  5813. }
  5814. }
  5815. }
  5816. }
  5817. else {
  5818. SERIAL_PROTOCOLPGM("no valid command");
  5819. }
  5820. break;
  5821. #endif //PINDA_THERMISTOR
  5822. #ifdef LIN_ADVANCE
  5823. case 900: // M900: Set LIN_ADVANCE options.
  5824. gcode_M900();
  5825. break;
  5826. #endif
  5827. case 907: // M907 Set digital trimpot motor current using axis codes.
  5828. {
  5829. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5830. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5831. if(code_seen('B')) st_current_set(4,code_value());
  5832. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5833. #endif
  5834. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5835. if(code_seen('X')) st_current_set(0, code_value());
  5836. #endif
  5837. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5838. if(code_seen('Z')) st_current_set(1, code_value());
  5839. #endif
  5840. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5841. if(code_seen('E')) st_current_set(2, code_value());
  5842. #endif
  5843. }
  5844. break;
  5845. case 908: // M908 Control digital trimpot directly.
  5846. {
  5847. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5848. uint8_t channel,current;
  5849. if(code_seen('P')) channel=code_value();
  5850. if(code_seen('S')) current=code_value();
  5851. digitalPotWrite(channel, current);
  5852. #endif
  5853. }
  5854. break;
  5855. #ifdef TMC2130
  5856. case 910: // M910 TMC2130 init
  5857. {
  5858. tmc2130_init();
  5859. }
  5860. break;
  5861. case 911: // M911 Set TMC2130 holding currents
  5862. {
  5863. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5864. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5865. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5866. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5867. }
  5868. break;
  5869. case 912: // M912 Set TMC2130 running currents
  5870. {
  5871. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5872. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5873. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5874. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5875. }
  5876. break;
  5877. case 913: // M913 Print TMC2130 currents
  5878. {
  5879. tmc2130_print_currents();
  5880. }
  5881. break;
  5882. case 914: // M914 Set normal mode
  5883. {
  5884. tmc2130_mode = TMC2130_MODE_NORMAL;
  5885. tmc2130_init();
  5886. }
  5887. break;
  5888. case 915: // M915 Set silent mode
  5889. {
  5890. tmc2130_mode = TMC2130_MODE_SILENT;
  5891. tmc2130_init();
  5892. }
  5893. break;
  5894. case 916: // M916 Set sg_thrs
  5895. {
  5896. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5897. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5898. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5899. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5900. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5901. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5902. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5903. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5904. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5905. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5906. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5907. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5908. }
  5909. break;
  5910. case 917: // M917 Set TMC2130 pwm_ampl
  5911. {
  5912. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5913. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5914. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5915. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5916. }
  5917. break;
  5918. case 918: // M918 Set TMC2130 pwm_grad
  5919. {
  5920. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5921. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5922. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5923. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5924. }
  5925. break;
  5926. #endif //TMC2130
  5927. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5928. {
  5929. #ifdef TMC2130
  5930. if(code_seen('E'))
  5931. {
  5932. uint16_t res_new = code_value();
  5933. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5934. {
  5935. st_synchronize();
  5936. uint8_t axis = E_AXIS;
  5937. uint16_t res = tmc2130_get_res(axis);
  5938. tmc2130_set_res(axis, res_new);
  5939. if (res_new > res)
  5940. {
  5941. uint16_t fac = (res_new / res);
  5942. axis_steps_per_unit[axis] *= fac;
  5943. position[E_AXIS] *= fac;
  5944. }
  5945. else
  5946. {
  5947. uint16_t fac = (res / res_new);
  5948. axis_steps_per_unit[axis] /= fac;
  5949. position[E_AXIS] /= fac;
  5950. }
  5951. }
  5952. }
  5953. #else //TMC2130
  5954. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5955. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5956. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5957. if(code_seen('B')) microstep_mode(4,code_value());
  5958. microstep_readings();
  5959. #endif
  5960. #endif //TMC2130
  5961. }
  5962. break;
  5963. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5964. {
  5965. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5966. if(code_seen('S')) switch((int)code_value())
  5967. {
  5968. case 1:
  5969. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5970. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5971. break;
  5972. case 2:
  5973. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5974. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5975. break;
  5976. }
  5977. microstep_readings();
  5978. #endif
  5979. }
  5980. break;
  5981. case 701: //M701: load filament
  5982. {
  5983. gcode_M701();
  5984. }
  5985. break;
  5986. case 702:
  5987. {
  5988. #ifdef SNMM
  5989. if (code_seen('U')) {
  5990. extr_unload_used(); //unload all filaments which were used in current print
  5991. }
  5992. else if (code_seen('C')) {
  5993. extr_unload(); //unload just current filament
  5994. }
  5995. else {
  5996. extr_unload_all(); //unload all filaments
  5997. }
  5998. #else
  5999. #ifdef PAT9125
  6000. bool old_fsensor_enabled = fsensor_enabled;
  6001. fsensor_enabled = false;
  6002. #endif //PAT9125
  6003. custom_message = true;
  6004. custom_message_type = 2;
  6005. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6006. // extr_unload2();
  6007. current_position[E_AXIS] -= 45;
  6008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6009. st_synchronize();
  6010. current_position[E_AXIS] -= 15;
  6011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6012. st_synchronize();
  6013. current_position[E_AXIS] -= 20;
  6014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6015. st_synchronize();
  6016. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6017. //disable extruder steppers so filament can be removed
  6018. disable_e0();
  6019. disable_e1();
  6020. disable_e2();
  6021. delay(100);
  6022. WRITE(BEEPER, HIGH);
  6023. uint8_t counterBeep = 0;
  6024. while (!lcd_clicked() && (counterBeep < 50)) {
  6025. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6026. delay_keep_alive(100);
  6027. counterBeep++;
  6028. }
  6029. WRITE(BEEPER, LOW);
  6030. st_synchronize();
  6031. while (lcd_clicked()) delay_keep_alive(100);
  6032. lcd_update_enable(true);
  6033. lcd_setstatuspgm(_T(WELCOME_MSG));
  6034. custom_message = false;
  6035. custom_message_type = 0;
  6036. #ifdef PAT9125
  6037. fsensor_enabled = old_fsensor_enabled;
  6038. #endif //PAT9125
  6039. #endif
  6040. }
  6041. break;
  6042. case 999: // M999: Restart after being stopped
  6043. Stopped = false;
  6044. lcd_reset_alert_level();
  6045. gcode_LastN = Stopped_gcode_LastN;
  6046. FlushSerialRequestResend();
  6047. break;
  6048. default:
  6049. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6050. }
  6051. } // end if(code_seen('M')) (end of M codes)
  6052. else if(code_seen('T'))
  6053. {
  6054. int index;
  6055. st_synchronize();
  6056. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6057. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6058. SERIAL_ECHOLNPGM("Invalid T code.");
  6059. }
  6060. else {
  6061. if (*(strchr_pointer + index) == '?') {
  6062. tmp_extruder = choose_extruder_menu();
  6063. }
  6064. else {
  6065. tmp_extruder = code_value();
  6066. }
  6067. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6068. #ifdef SNMM
  6069. #ifdef LIN_ADVANCE
  6070. if (snmm_extruder != tmp_extruder)
  6071. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6072. #endif
  6073. snmm_extruder = tmp_extruder;
  6074. delay(100);
  6075. disable_e0();
  6076. disable_e1();
  6077. disable_e2();
  6078. pinMode(E_MUX0_PIN, OUTPUT);
  6079. pinMode(E_MUX1_PIN, OUTPUT);
  6080. delay(100);
  6081. SERIAL_ECHO_START;
  6082. SERIAL_ECHO("T:");
  6083. SERIAL_ECHOLN((int)tmp_extruder);
  6084. switch (tmp_extruder) {
  6085. case 1:
  6086. WRITE(E_MUX0_PIN, HIGH);
  6087. WRITE(E_MUX1_PIN, LOW);
  6088. break;
  6089. case 2:
  6090. WRITE(E_MUX0_PIN, LOW);
  6091. WRITE(E_MUX1_PIN, HIGH);
  6092. break;
  6093. case 3:
  6094. WRITE(E_MUX0_PIN, HIGH);
  6095. WRITE(E_MUX1_PIN, HIGH);
  6096. break;
  6097. default:
  6098. WRITE(E_MUX0_PIN, LOW);
  6099. WRITE(E_MUX1_PIN, LOW);
  6100. break;
  6101. }
  6102. delay(100);
  6103. #else
  6104. if (tmp_extruder >= EXTRUDERS) {
  6105. SERIAL_ECHO_START;
  6106. SERIAL_ECHOPGM("T");
  6107. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6108. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6109. }
  6110. else {
  6111. boolean make_move = false;
  6112. if (code_seen('F')) {
  6113. make_move = true;
  6114. next_feedrate = code_value();
  6115. if (next_feedrate > 0.0) {
  6116. feedrate = next_feedrate;
  6117. }
  6118. }
  6119. #if EXTRUDERS > 1
  6120. if (tmp_extruder != active_extruder) {
  6121. // Save current position to return to after applying extruder offset
  6122. memcpy(destination, current_position, sizeof(destination));
  6123. // Offset extruder (only by XY)
  6124. int i;
  6125. for (i = 0; i < 2; i++) {
  6126. current_position[i] = current_position[i] -
  6127. extruder_offset[i][active_extruder] +
  6128. extruder_offset[i][tmp_extruder];
  6129. }
  6130. // Set the new active extruder and position
  6131. active_extruder = tmp_extruder;
  6132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6133. // Move to the old position if 'F' was in the parameters
  6134. if (make_move && Stopped == false) {
  6135. prepare_move();
  6136. }
  6137. }
  6138. #endif
  6139. SERIAL_ECHO_START;
  6140. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6141. SERIAL_PROTOCOLLN((int)active_extruder);
  6142. }
  6143. #endif
  6144. }
  6145. } // end if(code_seen('T')) (end of T codes)
  6146. #ifdef DEBUG_DCODES
  6147. else if (code_seen('D')) // D codes (debug)
  6148. {
  6149. switch((int)code_value())
  6150. {
  6151. case -1: // D-1 - Endless loop
  6152. dcode__1(); break;
  6153. case 0: // D0 - Reset
  6154. dcode_0(); break;
  6155. case 1: // D1 - Clear EEPROM
  6156. dcode_1(); break;
  6157. case 2: // D2 - Read/Write RAM
  6158. dcode_2(); break;
  6159. case 3: // D3 - Read/Write EEPROM
  6160. dcode_3(); break;
  6161. case 4: // D4 - Read/Write PIN
  6162. dcode_4(); break;
  6163. case 5: // D5 - Read/Write FLASH
  6164. // dcode_5(); break;
  6165. break;
  6166. case 6: // D6 - Read/Write external FLASH
  6167. dcode_6(); break;
  6168. case 7: // D7 - Read/Write Bootloader
  6169. dcode_7(); break;
  6170. case 8: // D8 - Read/Write PINDA
  6171. dcode_8(); break;
  6172. case 9: // D9 - Read/Write ADC
  6173. dcode_9(); break;
  6174. case 10: // D10 - XYZ calibration = OK
  6175. dcode_10(); break;
  6176. #ifdef TMC2130
  6177. case 2130: // D9125 - TMC2130
  6178. dcode_2130(); break;
  6179. #endif //TMC2130
  6180. #ifdef PAT9125
  6181. case 9125: // D9125 - PAT9125
  6182. dcode_9125(); break;
  6183. #endif //PAT9125
  6184. }
  6185. }
  6186. #endif //DEBUG_DCODES
  6187. else
  6188. {
  6189. SERIAL_ECHO_START;
  6190. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6191. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6192. SERIAL_ECHOLNPGM("\"(2)");
  6193. }
  6194. KEEPALIVE_STATE(NOT_BUSY);
  6195. ClearToSend();
  6196. }
  6197. void FlushSerialRequestResend()
  6198. {
  6199. //char cmdbuffer[bufindr][100]="Resend:";
  6200. MYSERIAL.flush();
  6201. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6202. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6203. previous_millis_cmd = millis();
  6204. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6205. }
  6206. // Confirm the execution of a command, if sent from a serial line.
  6207. // Execution of a command from a SD card will not be confirmed.
  6208. void ClearToSend()
  6209. {
  6210. previous_millis_cmd = millis();
  6211. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6212. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6213. }
  6214. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6215. void update_currents() {
  6216. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6217. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6218. float tmp_motor[3];
  6219. //SERIAL_ECHOLNPGM("Currents updated: ");
  6220. if (destination[Z_AXIS] < Z_SILENT) {
  6221. //SERIAL_ECHOLNPGM("LOW");
  6222. for (uint8_t i = 0; i < 3; i++) {
  6223. st_current_set(i, current_low[i]);
  6224. /*MYSERIAL.print(int(i));
  6225. SERIAL_ECHOPGM(": ");
  6226. MYSERIAL.println(current_low[i]);*/
  6227. }
  6228. }
  6229. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6230. //SERIAL_ECHOLNPGM("HIGH");
  6231. for (uint8_t i = 0; i < 3; i++) {
  6232. st_current_set(i, current_high[i]);
  6233. /*MYSERIAL.print(int(i));
  6234. SERIAL_ECHOPGM(": ");
  6235. MYSERIAL.println(current_high[i]);*/
  6236. }
  6237. }
  6238. else {
  6239. for (uint8_t i = 0; i < 3; i++) {
  6240. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6241. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6242. st_current_set(i, tmp_motor[i]);
  6243. /*MYSERIAL.print(int(i));
  6244. SERIAL_ECHOPGM(": ");
  6245. MYSERIAL.println(tmp_motor[i]);*/
  6246. }
  6247. }
  6248. }
  6249. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6250. void get_coordinates()
  6251. {
  6252. bool seen[4]={false,false,false,false};
  6253. for(int8_t i=0; i < NUM_AXIS; i++) {
  6254. if(code_seen(axis_codes[i]))
  6255. {
  6256. bool relative = axis_relative_modes[i] || relative_mode;
  6257. destination[i] = (float)code_value();
  6258. if (i == E_AXIS) {
  6259. float emult = extruder_multiplier[active_extruder];
  6260. if (emult != 1.) {
  6261. if (! relative) {
  6262. destination[i] -= current_position[i];
  6263. relative = true;
  6264. }
  6265. destination[i] *= emult;
  6266. }
  6267. }
  6268. if (relative)
  6269. destination[i] += current_position[i];
  6270. seen[i]=true;
  6271. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6272. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6273. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6274. }
  6275. else destination[i] = current_position[i]; //Are these else lines really needed?
  6276. }
  6277. if(code_seen('F')) {
  6278. next_feedrate = code_value();
  6279. #ifdef MAX_SILENT_FEEDRATE
  6280. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6281. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6282. #endif //MAX_SILENT_FEEDRATE
  6283. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6284. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6285. {
  6286. // float e_max_speed =
  6287. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6288. }
  6289. }
  6290. }
  6291. void get_arc_coordinates()
  6292. {
  6293. #ifdef SF_ARC_FIX
  6294. bool relative_mode_backup = relative_mode;
  6295. relative_mode = true;
  6296. #endif
  6297. get_coordinates();
  6298. #ifdef SF_ARC_FIX
  6299. relative_mode=relative_mode_backup;
  6300. #endif
  6301. if(code_seen('I')) {
  6302. offset[0] = code_value();
  6303. }
  6304. else {
  6305. offset[0] = 0.0;
  6306. }
  6307. if(code_seen('J')) {
  6308. offset[1] = code_value();
  6309. }
  6310. else {
  6311. offset[1] = 0.0;
  6312. }
  6313. }
  6314. void clamp_to_software_endstops(float target[3])
  6315. {
  6316. #ifdef DEBUG_DISABLE_SWLIMITS
  6317. return;
  6318. #endif //DEBUG_DISABLE_SWLIMITS
  6319. world2machine_clamp(target[0], target[1]);
  6320. // Clamp the Z coordinate.
  6321. if (min_software_endstops) {
  6322. float negative_z_offset = 0;
  6323. #ifdef ENABLE_AUTO_BED_LEVELING
  6324. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6325. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6326. #endif
  6327. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6328. }
  6329. if (max_software_endstops) {
  6330. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6331. }
  6332. }
  6333. #ifdef MESH_BED_LEVELING
  6334. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6335. float dx = x - current_position[X_AXIS];
  6336. float dy = y - current_position[Y_AXIS];
  6337. float dz = z - current_position[Z_AXIS];
  6338. int n_segments = 0;
  6339. if (mbl.active) {
  6340. float len = abs(dx) + abs(dy);
  6341. if (len > 0)
  6342. // Split to 3cm segments or shorter.
  6343. n_segments = int(ceil(len / 30.f));
  6344. }
  6345. if (n_segments > 1) {
  6346. float de = e - current_position[E_AXIS];
  6347. for (int i = 1; i < n_segments; ++ i) {
  6348. float t = float(i) / float(n_segments);
  6349. plan_buffer_line(
  6350. current_position[X_AXIS] + t * dx,
  6351. current_position[Y_AXIS] + t * dy,
  6352. current_position[Z_AXIS] + t * dz,
  6353. current_position[E_AXIS] + t * de,
  6354. feed_rate, extruder);
  6355. }
  6356. }
  6357. // The rest of the path.
  6358. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6359. current_position[X_AXIS] = x;
  6360. current_position[Y_AXIS] = y;
  6361. current_position[Z_AXIS] = z;
  6362. current_position[E_AXIS] = e;
  6363. }
  6364. #endif // MESH_BED_LEVELING
  6365. void prepare_move()
  6366. {
  6367. clamp_to_software_endstops(destination);
  6368. previous_millis_cmd = millis();
  6369. // Do not use feedmultiply for E or Z only moves
  6370. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6372. }
  6373. else {
  6374. #ifdef MESH_BED_LEVELING
  6375. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6376. #else
  6377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6378. #endif
  6379. }
  6380. for(int8_t i=0; i < NUM_AXIS; i++) {
  6381. current_position[i] = destination[i];
  6382. }
  6383. }
  6384. void prepare_arc_move(char isclockwise) {
  6385. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6386. // Trace the arc
  6387. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6388. // As far as the parser is concerned, the position is now == target. In reality the
  6389. // motion control system might still be processing the action and the real tool position
  6390. // in any intermediate location.
  6391. for(int8_t i=0; i < NUM_AXIS; i++) {
  6392. current_position[i] = destination[i];
  6393. }
  6394. previous_millis_cmd = millis();
  6395. }
  6396. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6397. #if defined(FAN_PIN)
  6398. #if CONTROLLERFAN_PIN == FAN_PIN
  6399. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6400. #endif
  6401. #endif
  6402. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6403. unsigned long lastMotorCheck = 0;
  6404. void controllerFan()
  6405. {
  6406. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6407. {
  6408. lastMotorCheck = millis();
  6409. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6410. #if EXTRUDERS > 2
  6411. || !READ(E2_ENABLE_PIN)
  6412. #endif
  6413. #if EXTRUDER > 1
  6414. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6415. || !READ(X2_ENABLE_PIN)
  6416. #endif
  6417. || !READ(E1_ENABLE_PIN)
  6418. #endif
  6419. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6420. {
  6421. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6422. }
  6423. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6424. {
  6425. digitalWrite(CONTROLLERFAN_PIN, 0);
  6426. analogWrite(CONTROLLERFAN_PIN, 0);
  6427. }
  6428. else
  6429. {
  6430. // allows digital or PWM fan output to be used (see M42 handling)
  6431. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6432. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6433. }
  6434. }
  6435. }
  6436. #endif
  6437. #ifdef TEMP_STAT_LEDS
  6438. static bool blue_led = false;
  6439. static bool red_led = false;
  6440. static uint32_t stat_update = 0;
  6441. void handle_status_leds(void) {
  6442. float max_temp = 0.0;
  6443. if(millis() > stat_update) {
  6444. stat_update += 500; // Update every 0.5s
  6445. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6446. max_temp = max(max_temp, degHotend(cur_extruder));
  6447. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6448. }
  6449. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6450. max_temp = max(max_temp, degTargetBed());
  6451. max_temp = max(max_temp, degBed());
  6452. #endif
  6453. if((max_temp > 55.0) && (red_led == false)) {
  6454. digitalWrite(STAT_LED_RED, 1);
  6455. digitalWrite(STAT_LED_BLUE, 0);
  6456. red_led = true;
  6457. blue_led = false;
  6458. }
  6459. if((max_temp < 54.0) && (blue_led == false)) {
  6460. digitalWrite(STAT_LED_RED, 0);
  6461. digitalWrite(STAT_LED_BLUE, 1);
  6462. red_led = false;
  6463. blue_led = true;
  6464. }
  6465. }
  6466. }
  6467. #endif
  6468. #ifdef SAFETYTIMER
  6469. /**
  6470. * @brief Turn off heating after 30 minutes of inactivity
  6471. *
  6472. * Full screen blocking notification message is shown after heater turning off.
  6473. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6474. * damage print.
  6475. */
  6476. static void handleSafetyTimer()
  6477. {
  6478. #if (EXTRUDERS > 1)
  6479. #error Implemented only for one extruder.
  6480. #endif //(EXTRUDERS > 1)
  6481. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6482. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6483. {
  6484. safetyTimer.stop();
  6485. }
  6486. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6487. {
  6488. safetyTimer.start();
  6489. }
  6490. else if (safetyTimer.expired(1800000ul)) //30 min
  6491. {
  6492. setTargetBed(0);
  6493. setTargetHotend(0, 0);
  6494. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6495. }
  6496. }
  6497. #endif //SAFETYTIMER
  6498. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6499. {
  6500. #ifdef PAT9125
  6501. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6502. {
  6503. if (fsensor_autoload_enabled)
  6504. {
  6505. if (fsensor_check_autoload())
  6506. {
  6507. if (degHotend0() > EXTRUDE_MINTEMP)
  6508. {
  6509. fsensor_autoload_check_stop();
  6510. tone(BEEPER, 1000);
  6511. delay_keep_alive(50);
  6512. noTone(BEEPER);
  6513. loading_flag = true;
  6514. enquecommand_front_P((PSTR("M701")));
  6515. }
  6516. else
  6517. {
  6518. lcd_update_enable(false);
  6519. lcd_implementation_clear();
  6520. lcd.setCursor(0, 0);
  6521. lcd_printPGM(_T(MSG_ERROR));
  6522. lcd.setCursor(0, 2);
  6523. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6524. delay(2000);
  6525. lcd_implementation_clear();
  6526. lcd_update_enable(true);
  6527. }
  6528. }
  6529. }
  6530. else
  6531. fsensor_autoload_check_start();
  6532. }
  6533. else
  6534. if (fsensor_autoload_enabled)
  6535. fsensor_autoload_check_stop();
  6536. #endif //PAT9125
  6537. #ifdef SAFETYTIMER
  6538. handleSafetyTimer();
  6539. #endif //SAFETYTIMER
  6540. #if defined(KILL_PIN) && KILL_PIN > -1
  6541. static int killCount = 0; // make the inactivity button a bit less responsive
  6542. const int KILL_DELAY = 10000;
  6543. #endif
  6544. if(buflen < (BUFSIZE-1)){
  6545. get_command();
  6546. }
  6547. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6548. if(max_inactive_time)
  6549. kill(_n(""), 4);
  6550. if(stepper_inactive_time) {
  6551. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6552. {
  6553. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6554. disable_x();
  6555. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6556. disable_y();
  6557. disable_z();
  6558. disable_e0();
  6559. disable_e1();
  6560. disable_e2();
  6561. }
  6562. }
  6563. }
  6564. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6565. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6566. {
  6567. chdkActive = false;
  6568. WRITE(CHDK, LOW);
  6569. }
  6570. #endif
  6571. #if defined(KILL_PIN) && KILL_PIN > -1
  6572. // Check if the kill button was pressed and wait just in case it was an accidental
  6573. // key kill key press
  6574. // -------------------------------------------------------------------------------
  6575. if( 0 == READ(KILL_PIN) )
  6576. {
  6577. killCount++;
  6578. }
  6579. else if (killCount > 0)
  6580. {
  6581. killCount--;
  6582. }
  6583. // Exceeded threshold and we can confirm that it was not accidental
  6584. // KILL the machine
  6585. // ----------------------------------------------------------------
  6586. if ( killCount >= KILL_DELAY)
  6587. {
  6588. kill("", 5);
  6589. }
  6590. #endif
  6591. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6592. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6593. #endif
  6594. #ifdef EXTRUDER_RUNOUT_PREVENT
  6595. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6596. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6597. {
  6598. bool oldstatus=READ(E0_ENABLE_PIN);
  6599. enable_e0();
  6600. float oldepos=current_position[E_AXIS];
  6601. float oldedes=destination[E_AXIS];
  6602. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6603. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6604. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6605. current_position[E_AXIS]=oldepos;
  6606. destination[E_AXIS]=oldedes;
  6607. plan_set_e_position(oldepos);
  6608. previous_millis_cmd=millis();
  6609. st_synchronize();
  6610. WRITE(E0_ENABLE_PIN,oldstatus);
  6611. }
  6612. #endif
  6613. #ifdef TEMP_STAT_LEDS
  6614. handle_status_leds();
  6615. #endif
  6616. check_axes_activity();
  6617. }
  6618. void kill(const char *full_screen_message, unsigned char id)
  6619. {
  6620. SERIAL_ECHOPGM("KILL: ");
  6621. MYSERIAL.println(int(id));
  6622. //return;
  6623. cli(); // Stop interrupts
  6624. disable_heater();
  6625. disable_x();
  6626. // SERIAL_ECHOLNPGM("kill - disable Y");
  6627. disable_y();
  6628. disable_z();
  6629. disable_e0();
  6630. disable_e1();
  6631. disable_e2();
  6632. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6633. pinMode(PS_ON_PIN,INPUT);
  6634. #endif
  6635. SERIAL_ERROR_START;
  6636. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6637. if (full_screen_message != NULL) {
  6638. SERIAL_ERRORLNRPGM(full_screen_message);
  6639. lcd_display_message_fullscreen_P(full_screen_message);
  6640. } else {
  6641. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6642. }
  6643. // FMC small patch to update the LCD before ending
  6644. sei(); // enable interrupts
  6645. for ( int i=5; i--; lcd_update())
  6646. {
  6647. delay(200);
  6648. }
  6649. cli(); // disable interrupts
  6650. suicide();
  6651. while(1)
  6652. {
  6653. #ifdef WATCHDOG
  6654. wdt_reset();
  6655. #endif //WATCHDOG
  6656. /* Intentionally left empty */
  6657. } // Wait for reset
  6658. }
  6659. void Stop()
  6660. {
  6661. disable_heater();
  6662. if(Stopped == false) {
  6663. Stopped = true;
  6664. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6665. SERIAL_ERROR_START;
  6666. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6667. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6668. }
  6669. }
  6670. bool IsStopped() { return Stopped; };
  6671. #ifdef FAST_PWM_FAN
  6672. void setPwmFrequency(uint8_t pin, int val)
  6673. {
  6674. val &= 0x07;
  6675. switch(digitalPinToTimer(pin))
  6676. {
  6677. #if defined(TCCR0A)
  6678. case TIMER0A:
  6679. case TIMER0B:
  6680. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6681. // TCCR0B |= val;
  6682. break;
  6683. #endif
  6684. #if defined(TCCR1A)
  6685. case TIMER1A:
  6686. case TIMER1B:
  6687. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6688. // TCCR1B |= val;
  6689. break;
  6690. #endif
  6691. #if defined(TCCR2)
  6692. case TIMER2:
  6693. case TIMER2:
  6694. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6695. TCCR2 |= val;
  6696. break;
  6697. #endif
  6698. #if defined(TCCR2A)
  6699. case TIMER2A:
  6700. case TIMER2B:
  6701. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6702. TCCR2B |= val;
  6703. break;
  6704. #endif
  6705. #if defined(TCCR3A)
  6706. case TIMER3A:
  6707. case TIMER3B:
  6708. case TIMER3C:
  6709. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6710. TCCR3B |= val;
  6711. break;
  6712. #endif
  6713. #if defined(TCCR4A)
  6714. case TIMER4A:
  6715. case TIMER4B:
  6716. case TIMER4C:
  6717. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6718. TCCR4B |= val;
  6719. break;
  6720. #endif
  6721. #if defined(TCCR5A)
  6722. case TIMER5A:
  6723. case TIMER5B:
  6724. case TIMER5C:
  6725. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6726. TCCR5B |= val;
  6727. break;
  6728. #endif
  6729. }
  6730. }
  6731. #endif //FAST_PWM_FAN
  6732. bool setTargetedHotend(int code){
  6733. tmp_extruder = active_extruder;
  6734. if(code_seen('T')) {
  6735. tmp_extruder = code_value();
  6736. if(tmp_extruder >= EXTRUDERS) {
  6737. SERIAL_ECHO_START;
  6738. switch(code){
  6739. case 104:
  6740. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6741. break;
  6742. case 105:
  6743. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6744. break;
  6745. case 109:
  6746. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6747. break;
  6748. case 218:
  6749. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6750. break;
  6751. case 221:
  6752. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6753. break;
  6754. }
  6755. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6756. return true;
  6757. }
  6758. }
  6759. return false;
  6760. }
  6761. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6762. {
  6763. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6764. {
  6765. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6766. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6767. }
  6768. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6769. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6770. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6771. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6772. total_filament_used = 0;
  6773. }
  6774. float calculate_extruder_multiplier(float diameter) {
  6775. float out = 1.f;
  6776. if (volumetric_enabled && diameter > 0.f) {
  6777. float area = M_PI * diameter * diameter * 0.25;
  6778. out = 1.f / area;
  6779. }
  6780. if (extrudemultiply != 100)
  6781. out *= float(extrudemultiply) * 0.01f;
  6782. return out;
  6783. }
  6784. void calculate_extruder_multipliers() {
  6785. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6786. #if EXTRUDERS > 1
  6787. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6788. #if EXTRUDERS > 2
  6789. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6790. #endif
  6791. #endif
  6792. }
  6793. void delay_keep_alive(unsigned int ms)
  6794. {
  6795. for (;;) {
  6796. manage_heater();
  6797. // Manage inactivity, but don't disable steppers on timeout.
  6798. manage_inactivity(true);
  6799. lcd_update();
  6800. if (ms == 0)
  6801. break;
  6802. else if (ms >= 50) {
  6803. delay(50);
  6804. ms -= 50;
  6805. } else {
  6806. delay(ms);
  6807. ms = 0;
  6808. }
  6809. }
  6810. }
  6811. void wait_for_heater(long codenum) {
  6812. #ifdef TEMP_RESIDENCY_TIME
  6813. long residencyStart;
  6814. residencyStart = -1;
  6815. /* continue to loop until we have reached the target temp
  6816. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6817. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6818. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6819. #else
  6820. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6821. #endif //TEMP_RESIDENCY_TIME
  6822. if ((millis() - codenum) > 1000UL)
  6823. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6824. if (!farm_mode) {
  6825. SERIAL_PROTOCOLPGM("T:");
  6826. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6827. SERIAL_PROTOCOLPGM(" E:");
  6828. SERIAL_PROTOCOL((int)tmp_extruder);
  6829. #ifdef TEMP_RESIDENCY_TIME
  6830. SERIAL_PROTOCOLPGM(" W:");
  6831. if (residencyStart > -1)
  6832. {
  6833. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6834. SERIAL_PROTOCOLLN(codenum);
  6835. }
  6836. else
  6837. {
  6838. SERIAL_PROTOCOLLN("?");
  6839. }
  6840. }
  6841. #else
  6842. SERIAL_PROTOCOLLN("");
  6843. #endif
  6844. codenum = millis();
  6845. }
  6846. manage_heater();
  6847. manage_inactivity();
  6848. lcd_update();
  6849. #ifdef TEMP_RESIDENCY_TIME
  6850. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6851. or when current temp falls outside the hysteresis after target temp was reached */
  6852. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6853. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6854. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6855. {
  6856. residencyStart = millis();
  6857. }
  6858. #endif //TEMP_RESIDENCY_TIME
  6859. }
  6860. }
  6861. void check_babystep() {
  6862. int babystep_z;
  6863. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6864. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6865. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6866. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6867. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6868. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6869. lcd_update_enable(true);
  6870. }
  6871. }
  6872. #ifdef DIS
  6873. void d_setup()
  6874. {
  6875. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6876. pinMode(D_DATA, INPUT_PULLUP);
  6877. pinMode(D_REQUIRE, OUTPUT);
  6878. digitalWrite(D_REQUIRE, HIGH);
  6879. }
  6880. float d_ReadData()
  6881. {
  6882. int digit[13];
  6883. String mergeOutput;
  6884. float output;
  6885. digitalWrite(D_REQUIRE, HIGH);
  6886. for (int i = 0; i<13; i++)
  6887. {
  6888. for (int j = 0; j < 4; j++)
  6889. {
  6890. while (digitalRead(D_DATACLOCK) == LOW) {}
  6891. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6892. bitWrite(digit[i], j, digitalRead(D_DATA));
  6893. }
  6894. }
  6895. digitalWrite(D_REQUIRE, LOW);
  6896. mergeOutput = "";
  6897. output = 0;
  6898. for (int r = 5; r <= 10; r++) //Merge digits
  6899. {
  6900. mergeOutput += digit[r];
  6901. }
  6902. output = mergeOutput.toFloat();
  6903. if (digit[4] == 8) //Handle sign
  6904. {
  6905. output *= -1;
  6906. }
  6907. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6908. {
  6909. output /= 10;
  6910. }
  6911. return output;
  6912. }
  6913. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6914. int t1 = 0;
  6915. int t_delay = 0;
  6916. int digit[13];
  6917. int m;
  6918. char str[3];
  6919. //String mergeOutput;
  6920. char mergeOutput[15];
  6921. float output;
  6922. int mesh_point = 0; //index number of calibration point
  6923. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6924. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6925. float mesh_home_z_search = 4;
  6926. float row[x_points_num];
  6927. int ix = 0;
  6928. int iy = 0;
  6929. char* filename_wldsd = "wldsd.txt";
  6930. char data_wldsd[70];
  6931. char numb_wldsd[10];
  6932. d_setup();
  6933. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6934. // We don't know where we are! HOME!
  6935. // Push the commands to the front of the message queue in the reverse order!
  6936. // There shall be always enough space reserved for these commands.
  6937. repeatcommand_front(); // repeat G80 with all its parameters
  6938. enquecommand_front_P((PSTR("G28 W0")));
  6939. enquecommand_front_P((PSTR("G1 Z5")));
  6940. return;
  6941. }
  6942. bool custom_message_old = custom_message;
  6943. unsigned int custom_message_type_old = custom_message_type;
  6944. unsigned int custom_message_state_old = custom_message_state;
  6945. custom_message = true;
  6946. custom_message_type = 1;
  6947. custom_message_state = (x_points_num * y_points_num) + 10;
  6948. lcd_update(1);
  6949. mbl.reset();
  6950. babystep_undo();
  6951. card.openFile(filename_wldsd, false);
  6952. current_position[Z_AXIS] = mesh_home_z_search;
  6953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6954. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6955. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6956. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6957. setup_for_endstop_move(false);
  6958. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6959. SERIAL_PROTOCOL(x_points_num);
  6960. SERIAL_PROTOCOLPGM(",");
  6961. SERIAL_PROTOCOL(y_points_num);
  6962. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6963. SERIAL_PROTOCOL(mesh_home_z_search);
  6964. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6965. SERIAL_PROTOCOL(x_dimension);
  6966. SERIAL_PROTOCOLPGM(",");
  6967. SERIAL_PROTOCOL(y_dimension);
  6968. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6969. while (mesh_point != x_points_num * y_points_num) {
  6970. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6971. iy = mesh_point / x_points_num;
  6972. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6973. float z0 = 0.f;
  6974. current_position[Z_AXIS] = mesh_home_z_search;
  6975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6976. st_synchronize();
  6977. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6978. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6980. st_synchronize();
  6981. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6982. break;
  6983. card.closefile();
  6984. }
  6985. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6986. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6987. //strcat(data_wldsd, numb_wldsd);
  6988. //MYSERIAL.println(data_wldsd);
  6989. //delay(1000);
  6990. //delay(3000);
  6991. //t1 = millis();
  6992. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6993. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6994. memset(digit, 0, sizeof(digit));
  6995. //cli();
  6996. digitalWrite(D_REQUIRE, LOW);
  6997. for (int i = 0; i<13; i++)
  6998. {
  6999. //t1 = millis();
  7000. for (int j = 0; j < 4; j++)
  7001. {
  7002. while (digitalRead(D_DATACLOCK) == LOW) {}
  7003. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7004. bitWrite(digit[i], j, digitalRead(D_DATA));
  7005. }
  7006. //t_delay = (millis() - t1);
  7007. //SERIAL_PROTOCOLPGM(" ");
  7008. //SERIAL_PROTOCOL_F(t_delay, 5);
  7009. //SERIAL_PROTOCOLPGM(" ");
  7010. }
  7011. //sei();
  7012. digitalWrite(D_REQUIRE, HIGH);
  7013. mergeOutput[0] = '\0';
  7014. output = 0;
  7015. for (int r = 5; r <= 10; r++) //Merge digits
  7016. {
  7017. sprintf(str, "%d", digit[r]);
  7018. strcat(mergeOutput, str);
  7019. }
  7020. output = atof(mergeOutput);
  7021. if (digit[4] == 8) //Handle sign
  7022. {
  7023. output *= -1;
  7024. }
  7025. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7026. {
  7027. output *= 0.1;
  7028. }
  7029. //output = d_ReadData();
  7030. //row[ix] = current_position[Z_AXIS];
  7031. memset(data_wldsd, 0, sizeof(data_wldsd));
  7032. for (int i = 0; i <3; i++) {
  7033. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7034. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7035. strcat(data_wldsd, numb_wldsd);
  7036. strcat(data_wldsd, ";");
  7037. }
  7038. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7039. dtostrf(output, 8, 5, numb_wldsd);
  7040. strcat(data_wldsd, numb_wldsd);
  7041. //strcat(data_wldsd, ";");
  7042. card.write_command(data_wldsd);
  7043. //row[ix] = d_ReadData();
  7044. row[ix] = output; // current_position[Z_AXIS];
  7045. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7046. for (int i = 0; i < x_points_num; i++) {
  7047. SERIAL_PROTOCOLPGM(" ");
  7048. SERIAL_PROTOCOL_F(row[i], 5);
  7049. }
  7050. SERIAL_PROTOCOLPGM("\n");
  7051. }
  7052. custom_message_state--;
  7053. mesh_point++;
  7054. lcd_update(1);
  7055. }
  7056. card.closefile();
  7057. }
  7058. #endif
  7059. void temp_compensation_start() {
  7060. custom_message = true;
  7061. custom_message_type = 5;
  7062. custom_message_state = PINDA_HEAT_T + 1;
  7063. lcd_update(2);
  7064. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7065. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7066. }
  7067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7068. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7069. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7070. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7072. st_synchronize();
  7073. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7074. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7075. delay_keep_alive(1000);
  7076. custom_message_state = PINDA_HEAT_T - i;
  7077. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7078. else lcd_update(1);
  7079. }
  7080. custom_message_type = 0;
  7081. custom_message_state = 0;
  7082. custom_message = false;
  7083. }
  7084. void temp_compensation_apply() {
  7085. int i_add;
  7086. int compensation_value;
  7087. int z_shift = 0;
  7088. float z_shift_mm;
  7089. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7090. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7091. i_add = (target_temperature_bed - 60) / 10;
  7092. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7093. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7094. }else {
  7095. //interpolation
  7096. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7097. }
  7098. SERIAL_PROTOCOLPGM("\n");
  7099. SERIAL_PROTOCOLPGM("Z shift applied:");
  7100. MYSERIAL.print(z_shift_mm);
  7101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7102. st_synchronize();
  7103. plan_set_z_position(current_position[Z_AXIS]);
  7104. }
  7105. else {
  7106. //we have no temp compensation data
  7107. }
  7108. }
  7109. float temp_comp_interpolation(float inp_temperature) {
  7110. //cubic spline interpolation
  7111. int n, i, j, k;
  7112. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7113. int shift[10];
  7114. int temp_C[10];
  7115. n = 6; //number of measured points
  7116. shift[0] = 0;
  7117. for (i = 0; i < n; i++) {
  7118. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7119. temp_C[i] = 50 + i * 10; //temperature in C
  7120. #ifdef PINDA_THERMISTOR
  7121. temp_C[i] = 35 + i * 5; //temperature in C
  7122. #else
  7123. temp_C[i] = 50 + i * 10; //temperature in C
  7124. #endif
  7125. x[i] = (float)temp_C[i];
  7126. f[i] = (float)shift[i];
  7127. }
  7128. if (inp_temperature < x[0]) return 0;
  7129. for (i = n - 1; i>0; i--) {
  7130. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7131. h[i - 1] = x[i] - x[i - 1];
  7132. }
  7133. //*********** formation of h, s , f matrix **************
  7134. for (i = 1; i<n - 1; i++) {
  7135. m[i][i] = 2 * (h[i - 1] + h[i]);
  7136. if (i != 1) {
  7137. m[i][i - 1] = h[i - 1];
  7138. m[i - 1][i] = h[i - 1];
  7139. }
  7140. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7141. }
  7142. //*********** forward elimination **************
  7143. for (i = 1; i<n - 2; i++) {
  7144. temp = (m[i + 1][i] / m[i][i]);
  7145. for (j = 1; j <= n - 1; j++)
  7146. m[i + 1][j] -= temp*m[i][j];
  7147. }
  7148. //*********** backward substitution *********
  7149. for (i = n - 2; i>0; i--) {
  7150. sum = 0;
  7151. for (j = i; j <= n - 2; j++)
  7152. sum += m[i][j] * s[j];
  7153. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7154. }
  7155. for (i = 0; i<n - 1; i++)
  7156. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7157. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7158. b = s[i] / 2;
  7159. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7160. d = f[i];
  7161. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7162. }
  7163. return sum;
  7164. }
  7165. #ifdef PINDA_THERMISTOR
  7166. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7167. {
  7168. if (!temp_cal_active) return 0;
  7169. if (!calibration_status_pinda()) return 0;
  7170. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7171. }
  7172. #endif //PINDA_THERMISTOR
  7173. void long_pause() //long pause print
  7174. {
  7175. st_synchronize();
  7176. //save currently set parameters to global variables
  7177. saved_feedmultiply = feedmultiply;
  7178. HotendTempBckp = degTargetHotend(active_extruder);
  7179. fanSpeedBckp = fanSpeed;
  7180. start_pause_print = millis();
  7181. //save position
  7182. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7183. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7184. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7185. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7186. //retract
  7187. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7189. //lift z
  7190. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7191. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7193. //set nozzle target temperature to 0
  7194. setTargetHotend(0, 0);
  7195. setTargetHotend(0, 1);
  7196. setTargetHotend(0, 2);
  7197. //Move XY to side
  7198. current_position[X_AXIS] = X_PAUSE_POS;
  7199. current_position[Y_AXIS] = Y_PAUSE_POS;
  7200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7201. // Turn off the print fan
  7202. fanSpeed = 0;
  7203. st_synchronize();
  7204. }
  7205. void serialecho_temperatures() {
  7206. float tt = degHotend(active_extruder);
  7207. SERIAL_PROTOCOLPGM("T:");
  7208. SERIAL_PROTOCOL(tt);
  7209. SERIAL_PROTOCOLPGM(" E:");
  7210. SERIAL_PROTOCOL((int)active_extruder);
  7211. SERIAL_PROTOCOLPGM(" B:");
  7212. SERIAL_PROTOCOL_F(degBed(), 1);
  7213. SERIAL_PROTOCOLLN("");
  7214. }
  7215. extern uint32_t sdpos_atomic;
  7216. #ifdef UVLO_SUPPORT
  7217. void uvlo_()
  7218. {
  7219. unsigned long time_start = millis();
  7220. bool sd_print = card.sdprinting;
  7221. // Conserve power as soon as possible.
  7222. disable_x();
  7223. disable_y();
  7224. #ifdef TMC2130
  7225. tmc2130_set_current_h(Z_AXIS, 20);
  7226. tmc2130_set_current_r(Z_AXIS, 20);
  7227. tmc2130_set_current_h(E_AXIS, 20);
  7228. tmc2130_set_current_r(E_AXIS, 20);
  7229. #endif //TMC2130
  7230. // Indicate that the interrupt has been triggered.
  7231. // SERIAL_ECHOLNPGM("UVLO");
  7232. // Read out the current Z motor microstep counter. This will be later used
  7233. // for reaching the zero full step before powering off.
  7234. uint16_t z_microsteps = 0;
  7235. #ifdef TMC2130
  7236. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7237. #endif //TMC2130
  7238. // Calculate the file position, from which to resume this print.
  7239. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7240. {
  7241. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7242. sd_position -= sdlen_planner;
  7243. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7244. sd_position -= sdlen_cmdqueue;
  7245. if (sd_position < 0) sd_position = 0;
  7246. }
  7247. // Backup the feedrate in mm/min.
  7248. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7249. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7250. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7251. // are in action.
  7252. planner_abort_hard();
  7253. // Store the current extruder position.
  7254. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7255. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7256. // Clean the input command queue.
  7257. cmdqueue_reset();
  7258. card.sdprinting = false;
  7259. // card.closefile();
  7260. // Enable stepper driver interrupt to move Z axis.
  7261. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7262. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7263. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7264. sei();
  7265. plan_buffer_line(
  7266. current_position[X_AXIS],
  7267. current_position[Y_AXIS],
  7268. current_position[Z_AXIS],
  7269. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7270. 95, active_extruder);
  7271. st_synchronize();
  7272. disable_e0();
  7273. plan_buffer_line(
  7274. current_position[X_AXIS],
  7275. current_position[Y_AXIS],
  7276. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7277. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7278. 40, active_extruder);
  7279. st_synchronize();
  7280. disable_e0();
  7281. plan_buffer_line(
  7282. current_position[X_AXIS],
  7283. current_position[Y_AXIS],
  7284. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7285. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7286. 40, active_extruder);
  7287. st_synchronize();
  7288. disable_e0();
  7289. disable_z();
  7290. // Move Z up to the next 0th full step.
  7291. // Write the file position.
  7292. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7293. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7294. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7295. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7296. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7297. // Scale the z value to 1u resolution.
  7298. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7299. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7300. }
  7301. // Read out the current Z motor microstep counter. This will be later used
  7302. // for reaching the zero full step before powering off.
  7303. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7304. // Store the current position.
  7305. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7306. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7307. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7308. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7309. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7310. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7311. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7312. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7313. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7314. #if EXTRUDERS > 1
  7315. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7316. #if EXTRUDERS > 2
  7317. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7318. #endif
  7319. #endif
  7320. // Finaly store the "power outage" flag.
  7321. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7322. st_synchronize();
  7323. SERIAL_ECHOPGM("stps");
  7324. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7325. disable_z();
  7326. // Increment power failure counter
  7327. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7328. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7329. SERIAL_ECHOLNPGM("UVLO - end");
  7330. MYSERIAL.println(millis() - time_start);
  7331. #if 0
  7332. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7333. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7335. st_synchronize();
  7336. #endif
  7337. cli();
  7338. volatile unsigned int ppcount = 0;
  7339. SET_OUTPUT(BEEPER);
  7340. WRITE(BEEPER, HIGH);
  7341. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7342. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7343. }
  7344. WRITE(BEEPER, LOW);
  7345. while(1){
  7346. #if 1
  7347. WRITE(BEEPER, LOW);
  7348. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7349. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7350. }
  7351. #endif
  7352. };
  7353. }
  7354. #endif //UVLO_SUPPORT
  7355. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7356. void setup_fan_interrupt() {
  7357. //INT7
  7358. DDRE &= ~(1 << 7); //input pin
  7359. PORTE &= ~(1 << 7); //no internal pull-up
  7360. //start with sensing rising edge
  7361. EICRB &= ~(1 << 6);
  7362. EICRB |= (1 << 7);
  7363. //enable INT7 interrupt
  7364. EIMSK |= (1 << 7);
  7365. }
  7366. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7367. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7368. ISR(INT7_vect) {
  7369. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7370. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7371. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7372. t_fan_rising_edge = millis_nc();
  7373. }
  7374. else { //interrupt was triggered by falling edge
  7375. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7376. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7377. }
  7378. }
  7379. EICRB ^= (1 << 6); //change edge
  7380. }
  7381. #endif
  7382. #ifdef UVLO_SUPPORT
  7383. void setup_uvlo_interrupt() {
  7384. DDRE &= ~(1 << 4); //input pin
  7385. PORTE &= ~(1 << 4); //no internal pull-up
  7386. //sensing falling edge
  7387. EICRB |= (1 << 0);
  7388. EICRB &= ~(1 << 1);
  7389. //enable INT4 interrupt
  7390. EIMSK |= (1 << 4);
  7391. }
  7392. ISR(INT4_vect) {
  7393. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7394. SERIAL_ECHOLNPGM("INT4");
  7395. if (IS_SD_PRINTING) uvlo_();
  7396. }
  7397. void recover_print(uint8_t automatic) {
  7398. char cmd[30];
  7399. lcd_update_enable(true);
  7400. lcd_update(2);
  7401. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7402. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7403. // Lift the print head, so one may remove the excess priming material.
  7404. if (current_position[Z_AXIS] < 25)
  7405. enquecommand_P(PSTR("G1 Z25 F800"));
  7406. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7407. enquecommand_P(PSTR("G28 X Y"));
  7408. // Set the target bed and nozzle temperatures and wait.
  7409. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7410. enquecommand(cmd);
  7411. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7412. enquecommand(cmd);
  7413. enquecommand_P(PSTR("M83")); //E axis relative mode
  7414. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7415. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7416. if(automatic == 0){
  7417. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7418. }
  7419. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7420. // Mark the power panic status as inactive.
  7421. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7422. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7423. delay_keep_alive(1000);
  7424. }*/
  7425. SERIAL_ECHOPGM("After waiting for temp:");
  7426. SERIAL_ECHOPGM("Current position X_AXIS:");
  7427. MYSERIAL.println(current_position[X_AXIS]);
  7428. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7429. MYSERIAL.println(current_position[Y_AXIS]);
  7430. // Restart the print.
  7431. restore_print_from_eeprom();
  7432. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7433. MYSERIAL.print(current_position[Z_AXIS]);
  7434. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7435. MYSERIAL.print(current_position[E_AXIS]);
  7436. }
  7437. void recover_machine_state_after_power_panic()
  7438. {
  7439. char cmd[30];
  7440. // 1) Recover the logical cordinates at the time of the power panic.
  7441. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7442. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7443. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7444. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7445. // The current position after power panic is moved to the next closest 0th full step.
  7446. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7447. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7448. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7449. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7450. sprintf_P(cmd, PSTR("G92 E"));
  7451. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7452. enquecommand(cmd);
  7453. }
  7454. memcpy(destination, current_position, sizeof(destination));
  7455. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7456. print_world_coordinates();
  7457. // 2) Initialize the logical to physical coordinate system transformation.
  7458. world2machine_initialize();
  7459. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7460. mbl.active = false;
  7461. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7462. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7463. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7464. // Scale the z value to 10u resolution.
  7465. int16_t v;
  7466. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7467. if (v != 0)
  7468. mbl.active = true;
  7469. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7470. }
  7471. if (mbl.active)
  7472. mbl.upsample_3x3();
  7473. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7474. // print_mesh_bed_leveling_table();
  7475. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7476. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7477. babystep_load();
  7478. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7479. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7480. // 6) Power up the motors, mark their positions as known.
  7481. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7482. axis_known_position[X_AXIS] = true; enable_x();
  7483. axis_known_position[Y_AXIS] = true; enable_y();
  7484. axis_known_position[Z_AXIS] = true; enable_z();
  7485. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7486. print_physical_coordinates();
  7487. // 7) Recover the target temperatures.
  7488. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7489. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7490. // 8) Recover extruder multipilers
  7491. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7492. #if EXTRUDERS > 1
  7493. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7494. #if EXTRUDERS > 2
  7495. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7496. #endif
  7497. #endif
  7498. }
  7499. void restore_print_from_eeprom() {
  7500. float x_rec, y_rec, z_pos;
  7501. int feedrate_rec;
  7502. uint8_t fan_speed_rec;
  7503. char cmd[30];
  7504. char* c;
  7505. char filename[13];
  7506. uint8_t depth = 0;
  7507. char dir_name[9];
  7508. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7509. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7510. SERIAL_ECHOPGM("Feedrate:");
  7511. MYSERIAL.println(feedrate_rec);
  7512. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7513. MYSERIAL.println(int(depth));
  7514. for (int i = 0; i < depth; i++) {
  7515. for (int j = 0; j < 8; j++) {
  7516. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7517. }
  7518. dir_name[8] = '\0';
  7519. MYSERIAL.println(dir_name);
  7520. card.chdir(dir_name);
  7521. }
  7522. for (int i = 0; i < 8; i++) {
  7523. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7524. }
  7525. filename[8] = '\0';
  7526. MYSERIAL.print(filename);
  7527. strcat_P(filename, PSTR(".gco"));
  7528. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7529. for (c = &cmd[4]; *c; c++)
  7530. *c = tolower(*c);
  7531. enquecommand(cmd);
  7532. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7533. SERIAL_ECHOPGM("Position read from eeprom:");
  7534. MYSERIAL.println(position);
  7535. // E axis relative mode.
  7536. enquecommand_P(PSTR("M83"));
  7537. // Move to the XY print position in logical coordinates, where the print has been killed.
  7538. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7539. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7540. strcat_P(cmd, PSTR(" F2000"));
  7541. enquecommand(cmd);
  7542. // Move the Z axis down to the print, in logical coordinates.
  7543. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7544. enquecommand(cmd);
  7545. // Unretract.
  7546. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7547. // Set the feedrate saved at the power panic.
  7548. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7549. enquecommand(cmd);
  7550. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7551. {
  7552. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7553. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7554. }
  7555. // Set the fan speed saved at the power panic.
  7556. strcpy_P(cmd, PSTR("M106 S"));
  7557. strcat(cmd, itostr3(int(fan_speed_rec)));
  7558. enquecommand(cmd);
  7559. // Set a position in the file.
  7560. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7561. enquecommand(cmd);
  7562. // Start SD print.
  7563. enquecommand_P(PSTR("M24"));
  7564. }
  7565. #endif //UVLO_SUPPORT
  7566. ////////////////////////////////////////////////////////////////////////////////
  7567. // save/restore printing
  7568. void stop_and_save_print_to_ram(float z_move, float e_move)
  7569. {
  7570. if (saved_printing) return;
  7571. unsigned char nplanner_blocks;
  7572. unsigned char nlines;
  7573. uint16_t sdlen_planner;
  7574. uint16_t sdlen_cmdqueue;
  7575. cli();
  7576. if (card.sdprinting) {
  7577. nplanner_blocks = number_of_blocks();
  7578. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7579. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7580. saved_sdpos -= sdlen_planner;
  7581. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7582. saved_sdpos -= sdlen_cmdqueue;
  7583. saved_printing_type = PRINTING_TYPE_SD;
  7584. }
  7585. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7586. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7587. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7588. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7589. saved_sdpos -= nlines;
  7590. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7591. saved_printing_type = PRINTING_TYPE_USB;
  7592. }
  7593. else {
  7594. //not sd printing nor usb printing
  7595. }
  7596. #if 0
  7597. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7598. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7599. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7600. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7601. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7602. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7603. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7604. {
  7605. card.setIndex(saved_sdpos);
  7606. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7607. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7608. MYSERIAL.print(char(card.get()));
  7609. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7610. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7611. MYSERIAL.print(char(card.get()));
  7612. SERIAL_ECHOLNPGM("End of command buffer");
  7613. }
  7614. {
  7615. // Print the content of the planner buffer, line by line:
  7616. card.setIndex(saved_sdpos);
  7617. int8_t iline = 0;
  7618. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7619. SERIAL_ECHOPGM("Planner line (from file): ");
  7620. MYSERIAL.print(int(iline), DEC);
  7621. SERIAL_ECHOPGM(", length: ");
  7622. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7623. SERIAL_ECHOPGM(", steps: (");
  7624. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7625. SERIAL_ECHOPGM(",");
  7626. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7627. SERIAL_ECHOPGM(",");
  7628. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7629. SERIAL_ECHOPGM(",");
  7630. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7631. SERIAL_ECHOPGM("), events: ");
  7632. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7633. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7634. MYSERIAL.print(char(card.get()));
  7635. }
  7636. }
  7637. {
  7638. // Print the content of the command buffer, line by line:
  7639. int8_t iline = 0;
  7640. union {
  7641. struct {
  7642. char lo;
  7643. char hi;
  7644. } lohi;
  7645. uint16_t value;
  7646. } sdlen_single;
  7647. int _bufindr = bufindr;
  7648. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7649. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7650. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7651. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7652. }
  7653. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7654. MYSERIAL.print(int(iline), DEC);
  7655. SERIAL_ECHOPGM(", type: ");
  7656. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7657. SERIAL_ECHOPGM(", len: ");
  7658. MYSERIAL.println(sdlen_single.value, DEC);
  7659. // Print the content of the buffer line.
  7660. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7661. SERIAL_ECHOPGM("Buffer line (from file): ");
  7662. MYSERIAL.print(int(iline), DEC);
  7663. MYSERIAL.println(int(iline), DEC);
  7664. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7665. MYSERIAL.print(char(card.get()));
  7666. if (-- _buflen == 0)
  7667. break;
  7668. // First skip the current command ID and iterate up to the end of the string.
  7669. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7670. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7671. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7672. // If the end of the buffer was empty,
  7673. if (_bufindr == sizeof(cmdbuffer)) {
  7674. // skip to the start and find the nonzero command.
  7675. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7676. }
  7677. }
  7678. }
  7679. #endif
  7680. #if 0
  7681. saved_feedrate2 = feedrate; //save feedrate
  7682. #else
  7683. // Try to deduce the feedrate from the first block of the planner.
  7684. // Speed is in mm/min.
  7685. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7686. #endif
  7687. planner_abort_hard(); //abort printing
  7688. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7689. saved_active_extruder = active_extruder; //save active_extruder
  7690. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7691. cmdqueue_reset(); //empty cmdqueue
  7692. card.sdprinting = false;
  7693. // card.closefile();
  7694. saved_printing = true;
  7695. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7696. st_reset_timer();
  7697. sei();
  7698. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7699. #if 1
  7700. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7701. char buf[48];
  7702. // First unretract (relative extrusion)
  7703. strcpy_P(buf, PSTR("G1 E"));
  7704. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7705. strcat_P(buf, PSTR(" F"));
  7706. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7707. enquecommand(buf, false);
  7708. // Then lift Z axis
  7709. strcpy_P(buf, PSTR("G1 Z"));
  7710. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7711. strcat_P(buf, PSTR(" F"));
  7712. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7713. // At this point the command queue is empty.
  7714. enquecommand(buf, false);
  7715. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7716. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7717. repeatcommand_front();
  7718. #else
  7719. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7720. st_synchronize(); //wait moving
  7721. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7722. memcpy(destination, current_position, sizeof(destination));
  7723. #endif
  7724. }
  7725. }
  7726. void restore_print_from_ram_and_continue(float e_move)
  7727. {
  7728. if (!saved_printing) return;
  7729. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7730. // current_position[axis] = st_get_position_mm(axis);
  7731. active_extruder = saved_active_extruder; //restore active_extruder
  7732. feedrate = saved_feedrate2; //restore feedrate
  7733. float e = saved_pos[E_AXIS] - e_move;
  7734. plan_set_e_position(e);
  7735. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7736. st_synchronize();
  7737. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7738. memcpy(destination, current_position, sizeof(destination));
  7739. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7740. card.setIndex(saved_sdpos);
  7741. sdpos_atomic = saved_sdpos;
  7742. card.sdprinting = true;
  7743. }
  7744. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7745. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7746. FlushSerialRequestResend();
  7747. }
  7748. else {
  7749. //not sd printing nor usb printing
  7750. }
  7751. saved_printing = false;
  7752. }
  7753. void print_world_coordinates()
  7754. {
  7755. SERIAL_ECHOPGM("world coordinates: (");
  7756. MYSERIAL.print(current_position[X_AXIS], 3);
  7757. SERIAL_ECHOPGM(", ");
  7758. MYSERIAL.print(current_position[Y_AXIS], 3);
  7759. SERIAL_ECHOPGM(", ");
  7760. MYSERIAL.print(current_position[Z_AXIS], 3);
  7761. SERIAL_ECHOLNPGM(")");
  7762. }
  7763. void print_physical_coordinates()
  7764. {
  7765. SERIAL_ECHOPGM("physical coordinates: (");
  7766. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7767. SERIAL_ECHOPGM(", ");
  7768. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7769. SERIAL_ECHOPGM(", ");
  7770. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7771. SERIAL_ECHOLNPGM(")");
  7772. }
  7773. void print_mesh_bed_leveling_table()
  7774. {
  7775. SERIAL_ECHOPGM("mesh bed leveling: ");
  7776. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7777. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7778. MYSERIAL.print(mbl.z_values[y][x], 3);
  7779. SERIAL_ECHOPGM(" ");
  7780. }
  7781. SERIAL_ECHOLNPGM("");
  7782. }
  7783. #define FIL_LOAD_LENGTH 60