mmu2.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. #include "mmu2.h"
  2. #include "mmu2_error_converter.h"
  3. #include "mmu2_fsensor.h"
  4. #include "mmu2_log.h"
  5. #include "mmu2_power.h"
  6. #include "mmu2_progress_converter.h"
  7. #include "mmu2_reporting.h"
  8. #include "Marlin.h"
  9. #include "language.h"
  10. #include "messages.h"
  11. #include "sound.h"
  12. #include "stepper.h"
  13. #include "strlen_cx.h"
  14. #include "temperature.h"
  15. #include "ultralcd.h"
  16. // Settings for filament load / unload from the LCD menu.
  17. // This is for Prusa MK3-style extruders. Customize for your hardware.
  18. #define MMU2_FILAMENTCHANGE_EJECT_FEED 80.0
  19. #define NOZZLE_PARK_XY_FEEDRATE 50
  20. #define NOZZLE_PARK_Z_FEEDRATE 15
  21. // Nominal distance from the extruder gear to the nozzle tip is 87mm
  22. // However, some slipping may occur and we need separate distances for
  23. // LoadToNozzle and ToolChange.
  24. // - +5mm seemed good for LoadToNozzle,
  25. // - but too much (made blobs) for a ToolChange
  26. static constexpr float MMU2_LOAD_TO_NOZZLE_LENGTH = 87.0F + 5.0F;
  27. // As discussed with our PrusaSlicer profile specialist
  28. // - ToolChange shall not try to push filament into the very tip of the nozzle
  29. // to have some space for additional G-code to tune the extruded filament length
  30. // in the profile
  31. static constexpr float MMU2_TOOL_CHANGE_LOAD_LENGTH = 30.0F;
  32. static constexpr float MMU2_LOAD_TO_NOZZLE_FEED_RATE = 20.0F;
  33. static constexpr uint8_t MMU2_NO_TOOL = 99;
  34. static constexpr uint32_t MMU_BAUD = 115200;
  35. struct E_Step {
  36. float extrude; ///< extrude distance in mm
  37. float feedRate; ///< feed rate in mm/s
  38. };
  39. static constexpr E_Step ramming_sequence[] PROGMEM = {
  40. { 1.0F, 1000.0F / 60.F},
  41. { 1.0F, 1500.0F / 60.F},
  42. { 2.0F, 2000.0F / 60.F},
  43. { 1.5F, 3000.0F / 60.F},
  44. { 2.5F, 4000.0F / 60.F},
  45. {-15.0F, 5000.0F / 60.F},
  46. {-14.0F, 1200.0F / 60.F},
  47. {-6.0F, 600.0F / 60.F},
  48. { 10.0F, 700.0F / 60.F},
  49. {-10.0F, 400.0F / 60.F},
  50. {-50.0F, 2000.0F / 60.F},
  51. };
  52. static constexpr E_Step load_to_nozzle_sequence[] PROGMEM = {
  53. { 10.0F, 810.0F / 60.F}, // feed rate = 13.5mm/s - Load fast until filament reach end of nozzle
  54. { 25.0F, 198.0F / 60.F}, // feed rate = 3.3mm/s - Load slower once filament is out of the nozzle
  55. };
  56. namespace MMU2 {
  57. void execute_extruder_sequence(const E_Step *sequence, int steps);
  58. template<typename F>
  59. void waitForHotendTargetTemp(uint16_t delay, F f){
  60. while (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
  61. f();
  62. delay_keep_alive(delay);
  63. }
  64. }
  65. void WaitForHotendTargetTempBeep(){
  66. waitForHotendTargetTemp(3000, []{ Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); } );
  67. }
  68. MMU2 mmu2;
  69. MMU2::MMU2()
  70. : is_mmu_error_monitor_active(false)
  71. , logic(&mmu2Serial)
  72. , extruder(MMU2_NO_TOOL)
  73. , resume_position()
  74. , resume_hotend_temp(0)
  75. , logicStepLastStatus(StepStatus::Finished)
  76. , state(xState::Stopped)
  77. , mmu_print_saved(false)
  78. , loadFilamentStarted(false)
  79. , loadingToNozzle(false)
  80. {
  81. }
  82. void MMU2::Start() {
  83. #ifdef MMU_HWRESET
  84. WRITE(MMU_RST_PIN, 1);
  85. SET_OUTPUT(MMU_RST_PIN); // setup reset pin
  86. #endif //MMU_HWRESET
  87. mmu2Serial.begin(MMU_BAUD);
  88. PowerOn(); // I repurposed this to serve as our EEPROM disable toggle.
  89. Reset(ResetForm::ResetPin);
  90. mmu2Serial.flush(); // make sure the UART buffer is clear before starting communication
  91. extruder = MMU2_NO_TOOL;
  92. state = xState::Connecting;
  93. // start the communication
  94. logic.Start();
  95. }
  96. void MMU2::Stop() {
  97. StopKeepPowered();
  98. PowerOff(); // This also disables the MMU in the EEPROM.
  99. }
  100. void MMU2::StopKeepPowered(){
  101. state = xState::Stopped;
  102. logic.Stop();
  103. mmu2Serial.close();
  104. }
  105. void MMU2::Reset(ResetForm level){
  106. switch (level) {
  107. case Software: ResetX0(); break;
  108. case ResetPin: TriggerResetPin(); break;
  109. case CutThePower: PowerCycle(); break;
  110. default: break;
  111. }
  112. }
  113. void MMU2::ResetX0() {
  114. logic.ResetMMU(); // Send soft reset
  115. }
  116. void MMU2::TriggerResetPin(){
  117. reset();
  118. }
  119. void MMU2::PowerCycle(){
  120. // cut the power to the MMU and after a while restore it
  121. // Sadly, MK3/S/+ cannot do this
  122. // NOTE: the below will toggle the EEPROM var. Should we
  123. // assert this function is never called in the MK3 FW? Do we even care?
  124. PowerOff();
  125. delay_keep_alive(1000);
  126. PowerOn();
  127. }
  128. void MMU2::PowerOff(){
  129. power_off();
  130. }
  131. void MMU2::PowerOn(){
  132. power_on();
  133. }
  134. void MMU2::mmu_loop() {
  135. // We only leave this method if the current command was successfully completed - that's the Marlin's way of blocking operation
  136. // Atomic compare_exchange would have been the most appropriate solution here, but this gets called only in Marlin's task,
  137. // so thread safety should be kept
  138. static bool avoidRecursion = false;
  139. if (avoidRecursion)
  140. return;
  141. avoidRecursion = true;
  142. logicStepLastStatus = LogicStep(); // it looks like the mmu_loop doesn't need to be a blocking call
  143. if (is_mmu_error_monitor_active){
  144. // Call this every iteration to keep the knob rotation responsive
  145. // This includes when mmu_loop is called within manage_response
  146. ReportErrorHook((uint16_t)lastErrorCode);
  147. }
  148. avoidRecursion = false;
  149. }
  150. struct ReportingRAII {
  151. CommandInProgress cip;
  152. inline ReportingRAII(CommandInProgress cip):cip(cip){
  153. BeginReport(cip, (uint16_t)ProgressCode::EngagingIdler);
  154. }
  155. inline ~ReportingRAII(){
  156. EndReport(cip, (uint16_t)ProgressCode::OK);
  157. }
  158. };
  159. bool MMU2::WaitForMMUReady(){
  160. switch(State()){
  161. case xState::Stopped:
  162. return false;
  163. case xState::Connecting:
  164. // shall we wait until the MMU reconnects?
  165. // fire-up a fsm_dlg and show "MMU not responding"?
  166. default:
  167. return true;
  168. }
  169. }
  170. bool MMU2::tool_change(uint8_t index) {
  171. if( ! WaitForMMUReady())
  172. return false;
  173. if (index != extruder) {
  174. ReportingRAII rep(CommandInProgress::ToolChange);
  175. FSensorBlockRunout blockRunout;
  176. st_synchronize();
  177. logic.ToolChange(index); // let the MMU pull the filament out and push a new one in
  178. manage_response(false, false); // true, true);
  179. // reset current position to whatever the planner thinks it is
  180. // SERIAL_ECHOPGM("TC1:p=");
  181. // SERIAL_ECHO(position[E_AXIS]);
  182. // SERIAL_ECHOPGM("TC1:cp=");
  183. // SERIAL_ECHOLN(current_position[E_AXIS]);
  184. plan_set_e_position(current_position[E_AXIS]);
  185. // SERIAL_ECHOPGM("TC2:p=");
  186. // SERIAL_ECHO(position[E_AXIS]);
  187. // SERIAL_ECHOPGM("TC2:cp=");
  188. // SERIAL_ECHOLN(current_position[E_AXIS]);
  189. extruder = index; //filament change is finished
  190. SetActiveExtruder(0);
  191. // @@TODO really report onto the serial? May be for the Octoprint? Not important now
  192. // SERIAL_ECHO_START();
  193. // SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(extruder));
  194. }
  195. return true;
  196. }
  197. /// Handle special T?/Tx/Tc commands
  198. ///
  199. ///- T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  200. ///- Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  201. ///- Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated.
  202. bool MMU2::tool_change(char code, uint8_t slot) {
  203. if( ! WaitForMMUReady())
  204. return false;
  205. FSensorBlockRunout blockRunout;
  206. switch (code) {
  207. case '?': {
  208. waitForHotendTargetTemp(100, []{});
  209. load_filament_to_nozzle(slot);
  210. } break;
  211. case 'x': {
  212. st_synchronize();
  213. logic.ToolChange(slot);
  214. manage_response(false, false);
  215. extruder = slot;
  216. SetActiveExtruder(0);
  217. } break;
  218. case 'c': {
  219. waitForHotendTargetTemp(100, []{});
  220. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  221. } break;
  222. }
  223. return true;
  224. }
  225. uint8_t MMU2::get_current_tool() const {
  226. return extruder == MMU2_NO_TOOL ? -1 : extruder;
  227. }
  228. bool MMU2::set_filament_type(uint8_t index, uint8_t type) {
  229. if( ! WaitForMMUReady())
  230. return false;
  231. // @@TODO - this is not supported in the new MMU yet
  232. // cmd_arg = filamentType;
  233. // command(MMU_CMD_F0 + index);
  234. manage_response(false, false); // true, true);
  235. return true;
  236. }
  237. bool MMU2::unload() {
  238. if( ! WaitForMMUReady())
  239. return false;
  240. WaitForHotendTargetTempBeep();
  241. {
  242. ReportingRAII rep(CommandInProgress::UnloadFilament);
  243. filament_ramming();
  244. logic.UnloadFilament();
  245. manage_response(false, false); // false, true);
  246. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  247. // no active tool
  248. extruder = MMU2_NO_TOOL;
  249. }
  250. return true;
  251. }
  252. bool MMU2::cut_filament(uint8_t index){
  253. if( ! WaitForMMUReady())
  254. return false;
  255. ReportingRAII rep(CommandInProgress::CutFilament);
  256. logic.CutFilament(index);
  257. manage_response(false, false); // false, true);
  258. return true;
  259. }
  260. bool MMU2::load_filament(uint8_t index) {
  261. if( ! WaitForMMUReady())
  262. return false;
  263. ReportingRAII rep(CommandInProgress::LoadFilament);
  264. logic.LoadFilament(index);
  265. manage_response(false, false);
  266. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  267. return true;
  268. }
  269. struct LoadingToNozzleRAII {
  270. MMU2 &mmu2;
  271. explicit inline LoadingToNozzleRAII(MMU2 &mmu2):mmu2(mmu2){
  272. mmu2.loadingToNozzle = true;
  273. }
  274. inline ~LoadingToNozzleRAII(){
  275. mmu2.loadingToNozzle = false;
  276. }
  277. };
  278. bool MMU2::load_filament_to_nozzle(uint8_t index) {
  279. if( ! WaitForMMUReady())
  280. return false;
  281. LoadingToNozzleRAII ln(*this);
  282. WaitForHotendTargetTempBeep();
  283. {
  284. // used for MMU-menu operation "Load to Nozzle"
  285. ReportingRAII rep(CommandInProgress::ToolChange);
  286. FSensorBlockRunout blockRunout;
  287. if( extruder != MMU2_NO_TOOL ){ // we already have some filament loaded - free it + shape its tip properly
  288. filament_ramming();
  289. }
  290. logic.ToolChange(index);
  291. manage_response(false, false); // true, true);
  292. // The MMU's idler is disengaged at this point
  293. // That means the MK3/S now has fully control
  294. // reset current position to whatever the planner thinks it is
  295. st_synchronize();
  296. // SERIAL_ECHOPGM("LFTN1:p=");
  297. // SERIAL_ECHO(position[E_AXIS]);
  298. // SERIAL_ECHOPGM("LFTN1:cp=");
  299. // SERIAL_ECHOLN(current_position[E_AXIS]);
  300. plan_set_e_position(current_position[E_AXIS]);
  301. // SERIAL_ECHOPGM("LFTN2:p=");
  302. // SERIAL_ECHO(position[E_AXIS]);
  303. // SERIAL_ECHOPGM("LFTN2:cp=");
  304. // SERIAL_ECHOLN(current_position[E_AXIS]);
  305. // Finish loading to the nozzle with finely tuned steps.
  306. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  307. extruder = index;
  308. SetActiveExtruder(0);
  309. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  310. return true;
  311. }
  312. }
  313. bool MMU2::eject_filament(uint8_t index, bool recover) {
  314. if( ! WaitForMMUReady())
  315. return false;
  316. ReportingRAII rep(CommandInProgress::EjectFilament);
  317. current_position[E_AXIS] -= MMU2_FILAMENTCHANGE_EJECT_FEED;
  318. plan_buffer_line_curposXYZE(2500.F / 60.F);
  319. st_synchronize();
  320. logic.EjectFilament(index);
  321. manage_response(false, false);
  322. if (recover) {
  323. // LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER);
  324. Sound_MakeSound(e_SOUND_TYPE_StandardPrompt);
  325. //@@TODO wait_for_user = true;
  326. //#if ENABLED(HOST_PROMPT_SUPPORT)
  327. // host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), PSTR("Continue"));
  328. //#endif
  329. //#if ENABLED(EXTENSIBLE_UI)
  330. // ExtUI::onUserConfirmRequired_P(PSTR("MMU2 Eject Recover"));
  331. //#endif
  332. //@@TODO while (wait_for_user) idle(true);
  333. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  334. // logic.Command(); //@@TODO command(MMU_CMD_R0);
  335. manage_response(false, false);
  336. }
  337. // no active tool
  338. extruder = MMU2_NO_TOOL;
  339. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  340. // disable_E0();
  341. return true;
  342. }
  343. void MMU2::Button(uint8_t index){
  344. logic.Button(index);
  345. }
  346. void MMU2::Home(uint8_t mode){
  347. logic.Home(mode);
  348. }
  349. void MMU2::SaveAndPark(bool move_axes, bool turn_off_nozzle) {
  350. if (!mmu_print_saved) { // First occurrence. Save current position, park print head, disable nozzle heater.
  351. LogEchoEvent("Saving and parking");
  352. st_synchronize();
  353. mmu_print_saved = true;
  354. resume_hotend_temp = degTargetHotend(active_extruder);
  355. if (move_axes){
  356. // save current pos
  357. for(uint8_t i = 0; i < 3; ++i){
  358. resume_position.xyz[i] = current_position[i];
  359. }
  360. // lift Z
  361. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  362. if (current_position[Z_AXIS] > Z_MAX_POS)
  363. current_position[Z_AXIS] = Z_MAX_POS;
  364. plan_buffer_line_curposXYZE(NOZZLE_PARK_Z_FEEDRATE);
  365. st_synchronize();
  366. // move XY aside
  367. current_position[X_AXIS] = X_PAUSE_POS;
  368. current_position[Y_AXIS] = Y_PAUSE_POS;
  369. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  370. st_synchronize();
  371. }
  372. if (turn_off_nozzle){
  373. LogEchoEvent("Heater off");
  374. setAllTargetHotends(0);
  375. }
  376. }
  377. // keep the motors powered forever (until some other strategy is chosen)
  378. // @@TODO do we need that in 8bit?
  379. // gcode.reset_stepper_timeout();
  380. }
  381. void MMU2::ResumeAndUnPark(bool move_axes, bool turn_off_nozzle) {
  382. if (mmu_print_saved) {
  383. LogEchoEvent("Resuming print");
  384. if (turn_off_nozzle && resume_hotend_temp) {
  385. MMU2_ECHO_MSG("Restoring hotend temperature ");
  386. SERIAL_ECHOLN(resume_hotend_temp);
  387. setTargetHotend(resume_hotend_temp, active_extruder);
  388. waitForHotendTargetTemp(3000, []{
  389. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature...")); // better report the event and let the GUI do its work somewhere else
  390. });
  391. LogEchoEvent("Hotend temperature reached");
  392. }
  393. if (move_axes) {
  394. LogEchoEvent("Resuming XYZ");
  395. current_position[X_AXIS] = resume_position.xyz[X_AXIS];
  396. current_position[Y_AXIS] = resume_position.xyz[Y_AXIS];
  397. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  398. st_synchronize();
  399. current_position[Z_AXIS] = resume_position.xyz[Z_AXIS];
  400. plan_buffer_line_curposXYZE(NOZZLE_PARK_Z_FEEDRATE);
  401. st_synchronize();
  402. } else {
  403. LogEchoEvent("NOT resuming XYZ");
  404. }
  405. }
  406. }
  407. void MMU2::CheckUserInput(){
  408. auto btn = ButtonPressed((uint16_t)lastErrorCode);
  409. switch (btn) {
  410. case Left:
  411. case Middle:
  412. case Right:
  413. Button(btn);
  414. break;
  415. case RestartMMU:
  416. Reset(ResetPin); // we cannot do power cycle on the MK3
  417. // ... but mmu2_power.cpp knows this and triggers a soft-reset instead.
  418. break;
  419. case DisableMMU:
  420. Stop(); // Poweroff handles updating the EEPROM shutoff.
  421. break;
  422. case StopPrint:
  423. // @@TODO not sure if we shall handle this high level operation at this spot
  424. break;
  425. default:
  426. break;
  427. }
  428. }
  429. /// Originally, this was used to wait for response and deal with timeout if necessary.
  430. /// The new protocol implementation enables much nicer and intense reporting, so this method will boil down
  431. /// just to verify the result of an issued command (which was basically the original idea)
  432. ///
  433. /// It is closely related to mmu_loop() (which corresponds to our ProtocolLogic::Step()), which does NOT perform any blocking wait for a command to finish.
  434. /// But - in case of an error, the command is not yet finished, but we must react accordingly - move the printhead elsewhere, stop heating, eat a cat or so.
  435. /// That's what's being done here...
  436. void MMU2::manage_response(const bool move_axes, const bool turn_off_nozzle) {
  437. mmu_print_saved = false;
  438. KEEPALIVE_STATE(PAUSED_FOR_USER);
  439. for (;;) {
  440. // in our new implementation, we know the exact state of the MMU at any moment, we do not have to wait for a timeout
  441. // So in this case we shall decide if the operation is:
  442. // - still running -> wait normally in idle()
  443. // - failed -> then do the safety moves on the printer like before
  444. // - finished ok -> proceed with reading other commands
  445. manage_heater();
  446. manage_inactivity(true); // calls LogicStep() and remembers its return status
  447. lcd_update(0);
  448. switch (logicStepLastStatus) {
  449. case Finished:
  450. // command/operation completed, let Marlin continue its work
  451. // the E may have some more moves to finish - wait for them
  452. st_synchronize();
  453. return;
  454. case VersionMismatch: // this basically means the MMU will be disabled until reconnected
  455. CheckUserInput();
  456. return;
  457. case CommunicationTimeout:
  458. case CommandError:
  459. case ProtocolError:
  460. SaveAndPark(move_axes, turn_off_nozzle); // and wait for the user to resolve the problem
  461. CheckUserInput();
  462. break;
  463. case CommunicationRecovered: // @@TODO communication recovered and may be an error recovered as well
  464. // may be the logic layer can detect the change of state a respond with one "Recovered" to be handled here
  465. ResumeAndUnPark(move_axes, turn_off_nozzle);
  466. break;
  467. case Processing: // wait for the MMU to respond
  468. default:
  469. break;
  470. }
  471. }
  472. }
  473. StepStatus MMU2::LogicStep() {
  474. StepStatus ss = logic.Step();
  475. switch (ss) {
  476. case Finished:
  477. case Processing:
  478. OnMMUProgressMsg(logic.Progress());
  479. break;
  480. case CommandError:
  481. ReportError(logic.Error());
  482. CheckUserInput();
  483. break;
  484. case CommunicationTimeout:
  485. state = xState::Connecting;
  486. ReportError(ErrorCode::MMU_NOT_RESPONDING);
  487. CheckUserInput();
  488. break;
  489. case ProtocolError:
  490. state = xState::Connecting;
  491. ReportError(ErrorCode::PROTOCOL_ERROR);
  492. CheckUserInput();
  493. break;
  494. case VersionMismatch:
  495. StopKeepPowered();
  496. ReportError(ErrorCode::VERSION_MISMATCH);
  497. CheckUserInput();
  498. break;
  499. default:
  500. break;
  501. }
  502. if( logic.Running() ){
  503. state = xState::Active;
  504. }
  505. return ss;
  506. }
  507. void MMU2::filament_ramming() {
  508. execute_extruder_sequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step));
  509. }
  510. void MMU2::execute_extruder_sequence(const E_Step *sequence, uint8_t steps) {
  511. st_synchronize();
  512. const E_Step *step = sequence;
  513. for (uint8_t i = 0; i < steps; i++) {
  514. current_position[E_AXIS] += pgm_read_float(&(step->extrude));
  515. plan_buffer_line_curposXYZE(pgm_read_float(&(step->feedRate)));
  516. st_synchronize();
  517. // SERIAL_ECHOPGM("EES:");
  518. // SERIAL_ECHOLN(position[E_AXIS]);
  519. step++;
  520. }
  521. }
  522. void MMU2::SetActiveExtruder(uint8_t ex){
  523. active_extruder = ex;
  524. }
  525. void MMU2::ReportError(ErrorCode ec) {
  526. // Due to a potential lossy error reporting layers linked to this hook
  527. // we'd better report everything to make sure especially the error states
  528. // do not get lost.
  529. // - The good news here is the fact, that the MMU reports the errors repeatedly until resolved.
  530. // - The bad news is, that MMU not responding may repeatedly occur on printers not having the MMU at all.
  531. //
  532. // Not sure how to properly handle this situation, options:
  533. // - skip reporting "MMU not responding" (at least for now)
  534. // - report only changes of states (we can miss an error message)
  535. // - may be some combination of MMUAvailable + UseMMU flags and decide based on their state
  536. // Right now the filtering of MMU_NOT_RESPONDING is done in ReportErrorHook() as it is not a problem if mmu2.cpp
  537. ReportErrorHook((uint16_t)ec);
  538. if( ec != lastErrorCode ){ // deduplicate: only report changes in error codes into the log
  539. lastErrorCode = ec;
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOLNRPGM( PrusaErrorTitle(PrusaErrorCodeIndex((uint16_t)ec)) );
  542. }
  543. static_assert(mmu2Magic[0] == 'M'
  544. && mmu2Magic[1] == 'M'
  545. && mmu2Magic[2] == 'U'
  546. && mmu2Magic[3] == '2'
  547. && mmu2Magic[4] == ':'
  548. && strlen_constexpr(mmu2Magic) == 5,
  549. "MMU2 logging prefix mismatch, must be updated at various spots"
  550. );
  551. }
  552. void MMU2::ReportProgress(ProgressCode pc) {
  553. ReportProgressHook((CommandInProgress)logic.CommandInProgress(), (uint16_t)pc);
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOLNRPGM( ProgressCodeToText((uint16_t)pc) );
  556. }
  557. void MMU2::OnMMUProgressMsg(ProgressCode pc){
  558. if (pc != lastProgressCode) {
  559. ReportProgress(pc);
  560. lastProgressCode = pc;
  561. // Act accordingly - one-time handling
  562. switch (pc) {
  563. case ProgressCode::FeedingToBondtech:
  564. // prepare for the movement of the E-motor
  565. st_synchronize();
  566. loadFilamentStarted = true;
  567. break;
  568. default:
  569. // do nothing yet
  570. break;
  571. }
  572. } else {
  573. // Act accordingly - every status change (even the same state)
  574. switch (pc) {
  575. case ProgressCode::FeedingToBondtech:
  576. case ProgressCode::FeedingToFSensor:
  577. if (loadFilamentStarted) {
  578. switch (WhereIsFilament()) {
  579. case FilamentState::AT_FSENSOR:
  580. // fsensor triggered, finish FeedingToBondtech state
  581. loadFilamentStarted = false;
  582. // After the MMU knows the FSENSOR is triggered it will:
  583. // 1. Push the filament by additional 30mm (see fsensorToNozzle)
  584. // 2. Disengage the idler and push another 5mm.
  585. // SERIAL_ECHOPGM("ATF1=");
  586. // SERIAL_ECHO(current_position[E_AXIS]);
  587. current_position[E_AXIS] += 30.0f + 2.0f;
  588. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  589. // SERIAL_ECHOPGM("ATF2=");
  590. // SERIAL_ECHOLN(current_position[E_AXIS]);
  591. break;
  592. case FilamentState::NOT_PRESENT:
  593. // fsensor not triggered, continue moving extruder
  594. if (!blocks_queued()) { // Only plan a move if there is no move ongoing
  595. current_position[E_AXIS] += 2.0f;
  596. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  597. }
  598. break;
  599. default:
  600. // Abort here?
  601. break;
  602. }
  603. }
  604. break;
  605. default:
  606. // do nothing yet
  607. break;
  608. }
  609. }
  610. }
  611. void MMU2::LogErrorEvent(const char *msg){
  612. MMU2_ERROR_MSG(msg);
  613. SERIAL_ECHOLN();
  614. }
  615. void MMU2::LogEchoEvent(const char *msg){
  616. MMU2_ECHO_MSG(msg);
  617. SERIAL_ECHOLN();
  618. }
  619. } // namespace MMU2