Marlin_main.cpp 354 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  320. {
  321. #if 0
  322. char ch=pgm_read_byte(str);
  323. while(ch)
  324. {
  325. MYSERIAL.write(ch);
  326. ch=pgm_read_byte(++str);
  327. }
  328. #else
  329. // hmm, same size as the above version, the compiler did a good job optimizing the above
  330. while( uint8_t ch = pgm_read_byte(str) ){
  331. MYSERIAL.write((char)ch);
  332. ++str;
  333. }
  334. #endif
  335. }
  336. #ifdef SDSUPPORT
  337. #include "SdFatUtil.h"
  338. int freeMemory() { return SdFatUtil::FreeRam(); }
  339. #else
  340. extern "C" {
  341. extern unsigned int __bss_end;
  342. extern unsigned int __heap_start;
  343. extern void *__brkval;
  344. int freeMemory() {
  345. int free_memory;
  346. if ((int)__brkval == 0)
  347. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  348. else
  349. free_memory = ((int)&free_memory) - ((int)__brkval);
  350. return free_memory;
  351. }
  352. }
  353. #endif //!SDSUPPORT
  354. void setup_killpin()
  355. {
  356. #if defined(KILL_PIN) && KILL_PIN > -1
  357. SET_INPUT(KILL_PIN);
  358. WRITE(KILL_PIN,HIGH);
  359. #endif
  360. }
  361. // Set home pin
  362. void setup_homepin(void)
  363. {
  364. #if defined(HOME_PIN) && HOME_PIN > -1
  365. SET_INPUT(HOME_PIN);
  366. WRITE(HOME_PIN,HIGH);
  367. #endif
  368. }
  369. void setup_photpin()
  370. {
  371. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  372. SET_OUTPUT(PHOTOGRAPH_PIN);
  373. WRITE(PHOTOGRAPH_PIN, LOW);
  374. #endif
  375. }
  376. void setup_powerhold()
  377. {
  378. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  379. SET_OUTPUT(SUICIDE_PIN);
  380. WRITE(SUICIDE_PIN, HIGH);
  381. #endif
  382. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  383. SET_OUTPUT(PS_ON_PIN);
  384. #if defined(PS_DEFAULT_OFF)
  385. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  386. #else
  387. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  388. #endif
  389. #endif
  390. }
  391. void suicide()
  392. {
  393. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  394. SET_OUTPUT(SUICIDE_PIN);
  395. WRITE(SUICIDE_PIN, LOW);
  396. #endif
  397. }
  398. void servo_init()
  399. {
  400. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  401. servos[0].attach(SERVO0_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  404. servos[1].attach(SERVO1_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  407. servos[2].attach(SERVO2_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  410. servos[3].attach(SERVO3_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 5)
  413. #error "TODO: enter initalisation code for more servos"
  414. #endif
  415. }
  416. bool fans_check_enabled = true;
  417. #ifdef TMC2130
  418. void crashdet_stop_and_save_print()
  419. {
  420. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  421. }
  422. void crashdet_restore_print_and_continue()
  423. {
  424. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  425. // babystep_apply();
  426. }
  427. void crashdet_stop_and_save_print2()
  428. {
  429. cli();
  430. planner_abort_hard(); //abort printing
  431. cmdqueue_reset(); //empty cmdqueue
  432. card.sdprinting = false;
  433. card.closefile();
  434. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  435. st_reset_timer();
  436. sei();
  437. }
  438. void crashdet_detected(uint8_t mask)
  439. {
  440. st_synchronize();
  441. static uint8_t crashDet_counter = 0;
  442. bool automatic_recovery_after_crash = true;
  443. if (crashDet_counter++ == 0) {
  444. crashDetTimer.start();
  445. }
  446. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  447. crashDetTimer.stop();
  448. crashDet_counter = 0;
  449. }
  450. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  451. automatic_recovery_after_crash = false;
  452. crashDetTimer.stop();
  453. crashDet_counter = 0;
  454. }
  455. else {
  456. crashDetTimer.start();
  457. }
  458. lcd_update_enable(true);
  459. lcd_clear();
  460. lcd_update(2);
  461. if (mask & X_AXIS_MASK)
  462. {
  463. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  464. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  465. }
  466. if (mask & Y_AXIS_MASK)
  467. {
  468. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  469. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  470. }
  471. lcd_update_enable(true);
  472. lcd_update(2);
  473. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  474. gcode_G28(true, true, false); //home X and Y
  475. st_synchronize();
  476. if (automatic_recovery_after_crash) {
  477. enquecommand_P(PSTR("CRASH_RECOVER"));
  478. }else{
  479. setTargetHotend(0, active_extruder);
  480. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  481. lcd_update_enable(true);
  482. if (yesno)
  483. {
  484. enquecommand_P(PSTR("CRASH_RECOVER"));
  485. }
  486. else
  487. {
  488. enquecommand_P(PSTR("CRASH_CANCEL"));
  489. }
  490. }
  491. }
  492. void crashdet_recover()
  493. {
  494. crashdet_restore_print_and_continue();
  495. tmc2130_sg_stop_on_crash = true;
  496. }
  497. void crashdet_cancel()
  498. {
  499. saved_printing = false;
  500. tmc2130_sg_stop_on_crash = true;
  501. if (saved_printing_type == PRINTING_TYPE_SD) {
  502. lcd_print_stop();
  503. }else if(saved_printing_type == PRINTING_TYPE_USB){
  504. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  505. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  506. }
  507. }
  508. #endif //TMC2130
  509. void failstats_reset_print()
  510. {
  511. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  517. }
  518. #ifdef MESH_BED_LEVELING
  519. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  520. #endif
  521. // Factory reset function
  522. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  523. // Level input parameter sets depth of reset
  524. int er_progress = 0;
  525. static void factory_reset(char level)
  526. {
  527. lcd_clear();
  528. switch (level) {
  529. // Level 0: Language reset
  530. case 0:
  531. Sound_MakeCustom(100,0,false);
  532. lang_reset();
  533. break;
  534. //Level 1: Reset statistics
  535. case 1:
  536. Sound_MakeCustom(100,0,false);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  551. lcd_menu_statistics();
  552. break;
  553. // Level 2: Prepare for shipping
  554. case 2:
  555. //lcd_puts_P(PSTR("Factory RESET"));
  556. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  557. // Force language selection at the next boot up.
  558. lang_reset();
  559. // Force the "Follow calibration flow" message at the next boot up.
  560. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  561. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  562. farm_no = 0;
  563. farm_mode = false;
  564. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  565. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  566. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  567. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  576. #ifdef FILAMENT_SENSOR
  577. fsensor_enable();
  578. fsensor_autoload_set(true);
  579. #endif //FILAMENT_SENSOR
  580. Sound_MakeCustom(100,0,false);
  581. //_delay_ms(2000);
  582. break;
  583. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  584. case 3:
  585. lcd_puts_P(PSTR("Factory RESET"));
  586. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  587. Sound_MakeCustom(100,0,false);
  588. er_progress = 0;
  589. lcd_puts_at_P(3, 3, PSTR(" "));
  590. lcd_set_cursor(3, 3);
  591. lcd_print(er_progress);
  592. // Erase EEPROM
  593. for (int i = 0; i < 4096; i++) {
  594. eeprom_update_byte((uint8_t*)i, 0xFF);
  595. if (i % 41 == 0) {
  596. er_progress++;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. lcd_puts_P(PSTR("%"));
  601. }
  602. }
  603. break;
  604. case 4:
  605. bowden_menu();
  606. break;
  607. default:
  608. break;
  609. }
  610. }
  611. extern "C" {
  612. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  613. }
  614. int uart_putchar(char c, FILE *)
  615. {
  616. MYSERIAL.write(c);
  617. return 0;
  618. }
  619. void lcd_splash()
  620. {
  621. lcd_clear(); // clears display and homes screen
  622. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  623. }
  624. void factory_reset()
  625. {
  626. KEEPALIVE_STATE(PAUSED_FOR_USER);
  627. if (!READ(BTN_ENC))
  628. {
  629. _delay_ms(1000);
  630. if (!READ(BTN_ENC))
  631. {
  632. lcd_clear();
  633. lcd_puts_P(PSTR("Factory RESET"));
  634. SET_OUTPUT(BEEPER);
  635. if(eSoundMode!=e_SOUND_MODE_SILENT)
  636. WRITE(BEEPER, HIGH);
  637. while (!READ(BTN_ENC));
  638. WRITE(BEEPER, LOW);
  639. _delay_ms(2000);
  640. char level = reset_menu();
  641. factory_reset(level);
  642. switch (level) {
  643. case 0: _delay_ms(0); break;
  644. case 1: _delay_ms(0); break;
  645. case 2: _delay_ms(0); break;
  646. case 3: _delay_ms(0); break;
  647. }
  648. }
  649. }
  650. KEEPALIVE_STATE(IN_HANDLER);
  651. }
  652. void show_fw_version_warnings() {
  653. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  654. switch (FW_DEV_VERSION) {
  655. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  656. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  657. case(FW_VERSION_DEVEL):
  658. case(FW_VERSION_DEBUG):
  659. lcd_update_enable(false);
  660. lcd_clear();
  661. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  662. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  663. #else
  664. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  665. #endif
  666. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  667. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  668. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  669. lcd_wait_for_click();
  670. break;
  671. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  672. }
  673. lcd_update_enable(true);
  674. }
  675. //! @brief try to check if firmware is on right type of printer
  676. static void check_if_fw_is_on_right_printer(){
  677. #ifdef FILAMENT_SENSOR
  678. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  679. #ifdef IR_SENSOR
  680. swi2c_init();
  681. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  682. if (pat9125_detected){
  683. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  684. #endif //IR_SENSOR
  685. #ifdef PAT9125
  686. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  687. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  688. if (ir_detected){
  689. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  690. #endif //PAT9125
  691. }
  692. #endif //FILAMENT_SENSOR
  693. }
  694. uint8_t check_printer_version()
  695. {
  696. uint8_t version_changed = 0;
  697. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  698. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  699. if (printer_type != PRINTER_TYPE) {
  700. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  701. else version_changed |= 0b10;
  702. }
  703. if (motherboard != MOTHERBOARD) {
  704. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  705. else version_changed |= 0b01;
  706. }
  707. return version_changed;
  708. }
  709. #ifdef BOOTAPP
  710. #include "bootapp.h" //bootloader support
  711. #endif //BOOTAPP
  712. #if (LANG_MODE != 0) //secondary language support
  713. #ifdef W25X20CL
  714. // language update from external flash
  715. #define LANGBOOT_BLOCKSIZE 0x1000u
  716. #define LANGBOOT_RAMBUFFER 0x0800
  717. void update_sec_lang_from_external_flash()
  718. {
  719. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  720. {
  721. uint8_t lang = boot_reserved >> 4;
  722. uint8_t state = boot_reserved & 0xf;
  723. lang_table_header_t header;
  724. uint32_t src_addr;
  725. if (lang_get_header(lang, &header, &src_addr))
  726. {
  727. lcd_puts_at_P(1,3,PSTR("Language update."));
  728. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  729. _delay(100);
  730. boot_reserved = (state + 1) | (lang << 4);
  731. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  732. {
  733. cli();
  734. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  735. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  736. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  737. if (state == 0)
  738. {
  739. //TODO - check header integrity
  740. }
  741. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  742. }
  743. else
  744. {
  745. //TODO - check sec lang data integrity
  746. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  747. }
  748. }
  749. }
  750. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  751. }
  752. #ifdef DEBUG_W25X20CL
  753. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  754. {
  755. lang_table_header_t header;
  756. uint8_t count = 0;
  757. uint32_t addr = 0x00000;
  758. while (1)
  759. {
  760. printf_P(_n("LANGTABLE%d:"), count);
  761. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  762. if (header.magic != LANG_MAGIC)
  763. {
  764. printf_P(_n("NG!\n"));
  765. break;
  766. }
  767. printf_P(_n("OK\n"));
  768. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  769. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  770. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  771. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  772. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  773. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  774. addr += header.size;
  775. codes[count] = header.code;
  776. count ++;
  777. }
  778. return count;
  779. }
  780. void list_sec_lang_from_external_flash()
  781. {
  782. uint16_t codes[8];
  783. uint8_t count = lang_xflash_enum_codes(codes);
  784. printf_P(_n("XFlash lang count = %hhd\n"), count);
  785. }
  786. #endif //DEBUG_W25X20CL
  787. #endif //W25X20CL
  788. #endif //(LANG_MODE != 0)
  789. static void w25x20cl_err_msg()
  790. {
  791. lcd_clear();
  792. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  793. }
  794. // "Setup" function is called by the Arduino framework on startup.
  795. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  796. // are initialized by the main() routine provided by the Arduino framework.
  797. void setup()
  798. {
  799. mmu_init();
  800. ultralcd_init();
  801. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  802. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  803. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  804. spi_init();
  805. lcd_splash();
  806. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  807. #ifdef W25X20CL
  808. bool w25x20cl_success = w25x20cl_init();
  809. if (w25x20cl_success)
  810. {
  811. optiboot_w25x20cl_enter();
  812. #if (LANG_MODE != 0) //secondary language support
  813. update_sec_lang_from_external_flash();
  814. #endif //(LANG_MODE != 0)
  815. }
  816. else
  817. {
  818. w25x20cl_err_msg();
  819. }
  820. #else
  821. const bool w25x20cl_success = true;
  822. #endif //W25X20CL
  823. setup_killpin();
  824. setup_powerhold();
  825. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  826. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  827. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  828. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  829. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  830. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  831. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  832. if (farm_mode)
  833. {
  834. no_response = true; //we need confirmation by recieving PRUSA thx
  835. important_status = 8;
  836. prusa_statistics(8);
  837. selectedSerialPort = 1;
  838. #ifdef TMC2130
  839. //increased extruder current (PFW363)
  840. tmc2130_current_h[E_AXIS] = 36;
  841. tmc2130_current_r[E_AXIS] = 36;
  842. #endif //TMC2130
  843. #ifdef FILAMENT_SENSOR
  844. //disabled filament autoload (PFW360)
  845. fsensor_autoload_set(false);
  846. #endif //FILAMENT_SENSOR
  847. // ~ FanCheck -> on
  848. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  849. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. #ifndef W25X20CL
  854. SERIAL_PROTOCOLLNPGM("start");
  855. #endif //W25X20CL
  856. stdout = uartout;
  857. SERIAL_ECHO_START;
  858. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  859. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  860. #ifdef DEBUG_SEC_LANG
  861. lang_table_header_t header;
  862. uint32_t src_addr = 0x00000;
  863. if (lang_get_header(1, &header, &src_addr))
  864. {
  865. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  866. #define LT_PRINT_TEST 2
  867. // flash usage
  868. // total p.test
  869. //0 252718 t+c text code
  870. //1 253142 424 170 254
  871. //2 253040 322 164 158
  872. //3 253248 530 135 395
  873. #if (LT_PRINT_TEST==1) //not optimized printf
  874. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  875. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  876. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  877. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  878. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  879. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  880. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  881. #elif (LT_PRINT_TEST==2) //optimized printf
  882. printf_P(
  883. _n(
  884. " _src_addr = 0x%08lx\n"
  885. " _lt_magic = 0x%08lx %S\n"
  886. " _lt_size = 0x%04x (%d)\n"
  887. " _lt_count = 0x%04x (%d)\n"
  888. " _lt_chsum = 0x%04x\n"
  889. " _lt_code = 0x%04x (%c%c)\n"
  890. " _lt_resv1 = 0x%08lx\n"
  891. ),
  892. src_addr,
  893. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  894. header.size, header.size,
  895. header.count, header.count,
  896. header.checksum,
  897. header.code, header.code >> 8, header.code & 0xff,
  898. header.signature
  899. );
  900. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  901. MYSERIAL.print(" _src_addr = 0x");
  902. MYSERIAL.println(src_addr, 16);
  903. MYSERIAL.print(" _lt_magic = 0x");
  904. MYSERIAL.print(header.magic, 16);
  905. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  906. MYSERIAL.print(" _lt_size = 0x");
  907. MYSERIAL.print(header.size, 16);
  908. MYSERIAL.print(" (");
  909. MYSERIAL.print(header.size, 10);
  910. MYSERIAL.println(")");
  911. MYSERIAL.print(" _lt_count = 0x");
  912. MYSERIAL.print(header.count, 16);
  913. MYSERIAL.print(" (");
  914. MYSERIAL.print(header.count, 10);
  915. MYSERIAL.println(")");
  916. MYSERIAL.print(" _lt_chsum = 0x");
  917. MYSERIAL.println(header.checksum, 16);
  918. MYSERIAL.print(" _lt_code = 0x");
  919. MYSERIAL.print(header.code, 16);
  920. MYSERIAL.print(" (");
  921. MYSERIAL.print((char)(header.code >> 8), 0);
  922. MYSERIAL.print((char)(header.code & 0xff), 0);
  923. MYSERIAL.println(")");
  924. MYSERIAL.print(" _lt_resv1 = 0x");
  925. MYSERIAL.println(header.signature, 16);
  926. #endif //(LT_PRINT_TEST==)
  927. #undef LT_PRINT_TEST
  928. #if 0
  929. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  930. for (uint16_t i = 0; i < 1024; i++)
  931. {
  932. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  933. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  934. if ((i % 16) == 15) putchar('\n');
  935. }
  936. #endif
  937. uint16_t sum = 0;
  938. for (uint16_t i = 0; i < header.size; i++)
  939. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  940. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  941. sum -= header.checksum; //subtract checksum
  942. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  943. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  944. if (sum == header.checksum)
  945. printf_P(_n("Checksum OK\n"), sum);
  946. else
  947. printf_P(_n("Checksum NG\n"), sum);
  948. }
  949. else
  950. printf_P(_n("lang_get_header failed!\n"));
  951. #if 0
  952. for (uint16_t i = 0; i < 1024*10; i++)
  953. {
  954. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  955. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  956. if ((i % 16) == 15) putchar('\n');
  957. }
  958. #endif
  959. #if 0
  960. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  961. for (int i = 0; i < 4096; ++i) {
  962. int b = eeprom_read_byte((unsigned char*)i);
  963. if (b != 255) {
  964. SERIAL_ECHO(i);
  965. SERIAL_ECHO(":");
  966. SERIAL_ECHO(b);
  967. SERIAL_ECHOLN("");
  968. }
  969. }
  970. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  971. #endif
  972. #endif //DEBUG_SEC_LANG
  973. // Check startup - does nothing if bootloader sets MCUSR to 0
  974. byte mcu = MCUSR;
  975. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  976. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  977. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  978. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  979. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  980. if (mcu & 1) puts_P(MSG_POWERUP);
  981. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  982. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  983. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  984. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  985. MCUSR = 0;
  986. //SERIAL_ECHORPGM(MSG_MARLIN);
  987. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  988. #ifdef STRING_VERSION_CONFIG_H
  989. #ifdef STRING_CONFIG_H_AUTHOR
  990. SERIAL_ECHO_START;
  991. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  992. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  993. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  994. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  995. SERIAL_ECHOPGM("Compiled: ");
  996. SERIAL_ECHOLNPGM(__DATE__);
  997. #endif
  998. #endif
  999. SERIAL_ECHO_START;
  1000. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1001. SERIAL_ECHO(freeMemory());
  1002. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1003. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1004. //lcd_update_enable(false); // why do we need this?? - andre
  1005. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1006. bool previous_settings_retrieved = false;
  1007. uint8_t hw_changed = check_printer_version();
  1008. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1009. previous_settings_retrieved = Config_RetrieveSettings();
  1010. }
  1011. else { //printer version was changed so use default settings
  1012. Config_ResetDefault();
  1013. }
  1014. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1015. tp_init(); // Initialize temperature loop
  1016. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1017. else
  1018. {
  1019. w25x20cl_err_msg();
  1020. printf_P(_n("W25X20CL not responding.\n"));
  1021. }
  1022. plan_init(); // Initialize planner;
  1023. factory_reset();
  1024. lcd_encoder_diff=0;
  1025. #ifdef TMC2130
  1026. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1027. if (silentMode == 0xff) silentMode = 0;
  1028. tmc2130_mode = TMC2130_MODE_NORMAL;
  1029. if (lcd_crash_detect_enabled() && !farm_mode)
  1030. {
  1031. lcd_crash_detect_enable();
  1032. puts_P(_N("CrashDetect ENABLED!"));
  1033. }
  1034. else
  1035. {
  1036. lcd_crash_detect_disable();
  1037. puts_P(_N("CrashDetect DISABLED"));
  1038. }
  1039. #ifdef TMC2130_LINEARITY_CORRECTION
  1040. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1041. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1042. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1043. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1044. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1045. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1046. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1047. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1048. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1049. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1050. #endif //TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_VARIABLE_RESOLUTION
  1052. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1053. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1054. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1055. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1056. #else //TMC2130_VARIABLE_RESOLUTION
  1057. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1058. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1059. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1060. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1061. #endif //TMC2130_VARIABLE_RESOLUTION
  1062. #endif //TMC2130
  1063. st_init(); // Initialize stepper, this enables interrupts!
  1064. #ifdef UVLO_SUPPORT
  1065. setup_uvlo_interrupt();
  1066. #endif //UVLO_SUPPORT
  1067. #ifdef TMC2130
  1068. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1069. update_mode_profile();
  1070. tmc2130_init();
  1071. #endif //TMC2130
  1072. #ifdef PSU_Delta
  1073. init_force_z(); // ! important for correct Z-axis initialization
  1074. #endif // PSU_Delta
  1075. setup_photpin();
  1076. servo_init();
  1077. // Reset the machine correction matrix.
  1078. // It does not make sense to load the correction matrix until the machine is homed.
  1079. world2machine_reset();
  1080. #ifdef FILAMENT_SENSOR
  1081. fsensor_init();
  1082. #endif //FILAMENT_SENSOR
  1083. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1084. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1085. #endif
  1086. setup_homepin();
  1087. #ifdef TMC2130
  1088. if (1) {
  1089. // try to run to zero phase before powering the Z motor.
  1090. // Move in negative direction
  1091. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1092. // Round the current micro-micro steps to micro steps.
  1093. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1094. // Until the phase counter is reset to zero.
  1095. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1096. _delay(2);
  1097. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1098. _delay(2);
  1099. }
  1100. }
  1101. #endif //TMC2130
  1102. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1103. enable_z();
  1104. #endif
  1105. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1106. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1107. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1108. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1109. if (farm_mode)
  1110. {
  1111. prusa_statistics(8);
  1112. }
  1113. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1114. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1115. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1116. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1117. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1118. // where all the EEPROM entries are set to 0x0ff.
  1119. // Once a firmware boots up, it forces at least a language selection, which changes
  1120. // EEPROM_LANG to number lower than 0x0ff.
  1121. // 1) Set a high power mode.
  1122. #ifdef TMC2130
  1123. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1124. tmc2130_mode = TMC2130_MODE_NORMAL;
  1125. #endif //TMC2130
  1126. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1127. }
  1128. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1129. // but this times out if a blocking dialog is shown in setup().
  1130. card.initsd();
  1131. #ifdef DEBUG_SD_SPEED_TEST
  1132. if (card.cardOK)
  1133. {
  1134. uint8_t* buff = (uint8_t*)block_buffer;
  1135. uint32_t block = 0;
  1136. uint32_t sumr = 0;
  1137. uint32_t sumw = 0;
  1138. for (int i = 0; i < 1024; i++)
  1139. {
  1140. uint32_t u = _micros();
  1141. bool res = card.card.readBlock(i, buff);
  1142. u = _micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumr += u;
  1147. u = _micros();
  1148. res = card.card.writeBlock(i, buff);
  1149. u = _micros() - u;
  1150. if (res)
  1151. {
  1152. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1153. sumw += u;
  1154. }
  1155. else
  1156. {
  1157. printf_P(PSTR("writeBlock %4d error\n"), i);
  1158. break;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("readBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1168. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1169. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1170. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1171. }
  1172. else
  1173. printf_P(PSTR("Card NG!\n"));
  1174. #endif //DEBUG_SD_SPEED_TEST
  1175. eeprom_init();
  1176. #ifdef SNMM
  1177. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1178. int _z = BOWDEN_LENGTH;
  1179. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1180. }
  1181. #endif
  1182. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1183. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1184. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1185. #if (LANG_MODE != 0) //secondary language support
  1186. #ifdef DEBUG_W25X20CL
  1187. W25X20CL_SPI_ENTER();
  1188. uint8_t uid[8]; // 64bit unique id
  1189. w25x20cl_rd_uid(uid);
  1190. puts_P(_n("W25X20CL UID="));
  1191. for (uint8_t i = 0; i < 8; i ++)
  1192. printf_P(PSTR("%02hhx"), uid[i]);
  1193. putchar('\n');
  1194. list_sec_lang_from_external_flash();
  1195. #endif //DEBUG_W25X20CL
  1196. // lang_reset();
  1197. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1198. lcd_language();
  1199. #ifdef DEBUG_SEC_LANG
  1200. uint16_t sec_lang_code = lang_get_code(1);
  1201. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1202. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1203. lang_print_sec_lang(uartout);
  1204. #endif //DEBUG_SEC_LANG
  1205. #endif //(LANG_MODE != 0)
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1207. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1208. temp_cal_active = false;
  1209. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1211. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1212. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1213. int16_t z_shift = 0;
  1214. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1215. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1216. temp_cal_active = false;
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1220. }
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1223. }
  1224. //mbl_mode_init();
  1225. mbl_settings_init();
  1226. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1227. if (SilentModeMenu_MMU == 255) {
  1228. SilentModeMenu_MMU = 1;
  1229. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1230. }
  1231. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1232. setup_fan_interrupt();
  1233. #endif //DEBUG_DISABLE_FANCHECK
  1234. #ifdef PAT9125
  1235. fsensor_setup_interrupt();
  1236. #endif //PAT9125
  1237. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1238. #ifndef DEBUG_DISABLE_STARTMSGS
  1239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1240. if (!farm_mode) {
  1241. check_if_fw_is_on_right_printer();
  1242. show_fw_version_warnings();
  1243. }
  1244. switch (hw_changed) {
  1245. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1246. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1247. case(0b01):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1250. break;
  1251. case(0b10):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. break;
  1255. case(0b11):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1258. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1259. break;
  1260. default: break; //no change, show no message
  1261. }
  1262. if (!previous_settings_retrieved) {
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1264. Config_StoreSettings();
  1265. }
  1266. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1267. lcd_wizard(WizState::Run);
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1270. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1271. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1272. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1273. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1274. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1277. }
  1278. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1279. // Show the message.
  1280. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1284. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1285. lcd_update_enable(true);
  1286. }
  1287. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1290. }
  1291. }
  1292. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1293. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1294. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1295. update_current_firmware_version_to_eeprom();
  1296. lcd_selftest();
  1297. }
  1298. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1299. KEEPALIVE_STATE(IN_PROCESS);
  1300. #endif //DEBUG_DISABLE_STARTMSGS
  1301. lcd_update_enable(true);
  1302. lcd_clear();
  1303. lcd_update(2);
  1304. // Store the currently running firmware into an eeprom,
  1305. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1306. update_current_firmware_version_to_eeprom();
  1307. #ifdef TMC2130
  1308. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1309. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1310. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1311. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1312. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1313. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1314. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1315. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1316. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1317. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1318. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1319. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1320. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1321. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1322. #endif //TMC2130
  1323. #ifdef UVLO_SUPPORT
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1325. /*
  1326. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1327. else {
  1328. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1329. lcd_update_enable(true);
  1330. lcd_update(2);
  1331. lcd_setstatuspgm(_T(WELCOME_MSG));
  1332. }
  1333. */
  1334. manage_heater(); // Update temperatures
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1337. #endif
  1338. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1339. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1340. puts_P(_N("Automatic recovery!"));
  1341. #endif
  1342. recover_print(1);
  1343. }
  1344. else{
  1345. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1346. puts_P(_N("Normal recovery!"));
  1347. #endif
  1348. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1349. else {
  1350. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1351. lcd_update_enable(true);
  1352. lcd_update(2);
  1353. lcd_setstatuspgm(_T(WELCOME_MSG));
  1354. }
  1355. }
  1356. }
  1357. #endif //UVLO_SUPPORT
  1358. fCheckModeInit();
  1359. fSetMmuMode(mmu_enabled);
  1360. KEEPALIVE_STATE(NOT_BUSY);
  1361. #ifdef WATCHDOG
  1362. wdt_enable(WDTO_4S);
  1363. #endif //WATCHDOG
  1364. }
  1365. void trace();
  1366. #define CHUNK_SIZE 64 // bytes
  1367. #define SAFETY_MARGIN 1
  1368. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1369. int chunkHead = 0;
  1370. void serial_read_stream() {
  1371. setAllTargetHotends(0);
  1372. setTargetBed(0);
  1373. lcd_clear();
  1374. lcd_puts_P(PSTR(" Upload in progress"));
  1375. // first wait for how many bytes we will receive
  1376. uint32_t bytesToReceive;
  1377. // receive the four bytes
  1378. char bytesToReceiveBuffer[4];
  1379. for (int i=0; i<4; i++) {
  1380. int data;
  1381. while ((data = MYSERIAL.read()) == -1) {};
  1382. bytesToReceiveBuffer[i] = data;
  1383. }
  1384. // make it a uint32
  1385. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1386. // we're ready, notify the sender
  1387. MYSERIAL.write('+');
  1388. // lock in the routine
  1389. uint32_t receivedBytes = 0;
  1390. while (prusa_sd_card_upload) {
  1391. int i;
  1392. for (i=0; i<CHUNK_SIZE; i++) {
  1393. int data;
  1394. // check if we're not done
  1395. if (receivedBytes == bytesToReceive) {
  1396. break;
  1397. }
  1398. // read the next byte
  1399. while ((data = MYSERIAL.read()) == -1) {};
  1400. receivedBytes++;
  1401. // save it to the chunk
  1402. chunk[i] = data;
  1403. }
  1404. // write the chunk to SD
  1405. card.write_command_no_newline(&chunk[0]);
  1406. // notify the sender we're ready for more data
  1407. MYSERIAL.write('+');
  1408. // for safety
  1409. manage_heater();
  1410. // check if we're done
  1411. if(receivedBytes == bytesToReceive) {
  1412. trace(); // beep
  1413. card.closefile();
  1414. prusa_sd_card_upload = false;
  1415. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1416. }
  1417. }
  1418. }
  1419. /**
  1420. * Output a "busy" message at regular intervals
  1421. * while the machine is not accepting commands.
  1422. */
  1423. void host_keepalive() {
  1424. #ifndef HOST_KEEPALIVE_FEATURE
  1425. return;
  1426. #endif //HOST_KEEPALIVE_FEATURE
  1427. if (farm_mode) return;
  1428. long ms = _millis();
  1429. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1430. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1431. switch (busy_state) {
  1432. case IN_HANDLER:
  1433. case IN_PROCESS:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: processing");
  1436. break;
  1437. case PAUSED_FOR_USER:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for user");
  1440. break;
  1441. case PAUSED_FOR_INPUT:
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHOLNPGM("busy: paused for input");
  1444. break;
  1445. default:
  1446. break;
  1447. }
  1448. }
  1449. prev_busy_signal_ms = ms;
  1450. }
  1451. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1452. // Before loop(), the setup() function is called by the main() routine.
  1453. void loop()
  1454. {
  1455. KEEPALIVE_STATE(NOT_BUSY);
  1456. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1457. {
  1458. is_usb_printing = true;
  1459. usb_printing_counter--;
  1460. _usb_timer = _millis();
  1461. }
  1462. if (usb_printing_counter == 0)
  1463. {
  1464. is_usb_printing = false;
  1465. }
  1466. if (prusa_sd_card_upload)
  1467. {
  1468. //we read byte-by byte
  1469. serial_read_stream();
  1470. } else
  1471. {
  1472. get_command();
  1473. #ifdef SDSUPPORT
  1474. card.checkautostart(false);
  1475. #endif
  1476. if(buflen)
  1477. {
  1478. cmdbuffer_front_already_processed = false;
  1479. #ifdef SDSUPPORT
  1480. if(card.saving)
  1481. {
  1482. // Saving a G-code file onto an SD-card is in progress.
  1483. // Saving starts with M28, saving until M29 is seen.
  1484. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1485. card.write_command(CMDBUFFER_CURRENT_STRING);
  1486. if(card.logging)
  1487. process_commands();
  1488. else
  1489. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1490. } else {
  1491. card.closefile();
  1492. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1493. }
  1494. } else {
  1495. process_commands();
  1496. }
  1497. #else
  1498. process_commands();
  1499. #endif //SDSUPPORT
  1500. if (! cmdbuffer_front_already_processed && buflen)
  1501. {
  1502. // ptr points to the start of the block currently being processed.
  1503. // The first character in the block is the block type.
  1504. char *ptr = cmdbuffer + bufindr;
  1505. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1506. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1507. union {
  1508. struct {
  1509. char lo;
  1510. char hi;
  1511. } lohi;
  1512. uint16_t value;
  1513. } sdlen;
  1514. sdlen.value = 0;
  1515. {
  1516. // This block locks the interrupts globally for 3.25 us,
  1517. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1518. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1519. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1520. cli();
  1521. // Reset the command to something, which will be ignored by the power panic routine,
  1522. // so this buffer length will not be counted twice.
  1523. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1524. // Extract the current buffer length.
  1525. sdlen.lohi.lo = *ptr ++;
  1526. sdlen.lohi.hi = *ptr;
  1527. // and pass it to the planner queue.
  1528. planner_add_sd_length(sdlen.value);
  1529. sei();
  1530. }
  1531. }
  1532. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1533. cli();
  1534. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1535. // and one for each command to previous block in the planner queue.
  1536. planner_add_sd_length(1);
  1537. sei();
  1538. }
  1539. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1540. // this block's SD card length will not be counted twice as its command type has been replaced
  1541. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1542. cmdqueue_pop_front();
  1543. }
  1544. host_keepalive();
  1545. }
  1546. }
  1547. //check heater every n milliseconds
  1548. manage_heater();
  1549. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1550. checkHitEndstops();
  1551. lcd_update(0);
  1552. #ifdef TMC2130
  1553. tmc2130_check_overtemp();
  1554. if (tmc2130_sg_crash)
  1555. {
  1556. uint8_t crash = tmc2130_sg_crash;
  1557. tmc2130_sg_crash = 0;
  1558. // crashdet_stop_and_save_print();
  1559. switch (crash)
  1560. {
  1561. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1562. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1563. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1564. }
  1565. }
  1566. #endif //TMC2130
  1567. mmu_loop();
  1568. }
  1569. #define DEFINE_PGM_READ_ANY(type, reader) \
  1570. static inline type pgm_read_any(const type *p) \
  1571. { return pgm_read_##reader##_near(p); }
  1572. DEFINE_PGM_READ_ANY(float, float);
  1573. DEFINE_PGM_READ_ANY(signed char, byte);
  1574. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1575. static const PROGMEM type array##_P[3] = \
  1576. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1577. static inline type array(int axis) \
  1578. { return pgm_read_any(&array##_P[axis]); } \
  1579. type array##_ext(int axis) \
  1580. { return pgm_read_any(&array##_P[axis]); }
  1581. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1582. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1583. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1584. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1585. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1586. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1587. static void axis_is_at_home(int axis) {
  1588. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1589. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1590. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1591. }
  1592. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1593. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1594. //! @return original feedmultiply
  1595. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1596. saved_feedrate = feedrate;
  1597. int l_feedmultiply = feedmultiply;
  1598. feedmultiply = 100;
  1599. previous_millis_cmd = _millis();
  1600. enable_endstops(enable_endstops_now);
  1601. return l_feedmultiply;
  1602. }
  1603. //! @param original_feedmultiply feedmultiply to restore
  1604. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1605. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1606. enable_endstops(false);
  1607. #endif
  1608. feedrate = saved_feedrate;
  1609. feedmultiply = original_feedmultiply;
  1610. previous_millis_cmd = _millis();
  1611. }
  1612. #ifdef ENABLE_AUTO_BED_LEVELING
  1613. #ifdef AUTO_BED_LEVELING_GRID
  1614. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1615. {
  1616. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1617. planeNormal.debug("planeNormal");
  1618. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1619. //bedLevel.debug("bedLevel");
  1620. //plan_bed_level_matrix.debug("bed level before");
  1621. //vector_3 uncorrected_position = plan_get_position_mm();
  1622. //uncorrected_position.debug("position before");
  1623. vector_3 corrected_position = plan_get_position();
  1624. // corrected_position.debug("position after");
  1625. current_position[X_AXIS] = corrected_position.x;
  1626. current_position[Y_AXIS] = corrected_position.y;
  1627. current_position[Z_AXIS] = corrected_position.z;
  1628. // put the bed at 0 so we don't go below it.
  1629. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. }
  1632. #else // not AUTO_BED_LEVELING_GRID
  1633. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1634. plan_bed_level_matrix.set_to_identity();
  1635. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1636. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1637. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1638. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1639. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1640. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1641. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1642. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1643. vector_3 corrected_position = plan_get_position();
  1644. current_position[X_AXIS] = corrected_position.x;
  1645. current_position[Y_AXIS] = corrected_position.y;
  1646. current_position[Z_AXIS] = corrected_position.z;
  1647. // put the bed at 0 so we don't go below it.
  1648. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1649. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1650. }
  1651. #endif // AUTO_BED_LEVELING_GRID
  1652. static void run_z_probe() {
  1653. plan_bed_level_matrix.set_to_identity();
  1654. feedrate = homing_feedrate[Z_AXIS];
  1655. // move down until you find the bed
  1656. float zPosition = -10;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1658. st_synchronize();
  1659. // we have to let the planner know where we are right now as it is not where we said to go.
  1660. zPosition = st_get_position_mm(Z_AXIS);
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1662. // move up the retract distance
  1663. zPosition += home_retract_mm(Z_AXIS);
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1665. st_synchronize();
  1666. // move back down slowly to find bed
  1667. feedrate = homing_feedrate[Z_AXIS]/4;
  1668. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1672. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. }
  1675. static void do_blocking_move_to(float x, float y, float z) {
  1676. float oldFeedRate = feedrate;
  1677. feedrate = homing_feedrate[Z_AXIS];
  1678. current_position[Z_AXIS] = z;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. feedrate = XY_TRAVEL_SPEED;
  1682. current_position[X_AXIS] = x;
  1683. current_position[Y_AXIS] = y;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. feedrate = oldFeedRate;
  1687. }
  1688. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1689. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1690. }
  1691. /// Probe bed height at position (x,y), returns the measured z value
  1692. static float probe_pt(float x, float y, float z_before) {
  1693. // move to right place
  1694. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1695. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1696. run_z_probe();
  1697. float measured_z = current_position[Z_AXIS];
  1698. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1699. SERIAL_PROTOCOLPGM(" x: ");
  1700. SERIAL_PROTOCOL(x);
  1701. SERIAL_PROTOCOLPGM(" y: ");
  1702. SERIAL_PROTOCOL(y);
  1703. SERIAL_PROTOCOLPGM(" z: ");
  1704. SERIAL_PROTOCOL(measured_z);
  1705. SERIAL_PROTOCOLPGM("\n");
  1706. return measured_z;
  1707. }
  1708. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1709. #ifdef LIN_ADVANCE
  1710. /**
  1711. * M900: Set and/or Get advance K factor and WH/D ratio
  1712. *
  1713. * K<factor> Set advance K factor
  1714. * R<ratio> Set ratio directly (overrides WH/D)
  1715. * W<width> H<height> D<diam> Set ratio from WH/D
  1716. */
  1717. inline void gcode_M900() {
  1718. st_synchronize();
  1719. const float newK = code_seen('K') ? code_value_float() : -1;
  1720. if (newK >= 0) extruder_advance_k = newK;
  1721. float newR = code_seen('R') ? code_value_float() : -1;
  1722. if (newR < 0) {
  1723. const float newD = code_seen('D') ? code_value_float() : -1,
  1724. newW = code_seen('W') ? code_value_float() : -1,
  1725. newH = code_seen('H') ? code_value_float() : -1;
  1726. if (newD >= 0 && newW >= 0 && newH >= 0)
  1727. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1728. }
  1729. if (newR >= 0) advance_ed_ratio = newR;
  1730. SERIAL_ECHO_START;
  1731. SERIAL_ECHOPGM("Advance K=");
  1732. SERIAL_ECHOLN(extruder_advance_k);
  1733. SERIAL_ECHOPGM(" E/D=");
  1734. const float ratio = advance_ed_ratio;
  1735. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1736. }
  1737. #endif // LIN_ADVANCE
  1738. bool check_commands() {
  1739. bool end_command_found = false;
  1740. while (buflen)
  1741. {
  1742. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1743. if (!cmdbuffer_front_already_processed)
  1744. cmdqueue_pop_front();
  1745. cmdbuffer_front_already_processed = false;
  1746. }
  1747. return end_command_found;
  1748. }
  1749. #ifdef TMC2130
  1750. bool calibrate_z_auto()
  1751. {
  1752. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1753. lcd_clear();
  1754. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1755. bool endstops_enabled = enable_endstops(true);
  1756. int axis_up_dir = -home_dir(Z_AXIS);
  1757. tmc2130_home_enter(Z_AXIS_MASK);
  1758. current_position[Z_AXIS] = 0;
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. set_destination_to_current();
  1761. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1762. feedrate = homing_feedrate[Z_AXIS];
  1763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1764. st_synchronize();
  1765. // current_position[axis] = 0;
  1766. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. tmc2130_home_exit();
  1768. enable_endstops(false);
  1769. current_position[Z_AXIS] = 0;
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. set_destination_to_current();
  1772. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1773. feedrate = homing_feedrate[Z_AXIS] / 2;
  1774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1775. st_synchronize();
  1776. enable_endstops(endstops_enabled);
  1777. if (PRINTER_TYPE == PRINTER_MK3) {
  1778. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1779. }
  1780. else {
  1781. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1782. }
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. return true;
  1785. }
  1786. #endif //TMC2130
  1787. #ifdef TMC2130
  1788. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1789. #else
  1790. void homeaxis(int axis, uint8_t cnt)
  1791. #endif //TMC2130
  1792. {
  1793. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1794. #define HOMEAXIS_DO(LETTER) \
  1795. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1796. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1797. {
  1798. int axis_home_dir = home_dir(axis);
  1799. feedrate = homing_feedrate[axis];
  1800. #ifdef TMC2130
  1801. tmc2130_home_enter(X_AXIS_MASK << axis);
  1802. #endif //TMC2130
  1803. // Move away a bit, so that the print head does not touch the end position,
  1804. // and the following movement to endstop has a chance to achieve the required velocity
  1805. // for the stall guard to work.
  1806. current_position[axis] = 0;
  1807. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1808. set_destination_to_current();
  1809. // destination[axis] = 11.f;
  1810. destination[axis] = -3.f * axis_home_dir;
  1811. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1812. st_synchronize();
  1813. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1814. endstops_hit_on_purpose();
  1815. enable_endstops(false);
  1816. current_position[axis] = 0;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. destination[axis] = 1. * axis_home_dir;
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1820. st_synchronize();
  1821. // Now continue to move up to the left end stop with the collision detection enabled.
  1822. enable_endstops(true);
  1823. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1824. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. for (uint8_t i = 0; i < cnt; i++)
  1827. {
  1828. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1829. endstops_hit_on_purpose();
  1830. enable_endstops(false);
  1831. current_position[axis] = 0;
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. destination[axis] = -10.f * axis_home_dir;
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. endstops_hit_on_purpose();
  1837. // Now move left up to the collision, this time with a repeatable velocity.
  1838. enable_endstops(true);
  1839. destination[axis] = 11.f * axis_home_dir;
  1840. #ifdef TMC2130
  1841. feedrate = homing_feedrate[axis];
  1842. #else //TMC2130
  1843. feedrate = homing_feedrate[axis] / 2;
  1844. #endif //TMC2130
  1845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. #ifdef TMC2130
  1848. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1849. if (pstep) pstep[i] = mscnt >> 4;
  1850. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1851. #endif //TMC2130
  1852. }
  1853. endstops_hit_on_purpose();
  1854. enable_endstops(false);
  1855. #ifdef TMC2130
  1856. uint8_t orig = tmc2130_home_origin[axis];
  1857. uint8_t back = tmc2130_home_bsteps[axis];
  1858. if (tmc2130_home_enabled && (orig <= 63))
  1859. {
  1860. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1861. if (back > 0)
  1862. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1863. }
  1864. else
  1865. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1866. tmc2130_home_exit();
  1867. #endif //TMC2130
  1868. axis_is_at_home(axis);
  1869. axis_known_position[axis] = true;
  1870. // Move from minimum
  1871. #ifdef TMC2130
  1872. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1873. #else //TMC2130
  1874. float dist = - axis_home_dir * 0.01f * 64;
  1875. #endif //TMC2130
  1876. current_position[axis] -= dist;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. current_position[axis] += dist;
  1879. destination[axis] = current_position[axis];
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. feedrate = 0.0;
  1883. }
  1884. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1885. {
  1886. #ifdef TMC2130
  1887. FORCE_HIGH_POWER_START;
  1888. #endif
  1889. int axis_home_dir = home_dir(axis);
  1890. current_position[axis] = 0;
  1891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1892. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1893. feedrate = homing_feedrate[axis];
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. #ifdef TMC2130
  1897. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1898. FORCE_HIGH_POWER_END;
  1899. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1900. return;
  1901. }
  1902. #endif //TMC2130
  1903. current_position[axis] = 0;
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1909. feedrate = homing_feedrate[axis]/2 ;
  1910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1911. st_synchronize();
  1912. #ifdef TMC2130
  1913. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1914. FORCE_HIGH_POWER_END;
  1915. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1916. return;
  1917. }
  1918. #endif //TMC2130
  1919. axis_is_at_home(axis);
  1920. destination[axis] = current_position[axis];
  1921. feedrate = 0.0;
  1922. endstops_hit_on_purpose();
  1923. axis_known_position[axis] = true;
  1924. #ifdef TMC2130
  1925. FORCE_HIGH_POWER_END;
  1926. #endif
  1927. }
  1928. enable_endstops(endstops_enabled);
  1929. }
  1930. /**/
  1931. void home_xy()
  1932. {
  1933. set_destination_to_current();
  1934. homeaxis(X_AXIS);
  1935. homeaxis(Y_AXIS);
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. endstops_hit_on_purpose();
  1938. }
  1939. void refresh_cmd_timeout(void)
  1940. {
  1941. previous_millis_cmd = _millis();
  1942. }
  1943. #ifdef FWRETRACT
  1944. void retract(bool retracting, bool swapretract = false) {
  1945. if(retracting && !retracted[active_extruder]) {
  1946. destination[X_AXIS]=current_position[X_AXIS];
  1947. destination[Y_AXIS]=current_position[Y_AXIS];
  1948. destination[Z_AXIS]=current_position[Z_AXIS];
  1949. destination[E_AXIS]=current_position[E_AXIS];
  1950. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1951. plan_set_e_position(current_position[E_AXIS]);
  1952. float oldFeedrate = feedrate;
  1953. feedrate=cs.retract_feedrate*60;
  1954. retracted[active_extruder]=true;
  1955. prepare_move();
  1956. current_position[Z_AXIS]-=cs.retract_zlift;
  1957. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1958. prepare_move();
  1959. feedrate = oldFeedrate;
  1960. } else if(!retracting && retracted[active_extruder]) {
  1961. destination[X_AXIS]=current_position[X_AXIS];
  1962. destination[Y_AXIS]=current_position[Y_AXIS];
  1963. destination[Z_AXIS]=current_position[Z_AXIS];
  1964. destination[E_AXIS]=current_position[E_AXIS];
  1965. current_position[Z_AXIS]+=cs.retract_zlift;
  1966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1967. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1968. plan_set_e_position(current_position[E_AXIS]);
  1969. float oldFeedrate = feedrate;
  1970. feedrate=cs.retract_recover_feedrate*60;
  1971. retracted[active_extruder]=false;
  1972. prepare_move();
  1973. feedrate = oldFeedrate;
  1974. }
  1975. } //retract
  1976. #endif //FWRETRACT
  1977. void trace() {
  1978. Sound_MakeCustom(25,440,true);
  1979. }
  1980. /*
  1981. void ramming() {
  1982. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1983. if (current_temperature[0] < 230) {
  1984. //PLA
  1985. max_feedrate[E_AXIS] = 50;
  1986. //current_position[E_AXIS] -= 8;
  1987. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1988. //current_position[E_AXIS] += 8;
  1989. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1990. current_position[E_AXIS] += 5.4;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1992. current_position[E_AXIS] += 3.2;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1994. current_position[E_AXIS] += 3;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1996. st_synchronize();
  1997. max_feedrate[E_AXIS] = 80;
  1998. current_position[E_AXIS] -= 82;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2000. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2001. current_position[E_AXIS] -= 20;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2005. current_position[E_AXIS] += 5;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2007. current_position[E_AXIS] -= 10;
  2008. st_synchronize();
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. current_position[E_AXIS] += 10;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2012. current_position[E_AXIS] -= 10;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2014. current_position[E_AXIS] += 10;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2016. current_position[E_AXIS] -= 10;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2018. st_synchronize();
  2019. }
  2020. else {
  2021. //ABS
  2022. max_feedrate[E_AXIS] = 50;
  2023. //current_position[E_AXIS] -= 8;
  2024. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2025. //current_position[E_AXIS] += 8;
  2026. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2027. current_position[E_AXIS] += 3.1;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2029. current_position[E_AXIS] += 3.1;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2031. current_position[E_AXIS] += 4;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2033. st_synchronize();
  2034. //current_position[X_AXIS] += 23; //delay
  2035. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2036. //current_position[X_AXIS] -= 23; //delay
  2037. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2038. _delay(4700);
  2039. max_feedrate[E_AXIS] = 80;
  2040. current_position[E_AXIS] -= 92;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2042. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2043. current_position[E_AXIS] -= 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2045. current_position[E_AXIS] += 5;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2047. current_position[E_AXIS] -= 5;
  2048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2049. st_synchronize();
  2050. current_position[E_AXIS] += 5;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2054. current_position[E_AXIS] += 5;
  2055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2056. current_position[E_AXIS] -= 5;
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2058. st_synchronize();
  2059. }
  2060. }
  2061. */
  2062. #ifdef TMC2130
  2063. void force_high_power_mode(bool start_high_power_section) {
  2064. uint8_t silent;
  2065. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2066. if (silent == 1) {
  2067. //we are in silent mode, set to normal mode to enable crash detection
  2068. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2069. st_synchronize();
  2070. cli();
  2071. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2072. update_mode_profile();
  2073. tmc2130_init();
  2074. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2075. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2076. st_reset_timer();
  2077. sei();
  2078. }
  2079. }
  2080. #endif //TMC2130
  2081. #ifdef TMC2130
  2082. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2083. #else
  2084. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2085. #endif //TMC2130
  2086. {
  2087. st_synchronize();
  2088. #if 0
  2089. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2090. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2091. #endif
  2092. // Flag for the display update routine and to disable the print cancelation during homing.
  2093. homing_flag = true;
  2094. // Which axes should be homed?
  2095. bool home_x = home_x_axis;
  2096. bool home_y = home_y_axis;
  2097. bool home_z = home_z_axis;
  2098. // Either all X,Y,Z codes are present, or none of them.
  2099. bool home_all_axes = home_x == home_y && home_x == home_z;
  2100. if (home_all_axes)
  2101. // No X/Y/Z code provided means to home all axes.
  2102. home_x = home_y = home_z = true;
  2103. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2104. if (home_all_axes) {
  2105. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2106. feedrate = homing_feedrate[Z_AXIS];
  2107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2108. st_synchronize();
  2109. }
  2110. #ifdef ENABLE_AUTO_BED_LEVELING
  2111. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2112. #endif //ENABLE_AUTO_BED_LEVELING
  2113. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2114. // the planner will not perform any adjustments in the XY plane.
  2115. // Wait for the motors to stop and update the current position with the absolute values.
  2116. world2machine_revert_to_uncorrected();
  2117. // For mesh bed leveling deactivate the matrix temporarily.
  2118. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2119. // in a single axis only.
  2120. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2121. #ifdef MESH_BED_LEVELING
  2122. uint8_t mbl_was_active = mbl.active;
  2123. mbl.active = 0;
  2124. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2125. #endif
  2126. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2127. // consumed during the first movements following this statement.
  2128. if (home_z)
  2129. babystep_undo();
  2130. saved_feedrate = feedrate;
  2131. int l_feedmultiply = feedmultiply;
  2132. feedmultiply = 100;
  2133. previous_millis_cmd = _millis();
  2134. enable_endstops(true);
  2135. memcpy(destination, current_position, sizeof(destination));
  2136. feedrate = 0.0;
  2137. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2138. if(home_z)
  2139. homeaxis(Z_AXIS);
  2140. #endif
  2141. #ifdef QUICK_HOME
  2142. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2143. if(home_x && home_y) //first diagonal move
  2144. {
  2145. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2146. int x_axis_home_dir = home_dir(X_AXIS);
  2147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2148. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2149. feedrate = homing_feedrate[X_AXIS];
  2150. if(homing_feedrate[Y_AXIS]<feedrate)
  2151. feedrate = homing_feedrate[Y_AXIS];
  2152. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2153. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2154. } else {
  2155. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2156. }
  2157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2158. st_synchronize();
  2159. axis_is_at_home(X_AXIS);
  2160. axis_is_at_home(Y_AXIS);
  2161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2162. destination[X_AXIS] = current_position[X_AXIS];
  2163. destination[Y_AXIS] = current_position[Y_AXIS];
  2164. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2165. feedrate = 0.0;
  2166. st_synchronize();
  2167. endstops_hit_on_purpose();
  2168. current_position[X_AXIS] = destination[X_AXIS];
  2169. current_position[Y_AXIS] = destination[Y_AXIS];
  2170. current_position[Z_AXIS] = destination[Z_AXIS];
  2171. }
  2172. #endif /* QUICK_HOME */
  2173. #ifdef TMC2130
  2174. if(home_x)
  2175. {
  2176. if (!calib)
  2177. homeaxis(X_AXIS);
  2178. else
  2179. tmc2130_home_calibrate(X_AXIS);
  2180. }
  2181. if(home_y)
  2182. {
  2183. if (!calib)
  2184. homeaxis(Y_AXIS);
  2185. else
  2186. tmc2130_home_calibrate(Y_AXIS);
  2187. }
  2188. #else //TMC2130
  2189. if(home_x) homeaxis(X_AXIS);
  2190. if(home_y) homeaxis(Y_AXIS);
  2191. #endif //TMC2130
  2192. if(home_x_axis && home_x_value != 0)
  2193. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2194. if(home_y_axis && home_y_value != 0)
  2195. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2196. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2197. #ifndef Z_SAFE_HOMING
  2198. if(home_z) {
  2199. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2201. feedrate = max_feedrate[Z_AXIS];
  2202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2203. st_synchronize();
  2204. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2205. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2206. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2207. {
  2208. homeaxis(X_AXIS);
  2209. homeaxis(Y_AXIS);
  2210. }
  2211. // 1st mesh bed leveling measurement point, corrected.
  2212. world2machine_initialize();
  2213. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2214. world2machine_reset();
  2215. if (destination[Y_AXIS] < Y_MIN_POS)
  2216. destination[Y_AXIS] = Y_MIN_POS;
  2217. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2218. feedrate = homing_feedrate[Z_AXIS]/10;
  2219. current_position[Z_AXIS] = 0;
  2220. enable_endstops(false);
  2221. #ifdef DEBUG_BUILD
  2222. SERIAL_ECHOLNPGM("plan_set_position()");
  2223. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2224. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2225. #endif
  2226. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2227. #ifdef DEBUG_BUILD
  2228. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2229. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2230. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2231. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2232. #endif
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2234. st_synchronize();
  2235. current_position[X_AXIS] = destination[X_AXIS];
  2236. current_position[Y_AXIS] = destination[Y_AXIS];
  2237. enable_endstops(true);
  2238. endstops_hit_on_purpose();
  2239. homeaxis(Z_AXIS);
  2240. #else // MESH_BED_LEVELING
  2241. homeaxis(Z_AXIS);
  2242. #endif // MESH_BED_LEVELING
  2243. }
  2244. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2245. if(home_all_axes) {
  2246. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2247. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2248. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2249. feedrate = XY_TRAVEL_SPEED/60;
  2250. current_position[Z_AXIS] = 0;
  2251. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2253. st_synchronize();
  2254. current_position[X_AXIS] = destination[X_AXIS];
  2255. current_position[Y_AXIS] = destination[Y_AXIS];
  2256. homeaxis(Z_AXIS);
  2257. }
  2258. // Let's see if X and Y are homed and probe is inside bed area.
  2259. if(home_z) {
  2260. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2261. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2262. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2263. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2264. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2265. current_position[Z_AXIS] = 0;
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2268. feedrate = max_feedrate[Z_AXIS];
  2269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2270. st_synchronize();
  2271. homeaxis(Z_AXIS);
  2272. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2273. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2276. } else {
  2277. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2278. SERIAL_ECHO_START;
  2279. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2280. }
  2281. }
  2282. #endif // Z_SAFE_HOMING
  2283. #endif // Z_HOME_DIR < 0
  2284. if(home_z_axis && home_z_value != 0)
  2285. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2286. #ifdef ENABLE_AUTO_BED_LEVELING
  2287. if(home_z)
  2288. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2289. #endif
  2290. // Set the planner and stepper routine positions.
  2291. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2292. // contains the machine coordinates.
  2293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2294. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2295. enable_endstops(false);
  2296. #endif
  2297. feedrate = saved_feedrate;
  2298. feedmultiply = l_feedmultiply;
  2299. previous_millis_cmd = _millis();
  2300. endstops_hit_on_purpose();
  2301. #ifndef MESH_BED_LEVELING
  2302. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2303. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2304. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2305. lcd_adjust_z();
  2306. #endif
  2307. // Load the machine correction matrix
  2308. world2machine_initialize();
  2309. // and correct the current_position XY axes to match the transformed coordinate system.
  2310. world2machine_update_current();
  2311. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2312. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2313. {
  2314. if (! home_z && mbl_was_active) {
  2315. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2316. mbl.active = true;
  2317. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2318. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2319. }
  2320. }
  2321. else
  2322. {
  2323. st_synchronize();
  2324. homing_flag = false;
  2325. }
  2326. #endif
  2327. if (farm_mode) { prusa_statistics(20); };
  2328. homing_flag = false;
  2329. #if 0
  2330. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2331. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2332. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2333. #endif
  2334. }
  2335. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2336. {
  2337. #ifdef TMC2130
  2338. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2339. #else
  2340. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2341. #endif //TMC2130
  2342. }
  2343. void adjust_bed_reset()
  2344. {
  2345. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2346. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2347. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2348. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2349. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2350. }
  2351. //! @brief Calibrate XYZ
  2352. //! @param onlyZ if true, calibrate only Z axis
  2353. //! @param verbosity_level
  2354. //! @retval true Succeeded
  2355. //! @retval false Failed
  2356. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2357. {
  2358. bool final_result = false;
  2359. #ifdef TMC2130
  2360. FORCE_HIGH_POWER_START;
  2361. #endif // TMC2130
  2362. // Only Z calibration?
  2363. if (!onlyZ)
  2364. {
  2365. setTargetBed(0);
  2366. setAllTargetHotends(0);
  2367. adjust_bed_reset(); //reset bed level correction
  2368. }
  2369. // Disable the default update procedure of the display. We will do a modal dialog.
  2370. lcd_update_enable(false);
  2371. // Let the planner use the uncorrected coordinates.
  2372. mbl.reset();
  2373. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2374. // the planner will not perform any adjustments in the XY plane.
  2375. // Wait for the motors to stop and update the current position with the absolute values.
  2376. world2machine_revert_to_uncorrected();
  2377. // Reset the baby step value applied without moving the axes.
  2378. babystep_reset();
  2379. // Mark all axes as in a need for homing.
  2380. memset(axis_known_position, 0, sizeof(axis_known_position));
  2381. // Home in the XY plane.
  2382. //set_destination_to_current();
  2383. int l_feedmultiply = setup_for_endstop_move();
  2384. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2385. home_xy();
  2386. enable_endstops(false);
  2387. current_position[X_AXIS] += 5;
  2388. current_position[Y_AXIS] += 5;
  2389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2390. st_synchronize();
  2391. // Let the user move the Z axes up to the end stoppers.
  2392. #ifdef TMC2130
  2393. if (calibrate_z_auto())
  2394. {
  2395. #else //TMC2130
  2396. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2397. {
  2398. #endif //TMC2130
  2399. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2400. if(onlyZ){
  2401. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2402. lcd_set_cursor(0, 3);
  2403. lcd_print(1);
  2404. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2405. }else{
  2406. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2407. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2408. lcd_set_cursor(0, 2);
  2409. lcd_print(1);
  2410. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2411. }
  2412. refresh_cmd_timeout();
  2413. #ifndef STEEL_SHEET
  2414. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2415. {
  2416. lcd_wait_for_cool_down();
  2417. }
  2418. #endif //STEEL_SHEET
  2419. if(!onlyZ)
  2420. {
  2421. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2422. #ifdef STEEL_SHEET
  2423. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2424. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2425. #endif //STEEL_SHEET
  2426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2427. KEEPALIVE_STATE(IN_HANDLER);
  2428. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2429. lcd_set_cursor(0, 2);
  2430. lcd_print(1);
  2431. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2432. }
  2433. bool endstops_enabled = enable_endstops(false);
  2434. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2436. st_synchronize();
  2437. // Move the print head close to the bed.
  2438. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2439. enable_endstops(true);
  2440. #ifdef TMC2130
  2441. tmc2130_home_enter(Z_AXIS_MASK);
  2442. #endif //TMC2130
  2443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2444. st_synchronize();
  2445. #ifdef TMC2130
  2446. tmc2130_home_exit();
  2447. #endif //TMC2130
  2448. enable_endstops(endstops_enabled);
  2449. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2450. {
  2451. if (onlyZ)
  2452. {
  2453. clean_up_after_endstop_move(l_feedmultiply);
  2454. // Z only calibration.
  2455. // Load the machine correction matrix
  2456. world2machine_initialize();
  2457. // and correct the current_position to match the transformed coordinate system.
  2458. world2machine_update_current();
  2459. //FIXME
  2460. bool result = sample_mesh_and_store_reference();
  2461. if (result)
  2462. {
  2463. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2464. // Shipped, the nozzle height has been set already. The user can start printing now.
  2465. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2466. final_result = true;
  2467. // babystep_apply();
  2468. }
  2469. }
  2470. else
  2471. {
  2472. // Reset the baby step value and the baby step applied flag.
  2473. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2474. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2475. // Complete XYZ calibration.
  2476. uint8_t point_too_far_mask = 0;
  2477. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2478. clean_up_after_endstop_move(l_feedmultiply);
  2479. // Print head up.
  2480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2482. st_synchronize();
  2483. //#ifndef NEW_XYZCAL
  2484. if (result >= 0)
  2485. {
  2486. #ifdef HEATBED_V2
  2487. sample_z();
  2488. #else //HEATBED_V2
  2489. point_too_far_mask = 0;
  2490. // Second half: The fine adjustment.
  2491. // Let the planner use the uncorrected coordinates.
  2492. mbl.reset();
  2493. world2machine_reset();
  2494. // Home in the XY plane.
  2495. int l_feedmultiply = setup_for_endstop_move();
  2496. home_xy();
  2497. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2498. clean_up_after_endstop_move(l_feedmultiply);
  2499. // Print head up.
  2500. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2502. st_synchronize();
  2503. // if (result >= 0) babystep_apply();
  2504. #endif //HEATBED_V2
  2505. }
  2506. //#endif //NEW_XYZCAL
  2507. lcd_update_enable(true);
  2508. lcd_update(2);
  2509. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2510. if (result >= 0)
  2511. {
  2512. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2513. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2514. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2515. final_result = true;
  2516. }
  2517. }
  2518. #ifdef TMC2130
  2519. tmc2130_home_exit();
  2520. #endif
  2521. }
  2522. else
  2523. {
  2524. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2525. final_result = false;
  2526. }
  2527. }
  2528. else
  2529. {
  2530. // Timeouted.
  2531. }
  2532. lcd_update_enable(true);
  2533. #ifdef TMC2130
  2534. FORCE_HIGH_POWER_END;
  2535. #endif // TMC2130
  2536. return final_result;
  2537. }
  2538. void gcode_M114()
  2539. {
  2540. SERIAL_PROTOCOLPGM("X:");
  2541. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2542. SERIAL_PROTOCOLPGM(" Y:");
  2543. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2544. SERIAL_PROTOCOLPGM(" Z:");
  2545. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2546. SERIAL_PROTOCOLPGM(" E:");
  2547. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2548. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2549. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2550. SERIAL_PROTOCOLPGM(" Y:");
  2551. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2552. SERIAL_PROTOCOLPGM(" Z:");
  2553. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" E:");
  2555. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2556. SERIAL_PROTOCOLLN("");
  2557. }
  2558. //! extracted code to compute z_shift for M600 in case of filament change operation
  2559. //! requested from fsensors.
  2560. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2561. //! unlike the previous implementation, which was adding 25mm even when the head was
  2562. //! printing at e.g. 24mm height.
  2563. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2564. //! the printout.
  2565. //! This function is templated to enable fast change of computation data type.
  2566. //! @return new z_shift value
  2567. template<typename T>
  2568. static T gcode_M600_filament_change_z_shift()
  2569. {
  2570. #ifdef FILAMENTCHANGE_ZADD
  2571. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2572. // avoid floating point arithmetics when not necessary - results in shorter code
  2573. T ztmp = T( current_position[Z_AXIS] );
  2574. T z_shift = 0;
  2575. if(ztmp < T(25)){
  2576. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2577. }
  2578. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2579. #else
  2580. return T(0);
  2581. #endif
  2582. }
  2583. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2584. {
  2585. st_synchronize();
  2586. float lastpos[4];
  2587. if (farm_mode)
  2588. {
  2589. prusa_statistics(22);
  2590. }
  2591. //First backup current position and settings
  2592. int feedmultiplyBckp = feedmultiply;
  2593. float HotendTempBckp = degTargetHotend(active_extruder);
  2594. int fanSpeedBckp = fanSpeed;
  2595. lastpos[X_AXIS] = current_position[X_AXIS];
  2596. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2597. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2598. lastpos[E_AXIS] = current_position[E_AXIS];
  2599. //Retract E
  2600. current_position[E_AXIS] += e_shift;
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2602. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2603. st_synchronize();
  2604. //Lift Z
  2605. current_position[Z_AXIS] += z_shift;
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2607. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2608. st_synchronize();
  2609. //Move XY to side
  2610. current_position[X_AXIS] = x_position;
  2611. current_position[Y_AXIS] = y_position;
  2612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2613. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2614. st_synchronize();
  2615. //Beep, manage nozzle heater and wait for user to start unload filament
  2616. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2617. lcd_change_fil_state = 0;
  2618. // Unload filament
  2619. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2620. else unload_filament(); //unload filament for single material (used also in M702)
  2621. //finish moves
  2622. st_synchronize();
  2623. if (!mmu_enabled)
  2624. {
  2625. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2626. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2627. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2628. if (lcd_change_fil_state == 0)
  2629. {
  2630. lcd_clear();
  2631. lcd_set_cursor(0, 2);
  2632. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2633. current_position[X_AXIS] -= 100;
  2634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2635. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2636. st_synchronize();
  2637. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2638. }
  2639. }
  2640. if (mmu_enabled)
  2641. {
  2642. if (!automatic) {
  2643. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2644. mmu_M600_wait_and_beep();
  2645. if (saved_printing) {
  2646. lcd_clear();
  2647. lcd_set_cursor(0, 2);
  2648. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2649. mmu_command(MmuCmd::R0);
  2650. manage_response(false, false);
  2651. }
  2652. }
  2653. mmu_M600_load_filament(automatic, HotendTempBckp);
  2654. }
  2655. else
  2656. M600_load_filament();
  2657. if (!automatic) M600_check_state(HotendTempBckp);
  2658. lcd_update_enable(true);
  2659. //Not let's go back to print
  2660. fanSpeed = fanSpeedBckp;
  2661. //Feed a little of filament to stabilize pressure
  2662. if (!automatic)
  2663. {
  2664. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2666. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2667. }
  2668. //Move XY back
  2669. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2670. FILAMENTCHANGE_XYFEED, active_extruder);
  2671. st_synchronize();
  2672. //Move Z back
  2673. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2674. FILAMENTCHANGE_ZFEED, active_extruder);
  2675. st_synchronize();
  2676. //Set E position to original
  2677. plan_set_e_position(lastpos[E_AXIS]);
  2678. memcpy(current_position, lastpos, sizeof(lastpos));
  2679. memcpy(destination, current_position, sizeof(current_position));
  2680. //Recover feed rate
  2681. feedmultiply = feedmultiplyBckp;
  2682. char cmd[9];
  2683. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2684. enquecommand(cmd);
  2685. #ifdef IR_SENSOR
  2686. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2687. fsensor_check_autoload();
  2688. #endif //IR_SENSOR
  2689. lcd_setstatuspgm(_T(WELCOME_MSG));
  2690. custom_message_type = CustomMsg::Status;
  2691. }
  2692. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2693. //!
  2694. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2695. //! during extruding (loading) filament.
  2696. void marlin_rise_z(void)
  2697. {
  2698. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2699. }
  2700. void gcode_M701()
  2701. {
  2702. printf_P(PSTR("gcode_M701 begin\n"));
  2703. if (farm_mode)
  2704. {
  2705. prusa_statistics(22);
  2706. }
  2707. if (mmu_enabled)
  2708. {
  2709. extr_adj(tmp_extruder);//loads current extruder
  2710. mmu_extruder = tmp_extruder;
  2711. }
  2712. else
  2713. {
  2714. enable_z();
  2715. custom_message_type = CustomMsg::FilamentLoading;
  2716. #ifdef FSENSOR_QUALITY
  2717. fsensor_oq_meassure_start(40);
  2718. #endif //FSENSOR_QUALITY
  2719. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2720. current_position[E_AXIS] += 40;
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2722. st_synchronize();
  2723. marlin_rise_z();
  2724. current_position[E_AXIS] += 30;
  2725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2726. load_filament_final_feed(); //slow sequence
  2727. st_synchronize();
  2728. Sound_MakeCustom(50,500,false);
  2729. if (!farm_mode && loading_flag) {
  2730. lcd_load_filament_color_check();
  2731. }
  2732. lcd_update_enable(true);
  2733. lcd_update(2);
  2734. lcd_setstatuspgm(_T(WELCOME_MSG));
  2735. disable_z();
  2736. loading_flag = false;
  2737. custom_message_type = CustomMsg::Status;
  2738. #ifdef FSENSOR_QUALITY
  2739. fsensor_oq_meassure_stop();
  2740. if (!fsensor_oq_result())
  2741. {
  2742. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2743. lcd_update_enable(true);
  2744. lcd_update(2);
  2745. if (disable)
  2746. fsensor_disable();
  2747. }
  2748. #endif //FSENSOR_QUALITY
  2749. }
  2750. }
  2751. /**
  2752. * @brief Get serial number from 32U2 processor
  2753. *
  2754. * Typical format of S/N is:CZPX0917X003XC13518
  2755. *
  2756. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2757. *
  2758. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2759. * reply is transmitted to serial port 1 character by character.
  2760. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2761. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2762. * in any case.
  2763. */
  2764. static void gcode_PRUSA_SN()
  2765. {
  2766. if (farm_mode) {
  2767. selectedSerialPort = 0;
  2768. putchar(';');
  2769. putchar('S');
  2770. int numbersRead = 0;
  2771. ShortTimer timeout;
  2772. timeout.start();
  2773. while (numbersRead < 19) {
  2774. while (MSerial.available() > 0) {
  2775. uint8_t serial_char = MSerial.read();
  2776. selectedSerialPort = 1;
  2777. putchar(serial_char);
  2778. numbersRead++;
  2779. selectedSerialPort = 0;
  2780. }
  2781. if (timeout.expired(100u)) break;
  2782. }
  2783. selectedSerialPort = 1;
  2784. putchar('\n');
  2785. #if 0
  2786. for (int b = 0; b < 3; b++) {
  2787. _tone(BEEPER, 110);
  2788. _delay(50);
  2789. _noTone(BEEPER);
  2790. _delay(50);
  2791. }
  2792. #endif
  2793. } else {
  2794. puts_P(_N("Not in farm mode."));
  2795. }
  2796. }
  2797. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2798. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2799. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2800. //! it may even interfere with other functions of the printer! You have been warned!
  2801. //! The test idea is to measure the time necessary to charge the capacitor.
  2802. //! So the algorithm is as follows:
  2803. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2804. //! 2. Wait a few ms
  2805. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2806. //! Repeat 1.-3. several times
  2807. //! Good RAMBo's times are in the range of approx. 260-320 us
  2808. //! Bad RAMBo's times are approx. 260-1200 us
  2809. //! So basically we are interested in maximum time, the minima are mostly the same.
  2810. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2811. static void gcode_PRUSA_BadRAMBoFanTest(){
  2812. //printf_P(PSTR("Enter fan pin test\n"));
  2813. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1 && defined(IR_SENSOR)
  2814. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2815. unsigned long tach1max = 0;
  2816. uint8_t tach1cntr = 0;
  2817. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2818. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2819. SET_OUTPUT(TACH_1);
  2820. WRITE(TACH_1, LOW);
  2821. _delay(20); // the delay may be lower
  2822. unsigned long tachMeasure = _micros();
  2823. cli();
  2824. SET_INPUT(TACH_1);
  2825. // just wait brutally in an endless cycle until we reach HIGH
  2826. // if this becomes a problem it may be improved to non-endless cycle
  2827. while( READ(TACH_1) == 0 ) ;
  2828. sei();
  2829. tachMeasure = _micros() - tachMeasure;
  2830. if( tach1max < tachMeasure )
  2831. tach1max = tachMeasure;
  2832. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2833. }
  2834. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2835. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2836. if( tach1max > 500 ){
  2837. // bad RAMBo
  2838. SERIAL_PROTOCOLLNPGM("BAD");
  2839. } else {
  2840. SERIAL_PROTOCOLLNPGM("OK");
  2841. }
  2842. // cleanup after the test function
  2843. SET_INPUT(TACH_1);
  2844. WRITE(TACH_1, HIGH);
  2845. #endif
  2846. }
  2847. #ifdef BACKLASH_X
  2848. extern uint8_t st_backlash_x;
  2849. #endif //BACKLASH_X
  2850. #ifdef BACKLASH_Y
  2851. extern uint8_t st_backlash_y;
  2852. #endif //BACKLASH_Y
  2853. //! \ingroup marlin_main
  2854. //! @brief Parse and process commands
  2855. //!
  2856. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2857. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2858. //!
  2859. //!
  2860. //! Implemented Codes
  2861. //! -------------------
  2862. //!
  2863. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2864. //!
  2865. //!@n PRUSA CODES
  2866. //!@n P F - Returns FW versions
  2867. //!@n P R - Returns revision of printer
  2868. //!
  2869. //!@n G0 -> G1
  2870. //!@n G1 - Coordinated Movement X Y Z E
  2871. //!@n G2 - CW ARC
  2872. //!@n G3 - CCW ARC
  2873. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2874. //!@n G10 - retract filament according to settings of M207
  2875. //!@n G11 - retract recover filament according to settings of M208
  2876. //!@n G28 - Home all Axis
  2877. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2878. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2879. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2880. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2881. //!@n G80 - Automatic mesh bed leveling
  2882. //!@n G81 - Print bed profile
  2883. //!@n G90 - Use Absolute Coordinates
  2884. //!@n G91 - Use Relative Coordinates
  2885. //!@n G92 - Set current position to coordinates given
  2886. //!
  2887. //!@n M Codes
  2888. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2889. //!@n M1 - Same as M0
  2890. //!@n M17 - Enable/Power all stepper motors
  2891. //!@n M18 - Disable all stepper motors; same as M84
  2892. //!@n M20 - List SD card
  2893. //!@n M21 - Init SD card
  2894. //!@n M22 - Release SD card
  2895. //!@n M23 - Select SD file (M23 filename.g)
  2896. //!@n M24 - Start/resume SD print
  2897. //!@n M25 - Pause SD print
  2898. //!@n M26 - Set SD position in bytes (M26 S12345)
  2899. //!@n M27 - Report SD print status
  2900. //!@n M28 - Start SD write (M28 filename.g)
  2901. //!@n M29 - Stop SD write
  2902. //!@n M30 - Delete file from SD (M30 filename.g)
  2903. //!@n M31 - Output time since last M109 or SD card start to serial
  2904. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2905. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2906. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2907. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2908. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2909. //!@n M73 - Show percent done and print time remaining
  2910. //!@n M80 - Turn on Power Supply
  2911. //!@n M81 - Turn off Power Supply
  2912. //!@n M82 - Set E codes absolute (default)
  2913. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2914. //!@n M84 - Disable steppers until next move,
  2915. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2916. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2917. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2918. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2919. //!@n M104 - Set extruder target temp
  2920. //!@n M105 - Read current temp
  2921. //!@n M106 - Fan on
  2922. //!@n M107 - Fan off
  2923. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2924. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2925. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2926. //!@n M112 - Emergency stop
  2927. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2928. //!@n M114 - Output current position to serial port
  2929. //!@n M115 - Capabilities string
  2930. //!@n M117 - display message
  2931. //!@n M119 - Output Endstop status to serial port
  2932. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2933. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2934. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2935. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2936. //!@n M140 - Set bed target temp
  2937. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2938. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2939. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2940. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2941. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2942. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2943. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2944. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2945. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2946. //!@n M206 - set additional homing offset
  2947. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2948. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2949. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2950. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2951. //!@n M220 S<factor in percent>- set speed factor override percentage
  2952. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2953. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2954. //!@n M240 - Trigger a camera to take a photograph
  2955. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2956. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2957. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2958. //!@n M301 - Set PID parameters P I and D
  2959. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2960. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2961. //!@n M304 - Set bed PID parameters P I and D
  2962. //!@n M400 - Finish all moves
  2963. //!@n M401 - Lower z-probe if present
  2964. //!@n M402 - Raise z-probe if present
  2965. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2966. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2967. //!@n M406 - Turn off Filament Sensor extrusion control
  2968. //!@n M407 - Displays measured filament diameter
  2969. //!@n M500 - stores parameters in EEPROM
  2970. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2971. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2972. //!@n M503 - print the current settings (from memory not from EEPROM)
  2973. //!@n M509 - force language selection on next restart
  2974. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2975. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2976. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2977. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2978. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2979. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2980. //!@n M907 - Set digital trimpot motor current using axis codes.
  2981. //!@n M908 - Control digital trimpot directly.
  2982. //!@n M350 - Set microstepping mode.
  2983. //!@n M351 - Toggle MS1 MS2 pins directly.
  2984. //!
  2985. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2986. //!@n M999 - Restart after being stopped by error
  2987. //! <br><br>
  2988. /** @defgroup marlin_main Marlin main */
  2989. /** \ingroup GCodes */
  2990. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  2991. void process_commands()
  2992. {
  2993. #ifdef FANCHECK
  2994. if (fan_check_error){
  2995. if( fan_check_error == EFCE_DETECTED ){
  2996. fan_check_error = EFCE_REPORTED;
  2997. if(is_usb_printing){
  2998. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE);
  2999. }
  3000. else{
  3001. lcd_pause_print();
  3002. }
  3003. } // otherwise it has already been reported, so just ignore further processing
  3004. return;
  3005. }
  3006. #endif
  3007. if (!buflen) return; //empty command
  3008. #ifdef FILAMENT_RUNOUT_SUPPORT
  3009. SET_INPUT(FR_SENS);
  3010. #endif
  3011. #ifdef CMDBUFFER_DEBUG
  3012. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3013. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3014. SERIAL_ECHOLNPGM("");
  3015. SERIAL_ECHOPGM("In cmdqueue: ");
  3016. SERIAL_ECHO(buflen);
  3017. SERIAL_ECHOLNPGM("");
  3018. #endif /* CMDBUFFER_DEBUG */
  3019. unsigned long codenum; //throw away variable
  3020. char *starpos = NULL;
  3021. #ifdef ENABLE_AUTO_BED_LEVELING
  3022. float x_tmp, y_tmp, z_tmp, real_z;
  3023. #endif
  3024. // PRUSA GCODES
  3025. KEEPALIVE_STATE(IN_HANDLER);
  3026. #ifdef SNMM
  3027. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3028. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3029. int8_t SilentMode;
  3030. #endif
  3031. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3032. starpos = (strchr(strchr_pointer + 5, '*'));
  3033. if (starpos != NULL)
  3034. *(starpos) = '\0';
  3035. lcd_setstatus(strchr_pointer + 5);
  3036. }
  3037. #ifdef TMC2130
  3038. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3039. {
  3040. //! ### CRASH_DETECTED - TMC2130
  3041. // ---------------------------------
  3042. if(code_seen("CRASH_DETECTED"))
  3043. {
  3044. uint8_t mask = 0;
  3045. if (code_seen('X')) mask |= X_AXIS_MASK;
  3046. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3047. crashdet_detected(mask);
  3048. }
  3049. //! ### CRASH_RECOVER - TMC2130
  3050. // ----------------------------------
  3051. else if(code_seen("CRASH_RECOVER"))
  3052. crashdet_recover();
  3053. //! ### CRASH_CANCEL - TMC2130
  3054. // ----------------------------------
  3055. else if(code_seen("CRASH_CANCEL"))
  3056. crashdet_cancel();
  3057. }
  3058. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3059. {
  3060. //! ### TMC_SET_WAVE_
  3061. // --------------------
  3062. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3063. {
  3064. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3065. axis = (axis == 'E')?3:(axis - 'X');
  3066. if (axis < 4)
  3067. {
  3068. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3069. tmc2130_set_wave(axis, 247, fac);
  3070. }
  3071. }
  3072. //! ### TMC_SET_STEP_
  3073. // ------------------
  3074. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3075. {
  3076. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3077. axis = (axis == 'E')?3:(axis - 'X');
  3078. if (axis < 4)
  3079. {
  3080. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3081. uint16_t res = tmc2130_get_res(axis);
  3082. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3083. }
  3084. }
  3085. //! ### TMC_SET_CHOP_
  3086. // -------------------
  3087. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3088. {
  3089. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3090. axis = (axis == 'E')?3:(axis - 'X');
  3091. if (axis < 4)
  3092. {
  3093. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3094. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3095. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3096. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3097. char* str_end = 0;
  3098. if (CMDBUFFER_CURRENT_STRING[14])
  3099. {
  3100. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3101. if (str_end && *str_end)
  3102. {
  3103. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3104. if (str_end && *str_end)
  3105. {
  3106. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3107. if (str_end && *str_end)
  3108. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3109. }
  3110. }
  3111. }
  3112. tmc2130_chopper_config[axis].toff = chop0;
  3113. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3114. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3115. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3116. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3117. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3118. }
  3119. }
  3120. }
  3121. #ifdef BACKLASH_X
  3122. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3123. {
  3124. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3125. st_backlash_x = bl;
  3126. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3127. }
  3128. #endif //BACKLASH_X
  3129. #ifdef BACKLASH_Y
  3130. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3131. {
  3132. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3133. st_backlash_y = bl;
  3134. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3135. }
  3136. #endif //BACKLASH_Y
  3137. #endif //TMC2130
  3138. else if(code_seen("PRUSA")){
  3139. /*!
  3140. *
  3141. ### PRUSA - Internal command set
  3142. Set of internal PRUSA commands
  3143. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3144. - `Ping`
  3145. - `PRN` - Prints revision of the printer
  3146. - `FAN` - Prints fan details
  3147. - `fn` - Prints farm no.
  3148. - `thx`
  3149. - `uvlo`
  3150. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3151. - `MMURES` - Reset MMU
  3152. - `RESET` - (Careful!)
  3153. - `fv` - ?
  3154. - `M28`
  3155. - `SN`
  3156. - `Fir` - Prints firmware version
  3157. - `Rev`- Prints filament size, elelectronics, nozzle type
  3158. - `Lang` - Reset the language
  3159. - `Lz`
  3160. - `Beat` - Kick farm link timer
  3161. - `FR` - Full factory reset
  3162. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3163. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3164. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3165. *
  3166. */
  3167. if (code_seen("Ping")) { // PRUSA Ping
  3168. if (farm_mode) {
  3169. PingTime = _millis();
  3170. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3171. }
  3172. }
  3173. else if (code_seen("PRN")) { // PRUSA PRN
  3174. printf_P(_N("%d"), status_number);
  3175. } else if( code_seen("FANPINTST") ){
  3176. gcode_PRUSA_BadRAMBoFanTest();
  3177. }else if (code_seen("FAN")) { //! PRUSA FAN
  3178. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3179. }else if (code_seen("fn")) { // PRUSA fn
  3180. if (farm_mode) {
  3181. printf_P(_N("%d"), farm_no);
  3182. }
  3183. else {
  3184. puts_P(_N("Not in farm mode."));
  3185. }
  3186. }
  3187. else if (code_seen("thx")) // PRUSA thx
  3188. {
  3189. no_response = false;
  3190. }
  3191. else if (code_seen("uvlo")) // PRUSA uvlo
  3192. {
  3193. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3194. enquecommand_P(PSTR("M24"));
  3195. }
  3196. #ifdef FILAMENT_SENSOR
  3197. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3198. {
  3199. fsensor_restore_print_and_continue();
  3200. }
  3201. #endif //FILAMENT_SENSOR
  3202. else if (code_seen("MMURES")) // PRUSA MMURES
  3203. {
  3204. mmu_reset();
  3205. }
  3206. else if (code_seen("RESET")) { // PRUSA RESET
  3207. // careful!
  3208. if (farm_mode) {
  3209. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3210. boot_app_magic = BOOT_APP_MAGIC;
  3211. boot_app_flags = BOOT_APP_FLG_RUN;
  3212. wdt_enable(WDTO_15MS);
  3213. cli();
  3214. while(1);
  3215. #else //WATCHDOG
  3216. asm volatile("jmp 0x3E000");
  3217. #endif //WATCHDOG
  3218. }
  3219. else {
  3220. MYSERIAL.println("Not in farm mode.");
  3221. }
  3222. }else if (code_seen("fv")) { // PRUSA fv
  3223. // get file version
  3224. #ifdef SDSUPPORT
  3225. card.openFile(strchr_pointer + 3,true);
  3226. while (true) {
  3227. uint16_t readByte = card.get();
  3228. MYSERIAL.write(readByte);
  3229. if (readByte=='\n') {
  3230. break;
  3231. }
  3232. }
  3233. card.closefile();
  3234. #endif // SDSUPPORT
  3235. } else if (code_seen("M28")) { // PRUSA M28
  3236. trace();
  3237. prusa_sd_card_upload = true;
  3238. card.openFile(strchr_pointer+4,false);
  3239. } else if (code_seen("SN")) { // PRUSA SN
  3240. gcode_PRUSA_SN();
  3241. } else if(code_seen("Fir")){ // PRUSA Fir
  3242. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3243. } else if(code_seen("Rev")){ // PRUSA Rev
  3244. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3245. } else if(code_seen("Lang")) { // PRUSA Lang
  3246. lang_reset();
  3247. } else if(code_seen("Lz")) { // PRUSA Lz
  3248. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3249. } else if(code_seen("Beat")) { // PRUSA Beat
  3250. // Kick farm link timer
  3251. kicktime = _millis();
  3252. } else if(code_seen("FR")) { // PRUSA FR
  3253. // Factory full reset
  3254. factory_reset(0);
  3255. //-//
  3256. /*
  3257. } else if(code_seen("rrr")) {
  3258. MYSERIAL.println("=== checking ===");
  3259. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3260. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3261. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3262. MYSERIAL.println(farm_mode,DEC);
  3263. MYSERIAL.println(eCheckMode,DEC);
  3264. } else if(code_seen("www")) {
  3265. MYSERIAL.println("=== @ FF ===");
  3266. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3267. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3268. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3269. */
  3270. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3271. uint16_t nDiameter;
  3272. if(code_seen('D'))
  3273. {
  3274. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3275. nozzle_diameter_check(nDiameter);
  3276. }
  3277. else if(code_seen("set") && farm_mode)
  3278. {
  3279. strchr_pointer++; // skip 1st char (~ 's')
  3280. strchr_pointer++; // skip 2nd char (~ 'e')
  3281. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3282. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3283. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3284. }
  3285. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3286. //-// !!! SupportMenu
  3287. /*
  3288. // musi byt PRED "PRUSA model"
  3289. } else if (code_seen("smodel")) { //! PRUSA smodel
  3290. size_t nOffset;
  3291. // ! -> "l"
  3292. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3293. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3294. if(*(strchr_pointer+1+nOffset))
  3295. printer_smodel_check(strchr_pointer);
  3296. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3297. } else if (code_seen("model")) { //! PRUSA model
  3298. uint16_t nPrinterModel;
  3299. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3300. nPrinterModel=(uint16_t)code_value_long();
  3301. if(nPrinterModel!=0)
  3302. printer_model_check(nPrinterModel);
  3303. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3304. } else if (code_seen("version")) { //! PRUSA version
  3305. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3306. while(*strchr_pointer==' ') // skip leading spaces
  3307. strchr_pointer++;
  3308. if(*strchr_pointer!=0)
  3309. fw_version_check(strchr_pointer);
  3310. else SERIAL_PROTOCOLLN(FW_VERSION);
  3311. } else if (code_seen("gcode")) { //! PRUSA gcode
  3312. uint16_t nGcodeLevel;
  3313. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3314. nGcodeLevel=(uint16_t)code_value_long();
  3315. if(nGcodeLevel!=0)
  3316. gcode_level_check(nGcodeLevel);
  3317. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3318. */
  3319. }
  3320. //else if (code_seen('Cal')) {
  3321. // lcd_calibration();
  3322. // }
  3323. }
  3324. else if (code_seen('^')) {
  3325. // nothing, this is a version line
  3326. } else if(code_seen('G'))
  3327. {
  3328. gcode_in_progress = (int)code_value();
  3329. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3330. switch (gcode_in_progress)
  3331. {
  3332. //! ### G0, G1 - Coordinated movement X Y Z E
  3333. // --------------------------------------
  3334. case 0: // G0 -> G1
  3335. case 1: // G1
  3336. if(Stopped == false) {
  3337. #ifdef FILAMENT_RUNOUT_SUPPORT
  3338. if(READ(FR_SENS)){
  3339. int feedmultiplyBckp=feedmultiply;
  3340. float target[4];
  3341. float lastpos[4];
  3342. target[X_AXIS]=current_position[X_AXIS];
  3343. target[Y_AXIS]=current_position[Y_AXIS];
  3344. target[Z_AXIS]=current_position[Z_AXIS];
  3345. target[E_AXIS]=current_position[E_AXIS];
  3346. lastpos[X_AXIS]=current_position[X_AXIS];
  3347. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3348. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3349. lastpos[E_AXIS]=current_position[E_AXIS];
  3350. //retract by E
  3351. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3352. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3353. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3354. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3355. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3356. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3357. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3358. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3359. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3360. //finish moves
  3361. st_synchronize();
  3362. //disable extruder steppers so filament can be removed
  3363. disable_e0();
  3364. disable_e1();
  3365. disable_e2();
  3366. _delay(100);
  3367. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3368. uint8_t cnt=0;
  3369. int counterBeep = 0;
  3370. lcd_wait_interact();
  3371. while(!lcd_clicked()){
  3372. cnt++;
  3373. manage_heater();
  3374. manage_inactivity(true);
  3375. //lcd_update(0);
  3376. if(cnt==0)
  3377. {
  3378. #if BEEPER > 0
  3379. if (counterBeep== 500){
  3380. counterBeep = 0;
  3381. }
  3382. SET_OUTPUT(BEEPER);
  3383. if (counterBeep== 0){
  3384. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3385. WRITE(BEEPER,HIGH);
  3386. }
  3387. if (counterBeep== 20){
  3388. WRITE(BEEPER,LOW);
  3389. }
  3390. counterBeep++;
  3391. #else
  3392. #endif
  3393. }
  3394. }
  3395. WRITE(BEEPER,LOW);
  3396. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3397. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3398. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3400. lcd_change_fil_state = 0;
  3401. lcd_loading_filament();
  3402. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3403. lcd_change_fil_state = 0;
  3404. lcd_alright();
  3405. switch(lcd_change_fil_state){
  3406. case 2:
  3407. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3408. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3409. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3410. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3411. lcd_loading_filament();
  3412. break;
  3413. case 3:
  3414. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3416. lcd_loading_color();
  3417. break;
  3418. default:
  3419. lcd_change_success();
  3420. break;
  3421. }
  3422. }
  3423. target[E_AXIS]+= 5;
  3424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3425. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3427. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3428. //plan_set_e_position(current_position[E_AXIS]);
  3429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3430. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3431. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3432. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3433. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3434. plan_set_e_position(lastpos[E_AXIS]);
  3435. feedmultiply=feedmultiplyBckp;
  3436. char cmd[9];
  3437. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3438. enquecommand(cmd);
  3439. }
  3440. #endif
  3441. get_coordinates(); // For X Y Z E F
  3442. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3443. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3444. }
  3445. #ifdef FWRETRACT
  3446. if(cs.autoretract_enabled)
  3447. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3448. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3449. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3450. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3451. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3452. retract(!retracted[active_extruder]);
  3453. return;
  3454. }
  3455. }
  3456. #endif //FWRETRACT
  3457. prepare_move();
  3458. //ClearToSend();
  3459. }
  3460. break;
  3461. //! ### G2 - CW ARC
  3462. // ------------------------------
  3463. case 2:
  3464. if(Stopped == false) {
  3465. get_arc_coordinates();
  3466. prepare_arc_move(true);
  3467. }
  3468. break;
  3469. //! ### G3 - CCW ARC
  3470. // -------------------------------
  3471. case 3:
  3472. if(Stopped == false) {
  3473. get_arc_coordinates();
  3474. prepare_arc_move(false);
  3475. }
  3476. break;
  3477. //! ### G4 - Dwell
  3478. // -------------------------------
  3479. case 4:
  3480. codenum = 0;
  3481. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3482. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3483. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3484. st_synchronize();
  3485. codenum += _millis(); // keep track of when we started waiting
  3486. previous_millis_cmd = _millis();
  3487. while(_millis() < codenum) {
  3488. manage_heater();
  3489. manage_inactivity();
  3490. lcd_update(0);
  3491. }
  3492. break;
  3493. #ifdef FWRETRACT
  3494. //! ### G10 Retract
  3495. // ------------------------------
  3496. case 10:
  3497. #if EXTRUDERS > 1
  3498. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3499. retract(true,retracted_swap[active_extruder]);
  3500. #else
  3501. retract(true);
  3502. #endif
  3503. break;
  3504. //! ### G11 - Retract recover
  3505. // -----------------------------
  3506. case 11:
  3507. #if EXTRUDERS > 1
  3508. retract(false,retracted_swap[active_extruder]);
  3509. #else
  3510. retract(false);
  3511. #endif
  3512. break;
  3513. #endif //FWRETRACT
  3514. //! ### G28 - Home all Axis one at a time
  3515. // --------------------------------------------
  3516. case 28:
  3517. {
  3518. long home_x_value = 0;
  3519. long home_y_value = 0;
  3520. long home_z_value = 0;
  3521. // Which axes should be homed?
  3522. bool home_x = code_seen(axis_codes[X_AXIS]);
  3523. home_x_value = code_value_long();
  3524. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3525. home_y_value = code_value_long();
  3526. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3527. home_z_value = code_value_long();
  3528. bool without_mbl = code_seen('W');
  3529. // calibrate?
  3530. #ifdef TMC2130
  3531. bool calib = code_seen('C');
  3532. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3533. #else
  3534. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3535. #endif //TMC2130
  3536. if ((home_x || home_y || without_mbl || home_z) == false) {
  3537. // Push the commands to the front of the message queue in the reverse order!
  3538. // There shall be always enough space reserved for these commands.
  3539. goto case_G80;
  3540. }
  3541. break;
  3542. }
  3543. #ifdef ENABLE_AUTO_BED_LEVELING
  3544. //! ### G29 - Detailed Z-Probe
  3545. // --------------------------------
  3546. case 29:
  3547. {
  3548. #if Z_MIN_PIN == -1
  3549. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3550. #endif
  3551. // Prevent user from running a G29 without first homing in X and Y
  3552. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3553. {
  3554. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3555. SERIAL_ECHO_START;
  3556. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3557. break; // abort G29, since we don't know where we are
  3558. }
  3559. st_synchronize();
  3560. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3561. //vector_3 corrected_position = plan_get_position_mm();
  3562. //corrected_position.debug("position before G29");
  3563. plan_bed_level_matrix.set_to_identity();
  3564. vector_3 uncorrected_position = plan_get_position();
  3565. //uncorrected_position.debug("position durring G29");
  3566. current_position[X_AXIS] = uncorrected_position.x;
  3567. current_position[Y_AXIS] = uncorrected_position.y;
  3568. current_position[Z_AXIS] = uncorrected_position.z;
  3569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3570. int l_feedmultiply = setup_for_endstop_move();
  3571. feedrate = homing_feedrate[Z_AXIS];
  3572. #ifdef AUTO_BED_LEVELING_GRID
  3573. // probe at the points of a lattice grid
  3574. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3575. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3576. // solve the plane equation ax + by + d = z
  3577. // A is the matrix with rows [x y 1] for all the probed points
  3578. // B is the vector of the Z positions
  3579. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3580. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3581. // "A" matrix of the linear system of equations
  3582. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3583. // "B" vector of Z points
  3584. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3585. int probePointCounter = 0;
  3586. bool zig = true;
  3587. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3588. {
  3589. int xProbe, xInc;
  3590. if (zig)
  3591. {
  3592. xProbe = LEFT_PROBE_BED_POSITION;
  3593. //xEnd = RIGHT_PROBE_BED_POSITION;
  3594. xInc = xGridSpacing;
  3595. zig = false;
  3596. } else // zag
  3597. {
  3598. xProbe = RIGHT_PROBE_BED_POSITION;
  3599. //xEnd = LEFT_PROBE_BED_POSITION;
  3600. xInc = -xGridSpacing;
  3601. zig = true;
  3602. }
  3603. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3604. {
  3605. float z_before;
  3606. if (probePointCounter == 0)
  3607. {
  3608. // raise before probing
  3609. z_before = Z_RAISE_BEFORE_PROBING;
  3610. } else
  3611. {
  3612. // raise extruder
  3613. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3614. }
  3615. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3616. eqnBVector[probePointCounter] = measured_z;
  3617. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3618. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3619. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3620. probePointCounter++;
  3621. xProbe += xInc;
  3622. }
  3623. }
  3624. clean_up_after_endstop_move(l_feedmultiply);
  3625. // solve lsq problem
  3626. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3627. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3628. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3629. SERIAL_PROTOCOLPGM(" b: ");
  3630. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3631. SERIAL_PROTOCOLPGM(" d: ");
  3632. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3633. set_bed_level_equation_lsq(plane_equation_coefficients);
  3634. free(plane_equation_coefficients);
  3635. #else // AUTO_BED_LEVELING_GRID not defined
  3636. // Probe at 3 arbitrary points
  3637. // probe 1
  3638. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3639. // probe 2
  3640. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3641. // probe 3
  3642. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3643. clean_up_after_endstop_move(l_feedmultiply);
  3644. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3645. #endif // AUTO_BED_LEVELING_GRID
  3646. st_synchronize();
  3647. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3648. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3649. // When the bed is uneven, this height must be corrected.
  3650. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3651. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3652. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3653. z_tmp = current_position[Z_AXIS];
  3654. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3655. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3656. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3657. }
  3658. break;
  3659. #ifndef Z_PROBE_SLED
  3660. //! ### G30 - Single Z Probe
  3661. // ------------------------------------
  3662. case 30:
  3663. {
  3664. st_synchronize();
  3665. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3666. int l_feedmultiply = setup_for_endstop_move();
  3667. feedrate = homing_feedrate[Z_AXIS];
  3668. run_z_probe();
  3669. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3670. SERIAL_PROTOCOLPGM(" X: ");
  3671. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3672. SERIAL_PROTOCOLPGM(" Y: ");
  3673. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3674. SERIAL_PROTOCOLPGM(" Z: ");
  3675. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3676. SERIAL_PROTOCOLPGM("\n");
  3677. clean_up_after_endstop_move(l_feedmultiply);
  3678. }
  3679. break;
  3680. #else
  3681. //! ### G31 - Dock the sled
  3682. // ---------------------------
  3683. case 31:
  3684. dock_sled(true);
  3685. break;
  3686. //! ### G32 - Undock the sled
  3687. // ----------------------------
  3688. case 32:
  3689. dock_sled(false);
  3690. break;
  3691. #endif // Z_PROBE_SLED
  3692. #endif // ENABLE_AUTO_BED_LEVELING
  3693. #ifdef MESH_BED_LEVELING
  3694. //! ### G30 - Single Z Probe
  3695. // ----------------------------
  3696. case 30:
  3697. {
  3698. st_synchronize();
  3699. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3700. int l_feedmultiply = setup_for_endstop_move();
  3701. feedrate = homing_feedrate[Z_AXIS];
  3702. find_bed_induction_sensor_point_z(-10.f, 3);
  3703. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3704. clean_up_after_endstop_move(l_feedmultiply);
  3705. }
  3706. break;
  3707. //! ### G75 - Print temperature interpolation
  3708. // ---------------------------------------------
  3709. case 75:
  3710. {
  3711. for (int i = 40; i <= 110; i++)
  3712. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3713. }
  3714. break;
  3715. //! ### G76 - PINDA probe temperature calibration
  3716. // ------------------------------------------------
  3717. case 76:
  3718. {
  3719. #ifdef PINDA_THERMISTOR
  3720. if (true)
  3721. {
  3722. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3723. //we need to know accurate position of first calibration point
  3724. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3725. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3726. break;
  3727. }
  3728. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3729. {
  3730. // We don't know where we are! HOME!
  3731. // Push the commands to the front of the message queue in the reverse order!
  3732. // There shall be always enough space reserved for these commands.
  3733. repeatcommand_front(); // repeat G76 with all its parameters
  3734. enquecommand_front_P((PSTR("G28 W0")));
  3735. break;
  3736. }
  3737. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3738. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3739. if (result)
  3740. {
  3741. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3743. current_position[Z_AXIS] = 50;
  3744. current_position[Y_AXIS] = 180;
  3745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3746. st_synchronize();
  3747. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3748. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3749. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3751. st_synchronize();
  3752. gcode_G28(false, false, true);
  3753. }
  3754. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3755. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3756. current_position[Z_AXIS] = 100;
  3757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3758. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3759. lcd_temp_cal_show_result(false);
  3760. break;
  3761. }
  3762. }
  3763. lcd_update_enable(true);
  3764. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3765. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3766. float zero_z;
  3767. int z_shift = 0; //unit: steps
  3768. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3769. if (start_temp < 35) start_temp = 35;
  3770. if (start_temp < current_temperature_pinda) start_temp += 5;
  3771. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3772. // setTargetHotend(200, 0);
  3773. setTargetBed(70 + (start_temp - 30));
  3774. custom_message_type = CustomMsg::TempCal;
  3775. custom_message_state = 1;
  3776. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3777. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3779. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3780. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3782. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3784. st_synchronize();
  3785. while (current_temperature_pinda < start_temp)
  3786. {
  3787. delay_keep_alive(1000);
  3788. serialecho_temperatures();
  3789. }
  3790. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3791. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3793. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3794. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3796. st_synchronize();
  3797. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3798. if (find_z_result == false) {
  3799. lcd_temp_cal_show_result(find_z_result);
  3800. break;
  3801. }
  3802. zero_z = current_position[Z_AXIS];
  3803. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3804. int i = -1; for (; i < 5; i++)
  3805. {
  3806. float temp = (40 + i * 5);
  3807. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3808. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3809. if (start_temp <= temp) break;
  3810. }
  3811. for (i++; i < 5; i++)
  3812. {
  3813. float temp = (40 + i * 5);
  3814. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3815. custom_message_state = i + 2;
  3816. setTargetBed(50 + 10 * (temp - 30) / 5);
  3817. // setTargetHotend(255, 0);
  3818. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3820. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3821. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3823. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3825. st_synchronize();
  3826. while (current_temperature_pinda < temp)
  3827. {
  3828. delay_keep_alive(1000);
  3829. serialecho_temperatures();
  3830. }
  3831. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3833. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3834. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3836. st_synchronize();
  3837. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3838. if (find_z_result == false) {
  3839. lcd_temp_cal_show_result(find_z_result);
  3840. break;
  3841. }
  3842. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3843. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3844. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3845. }
  3846. lcd_temp_cal_show_result(true);
  3847. break;
  3848. }
  3849. #endif //PINDA_THERMISTOR
  3850. setTargetBed(PINDA_MIN_T);
  3851. float zero_z;
  3852. int z_shift = 0; //unit: steps
  3853. int t_c; // temperature
  3854. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3855. // We don't know where we are! HOME!
  3856. // Push the commands to the front of the message queue in the reverse order!
  3857. // There shall be always enough space reserved for these commands.
  3858. repeatcommand_front(); // repeat G76 with all its parameters
  3859. enquecommand_front_P((PSTR("G28 W0")));
  3860. break;
  3861. }
  3862. puts_P(_N("PINDA probe calibration start"));
  3863. custom_message_type = CustomMsg::TempCal;
  3864. custom_message_state = 1;
  3865. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3866. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3867. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3868. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3870. st_synchronize();
  3871. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3872. delay_keep_alive(1000);
  3873. serialecho_temperatures();
  3874. }
  3875. //enquecommand_P(PSTR("M190 S50"));
  3876. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3877. delay_keep_alive(1000);
  3878. serialecho_temperatures();
  3879. }
  3880. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3881. current_position[Z_AXIS] = 5;
  3882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3883. current_position[X_AXIS] = BED_X0;
  3884. current_position[Y_AXIS] = BED_Y0;
  3885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3886. st_synchronize();
  3887. find_bed_induction_sensor_point_z(-1.f);
  3888. zero_z = current_position[Z_AXIS];
  3889. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3890. for (int i = 0; i<5; i++) {
  3891. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3892. custom_message_state = i + 2;
  3893. t_c = 60 + i * 10;
  3894. setTargetBed(t_c);
  3895. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3896. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3897. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3899. st_synchronize();
  3900. while (degBed() < t_c) {
  3901. delay_keep_alive(1000);
  3902. serialecho_temperatures();
  3903. }
  3904. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3905. delay_keep_alive(1000);
  3906. serialecho_temperatures();
  3907. }
  3908. current_position[Z_AXIS] = 5;
  3909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3910. current_position[X_AXIS] = BED_X0;
  3911. current_position[Y_AXIS] = BED_Y0;
  3912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3913. st_synchronize();
  3914. find_bed_induction_sensor_point_z(-1.f);
  3915. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3916. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3917. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3918. }
  3919. custom_message_type = CustomMsg::Status;
  3920. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3921. puts_P(_N("Temperature calibration done."));
  3922. disable_x();
  3923. disable_y();
  3924. disable_z();
  3925. disable_e0();
  3926. disable_e1();
  3927. disable_e2();
  3928. setTargetBed(0); //set bed target temperature back to 0
  3929. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3930. temp_cal_active = true;
  3931. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3932. lcd_update_enable(true);
  3933. lcd_update(2);
  3934. }
  3935. break;
  3936. //! ### G80 - Mesh-based Z probe
  3937. // -----------------------------------
  3938. /*
  3939. * Probes a grid and produces a mesh to compensate for variable bed height
  3940. * The S0 report the points as below
  3941. * +----> X-axis
  3942. * |
  3943. * |
  3944. * v Y-axis
  3945. */
  3946. case 80:
  3947. #ifdef MK1BP
  3948. break;
  3949. #endif //MK1BP
  3950. case_G80:
  3951. {
  3952. mesh_bed_leveling_flag = true;
  3953. static bool run = false;
  3954. #ifdef SUPPORT_VERBOSITY
  3955. int8_t verbosity_level = 0;
  3956. if (code_seen('V')) {
  3957. // Just 'V' without a number counts as V1.
  3958. char c = strchr_pointer[1];
  3959. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3960. }
  3961. #endif //SUPPORT_VERBOSITY
  3962. // Firstly check if we know where we are
  3963. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3964. // We don't know where we are! HOME!
  3965. // Push the commands to the front of the message queue in the reverse order!
  3966. // There shall be always enough space reserved for these commands.
  3967. if (lcd_commands_type != LcdCommands::StopPrint) {
  3968. repeatcommand_front(); // repeat G80 with all its parameters
  3969. enquecommand_front_P((PSTR("G28 W0")));
  3970. }
  3971. else {
  3972. mesh_bed_leveling_flag = false;
  3973. }
  3974. break;
  3975. }
  3976. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3977. if (code_seen('N')) {
  3978. nMeasPoints = code_value_uint8();
  3979. if (nMeasPoints != 7) {
  3980. nMeasPoints = 3;
  3981. }
  3982. }
  3983. else {
  3984. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3985. }
  3986. uint8_t nProbeRetry = 3;
  3987. if (code_seen('R')) {
  3988. nProbeRetry = code_value_uint8();
  3989. if (nProbeRetry > 10) {
  3990. nProbeRetry = 10;
  3991. }
  3992. }
  3993. else {
  3994. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3995. }
  3996. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3997. bool temp_comp_start = true;
  3998. #ifdef PINDA_THERMISTOR
  3999. temp_comp_start = false;
  4000. #endif //PINDA_THERMISTOR
  4001. if (temp_comp_start)
  4002. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4003. if (lcd_commands_type != LcdCommands::StopPrint) {
  4004. temp_compensation_start();
  4005. run = true;
  4006. repeatcommand_front(); // repeat G80 with all its parameters
  4007. enquecommand_front_P((PSTR("G28 W0")));
  4008. }
  4009. else {
  4010. mesh_bed_leveling_flag = false;
  4011. }
  4012. break;
  4013. }
  4014. run = false;
  4015. if (lcd_commands_type == LcdCommands::StopPrint) {
  4016. mesh_bed_leveling_flag = false;
  4017. break;
  4018. }
  4019. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4020. CustomMsg custom_message_type_old = custom_message_type;
  4021. unsigned int custom_message_state_old = custom_message_state;
  4022. custom_message_type = CustomMsg::MeshBedLeveling;
  4023. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4024. lcd_update(1);
  4025. mbl.reset(); //reset mesh bed leveling
  4026. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4027. // consumed during the first movements following this statement.
  4028. babystep_undo();
  4029. // Cycle through all points and probe them
  4030. // First move up. During this first movement, the babystepping will be reverted.
  4031. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  4033. // The move to the first calibration point.
  4034. current_position[X_AXIS] = BED_X0;
  4035. current_position[Y_AXIS] = BED_Y0;
  4036. #ifdef SUPPORT_VERBOSITY
  4037. if (verbosity_level >= 1)
  4038. {
  4039. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4040. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4041. }
  4042. #else //SUPPORT_VERBOSITY
  4043. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4044. #endif //SUPPORT_VERBOSITY
  4045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  4046. // Wait until the move is finished.
  4047. st_synchronize();
  4048. uint8_t mesh_point = 0; //index number of calibration point
  4049. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4050. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4051. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4052. #ifdef SUPPORT_VERBOSITY
  4053. if (verbosity_level >= 1) {
  4054. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4055. }
  4056. #endif // SUPPORT_VERBOSITY
  4057. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4058. const char *kill_message = NULL;
  4059. while (mesh_point != nMeasPoints * nMeasPoints) {
  4060. // Get coords of a measuring point.
  4061. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4062. uint8_t iy = mesh_point / nMeasPoints;
  4063. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4064. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4065. custom_message_state--;
  4066. mesh_point++;
  4067. continue; //skip
  4068. }*/
  4069. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4070. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4071. {
  4072. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4073. }
  4074. float z0 = 0.f;
  4075. if (has_z && (mesh_point > 0)) {
  4076. uint16_t z_offset_u = 0;
  4077. if (nMeasPoints == 7) {
  4078. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4079. }
  4080. else {
  4081. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4082. }
  4083. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4084. #ifdef SUPPORT_VERBOSITY
  4085. if (verbosity_level >= 1) {
  4086. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4087. }
  4088. #endif // SUPPORT_VERBOSITY
  4089. }
  4090. // Move Z up to MESH_HOME_Z_SEARCH.
  4091. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4092. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4093. float init_z_bckp = current_position[Z_AXIS];
  4094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4095. st_synchronize();
  4096. // Move to XY position of the sensor point.
  4097. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4098. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4099. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4100. #ifdef SUPPORT_VERBOSITY
  4101. if (verbosity_level >= 1) {
  4102. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4103. SERIAL_PROTOCOL(mesh_point);
  4104. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4105. }
  4106. #else //SUPPORT_VERBOSITY
  4107. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4108. #endif // SUPPORT_VERBOSITY
  4109. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  4111. st_synchronize();
  4112. // Go down until endstop is hit
  4113. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4114. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4115. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4116. break;
  4117. }
  4118. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4119. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4120. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4122. st_synchronize();
  4123. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4124. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4125. break;
  4126. }
  4127. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4128. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4129. break;
  4130. }
  4131. }
  4132. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4133. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4134. break;
  4135. }
  4136. #ifdef SUPPORT_VERBOSITY
  4137. if (verbosity_level >= 10) {
  4138. SERIAL_ECHOPGM("X: ");
  4139. MYSERIAL.print(current_position[X_AXIS], 5);
  4140. SERIAL_ECHOLNPGM("");
  4141. SERIAL_ECHOPGM("Y: ");
  4142. MYSERIAL.print(current_position[Y_AXIS], 5);
  4143. SERIAL_PROTOCOLPGM("\n");
  4144. }
  4145. #endif // SUPPORT_VERBOSITY
  4146. float offset_z = 0;
  4147. #ifdef PINDA_THERMISTOR
  4148. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4149. #endif //PINDA_THERMISTOR
  4150. // #ifdef SUPPORT_VERBOSITY
  4151. /* if (verbosity_level >= 1)
  4152. {
  4153. SERIAL_ECHOPGM("mesh bed leveling: ");
  4154. MYSERIAL.print(current_position[Z_AXIS], 5);
  4155. SERIAL_ECHOPGM(" offset: ");
  4156. MYSERIAL.print(offset_z, 5);
  4157. SERIAL_ECHOLNPGM("");
  4158. }*/
  4159. // #endif // SUPPORT_VERBOSITY
  4160. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4161. custom_message_state--;
  4162. mesh_point++;
  4163. lcd_update(1);
  4164. }
  4165. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4166. #ifdef SUPPORT_VERBOSITY
  4167. if (verbosity_level >= 20) {
  4168. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4169. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4170. MYSERIAL.print(current_position[Z_AXIS], 5);
  4171. }
  4172. #endif // SUPPORT_VERBOSITY
  4173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4174. st_synchronize();
  4175. if (mesh_point != nMeasPoints * nMeasPoints) {
  4176. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4177. bool bState;
  4178. do { // repeat until Z-leveling o.k.
  4179. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4180. #ifdef TMC2130
  4181. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4182. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4183. #else // TMC2130
  4184. lcd_wait_for_click_delay(0); // ~ no timeout
  4185. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4186. #endif // TMC2130
  4187. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4188. bState=enable_z_endstop(false);
  4189. current_position[Z_AXIS] -= 1;
  4190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4191. st_synchronize();
  4192. enable_z_endstop(true);
  4193. #ifdef TMC2130
  4194. tmc2130_home_enter(Z_AXIS_MASK);
  4195. #endif // TMC2130
  4196. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4198. st_synchronize();
  4199. #ifdef TMC2130
  4200. tmc2130_home_exit();
  4201. #endif // TMC2130
  4202. enable_z_endstop(bState);
  4203. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4204. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4205. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4206. lcd_update_enable(true); // display / status-line recovery
  4207. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4208. repeatcommand_front(); // re-run (i.e. of "G80")
  4209. break;
  4210. }
  4211. clean_up_after_endstop_move(l_feedmultiply);
  4212. // SERIAL_ECHOLNPGM("clean up finished ");
  4213. bool apply_temp_comp = true;
  4214. #ifdef PINDA_THERMISTOR
  4215. apply_temp_comp = false;
  4216. #endif
  4217. if (apply_temp_comp)
  4218. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4219. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4220. // SERIAL_ECHOLNPGM("babystep applied");
  4221. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4222. #ifdef SUPPORT_VERBOSITY
  4223. if (verbosity_level >= 1) {
  4224. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4225. }
  4226. #endif // SUPPORT_VERBOSITY
  4227. for (uint8_t i = 0; i < 4; ++i) {
  4228. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4229. long correction = 0;
  4230. if (code_seen(codes[i]))
  4231. correction = code_value_long();
  4232. else if (eeprom_bed_correction_valid) {
  4233. unsigned char *addr = (i < 2) ?
  4234. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4235. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4236. correction = eeprom_read_int8(addr);
  4237. }
  4238. if (correction == 0)
  4239. continue;
  4240. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4241. SERIAL_ERROR_START;
  4242. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4243. SERIAL_ECHO(correction);
  4244. SERIAL_ECHOLNPGM(" microns");
  4245. }
  4246. else {
  4247. float offset = float(correction) * 0.001f;
  4248. switch (i) {
  4249. case 0:
  4250. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4251. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4252. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4253. }
  4254. }
  4255. break;
  4256. case 1:
  4257. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4258. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4259. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4260. }
  4261. }
  4262. break;
  4263. case 2:
  4264. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4265. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4266. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4267. }
  4268. }
  4269. break;
  4270. case 3:
  4271. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4272. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4273. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4274. }
  4275. }
  4276. break;
  4277. }
  4278. }
  4279. }
  4280. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4281. if (nMeasPoints == 3) {
  4282. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4283. }
  4284. /*
  4285. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4286. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4287. SERIAL_PROTOCOLPGM(",");
  4288. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4289. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4290. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4291. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4292. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4293. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4294. SERIAL_PROTOCOLPGM(" ");
  4295. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4296. }
  4297. SERIAL_PROTOCOLPGM("\n");
  4298. }
  4299. */
  4300. if (nMeasPoints == 7 && magnet_elimination) {
  4301. mbl_interpolation(nMeasPoints);
  4302. }
  4303. /*
  4304. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4305. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4306. SERIAL_PROTOCOLPGM(",");
  4307. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4308. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4309. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4310. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4311. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4312. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4313. SERIAL_PROTOCOLPGM(" ");
  4314. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4315. }
  4316. SERIAL_PROTOCOLPGM("\n");
  4317. }
  4318. */
  4319. // SERIAL_ECHOLNPGM("Upsample finished");
  4320. mbl.active = 1; //activate mesh bed leveling
  4321. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4322. go_home_with_z_lift();
  4323. // SERIAL_ECHOLNPGM("Go home finished");
  4324. //unretract (after PINDA preheat retraction)
  4325. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4326. current_position[E_AXIS] += default_retraction;
  4327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4328. }
  4329. KEEPALIVE_STATE(NOT_BUSY);
  4330. // Restore custom message state
  4331. lcd_setstatuspgm(_T(WELCOME_MSG));
  4332. custom_message_type = custom_message_type_old;
  4333. custom_message_state = custom_message_state_old;
  4334. mesh_bed_leveling_flag = false;
  4335. mesh_bed_run_from_menu = false;
  4336. lcd_update(2);
  4337. }
  4338. break;
  4339. //! ### G81 - Mesh bed leveling status
  4340. // -----------------------------------------
  4341. /*
  4342. * Prints mesh bed leveling status and bed profile if activated
  4343. */
  4344. case 81:
  4345. if (mbl.active) {
  4346. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4347. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4348. SERIAL_PROTOCOLPGM(",");
  4349. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4350. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4351. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4352. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4353. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4354. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4355. SERIAL_PROTOCOLPGM(" ");
  4356. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4357. }
  4358. SERIAL_PROTOCOLPGM("\n");
  4359. }
  4360. }
  4361. else
  4362. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4363. break;
  4364. #if 0
  4365. /*
  4366. * G82: Single Z probe at current location
  4367. *
  4368. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4369. *
  4370. */
  4371. case 82:
  4372. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4373. int l_feedmultiply = setup_for_endstop_move();
  4374. find_bed_induction_sensor_point_z();
  4375. clean_up_after_endstop_move(l_feedmultiply);
  4376. SERIAL_PROTOCOLPGM("Bed found at: ");
  4377. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4378. SERIAL_PROTOCOLPGM("\n");
  4379. break;
  4380. /*
  4381. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4382. */
  4383. case 83:
  4384. {
  4385. int babystepz = code_seen('S') ? code_value() : 0;
  4386. int BabyPosition = code_seen('P') ? code_value() : 0;
  4387. if (babystepz != 0) {
  4388. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4389. // Is the axis indexed starting with zero or one?
  4390. if (BabyPosition > 4) {
  4391. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4392. }else{
  4393. // Save it to the eeprom
  4394. babystepLoadZ = babystepz;
  4395. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4396. // adjust the Z
  4397. babystepsTodoZadd(babystepLoadZ);
  4398. }
  4399. }
  4400. }
  4401. break;
  4402. /*
  4403. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4404. */
  4405. case 84:
  4406. babystepsTodoZsubtract(babystepLoadZ);
  4407. // babystepLoadZ = 0;
  4408. break;
  4409. /*
  4410. * G85: Prusa3D specific: Pick best babystep
  4411. */
  4412. case 85:
  4413. lcd_pick_babystep();
  4414. break;
  4415. #endif
  4416. /**
  4417. * ### G86 - Disable babystep correction after home
  4418. *
  4419. * This G-code will be performed at the start of a calibration script.
  4420. * (Prusa3D specific)
  4421. */
  4422. case 86:
  4423. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4424. break;
  4425. /**
  4426. * ### G87 - Enable babystep correction after home
  4427. *
  4428. *
  4429. * This G-code will be performed at the end of a calibration script.
  4430. * (Prusa3D specific)
  4431. */
  4432. case 87:
  4433. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4434. break;
  4435. /**
  4436. * ### G88 - Reserved
  4437. *
  4438. * Currently has no effect.
  4439. */
  4440. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4441. case 88:
  4442. break;
  4443. #endif // ENABLE_MESH_BED_LEVELING
  4444. //! ### G90 - Switch off relative mode
  4445. // -------------------------------
  4446. case 90:
  4447. relative_mode = false;
  4448. break;
  4449. //! ### G91 - Switch on relative mode
  4450. // -------------------------------
  4451. case 91:
  4452. relative_mode = true;
  4453. break;
  4454. //! ### G92 - Set position
  4455. // -----------------------------
  4456. case 92:
  4457. if(!code_seen(axis_codes[E_AXIS]))
  4458. st_synchronize();
  4459. for(int8_t i=0; i < NUM_AXIS; i++) {
  4460. if(code_seen(axis_codes[i])) {
  4461. if(i == E_AXIS) {
  4462. current_position[i] = code_value();
  4463. plan_set_e_position(current_position[E_AXIS]);
  4464. }
  4465. else {
  4466. current_position[i] = code_value()+cs.add_homing[i];
  4467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4468. }
  4469. }
  4470. }
  4471. break;
  4472. //! ### G98 - Activate farm mode
  4473. // -----------------------------------
  4474. case 98:
  4475. farm_mode = 1;
  4476. PingTime = _millis();
  4477. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4478. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4479. SilentModeMenu = SILENT_MODE_OFF;
  4480. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4481. fCheckModeInit(); // alternatively invoke printer reset
  4482. break;
  4483. //! ### G99 - Deactivate farm mode
  4484. // -------------------------------------
  4485. case 99:
  4486. farm_mode = 0;
  4487. lcd_printer_connected();
  4488. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4489. lcd_update(2);
  4490. fCheckModeInit(); // alternatively invoke printer reset
  4491. break;
  4492. default:
  4493. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4494. }
  4495. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4496. gcode_in_progress = 0;
  4497. } // end if(code_seen('G'))
  4498. //! ---------------------------------------------------------------------------------
  4499. else if(code_seen('M'))
  4500. {
  4501. int index;
  4502. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4503. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4504. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4505. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4506. } else
  4507. {
  4508. mcode_in_progress = (int)code_value();
  4509. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4510. switch(mcode_in_progress)
  4511. {
  4512. //! ### M0, M1 - Stop the printer
  4513. // ---------------------------------------------------------------
  4514. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4515. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4516. {
  4517. char *src = strchr_pointer + 2;
  4518. codenum = 0;
  4519. bool hasP = false, hasS = false;
  4520. if (code_seen('P')) {
  4521. codenum = code_value(); // milliseconds to wait
  4522. hasP = codenum > 0;
  4523. }
  4524. if (code_seen('S')) {
  4525. codenum = code_value() * 1000; // seconds to wait
  4526. hasS = codenum > 0;
  4527. }
  4528. starpos = strchr(src, '*');
  4529. if (starpos != NULL) *(starpos) = '\0';
  4530. while (*src == ' ') ++src;
  4531. if (!hasP && !hasS && *src != '\0') {
  4532. lcd_setstatus(src);
  4533. } else {
  4534. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4535. }
  4536. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4537. st_synchronize();
  4538. previous_millis_cmd = _millis();
  4539. if (codenum > 0){
  4540. codenum += _millis(); // keep track of when we started waiting
  4541. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4542. while(_millis() < codenum && !lcd_clicked()){
  4543. manage_heater();
  4544. manage_inactivity(true);
  4545. lcd_update(0);
  4546. }
  4547. KEEPALIVE_STATE(IN_HANDLER);
  4548. lcd_ignore_click(false);
  4549. }else{
  4550. marlin_wait_for_click();
  4551. }
  4552. if (IS_SD_PRINTING)
  4553. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4554. else
  4555. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4556. }
  4557. break;
  4558. //! ### M17 - Enable axes
  4559. // ---------------------------------
  4560. case 17:
  4561. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4562. enable_x();
  4563. enable_y();
  4564. enable_z();
  4565. enable_e0();
  4566. enable_e1();
  4567. enable_e2();
  4568. break;
  4569. #ifdef SDSUPPORT
  4570. //! ### M20 - SD Card file list
  4571. // -----------------------------------
  4572. case 20:
  4573. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4574. card.ls();
  4575. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4576. break;
  4577. //! ### M21 - Init SD card
  4578. // ------------------------------------
  4579. case 21:
  4580. card.initsd();
  4581. break;
  4582. //! ### M22 - Release SD card
  4583. // -----------------------------------
  4584. case 22:
  4585. card.release();
  4586. break;
  4587. //! ### M23 - Select file
  4588. // -----------------------------------
  4589. case 23:
  4590. starpos = (strchr(strchr_pointer + 4,'*'));
  4591. if(starpos!=NULL)
  4592. *(starpos)='\0';
  4593. card.openFile(strchr_pointer + 4,true);
  4594. break;
  4595. //! ### M24 - Start SD print
  4596. // ----------------------------------
  4597. case 24:
  4598. if (!card.paused)
  4599. failstats_reset_print();
  4600. card.startFileprint();
  4601. starttime=_millis();
  4602. break;
  4603. //! ### M25 - Pause SD print
  4604. // ----------------------------------
  4605. case 25:
  4606. card.pauseSDPrint();
  4607. break;
  4608. //! ### M26 - Set SD index
  4609. // ----------------------------------
  4610. case 26:
  4611. if(card.cardOK && code_seen('S')) {
  4612. card.setIndex(code_value_long());
  4613. }
  4614. break;
  4615. //! ### M27 - Get SD status
  4616. // ----------------------------------
  4617. case 27:
  4618. card.getStatus();
  4619. break;
  4620. //! ### M28 - Start SD write
  4621. // ---------------------------------
  4622. case 28:
  4623. starpos = (strchr(strchr_pointer + 4,'*'));
  4624. if(starpos != NULL){
  4625. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4626. strchr_pointer = strchr(npos,' ') + 1;
  4627. *(starpos) = '\0';
  4628. }
  4629. card.openFile(strchr_pointer+4,false);
  4630. break;
  4631. //! ### M29 - Stop SD write
  4632. // -------------------------------------
  4633. //! Currently has no effect.
  4634. case 29:
  4635. //processed in write to file routine above
  4636. //card,saving = false;
  4637. break;
  4638. //! ### M30 - Delete file <filename>
  4639. // ----------------------------------
  4640. case 30:
  4641. if (card.cardOK){
  4642. card.closefile();
  4643. starpos = (strchr(strchr_pointer + 4,'*'));
  4644. if(starpos != NULL){
  4645. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4646. strchr_pointer = strchr(npos,' ') + 1;
  4647. *(starpos) = '\0';
  4648. }
  4649. card.removeFile(strchr_pointer + 4);
  4650. }
  4651. break;
  4652. //! ### M32 - Select file and start SD print
  4653. // ------------------------------------
  4654. case 32:
  4655. {
  4656. if(card.sdprinting) {
  4657. st_synchronize();
  4658. }
  4659. starpos = (strchr(strchr_pointer + 4,'*'));
  4660. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4661. if(namestartpos==NULL)
  4662. {
  4663. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4664. }
  4665. else
  4666. namestartpos++; //to skip the '!'
  4667. if(starpos!=NULL)
  4668. *(starpos)='\0';
  4669. bool call_procedure=(code_seen('P'));
  4670. if(strchr_pointer>namestartpos)
  4671. call_procedure=false; //false alert, 'P' found within filename
  4672. if( card.cardOK )
  4673. {
  4674. card.openFile(namestartpos,true,!call_procedure);
  4675. if(code_seen('S'))
  4676. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4677. card.setIndex(code_value_long());
  4678. card.startFileprint();
  4679. if(!call_procedure)
  4680. starttime=_millis(); //procedure calls count as normal print time.
  4681. }
  4682. } break;
  4683. //! ### M982 - Start SD write
  4684. // ---------------------------------
  4685. case 928:
  4686. starpos = (strchr(strchr_pointer + 5,'*'));
  4687. if(starpos != NULL){
  4688. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4689. strchr_pointer = strchr(npos,' ') + 1;
  4690. *(starpos) = '\0';
  4691. }
  4692. card.openLogFile(strchr_pointer+5);
  4693. break;
  4694. #endif //SDSUPPORT
  4695. //! ### M31 - Report current print time
  4696. // --------------------------------------------------
  4697. case 31: //M31 take time since the start of the SD print or an M109 command
  4698. {
  4699. stoptime=_millis();
  4700. char time[30];
  4701. unsigned long t=(stoptime-starttime)/1000;
  4702. int sec,min;
  4703. min=t/60;
  4704. sec=t%60;
  4705. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4706. SERIAL_ECHO_START;
  4707. SERIAL_ECHOLN(time);
  4708. lcd_setstatus(time);
  4709. autotempShutdown();
  4710. }
  4711. break;
  4712. //! ### M42 - Set pin state
  4713. // -----------------------------
  4714. case 42:
  4715. if (code_seen('S'))
  4716. {
  4717. int pin_status = code_value();
  4718. int pin_number = LED_PIN;
  4719. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4720. pin_number = code_value();
  4721. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4722. {
  4723. if (sensitive_pins[i] == pin_number)
  4724. {
  4725. pin_number = -1;
  4726. break;
  4727. }
  4728. }
  4729. #if defined(FAN_PIN) && FAN_PIN > -1
  4730. if (pin_number == FAN_PIN)
  4731. fanSpeed = pin_status;
  4732. #endif
  4733. if (pin_number > -1)
  4734. {
  4735. pinMode(pin_number, OUTPUT);
  4736. digitalWrite(pin_number, pin_status);
  4737. analogWrite(pin_number, pin_status);
  4738. }
  4739. }
  4740. break;
  4741. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4742. // --------------------------------------------------------------------
  4743. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4744. // Reset the baby step value and the baby step applied flag.
  4745. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4746. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4747. // Reset the skew and offset in both RAM and EEPROM.
  4748. reset_bed_offset_and_skew();
  4749. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4750. // the planner will not perform any adjustments in the XY plane.
  4751. // Wait for the motors to stop and update the current position with the absolute values.
  4752. world2machine_revert_to_uncorrected();
  4753. break;
  4754. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4755. // ------------------------------------------------------
  4756. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4757. {
  4758. int8_t verbosity_level = 0;
  4759. bool only_Z = code_seen('Z');
  4760. #ifdef SUPPORT_VERBOSITY
  4761. if (code_seen('V'))
  4762. {
  4763. // Just 'V' without a number counts as V1.
  4764. char c = strchr_pointer[1];
  4765. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4766. }
  4767. #endif //SUPPORT_VERBOSITY
  4768. gcode_M45(only_Z, verbosity_level);
  4769. }
  4770. break;
  4771. /*
  4772. case 46:
  4773. {
  4774. // M46: Prusa3D: Show the assigned IP address.
  4775. uint8_t ip[4];
  4776. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4777. if (hasIP) {
  4778. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4779. SERIAL_ECHO(int(ip[0]));
  4780. SERIAL_ECHOPGM(".");
  4781. SERIAL_ECHO(int(ip[1]));
  4782. SERIAL_ECHOPGM(".");
  4783. SERIAL_ECHO(int(ip[2]));
  4784. SERIAL_ECHOPGM(".");
  4785. SERIAL_ECHO(int(ip[3]));
  4786. SERIAL_ECHOLNPGM("");
  4787. } else {
  4788. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4789. }
  4790. break;
  4791. }
  4792. */
  4793. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4794. // ----------------------------------------------------
  4795. case 47:
  4796. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4797. lcd_diag_show_end_stops();
  4798. KEEPALIVE_STATE(IN_HANDLER);
  4799. break;
  4800. #if 0
  4801. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4802. {
  4803. // Disable the default update procedure of the display. We will do a modal dialog.
  4804. lcd_update_enable(false);
  4805. // Let the planner use the uncorrected coordinates.
  4806. mbl.reset();
  4807. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4808. // the planner will not perform any adjustments in the XY plane.
  4809. // Wait for the motors to stop and update the current position with the absolute values.
  4810. world2machine_revert_to_uncorrected();
  4811. // Move the print head close to the bed.
  4812. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4814. st_synchronize();
  4815. // Home in the XY plane.
  4816. set_destination_to_current();
  4817. int l_feedmultiply = setup_for_endstop_move();
  4818. home_xy();
  4819. int8_t verbosity_level = 0;
  4820. if (code_seen('V')) {
  4821. // Just 'V' without a number counts as V1.
  4822. char c = strchr_pointer[1];
  4823. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4824. }
  4825. bool success = scan_bed_induction_points(verbosity_level);
  4826. clean_up_after_endstop_move(l_feedmultiply);
  4827. // Print head up.
  4828. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4830. st_synchronize();
  4831. lcd_update_enable(true);
  4832. break;
  4833. }
  4834. #endif
  4835. #ifdef ENABLE_AUTO_BED_LEVELING
  4836. #ifdef Z_PROBE_REPEATABILITY_TEST
  4837. //! ### M48 - Z-Probe repeatability measurement function.
  4838. // ------------------------------------------------------
  4839. //!
  4840. //! _Usage:_
  4841. //!
  4842. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4843. //!
  4844. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4845. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4846. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4847. //! regenerated.
  4848. //!
  4849. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4850. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4851. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4852. //!
  4853. case 48: // M48 Z-Probe repeatability
  4854. {
  4855. #if Z_MIN_PIN == -1
  4856. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4857. #endif
  4858. double sum=0.0;
  4859. double mean=0.0;
  4860. double sigma=0.0;
  4861. double sample_set[50];
  4862. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4863. double X_current, Y_current, Z_current;
  4864. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4865. if (code_seen('V') || code_seen('v')) {
  4866. verbose_level = code_value();
  4867. if (verbose_level<0 || verbose_level>4 ) {
  4868. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4869. goto Sigma_Exit;
  4870. }
  4871. }
  4872. if (verbose_level > 0) {
  4873. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4874. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4875. }
  4876. if (code_seen('n')) {
  4877. n_samples = code_value();
  4878. if (n_samples<4 || n_samples>50 ) {
  4879. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4880. goto Sigma_Exit;
  4881. }
  4882. }
  4883. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4884. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4885. Z_current = st_get_position_mm(Z_AXIS);
  4886. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4887. ext_position = st_get_position_mm(E_AXIS);
  4888. if (code_seen('X') || code_seen('x') ) {
  4889. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4890. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4891. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4892. goto Sigma_Exit;
  4893. }
  4894. }
  4895. if (code_seen('Y') || code_seen('y') ) {
  4896. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4897. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4898. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4899. goto Sigma_Exit;
  4900. }
  4901. }
  4902. if (code_seen('L') || code_seen('l') ) {
  4903. n_legs = code_value();
  4904. if ( n_legs==1 )
  4905. n_legs = 2;
  4906. if ( n_legs<0 || n_legs>15 ) {
  4907. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4908. goto Sigma_Exit;
  4909. }
  4910. }
  4911. //
  4912. // Do all the preliminary setup work. First raise the probe.
  4913. //
  4914. st_synchronize();
  4915. plan_bed_level_matrix.set_to_identity();
  4916. plan_buffer_line( X_current, Y_current, Z_start_location,
  4917. ext_position,
  4918. homing_feedrate[Z_AXIS]/60,
  4919. active_extruder);
  4920. st_synchronize();
  4921. //
  4922. // Now get everything to the specified probe point So we can safely do a probe to
  4923. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4924. // use that as a starting point for each probe.
  4925. //
  4926. if (verbose_level > 2)
  4927. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4928. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4929. ext_position,
  4930. homing_feedrate[X_AXIS]/60,
  4931. active_extruder);
  4932. st_synchronize();
  4933. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4934. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4935. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4936. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4937. //
  4938. // OK, do the inital probe to get us close to the bed.
  4939. // Then retrace the right amount and use that in subsequent probes
  4940. //
  4941. int l_feedmultiply = setup_for_endstop_move();
  4942. run_z_probe();
  4943. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4944. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4945. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4946. ext_position,
  4947. homing_feedrate[X_AXIS]/60,
  4948. active_extruder);
  4949. st_synchronize();
  4950. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4951. for( n=0; n<n_samples; n++) {
  4952. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4953. if ( n_legs) {
  4954. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4955. int rotational_direction, l;
  4956. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4957. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4958. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4959. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4960. //SERIAL_ECHOPAIR(" theta: ",theta);
  4961. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4962. //SERIAL_PROTOCOLLNPGM("");
  4963. for( l=0; l<n_legs-1; l++) {
  4964. if (rotational_direction==1)
  4965. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4966. else
  4967. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4968. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4969. if ( radius<0.0 )
  4970. radius = -radius;
  4971. X_current = X_probe_location + cos(theta) * radius;
  4972. Y_current = Y_probe_location + sin(theta) * radius;
  4973. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4974. X_current = X_MIN_POS;
  4975. if ( X_current>X_MAX_POS)
  4976. X_current = X_MAX_POS;
  4977. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4978. Y_current = Y_MIN_POS;
  4979. if ( Y_current>Y_MAX_POS)
  4980. Y_current = Y_MAX_POS;
  4981. if (verbose_level>3 ) {
  4982. SERIAL_ECHOPAIR("x: ", X_current);
  4983. SERIAL_ECHOPAIR("y: ", Y_current);
  4984. SERIAL_PROTOCOLLNPGM("");
  4985. }
  4986. do_blocking_move_to( X_current, Y_current, Z_current );
  4987. }
  4988. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4989. }
  4990. int l_feedmultiply = setup_for_endstop_move();
  4991. run_z_probe();
  4992. sample_set[n] = current_position[Z_AXIS];
  4993. //
  4994. // Get the current mean for the data points we have so far
  4995. //
  4996. sum=0.0;
  4997. for( j=0; j<=n; j++) {
  4998. sum = sum + sample_set[j];
  4999. }
  5000. mean = sum / (double (n+1));
  5001. //
  5002. // Now, use that mean to calculate the standard deviation for the
  5003. // data points we have so far
  5004. //
  5005. sum=0.0;
  5006. for( j=0; j<=n; j++) {
  5007. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5008. }
  5009. sigma = sqrt( sum / (double (n+1)) );
  5010. if (verbose_level > 1) {
  5011. SERIAL_PROTOCOL(n+1);
  5012. SERIAL_PROTOCOL(" of ");
  5013. SERIAL_PROTOCOL(n_samples);
  5014. SERIAL_PROTOCOLPGM(" z: ");
  5015. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5016. }
  5017. if (verbose_level > 2) {
  5018. SERIAL_PROTOCOL(" mean: ");
  5019. SERIAL_PROTOCOL_F(mean,6);
  5020. SERIAL_PROTOCOL(" sigma: ");
  5021. SERIAL_PROTOCOL_F(sigma,6);
  5022. }
  5023. if (verbose_level > 0)
  5024. SERIAL_PROTOCOLPGM("\n");
  5025. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5026. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5027. st_synchronize();
  5028. }
  5029. _delay(1000);
  5030. clean_up_after_endstop_move(l_feedmultiply);
  5031. // enable_endstops(true);
  5032. if (verbose_level > 0) {
  5033. SERIAL_PROTOCOLPGM("Mean: ");
  5034. SERIAL_PROTOCOL_F(mean, 6);
  5035. SERIAL_PROTOCOLPGM("\n");
  5036. }
  5037. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5038. SERIAL_PROTOCOL_F(sigma, 6);
  5039. SERIAL_PROTOCOLPGM("\n\n");
  5040. Sigma_Exit:
  5041. break;
  5042. }
  5043. #endif // Z_PROBE_REPEATABILITY_TEST
  5044. #endif // ENABLE_AUTO_BED_LEVELING
  5045. //! ### M73 - Set/get print progress
  5046. // -------------------------------------
  5047. //! _Usage:_
  5048. //!
  5049. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5050. //!
  5051. case 73: //M73 show percent done and time remaining
  5052. if(code_seen('P')) print_percent_done_normal = code_value();
  5053. if(code_seen('R')) print_time_remaining_normal = code_value();
  5054. if(code_seen('Q')) print_percent_done_silent = code_value();
  5055. if(code_seen('S')) print_time_remaining_silent = code_value();
  5056. {
  5057. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5058. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5059. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5060. }
  5061. break;
  5062. //! ### M104 - Set hotend temperature
  5063. // -----------------------------------------
  5064. case 104: // M104
  5065. {
  5066. uint8_t extruder;
  5067. if(setTargetedHotend(104,extruder)){
  5068. break;
  5069. }
  5070. if (code_seen('S'))
  5071. {
  5072. setTargetHotendSafe(code_value(), extruder);
  5073. }
  5074. setWatch();
  5075. break;
  5076. }
  5077. //! ### M112 - Emergency stop
  5078. // -----------------------------------------
  5079. case 112:
  5080. kill(_n(""), 3);
  5081. break;
  5082. //! ### M140 - Set bed temperature
  5083. // -----------------------------------------
  5084. case 140:
  5085. if (code_seen('S')) setTargetBed(code_value());
  5086. break;
  5087. //! ### M105 - Report temperatures
  5088. // -----------------------------------------
  5089. case 105:
  5090. {
  5091. uint8_t extruder;
  5092. if(setTargetedHotend(105, extruder)){
  5093. break;
  5094. }
  5095. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5096. SERIAL_PROTOCOLPGM("ok T:");
  5097. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5098. SERIAL_PROTOCOLPGM(" /");
  5099. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5100. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5101. SERIAL_PROTOCOLPGM(" B:");
  5102. SERIAL_PROTOCOL_F(degBed(),1);
  5103. SERIAL_PROTOCOLPGM(" /");
  5104. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5105. #endif //TEMP_BED_PIN
  5106. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5107. SERIAL_PROTOCOLPGM(" T");
  5108. SERIAL_PROTOCOL(cur_extruder);
  5109. SERIAL_PROTOCOLPGM(":");
  5110. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5111. SERIAL_PROTOCOLPGM(" /");
  5112. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5113. }
  5114. #else
  5115. SERIAL_ERROR_START;
  5116. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5117. #endif
  5118. SERIAL_PROTOCOLPGM(" @:");
  5119. #ifdef EXTRUDER_WATTS
  5120. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5121. SERIAL_PROTOCOLPGM("W");
  5122. #else
  5123. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5124. #endif
  5125. SERIAL_PROTOCOLPGM(" B@:");
  5126. #ifdef BED_WATTS
  5127. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5128. SERIAL_PROTOCOLPGM("W");
  5129. #else
  5130. SERIAL_PROTOCOL(getHeaterPower(-1));
  5131. #endif
  5132. #ifdef PINDA_THERMISTOR
  5133. SERIAL_PROTOCOLPGM(" P:");
  5134. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5135. #endif //PINDA_THERMISTOR
  5136. #ifdef AMBIENT_THERMISTOR
  5137. SERIAL_PROTOCOLPGM(" A:");
  5138. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5139. #endif //AMBIENT_THERMISTOR
  5140. #ifdef SHOW_TEMP_ADC_VALUES
  5141. {float raw = 0.0;
  5142. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5143. SERIAL_PROTOCOLPGM(" ADC B:");
  5144. SERIAL_PROTOCOL_F(degBed(),1);
  5145. SERIAL_PROTOCOLPGM("C->");
  5146. raw = rawBedTemp();
  5147. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5148. SERIAL_PROTOCOLPGM(" Rb->");
  5149. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5150. SERIAL_PROTOCOLPGM(" Rxb->");
  5151. SERIAL_PROTOCOL_F(raw, 5);
  5152. #endif
  5153. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5154. SERIAL_PROTOCOLPGM(" T");
  5155. SERIAL_PROTOCOL(cur_extruder);
  5156. SERIAL_PROTOCOLPGM(":");
  5157. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5158. SERIAL_PROTOCOLPGM("C->");
  5159. raw = rawHotendTemp(cur_extruder);
  5160. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5161. SERIAL_PROTOCOLPGM(" Rt");
  5162. SERIAL_PROTOCOL(cur_extruder);
  5163. SERIAL_PROTOCOLPGM("->");
  5164. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5165. SERIAL_PROTOCOLPGM(" Rx");
  5166. SERIAL_PROTOCOL(cur_extruder);
  5167. SERIAL_PROTOCOLPGM("->");
  5168. SERIAL_PROTOCOL_F(raw, 5);
  5169. }}
  5170. #endif
  5171. SERIAL_PROTOCOLLN("");
  5172. KEEPALIVE_STATE(NOT_BUSY);
  5173. return;
  5174. break;
  5175. }
  5176. //! ### M109 - Wait for extruder temperature
  5177. // -------------------------------------------------
  5178. case 109:
  5179. {
  5180. uint8_t extruder;
  5181. if(setTargetedHotend(109, extruder)){
  5182. break;
  5183. }
  5184. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5185. heating_status = 1;
  5186. if (farm_mode) { prusa_statistics(1); };
  5187. #ifdef AUTOTEMP
  5188. autotemp_enabled=false;
  5189. #endif
  5190. if (code_seen('S')) {
  5191. setTargetHotendSafe(code_value(), extruder);
  5192. CooldownNoWait = true;
  5193. } else if (code_seen('R')) {
  5194. setTargetHotendSafe(code_value(), extruder);
  5195. CooldownNoWait = false;
  5196. }
  5197. #ifdef AUTOTEMP
  5198. if (code_seen('S')) autotemp_min=code_value();
  5199. if (code_seen('B')) autotemp_max=code_value();
  5200. if (code_seen('F'))
  5201. {
  5202. autotemp_factor=code_value();
  5203. autotemp_enabled=true;
  5204. }
  5205. #endif
  5206. setWatch();
  5207. codenum = _millis();
  5208. /* See if we are heating up or cooling down */
  5209. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5210. KEEPALIVE_STATE(NOT_BUSY);
  5211. cancel_heatup = false;
  5212. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5213. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5214. KEEPALIVE_STATE(IN_HANDLER);
  5215. heating_status = 2;
  5216. if (farm_mode) { prusa_statistics(2); };
  5217. //starttime=_millis();
  5218. previous_millis_cmd = _millis();
  5219. }
  5220. break;
  5221. //! ### M190 - Wait for bed temperature
  5222. // ---------------------------------------
  5223. case 190:
  5224. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5225. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5226. heating_status = 3;
  5227. if (farm_mode) { prusa_statistics(1); };
  5228. if (code_seen('S'))
  5229. {
  5230. setTargetBed(code_value());
  5231. CooldownNoWait = true;
  5232. }
  5233. else if (code_seen('R'))
  5234. {
  5235. setTargetBed(code_value());
  5236. CooldownNoWait = false;
  5237. }
  5238. codenum = _millis();
  5239. cancel_heatup = false;
  5240. target_direction = isHeatingBed(); // true if heating, false if cooling
  5241. KEEPALIVE_STATE(NOT_BUSY);
  5242. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5243. {
  5244. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5245. {
  5246. if (!farm_mode) {
  5247. float tt = degHotend(active_extruder);
  5248. SERIAL_PROTOCOLPGM("T:");
  5249. SERIAL_PROTOCOL(tt);
  5250. SERIAL_PROTOCOLPGM(" E:");
  5251. SERIAL_PROTOCOL((int)active_extruder);
  5252. SERIAL_PROTOCOLPGM(" B:");
  5253. SERIAL_PROTOCOL_F(degBed(), 1);
  5254. SERIAL_PROTOCOLLN("");
  5255. }
  5256. codenum = _millis();
  5257. }
  5258. manage_heater();
  5259. manage_inactivity();
  5260. lcd_update(0);
  5261. }
  5262. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5263. KEEPALIVE_STATE(IN_HANDLER);
  5264. heating_status = 4;
  5265. previous_millis_cmd = _millis();
  5266. #endif
  5267. break;
  5268. #if defined(FAN_PIN) && FAN_PIN > -1
  5269. //! ### M106 - Set fan speed
  5270. // -------------------------------------------
  5271. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5272. if (code_seen('S')){
  5273. fanSpeed=constrain(code_value(),0,255);
  5274. }
  5275. else {
  5276. fanSpeed=255;
  5277. }
  5278. break;
  5279. //! ### M107 - Fan off
  5280. // -------------------------------
  5281. case 107:
  5282. fanSpeed = 0;
  5283. break;
  5284. #endif //FAN_PIN
  5285. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5286. //! ### M80 - Turn on the Power Supply
  5287. // -------------------------------
  5288. case 80:
  5289. SET_OUTPUT(PS_ON_PIN); //GND
  5290. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5291. // If you have a switch on suicide pin, this is useful
  5292. // if you want to start another print with suicide feature after
  5293. // a print without suicide...
  5294. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5295. SET_OUTPUT(SUICIDE_PIN);
  5296. WRITE(SUICIDE_PIN, HIGH);
  5297. #endif
  5298. powersupply = true;
  5299. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5300. lcd_update(0);
  5301. break;
  5302. #endif
  5303. //! ### M81 - Turn off Power Supply
  5304. // --------------------------------------
  5305. case 81:
  5306. disable_heater();
  5307. st_synchronize();
  5308. disable_e0();
  5309. disable_e1();
  5310. disable_e2();
  5311. finishAndDisableSteppers();
  5312. fanSpeed = 0;
  5313. _delay(1000); // Wait a little before to switch off
  5314. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5315. st_synchronize();
  5316. suicide();
  5317. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5318. SET_OUTPUT(PS_ON_PIN);
  5319. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5320. #endif
  5321. powersupply = false;
  5322. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5323. lcd_update(0);
  5324. break;
  5325. //! ### M82 - Set E axis to absolute mode
  5326. // ---------------------------------------
  5327. case 82:
  5328. axis_relative_modes[3] = false;
  5329. break;
  5330. //! ### M83 - Set E axis to relative mode
  5331. // ---------------------------------------
  5332. case 83:
  5333. axis_relative_modes[3] = true;
  5334. break;
  5335. //! ### M84, M18 - Disable steppers
  5336. //---------------------------------------
  5337. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5338. //!
  5339. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5340. //!
  5341. case 18: //compatibility
  5342. case 84: // M84
  5343. if(code_seen('S')){
  5344. stepper_inactive_time = code_value() * 1000;
  5345. }
  5346. else
  5347. {
  5348. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5349. if(all_axis)
  5350. {
  5351. st_synchronize();
  5352. disable_e0();
  5353. disable_e1();
  5354. disable_e2();
  5355. finishAndDisableSteppers();
  5356. }
  5357. else
  5358. {
  5359. st_synchronize();
  5360. if (code_seen('X')) disable_x();
  5361. if (code_seen('Y')) disable_y();
  5362. if (code_seen('Z')) disable_z();
  5363. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5364. if (code_seen('E')) {
  5365. disable_e0();
  5366. disable_e1();
  5367. disable_e2();
  5368. }
  5369. #endif
  5370. }
  5371. }
  5372. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5373. print_time_remaining_init();
  5374. snmm_filaments_used = 0;
  5375. break;
  5376. //! ### M85 - Set max inactive time
  5377. // ---------------------------------------
  5378. case 85: // M85
  5379. if(code_seen('S')) {
  5380. max_inactive_time = code_value() * 1000;
  5381. }
  5382. break;
  5383. #ifdef SAFETYTIMER
  5384. //! ### M86 - Set safety timer expiration time
  5385. //!
  5386. //! _Usage:_
  5387. //! M86 S<seconds>
  5388. //!
  5389. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5390. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5391. case 86:
  5392. if (code_seen('S')) {
  5393. safetytimer_inactive_time = code_value() * 1000;
  5394. safetyTimer.start();
  5395. }
  5396. break;
  5397. #endif
  5398. //! ### M92 Set Axis steps-per-unit
  5399. // ---------------------------------------
  5400. //! Same syntax as G92
  5401. case 92:
  5402. for(int8_t i=0; i < NUM_AXIS; i++)
  5403. {
  5404. if(code_seen(axis_codes[i]))
  5405. {
  5406. if(i == 3) { // E
  5407. float value = code_value();
  5408. if(value < 20.0) {
  5409. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5410. cs.max_jerk[E_AXIS] *= factor;
  5411. max_feedrate[i] *= factor;
  5412. axis_steps_per_sqr_second[i] *= factor;
  5413. }
  5414. cs.axis_steps_per_unit[i] = value;
  5415. }
  5416. else {
  5417. cs.axis_steps_per_unit[i] = code_value();
  5418. }
  5419. }
  5420. }
  5421. break;
  5422. //! ### M110 - Set Line number
  5423. // ---------------------------------------
  5424. case 110:
  5425. if (code_seen('N'))
  5426. gcode_LastN = code_value_long();
  5427. break;
  5428. //! ### M113 - Get or set host keep-alive interval
  5429. // ------------------------------------------
  5430. case 113:
  5431. if (code_seen('S')) {
  5432. host_keepalive_interval = (uint8_t)code_value_short();
  5433. // NOMORE(host_keepalive_interval, 60);
  5434. }
  5435. else {
  5436. SERIAL_ECHO_START;
  5437. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5438. SERIAL_PROTOCOLLN("");
  5439. }
  5440. break;
  5441. //! ### M115 - Firmware info
  5442. // --------------------------------------
  5443. //! Print the firmware info and capabilities
  5444. //!
  5445. //! M115 [V] [U<version>]
  5446. //!
  5447. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5448. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5449. //! pause the print for 30s and ask the user to upgrade the firmware.
  5450. case 115: // M115
  5451. if (code_seen('V')) {
  5452. // Report the Prusa version number.
  5453. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5454. } else if (code_seen('U')) {
  5455. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5456. // pause the print for 30s and ask the user to upgrade the firmware.
  5457. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5458. } else {
  5459. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5460. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5461. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5462. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5463. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5464. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5465. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5466. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5467. SERIAL_ECHOPGM(" UUID:");
  5468. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5469. }
  5470. break;
  5471. //! ### M114 - Get current position
  5472. // -------------------------------------
  5473. case 114:
  5474. gcode_M114();
  5475. break;
  5476. //! ### M117 - Set LCD Message
  5477. // --------------------------------------
  5478. /*
  5479. M117 moved up to get the high priority
  5480. case 117: // M117 display message
  5481. starpos = (strchr(strchr_pointer + 5,'*'));
  5482. if(starpos!=NULL)
  5483. *(starpos)='\0';
  5484. lcd_setstatus(strchr_pointer + 5);
  5485. break;*/
  5486. //! ### M120 - Disable endstops
  5487. // ----------------------------------------
  5488. case 120:
  5489. enable_endstops(false) ;
  5490. break;
  5491. //! ### M121 - Enable endstops
  5492. // ----------------------------------------
  5493. case 121:
  5494. enable_endstops(true) ;
  5495. break;
  5496. //! ### M119 - Get endstop states
  5497. // ----------------------------------------
  5498. case 119:
  5499. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5500. SERIAL_PROTOCOLLN("");
  5501. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5502. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5503. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5504. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5505. }else{
  5506. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5507. }
  5508. SERIAL_PROTOCOLLN("");
  5509. #endif
  5510. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5511. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5512. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5513. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5514. }else{
  5515. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5516. }
  5517. SERIAL_PROTOCOLLN("");
  5518. #endif
  5519. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5520. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5521. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5522. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5523. }else{
  5524. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5525. }
  5526. SERIAL_PROTOCOLLN("");
  5527. #endif
  5528. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5529. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5530. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5531. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5532. }else{
  5533. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5534. }
  5535. SERIAL_PROTOCOLLN("");
  5536. #endif
  5537. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5538. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5539. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5540. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5541. }else{
  5542. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5543. }
  5544. SERIAL_PROTOCOLLN("");
  5545. #endif
  5546. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5547. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5548. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5549. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5550. }else{
  5551. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5552. }
  5553. SERIAL_PROTOCOLLN("");
  5554. #endif
  5555. break;
  5556. //TODO: update for all axis, use for loop
  5557. #ifdef BLINKM
  5558. //! ### M150 - Set RGB(W) Color
  5559. // -------------------------------------------
  5560. case 150:
  5561. {
  5562. byte red;
  5563. byte grn;
  5564. byte blu;
  5565. if(code_seen('R')) red = code_value();
  5566. if(code_seen('U')) grn = code_value();
  5567. if(code_seen('B')) blu = code_value();
  5568. SendColors(red,grn,blu);
  5569. }
  5570. break;
  5571. #endif //BLINKM
  5572. //! ### M200 - Set filament diameter
  5573. // ----------------------------------------
  5574. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5575. {
  5576. uint8_t extruder = active_extruder;
  5577. if(code_seen('T')) {
  5578. extruder = code_value();
  5579. if(extruder >= EXTRUDERS) {
  5580. SERIAL_ECHO_START;
  5581. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5582. break;
  5583. }
  5584. }
  5585. if(code_seen('D')) {
  5586. float diameter = (float)code_value();
  5587. if (diameter == 0.0) {
  5588. // setting any extruder filament size disables volumetric on the assumption that
  5589. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5590. // for all extruders
  5591. cs.volumetric_enabled = false;
  5592. } else {
  5593. cs.filament_size[extruder] = (float)code_value();
  5594. // make sure all extruders have some sane value for the filament size
  5595. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5596. #if EXTRUDERS > 1
  5597. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5598. #if EXTRUDERS > 2
  5599. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5600. #endif
  5601. #endif
  5602. cs.volumetric_enabled = true;
  5603. }
  5604. } else {
  5605. //reserved for setting filament diameter via UFID or filament measuring device
  5606. break;
  5607. }
  5608. calculate_extruder_multipliers();
  5609. }
  5610. break;
  5611. //! ### M201 - Set Print Max Acceleration
  5612. // -------------------------------------------
  5613. case 201:
  5614. for (int8_t i = 0; i < NUM_AXIS; i++)
  5615. {
  5616. if (code_seen(axis_codes[i]))
  5617. {
  5618. unsigned long val = code_value();
  5619. #ifdef TMC2130
  5620. unsigned long val_silent = val;
  5621. if ((i == X_AXIS) || (i == Y_AXIS))
  5622. {
  5623. if (val > NORMAL_MAX_ACCEL_XY)
  5624. val = NORMAL_MAX_ACCEL_XY;
  5625. if (val_silent > SILENT_MAX_ACCEL_XY)
  5626. val_silent = SILENT_MAX_ACCEL_XY;
  5627. }
  5628. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5629. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5630. #else //TMC2130
  5631. max_acceleration_units_per_sq_second[i] = val;
  5632. #endif //TMC2130
  5633. }
  5634. }
  5635. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5636. reset_acceleration_rates();
  5637. break;
  5638. #if 0 // Not used for Sprinter/grbl gen6
  5639. case 202: // M202
  5640. for(int8_t i=0; i < NUM_AXIS; i++) {
  5641. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5642. }
  5643. break;
  5644. #endif
  5645. //! ### M203 - Set Max Feedrate
  5646. // ---------------------------------------
  5647. case 203: // M203 max feedrate mm/sec
  5648. for (int8_t i = 0; i < NUM_AXIS; i++)
  5649. {
  5650. if (code_seen(axis_codes[i]))
  5651. {
  5652. float val = code_value();
  5653. #ifdef TMC2130
  5654. float val_silent = val;
  5655. if ((i == X_AXIS) || (i == Y_AXIS))
  5656. {
  5657. if (val > NORMAL_MAX_FEEDRATE_XY)
  5658. val = NORMAL_MAX_FEEDRATE_XY;
  5659. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5660. val_silent = SILENT_MAX_FEEDRATE_XY;
  5661. }
  5662. cs.max_feedrate_normal[i] = val;
  5663. cs.max_feedrate_silent[i] = val_silent;
  5664. #else //TMC2130
  5665. max_feedrate[i] = val;
  5666. #endif //TMC2130
  5667. }
  5668. }
  5669. break;
  5670. //! ### M204 - Acceleration settings
  5671. // ------------------------------------------
  5672. //! Supporting old format:
  5673. //!
  5674. //! M204 S[normal moves] T[filmanent only moves]
  5675. //!
  5676. //! and new format:
  5677. //!
  5678. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5679. case 204:
  5680. {
  5681. if(code_seen('S')) {
  5682. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5683. // and it is also generated by Slic3r to control acceleration per extrusion type
  5684. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5685. cs.acceleration = code_value();
  5686. // Interpret the T value as retract acceleration in the old Marlin format.
  5687. if(code_seen('T'))
  5688. cs.retract_acceleration = code_value();
  5689. } else {
  5690. // New acceleration format, compatible with the upstream Marlin.
  5691. if(code_seen('P'))
  5692. cs.acceleration = code_value();
  5693. if(code_seen('R'))
  5694. cs.retract_acceleration = code_value();
  5695. if(code_seen('T')) {
  5696. // Interpret the T value as the travel acceleration in the new Marlin format.
  5697. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5698. // travel_acceleration = code_value();
  5699. }
  5700. }
  5701. }
  5702. break;
  5703. //! ### M205 - Set advanced settings
  5704. // ---------------------------------------------
  5705. //! Set some advanced settings related to movement.
  5706. //!
  5707. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5708. /*!
  5709. - `S` - Minimum feedrate for print moves (unit/s)
  5710. - `T` - Minimum feedrate for travel moves (units/s)
  5711. - `B` - Minimum segment time (us)
  5712. - `X` - Maximum X jerk (units/s), similarly for other axes
  5713. */
  5714. case 205:
  5715. {
  5716. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5717. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5718. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5719. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5720. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5721. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5722. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5723. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5724. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5725. }
  5726. break;
  5727. //! ### M206 - Set additional homing offsets
  5728. // ----------------------------------------------
  5729. case 206:
  5730. for(int8_t i=0; i < 3; i++)
  5731. {
  5732. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5733. }
  5734. break;
  5735. #ifdef FWRETRACT
  5736. //! ### M207 - Set firmware retraction
  5737. // --------------------------------------------------
  5738. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5739. {
  5740. if(code_seen('S'))
  5741. {
  5742. cs.retract_length = code_value() ;
  5743. }
  5744. if(code_seen('F'))
  5745. {
  5746. cs.retract_feedrate = code_value()/60 ;
  5747. }
  5748. if(code_seen('Z'))
  5749. {
  5750. cs.retract_zlift = code_value() ;
  5751. }
  5752. }break;
  5753. //! ### M208 - Set retract recover length
  5754. // --------------------------------------------
  5755. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5756. {
  5757. if(code_seen('S'))
  5758. {
  5759. cs.retract_recover_length = code_value() ;
  5760. }
  5761. if(code_seen('F'))
  5762. {
  5763. cs.retract_recover_feedrate = code_value()/60 ;
  5764. }
  5765. }break;
  5766. //! ### M209 - Enable/disable automatict retract
  5767. // ---------------------------------------------
  5768. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5769. {
  5770. if(code_seen('S'))
  5771. {
  5772. int t= code_value() ;
  5773. switch(t)
  5774. {
  5775. case 0:
  5776. {
  5777. cs.autoretract_enabled=false;
  5778. retracted[0]=false;
  5779. #if EXTRUDERS > 1
  5780. retracted[1]=false;
  5781. #endif
  5782. #if EXTRUDERS > 2
  5783. retracted[2]=false;
  5784. #endif
  5785. }break;
  5786. case 1:
  5787. {
  5788. cs.autoretract_enabled=true;
  5789. retracted[0]=false;
  5790. #if EXTRUDERS > 1
  5791. retracted[1]=false;
  5792. #endif
  5793. #if EXTRUDERS > 2
  5794. retracted[2]=false;
  5795. #endif
  5796. }break;
  5797. default:
  5798. SERIAL_ECHO_START;
  5799. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5800. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5801. SERIAL_ECHOLNPGM("\"(1)");
  5802. }
  5803. }
  5804. }break;
  5805. #endif // FWRETRACT
  5806. #if EXTRUDERS > 1
  5807. // ### M218 - Set hotend offset
  5808. // ----------------------------------------
  5809. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5810. {
  5811. uint8_t extruder;
  5812. if(setTargetedHotend(218, extruder)){
  5813. break;
  5814. }
  5815. if(code_seen('X'))
  5816. {
  5817. extruder_offset[X_AXIS][extruder] = code_value();
  5818. }
  5819. if(code_seen('Y'))
  5820. {
  5821. extruder_offset[Y_AXIS][extruder] = code_value();
  5822. }
  5823. SERIAL_ECHO_START;
  5824. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5825. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5826. {
  5827. SERIAL_ECHO(" ");
  5828. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5829. SERIAL_ECHO(",");
  5830. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5831. }
  5832. SERIAL_ECHOLN("");
  5833. }break;
  5834. #endif
  5835. //! ### M220 Set feedrate percentage
  5836. // -----------------------------------------------
  5837. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5838. {
  5839. if (code_seen('B')) //backup current speed factor
  5840. {
  5841. saved_feedmultiply_mm = feedmultiply;
  5842. }
  5843. if(code_seen('S'))
  5844. {
  5845. feedmultiply = code_value() ;
  5846. }
  5847. if (code_seen('R')) { //restore previous feedmultiply
  5848. feedmultiply = saved_feedmultiply_mm;
  5849. }
  5850. }
  5851. break;
  5852. //! ### M221 - Set extrude factor override percentage
  5853. // ----------------------------------------------------
  5854. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5855. {
  5856. if(code_seen('S'))
  5857. {
  5858. int tmp_code = code_value();
  5859. if (code_seen('T'))
  5860. {
  5861. uint8_t extruder;
  5862. if(setTargetedHotend(221, extruder)){
  5863. break;
  5864. }
  5865. extruder_multiply[extruder] = tmp_code;
  5866. }
  5867. else
  5868. {
  5869. extrudemultiply = tmp_code ;
  5870. }
  5871. }
  5872. calculate_extruder_multipliers();
  5873. }
  5874. break;
  5875. //! ### M226 - Wait for Pin state
  5876. // ------------------------------------------
  5877. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5878. {
  5879. if(code_seen('P')){
  5880. int pin_number = code_value(); // pin number
  5881. int pin_state = -1; // required pin state - default is inverted
  5882. if(code_seen('S')) pin_state = code_value(); // required pin state
  5883. if(pin_state >= -1 && pin_state <= 1){
  5884. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5885. {
  5886. if (sensitive_pins[i] == pin_number)
  5887. {
  5888. pin_number = -1;
  5889. break;
  5890. }
  5891. }
  5892. if (pin_number > -1)
  5893. {
  5894. int target = LOW;
  5895. st_synchronize();
  5896. pinMode(pin_number, INPUT);
  5897. switch(pin_state){
  5898. case 1:
  5899. target = HIGH;
  5900. break;
  5901. case 0:
  5902. target = LOW;
  5903. break;
  5904. case -1:
  5905. target = !digitalRead(pin_number);
  5906. break;
  5907. }
  5908. while(digitalRead(pin_number) != target){
  5909. manage_heater();
  5910. manage_inactivity();
  5911. lcd_update(0);
  5912. }
  5913. }
  5914. }
  5915. }
  5916. }
  5917. break;
  5918. #if NUM_SERVOS > 0
  5919. //! ### M280 - Set/Get servo position
  5920. // --------------------------------------------
  5921. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5922. {
  5923. int servo_index = -1;
  5924. int servo_position = 0;
  5925. if (code_seen('P'))
  5926. servo_index = code_value();
  5927. if (code_seen('S')) {
  5928. servo_position = code_value();
  5929. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5930. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5931. servos[servo_index].attach(0);
  5932. #endif
  5933. servos[servo_index].write(servo_position);
  5934. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5935. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5936. servos[servo_index].detach();
  5937. #endif
  5938. }
  5939. else {
  5940. SERIAL_ECHO_START;
  5941. SERIAL_ECHO("Servo ");
  5942. SERIAL_ECHO(servo_index);
  5943. SERIAL_ECHOLN(" out of range");
  5944. }
  5945. }
  5946. else if (servo_index >= 0) {
  5947. SERIAL_PROTOCOL(MSG_OK);
  5948. SERIAL_PROTOCOL(" Servo ");
  5949. SERIAL_PROTOCOL(servo_index);
  5950. SERIAL_PROTOCOL(": ");
  5951. SERIAL_PROTOCOL(servos[servo_index].read());
  5952. SERIAL_PROTOCOLLN("");
  5953. }
  5954. }
  5955. break;
  5956. #endif // NUM_SERVOS > 0
  5957. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5958. //! ### M300 - Play tone
  5959. // -----------------------
  5960. case 300: // M300
  5961. {
  5962. int beepS = code_seen('S') ? code_value() : 110;
  5963. int beepP = code_seen('P') ? code_value() : 1000;
  5964. if (beepS > 0)
  5965. {
  5966. #if BEEPER > 0
  5967. Sound_MakeCustom(beepP,beepS,false);
  5968. #endif
  5969. }
  5970. else
  5971. {
  5972. _delay(beepP);
  5973. }
  5974. }
  5975. break;
  5976. #endif // M300
  5977. #ifdef PIDTEMP
  5978. //! ### M301 - Set hotend PID
  5979. // ---------------------------------------
  5980. case 301:
  5981. {
  5982. if(code_seen('P')) cs.Kp = code_value();
  5983. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5984. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5985. #ifdef PID_ADD_EXTRUSION_RATE
  5986. if(code_seen('C')) Kc = code_value();
  5987. #endif
  5988. updatePID();
  5989. SERIAL_PROTOCOLRPGM(MSG_OK);
  5990. SERIAL_PROTOCOL(" p:");
  5991. SERIAL_PROTOCOL(cs.Kp);
  5992. SERIAL_PROTOCOL(" i:");
  5993. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5994. SERIAL_PROTOCOL(" d:");
  5995. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5996. #ifdef PID_ADD_EXTRUSION_RATE
  5997. SERIAL_PROTOCOL(" c:");
  5998. //Kc does not have scaling applied above, or in resetting defaults
  5999. SERIAL_PROTOCOL(Kc);
  6000. #endif
  6001. SERIAL_PROTOCOLLN("");
  6002. }
  6003. break;
  6004. #endif //PIDTEMP
  6005. #ifdef PIDTEMPBED
  6006. //! ### M304 - Set bed PID
  6007. // --------------------------------------
  6008. case 304:
  6009. {
  6010. if(code_seen('P')) cs.bedKp = code_value();
  6011. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6012. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6013. updatePID();
  6014. SERIAL_PROTOCOLRPGM(MSG_OK);
  6015. SERIAL_PROTOCOL(" p:");
  6016. SERIAL_PROTOCOL(cs.bedKp);
  6017. SERIAL_PROTOCOL(" i:");
  6018. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6019. SERIAL_PROTOCOL(" d:");
  6020. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6021. SERIAL_PROTOCOLLN("");
  6022. }
  6023. break;
  6024. #endif //PIDTEMP
  6025. //! ### M240 - Trigger camera
  6026. // --------------------------------------------
  6027. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6028. {
  6029. #ifdef CHDK
  6030. SET_OUTPUT(CHDK);
  6031. WRITE(CHDK, HIGH);
  6032. chdkHigh = _millis();
  6033. chdkActive = true;
  6034. #else
  6035. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6036. const uint8_t NUM_PULSES=16;
  6037. const float PULSE_LENGTH=0.01524;
  6038. for(int i=0; i < NUM_PULSES; i++) {
  6039. WRITE(PHOTOGRAPH_PIN, HIGH);
  6040. _delay_ms(PULSE_LENGTH);
  6041. WRITE(PHOTOGRAPH_PIN, LOW);
  6042. _delay_ms(PULSE_LENGTH);
  6043. }
  6044. _delay(7.33);
  6045. for(int i=0; i < NUM_PULSES; i++) {
  6046. WRITE(PHOTOGRAPH_PIN, HIGH);
  6047. _delay_ms(PULSE_LENGTH);
  6048. WRITE(PHOTOGRAPH_PIN, LOW);
  6049. _delay_ms(PULSE_LENGTH);
  6050. }
  6051. #endif
  6052. #endif //chdk end if
  6053. }
  6054. break;
  6055. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6056. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6057. // -------------------------------------------------------------------
  6058. case 302:
  6059. {
  6060. float temp = .0;
  6061. if (code_seen('S')) temp=code_value();
  6062. set_extrude_min_temp(temp);
  6063. }
  6064. break;
  6065. #endif
  6066. //! ### M303 - PID autotune
  6067. // -------------------------------------
  6068. case 303:
  6069. {
  6070. float temp = 150.0;
  6071. int e=0;
  6072. int c=5;
  6073. if (code_seen('E')) e=code_value();
  6074. if (e<0)
  6075. temp=70;
  6076. if (code_seen('S')) temp=code_value();
  6077. if (code_seen('C')) c=code_value();
  6078. PID_autotune(temp, e, c);
  6079. }
  6080. break;
  6081. //! ### M400 - Wait for all moves to finish
  6082. // -----------------------------------------
  6083. case 400:
  6084. {
  6085. st_synchronize();
  6086. }
  6087. break;
  6088. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6089. // ----------------------------------------------
  6090. case 403:
  6091. {
  6092. // currently three different materials are needed (default, flex and PVA)
  6093. // add storing this information for different load/unload profiles etc. in the future
  6094. // firmware does not wait for "ok" from mmu
  6095. if (mmu_enabled)
  6096. {
  6097. uint8_t extruder = 255;
  6098. uint8_t filament = FILAMENT_UNDEFINED;
  6099. if(code_seen('E')) extruder = code_value();
  6100. if(code_seen('F')) filament = code_value();
  6101. mmu_set_filament_type(extruder, filament);
  6102. }
  6103. }
  6104. break;
  6105. //! ### M500 - Store settings in EEPROM
  6106. // -----------------------------------------
  6107. case 500:
  6108. {
  6109. Config_StoreSettings();
  6110. }
  6111. break;
  6112. //! ### M501 - Read settings from EEPROM
  6113. // ----------------------------------------
  6114. case 501:
  6115. {
  6116. Config_RetrieveSettings();
  6117. }
  6118. break;
  6119. //! ### M502 - Revert all settings to factory default
  6120. // -------------------------------------------------
  6121. case 502:
  6122. {
  6123. Config_ResetDefault();
  6124. }
  6125. break;
  6126. //! ### M503 - Repport all settings currently in memory
  6127. // -------------------------------------------------
  6128. case 503:
  6129. {
  6130. Config_PrintSettings();
  6131. }
  6132. break;
  6133. //! ### M509 - Force language selection
  6134. // ------------------------------------------------
  6135. case 509:
  6136. {
  6137. lang_reset();
  6138. SERIAL_ECHO_START;
  6139. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6140. }
  6141. break;
  6142. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6143. //! ### M540 - Abort print on endstop hit (enable/disable)
  6144. // -----------------------------------------------------
  6145. case 540:
  6146. {
  6147. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6148. }
  6149. break;
  6150. #endif
  6151. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6152. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6153. {
  6154. float value;
  6155. if (code_seen('Z'))
  6156. {
  6157. value = code_value();
  6158. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6159. {
  6160. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6161. SERIAL_ECHO_START;
  6162. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6163. SERIAL_PROTOCOLLN("");
  6164. }
  6165. else
  6166. {
  6167. SERIAL_ECHO_START;
  6168. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6169. SERIAL_ECHORPGM(MSG_Z_MIN);
  6170. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6171. SERIAL_ECHORPGM(MSG_Z_MAX);
  6172. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6173. SERIAL_PROTOCOLLN("");
  6174. }
  6175. }
  6176. else
  6177. {
  6178. SERIAL_ECHO_START;
  6179. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6180. SERIAL_ECHO(-cs.zprobe_zoffset);
  6181. SERIAL_PROTOCOLLN("");
  6182. }
  6183. break;
  6184. }
  6185. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6186. #ifdef FILAMENTCHANGEENABLE
  6187. //! ### M600 - Initiate Filament change procedure
  6188. // --------------------------------------
  6189. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6190. {
  6191. st_synchronize();
  6192. float x_position = current_position[X_AXIS];
  6193. float y_position = current_position[Y_AXIS];
  6194. float z_shift = 0; // is it necessary to be a float?
  6195. float e_shift_init = 0;
  6196. float e_shift_late = 0;
  6197. bool automatic = false;
  6198. //Retract extruder
  6199. if(code_seen('E'))
  6200. {
  6201. e_shift_init = code_value();
  6202. }
  6203. else
  6204. {
  6205. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6206. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6207. #endif
  6208. }
  6209. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6210. if (code_seen('L'))
  6211. {
  6212. e_shift_late = code_value();
  6213. }
  6214. else
  6215. {
  6216. #ifdef FILAMENTCHANGE_FINALRETRACT
  6217. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6218. #endif
  6219. }
  6220. //Lift Z
  6221. if(code_seen('Z'))
  6222. {
  6223. z_shift = code_value();
  6224. }
  6225. else
  6226. {
  6227. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6228. }
  6229. //Move XY to side
  6230. if(code_seen('X'))
  6231. {
  6232. x_position = code_value();
  6233. }
  6234. else
  6235. {
  6236. #ifdef FILAMENTCHANGE_XPOS
  6237. x_position = FILAMENTCHANGE_XPOS;
  6238. #endif
  6239. }
  6240. if(code_seen('Y'))
  6241. {
  6242. y_position = code_value();
  6243. }
  6244. else
  6245. {
  6246. #ifdef FILAMENTCHANGE_YPOS
  6247. y_position = FILAMENTCHANGE_YPOS ;
  6248. #endif
  6249. }
  6250. if (mmu_enabled && code_seen("AUTO"))
  6251. automatic = true;
  6252. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6253. }
  6254. break;
  6255. #endif //FILAMENTCHANGEENABLE
  6256. //! ### M601 - Pause print
  6257. // -------------------------------
  6258. case 601:
  6259. {
  6260. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6261. lcd_pause_print();
  6262. }
  6263. break;
  6264. //! ### M602 - Resume print
  6265. // -------------------------------
  6266. case 602: {
  6267. lcd_resume_print();
  6268. }
  6269. break;
  6270. //! ### M603 - Stop print
  6271. // -------------------------------
  6272. case 603: {
  6273. lcd_print_stop();
  6274. }
  6275. #ifdef PINDA_THERMISTOR
  6276. //! ### M860 - Wait for extruder temperature (PINDA)
  6277. // --------------------------------------------------------------
  6278. /*!
  6279. Wait for PINDA thermistor to reach target temperature
  6280. M860 [S<target_temperature>]
  6281. */
  6282. case 860:
  6283. {
  6284. int set_target_pinda = 0;
  6285. if (code_seen('S')) {
  6286. set_target_pinda = code_value();
  6287. }
  6288. else {
  6289. break;
  6290. }
  6291. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6292. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6293. SERIAL_PROTOCOL(set_target_pinda);
  6294. SERIAL_PROTOCOLLN("");
  6295. codenum = _millis();
  6296. cancel_heatup = false;
  6297. bool is_pinda_cooling = false;
  6298. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6299. is_pinda_cooling = true;
  6300. }
  6301. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6302. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6303. {
  6304. SERIAL_PROTOCOLPGM("P:");
  6305. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6306. SERIAL_PROTOCOLPGM("/");
  6307. SERIAL_PROTOCOL(set_target_pinda);
  6308. SERIAL_PROTOCOLLN("");
  6309. codenum = _millis();
  6310. }
  6311. manage_heater();
  6312. manage_inactivity();
  6313. lcd_update(0);
  6314. }
  6315. LCD_MESSAGERPGM(MSG_OK);
  6316. break;
  6317. }
  6318. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6319. // -----------------------------------------------------------
  6320. /*!
  6321. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6322. - `?` - Print current EEPROM offset values
  6323. - `!` - Set factory default values
  6324. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6325. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6326. */
  6327. case 861:
  6328. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6329. uint8_t cal_status = calibration_status_pinda();
  6330. int16_t usteps = 0;
  6331. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6332. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6333. for (uint8_t i = 0; i < 6; i++)
  6334. {
  6335. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6336. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6337. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6338. SERIAL_PROTOCOLPGM(", ");
  6339. SERIAL_PROTOCOL(35 + (i * 5));
  6340. SERIAL_PROTOCOLPGM(", ");
  6341. SERIAL_PROTOCOL(usteps);
  6342. SERIAL_PROTOCOLPGM(", ");
  6343. SERIAL_PROTOCOL(mm * 1000);
  6344. SERIAL_PROTOCOLLN("");
  6345. }
  6346. }
  6347. else if (code_seen('!')) { // ! - Set factory default values
  6348. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6349. int16_t z_shift = 8; //40C - 20um - 8usteps
  6350. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6351. z_shift = 24; //45C - 60um - 24usteps
  6352. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6353. z_shift = 48; //50C - 120um - 48usteps
  6354. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6355. z_shift = 80; //55C - 200um - 80usteps
  6356. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6357. z_shift = 120; //60C - 300um - 120usteps
  6358. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6359. SERIAL_PROTOCOLLN("factory restored");
  6360. }
  6361. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6362. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6363. int16_t z_shift = 0;
  6364. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6365. SERIAL_PROTOCOLLN("zerorized");
  6366. }
  6367. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6368. int16_t usteps = code_value();
  6369. if (code_seen('I')) {
  6370. uint8_t index = code_value();
  6371. if (index < 5) {
  6372. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6373. SERIAL_PROTOCOLLN("OK");
  6374. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6375. for (uint8_t i = 0; i < 6; i++)
  6376. {
  6377. usteps = 0;
  6378. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6379. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6380. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6381. SERIAL_PROTOCOLPGM(", ");
  6382. SERIAL_PROTOCOL(35 + (i * 5));
  6383. SERIAL_PROTOCOLPGM(", ");
  6384. SERIAL_PROTOCOL(usteps);
  6385. SERIAL_PROTOCOLPGM(", ");
  6386. SERIAL_PROTOCOL(mm * 1000);
  6387. SERIAL_PROTOCOLLN("");
  6388. }
  6389. }
  6390. }
  6391. }
  6392. else {
  6393. SERIAL_PROTOCOLPGM("no valid command");
  6394. }
  6395. break;
  6396. #endif //PINDA_THERMISTOR
  6397. //! ### M862 - Print checking
  6398. // ----------------------------------------------
  6399. /*!
  6400. Checks the parameters of the printer and gcode and performs compatibility check
  6401. - M862.1 { P<nozzle_diameter> | Q }
  6402. - M862.2 { P<model_code> | Q }
  6403. - M862.3 { P"<model_name>" | Q }
  6404. - M862.4 { P<fw_version> | Q }
  6405. - M862.5 { P<gcode_level> | Q }
  6406. When run with P<> argument, the check is performed against the input value.
  6407. When run with Q argument, the current value is shown.
  6408. M862.3 accepts text identifiers of printer types too.
  6409. The syntax of M862.3 is (note the quotes around the type):
  6410. M862.3 P "MK3S"
  6411. Accepted printer type identifiers and their numeric counterparts:
  6412. - MK1 (100)
  6413. - MK2 (200)
  6414. - MK2MM (201)
  6415. - MK2S (202)
  6416. - MK2SMM (203)
  6417. - MK2.5 (250)
  6418. - MK2.5MMU2 (20250)
  6419. - MK2.5S (252)
  6420. - MK2.5SMMU2S (20252)
  6421. - MK3 (300)
  6422. - MK3MMU2 (20300)
  6423. - MK3S (302)
  6424. - MK3SMMU2S (20302)
  6425. */
  6426. case 862: // M862: print checking
  6427. float nDummy;
  6428. uint8_t nCommand;
  6429. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6430. switch((ClPrintChecking)nCommand)
  6431. {
  6432. case ClPrintChecking::_Nozzle: // ~ .1
  6433. uint16_t nDiameter;
  6434. if(code_seen('P'))
  6435. {
  6436. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6437. nozzle_diameter_check(nDiameter);
  6438. }
  6439. /*
  6440. else if(code_seen('S')&&farm_mode)
  6441. {
  6442. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6443. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6444. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6445. }
  6446. */
  6447. else if(code_seen('Q'))
  6448. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6449. break;
  6450. case ClPrintChecking::_Model: // ~ .2
  6451. if(code_seen('P'))
  6452. {
  6453. uint16_t nPrinterModel;
  6454. nPrinterModel=(uint16_t)code_value_long();
  6455. printer_model_check(nPrinterModel);
  6456. }
  6457. else if(code_seen('Q'))
  6458. SERIAL_PROTOCOLLN(nPrinterType);
  6459. break;
  6460. case ClPrintChecking::_Smodel: // ~ .3
  6461. if(code_seen('P'))
  6462. printer_smodel_check(strchr_pointer);
  6463. else if(code_seen('Q'))
  6464. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6465. break;
  6466. case ClPrintChecking::_Version: // ~ .4
  6467. if(code_seen('P'))
  6468. fw_version_check(++strchr_pointer);
  6469. else if(code_seen('Q'))
  6470. SERIAL_PROTOCOLLN(FW_VERSION);
  6471. break;
  6472. case ClPrintChecking::_Gcode: // ~ .5
  6473. if(code_seen('P'))
  6474. {
  6475. uint16_t nGcodeLevel;
  6476. nGcodeLevel=(uint16_t)code_value_long();
  6477. gcode_level_check(nGcodeLevel);
  6478. }
  6479. else if(code_seen('Q'))
  6480. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6481. break;
  6482. }
  6483. break;
  6484. #ifdef LIN_ADVANCE
  6485. //! ### M900 - Set Linear advance options
  6486. // ----------------------------------------------
  6487. case 900:
  6488. gcode_M900();
  6489. break;
  6490. #endif
  6491. //! ### M907 - Set digital trimpot motor current using axis codes
  6492. // ---------------------------------------------------------------
  6493. case 907:
  6494. {
  6495. #ifdef TMC2130
  6496. for (int i = 0; i < NUM_AXIS; i++)
  6497. if(code_seen(axis_codes[i]))
  6498. {
  6499. long cur_mA = code_value_long();
  6500. uint8_t val = tmc2130_cur2val(cur_mA);
  6501. tmc2130_set_current_h(i, val);
  6502. tmc2130_set_current_r(i, val);
  6503. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6504. }
  6505. #else //TMC2130
  6506. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6507. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6508. if(code_seen('B')) st_current_set(4,code_value());
  6509. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6510. #endif
  6511. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6512. if(code_seen('X')) st_current_set(0, code_value());
  6513. #endif
  6514. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6515. if(code_seen('Z')) st_current_set(1, code_value());
  6516. #endif
  6517. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6518. if(code_seen('E')) st_current_set(2, code_value());
  6519. #endif
  6520. #endif //TMC2130
  6521. }
  6522. break;
  6523. //! ### M908 - Control digital trimpot directly
  6524. // ---------------------------------------------------------
  6525. case 908:
  6526. {
  6527. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6528. uint8_t channel,current;
  6529. if(code_seen('P')) channel=code_value();
  6530. if(code_seen('S')) current=code_value();
  6531. digitalPotWrite(channel, current);
  6532. #endif
  6533. }
  6534. break;
  6535. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6536. //! ### M910 - TMC2130 init
  6537. // -----------------------------------------------
  6538. case 910:
  6539. {
  6540. tmc2130_init();
  6541. }
  6542. break;
  6543. //! ### M911 - Set TMC2130 holding currents
  6544. // -------------------------------------------------
  6545. case 911:
  6546. {
  6547. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6548. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6549. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6550. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6551. }
  6552. break;
  6553. //! ### M912 - Set TMC2130 running currents
  6554. // -----------------------------------------------
  6555. case 912:
  6556. {
  6557. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6558. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6559. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6560. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6561. }
  6562. break;
  6563. //! ### M913 - Print TMC2130 currents
  6564. // -----------------------------
  6565. case 913:
  6566. {
  6567. tmc2130_print_currents();
  6568. }
  6569. break;
  6570. //! ### M914 - Set TMC2130 normal mode
  6571. // ------------------------------
  6572. case 914:
  6573. {
  6574. tmc2130_mode = TMC2130_MODE_NORMAL;
  6575. update_mode_profile();
  6576. tmc2130_init();
  6577. }
  6578. break;
  6579. //! ### M95 - Set TMC2130 silent mode
  6580. // ------------------------------
  6581. case 915:
  6582. {
  6583. tmc2130_mode = TMC2130_MODE_SILENT;
  6584. update_mode_profile();
  6585. tmc2130_init();
  6586. }
  6587. break;
  6588. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6589. // -------------------------------------------------------
  6590. case 916:
  6591. {
  6592. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6593. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6594. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6595. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6596. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6597. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6598. }
  6599. break;
  6600. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6601. // --------------------------------------------------------------
  6602. case 917:
  6603. {
  6604. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6605. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6606. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6607. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6608. }
  6609. break;
  6610. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6611. // -------------------------------------------------------------
  6612. case 918:
  6613. {
  6614. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6615. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6616. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6617. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6618. }
  6619. break;
  6620. #endif //TMC2130_SERVICE_CODES_M910_M918
  6621. //! ### M350 - Set microstepping mode
  6622. // ---------------------------------------------------
  6623. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6624. case 350:
  6625. {
  6626. #ifdef TMC2130
  6627. if(code_seen('E'))
  6628. {
  6629. uint16_t res_new = code_value();
  6630. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6631. {
  6632. st_synchronize();
  6633. uint8_t axis = E_AXIS;
  6634. uint16_t res = tmc2130_get_res(axis);
  6635. tmc2130_set_res(axis, res_new);
  6636. cs.axis_ustep_resolution[axis] = res_new;
  6637. if (res_new > res)
  6638. {
  6639. uint16_t fac = (res_new / res);
  6640. cs.axis_steps_per_unit[axis] *= fac;
  6641. position[E_AXIS] *= fac;
  6642. }
  6643. else
  6644. {
  6645. uint16_t fac = (res / res_new);
  6646. cs.axis_steps_per_unit[axis] /= fac;
  6647. position[E_AXIS] /= fac;
  6648. }
  6649. }
  6650. }
  6651. #else //TMC2130
  6652. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6653. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6654. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6655. if(code_seen('B')) microstep_mode(4,code_value());
  6656. microstep_readings();
  6657. #endif
  6658. #endif //TMC2130
  6659. }
  6660. break;
  6661. //! ### M351 - Toggle Microstep Pins
  6662. // -----------------------------------
  6663. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6664. //!
  6665. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6666. case 351:
  6667. {
  6668. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6669. if(code_seen('S')) switch((int)code_value())
  6670. {
  6671. case 1:
  6672. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6673. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6674. break;
  6675. case 2:
  6676. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6677. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6678. break;
  6679. }
  6680. microstep_readings();
  6681. #endif
  6682. }
  6683. break;
  6684. //! ### M701 - Load filament
  6685. // -------------------------
  6686. case 701:
  6687. {
  6688. if (mmu_enabled && code_seen('E'))
  6689. tmp_extruder = code_value();
  6690. gcode_M701();
  6691. }
  6692. break;
  6693. //! ### M702 - Unload filament
  6694. // ------------------------
  6695. /*!
  6696. M702 [U C]
  6697. - `U` Unload all filaments used in current print
  6698. - `C` Unload just current filament
  6699. - without any parameters unload all filaments
  6700. */
  6701. case 702:
  6702. {
  6703. #ifdef SNMM
  6704. if (code_seen('U'))
  6705. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6706. else if (code_seen('C'))
  6707. extr_unload(); //! if "C" unload just current filament
  6708. else
  6709. extr_unload_all(); //! otherwise unload all filaments
  6710. #else
  6711. if (code_seen('C')) {
  6712. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6713. }
  6714. else {
  6715. if(mmu_enabled) extr_unload(); //! unload current filament
  6716. else unload_filament();
  6717. }
  6718. #endif //SNMM
  6719. }
  6720. break;
  6721. //! ### M999 - Restart after being stopped
  6722. // ------------------------------------
  6723. case 999:
  6724. Stopped = false;
  6725. lcd_reset_alert_level();
  6726. gcode_LastN = Stopped_gcode_LastN;
  6727. FlushSerialRequestResend();
  6728. break;
  6729. default:
  6730. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6731. }
  6732. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6733. mcode_in_progress = 0;
  6734. }
  6735. }
  6736. // end if(code_seen('M')) (end of M codes)
  6737. //! -----------------------------------------------------------------------------------------
  6738. //! T Codes
  6739. //!
  6740. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6741. //! select filament in case of MMU_V2
  6742. //! if extruder is "?", open menu to let the user select extruder/filament
  6743. //!
  6744. //! For MMU_V2:
  6745. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6746. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6747. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6748. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6749. else if(code_seen('T'))
  6750. {
  6751. int index;
  6752. bool load_to_nozzle = false;
  6753. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6754. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6755. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6756. SERIAL_ECHOLNPGM("Invalid T code.");
  6757. }
  6758. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6759. if (mmu_enabled)
  6760. {
  6761. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6762. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6763. {
  6764. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6765. }
  6766. else
  6767. {
  6768. st_synchronize();
  6769. mmu_command(MmuCmd::T0 + tmp_extruder);
  6770. manage_response(true, true, MMU_TCODE_MOVE);
  6771. }
  6772. }
  6773. }
  6774. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6775. if (mmu_enabled)
  6776. {
  6777. st_synchronize();
  6778. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6779. mmu_extruder = tmp_extruder; //filament change is finished
  6780. mmu_load_to_nozzle();
  6781. }
  6782. }
  6783. else {
  6784. if (*(strchr_pointer + index) == '?')
  6785. {
  6786. if(mmu_enabled)
  6787. {
  6788. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6789. load_to_nozzle = true;
  6790. } else
  6791. {
  6792. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6793. }
  6794. }
  6795. else {
  6796. tmp_extruder = code_value();
  6797. if (mmu_enabled && lcd_autoDepleteEnabled())
  6798. {
  6799. tmp_extruder = ad_getAlternative(tmp_extruder);
  6800. }
  6801. }
  6802. st_synchronize();
  6803. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6804. if (mmu_enabled)
  6805. {
  6806. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6807. {
  6808. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6809. }
  6810. else
  6811. {
  6812. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6813. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6814. {
  6815. mmu_command(MmuCmd::K0 + tmp_extruder);
  6816. manage_response(true, true, MMU_UNLOAD_MOVE);
  6817. }
  6818. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6819. mmu_command(MmuCmd::T0 + tmp_extruder);
  6820. manage_response(true, true, MMU_TCODE_MOVE);
  6821. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6822. mmu_extruder = tmp_extruder; //filament change is finished
  6823. if (load_to_nozzle)// for single material usage with mmu
  6824. {
  6825. mmu_load_to_nozzle();
  6826. }
  6827. }
  6828. }
  6829. else
  6830. {
  6831. #ifdef SNMM
  6832. #ifdef LIN_ADVANCE
  6833. if (mmu_extruder != tmp_extruder)
  6834. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6835. #endif
  6836. mmu_extruder = tmp_extruder;
  6837. _delay(100);
  6838. disable_e0();
  6839. disable_e1();
  6840. disable_e2();
  6841. pinMode(E_MUX0_PIN, OUTPUT);
  6842. pinMode(E_MUX1_PIN, OUTPUT);
  6843. _delay(100);
  6844. SERIAL_ECHO_START;
  6845. SERIAL_ECHO("T:");
  6846. SERIAL_ECHOLN((int)tmp_extruder);
  6847. switch (tmp_extruder) {
  6848. case 1:
  6849. WRITE(E_MUX0_PIN, HIGH);
  6850. WRITE(E_MUX1_PIN, LOW);
  6851. break;
  6852. case 2:
  6853. WRITE(E_MUX0_PIN, LOW);
  6854. WRITE(E_MUX1_PIN, HIGH);
  6855. break;
  6856. case 3:
  6857. WRITE(E_MUX0_PIN, HIGH);
  6858. WRITE(E_MUX1_PIN, HIGH);
  6859. break;
  6860. default:
  6861. WRITE(E_MUX0_PIN, LOW);
  6862. WRITE(E_MUX1_PIN, LOW);
  6863. break;
  6864. }
  6865. _delay(100);
  6866. #else //SNMM
  6867. if (tmp_extruder >= EXTRUDERS) {
  6868. SERIAL_ECHO_START;
  6869. SERIAL_ECHOPGM("T");
  6870. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6871. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6872. }
  6873. else {
  6874. #if EXTRUDERS > 1
  6875. boolean make_move = false;
  6876. #endif
  6877. if (code_seen('F')) {
  6878. #if EXTRUDERS > 1
  6879. make_move = true;
  6880. #endif
  6881. next_feedrate = code_value();
  6882. if (next_feedrate > 0.0) {
  6883. feedrate = next_feedrate;
  6884. }
  6885. }
  6886. #if EXTRUDERS > 1
  6887. if (tmp_extruder != active_extruder) {
  6888. // Save current position to return to after applying extruder offset
  6889. memcpy(destination, current_position, sizeof(destination));
  6890. // Offset extruder (only by XY)
  6891. int i;
  6892. for (i = 0; i < 2; i++) {
  6893. current_position[i] = current_position[i] -
  6894. extruder_offset[i][active_extruder] +
  6895. extruder_offset[i][tmp_extruder];
  6896. }
  6897. // Set the new active extruder and position
  6898. active_extruder = tmp_extruder;
  6899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6900. // Move to the old position if 'F' was in the parameters
  6901. if (make_move && Stopped == false) {
  6902. prepare_move();
  6903. }
  6904. }
  6905. #endif
  6906. SERIAL_ECHO_START;
  6907. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6908. SERIAL_PROTOCOLLN((int)active_extruder);
  6909. }
  6910. #endif //SNMM
  6911. }
  6912. }
  6913. } // end if(code_seen('T')) (end of T codes)
  6914. //! ----------------------------------------------------------------------------------------------
  6915. else if (code_seen('D')) // D codes (debug)
  6916. {
  6917. switch((int)code_value())
  6918. {
  6919. //! ### D-1 - Endless loop
  6920. // -------------------
  6921. case -1:
  6922. dcode__1(); break;
  6923. #ifdef DEBUG_DCODES
  6924. //! ### D0 - Reset
  6925. // --------------
  6926. case 0:
  6927. dcode_0(); break;
  6928. //! ### D1 - Clear EEPROM
  6929. // ------------------
  6930. case 1:
  6931. dcode_1(); break;
  6932. //! ### D2 - Read/Write RAM
  6933. // --------------------
  6934. case 2:
  6935. dcode_2(); break;
  6936. #endif //DEBUG_DCODES
  6937. #ifdef DEBUG_DCODE3
  6938. //! ### D3 - Read/Write EEPROM
  6939. // -----------------------
  6940. case 3:
  6941. dcode_3(); break;
  6942. #endif //DEBUG_DCODE3
  6943. #ifdef DEBUG_DCODES
  6944. //! ### D4 - Read/Write PIN
  6945. // ---------------------
  6946. case 4:
  6947. dcode_4(); break;
  6948. #endif //DEBUG_DCODES
  6949. #ifdef DEBUG_DCODE5
  6950. //! ### D5 - Read/Write FLASH
  6951. // ------------------------
  6952. case 5:
  6953. dcode_5(); break;
  6954. break;
  6955. #endif //DEBUG_DCODE5
  6956. #ifdef DEBUG_DCODES
  6957. //! ### D6 - Read/Write external FLASH
  6958. // ---------------------------------------
  6959. case 6:
  6960. dcode_6(); break;
  6961. //! ### D7 - Read/Write Bootloader
  6962. // -------------------------------
  6963. case 7:
  6964. dcode_7(); break;
  6965. //! ### D8 - Read/Write PINDA
  6966. // ---------------------------
  6967. case 8:
  6968. dcode_8(); break;
  6969. // ### D9 - Read/Write ADC
  6970. // ------------------------
  6971. case 9:
  6972. dcode_9(); break;
  6973. //! ### D10 - XYZ calibration = OK
  6974. // ------------------------------
  6975. case 10:
  6976. dcode_10(); break;
  6977. #endif //DEBUG_DCODES
  6978. #ifdef HEATBED_ANALYSIS
  6979. //! ### D80 - Bed check
  6980. // ---------------------
  6981. /*!
  6982. - `E` - dimension x
  6983. - `F` - dimention y
  6984. - `G` - points_x
  6985. - `H` - points_y
  6986. - `I` - offset_x
  6987. - `J` - offset_y
  6988. */
  6989. case 80:
  6990. {
  6991. float dimension_x = 40;
  6992. float dimension_y = 40;
  6993. int points_x = 40;
  6994. int points_y = 40;
  6995. float offset_x = 74;
  6996. float offset_y = 33;
  6997. if (code_seen('E')) dimension_x = code_value();
  6998. if (code_seen('F')) dimension_y = code_value();
  6999. if (code_seen('G')) {points_x = code_value(); }
  7000. if (code_seen('H')) {points_y = code_value(); }
  7001. if (code_seen('I')) {offset_x = code_value(); }
  7002. if (code_seen('J')) {offset_y = code_value(); }
  7003. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7004. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7005. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7006. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7007. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7008. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7009. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7010. }break;
  7011. //! ### D81 - Bed analysis
  7012. // -----------------------------
  7013. /*!
  7014. - `E` - dimension x
  7015. - `F` - dimention y
  7016. - `G` - points_x
  7017. - `H` - points_y
  7018. - `I` - offset_x
  7019. - `J` - offset_y
  7020. */
  7021. case 81:
  7022. {
  7023. float dimension_x = 40;
  7024. float dimension_y = 40;
  7025. int points_x = 40;
  7026. int points_y = 40;
  7027. float offset_x = 74;
  7028. float offset_y = 33;
  7029. if (code_seen('E')) dimension_x = code_value();
  7030. if (code_seen('F')) dimension_y = code_value();
  7031. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7032. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7033. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7034. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7035. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7036. } break;
  7037. #endif //HEATBED_ANALYSIS
  7038. #ifdef DEBUG_DCODES
  7039. //! ### D106 print measured fan speed for different pwm values
  7040. // --------------------------------------------------------------
  7041. case 106:
  7042. {
  7043. for (int i = 255; i > 0; i = i - 5) {
  7044. fanSpeed = i;
  7045. //delay_keep_alive(2000);
  7046. for (int j = 0; j < 100; j++) {
  7047. delay_keep_alive(100);
  7048. }
  7049. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7050. }
  7051. }break;
  7052. #ifdef TMC2130
  7053. //! ### D2130 - TMC2130 Trinamic stepper controller
  7054. // ---------------------------
  7055. /*!
  7056. D2130<axis><command>[subcommand][value]
  7057. - <command>:
  7058. - '0' current off
  7059. - '1' current on
  7060. - '+' single step
  7061. - * value sereval steps
  7062. - '-' dtto oposite direction
  7063. - '?' read register
  7064. - * "mres"
  7065. - * "step"
  7066. - * "mscnt"
  7067. - * "mscuract"
  7068. - * "wave"
  7069. - '!' set register
  7070. - * "mres"
  7071. - * "step"
  7072. - * "wave"
  7073. - '@' home calibrate axis
  7074. Example:
  7075. D2130E?wave ... print extruder microstep linearity compensation curve
  7076. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7077. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7078. */
  7079. case 2130:
  7080. dcode_2130(); break;
  7081. #endif //TMC2130
  7082. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7083. //! ### D9125 - FILAMENT_SENSOR
  7084. // ---------------------------------
  7085. case 9125:
  7086. dcode_9125(); break;
  7087. #endif //FILAMENT_SENSOR
  7088. #endif //DEBUG_DCODES
  7089. }
  7090. }
  7091. else
  7092. {
  7093. SERIAL_ECHO_START;
  7094. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7095. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7096. SERIAL_ECHOLNPGM("\"(2)");
  7097. }
  7098. KEEPALIVE_STATE(NOT_BUSY);
  7099. ClearToSend();
  7100. }
  7101. /** @defgroup GCodes G-Code List
  7102. */
  7103. // ---------------------------------------------------
  7104. void FlushSerialRequestResend()
  7105. {
  7106. //char cmdbuffer[bufindr][100]="Resend:";
  7107. MYSERIAL.flush();
  7108. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7109. }
  7110. // Confirm the execution of a command, if sent from a serial line.
  7111. // Execution of a command from a SD card will not be confirmed.
  7112. void ClearToSend()
  7113. {
  7114. previous_millis_cmd = _millis();
  7115. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7117. }
  7118. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7119. void update_currents() {
  7120. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7121. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7122. float tmp_motor[3];
  7123. //SERIAL_ECHOLNPGM("Currents updated: ");
  7124. if (destination[Z_AXIS] < Z_SILENT) {
  7125. //SERIAL_ECHOLNPGM("LOW");
  7126. for (uint8_t i = 0; i < 3; i++) {
  7127. st_current_set(i, current_low[i]);
  7128. /*MYSERIAL.print(int(i));
  7129. SERIAL_ECHOPGM(": ");
  7130. MYSERIAL.println(current_low[i]);*/
  7131. }
  7132. }
  7133. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7134. //SERIAL_ECHOLNPGM("HIGH");
  7135. for (uint8_t i = 0; i < 3; i++) {
  7136. st_current_set(i, current_high[i]);
  7137. /*MYSERIAL.print(int(i));
  7138. SERIAL_ECHOPGM(": ");
  7139. MYSERIAL.println(current_high[i]);*/
  7140. }
  7141. }
  7142. else {
  7143. for (uint8_t i = 0; i < 3; i++) {
  7144. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7145. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7146. st_current_set(i, tmp_motor[i]);
  7147. /*MYSERIAL.print(int(i));
  7148. SERIAL_ECHOPGM(": ");
  7149. MYSERIAL.println(tmp_motor[i]);*/
  7150. }
  7151. }
  7152. }
  7153. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7154. void get_coordinates()
  7155. {
  7156. bool seen[4]={false,false,false,false};
  7157. for(int8_t i=0; i < NUM_AXIS; i++) {
  7158. if(code_seen(axis_codes[i]))
  7159. {
  7160. bool relative = axis_relative_modes[i] || relative_mode;
  7161. destination[i] = (float)code_value();
  7162. if (i == E_AXIS) {
  7163. float emult = extruder_multiplier[active_extruder];
  7164. if (emult != 1.) {
  7165. if (! relative) {
  7166. destination[i] -= current_position[i];
  7167. relative = true;
  7168. }
  7169. destination[i] *= emult;
  7170. }
  7171. }
  7172. if (relative)
  7173. destination[i] += current_position[i];
  7174. seen[i]=true;
  7175. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7176. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7177. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7178. }
  7179. else destination[i] = current_position[i]; //Are these else lines really needed?
  7180. }
  7181. if(code_seen('F')) {
  7182. next_feedrate = code_value();
  7183. #ifdef MAX_SILENT_FEEDRATE
  7184. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7185. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7186. #endif //MAX_SILENT_FEEDRATE
  7187. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7188. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7189. {
  7190. // float e_max_speed =
  7191. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7192. }
  7193. }
  7194. }
  7195. void get_arc_coordinates()
  7196. {
  7197. #ifdef SF_ARC_FIX
  7198. bool relative_mode_backup = relative_mode;
  7199. relative_mode = true;
  7200. #endif
  7201. get_coordinates();
  7202. #ifdef SF_ARC_FIX
  7203. relative_mode=relative_mode_backup;
  7204. #endif
  7205. if(code_seen('I')) {
  7206. offset[0] = code_value();
  7207. }
  7208. else {
  7209. offset[0] = 0.0;
  7210. }
  7211. if(code_seen('J')) {
  7212. offset[1] = code_value();
  7213. }
  7214. else {
  7215. offset[1] = 0.0;
  7216. }
  7217. }
  7218. void clamp_to_software_endstops(float target[3])
  7219. {
  7220. #ifdef DEBUG_DISABLE_SWLIMITS
  7221. return;
  7222. #endif //DEBUG_DISABLE_SWLIMITS
  7223. world2machine_clamp(target[0], target[1]);
  7224. // Clamp the Z coordinate.
  7225. if (min_software_endstops) {
  7226. float negative_z_offset = 0;
  7227. #ifdef ENABLE_AUTO_BED_LEVELING
  7228. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7229. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7230. #endif
  7231. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7232. }
  7233. if (max_software_endstops) {
  7234. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7235. }
  7236. }
  7237. #ifdef MESH_BED_LEVELING
  7238. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7239. float dx = x - current_position[X_AXIS];
  7240. float dy = y - current_position[Y_AXIS];
  7241. float dz = z - current_position[Z_AXIS];
  7242. int n_segments = 0;
  7243. if (mbl.active) {
  7244. float len = abs(dx) + abs(dy);
  7245. if (len > 0)
  7246. // Split to 3cm segments or shorter.
  7247. n_segments = int(ceil(len / 30.f));
  7248. }
  7249. if (n_segments > 1) {
  7250. float de = e - current_position[E_AXIS];
  7251. for (int i = 1; i < n_segments; ++ i) {
  7252. float t = float(i) / float(n_segments);
  7253. if (saved_printing || (mbl.active == false)) return;
  7254. plan_buffer_line(
  7255. current_position[X_AXIS] + t * dx,
  7256. current_position[Y_AXIS] + t * dy,
  7257. current_position[Z_AXIS] + t * dz,
  7258. current_position[E_AXIS] + t * de,
  7259. feed_rate, extruder);
  7260. }
  7261. }
  7262. // The rest of the path.
  7263. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7264. current_position[X_AXIS] = x;
  7265. current_position[Y_AXIS] = y;
  7266. current_position[Z_AXIS] = z;
  7267. current_position[E_AXIS] = e;
  7268. }
  7269. #endif // MESH_BED_LEVELING
  7270. void prepare_move()
  7271. {
  7272. clamp_to_software_endstops(destination);
  7273. previous_millis_cmd = _millis();
  7274. // Do not use feedmultiply for E or Z only moves
  7275. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7277. }
  7278. else {
  7279. #ifdef MESH_BED_LEVELING
  7280. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7281. #else
  7282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7283. #endif
  7284. }
  7285. for(int8_t i=0; i < NUM_AXIS; i++) {
  7286. current_position[i] = destination[i];
  7287. }
  7288. }
  7289. void prepare_arc_move(char isclockwise) {
  7290. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7291. // Trace the arc
  7292. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7293. // As far as the parser is concerned, the position is now == target. In reality the
  7294. // motion control system might still be processing the action and the real tool position
  7295. // in any intermediate location.
  7296. for(int8_t i=0; i < NUM_AXIS; i++) {
  7297. current_position[i] = destination[i];
  7298. }
  7299. previous_millis_cmd = _millis();
  7300. }
  7301. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7302. #if defined(FAN_PIN)
  7303. #if CONTROLLERFAN_PIN == FAN_PIN
  7304. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7305. #endif
  7306. #endif
  7307. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7308. unsigned long lastMotorCheck = 0;
  7309. void controllerFan()
  7310. {
  7311. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7312. {
  7313. lastMotorCheck = _millis();
  7314. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7315. #if EXTRUDERS > 2
  7316. || !READ(E2_ENABLE_PIN)
  7317. #endif
  7318. #if EXTRUDER > 1
  7319. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7320. || !READ(X2_ENABLE_PIN)
  7321. #endif
  7322. || !READ(E1_ENABLE_PIN)
  7323. #endif
  7324. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7325. {
  7326. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7327. }
  7328. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7329. {
  7330. digitalWrite(CONTROLLERFAN_PIN, 0);
  7331. analogWrite(CONTROLLERFAN_PIN, 0);
  7332. }
  7333. else
  7334. {
  7335. // allows digital or PWM fan output to be used (see M42 handling)
  7336. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7337. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7338. }
  7339. }
  7340. }
  7341. #endif
  7342. #ifdef TEMP_STAT_LEDS
  7343. static bool blue_led = false;
  7344. static bool red_led = false;
  7345. static uint32_t stat_update = 0;
  7346. void handle_status_leds(void) {
  7347. float max_temp = 0.0;
  7348. if(_millis() > stat_update) {
  7349. stat_update += 500; // Update every 0.5s
  7350. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7351. max_temp = max(max_temp, degHotend(cur_extruder));
  7352. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7353. }
  7354. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7355. max_temp = max(max_temp, degTargetBed());
  7356. max_temp = max(max_temp, degBed());
  7357. #endif
  7358. if((max_temp > 55.0) && (red_led == false)) {
  7359. digitalWrite(STAT_LED_RED, 1);
  7360. digitalWrite(STAT_LED_BLUE, 0);
  7361. red_led = true;
  7362. blue_led = false;
  7363. }
  7364. if((max_temp < 54.0) && (blue_led == false)) {
  7365. digitalWrite(STAT_LED_RED, 0);
  7366. digitalWrite(STAT_LED_BLUE, 1);
  7367. red_led = false;
  7368. blue_led = true;
  7369. }
  7370. }
  7371. }
  7372. #endif
  7373. #ifdef SAFETYTIMER
  7374. /**
  7375. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7376. *
  7377. * Full screen blocking notification message is shown after heater turning off.
  7378. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7379. * damage print.
  7380. *
  7381. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7382. */
  7383. static void handleSafetyTimer()
  7384. {
  7385. #if (EXTRUDERS > 1)
  7386. #error Implemented only for one extruder.
  7387. #endif //(EXTRUDERS > 1)
  7388. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7389. {
  7390. safetyTimer.stop();
  7391. }
  7392. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7393. {
  7394. safetyTimer.start();
  7395. }
  7396. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7397. {
  7398. setTargetBed(0);
  7399. setAllTargetHotends(0);
  7400. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7401. }
  7402. }
  7403. #endif //SAFETYTIMER
  7404. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7405. {
  7406. bool bInhibitFlag;
  7407. #ifdef FILAMENT_SENSOR
  7408. if (mmu_enabled == false)
  7409. {
  7410. //-// if (mcode_in_progress != 600) //M600 not in progress
  7411. #ifdef PAT9125
  7412. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7413. #endif // PAT9125
  7414. #ifdef IR_SENSOR
  7415. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7416. #endif // IR_SENSOR
  7417. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7418. {
  7419. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  7420. {
  7421. if (fsensor_check_autoload())
  7422. {
  7423. #ifdef PAT9125
  7424. fsensor_autoload_check_stop();
  7425. #endif //PAT9125
  7426. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7427. if(0)
  7428. {
  7429. Sound_MakeCustom(50,1000,false);
  7430. loading_flag = true;
  7431. enquecommand_front_P((PSTR("M701")));
  7432. }
  7433. else
  7434. {
  7435. /*
  7436. lcd_update_enable(false);
  7437. show_preheat_nozzle_warning();
  7438. lcd_update_enable(true);
  7439. */
  7440. eFilamentAction=FilamentAction::AutoLoad;
  7441. bFilamentFirstRun=false;
  7442. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7443. {
  7444. bFilamentPreheatState=true;
  7445. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7446. menu_submenu(mFilamentItemForce);
  7447. }
  7448. else
  7449. {
  7450. menu_submenu(mFilamentMenu);
  7451. lcd_timeoutToStatus.start();
  7452. }
  7453. }
  7454. }
  7455. }
  7456. else
  7457. {
  7458. #ifdef PAT9125
  7459. fsensor_autoload_check_stop();
  7460. #endif //PAT9125
  7461. fsensor_update();
  7462. }
  7463. }
  7464. }
  7465. #endif //FILAMENT_SENSOR
  7466. #ifdef SAFETYTIMER
  7467. handleSafetyTimer();
  7468. #endif //SAFETYTIMER
  7469. #if defined(KILL_PIN) && KILL_PIN > -1
  7470. static int killCount = 0; // make the inactivity button a bit less responsive
  7471. const int KILL_DELAY = 10000;
  7472. #endif
  7473. if(buflen < (BUFSIZE-1)){
  7474. get_command();
  7475. }
  7476. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7477. if(max_inactive_time)
  7478. kill(_n(""), 4);
  7479. if(stepper_inactive_time) {
  7480. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7481. {
  7482. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7483. disable_x();
  7484. disable_y();
  7485. disable_z();
  7486. disable_e0();
  7487. disable_e1();
  7488. disable_e2();
  7489. }
  7490. }
  7491. }
  7492. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7493. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7494. {
  7495. chdkActive = false;
  7496. WRITE(CHDK, LOW);
  7497. }
  7498. #endif
  7499. #if defined(KILL_PIN) && KILL_PIN > -1
  7500. // Check if the kill button was pressed and wait just in case it was an accidental
  7501. // key kill key press
  7502. // -------------------------------------------------------------------------------
  7503. if( 0 == READ(KILL_PIN) )
  7504. {
  7505. killCount++;
  7506. }
  7507. else if (killCount > 0)
  7508. {
  7509. killCount--;
  7510. }
  7511. // Exceeded threshold and we can confirm that it was not accidental
  7512. // KILL the machine
  7513. // ----------------------------------------------------------------
  7514. if ( killCount >= KILL_DELAY)
  7515. {
  7516. kill("", 5);
  7517. }
  7518. #endif
  7519. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7520. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7521. #endif
  7522. #ifdef EXTRUDER_RUNOUT_PREVENT
  7523. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7524. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7525. {
  7526. bool oldstatus=READ(E0_ENABLE_PIN);
  7527. enable_e0();
  7528. float oldepos=current_position[E_AXIS];
  7529. float oldedes=destination[E_AXIS];
  7530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7531. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7532. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7533. current_position[E_AXIS]=oldepos;
  7534. destination[E_AXIS]=oldedes;
  7535. plan_set_e_position(oldepos);
  7536. previous_millis_cmd=_millis();
  7537. st_synchronize();
  7538. WRITE(E0_ENABLE_PIN,oldstatus);
  7539. }
  7540. #endif
  7541. #ifdef TEMP_STAT_LEDS
  7542. handle_status_leds();
  7543. #endif
  7544. check_axes_activity();
  7545. mmu_loop();
  7546. }
  7547. void kill(const char *full_screen_message, unsigned char id)
  7548. {
  7549. printf_P(_N("KILL: %d\n"), id);
  7550. //return;
  7551. cli(); // Stop interrupts
  7552. disable_heater();
  7553. disable_x();
  7554. // SERIAL_ECHOLNPGM("kill - disable Y");
  7555. disable_y();
  7556. disable_z();
  7557. disable_e0();
  7558. disable_e1();
  7559. disable_e2();
  7560. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7561. pinMode(PS_ON_PIN,INPUT);
  7562. #endif
  7563. SERIAL_ERROR_START;
  7564. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7565. if (full_screen_message != NULL) {
  7566. SERIAL_ERRORLNRPGM(full_screen_message);
  7567. lcd_display_message_fullscreen_P(full_screen_message);
  7568. } else {
  7569. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7570. }
  7571. // FMC small patch to update the LCD before ending
  7572. sei(); // enable interrupts
  7573. for ( int i=5; i--; lcd_update(0))
  7574. {
  7575. _delay(200);
  7576. }
  7577. cli(); // disable interrupts
  7578. suicide();
  7579. while(1)
  7580. {
  7581. #ifdef WATCHDOG
  7582. wdt_reset();
  7583. #endif //WATCHDOG
  7584. /* Intentionally left empty */
  7585. } // Wait for reset
  7586. }
  7587. void Stop()
  7588. {
  7589. disable_heater();
  7590. if(Stopped == false) {
  7591. Stopped = true;
  7592. lcd_print_stop();
  7593. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7594. SERIAL_ERROR_START;
  7595. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7596. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7597. }
  7598. }
  7599. bool IsStopped() { return Stopped; };
  7600. #ifdef FAST_PWM_FAN
  7601. void setPwmFrequency(uint8_t pin, int val)
  7602. {
  7603. val &= 0x07;
  7604. switch(digitalPinToTimer(pin))
  7605. {
  7606. #if defined(TCCR0A)
  7607. case TIMER0A:
  7608. case TIMER0B:
  7609. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7610. // TCCR0B |= val;
  7611. break;
  7612. #endif
  7613. #if defined(TCCR1A)
  7614. case TIMER1A:
  7615. case TIMER1B:
  7616. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7617. // TCCR1B |= val;
  7618. break;
  7619. #endif
  7620. #if defined(TCCR2)
  7621. case TIMER2:
  7622. case TIMER2:
  7623. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7624. TCCR2 |= val;
  7625. break;
  7626. #endif
  7627. #if defined(TCCR2A)
  7628. case TIMER2A:
  7629. case TIMER2B:
  7630. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7631. TCCR2B |= val;
  7632. break;
  7633. #endif
  7634. #if defined(TCCR3A)
  7635. case TIMER3A:
  7636. case TIMER3B:
  7637. case TIMER3C:
  7638. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7639. TCCR3B |= val;
  7640. break;
  7641. #endif
  7642. #if defined(TCCR4A)
  7643. case TIMER4A:
  7644. case TIMER4B:
  7645. case TIMER4C:
  7646. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7647. TCCR4B |= val;
  7648. break;
  7649. #endif
  7650. #if defined(TCCR5A)
  7651. case TIMER5A:
  7652. case TIMER5B:
  7653. case TIMER5C:
  7654. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7655. TCCR5B |= val;
  7656. break;
  7657. #endif
  7658. }
  7659. }
  7660. #endif //FAST_PWM_FAN
  7661. //! @brief Get and validate extruder number
  7662. //!
  7663. //! If it is not specified, active_extruder is returned in parameter extruder.
  7664. //! @param [in] code M code number
  7665. //! @param [out] extruder
  7666. //! @return error
  7667. //! @retval true Invalid extruder specified in T code
  7668. //! @retval false Valid extruder specified in T code, or not specifiead
  7669. bool setTargetedHotend(int code, uint8_t &extruder)
  7670. {
  7671. extruder = active_extruder;
  7672. if(code_seen('T')) {
  7673. extruder = code_value();
  7674. if(extruder >= EXTRUDERS) {
  7675. SERIAL_ECHO_START;
  7676. switch(code){
  7677. case 104:
  7678. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7679. break;
  7680. case 105:
  7681. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7682. break;
  7683. case 109:
  7684. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7685. break;
  7686. case 218:
  7687. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7688. break;
  7689. case 221:
  7690. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7691. break;
  7692. }
  7693. SERIAL_PROTOCOLLN((int)extruder);
  7694. return true;
  7695. }
  7696. }
  7697. return false;
  7698. }
  7699. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7700. {
  7701. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7702. {
  7703. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7704. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7705. }
  7706. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7707. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7708. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7709. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7710. total_filament_used = 0;
  7711. }
  7712. float calculate_extruder_multiplier(float diameter) {
  7713. float out = 1.f;
  7714. if (cs.volumetric_enabled && diameter > 0.f) {
  7715. float area = M_PI * diameter * diameter * 0.25;
  7716. out = 1.f / area;
  7717. }
  7718. if (extrudemultiply != 100)
  7719. out *= float(extrudemultiply) * 0.01f;
  7720. return out;
  7721. }
  7722. void calculate_extruder_multipliers() {
  7723. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7724. #if EXTRUDERS > 1
  7725. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7726. #if EXTRUDERS > 2
  7727. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7728. #endif
  7729. #endif
  7730. }
  7731. void delay_keep_alive(unsigned int ms)
  7732. {
  7733. for (;;) {
  7734. manage_heater();
  7735. // Manage inactivity, but don't disable steppers on timeout.
  7736. manage_inactivity(true);
  7737. lcd_update(0);
  7738. if (ms == 0)
  7739. break;
  7740. else if (ms >= 50) {
  7741. _delay(50);
  7742. ms -= 50;
  7743. } else {
  7744. _delay(ms);
  7745. ms = 0;
  7746. }
  7747. }
  7748. }
  7749. static void wait_for_heater(long codenum, uint8_t extruder) {
  7750. #ifdef TEMP_RESIDENCY_TIME
  7751. long residencyStart;
  7752. residencyStart = -1;
  7753. /* continue to loop until we have reached the target temp
  7754. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7755. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7756. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7757. #else
  7758. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7759. #endif //TEMP_RESIDENCY_TIME
  7760. if ((_millis() - codenum) > 1000UL)
  7761. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7762. if (!farm_mode) {
  7763. SERIAL_PROTOCOLPGM("T:");
  7764. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7765. SERIAL_PROTOCOLPGM(" E:");
  7766. SERIAL_PROTOCOL((int)extruder);
  7767. #ifdef TEMP_RESIDENCY_TIME
  7768. SERIAL_PROTOCOLPGM(" W:");
  7769. if (residencyStart > -1)
  7770. {
  7771. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7772. SERIAL_PROTOCOLLN(codenum);
  7773. }
  7774. else
  7775. {
  7776. SERIAL_PROTOCOLLN("?");
  7777. }
  7778. }
  7779. #else
  7780. SERIAL_PROTOCOLLN("");
  7781. #endif
  7782. codenum = _millis();
  7783. }
  7784. manage_heater();
  7785. manage_inactivity(true); //do not disable steppers
  7786. lcd_update(0);
  7787. #ifdef TEMP_RESIDENCY_TIME
  7788. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7789. or when current temp falls outside the hysteresis after target temp was reached */
  7790. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7791. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7792. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7793. {
  7794. residencyStart = _millis();
  7795. }
  7796. #endif //TEMP_RESIDENCY_TIME
  7797. }
  7798. }
  7799. void check_babystep()
  7800. {
  7801. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7802. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7803. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7804. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7805. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7806. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7807. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7808. babystep_z);
  7809. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7810. lcd_update_enable(true);
  7811. }
  7812. }
  7813. #ifdef HEATBED_ANALYSIS
  7814. void d_setup()
  7815. {
  7816. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7817. pinMode(D_DATA, INPUT_PULLUP);
  7818. pinMode(D_REQUIRE, OUTPUT);
  7819. digitalWrite(D_REQUIRE, HIGH);
  7820. }
  7821. float d_ReadData()
  7822. {
  7823. int digit[13];
  7824. String mergeOutput;
  7825. float output;
  7826. digitalWrite(D_REQUIRE, HIGH);
  7827. for (int i = 0; i<13; i++)
  7828. {
  7829. for (int j = 0; j < 4; j++)
  7830. {
  7831. while (digitalRead(D_DATACLOCK) == LOW) {}
  7832. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7833. bitWrite(digit[i], j, digitalRead(D_DATA));
  7834. }
  7835. }
  7836. digitalWrite(D_REQUIRE, LOW);
  7837. mergeOutput = "";
  7838. output = 0;
  7839. for (int r = 5; r <= 10; r++) //Merge digits
  7840. {
  7841. mergeOutput += digit[r];
  7842. }
  7843. output = mergeOutput.toFloat();
  7844. if (digit[4] == 8) //Handle sign
  7845. {
  7846. output *= -1;
  7847. }
  7848. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7849. {
  7850. output /= 10;
  7851. }
  7852. return output;
  7853. }
  7854. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7855. int t1 = 0;
  7856. int t_delay = 0;
  7857. int digit[13];
  7858. int m;
  7859. char str[3];
  7860. //String mergeOutput;
  7861. char mergeOutput[15];
  7862. float output;
  7863. int mesh_point = 0; //index number of calibration point
  7864. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7865. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7866. float mesh_home_z_search = 4;
  7867. float measure_z_height = 0.2f;
  7868. float row[x_points_num];
  7869. int ix = 0;
  7870. int iy = 0;
  7871. const char* filename_wldsd = "mesh.txt";
  7872. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7873. char numb_wldsd[8]; // (" -A.BCD" + null)
  7874. #ifdef MICROMETER_LOGGING
  7875. d_setup();
  7876. #endif //MICROMETER_LOGGING
  7877. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7878. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7879. unsigned int custom_message_type_old = custom_message_type;
  7880. unsigned int custom_message_state_old = custom_message_state;
  7881. custom_message_type = CustomMsg::MeshBedLeveling;
  7882. custom_message_state = (x_points_num * y_points_num) + 10;
  7883. lcd_update(1);
  7884. //mbl.reset();
  7885. babystep_undo();
  7886. card.openFile(filename_wldsd, false);
  7887. /*destination[Z_AXIS] = mesh_home_z_search;
  7888. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7890. for(int8_t i=0; i < NUM_AXIS; i++) {
  7891. current_position[i] = destination[i];
  7892. }
  7893. st_synchronize();
  7894. */
  7895. destination[Z_AXIS] = measure_z_height;
  7896. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7897. for(int8_t i=0; i < NUM_AXIS; i++) {
  7898. current_position[i] = destination[i];
  7899. }
  7900. st_synchronize();
  7901. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7902. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7903. SERIAL_PROTOCOL(x_points_num);
  7904. SERIAL_PROTOCOLPGM(",");
  7905. SERIAL_PROTOCOL(y_points_num);
  7906. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7907. SERIAL_PROTOCOL(mesh_home_z_search);
  7908. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7909. SERIAL_PROTOCOL(x_dimension);
  7910. SERIAL_PROTOCOLPGM(",");
  7911. SERIAL_PROTOCOL(y_dimension);
  7912. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7913. while (mesh_point != x_points_num * y_points_num) {
  7914. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7915. iy = mesh_point / x_points_num;
  7916. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7917. float z0 = 0.f;
  7918. /*destination[Z_AXIS] = mesh_home_z_search;
  7919. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7921. for(int8_t i=0; i < NUM_AXIS; i++) {
  7922. current_position[i] = destination[i];
  7923. }
  7924. st_synchronize();*/
  7925. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7926. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7927. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7928. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7929. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7930. for(int8_t i=0; i < NUM_AXIS; i++) {
  7931. current_position[i] = destination[i];
  7932. }
  7933. st_synchronize();
  7934. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7935. delay_keep_alive(1000);
  7936. #ifdef MICROMETER_LOGGING
  7937. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7938. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7939. //strcat(data_wldsd, numb_wldsd);
  7940. //MYSERIAL.println(data_wldsd);
  7941. //delay(1000);
  7942. //delay(3000);
  7943. //t1 = millis();
  7944. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7945. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7946. memset(digit, 0, sizeof(digit));
  7947. //cli();
  7948. digitalWrite(D_REQUIRE, LOW);
  7949. for (int i = 0; i<13; i++)
  7950. {
  7951. //t1 = millis();
  7952. for (int j = 0; j < 4; j++)
  7953. {
  7954. while (digitalRead(D_DATACLOCK) == LOW) {}
  7955. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7956. //printf_P(PSTR("Done %d\n"), j);
  7957. bitWrite(digit[i], j, digitalRead(D_DATA));
  7958. }
  7959. //t_delay = (millis() - t1);
  7960. //SERIAL_PROTOCOLPGM(" ");
  7961. //SERIAL_PROTOCOL_F(t_delay, 5);
  7962. //SERIAL_PROTOCOLPGM(" ");
  7963. }
  7964. //sei();
  7965. digitalWrite(D_REQUIRE, HIGH);
  7966. mergeOutput[0] = '\0';
  7967. output = 0;
  7968. for (int r = 5; r <= 10; r++) //Merge digits
  7969. {
  7970. sprintf(str, "%d", digit[r]);
  7971. strcat(mergeOutput, str);
  7972. }
  7973. output = atof(mergeOutput);
  7974. if (digit[4] == 8) //Handle sign
  7975. {
  7976. output *= -1;
  7977. }
  7978. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7979. {
  7980. output *= 0.1;
  7981. }
  7982. //output = d_ReadData();
  7983. //row[ix] = current_position[Z_AXIS];
  7984. //row[ix] = d_ReadData();
  7985. row[ix] = output;
  7986. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7987. memset(data_wldsd, 0, sizeof(data_wldsd));
  7988. for (int i = 0; i < x_points_num; i++) {
  7989. SERIAL_PROTOCOLPGM(" ");
  7990. SERIAL_PROTOCOL_F(row[i], 5);
  7991. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7992. dtostrf(row[i], 7, 3, numb_wldsd);
  7993. strcat(data_wldsd, numb_wldsd);
  7994. }
  7995. card.write_command(data_wldsd);
  7996. SERIAL_PROTOCOLPGM("\n");
  7997. }
  7998. custom_message_state--;
  7999. mesh_point++;
  8000. lcd_update(1);
  8001. }
  8002. #endif //MICROMETER_LOGGING
  8003. card.closefile();
  8004. //clean_up_after_endstop_move(l_feedmultiply);
  8005. }
  8006. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8007. int t1 = 0;
  8008. int t_delay = 0;
  8009. int digit[13];
  8010. int m;
  8011. char str[3];
  8012. //String mergeOutput;
  8013. char mergeOutput[15];
  8014. float output;
  8015. int mesh_point = 0; //index number of calibration point
  8016. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8017. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8018. float mesh_home_z_search = 4;
  8019. float row[x_points_num];
  8020. int ix = 0;
  8021. int iy = 0;
  8022. const char* filename_wldsd = "wldsd.txt";
  8023. char data_wldsd[70];
  8024. char numb_wldsd[10];
  8025. d_setup();
  8026. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8027. // We don't know where we are! HOME!
  8028. // Push the commands to the front of the message queue in the reverse order!
  8029. // There shall be always enough space reserved for these commands.
  8030. repeatcommand_front(); // repeat G80 with all its parameters
  8031. enquecommand_front_P((PSTR("G28 W0")));
  8032. enquecommand_front_P((PSTR("G1 Z5")));
  8033. return;
  8034. }
  8035. unsigned int custom_message_type_old = custom_message_type;
  8036. unsigned int custom_message_state_old = custom_message_state;
  8037. custom_message_type = CustomMsg::MeshBedLeveling;
  8038. custom_message_state = (x_points_num * y_points_num) + 10;
  8039. lcd_update(1);
  8040. mbl.reset();
  8041. babystep_undo();
  8042. card.openFile(filename_wldsd, false);
  8043. current_position[Z_AXIS] = mesh_home_z_search;
  8044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  8045. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8046. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8047. int l_feedmultiply = setup_for_endstop_move(false);
  8048. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8049. SERIAL_PROTOCOL(x_points_num);
  8050. SERIAL_PROTOCOLPGM(",");
  8051. SERIAL_PROTOCOL(y_points_num);
  8052. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8053. SERIAL_PROTOCOL(mesh_home_z_search);
  8054. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8055. SERIAL_PROTOCOL(x_dimension);
  8056. SERIAL_PROTOCOLPGM(",");
  8057. SERIAL_PROTOCOL(y_dimension);
  8058. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8059. while (mesh_point != x_points_num * y_points_num) {
  8060. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8061. iy = mesh_point / x_points_num;
  8062. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8063. float z0 = 0.f;
  8064. current_position[Z_AXIS] = mesh_home_z_search;
  8065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8066. st_synchronize();
  8067. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8068. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  8070. st_synchronize();
  8071. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8072. break;
  8073. card.closefile();
  8074. }
  8075. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8076. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8077. //strcat(data_wldsd, numb_wldsd);
  8078. //MYSERIAL.println(data_wldsd);
  8079. //_delay(1000);
  8080. //_delay(3000);
  8081. //t1 = _millis();
  8082. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8083. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8084. memset(digit, 0, sizeof(digit));
  8085. //cli();
  8086. digitalWrite(D_REQUIRE, LOW);
  8087. for (int i = 0; i<13; i++)
  8088. {
  8089. //t1 = _millis();
  8090. for (int j = 0; j < 4; j++)
  8091. {
  8092. while (digitalRead(D_DATACLOCK) == LOW) {}
  8093. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8094. bitWrite(digit[i], j, digitalRead(D_DATA));
  8095. }
  8096. //t_delay = (_millis() - t1);
  8097. //SERIAL_PROTOCOLPGM(" ");
  8098. //SERIAL_PROTOCOL_F(t_delay, 5);
  8099. //SERIAL_PROTOCOLPGM(" ");
  8100. }
  8101. //sei();
  8102. digitalWrite(D_REQUIRE, HIGH);
  8103. mergeOutput[0] = '\0';
  8104. output = 0;
  8105. for (int r = 5; r <= 10; r++) //Merge digits
  8106. {
  8107. sprintf(str, "%d", digit[r]);
  8108. strcat(mergeOutput, str);
  8109. }
  8110. output = atof(mergeOutput);
  8111. if (digit[4] == 8) //Handle sign
  8112. {
  8113. output *= -1;
  8114. }
  8115. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8116. {
  8117. output *= 0.1;
  8118. }
  8119. //output = d_ReadData();
  8120. //row[ix] = current_position[Z_AXIS];
  8121. memset(data_wldsd, 0, sizeof(data_wldsd));
  8122. for (int i = 0; i <3; i++) {
  8123. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8124. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8125. strcat(data_wldsd, numb_wldsd);
  8126. strcat(data_wldsd, ";");
  8127. }
  8128. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8129. dtostrf(output, 8, 5, numb_wldsd);
  8130. strcat(data_wldsd, numb_wldsd);
  8131. //strcat(data_wldsd, ";");
  8132. card.write_command(data_wldsd);
  8133. //row[ix] = d_ReadData();
  8134. row[ix] = output; // current_position[Z_AXIS];
  8135. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8136. for (int i = 0; i < x_points_num; i++) {
  8137. SERIAL_PROTOCOLPGM(" ");
  8138. SERIAL_PROTOCOL_F(row[i], 5);
  8139. }
  8140. SERIAL_PROTOCOLPGM("\n");
  8141. }
  8142. custom_message_state--;
  8143. mesh_point++;
  8144. lcd_update(1);
  8145. }
  8146. card.closefile();
  8147. clean_up_after_endstop_move(l_feedmultiply);
  8148. }
  8149. #endif //HEATBED_ANALYSIS
  8150. void temp_compensation_start() {
  8151. custom_message_type = CustomMsg::TempCompPreheat;
  8152. custom_message_state = PINDA_HEAT_T + 1;
  8153. lcd_update(2);
  8154. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8155. current_position[E_AXIS] -= default_retraction;
  8156. }
  8157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8158. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8159. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8160. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  8162. st_synchronize();
  8163. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8164. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8165. delay_keep_alive(1000);
  8166. custom_message_state = PINDA_HEAT_T - i;
  8167. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8168. else lcd_update(1);
  8169. }
  8170. custom_message_type = CustomMsg::Status;
  8171. custom_message_state = 0;
  8172. }
  8173. void temp_compensation_apply() {
  8174. int i_add;
  8175. int z_shift = 0;
  8176. float z_shift_mm;
  8177. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8178. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8179. i_add = (target_temperature_bed - 60) / 10;
  8180. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8181. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8182. }else {
  8183. //interpolation
  8184. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8185. }
  8186. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8188. st_synchronize();
  8189. plan_set_z_position(current_position[Z_AXIS]);
  8190. }
  8191. else {
  8192. //we have no temp compensation data
  8193. }
  8194. }
  8195. float temp_comp_interpolation(float inp_temperature) {
  8196. //cubic spline interpolation
  8197. int n, i, j;
  8198. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8199. int shift[10];
  8200. int temp_C[10];
  8201. n = 6; //number of measured points
  8202. shift[0] = 0;
  8203. for (i = 0; i < n; i++) {
  8204. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8205. temp_C[i] = 50 + i * 10; //temperature in C
  8206. #ifdef PINDA_THERMISTOR
  8207. temp_C[i] = 35 + i * 5; //temperature in C
  8208. #else
  8209. temp_C[i] = 50 + i * 10; //temperature in C
  8210. #endif
  8211. x[i] = (float)temp_C[i];
  8212. f[i] = (float)shift[i];
  8213. }
  8214. if (inp_temperature < x[0]) return 0;
  8215. for (i = n - 1; i>0; i--) {
  8216. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8217. h[i - 1] = x[i] - x[i - 1];
  8218. }
  8219. //*********** formation of h, s , f matrix **************
  8220. for (i = 1; i<n - 1; i++) {
  8221. m[i][i] = 2 * (h[i - 1] + h[i]);
  8222. if (i != 1) {
  8223. m[i][i - 1] = h[i - 1];
  8224. m[i - 1][i] = h[i - 1];
  8225. }
  8226. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8227. }
  8228. //*********** forward elimination **************
  8229. for (i = 1; i<n - 2; i++) {
  8230. temp = (m[i + 1][i] / m[i][i]);
  8231. for (j = 1; j <= n - 1; j++)
  8232. m[i + 1][j] -= temp*m[i][j];
  8233. }
  8234. //*********** backward substitution *********
  8235. for (i = n - 2; i>0; i--) {
  8236. sum = 0;
  8237. for (j = i; j <= n - 2; j++)
  8238. sum += m[i][j] * s[j];
  8239. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8240. }
  8241. for (i = 0; i<n - 1; i++)
  8242. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8243. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8244. b = s[i] / 2;
  8245. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8246. d = f[i];
  8247. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8248. }
  8249. return sum;
  8250. }
  8251. #ifdef PINDA_THERMISTOR
  8252. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8253. {
  8254. if (!temp_cal_active) return 0;
  8255. if (!calibration_status_pinda()) return 0;
  8256. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8257. }
  8258. #endif //PINDA_THERMISTOR
  8259. void long_pause() //long pause print
  8260. {
  8261. st_synchronize();
  8262. start_pause_print = _millis();
  8263. //retract
  8264. current_position[E_AXIS] -= default_retraction;
  8265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8266. //lift z
  8267. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8268. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  8270. //Move XY to side
  8271. current_position[X_AXIS] = X_PAUSE_POS;
  8272. current_position[Y_AXIS] = Y_PAUSE_POS;
  8273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8274. // Turn off the print fan
  8275. fanSpeed = 0;
  8276. st_synchronize();
  8277. }
  8278. void serialecho_temperatures() {
  8279. float tt = degHotend(active_extruder);
  8280. SERIAL_PROTOCOLPGM("T:");
  8281. SERIAL_PROTOCOL(tt);
  8282. SERIAL_PROTOCOLPGM(" E:");
  8283. SERIAL_PROTOCOL((int)active_extruder);
  8284. SERIAL_PROTOCOLPGM(" B:");
  8285. SERIAL_PROTOCOL_F(degBed(), 1);
  8286. SERIAL_PROTOCOLLN("");
  8287. }
  8288. extern uint32_t sdpos_atomic;
  8289. #ifdef UVLO_SUPPORT
  8290. void uvlo_()
  8291. {
  8292. unsigned long time_start = _millis();
  8293. bool sd_print = card.sdprinting;
  8294. // Conserve power as soon as possible.
  8295. disable_x();
  8296. disable_y();
  8297. #ifdef TMC2130
  8298. tmc2130_set_current_h(Z_AXIS, 20);
  8299. tmc2130_set_current_r(Z_AXIS, 20);
  8300. tmc2130_set_current_h(E_AXIS, 20);
  8301. tmc2130_set_current_r(E_AXIS, 20);
  8302. #endif //TMC2130
  8303. // Indicate that the interrupt has been triggered.
  8304. // SERIAL_ECHOLNPGM("UVLO");
  8305. // Read out the current Z motor microstep counter. This will be later used
  8306. // for reaching the zero full step before powering off.
  8307. uint16_t z_microsteps = 0;
  8308. #ifdef TMC2130
  8309. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8310. #endif //TMC2130
  8311. // Calculate the file position, from which to resume this print.
  8312. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8313. {
  8314. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8315. sd_position -= sdlen_planner;
  8316. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8317. sd_position -= sdlen_cmdqueue;
  8318. if (sd_position < 0) sd_position = 0;
  8319. }
  8320. // Backup the feedrate in mm/min.
  8321. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8322. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8323. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8324. // are in action.
  8325. planner_abort_hard();
  8326. // Store the current extruder position.
  8327. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8328. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8329. // Clean the input command queue.
  8330. cmdqueue_reset();
  8331. card.sdprinting = false;
  8332. // card.closefile();
  8333. // Enable stepper driver interrupt to move Z axis.
  8334. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8335. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8336. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8337. sei();
  8338. plan_buffer_line(
  8339. current_position[X_AXIS],
  8340. current_position[Y_AXIS],
  8341. current_position[Z_AXIS],
  8342. current_position[E_AXIS] - default_retraction,
  8343. 95, active_extruder);
  8344. st_synchronize();
  8345. disable_e0();
  8346. plan_buffer_line(
  8347. current_position[X_AXIS],
  8348. current_position[Y_AXIS],
  8349. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8350. current_position[E_AXIS] - default_retraction,
  8351. 40, active_extruder);
  8352. st_synchronize();
  8353. disable_e0();
  8354. plan_buffer_line(
  8355. current_position[X_AXIS],
  8356. current_position[Y_AXIS],
  8357. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8358. current_position[E_AXIS] - default_retraction,
  8359. 40, active_extruder);
  8360. st_synchronize();
  8361. disable_e0();
  8362. // Move Z up to the next 0th full step.
  8363. // Write the file position.
  8364. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8365. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8366. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8367. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8368. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8369. // Scale the z value to 1u resolution.
  8370. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8371. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8372. }
  8373. // Read out the current Z motor microstep counter. This will be later used
  8374. // for reaching the zero full step before powering off.
  8375. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8376. // Store the current position.
  8377. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8378. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8379. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8380. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8381. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8382. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8383. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8384. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8385. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8386. #if EXTRUDERS > 1
  8387. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8388. #if EXTRUDERS > 2
  8389. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8390. #endif
  8391. #endif
  8392. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8393. // Finaly store the "power outage" flag.
  8394. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8395. st_synchronize();
  8396. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8397. // Increment power failure counter
  8398. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8399. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8400. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8401. #if 0
  8402. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8403. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8405. st_synchronize();
  8406. #endif
  8407. wdt_enable(WDTO_500MS);
  8408. WRITE(BEEPER,HIGH);
  8409. while(1)
  8410. ;
  8411. }
  8412. void uvlo_tiny()
  8413. {
  8414. uint16_t z_microsteps=0;
  8415. // Conserve power as soon as possible.
  8416. disable_x();
  8417. disable_y();
  8418. disable_e0();
  8419. #ifdef TMC2130
  8420. tmc2130_set_current_h(Z_AXIS, 20);
  8421. tmc2130_set_current_r(Z_AXIS, 20);
  8422. #endif //TMC2130
  8423. // Read out the current Z motor microstep counter
  8424. #ifdef TMC2130
  8425. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8426. #endif //TMC2130
  8427. planner_abort_hard();
  8428. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8429. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8430. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8431. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8432. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8433. }
  8434. //after multiple power panics current Z axis is unknow
  8435. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8436. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8437. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8438. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8439. }
  8440. // Finaly store the "power outage" flag.
  8441. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8442. // Increment power failure counter
  8443. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8444. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8445. wdt_enable(WDTO_500MS);
  8446. WRITE(BEEPER,HIGH);
  8447. while(1)
  8448. ;
  8449. }
  8450. #endif //UVLO_SUPPORT
  8451. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8452. void setup_fan_interrupt() {
  8453. //INT7
  8454. DDRE &= ~(1 << 7); //input pin
  8455. PORTE &= ~(1 << 7); //no internal pull-up
  8456. //start with sensing rising edge
  8457. EICRB &= ~(1 << 6);
  8458. EICRB |= (1 << 7);
  8459. //enable INT7 interrupt
  8460. EIMSK |= (1 << 7);
  8461. }
  8462. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8463. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8464. ISR(INT7_vect) {
  8465. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8466. #ifdef FAN_SOFT_PWM
  8467. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8468. #else //FAN_SOFT_PWM
  8469. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8470. #endif //FAN_SOFT_PWM
  8471. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8472. t_fan_rising_edge = millis_nc();
  8473. }
  8474. else { //interrupt was triggered by falling edge
  8475. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8476. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8477. }
  8478. }
  8479. EICRB ^= (1 << 6); //change edge
  8480. }
  8481. #endif
  8482. #ifdef UVLO_SUPPORT
  8483. void setup_uvlo_interrupt() {
  8484. DDRE &= ~(1 << 4); //input pin
  8485. PORTE &= ~(1 << 4); //no internal pull-up
  8486. //sensing falling edge
  8487. EICRB |= (1 << 0);
  8488. EICRB &= ~(1 << 1);
  8489. //enable INT4 interrupt
  8490. EIMSK |= (1 << 4);
  8491. }
  8492. ISR(INT4_vect) {
  8493. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8494. SERIAL_ECHOLNPGM("INT4");
  8495. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8496. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8497. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8498. }
  8499. void recover_print(uint8_t automatic) {
  8500. char cmd[30];
  8501. lcd_update_enable(true);
  8502. lcd_update(2);
  8503. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8504. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8505. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8506. // Lift the print head, so one may remove the excess priming material.
  8507. if(!bTiny&&(current_position[Z_AXIS]<25))
  8508. enquecommand_P(PSTR("G1 Z25 F800"));
  8509. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8510. enquecommand_P(PSTR("G28 X Y"));
  8511. // Set the target bed and nozzle temperatures and wait.
  8512. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8513. enquecommand(cmd);
  8514. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8515. enquecommand(cmd);
  8516. enquecommand_P(PSTR("M83")); //E axis relative mode
  8517. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8518. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8519. if(automatic == 0){
  8520. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8521. }
  8522. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8523. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8524. // Restart the print.
  8525. restore_print_from_eeprom();
  8526. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8527. }
  8528. void recover_machine_state_after_power_panic(bool bTiny)
  8529. {
  8530. char cmd[30];
  8531. // 1) Recover the logical cordinates at the time of the power panic.
  8532. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8533. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8534. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8535. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8536. mbl.active = false;
  8537. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8538. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8539. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8540. // Scale the z value to 10u resolution.
  8541. int16_t v;
  8542. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8543. if (v != 0)
  8544. mbl.active = true;
  8545. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8546. }
  8547. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8548. // The current position after power panic is moved to the next closest 0th full step.
  8549. if(bTiny){
  8550. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8551. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8552. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8553. //after multiple power panics the print is slightly in the air so get it little bit down.
  8554. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8555. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8556. }
  8557. else{
  8558. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8559. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8560. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8561. }
  8562. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8563. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8564. sprintf_P(cmd, PSTR("G92 E"));
  8565. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8566. enquecommand(cmd);
  8567. }
  8568. memcpy(destination, current_position, sizeof(destination));
  8569. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8570. print_world_coordinates();
  8571. // 3) Initialize the logical to physical coordinate system transformation.
  8572. world2machine_initialize();
  8573. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8574. // print_mesh_bed_leveling_table();
  8575. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8576. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8577. babystep_load();
  8578. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8580. // 6) Power up the motors, mark their positions as known.
  8581. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8582. axis_known_position[X_AXIS] = true; enable_x();
  8583. axis_known_position[Y_AXIS] = true; enable_y();
  8584. axis_known_position[Z_AXIS] = true; enable_z();
  8585. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8586. print_physical_coordinates();
  8587. // 7) Recover the target temperatures.
  8588. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8589. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8590. // 8) Recover extruder multipilers
  8591. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8592. #if EXTRUDERS > 1
  8593. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8594. #if EXTRUDERS > 2
  8595. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8596. #endif
  8597. #endif
  8598. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8599. }
  8600. void restore_print_from_eeprom() {
  8601. int feedrate_rec;
  8602. uint8_t fan_speed_rec;
  8603. char cmd[30];
  8604. char filename[13];
  8605. uint8_t depth = 0;
  8606. char dir_name[9];
  8607. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8608. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8609. SERIAL_ECHOPGM("Feedrate:");
  8610. MYSERIAL.println(feedrate_rec);
  8611. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8612. MYSERIAL.println(int(depth));
  8613. for (int i = 0; i < depth; i++) {
  8614. for (int j = 0; j < 8; j++) {
  8615. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8616. }
  8617. dir_name[8] = '\0';
  8618. MYSERIAL.println(dir_name);
  8619. strcpy(dir_names[i], dir_name);
  8620. card.chdir(dir_name);
  8621. }
  8622. for (int i = 0; i < 8; i++) {
  8623. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8624. }
  8625. filename[8] = '\0';
  8626. MYSERIAL.print(filename);
  8627. strcat_P(filename, PSTR(".gco"));
  8628. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8629. enquecommand(cmd);
  8630. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8631. SERIAL_ECHOPGM("Position read from eeprom:");
  8632. MYSERIAL.println(position);
  8633. // E axis relative mode.
  8634. enquecommand_P(PSTR("M83"));
  8635. // Move to the XY print position in logical coordinates, where the print has been killed.
  8636. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8637. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8638. strcat_P(cmd, PSTR(" F2000"));
  8639. enquecommand(cmd);
  8640. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8641. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8642. // Move the Z axis down to the print, in logical coordinates.
  8643. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8644. enquecommand(cmd);
  8645. // Unretract.
  8646. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8647. // Set the feedrate saved at the power panic.
  8648. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8649. enquecommand(cmd);
  8650. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8651. {
  8652. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8653. }
  8654. // Set the fan speed saved at the power panic.
  8655. strcpy_P(cmd, PSTR("M106 S"));
  8656. strcat(cmd, itostr3(int(fan_speed_rec)));
  8657. enquecommand(cmd);
  8658. // Set a position in the file.
  8659. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8660. enquecommand(cmd);
  8661. enquecommand_P(PSTR("G4 S0"));
  8662. enquecommand_P(PSTR("PRUSA uvlo"));
  8663. }
  8664. #endif //UVLO_SUPPORT
  8665. //! @brief Immediately stop print moves
  8666. //!
  8667. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8668. //! If printing from sd card, position in file is saved.
  8669. //! If printing from USB, line number is saved.
  8670. //!
  8671. //! @param z_move
  8672. //! @param e_move
  8673. void stop_and_save_print_to_ram(float z_move, float e_move)
  8674. {
  8675. if (saved_printing) return;
  8676. #if 0
  8677. unsigned char nplanner_blocks;
  8678. #endif
  8679. unsigned char nlines;
  8680. uint16_t sdlen_planner;
  8681. uint16_t sdlen_cmdqueue;
  8682. cli();
  8683. if (card.sdprinting) {
  8684. #if 0
  8685. nplanner_blocks = number_of_blocks();
  8686. #endif
  8687. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8688. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8689. saved_sdpos -= sdlen_planner;
  8690. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8691. saved_sdpos -= sdlen_cmdqueue;
  8692. saved_printing_type = PRINTING_TYPE_SD;
  8693. }
  8694. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8695. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8696. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8697. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8698. saved_sdpos -= nlines;
  8699. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8700. saved_printing_type = PRINTING_TYPE_USB;
  8701. }
  8702. else {
  8703. saved_printing_type = PRINTING_TYPE_NONE;
  8704. //not sd printing nor usb printing
  8705. }
  8706. #if 0
  8707. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8708. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8709. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8710. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8711. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8712. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8713. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8714. {
  8715. card.setIndex(saved_sdpos);
  8716. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8717. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8718. MYSERIAL.print(char(card.get()));
  8719. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8720. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8721. MYSERIAL.print(char(card.get()));
  8722. SERIAL_ECHOLNPGM("End of command buffer");
  8723. }
  8724. {
  8725. // Print the content of the planner buffer, line by line:
  8726. card.setIndex(saved_sdpos);
  8727. int8_t iline = 0;
  8728. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8729. SERIAL_ECHOPGM("Planner line (from file): ");
  8730. MYSERIAL.print(int(iline), DEC);
  8731. SERIAL_ECHOPGM(", length: ");
  8732. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8733. SERIAL_ECHOPGM(", steps: (");
  8734. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8735. SERIAL_ECHOPGM(",");
  8736. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8737. SERIAL_ECHOPGM(",");
  8738. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8739. SERIAL_ECHOPGM(",");
  8740. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8741. SERIAL_ECHOPGM("), events: ");
  8742. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8743. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8744. MYSERIAL.print(char(card.get()));
  8745. }
  8746. }
  8747. {
  8748. // Print the content of the command buffer, line by line:
  8749. int8_t iline = 0;
  8750. union {
  8751. struct {
  8752. char lo;
  8753. char hi;
  8754. } lohi;
  8755. uint16_t value;
  8756. } sdlen_single;
  8757. int _bufindr = bufindr;
  8758. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8759. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8760. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8761. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8762. }
  8763. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8764. MYSERIAL.print(int(iline), DEC);
  8765. SERIAL_ECHOPGM(", type: ");
  8766. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8767. SERIAL_ECHOPGM(", len: ");
  8768. MYSERIAL.println(sdlen_single.value, DEC);
  8769. // Print the content of the buffer line.
  8770. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8771. SERIAL_ECHOPGM("Buffer line (from file): ");
  8772. MYSERIAL.println(int(iline), DEC);
  8773. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8774. MYSERIAL.print(char(card.get()));
  8775. if (-- _buflen == 0)
  8776. break;
  8777. // First skip the current command ID and iterate up to the end of the string.
  8778. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8779. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8780. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8781. // If the end of the buffer was empty,
  8782. if (_bufindr == sizeof(cmdbuffer)) {
  8783. // skip to the start and find the nonzero command.
  8784. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8785. }
  8786. }
  8787. }
  8788. #endif
  8789. #if 0
  8790. saved_feedrate2 = feedrate; //save feedrate
  8791. #else
  8792. // Try to deduce the feedrate from the first block of the planner.
  8793. // Speed is in mm/min.
  8794. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8795. #endif
  8796. planner_abort_hard(); //abort printing
  8797. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8798. saved_active_extruder = active_extruder; //save active_extruder
  8799. saved_extruder_temperature = degTargetHotend(active_extruder);
  8800. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8801. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8802. saved_fanSpeed = fanSpeed;
  8803. cmdqueue_reset(); //empty cmdqueue
  8804. card.sdprinting = false;
  8805. // card.closefile();
  8806. saved_printing = true;
  8807. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8808. st_reset_timer();
  8809. sei();
  8810. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8811. #if 1
  8812. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8813. char buf[48];
  8814. // First unretract (relative extrusion)
  8815. if(!saved_extruder_relative_mode){
  8816. enquecommand(PSTR("M83"), true);
  8817. }
  8818. //retract 45mm/s
  8819. // A single sprintf may not be faster, but is definitely 20B shorter
  8820. // than a sequence of commands building the string piece by piece
  8821. // A snprintf would have been a safer call, but since it is not used
  8822. // in the whole program, its implementation would bring more bytes to the total size
  8823. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8824. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8825. enquecommand(buf, false);
  8826. // Then lift Z axis
  8827. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8828. // At this point the command queue is empty.
  8829. enquecommand(buf, false);
  8830. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8831. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8832. repeatcommand_front();
  8833. #else
  8834. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8835. st_synchronize(); //wait moving
  8836. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8837. memcpy(destination, current_position, sizeof(destination));
  8838. #endif
  8839. }
  8840. }
  8841. //! @brief Restore print from ram
  8842. //!
  8843. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8844. //! print fan speed, waits for extruder temperature restore, then restores
  8845. //! position and continues print moves.
  8846. //!
  8847. //! Internally lcd_update() is called by wait_for_heater().
  8848. //!
  8849. //! @param e_move
  8850. void restore_print_from_ram_and_continue(float e_move)
  8851. {
  8852. if (!saved_printing) return;
  8853. #ifdef FANCHECK
  8854. // Do not allow resume printing if fans are still not ok
  8855. if( fan_check_error != EFCE_OK )return;
  8856. #endif
  8857. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8858. // current_position[axis] = st_get_position_mm(axis);
  8859. active_extruder = saved_active_extruder; //restore active_extruder
  8860. fanSpeed = saved_fanSpeed;
  8861. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8862. {
  8863. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8864. heating_status = 1;
  8865. wait_for_heater(_millis(), saved_active_extruder);
  8866. heating_status = 2;
  8867. }
  8868. feedrate = saved_feedrate2; //restore feedrate
  8869. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8870. float e = saved_pos[E_AXIS] - e_move;
  8871. plan_set_e_position(e);
  8872. #ifdef FANCHECK
  8873. fans_check_enabled = false;
  8874. #endif
  8875. //first move print head in XY to the saved position:
  8876. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8877. st_synchronize();
  8878. //then move Z
  8879. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8880. st_synchronize();
  8881. //and finaly unretract (35mm/s)
  8882. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8883. st_synchronize();
  8884. #ifdef FANCHECK
  8885. fans_check_enabled = true;
  8886. #endif
  8887. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8888. memcpy(destination, current_position, sizeof(destination));
  8889. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8890. card.setIndex(saved_sdpos);
  8891. sdpos_atomic = saved_sdpos;
  8892. card.sdprinting = true;
  8893. }
  8894. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8895. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8896. serial_count = 0;
  8897. FlushSerialRequestResend();
  8898. }
  8899. else {
  8900. //not sd printing nor usb printing
  8901. }
  8902. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8903. lcd_setstatuspgm(_T(WELCOME_MSG));
  8904. saved_printing = false;
  8905. }
  8906. void print_world_coordinates()
  8907. {
  8908. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8909. }
  8910. void print_physical_coordinates()
  8911. {
  8912. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8913. }
  8914. void print_mesh_bed_leveling_table()
  8915. {
  8916. SERIAL_ECHOPGM("mesh bed leveling: ");
  8917. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8918. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8919. MYSERIAL.print(mbl.z_values[y][x], 3);
  8920. SERIAL_ECHOPGM(" ");
  8921. }
  8922. SERIAL_ECHOLNPGM("");
  8923. }
  8924. uint16_t print_time_remaining() {
  8925. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8926. #ifdef TMC2130
  8927. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8928. else print_t = print_time_remaining_silent;
  8929. #else
  8930. print_t = print_time_remaining_normal;
  8931. #endif //TMC2130
  8932. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8933. return print_t;
  8934. }
  8935. uint8_t calc_percent_done()
  8936. {
  8937. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8938. uint8_t percent_done = 0;
  8939. #ifdef TMC2130
  8940. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8941. percent_done = print_percent_done_normal;
  8942. }
  8943. else if (print_percent_done_silent <= 100) {
  8944. percent_done = print_percent_done_silent;
  8945. }
  8946. #else
  8947. if (print_percent_done_normal <= 100) {
  8948. percent_done = print_percent_done_normal;
  8949. }
  8950. #endif //TMC2130
  8951. else {
  8952. percent_done = card.percentDone();
  8953. }
  8954. return percent_done;
  8955. }
  8956. static void print_time_remaining_init()
  8957. {
  8958. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8959. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8960. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8961. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8962. }
  8963. void load_filament_final_feed()
  8964. {
  8965. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8967. }
  8968. //! @brief Wait for user to check the state
  8969. //! @par nozzle_temp nozzle temperature to load filament
  8970. void M600_check_state(float nozzle_temp)
  8971. {
  8972. lcd_change_fil_state = 0;
  8973. while (lcd_change_fil_state != 1)
  8974. {
  8975. lcd_change_fil_state = 0;
  8976. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8977. lcd_alright();
  8978. KEEPALIVE_STATE(IN_HANDLER);
  8979. switch(lcd_change_fil_state)
  8980. {
  8981. // Filament failed to load so load it again
  8982. case 2:
  8983. if (mmu_enabled)
  8984. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8985. else
  8986. M600_load_filament_movements();
  8987. break;
  8988. // Filament loaded properly but color is not clear
  8989. case 3:
  8990. st_synchronize();
  8991. load_filament_final_feed();
  8992. lcd_loading_color();
  8993. st_synchronize();
  8994. break;
  8995. // Everything good
  8996. default:
  8997. lcd_change_success();
  8998. break;
  8999. }
  9000. }
  9001. }
  9002. //! @brief Wait for user action
  9003. //!
  9004. //! Beep, manage nozzle heater and wait for user to start unload filament
  9005. //! If times out, active extruder temperature is set to 0.
  9006. //!
  9007. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9008. void M600_wait_for_user(float HotendTempBckp) {
  9009. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9010. int counterBeep = 0;
  9011. unsigned long waiting_start_time = _millis();
  9012. uint8_t wait_for_user_state = 0;
  9013. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9014. bool bFirst=true;
  9015. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9016. manage_heater();
  9017. manage_inactivity(true);
  9018. #if BEEPER > 0
  9019. if (counterBeep == 500) {
  9020. counterBeep = 0;
  9021. }
  9022. SET_OUTPUT(BEEPER);
  9023. if (counterBeep == 0) {
  9024. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9025. {
  9026. bFirst=false;
  9027. WRITE(BEEPER, HIGH);
  9028. }
  9029. }
  9030. if (counterBeep == 20) {
  9031. WRITE(BEEPER, LOW);
  9032. }
  9033. counterBeep++;
  9034. #endif //BEEPER > 0
  9035. switch (wait_for_user_state) {
  9036. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9037. delay_keep_alive(4);
  9038. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9039. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9040. wait_for_user_state = 1;
  9041. setAllTargetHotends(0);
  9042. st_synchronize();
  9043. disable_e0();
  9044. disable_e1();
  9045. disable_e2();
  9046. }
  9047. break;
  9048. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9049. delay_keep_alive(4);
  9050. if (lcd_clicked()) {
  9051. setTargetHotend(HotendTempBckp, active_extruder);
  9052. lcd_wait_for_heater();
  9053. wait_for_user_state = 2;
  9054. }
  9055. break;
  9056. case 2: //waiting for nozzle to reach target temperature
  9057. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9058. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9059. waiting_start_time = _millis();
  9060. wait_for_user_state = 0;
  9061. }
  9062. else {
  9063. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9064. lcd_set_cursor(1, 4);
  9065. lcd_print(ftostr3(degHotend(active_extruder)));
  9066. }
  9067. break;
  9068. }
  9069. }
  9070. WRITE(BEEPER, LOW);
  9071. }
  9072. void M600_load_filament_movements()
  9073. {
  9074. #ifdef SNMM
  9075. display_loading();
  9076. do
  9077. {
  9078. current_position[E_AXIS] += 0.002;
  9079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  9080. delay_keep_alive(2);
  9081. }
  9082. while (!lcd_clicked());
  9083. st_synchronize();
  9084. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  9086. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  9088. current_position[E_AXIS] += 40;
  9089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  9090. current_position[E_AXIS] += 10;
  9091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  9092. #else
  9093. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9095. #endif
  9096. load_filament_final_feed();
  9097. lcd_loading_filament();
  9098. st_synchronize();
  9099. }
  9100. void M600_load_filament() {
  9101. //load filament for single material and SNMM
  9102. lcd_wait_interact();
  9103. //load_filament_time = _millis();
  9104. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9105. #ifdef PAT9125
  9106. fsensor_autoload_check_start();
  9107. #endif //PAT9125
  9108. while(!lcd_clicked())
  9109. {
  9110. manage_heater();
  9111. manage_inactivity(true);
  9112. #ifdef FILAMENT_SENSOR
  9113. if (fsensor_check_autoload())
  9114. {
  9115. Sound_MakeCustom(50,1000,false);
  9116. break;
  9117. }
  9118. #endif //FILAMENT_SENSOR
  9119. }
  9120. #ifdef PAT9125
  9121. fsensor_autoload_check_stop();
  9122. #endif //PAT9125
  9123. KEEPALIVE_STATE(IN_HANDLER);
  9124. #ifdef FSENSOR_QUALITY
  9125. fsensor_oq_meassure_start(70);
  9126. #endif //FSENSOR_QUALITY
  9127. M600_load_filament_movements();
  9128. Sound_MakeCustom(50,1000,false);
  9129. #ifdef FSENSOR_QUALITY
  9130. fsensor_oq_meassure_stop();
  9131. if (!fsensor_oq_result())
  9132. {
  9133. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9134. lcd_update_enable(true);
  9135. lcd_update(2);
  9136. if (disable)
  9137. fsensor_disable();
  9138. }
  9139. #endif //FSENSOR_QUALITY
  9140. lcd_update_enable(false);
  9141. }
  9142. //! @brief Wait for click
  9143. //!
  9144. //! Set
  9145. void marlin_wait_for_click()
  9146. {
  9147. int8_t busy_state_backup = busy_state;
  9148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9149. lcd_consume_click();
  9150. while(!lcd_clicked())
  9151. {
  9152. manage_heater();
  9153. manage_inactivity(true);
  9154. lcd_update(0);
  9155. }
  9156. KEEPALIVE_STATE(busy_state_backup);
  9157. }
  9158. #define FIL_LOAD_LENGTH 60
  9159. #ifdef PSU_Delta
  9160. bool bEnableForce_z;
  9161. void init_force_z()
  9162. {
  9163. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9164. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9165. disable_force_z();
  9166. }
  9167. void check_force_z()
  9168. {
  9169. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9170. init_force_z(); // causes enforced switching into disable-state
  9171. }
  9172. void disable_force_z()
  9173. {
  9174. uint16_t z_microsteps=0;
  9175. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9176. bEnableForce_z=false;
  9177. // switching to silent mode
  9178. #ifdef TMC2130
  9179. tmc2130_mode=TMC2130_MODE_SILENT;
  9180. update_mode_profile();
  9181. tmc2130_init(true);
  9182. #endif // TMC2130
  9183. axis_known_position[Z_AXIS]=false;
  9184. }
  9185. void enable_force_z()
  9186. {
  9187. if(bEnableForce_z)
  9188. return; // motor already enabled (may be ;-p )
  9189. bEnableForce_z=true;
  9190. // mode recovering
  9191. #ifdef TMC2130
  9192. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9193. update_mode_profile();
  9194. tmc2130_init(true);
  9195. #endif // TMC2130
  9196. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9197. }
  9198. #endif // PSU_Delta