mmu.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_return_to_status();
  11. #define MMU_TIMEOUT 100
  12. bool mmu_enabled = false;
  13. uint8_t mmu_extruder = 0;
  14. int8_t mmu_finda = -1;
  15. int16_t mmu_version = -1;
  16. //clear rx buffer
  17. void mmu_clr_rx_buf(void)
  18. {
  19. while (fgetc(uart2io) >= 0);
  20. }
  21. //send command - puts
  22. int mmu_puts_P(const char* str)
  23. {
  24. mmu_clr_rx_buf(); //clear rx buffer
  25. return fputs_P(str, uart2io); //send command
  26. }
  27. //send command - printf
  28. int mmu_printf_P(const char* format, ...)
  29. {
  30. va_list args;
  31. va_start(args, format);
  32. mmu_clr_rx_buf(); //clear rx buffer
  33. int r = vfprintf_P(uart2io, format, args); //send command
  34. va_end(args);
  35. return r;
  36. }
  37. //check 'ok' response
  38. int8_t mmu_rx_ok(void)
  39. {
  40. return uart2_rx_str_P(PSTR("ok\n"));
  41. }
  42. //check 'start' response
  43. int8_t mmu_rx_start(void)
  44. {
  45. return uart2_rx_str_P(PSTR("start\n"));
  46. }
  47. //initialize mmu_unit
  48. bool mmu_init(void)
  49. {
  50. uart2_init(); //init uart2
  51. _delay_ms(10); //wait 10ms for sure
  52. if (mmu_reset()) //reset mmu
  53. {
  54. mmu_read_finda();
  55. mmu_read_version();
  56. return true;
  57. }
  58. return false;
  59. }
  60. bool mmu_reset(void)
  61. {
  62. mmu_puts_P(PSTR("X0\n")); //send command
  63. unsigned char timeout = 10; //timeout = 10x100ms
  64. while ((mmu_rx_start() <= 0) && (--timeout))
  65. delay_keep_alive(MMU_TIMEOUT);
  66. mmu_enabled = timeout?true:false;
  67. return mmu_enabled;
  68. }
  69. int8_t mmu_read_finda(void)
  70. {
  71. mmu_puts_P(PSTR("P0\n"));
  72. unsigned char timeout = 10; //10x100ms
  73. while ((mmu_rx_ok() <= 0) && (--timeout))
  74. delay_keep_alive(MMU_TIMEOUT);
  75. mmu_finda = -1;
  76. if (timeout)
  77. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
  78. return mmu_finda;
  79. }
  80. int16_t mmu_read_version(void)
  81. {
  82. mmu_puts_P(PSTR("S1\n"));
  83. unsigned char timeout = 10; //10x100ms
  84. while ((mmu_rx_ok() <= 0) && (--timeout))
  85. delay_keep_alive(MMU_TIMEOUT);
  86. if (timeout)
  87. fscanf_P(uart2io, PSTR("%u"), &mmu_version);
  88. return mmu_version;
  89. }
  90. void extr_mov(float shift, float feed_rate)
  91. { //move extruder no matter what the current heater temperature is
  92. set_extrude_min_temp(.0);
  93. current_position[E_AXIS] += shift;
  94. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  95. set_extrude_min_temp(EXTRUDE_MINTEMP);
  96. }
  97. void change_extr(int
  98. #ifdef SNMM
  99. extr
  100. #endif //SNMM
  101. ) { //switches multiplexer for extruders
  102. #ifdef SNMM
  103. st_synchronize();
  104. delay(100);
  105. disable_e0();
  106. disable_e1();
  107. disable_e2();
  108. mmu_extruder = extr;
  109. pinMode(E_MUX0_PIN, OUTPUT);
  110. pinMode(E_MUX1_PIN, OUTPUT);
  111. switch (extr) {
  112. case 1:
  113. WRITE(E_MUX0_PIN, HIGH);
  114. WRITE(E_MUX1_PIN, LOW);
  115. break;
  116. case 2:
  117. WRITE(E_MUX0_PIN, LOW);
  118. WRITE(E_MUX1_PIN, HIGH);
  119. break;
  120. case 3:
  121. WRITE(E_MUX0_PIN, HIGH);
  122. WRITE(E_MUX1_PIN, HIGH);
  123. break;
  124. default:
  125. WRITE(E_MUX0_PIN, LOW);
  126. WRITE(E_MUX1_PIN, LOW);
  127. break;
  128. }
  129. delay(100);
  130. #endif
  131. }
  132. int get_ext_nr()
  133. { //reads multiplexer input pins and return current extruder number (counted from 0)
  134. #ifndef SNMM
  135. return(mmu_extruder); //update needed
  136. #else
  137. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  138. #endif
  139. }
  140. void display_loading()
  141. {
  142. switch (mmu_extruder)
  143. {
  144. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  145. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  146. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  147. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  148. }
  149. }
  150. void extr_adj(int extruder) //loading filament for SNMM
  151. {
  152. #ifndef SNMM
  153. printf_P(PSTR("L%d \n"),extruder);
  154. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  155. //show which filament is currently loaded
  156. lcd_update_enable(false);
  157. lcd_clear();
  158. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  159. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  160. //else lcd.print(" ");
  161. lcd_print(" ");
  162. lcd_print(mmu_extruder + 1);
  163. // get response
  164. manage_response(false, false);
  165. lcd_update_enable(true);
  166. //lcd_return_to_status();
  167. #else
  168. bool correct;
  169. max_feedrate[E_AXIS] =80;
  170. //max_feedrate[E_AXIS] = 50;
  171. START:
  172. lcd_clear();
  173. lcd_set_cursor(0, 0);
  174. switch (extruder) {
  175. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  176. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  177. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  178. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  179. }
  180. KEEPALIVE_STATE(PAUSED_FOR_USER);
  181. do{
  182. extr_mov(0.001,1000);
  183. delay_keep_alive(2);
  184. } while (!lcd_clicked());
  185. //delay_keep_alive(500);
  186. KEEPALIVE_STATE(IN_HANDLER);
  187. st_synchronize();
  188. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  189. //if (!correct) goto START;
  190. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  191. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  192. extr_mov(bowden_length[extruder], 500);
  193. lcd_clear();
  194. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  195. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  196. else lcd_print(" ");
  197. lcd_print(mmu_extruder + 1);
  198. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  199. st_synchronize();
  200. max_feedrate[E_AXIS] = 50;
  201. lcd_update_enable(true);
  202. lcd_return_to_status();
  203. lcdDrawUpdate = 2;
  204. #endif
  205. }
  206. void extr_unload()
  207. { //unload just current filament for multimaterial printers
  208. #ifdef SNMM
  209. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  210. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  211. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  212. #endif
  213. if (degHotend0() > EXTRUDE_MINTEMP)
  214. {
  215. #ifndef SNMM
  216. st_synchronize();
  217. //show which filament is currently unloaded
  218. lcd_update_enable(false);
  219. lcd_clear();
  220. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  221. lcd_print(" ");
  222. lcd_print(mmu_extruder + 1);
  223. current_position[E_AXIS] -= 80;
  224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  225. st_synchronize();
  226. printf_P(PSTR("U0\n"));
  227. fprintf_P(uart2io, PSTR("U0\n"));
  228. // get response
  229. manage_response(false, true);
  230. lcd_update_enable(true);
  231. #else //SNMM
  232. lcd_clear();
  233. lcd_display_message_fullscreen_P(PSTR(""));
  234. max_feedrate[E_AXIS] = 50;
  235. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  236. lcd_print(" ");
  237. lcd_print(mmu_extruder + 1);
  238. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  239. if (current_position[Z_AXIS] < 15) {
  240. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  241. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  242. }
  243. current_position[E_AXIS] += 10; //extrusion
  244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  245. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  246. if (current_temperature[0] < 230) { //PLA & all other filaments
  247. current_position[E_AXIS] += 5.4;
  248. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  249. current_position[E_AXIS] += 3.2;
  250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  251. current_position[E_AXIS] += 3;
  252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  253. }
  254. else { //ABS
  255. current_position[E_AXIS] += 3.1;
  256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  257. current_position[E_AXIS] += 3.1;
  258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  259. current_position[E_AXIS] += 4;
  260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  261. /*current_position[X_AXIS] += 23; //delay
  262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  263. current_position[X_AXIS] -= 23; //delay
  264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  265. delay_keep_alive(4700);
  266. }
  267. max_feedrate[E_AXIS] = 80;
  268. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  270. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  272. st_synchronize();
  273. //st_current_init();
  274. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  275. else st_current_set(2, tmp_motor_loud[2]);
  276. lcd_update_enable(true);
  277. lcd_return_to_status();
  278. max_feedrate[E_AXIS] = 50;
  279. #endif //SNMM
  280. }
  281. else
  282. {
  283. lcd_clear();
  284. lcd_set_cursor(0, 0);
  285. lcd_puts_P(_T(MSG_ERROR));
  286. lcd_set_cursor(0, 2);
  287. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  288. delay(2000);
  289. lcd_clear();
  290. }
  291. //lcd_return_to_status();
  292. }
  293. //wrapper functions for loading filament
  294. void extr_adj_0()
  295. {
  296. #ifndef SNMM
  297. enquecommand_P(PSTR("M701 E0"));
  298. #else
  299. change_extr(0);
  300. extr_adj(0);
  301. #endif
  302. }
  303. void extr_adj_1()
  304. {
  305. #ifndef SNMM
  306. enquecommand_P(PSTR("M701 E1"));
  307. #else
  308. change_extr(1);
  309. extr_adj(1);
  310. #endif
  311. }
  312. void extr_adj_2()
  313. {
  314. #ifndef SNMM
  315. enquecommand_P(PSTR("M701 E2"));
  316. #else
  317. change_extr(2);
  318. extr_adj(2);
  319. #endif
  320. }
  321. void extr_adj_3()
  322. {
  323. #ifndef SNMM
  324. enquecommand_P(PSTR("M701 E3"));
  325. #else
  326. change_extr(3);
  327. extr_adj(3);
  328. #endif
  329. }
  330. void extr_adj_4()
  331. {
  332. #ifndef SNMM
  333. enquecommand_P(PSTR("M701 E4"));
  334. #else
  335. change_extr(4);
  336. extr_adj(4);
  337. #endif
  338. }
  339. void load_all()
  340. {
  341. #ifndef SNMM
  342. enquecommand_P(PSTR("M701 E0"));
  343. enquecommand_P(PSTR("M701 E1"));
  344. enquecommand_P(PSTR("M701 E2"));
  345. enquecommand_P(PSTR("M701 E3"));
  346. enquecommand_P(PSTR("M701 E4"));
  347. #else
  348. for (int i = 0; i < 4; i++)
  349. {
  350. change_extr(i);
  351. extr_adj(i);
  352. }
  353. #endif
  354. }
  355. //wrapper functions for changing extruders
  356. void extr_change_0()
  357. {
  358. change_extr(0);
  359. lcd_return_to_status();
  360. }
  361. void extr_change_1()
  362. {
  363. change_extr(1);
  364. lcd_return_to_status();
  365. }
  366. void extr_change_2()
  367. {
  368. change_extr(2);
  369. lcd_return_to_status();
  370. }
  371. void extr_change_3()
  372. {
  373. change_extr(3);
  374. lcd_return_to_status();
  375. }
  376. //wrapper functions for unloading filament
  377. void extr_unload_all()
  378. {
  379. if (degHotend0() > EXTRUDE_MINTEMP)
  380. {
  381. for (int i = 0; i < 4; i++)
  382. {
  383. change_extr(i);
  384. extr_unload();
  385. }
  386. }
  387. else
  388. {
  389. lcd_clear();
  390. lcd_set_cursor(0, 0);
  391. lcd_puts_P(_T(MSG_ERROR));
  392. lcd_set_cursor(0, 2);
  393. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  394. delay(2000);
  395. lcd_clear();
  396. lcd_return_to_status();
  397. }
  398. }
  399. //unloading just used filament (for snmm)
  400. void extr_unload_used()
  401. {
  402. if (degHotend0() > EXTRUDE_MINTEMP) {
  403. for (int i = 0; i < 4; i++) {
  404. if (snmm_filaments_used & (1 << i)) {
  405. change_extr(i);
  406. extr_unload();
  407. }
  408. }
  409. snmm_filaments_used = 0;
  410. }
  411. else {
  412. lcd_clear();
  413. lcd_set_cursor(0, 0);
  414. lcd_puts_P(_T(MSG_ERROR));
  415. lcd_set_cursor(0, 2);
  416. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  417. delay(2000);
  418. lcd_clear();
  419. lcd_return_to_status();
  420. }
  421. }
  422. void extr_unload_0()
  423. {
  424. change_extr(0);
  425. extr_unload();
  426. }
  427. void extr_unload_1()
  428. {
  429. change_extr(1);
  430. extr_unload();
  431. }
  432. void extr_unload_2()
  433. {
  434. change_extr(2);
  435. extr_unload();
  436. }
  437. void extr_unload_3()
  438. {
  439. change_extr(3);
  440. extr_unload();
  441. }
  442. void extr_unload_4()
  443. {
  444. change_extr(4);
  445. extr_unload();
  446. }