Marlin_main.cpp 287 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. float distance_from_min[2];
  272. bool fan_state[2];
  273. int fan_edge_counter[2];
  274. int fan_speed[2];
  275. char dir_names[3][9];
  276. bool sortAlpha = false;
  277. bool volumetric_enabled = false;
  278. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  279. #if EXTRUDERS > 1
  280. , DEFAULT_NOMINAL_FILAMENT_DIA
  281. #if EXTRUDERS > 2
  282. , DEFAULT_NOMINAL_FILAMENT_DIA
  283. #endif
  284. #endif
  285. };
  286. float extruder_multiplier[EXTRUDERS] = {1.0
  287. #if EXTRUDERS > 1
  288. , 1.0
  289. #if EXTRUDERS > 2
  290. , 1.0
  291. #endif
  292. #endif
  293. };
  294. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  295. float add_homing[3]={0,0,0};
  296. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  297. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  298. bool axis_known_position[3] = {false, false, false};
  299. float zprobe_zoffset;
  300. // Extruder offset
  301. #if EXTRUDERS > 1
  302. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  303. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  304. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  305. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  306. #endif
  307. };
  308. #endif
  309. uint8_t active_extruder = 0;
  310. int fanSpeed=0;
  311. #ifdef FWRETRACT
  312. bool autoretract_enabled=false;
  313. bool retracted[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. bool retracted_swap[EXTRUDERS]={false
  322. #if EXTRUDERS > 1
  323. , false
  324. #if EXTRUDERS > 2
  325. , false
  326. #endif
  327. #endif
  328. };
  329. float retract_length = RETRACT_LENGTH;
  330. float retract_length_swap = RETRACT_LENGTH_SWAP;
  331. float retract_feedrate = RETRACT_FEEDRATE;
  332. float retract_zlift = RETRACT_ZLIFT;
  333. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  334. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  335. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  336. #endif
  337. #ifdef ULTIPANEL
  338. #ifdef PS_DEFAULT_OFF
  339. bool powersupply = false;
  340. #else
  341. bool powersupply = true;
  342. #endif
  343. #endif
  344. bool cancel_heatup = false ;
  345. #ifdef HOST_KEEPALIVE_FEATURE
  346. int busy_state = NOT_BUSY;
  347. static long prev_busy_signal_ms = -1;
  348. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  349. #else
  350. #define host_keepalive();
  351. #define KEEPALIVE_STATE(n);
  352. #endif
  353. const char errormagic[] PROGMEM = "Error:";
  354. const char echomagic[] PROGMEM = "echo:";
  355. bool no_response = false;
  356. uint8_t important_status;
  357. uint8_t saved_filament_type;
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. #ifdef TMC2130
  492. extern int8_t CrashDetectMenu;
  493. void crashdet_enable()
  494. {
  495. // MYSERIAL.println("crashdet_enable");
  496. tmc2130_sg_stop_on_crash = true;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  498. CrashDetectMenu = 1;
  499. }
  500. void crashdet_disable()
  501. {
  502. // MYSERIAL.println("crashdet_disable");
  503. tmc2130_sg_stop_on_crash = false;
  504. tmc2130_sg_crash = 0;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  506. CrashDetectMenu = 0;
  507. }
  508. void crashdet_stop_and_save_print()
  509. {
  510. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  511. }
  512. void crashdet_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. // babystep_apply();
  516. }
  517. void crashdet_stop_and_save_print2()
  518. {
  519. cli();
  520. planner_abort_hard(); //abort printing
  521. cmdqueue_reset(); //empty cmdqueue
  522. card.sdprinting = false;
  523. card.closefile();
  524. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  525. st_reset_timer();
  526. sei();
  527. }
  528. void crashdet_detected(uint8_t mask)
  529. {
  530. // printf("CRASH_DETECTED");
  531. /* while (!is_buffer_empty())
  532. {
  533. process_commands();
  534. cmdqueue_pop_front();
  535. }*/
  536. st_synchronize();
  537. lcd_update_enable(true);
  538. lcd_implementation_clear();
  539. lcd_update(2);
  540. if (mask & X_AXIS_MASK)
  541. {
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  543. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  544. }
  545. if (mask & Y_AXIS_MASK)
  546. {
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  548. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  549. }
  550. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  551. bool yesno = true;
  552. #else
  553. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  554. #endif
  555. lcd_update_enable(true);
  556. lcd_update(2);
  557. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  558. if (yesno)
  559. {
  560. enquecommand_P(PSTR("G28 X Y"));
  561. enquecommand_P(PSTR("CRASH_RECOVER"));
  562. }
  563. else
  564. {
  565. enquecommand_P(PSTR("CRASH_CANCEL"));
  566. }
  567. }
  568. void crashdet_recover()
  569. {
  570. crashdet_restore_print_and_continue();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. void crashdet_cancel()
  574. {
  575. card.sdprinting = false;
  576. card.closefile();
  577. tmc2130_sg_stop_on_crash = true;
  578. }
  579. #endif //TMC2130
  580. void failstats_reset_print()
  581. {
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  585. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  586. }
  587. #ifdef MESH_BED_LEVELING
  588. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  589. #endif
  590. // Factory reset function
  591. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  592. // Level input parameter sets depth of reset
  593. // Quiet parameter masks all waitings for user interact.
  594. int er_progress = 0;
  595. void factory_reset(char level, bool quiet)
  596. {
  597. lcd_implementation_clear();
  598. int cursor_pos = 0;
  599. switch (level) {
  600. // Level 0: Language reset
  601. case 0:
  602. WRITE(BEEPER, HIGH);
  603. _delay_ms(100);
  604. WRITE(BEEPER, LOW);
  605. lcd_force_language_selection();
  606. break;
  607. //Level 1: Reset statistics
  608. case 1:
  609. WRITE(BEEPER, HIGH);
  610. _delay_ms(100);
  611. WRITE(BEEPER, LOW);
  612. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  613. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  621. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  622. lcd_menu_statistics();
  623. break;
  624. // Level 2: Prepare for shipping
  625. case 2:
  626. //lcd_printPGM(PSTR("Factory RESET"));
  627. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  628. // Force language selection at the next boot up.
  629. lcd_force_language_selection();
  630. // Force the "Follow calibration flow" message at the next boot up.
  631. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  632. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  633. farm_no = 0;
  634. farm_mode == false;
  635. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  636. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. //_delay_ms(2000);
  641. break;
  642. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  643. case 3:
  644. lcd_printPGM(PSTR("Factory RESET"));
  645. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. er_progress = 0;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. // Erase EEPROM
  653. for (int i = 0; i < 4096; i++) {
  654. eeprom_write_byte((uint8_t*)i, 0xFF);
  655. if (i % 41 == 0) {
  656. er_progress++;
  657. lcd_print_at_PGM(3, 3, PSTR(" "));
  658. lcd_implementation_print_at(3, 3, er_progress);
  659. lcd_printPGM(PSTR("%"));
  660. }
  661. }
  662. break;
  663. case 4:
  664. bowden_menu();
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. #include "LiquidCrystal_Prusa.h"
  671. extern LiquidCrystal_Prusa lcd;
  672. FILE _lcdout = {0};
  673. int lcd_putchar(char c, FILE *stream)
  674. {
  675. lcd.write(c);
  676. return 0;
  677. }
  678. FILE _uartout = {0};
  679. int uart_putchar(char c, FILE *stream)
  680. {
  681. MYSERIAL.write(c);
  682. return 0;
  683. }
  684. void lcd_splash()
  685. {
  686. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  687. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  688. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  689. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  690. }
  691. void factory_reset()
  692. {
  693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. KEEPALIVE_STATE(IN_HANDLER);
  747. }
  748. void show_fw_version_warnings() {
  749. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  750. switch (FW_DEV_VERSION) {
  751. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  752. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  753. case(FW_VERSION_DEVEL):
  754. case(FW_VERSION_DEBUG):
  755. lcd_update_enable(false);
  756. lcd_implementation_clear();
  757. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  758. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  759. #else
  760. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  761. #endif
  762. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  763. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  764. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  765. lcd_wait_for_click();
  766. break;
  767. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  768. }
  769. lcd_update_enable(true);
  770. }
  771. uint8_t check_printer_version()
  772. {
  773. uint8_t version_changed = 0;
  774. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  775. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  776. if (printer_type != PRINTER_TYPE) {
  777. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  778. else version_changed |= 0b10;
  779. }
  780. if (motherboard != MOTHERBOARD) {
  781. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  782. else version_changed |= 0b01;
  783. }
  784. return version_changed;
  785. }
  786. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  787. {
  788. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  789. }
  790. // "Setup" function is called by the Arduino framework on startup.
  791. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  792. // are initialized by the main() routine provided by the Arduino framework.
  793. void setup()
  794. {
  795. lcd_init();
  796. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  797. lcd_splash();
  798. setup_killpin();
  799. setup_powerhold();
  800. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  801. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  802. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  803. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  804. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  805. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  806. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  807. if (farm_mode)
  808. {
  809. no_response = true; //we need confirmation by recieving PRUSA thx
  810. important_status = 8;
  811. prusa_statistics(8);
  812. selectedSerialPort = 1;
  813. }
  814. MYSERIAL.begin(BAUDRATE);
  815. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  816. stdout = uartout;
  817. SERIAL_PROTOCOLLNPGM("start");
  818. SERIAL_ECHO_START;
  819. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  820. #if 0
  821. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  822. for (int i = 0; i < 4096; ++i) {
  823. int b = eeprom_read_byte((unsigned char*)i);
  824. if (b != 255) {
  825. SERIAL_ECHO(i);
  826. SERIAL_ECHO(":");
  827. SERIAL_ECHO(b);
  828. SERIAL_ECHOLN("");
  829. }
  830. }
  831. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  832. #endif
  833. // Check startup - does nothing if bootloader sets MCUSR to 0
  834. byte mcu = MCUSR;
  835. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  836. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  837. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  838. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  839. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  840. if (mcu & 1) puts_P(MSG_POWERUP);
  841. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  842. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  843. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  844. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  845. MCUSR = 0;
  846. //SERIAL_ECHORPGM(MSG_MARLIN);
  847. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  848. #ifdef STRING_VERSION_CONFIG_H
  849. #ifdef STRING_CONFIG_H_AUTHOR
  850. SERIAL_ECHO_START;
  851. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  852. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  853. SERIAL_ECHORPGM(MSG_AUTHOR);
  854. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  855. SERIAL_ECHOPGM("Compiled: ");
  856. SERIAL_ECHOLNPGM(__DATE__);
  857. #endif
  858. #endif
  859. SERIAL_ECHO_START;
  860. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  861. SERIAL_ECHO(freeMemory());
  862. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  863. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  864. //lcd_update_enable(false); // why do we need this?? - andre
  865. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  866. bool previous_settings_retrieved = false;
  867. uint8_t hw_changed = check_printer_version();
  868. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  869. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  870. }
  871. else { //printer version was changed so use default settings
  872. Config_ResetDefault();
  873. }
  874. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  875. tp_init(); // Initialize temperature loop
  876. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  877. plan_init(); // Initialize planner;
  878. factory_reset();
  879. #ifdef TMC2130
  880. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  881. if (silentMode == 0xff) silentMode = 0;
  882. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  883. tmc2130_mode = TMC2130_MODE_NORMAL;
  884. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  885. if (crashdet)
  886. {
  887. crashdet_enable();
  888. MYSERIAL.println("CrashDetect ENABLED!");
  889. }
  890. else
  891. {
  892. crashdet_disable();
  893. MYSERIAL.println("CrashDetect DISABLED");
  894. }
  895. #ifdef TMC2130_LINEARITY_CORRECTION
  896. #ifdef EXPERIMENTAL_FEATURES
  897. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  898. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  899. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  900. #endif //EXPERIMENTAL_FEATURES
  901. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  902. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  903. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  904. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  905. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  906. #endif //TMC2130_LINEARITY_CORRECTION
  907. #ifdef TMC2130_VARIABLE_RESOLUTION
  908. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  909. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  910. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  911. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  912. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  913. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  914. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  915. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  916. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  917. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  918. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  919. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  920. #else //TMC2130_VARIABLE_RESOLUTION
  921. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  922. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  923. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  924. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  925. #endif //TMC2130_VARIABLE_RESOLUTION
  926. #endif //TMC2130
  927. #ifdef NEW_SPI
  928. spi_init();
  929. #endif //NEW_SPI
  930. st_init(); // Initialize stepper, this enables interrupts!
  931. #ifdef TMC2130
  932. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  933. tmc2130_init();
  934. #endif //TMC2130
  935. setup_photpin();
  936. servo_init();
  937. // Reset the machine correction matrix.
  938. // It does not make sense to load the correction matrix until the machine is homed.
  939. world2machine_reset();
  940. #ifdef PAT9125
  941. fsensor_init();
  942. #endif //PAT9125
  943. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  944. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  945. #endif
  946. setup_homepin();
  947. #ifdef TMC2130
  948. if (1) {
  949. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  950. // try to run to zero phase before powering the Z motor.
  951. // Move in negative direction
  952. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  953. // Round the current micro-micro steps to micro steps.
  954. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  955. // Until the phase counter is reset to zero.
  956. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  957. delay(2);
  958. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  959. delay(2);
  960. }
  961. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  962. }
  963. #endif //TMC2130
  964. #if defined(Z_AXIS_ALWAYS_ON)
  965. enable_z();
  966. #endif
  967. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  968. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  969. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  970. if (farm_no == 0xFFFF) farm_no = 0;
  971. if (farm_mode)
  972. {
  973. prusa_statistics(8);
  974. }
  975. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  976. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  977. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  978. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  979. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  980. // where all the EEPROM entries are set to 0x0ff.
  981. // Once a firmware boots up, it forces at least a language selection, which changes
  982. // EEPROM_LANG to number lower than 0x0ff.
  983. // 1) Set a high power mode.
  984. #ifdef TMC2130
  985. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  986. tmc2130_mode = TMC2130_MODE_NORMAL;
  987. #endif //TMC2130
  988. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  989. }
  990. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  991. // but this times out if a blocking dialog is shown in setup().
  992. card.initsd();
  993. #ifdef DEBUG_SD_SPEED_TEST
  994. if (card.cardOK)
  995. {
  996. uint8_t* buff = (uint8_t*)block_buffer;
  997. uint32_t block = 0;
  998. uint32_t sumr = 0;
  999. uint32_t sumw = 0;
  1000. for (int i = 0; i < 1024; i++)
  1001. {
  1002. uint32_t u = micros();
  1003. bool res = card.card.readBlock(i, buff);
  1004. u = micros() - u;
  1005. if (res)
  1006. {
  1007. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1008. sumr += u;
  1009. u = micros();
  1010. res = card.card.writeBlock(i, buff);
  1011. u = micros() - u;
  1012. if (res)
  1013. {
  1014. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1015. sumw += u;
  1016. }
  1017. else
  1018. {
  1019. printf_P(PSTR("writeBlock %4d error\n"), i);
  1020. break;
  1021. }
  1022. }
  1023. else
  1024. {
  1025. printf_P(PSTR("readBlock %4d error\n"), i);
  1026. break;
  1027. }
  1028. }
  1029. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1030. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1031. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1032. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1033. }
  1034. else
  1035. printf_P(PSTR("Card NG!\n"));
  1036. #endif DEBUG_SD_SPEED_TEST
  1037. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1038. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1039. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1040. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1041. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1042. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1043. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1044. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1045. #ifdef SNMM
  1046. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1047. int _z = BOWDEN_LENGTH;
  1048. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1049. }
  1050. #endif
  1051. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1052. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1053. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1054. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1055. if (lang_selected >= LANG_NUM){
  1056. lcd_mylang();
  1057. }
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1060. temp_cal_active = false;
  1061. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1062. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1063. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1064. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1065. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0); //40C
  1066. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0); //45C
  1067. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0); //50C
  1068. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0); //55C
  1069. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0); //60C
  1070. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1071. temp_cal_active = false;
  1072. }
  1073. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1074. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1075. }
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1077. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1078. }
  1079. check_babystep(); //checking if Z babystep is in allowed range
  1080. #ifdef UVLO_SUPPORT
  1081. setup_uvlo_interrupt();
  1082. #endif //UVLO_SUPPORT
  1083. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1084. setup_fan_interrupt();
  1085. #endif //DEBUG_DISABLE_FANCHECK
  1086. #ifdef PAT9125
  1087. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1088. fsensor_setup_interrupt();
  1089. #endif //DEBUG_DISABLE_FSENSORCHECK
  1090. #endif //PAT9125
  1091. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1092. #ifndef DEBUG_DISABLE_STARTMSGS
  1093. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1094. show_fw_version_warnings();
  1095. switch (hw_changed) {
  1096. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1097. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1098. case(0b01):
  1099. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1100. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1101. break;
  1102. case(0b10):
  1103. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1104. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1105. break;
  1106. case(0b11):
  1107. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1108. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1109. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1110. break;
  1111. default: break; //no change, show no message
  1112. }
  1113. if (!previous_settings_retrieved) {
  1114. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1115. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1116. }
  1117. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1118. lcd_wizard(0);
  1119. }
  1120. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1121. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1122. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1123. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1124. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1125. // Show the message.
  1126. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1127. }
  1128. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1129. // Show the message.
  1130. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1131. lcd_update_enable(true);
  1132. }
  1133. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1134. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1135. lcd_update_enable(true);
  1136. }
  1137. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1138. // Show the message.
  1139. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1140. }
  1141. }
  1142. #ifndef DEBUG_DISABLE_FORCE_SELFTEST
  1143. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1144. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1145. update_current_firmware_version_to_eeprom();
  1146. lcd_selftest();
  1147. }
  1148. #endif //DEBUG_DISABLE_FORCE_SELFTEST
  1149. KEEPALIVE_STATE(IN_PROCESS);
  1150. #endif //DEBUG_DISABLE_STARTMSGS
  1151. lcd_update_enable(true);
  1152. lcd_implementation_clear();
  1153. lcd_update(2);
  1154. // Store the currently running firmware into an eeprom,
  1155. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1156. update_current_firmware_version_to_eeprom();
  1157. #ifdef TMC2130
  1158. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1159. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1160. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1161. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1162. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1163. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1164. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1165. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1166. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1167. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1168. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1169. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1170. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1171. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1172. #endif //TMC2130
  1173. #ifdef UVLO_SUPPORT
  1174. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1175. /*
  1176. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1177. else {
  1178. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1179. lcd_update_enable(true);
  1180. lcd_update(2);
  1181. lcd_setstatuspgm(WELCOME_MSG);
  1182. }
  1183. */
  1184. manage_heater(); // Update temperatures
  1185. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1186. MYSERIAL.println("Power panic detected!");
  1187. MYSERIAL.print("Current bed temp:");
  1188. MYSERIAL.println(degBed());
  1189. MYSERIAL.print("Saved bed temp:");
  1190. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1191. #endif
  1192. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1193. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1194. MYSERIAL.println("Automatic recovery!");
  1195. #endif
  1196. recover_print(1);
  1197. }
  1198. else{
  1199. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1200. MYSERIAL.println("Normal recovery!");
  1201. #endif
  1202. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1203. else {
  1204. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1205. lcd_update_enable(true);
  1206. lcd_update(2);
  1207. lcd_setstatuspgm(WELCOME_MSG);
  1208. }
  1209. }
  1210. }
  1211. #endif //UVLO_SUPPORT
  1212. KEEPALIVE_STATE(NOT_BUSY);
  1213. #ifdef WATCHDOG
  1214. wdt_enable(WDTO_4S);
  1215. #endif //WATCHDOG
  1216. }
  1217. #ifdef PAT9125
  1218. void fsensor_init() {
  1219. int pat9125 = pat9125_init();
  1220. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1221. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1222. if (!pat9125)
  1223. {
  1224. fsensor = 0; //disable sensor
  1225. fsensor_not_responding = true;
  1226. }
  1227. else {
  1228. fsensor_not_responding = false;
  1229. }
  1230. puts_P(PSTR("FSensor "));
  1231. if (fsensor)
  1232. {
  1233. puts_P(PSTR("ENABLED\n"));
  1234. fsensor_enable();
  1235. }
  1236. else
  1237. {
  1238. puts_P(PSTR("DISABLED\n"));
  1239. fsensor_disable();
  1240. }
  1241. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1242. filament_autoload_enabled = false;
  1243. fsensor_disable();
  1244. #endif //DEBUG_DISABLE_FSENSORCHECK
  1245. }
  1246. #endif //PAT9125
  1247. void trace();
  1248. #define CHUNK_SIZE 64 // bytes
  1249. #define SAFETY_MARGIN 1
  1250. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1251. int chunkHead = 0;
  1252. int serial_read_stream() {
  1253. setTargetHotend(0, 0);
  1254. setTargetBed(0);
  1255. lcd_implementation_clear();
  1256. lcd_printPGM(PSTR(" Upload in progress"));
  1257. // first wait for how many bytes we will receive
  1258. uint32_t bytesToReceive;
  1259. // receive the four bytes
  1260. char bytesToReceiveBuffer[4];
  1261. for (int i=0; i<4; i++) {
  1262. int data;
  1263. while ((data = MYSERIAL.read()) == -1) {};
  1264. bytesToReceiveBuffer[i] = data;
  1265. }
  1266. // make it a uint32
  1267. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1268. // we're ready, notify the sender
  1269. MYSERIAL.write('+');
  1270. // lock in the routine
  1271. uint32_t receivedBytes = 0;
  1272. while (prusa_sd_card_upload) {
  1273. int i;
  1274. for (i=0; i<CHUNK_SIZE; i++) {
  1275. int data;
  1276. // check if we're not done
  1277. if (receivedBytes == bytesToReceive) {
  1278. break;
  1279. }
  1280. // read the next byte
  1281. while ((data = MYSERIAL.read()) == -1) {};
  1282. receivedBytes++;
  1283. // save it to the chunk
  1284. chunk[i] = data;
  1285. }
  1286. // write the chunk to SD
  1287. card.write_command_no_newline(&chunk[0]);
  1288. // notify the sender we're ready for more data
  1289. MYSERIAL.write('+');
  1290. // for safety
  1291. manage_heater();
  1292. // check if we're done
  1293. if(receivedBytes == bytesToReceive) {
  1294. trace(); // beep
  1295. card.closefile();
  1296. prusa_sd_card_upload = false;
  1297. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1298. return 0;
  1299. }
  1300. }
  1301. }
  1302. #ifdef HOST_KEEPALIVE_FEATURE
  1303. /**
  1304. * Output a "busy" message at regular intervals
  1305. * while the machine is not accepting commands.
  1306. */
  1307. void host_keepalive() {
  1308. if (farm_mode) return;
  1309. long ms = millis();
  1310. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1311. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1312. switch (busy_state) {
  1313. case IN_HANDLER:
  1314. case IN_PROCESS:
  1315. SERIAL_ECHO_START;
  1316. SERIAL_ECHOLNPGM("busy: processing");
  1317. break;
  1318. case PAUSED_FOR_USER:
  1319. SERIAL_ECHO_START;
  1320. SERIAL_ECHOLNPGM("busy: paused for user");
  1321. break;
  1322. case PAUSED_FOR_INPUT:
  1323. SERIAL_ECHO_START;
  1324. SERIAL_ECHOLNPGM("busy: paused for input");
  1325. break;
  1326. default:
  1327. break;
  1328. }
  1329. }
  1330. prev_busy_signal_ms = ms;
  1331. }
  1332. #endif
  1333. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1334. // Before loop(), the setup() function is called by the main() routine.
  1335. void loop()
  1336. {
  1337. KEEPALIVE_STATE(NOT_BUSY);
  1338. bool stack_integrity = true;
  1339. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1340. {
  1341. is_usb_printing = true;
  1342. usb_printing_counter--;
  1343. _usb_timer = millis();
  1344. }
  1345. if (usb_printing_counter == 0)
  1346. {
  1347. is_usb_printing = false;
  1348. }
  1349. if (prusa_sd_card_upload)
  1350. {
  1351. //we read byte-by byte
  1352. serial_read_stream();
  1353. } else
  1354. {
  1355. get_command();
  1356. #ifdef SDSUPPORT
  1357. card.checkautostart(false);
  1358. #endif
  1359. if(buflen)
  1360. {
  1361. cmdbuffer_front_already_processed = false;
  1362. #ifdef SDSUPPORT
  1363. if(card.saving)
  1364. {
  1365. // Saving a G-code file onto an SD-card is in progress.
  1366. // Saving starts with M28, saving until M29 is seen.
  1367. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1368. card.write_command(CMDBUFFER_CURRENT_STRING);
  1369. if(card.logging)
  1370. process_commands();
  1371. else
  1372. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1373. } else {
  1374. card.closefile();
  1375. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1376. }
  1377. } else {
  1378. process_commands();
  1379. }
  1380. #else
  1381. process_commands();
  1382. #endif //SDSUPPORT
  1383. if (! cmdbuffer_front_already_processed && buflen)
  1384. {
  1385. // ptr points to the start of the block currently being processed.
  1386. // The first character in the block is the block type.
  1387. char *ptr = cmdbuffer + bufindr;
  1388. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1389. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1390. union {
  1391. struct {
  1392. char lo;
  1393. char hi;
  1394. } lohi;
  1395. uint16_t value;
  1396. } sdlen;
  1397. sdlen.value = 0;
  1398. {
  1399. // This block locks the interrupts globally for 3.25 us,
  1400. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1401. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1402. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1403. cli();
  1404. // Reset the command to something, which will be ignored by the power panic routine,
  1405. // so this buffer length will not be counted twice.
  1406. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1407. // Extract the current buffer length.
  1408. sdlen.lohi.lo = *ptr ++;
  1409. sdlen.lohi.hi = *ptr;
  1410. // and pass it to the planner queue.
  1411. planner_add_sd_length(sdlen.value);
  1412. sei();
  1413. }
  1414. }
  1415. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1416. // this block's SD card length will not be counted twice as its command type has been replaced
  1417. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1418. cmdqueue_pop_front();
  1419. }
  1420. host_keepalive();
  1421. }
  1422. }
  1423. //check heater every n milliseconds
  1424. manage_heater();
  1425. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1426. checkHitEndstops();
  1427. lcd_update();
  1428. #ifdef PAT9125
  1429. fsensor_update();
  1430. #endif //PAT9125
  1431. #ifdef TMC2130
  1432. tmc2130_check_overtemp();
  1433. if (tmc2130_sg_crash)
  1434. {
  1435. uint8_t crash = tmc2130_sg_crash;
  1436. tmc2130_sg_crash = 0;
  1437. // crashdet_stop_and_save_print();
  1438. switch (crash)
  1439. {
  1440. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1441. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1442. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1443. }
  1444. }
  1445. #endif //TMC2130
  1446. }
  1447. #define DEFINE_PGM_READ_ANY(type, reader) \
  1448. static inline type pgm_read_any(const type *p) \
  1449. { return pgm_read_##reader##_near(p); }
  1450. DEFINE_PGM_READ_ANY(float, float);
  1451. DEFINE_PGM_READ_ANY(signed char, byte);
  1452. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1453. static const PROGMEM type array##_P[3] = \
  1454. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1455. static inline type array(int axis) \
  1456. { return pgm_read_any(&array##_P[axis]); } \
  1457. type array##_ext(int axis) \
  1458. { return pgm_read_any(&array##_P[axis]); }
  1459. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1460. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1461. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1462. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1463. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1464. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1465. static void axis_is_at_home(int axis) {
  1466. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1467. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1468. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1469. }
  1470. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1471. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1472. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1473. saved_feedrate = feedrate;
  1474. saved_feedmultiply = feedmultiply;
  1475. feedmultiply = 100;
  1476. previous_millis_cmd = millis();
  1477. enable_endstops(enable_endstops_now);
  1478. }
  1479. static void clean_up_after_endstop_move() {
  1480. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1481. enable_endstops(false);
  1482. #endif
  1483. feedrate = saved_feedrate;
  1484. feedmultiply = saved_feedmultiply;
  1485. previous_millis_cmd = millis();
  1486. }
  1487. #ifdef ENABLE_AUTO_BED_LEVELING
  1488. #ifdef AUTO_BED_LEVELING_GRID
  1489. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1490. {
  1491. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1492. planeNormal.debug("planeNormal");
  1493. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1494. //bedLevel.debug("bedLevel");
  1495. //plan_bed_level_matrix.debug("bed level before");
  1496. //vector_3 uncorrected_position = plan_get_position_mm();
  1497. //uncorrected_position.debug("position before");
  1498. vector_3 corrected_position = plan_get_position();
  1499. // corrected_position.debug("position after");
  1500. current_position[X_AXIS] = corrected_position.x;
  1501. current_position[Y_AXIS] = corrected_position.y;
  1502. current_position[Z_AXIS] = corrected_position.z;
  1503. // put the bed at 0 so we don't go below it.
  1504. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. }
  1507. #else // not AUTO_BED_LEVELING_GRID
  1508. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1509. plan_bed_level_matrix.set_to_identity();
  1510. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1511. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1512. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1513. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1514. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1515. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1516. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1517. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1518. vector_3 corrected_position = plan_get_position();
  1519. current_position[X_AXIS] = corrected_position.x;
  1520. current_position[Y_AXIS] = corrected_position.y;
  1521. current_position[Z_AXIS] = corrected_position.z;
  1522. // put the bed at 0 so we don't go below it.
  1523. current_position[Z_AXIS] = zprobe_zoffset;
  1524. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. }
  1526. #endif // AUTO_BED_LEVELING_GRID
  1527. static void run_z_probe() {
  1528. plan_bed_level_matrix.set_to_identity();
  1529. feedrate = homing_feedrate[Z_AXIS];
  1530. // move down until you find the bed
  1531. float zPosition = -10;
  1532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1533. st_synchronize();
  1534. // we have to let the planner know where we are right now as it is not where we said to go.
  1535. zPosition = st_get_position_mm(Z_AXIS);
  1536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1537. // move up the retract distance
  1538. zPosition += home_retract_mm(Z_AXIS);
  1539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1540. st_synchronize();
  1541. // move back down slowly to find bed
  1542. feedrate = homing_feedrate[Z_AXIS]/4;
  1543. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1545. st_synchronize();
  1546. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1547. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. }
  1550. static void do_blocking_move_to(float x, float y, float z) {
  1551. float oldFeedRate = feedrate;
  1552. feedrate = homing_feedrate[Z_AXIS];
  1553. current_position[Z_AXIS] = z;
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. feedrate = XY_TRAVEL_SPEED;
  1557. current_position[X_AXIS] = x;
  1558. current_position[Y_AXIS] = y;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. feedrate = oldFeedRate;
  1562. }
  1563. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1564. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1565. }
  1566. /// Probe bed height at position (x,y), returns the measured z value
  1567. static float probe_pt(float x, float y, float z_before) {
  1568. // move to right place
  1569. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1570. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1571. run_z_probe();
  1572. float measured_z = current_position[Z_AXIS];
  1573. SERIAL_PROTOCOLRPGM(MSG_BED);
  1574. SERIAL_PROTOCOLPGM(" x: ");
  1575. SERIAL_PROTOCOL(x);
  1576. SERIAL_PROTOCOLPGM(" y: ");
  1577. SERIAL_PROTOCOL(y);
  1578. SERIAL_PROTOCOLPGM(" z: ");
  1579. SERIAL_PROTOCOL(measured_z);
  1580. SERIAL_PROTOCOLPGM("\n");
  1581. return measured_z;
  1582. }
  1583. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1584. #ifdef LIN_ADVANCE
  1585. /**
  1586. * M900: Set and/or Get advance K factor and WH/D ratio
  1587. *
  1588. * K<factor> Set advance K factor
  1589. * R<ratio> Set ratio directly (overrides WH/D)
  1590. * W<width> H<height> D<diam> Set ratio from WH/D
  1591. */
  1592. inline void gcode_M900() {
  1593. st_synchronize();
  1594. const float newK = code_seen('K') ? code_value_float() : -1;
  1595. if (newK >= 0) extruder_advance_k = newK;
  1596. float newR = code_seen('R') ? code_value_float() : -1;
  1597. if (newR < 0) {
  1598. const float newD = code_seen('D') ? code_value_float() : -1,
  1599. newW = code_seen('W') ? code_value_float() : -1,
  1600. newH = code_seen('H') ? code_value_float() : -1;
  1601. if (newD >= 0 && newW >= 0 && newH >= 0)
  1602. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1603. }
  1604. if (newR >= 0) advance_ed_ratio = newR;
  1605. SERIAL_ECHO_START;
  1606. SERIAL_ECHOPGM("Advance K=");
  1607. SERIAL_ECHOLN(extruder_advance_k);
  1608. SERIAL_ECHOPGM(" E/D=");
  1609. const float ratio = advance_ed_ratio;
  1610. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1611. }
  1612. #endif // LIN_ADVANCE
  1613. bool check_commands() {
  1614. bool end_command_found = false;
  1615. while (buflen)
  1616. {
  1617. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1618. if (!cmdbuffer_front_already_processed)
  1619. cmdqueue_pop_front();
  1620. cmdbuffer_front_already_processed = false;
  1621. }
  1622. return end_command_found;
  1623. }
  1624. #ifdef TMC2130
  1625. bool calibrate_z_auto()
  1626. {
  1627. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1628. lcd_implementation_clear();
  1629. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1630. bool endstops_enabled = enable_endstops(true);
  1631. int axis_up_dir = -home_dir(Z_AXIS);
  1632. tmc2130_home_enter(Z_AXIS_MASK);
  1633. current_position[Z_AXIS] = 0;
  1634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1635. set_destination_to_current();
  1636. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1637. feedrate = homing_feedrate[Z_AXIS];
  1638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1639. st_synchronize();
  1640. // current_position[axis] = 0;
  1641. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. tmc2130_home_exit();
  1643. enable_endstops(false);
  1644. current_position[Z_AXIS] = 0;
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. set_destination_to_current();
  1647. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1648. feedrate = homing_feedrate[Z_AXIS] / 2;
  1649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. enable_endstops(endstops_enabled);
  1652. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1653. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1654. return true;
  1655. }
  1656. #endif //TMC2130
  1657. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1658. {
  1659. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1660. #define HOMEAXIS_DO(LETTER) \
  1661. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1662. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1663. {
  1664. int axis_home_dir = home_dir(axis);
  1665. feedrate = homing_feedrate[axis];
  1666. #ifdef TMC2130
  1667. tmc2130_home_enter(X_AXIS_MASK << axis);
  1668. #endif //TMC2130
  1669. // Move right a bit, so that the print head does not touch the left end position,
  1670. // and the following left movement has a chance to achieve the required velocity
  1671. // for the stall guard to work.
  1672. current_position[axis] = 0;
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. set_destination_to_current();
  1675. // destination[axis] = 11.f;
  1676. destination[axis] = 3.f;
  1677. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. // Move left away from the possible collision with the collision detection disabled.
  1680. endstops_hit_on_purpose();
  1681. enable_endstops(false);
  1682. current_position[axis] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. destination[axis] = - 1.;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. // Now continue to move up to the left end stop with the collision detection enabled.
  1688. enable_endstops(true);
  1689. destination[axis] = - 1.1 * max_length(axis);
  1690. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1691. st_synchronize();
  1692. for (uint8_t i = 0; i < cnt; i++)
  1693. {
  1694. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1695. endstops_hit_on_purpose();
  1696. enable_endstops(false);
  1697. current_position[axis] = 0;
  1698. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1699. destination[axis] = 10.f;
  1700. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1701. st_synchronize();
  1702. endstops_hit_on_purpose();
  1703. // Now move left up to the collision, this time with a repeatable velocity.
  1704. enable_endstops(true);
  1705. destination[axis] = - 11.f;
  1706. #ifdef TMC2130
  1707. feedrate = homing_feedrate[axis];
  1708. #else //TMC2130
  1709. feedrate = homing_feedrate[axis] / 2;
  1710. #endif //TMC2130
  1711. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1712. st_synchronize();
  1713. #ifdef TMC2130
  1714. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1715. if (pstep) pstep[i] = mscnt >> 4;
  1716. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1717. #endif //TMC2130
  1718. }
  1719. endstops_hit_on_purpose();
  1720. enable_endstops(false);
  1721. #ifdef TMC2130
  1722. uint8_t orig = tmc2130_home_origin[axis];
  1723. uint8_t back = tmc2130_home_bsteps[axis];
  1724. if (tmc2130_home_enabled && (orig <= 63))
  1725. {
  1726. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1727. if (back > 0)
  1728. tmc2130_do_steps(axis, back, 1, 1000);
  1729. }
  1730. else
  1731. tmc2130_do_steps(axis, 8, 2, 1000);
  1732. tmc2130_home_exit();
  1733. #endif //TMC2130
  1734. axis_is_at_home(axis);
  1735. axis_known_position[axis] = true;
  1736. // Move from minimum
  1737. #ifdef TMC2130
  1738. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1739. #else //TMC2130
  1740. float dist = 0.01f * 64;
  1741. #endif //TMC2130
  1742. current_position[axis] -= dist;
  1743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1744. current_position[axis] += dist;
  1745. destination[axis] = current_position[axis];
  1746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1747. st_synchronize();
  1748. feedrate = 0.0;
  1749. }
  1750. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1751. {
  1752. int axis_home_dir = home_dir(axis);
  1753. current_position[axis] = 0;
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1756. feedrate = homing_feedrate[axis];
  1757. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1758. st_synchronize();
  1759. current_position[axis] = 0;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1765. feedrate = homing_feedrate[axis]/2 ;
  1766. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1767. st_synchronize();
  1768. axis_is_at_home(axis);
  1769. destination[axis] = current_position[axis];
  1770. feedrate = 0.0;
  1771. endstops_hit_on_purpose();
  1772. axis_known_position[axis] = true;
  1773. }
  1774. enable_endstops(endstops_enabled);
  1775. }
  1776. /**/
  1777. void home_xy()
  1778. {
  1779. set_destination_to_current();
  1780. homeaxis(X_AXIS);
  1781. homeaxis(Y_AXIS);
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. endstops_hit_on_purpose();
  1784. }
  1785. void refresh_cmd_timeout(void)
  1786. {
  1787. previous_millis_cmd = millis();
  1788. }
  1789. #ifdef FWRETRACT
  1790. void retract(bool retracting, bool swapretract = false) {
  1791. if(retracting && !retracted[active_extruder]) {
  1792. destination[X_AXIS]=current_position[X_AXIS];
  1793. destination[Y_AXIS]=current_position[Y_AXIS];
  1794. destination[Z_AXIS]=current_position[Z_AXIS];
  1795. destination[E_AXIS]=current_position[E_AXIS];
  1796. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1797. plan_set_e_position(current_position[E_AXIS]);
  1798. float oldFeedrate = feedrate;
  1799. feedrate=retract_feedrate*60;
  1800. retracted[active_extruder]=true;
  1801. prepare_move();
  1802. current_position[Z_AXIS]-=retract_zlift;
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1804. prepare_move();
  1805. feedrate = oldFeedrate;
  1806. } else if(!retracting && retracted[active_extruder]) {
  1807. destination[X_AXIS]=current_position[X_AXIS];
  1808. destination[Y_AXIS]=current_position[Y_AXIS];
  1809. destination[Z_AXIS]=current_position[Z_AXIS];
  1810. destination[E_AXIS]=current_position[E_AXIS];
  1811. current_position[Z_AXIS]+=retract_zlift;
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1814. plan_set_e_position(current_position[E_AXIS]);
  1815. float oldFeedrate = feedrate;
  1816. feedrate=retract_recover_feedrate*60;
  1817. retracted[active_extruder]=false;
  1818. prepare_move();
  1819. feedrate = oldFeedrate;
  1820. }
  1821. } //retract
  1822. #endif //FWRETRACT
  1823. void trace() {
  1824. tone(BEEPER, 440);
  1825. delay(25);
  1826. noTone(BEEPER);
  1827. delay(20);
  1828. }
  1829. /*
  1830. void ramming() {
  1831. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1832. if (current_temperature[0] < 230) {
  1833. //PLA
  1834. max_feedrate[E_AXIS] = 50;
  1835. //current_position[E_AXIS] -= 8;
  1836. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1837. //current_position[E_AXIS] += 8;
  1838. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1839. current_position[E_AXIS] += 5.4;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1841. current_position[E_AXIS] += 3.2;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1843. current_position[E_AXIS] += 3;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1845. st_synchronize();
  1846. max_feedrate[E_AXIS] = 80;
  1847. current_position[E_AXIS] -= 82;
  1848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1849. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1850. current_position[E_AXIS] -= 20;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1852. current_position[E_AXIS] += 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1854. current_position[E_AXIS] += 5;
  1855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1856. current_position[E_AXIS] -= 10;
  1857. st_synchronize();
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1859. current_position[E_AXIS] += 10;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1861. current_position[E_AXIS] -= 10;
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1863. current_position[E_AXIS] += 10;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1865. current_position[E_AXIS] -= 10;
  1866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1867. st_synchronize();
  1868. }
  1869. else {
  1870. //ABS
  1871. max_feedrate[E_AXIS] = 50;
  1872. //current_position[E_AXIS] -= 8;
  1873. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1874. //current_position[E_AXIS] += 8;
  1875. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1876. current_position[E_AXIS] += 3.1;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1878. current_position[E_AXIS] += 3.1;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1880. current_position[E_AXIS] += 4;
  1881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1882. st_synchronize();
  1883. //current_position[X_AXIS] += 23; //delay
  1884. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1885. //current_position[X_AXIS] -= 23; //delay
  1886. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1887. delay(4700);
  1888. max_feedrate[E_AXIS] = 80;
  1889. current_position[E_AXIS] -= 92;
  1890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1891. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1892. current_position[E_AXIS] -= 5;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1894. current_position[E_AXIS] += 5;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1896. current_position[E_AXIS] -= 5;
  1897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1898. st_synchronize();
  1899. current_position[E_AXIS] += 5;
  1900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1901. current_position[E_AXIS] -= 5;
  1902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1903. current_position[E_AXIS] += 5;
  1904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1905. current_position[E_AXIS] -= 5;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1907. st_synchronize();
  1908. }
  1909. }
  1910. */
  1911. #ifdef TMC2130
  1912. void force_high_power_mode(bool start_high_power_section) {
  1913. uint8_t silent;
  1914. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1915. if (silent == 1) {
  1916. //we are in silent mode, set to normal mode to enable crash detection
  1917. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1918. st_synchronize();
  1919. cli();
  1920. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1921. tmc2130_init();
  1922. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1923. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1924. st_reset_timer();
  1925. sei();
  1926. }
  1927. }
  1928. #endif //TMC2130
  1929. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1930. {
  1931. bool final_result = false;
  1932. #ifdef TMC2130
  1933. FORCE_HIGH_POWER_START;
  1934. #endif // TMC2130
  1935. // Only Z calibration?
  1936. if (!onlyZ)
  1937. {
  1938. setTargetBed(0);
  1939. setTargetHotend(0, 0);
  1940. setTargetHotend(0, 1);
  1941. setTargetHotend(0, 2);
  1942. adjust_bed_reset(); //reset bed level correction
  1943. }
  1944. // Disable the default update procedure of the display. We will do a modal dialog.
  1945. lcd_update_enable(false);
  1946. // Let the planner use the uncorrected coordinates.
  1947. mbl.reset();
  1948. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1949. // the planner will not perform any adjustments in the XY plane.
  1950. // Wait for the motors to stop and update the current position with the absolute values.
  1951. world2machine_revert_to_uncorrected();
  1952. // Reset the baby step value applied without moving the axes.
  1953. babystep_reset();
  1954. // Mark all axes as in a need for homing.
  1955. memset(axis_known_position, 0, sizeof(axis_known_position));
  1956. // Home in the XY plane.
  1957. //set_destination_to_current();
  1958. setup_for_endstop_move();
  1959. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1960. home_xy();
  1961. enable_endstops(false);
  1962. current_position[X_AXIS] += 5;
  1963. current_position[Y_AXIS] += 5;
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1965. st_synchronize();
  1966. // Let the user move the Z axes up to the end stoppers.
  1967. #ifdef TMC2130
  1968. if (calibrate_z_auto())
  1969. {
  1970. #else //TMC2130
  1971. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1972. {
  1973. #endif //TMC2130
  1974. refresh_cmd_timeout();
  1975. #ifndef STEEL_SHEET
  1976. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1977. {
  1978. lcd_wait_for_cool_down();
  1979. }
  1980. #endif //STEEL_SHEET
  1981. if(!onlyZ)
  1982. {
  1983. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1984. #ifdef STEEL_SHEET
  1985. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1986. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1987. #endif //STEEL_SHEET
  1988. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1989. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1990. KEEPALIVE_STATE(IN_HANDLER);
  1991. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1992. lcd_implementation_print_at(0, 2, 1);
  1993. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1994. }
  1995. // Move the print head close to the bed.
  1996. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1997. bool endstops_enabled = enable_endstops(true);
  1998. #ifdef TMC2130
  1999. tmc2130_home_enter(Z_AXIS_MASK);
  2000. #endif //TMC2130
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2002. st_synchronize();
  2003. #ifdef TMC2130
  2004. tmc2130_home_exit();
  2005. #endif //TMC2130
  2006. enable_endstops(endstops_enabled);
  2007. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2008. {
  2009. int8_t verbosity_level = 0;
  2010. if (code_seen('V'))
  2011. {
  2012. // Just 'V' without a number counts as V1.
  2013. char c = strchr_pointer[1];
  2014. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2015. }
  2016. if (onlyZ)
  2017. {
  2018. clean_up_after_endstop_move();
  2019. // Z only calibration.
  2020. // Load the machine correction matrix
  2021. world2machine_initialize();
  2022. // and correct the current_position to match the transformed coordinate system.
  2023. world2machine_update_current();
  2024. //FIXME
  2025. bool result = sample_mesh_and_store_reference();
  2026. if (result)
  2027. {
  2028. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2029. // Shipped, the nozzle height has been set already. The user can start printing now.
  2030. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2031. final_result = true;
  2032. // babystep_apply();
  2033. }
  2034. }
  2035. else
  2036. {
  2037. // Reset the baby step value and the baby step applied flag.
  2038. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2039. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2040. // Complete XYZ calibration.
  2041. uint8_t point_too_far_mask = 0;
  2042. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2043. clean_up_after_endstop_move();
  2044. // Print head up.
  2045. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2047. st_synchronize();
  2048. //#ifndef NEW_XYZCAL
  2049. if (result >= 0)
  2050. {
  2051. #ifdef HEATBED_V2
  2052. sample_z();
  2053. #else //HEATBED_V2
  2054. point_too_far_mask = 0;
  2055. // Second half: The fine adjustment.
  2056. // Let the planner use the uncorrected coordinates.
  2057. mbl.reset();
  2058. world2machine_reset();
  2059. // Home in the XY plane.
  2060. setup_for_endstop_move();
  2061. home_xy();
  2062. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2063. clean_up_after_endstop_move();
  2064. // Print head up.
  2065. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2067. st_synchronize();
  2068. // if (result >= 0) babystep_apply();
  2069. #endif //HEATBED_V2
  2070. }
  2071. //#endif //NEW_XYZCAL
  2072. lcd_update_enable(true);
  2073. lcd_update(2);
  2074. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2075. if (result >= 0)
  2076. {
  2077. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2078. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2079. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2080. final_result = true;
  2081. }
  2082. }
  2083. #ifdef TMC2130
  2084. tmc2130_home_exit();
  2085. #endif
  2086. }
  2087. else
  2088. {
  2089. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2090. final_result = false;
  2091. }
  2092. }
  2093. else
  2094. {
  2095. // Timeouted.
  2096. }
  2097. lcd_update_enable(true);
  2098. #ifdef TMC2130
  2099. FORCE_HIGH_POWER_END;
  2100. #endif // TMC2130
  2101. return final_result;
  2102. }
  2103. void gcode_M114()
  2104. {
  2105. SERIAL_PROTOCOLPGM("X:");
  2106. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2107. SERIAL_PROTOCOLPGM(" Y:");
  2108. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2109. SERIAL_PROTOCOLPGM(" Z:");
  2110. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2111. SERIAL_PROTOCOLPGM(" E:");
  2112. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2113. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2114. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2115. SERIAL_PROTOCOLPGM(" Y:");
  2116. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2117. SERIAL_PROTOCOLPGM(" Z:");
  2118. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2119. SERIAL_PROTOCOLPGM(" E:");
  2120. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2121. SERIAL_PROTOCOLLN("");
  2122. }
  2123. void gcode_M701()
  2124. {
  2125. #ifdef SNMM
  2126. extr_adj(snmm_extruder);//loads current extruder
  2127. #else
  2128. enable_z();
  2129. custom_message = true;
  2130. custom_message_type = 2;
  2131. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2132. current_position[E_AXIS] += 70;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2134. current_position[E_AXIS] += 25;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2136. st_synchronize();
  2137. tone(BEEPER, 500);
  2138. delay_keep_alive(50);
  2139. noTone(BEEPER);
  2140. if (!farm_mode && loading_flag) {
  2141. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2142. while (!clean) {
  2143. lcd_update_enable(true);
  2144. lcd_update(2);
  2145. current_position[E_AXIS] += 25;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2147. st_synchronize();
  2148. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2149. }
  2150. }
  2151. lcd_update_enable(true);
  2152. lcd_update(2);
  2153. lcd_setstatuspgm(WELCOME_MSG);
  2154. disable_z();
  2155. loading_flag = false;
  2156. custom_message = false;
  2157. custom_message_type = 0;
  2158. #endif
  2159. }
  2160. /**
  2161. * @brief Get serial number from 32U2 processor
  2162. *
  2163. * Typical format of S/N is:CZPX0917X003XC13518
  2164. *
  2165. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2166. *
  2167. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2168. * reply is transmitted to serial port 1 character by character.
  2169. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2170. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2171. * in any case.
  2172. */
  2173. static void gcode_PRUSA_SN()
  2174. {
  2175. if (farm_mode) {
  2176. selectedSerialPort = 0;
  2177. MSerial.write(";S");
  2178. int numbersRead = 0;
  2179. Timer timeout;
  2180. timeout.start();
  2181. while (numbersRead < 19) {
  2182. while (MSerial.available() > 0) {
  2183. uint8_t serial_char = MSerial.read();
  2184. selectedSerialPort = 1;
  2185. MSerial.write(serial_char);
  2186. numbersRead++;
  2187. selectedSerialPort = 0;
  2188. }
  2189. if (timeout.expired(100)) break;
  2190. }
  2191. selectedSerialPort = 1;
  2192. MSerial.write('\n');
  2193. #if 0
  2194. for (int b = 0; b < 3; b++) {
  2195. tone(BEEPER, 110);
  2196. delay(50);
  2197. noTone(BEEPER);
  2198. delay(50);
  2199. }
  2200. #endif
  2201. } else {
  2202. MYSERIAL.println("Not in farm mode.");
  2203. }
  2204. }
  2205. void process_commands()
  2206. {
  2207. if (!buflen) return; //empty command
  2208. #ifdef FILAMENT_RUNOUT_SUPPORT
  2209. SET_INPUT(FR_SENS);
  2210. #endif
  2211. #ifdef CMDBUFFER_DEBUG
  2212. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2213. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2214. SERIAL_ECHOLNPGM("");
  2215. SERIAL_ECHOPGM("In cmdqueue: ");
  2216. SERIAL_ECHO(buflen);
  2217. SERIAL_ECHOLNPGM("");
  2218. #endif /* CMDBUFFER_DEBUG */
  2219. unsigned long codenum; //throw away variable
  2220. char *starpos = NULL;
  2221. #ifdef ENABLE_AUTO_BED_LEVELING
  2222. float x_tmp, y_tmp, z_tmp, real_z;
  2223. #endif
  2224. // PRUSA GCODES
  2225. KEEPALIVE_STATE(IN_HANDLER);
  2226. #ifdef SNMM
  2227. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2228. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2229. int8_t SilentMode;
  2230. #endif
  2231. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2232. starpos = (strchr(strchr_pointer + 5, '*'));
  2233. if (starpos != NULL)
  2234. *(starpos) = '\0';
  2235. lcd_setstatus(strchr_pointer + 5);
  2236. }
  2237. #ifdef TMC2130
  2238. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2239. {
  2240. if(code_seen("CRASH_DETECTED"))
  2241. {
  2242. uint8_t mask = 0;
  2243. if (code_seen("X")) mask |= X_AXIS_MASK;
  2244. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2245. crashdet_detected(mask);
  2246. }
  2247. else if(code_seen("CRASH_RECOVER"))
  2248. crashdet_recover();
  2249. else if(code_seen("CRASH_CANCEL"))
  2250. crashdet_cancel();
  2251. }
  2252. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2253. {
  2254. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2255. {
  2256. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2257. tmc2130_set_wave(E_AXIS, 247, fac);
  2258. }
  2259. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2260. {
  2261. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2262. uint16_t res = tmc2130_get_res(E_AXIS);
  2263. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2264. }
  2265. }
  2266. #endif //TMC2130
  2267. else if(code_seen("PRUSA")){
  2268. if (code_seen("Ping")) { //PRUSA Ping
  2269. if (farm_mode) {
  2270. PingTime = millis();
  2271. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2272. }
  2273. }
  2274. else if (code_seen("PRN")) {
  2275. MYSERIAL.println(status_number);
  2276. }else if (code_seen("FAN")) {
  2277. MYSERIAL.print("E0:");
  2278. MYSERIAL.print(60*fan_speed[0]);
  2279. MYSERIAL.println(" RPM");
  2280. MYSERIAL.print("PRN0:");
  2281. MYSERIAL.print(60*fan_speed[1]);
  2282. MYSERIAL.println(" RPM");
  2283. }else if (code_seen("fn")) {
  2284. if (farm_mode) {
  2285. MYSERIAL.println(farm_no);
  2286. }
  2287. else {
  2288. MYSERIAL.println("Not in farm mode.");
  2289. }
  2290. }
  2291. else if (code_seen("thx")) {
  2292. no_response = false;
  2293. }else if (code_seen("fv")) {
  2294. // get file version
  2295. #ifdef SDSUPPORT
  2296. card.openFile(strchr_pointer + 3,true);
  2297. while (true) {
  2298. uint16_t readByte = card.get();
  2299. MYSERIAL.write(readByte);
  2300. if (readByte=='\n') {
  2301. break;
  2302. }
  2303. }
  2304. card.closefile();
  2305. #endif // SDSUPPORT
  2306. } else if (code_seen("M28")) {
  2307. trace();
  2308. prusa_sd_card_upload = true;
  2309. card.openFile(strchr_pointer+4,false);
  2310. } else if (code_seen("SN")) {
  2311. gcode_PRUSA_SN();
  2312. } else if(code_seen("Fir")){
  2313. SERIAL_PROTOCOLLN(FW_VERSION);
  2314. } else if(code_seen("Rev")){
  2315. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2316. } else if(code_seen("Lang")) {
  2317. lcd_force_language_selection();
  2318. } else if(code_seen("Lz")) {
  2319. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2320. } else if (code_seen("SERIAL LOW")) {
  2321. MYSERIAL.println("SERIAL LOW");
  2322. MYSERIAL.begin(BAUDRATE);
  2323. return;
  2324. } else if (code_seen("SERIAL HIGH")) {
  2325. MYSERIAL.println("SERIAL HIGH");
  2326. MYSERIAL.begin(1152000);
  2327. return;
  2328. } else if(code_seen("Beat")) {
  2329. // Kick farm link timer
  2330. kicktime = millis();
  2331. } else if(code_seen("FR")) {
  2332. // Factory full reset
  2333. factory_reset(0,true);
  2334. }
  2335. //else if (code_seen('Cal')) {
  2336. // lcd_calibration();
  2337. // }
  2338. }
  2339. else if (code_seen('^')) {
  2340. // nothing, this is a version line
  2341. } else if(code_seen('G'))
  2342. {
  2343. switch((int)code_value())
  2344. {
  2345. case 0: // G0 -> G1
  2346. case 1: // G1
  2347. if(Stopped == false) {
  2348. #ifdef FILAMENT_RUNOUT_SUPPORT
  2349. if(READ(FR_SENS)){
  2350. feedmultiplyBckp=feedmultiply;
  2351. float target[4];
  2352. float lastpos[4];
  2353. target[X_AXIS]=current_position[X_AXIS];
  2354. target[Y_AXIS]=current_position[Y_AXIS];
  2355. target[Z_AXIS]=current_position[Z_AXIS];
  2356. target[E_AXIS]=current_position[E_AXIS];
  2357. lastpos[X_AXIS]=current_position[X_AXIS];
  2358. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2359. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2360. lastpos[E_AXIS]=current_position[E_AXIS];
  2361. //retract by E
  2362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2364. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2366. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2367. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2368. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2369. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2370. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2371. //finish moves
  2372. st_synchronize();
  2373. //disable extruder steppers so filament can be removed
  2374. disable_e0();
  2375. disable_e1();
  2376. disable_e2();
  2377. delay(100);
  2378. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2379. uint8_t cnt=0;
  2380. int counterBeep = 0;
  2381. lcd_wait_interact();
  2382. while(!lcd_clicked()){
  2383. cnt++;
  2384. manage_heater();
  2385. manage_inactivity(true);
  2386. //lcd_update();
  2387. if(cnt==0)
  2388. {
  2389. #if BEEPER > 0
  2390. if (counterBeep== 500){
  2391. counterBeep = 0;
  2392. }
  2393. SET_OUTPUT(BEEPER);
  2394. if (counterBeep== 0){
  2395. WRITE(BEEPER,HIGH);
  2396. }
  2397. if (counterBeep== 20){
  2398. WRITE(BEEPER,LOW);
  2399. }
  2400. counterBeep++;
  2401. #else
  2402. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2403. lcd_buzz(1000/6,100);
  2404. #else
  2405. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2406. #endif
  2407. #endif
  2408. }
  2409. }
  2410. WRITE(BEEPER,LOW);
  2411. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2413. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2414. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2415. lcd_change_fil_state = 0;
  2416. lcd_loading_filament();
  2417. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2418. lcd_change_fil_state = 0;
  2419. lcd_alright();
  2420. switch(lcd_change_fil_state){
  2421. case 2:
  2422. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2423. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2424. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2425. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2426. lcd_loading_filament();
  2427. break;
  2428. case 3:
  2429. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2431. lcd_loading_color();
  2432. break;
  2433. default:
  2434. lcd_change_success();
  2435. break;
  2436. }
  2437. }
  2438. target[E_AXIS]+= 5;
  2439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2440. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2442. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2443. //plan_set_e_position(current_position[E_AXIS]);
  2444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2445. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2446. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2447. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2448. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2449. plan_set_e_position(lastpos[E_AXIS]);
  2450. feedmultiply=feedmultiplyBckp;
  2451. char cmd[9];
  2452. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2453. enquecommand(cmd);
  2454. }
  2455. #endif
  2456. get_coordinates(); // For X Y Z E F
  2457. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2458. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2459. }
  2460. #ifdef FWRETRACT
  2461. if(autoretract_enabled)
  2462. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2463. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2464. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2465. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2466. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2467. retract(!retracted);
  2468. return;
  2469. }
  2470. }
  2471. #endif //FWRETRACT
  2472. prepare_move();
  2473. //ClearToSend();
  2474. }
  2475. break;
  2476. case 2: // G2 - CW ARC
  2477. if(Stopped == false) {
  2478. get_arc_coordinates();
  2479. prepare_arc_move(true);
  2480. }
  2481. break;
  2482. case 3: // G3 - CCW ARC
  2483. if(Stopped == false) {
  2484. get_arc_coordinates();
  2485. prepare_arc_move(false);
  2486. }
  2487. break;
  2488. case 4: // G4 dwell
  2489. codenum = 0;
  2490. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2491. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2492. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2493. st_synchronize();
  2494. codenum += millis(); // keep track of when we started waiting
  2495. previous_millis_cmd = millis();
  2496. while(millis() < codenum) {
  2497. manage_heater();
  2498. manage_inactivity();
  2499. lcd_update();
  2500. }
  2501. break;
  2502. #ifdef FWRETRACT
  2503. case 10: // G10 retract
  2504. #if EXTRUDERS > 1
  2505. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2506. retract(true,retracted_swap[active_extruder]);
  2507. #else
  2508. retract(true);
  2509. #endif
  2510. break;
  2511. case 11: // G11 retract_recover
  2512. #if EXTRUDERS > 1
  2513. retract(false,retracted_swap[active_extruder]);
  2514. #else
  2515. retract(false);
  2516. #endif
  2517. break;
  2518. #endif //FWRETRACT
  2519. case 28: //G28 Home all Axis one at a time
  2520. {
  2521. st_synchronize();
  2522. #if 0
  2523. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2524. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2525. #endif
  2526. // Flag for the display update routine and to disable the print cancelation during homing.
  2527. homing_flag = true;
  2528. // Which axes should be homed?
  2529. bool home_x = code_seen(axis_codes[X_AXIS]);
  2530. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2531. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2532. // calibrate?
  2533. bool calib = code_seen('C');
  2534. // Either all X,Y,Z codes are present, or none of them.
  2535. bool home_all_axes = home_x == home_y && home_x == home_z;
  2536. if (home_all_axes)
  2537. // No X/Y/Z code provided means to home all axes.
  2538. home_x = home_y = home_z = true;
  2539. #ifdef ENABLE_AUTO_BED_LEVELING
  2540. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2541. #endif //ENABLE_AUTO_BED_LEVELING
  2542. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2543. // the planner will not perform any adjustments in the XY plane.
  2544. // Wait for the motors to stop and update the current position with the absolute values.
  2545. world2machine_revert_to_uncorrected();
  2546. // For mesh bed leveling deactivate the matrix temporarily.
  2547. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2548. // in a single axis only.
  2549. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2550. #ifdef MESH_BED_LEVELING
  2551. uint8_t mbl_was_active = mbl.active;
  2552. mbl.active = 0;
  2553. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2554. #endif
  2555. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2556. // consumed during the first movements following this statement.
  2557. if (home_z)
  2558. babystep_undo();
  2559. saved_feedrate = feedrate;
  2560. saved_feedmultiply = feedmultiply;
  2561. feedmultiply = 100;
  2562. previous_millis_cmd = millis();
  2563. enable_endstops(true);
  2564. memcpy(destination, current_position, sizeof(destination));
  2565. feedrate = 0.0;
  2566. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2567. if(home_z)
  2568. homeaxis(Z_AXIS);
  2569. #endif
  2570. #ifdef QUICK_HOME
  2571. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2572. if(home_x && home_y) //first diagonal move
  2573. {
  2574. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2575. int x_axis_home_dir = home_dir(X_AXIS);
  2576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2577. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2578. feedrate = homing_feedrate[X_AXIS];
  2579. if(homing_feedrate[Y_AXIS]<feedrate)
  2580. feedrate = homing_feedrate[Y_AXIS];
  2581. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2582. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2583. } else {
  2584. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2585. }
  2586. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2587. st_synchronize();
  2588. axis_is_at_home(X_AXIS);
  2589. axis_is_at_home(Y_AXIS);
  2590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2591. destination[X_AXIS] = current_position[X_AXIS];
  2592. destination[Y_AXIS] = current_position[Y_AXIS];
  2593. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2594. feedrate = 0.0;
  2595. st_synchronize();
  2596. endstops_hit_on_purpose();
  2597. current_position[X_AXIS] = destination[X_AXIS];
  2598. current_position[Y_AXIS] = destination[Y_AXIS];
  2599. current_position[Z_AXIS] = destination[Z_AXIS];
  2600. }
  2601. #endif /* QUICK_HOME */
  2602. #ifdef TMC2130
  2603. if(home_x)
  2604. {
  2605. if (!calib)
  2606. homeaxis(X_AXIS);
  2607. else
  2608. tmc2130_home_calibrate(X_AXIS);
  2609. }
  2610. if(home_y)
  2611. {
  2612. if (!calib)
  2613. homeaxis(Y_AXIS);
  2614. else
  2615. tmc2130_home_calibrate(Y_AXIS);
  2616. }
  2617. #endif //TMC2130
  2618. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2619. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2620. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2621. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2622. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2623. #ifndef Z_SAFE_HOMING
  2624. if(home_z) {
  2625. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2626. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2627. feedrate = max_feedrate[Z_AXIS];
  2628. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2629. st_synchronize();
  2630. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2631. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2632. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2633. {
  2634. homeaxis(X_AXIS);
  2635. homeaxis(Y_AXIS);
  2636. }
  2637. // 1st mesh bed leveling measurement point, corrected.
  2638. world2machine_initialize();
  2639. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2640. world2machine_reset();
  2641. if (destination[Y_AXIS] < Y_MIN_POS)
  2642. destination[Y_AXIS] = Y_MIN_POS;
  2643. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2644. feedrate = homing_feedrate[Z_AXIS]/10;
  2645. current_position[Z_AXIS] = 0;
  2646. enable_endstops(false);
  2647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2648. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2649. st_synchronize();
  2650. current_position[X_AXIS] = destination[X_AXIS];
  2651. current_position[Y_AXIS] = destination[Y_AXIS];
  2652. enable_endstops(true);
  2653. endstops_hit_on_purpose();
  2654. homeaxis(Z_AXIS);
  2655. #else // MESH_BED_LEVELING
  2656. homeaxis(Z_AXIS);
  2657. #endif // MESH_BED_LEVELING
  2658. }
  2659. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2660. if(home_all_axes) {
  2661. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2662. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2663. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2664. feedrate = XY_TRAVEL_SPEED/60;
  2665. current_position[Z_AXIS] = 0;
  2666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2667. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2668. st_synchronize();
  2669. current_position[X_AXIS] = destination[X_AXIS];
  2670. current_position[Y_AXIS] = destination[Y_AXIS];
  2671. homeaxis(Z_AXIS);
  2672. }
  2673. // Let's see if X and Y are homed and probe is inside bed area.
  2674. if(home_z) {
  2675. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2676. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2677. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2678. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2679. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2680. current_position[Z_AXIS] = 0;
  2681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2682. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2683. feedrate = max_feedrate[Z_AXIS];
  2684. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2685. st_synchronize();
  2686. homeaxis(Z_AXIS);
  2687. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2688. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2689. SERIAL_ECHO_START;
  2690. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2691. } else {
  2692. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2693. SERIAL_ECHO_START;
  2694. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2695. }
  2696. }
  2697. #endif // Z_SAFE_HOMING
  2698. #endif // Z_HOME_DIR < 0
  2699. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2700. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2701. #ifdef ENABLE_AUTO_BED_LEVELING
  2702. if(home_z)
  2703. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2704. #endif
  2705. // Set the planner and stepper routine positions.
  2706. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2707. // contains the machine coordinates.
  2708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2709. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2710. enable_endstops(false);
  2711. #endif
  2712. feedrate = saved_feedrate;
  2713. feedmultiply = saved_feedmultiply;
  2714. previous_millis_cmd = millis();
  2715. endstops_hit_on_purpose();
  2716. #ifndef MESH_BED_LEVELING
  2717. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2718. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2719. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2720. lcd_adjust_z();
  2721. #endif
  2722. // Load the machine correction matrix
  2723. world2machine_initialize();
  2724. // and correct the current_position XY axes to match the transformed coordinate system.
  2725. world2machine_update_current();
  2726. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2727. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2728. {
  2729. if (! home_z && mbl_was_active) {
  2730. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2731. mbl.active = true;
  2732. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2733. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2734. }
  2735. }
  2736. else
  2737. {
  2738. st_synchronize();
  2739. homing_flag = false;
  2740. // Push the commands to the front of the message queue in the reverse order!
  2741. // There shall be always enough space reserved for these commands.
  2742. // enquecommand_front_P((PSTR("G80")));
  2743. goto case_G80;
  2744. }
  2745. #endif
  2746. if (farm_mode) { prusa_statistics(20); };
  2747. homing_flag = false;
  2748. #if 0
  2749. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2750. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2751. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2752. #endif
  2753. break;
  2754. }
  2755. #ifdef ENABLE_AUTO_BED_LEVELING
  2756. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2757. {
  2758. #if Z_MIN_PIN == -1
  2759. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2760. #endif
  2761. // Prevent user from running a G29 without first homing in X and Y
  2762. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2763. {
  2764. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2765. SERIAL_ECHO_START;
  2766. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2767. break; // abort G29, since we don't know where we are
  2768. }
  2769. st_synchronize();
  2770. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2771. //vector_3 corrected_position = plan_get_position_mm();
  2772. //corrected_position.debug("position before G29");
  2773. plan_bed_level_matrix.set_to_identity();
  2774. vector_3 uncorrected_position = plan_get_position();
  2775. //uncorrected_position.debug("position durring G29");
  2776. current_position[X_AXIS] = uncorrected_position.x;
  2777. current_position[Y_AXIS] = uncorrected_position.y;
  2778. current_position[Z_AXIS] = uncorrected_position.z;
  2779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2780. setup_for_endstop_move();
  2781. feedrate = homing_feedrate[Z_AXIS];
  2782. #ifdef AUTO_BED_LEVELING_GRID
  2783. // probe at the points of a lattice grid
  2784. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2785. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2786. // solve the plane equation ax + by + d = z
  2787. // A is the matrix with rows [x y 1] for all the probed points
  2788. // B is the vector of the Z positions
  2789. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2790. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2791. // "A" matrix of the linear system of equations
  2792. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2793. // "B" vector of Z points
  2794. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2795. int probePointCounter = 0;
  2796. bool zig = true;
  2797. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2798. {
  2799. int xProbe, xInc;
  2800. if (zig)
  2801. {
  2802. xProbe = LEFT_PROBE_BED_POSITION;
  2803. //xEnd = RIGHT_PROBE_BED_POSITION;
  2804. xInc = xGridSpacing;
  2805. zig = false;
  2806. } else // zag
  2807. {
  2808. xProbe = RIGHT_PROBE_BED_POSITION;
  2809. //xEnd = LEFT_PROBE_BED_POSITION;
  2810. xInc = -xGridSpacing;
  2811. zig = true;
  2812. }
  2813. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2814. {
  2815. float z_before;
  2816. if (probePointCounter == 0)
  2817. {
  2818. // raise before probing
  2819. z_before = Z_RAISE_BEFORE_PROBING;
  2820. } else
  2821. {
  2822. // raise extruder
  2823. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2824. }
  2825. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2826. eqnBVector[probePointCounter] = measured_z;
  2827. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2828. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2829. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2830. probePointCounter++;
  2831. xProbe += xInc;
  2832. }
  2833. }
  2834. clean_up_after_endstop_move();
  2835. // solve lsq problem
  2836. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2837. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2838. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2839. SERIAL_PROTOCOLPGM(" b: ");
  2840. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2841. SERIAL_PROTOCOLPGM(" d: ");
  2842. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2843. set_bed_level_equation_lsq(plane_equation_coefficients);
  2844. free(plane_equation_coefficients);
  2845. #else // AUTO_BED_LEVELING_GRID not defined
  2846. // Probe at 3 arbitrary points
  2847. // probe 1
  2848. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2849. // probe 2
  2850. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2851. // probe 3
  2852. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2853. clean_up_after_endstop_move();
  2854. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2855. #endif // AUTO_BED_LEVELING_GRID
  2856. st_synchronize();
  2857. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2858. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2859. // When the bed is uneven, this height must be corrected.
  2860. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2861. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2862. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2863. z_tmp = current_position[Z_AXIS];
  2864. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2865. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2866. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2867. }
  2868. break;
  2869. #ifndef Z_PROBE_SLED
  2870. case 30: // G30 Single Z Probe
  2871. {
  2872. st_synchronize();
  2873. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2874. setup_for_endstop_move();
  2875. feedrate = homing_feedrate[Z_AXIS];
  2876. run_z_probe();
  2877. SERIAL_PROTOCOLPGM(MSG_BED);
  2878. SERIAL_PROTOCOLPGM(" X: ");
  2879. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2880. SERIAL_PROTOCOLPGM(" Y: ");
  2881. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2882. SERIAL_PROTOCOLPGM(" Z: ");
  2883. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2884. SERIAL_PROTOCOLPGM("\n");
  2885. clean_up_after_endstop_move();
  2886. }
  2887. break;
  2888. #else
  2889. case 31: // dock the sled
  2890. dock_sled(true);
  2891. break;
  2892. case 32: // undock the sled
  2893. dock_sled(false);
  2894. break;
  2895. #endif // Z_PROBE_SLED
  2896. #endif // ENABLE_AUTO_BED_LEVELING
  2897. #ifdef MESH_BED_LEVELING
  2898. case 30: // G30 Single Z Probe
  2899. {
  2900. st_synchronize();
  2901. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2902. setup_for_endstop_move();
  2903. feedrate = homing_feedrate[Z_AXIS];
  2904. find_bed_induction_sensor_point_z(-10.f, 3);
  2905. SERIAL_PROTOCOLRPGM(MSG_BED);
  2906. SERIAL_PROTOCOLPGM(" X: ");
  2907. MYSERIAL.print(current_position[X_AXIS], 5);
  2908. SERIAL_PROTOCOLPGM(" Y: ");
  2909. MYSERIAL.print(current_position[Y_AXIS], 5);
  2910. SERIAL_PROTOCOLPGM(" Z: ");
  2911. MYSERIAL.print(current_position[Z_AXIS], 5);
  2912. SERIAL_PROTOCOLPGM("\n");
  2913. clean_up_after_endstop_move();
  2914. }
  2915. break;
  2916. case 75:
  2917. {
  2918. for (int i = 40; i <= 110; i++) {
  2919. MYSERIAL.print(i);
  2920. MYSERIAL.print(" ");
  2921. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2922. }
  2923. }
  2924. break;
  2925. case 76: //PINDA probe temperature calibration
  2926. {
  2927. #ifdef PINDA_THERMISTOR
  2928. if (true)
  2929. {
  2930. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2931. {
  2932. // We don't know where we are! HOME!
  2933. // Push the commands to the front of the message queue in the reverse order!
  2934. // There shall be always enough space reserved for these commands.
  2935. repeatcommand_front(); // repeat G76 with all its parameters
  2936. enquecommand_front_P((PSTR("G28 W0")));
  2937. break;
  2938. }
  2939. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2940. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2941. if (result)
  2942. {
  2943. current_position[Z_AXIS] = 50;
  2944. current_position[Y_AXIS] = 190;
  2945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2946. st_synchronize();
  2947. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2948. }
  2949. lcd_update_enable(true);
  2950. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2951. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2952. float zero_z;
  2953. int z_shift = 0; //unit: steps
  2954. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2955. if (start_temp < 35) start_temp = 35;
  2956. if (start_temp < current_temperature_pinda) start_temp += 5;
  2957. SERIAL_ECHOPGM("start temperature: ");
  2958. MYSERIAL.println(start_temp);
  2959. // setTargetHotend(200, 0);
  2960. setTargetBed(70 + (start_temp - 30));
  2961. custom_message = true;
  2962. custom_message_type = 4;
  2963. custom_message_state = 1;
  2964. custom_message = MSG_TEMP_CALIBRATION;
  2965. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2966. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2967. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2969. st_synchronize();
  2970. while (current_temperature_pinda < start_temp)
  2971. {
  2972. delay_keep_alive(1000);
  2973. serialecho_temperatures();
  2974. }
  2975. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2976. current_position[Z_AXIS] = 5;
  2977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2978. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2979. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2981. st_synchronize();
  2982. find_bed_induction_sensor_point_z(-1.f);
  2983. zero_z = current_position[Z_AXIS];
  2984. //current_position[Z_AXIS]
  2985. SERIAL_ECHOLNPGM("");
  2986. SERIAL_ECHOPGM("ZERO: ");
  2987. MYSERIAL.print(current_position[Z_AXIS]);
  2988. SERIAL_ECHOLNPGM("");
  2989. int i = -1; for (; i < 5; i++)
  2990. {
  2991. float temp = (40 + i * 5);
  2992. SERIAL_ECHOPGM("Step: ");
  2993. MYSERIAL.print(i + 2);
  2994. SERIAL_ECHOLNPGM("/6 (skipped)");
  2995. SERIAL_ECHOPGM("PINDA temperature: ");
  2996. MYSERIAL.print((40 + i*5));
  2997. SERIAL_ECHOPGM(" Z shift (mm):");
  2998. MYSERIAL.print(0);
  2999. SERIAL_ECHOLNPGM("");
  3000. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3001. if (start_temp <= temp) break;
  3002. }
  3003. for (i++; i < 5; i++)
  3004. {
  3005. float temp = (40 + i * 5);
  3006. SERIAL_ECHOPGM("Step: ");
  3007. MYSERIAL.print(i + 2);
  3008. SERIAL_ECHOLNPGM("/6");
  3009. custom_message_state = i + 2;
  3010. setTargetBed(50 + 10 * (temp - 30) / 5);
  3011. // setTargetHotend(255, 0);
  3012. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3013. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3014. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3016. st_synchronize();
  3017. while (current_temperature_pinda < temp)
  3018. {
  3019. delay_keep_alive(1000);
  3020. serialecho_temperatures();
  3021. }
  3022. current_position[Z_AXIS] = 5;
  3023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3024. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3025. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3027. st_synchronize();
  3028. find_bed_induction_sensor_point_z(-1.f);
  3029. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3030. SERIAL_ECHOLNPGM("");
  3031. SERIAL_ECHOPGM("PINDA temperature: ");
  3032. MYSERIAL.print(current_temperature_pinda);
  3033. SERIAL_ECHOPGM(" Z shift (mm):");
  3034. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3035. SERIAL_ECHOLNPGM("");
  3036. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3037. }
  3038. custom_message_type = 0;
  3039. custom_message = false;
  3040. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3041. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3042. disable_x();
  3043. disable_y();
  3044. disable_z();
  3045. disable_e0();
  3046. disable_e1();
  3047. disable_e2();
  3048. setTargetBed(0); //set bed target temperature back to 0
  3049. // setTargetHotend(0,0); //set hotend target temperature back to 0
  3050. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3051. temp_cal_active = true;
  3052. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3053. lcd_update_enable(true);
  3054. lcd_update(2);
  3055. break;
  3056. }
  3057. #endif //PINDA_THERMISTOR
  3058. setTargetBed(PINDA_MIN_T);
  3059. float zero_z;
  3060. int z_shift = 0; //unit: steps
  3061. int t_c; // temperature
  3062. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3063. // We don't know where we are! HOME!
  3064. // Push the commands to the front of the message queue in the reverse order!
  3065. // There shall be always enough space reserved for these commands.
  3066. repeatcommand_front(); // repeat G76 with all its parameters
  3067. enquecommand_front_P((PSTR("G28 W0")));
  3068. break;
  3069. }
  3070. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3071. custom_message = true;
  3072. custom_message_type = 4;
  3073. custom_message_state = 1;
  3074. custom_message = MSG_TEMP_CALIBRATION;
  3075. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3076. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3077. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3079. st_synchronize();
  3080. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3081. delay_keep_alive(1000);
  3082. serialecho_temperatures();
  3083. }
  3084. //enquecommand_P(PSTR("M190 S50"));
  3085. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3086. delay_keep_alive(1000);
  3087. serialecho_temperatures();
  3088. }
  3089. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3090. current_position[Z_AXIS] = 5;
  3091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3092. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3093. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3095. st_synchronize();
  3096. find_bed_induction_sensor_point_z(-1.f);
  3097. zero_z = current_position[Z_AXIS];
  3098. //current_position[Z_AXIS]
  3099. SERIAL_ECHOLNPGM("");
  3100. SERIAL_ECHOPGM("ZERO: ");
  3101. MYSERIAL.print(current_position[Z_AXIS]);
  3102. SERIAL_ECHOLNPGM("");
  3103. for (int i = 0; i<5; i++) {
  3104. SERIAL_ECHOPGM("Step: ");
  3105. MYSERIAL.print(i+2);
  3106. SERIAL_ECHOLNPGM("/6");
  3107. custom_message_state = i + 2;
  3108. t_c = 60 + i * 10;
  3109. setTargetBed(t_c);
  3110. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3111. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3112. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3114. st_synchronize();
  3115. while (degBed() < t_c) {
  3116. delay_keep_alive(1000);
  3117. serialecho_temperatures();
  3118. }
  3119. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3120. delay_keep_alive(1000);
  3121. serialecho_temperatures();
  3122. }
  3123. current_position[Z_AXIS] = 5;
  3124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3125. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3126. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3128. st_synchronize();
  3129. find_bed_induction_sensor_point_z(-1.f);
  3130. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3131. SERIAL_ECHOLNPGM("");
  3132. SERIAL_ECHOPGM("Temperature: ");
  3133. MYSERIAL.print(t_c);
  3134. SERIAL_ECHOPGM(" Z shift (mm):");
  3135. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3136. SERIAL_ECHOLNPGM("");
  3137. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3138. }
  3139. custom_message_type = 0;
  3140. custom_message = false;
  3141. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3142. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3143. disable_x();
  3144. disable_y();
  3145. disable_z();
  3146. disable_e0();
  3147. disable_e1();
  3148. disable_e2();
  3149. setTargetBed(0); //set bed target temperature back to 0
  3150. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3151. temp_cal_active = true;
  3152. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3153. lcd_update_enable(true);
  3154. lcd_update(2);
  3155. }
  3156. break;
  3157. #ifdef DIS
  3158. case 77:
  3159. {
  3160. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3161. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3162. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3163. float dimension_x = 40;
  3164. float dimension_y = 40;
  3165. int points_x = 40;
  3166. int points_y = 40;
  3167. float offset_x = 74;
  3168. float offset_y = 33;
  3169. if (code_seen('X')) dimension_x = code_value();
  3170. if (code_seen('Y')) dimension_y = code_value();
  3171. if (code_seen('XP')) points_x = code_value();
  3172. if (code_seen('YP')) points_y = code_value();
  3173. if (code_seen('XO')) offset_x = code_value();
  3174. if (code_seen('YO')) offset_y = code_value();
  3175. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3176. } break;
  3177. #endif
  3178. case 79: {
  3179. for (int i = 255; i > 0; i = i - 5) {
  3180. fanSpeed = i;
  3181. //delay_keep_alive(2000);
  3182. for (int j = 0; j < 100; j++) {
  3183. delay_keep_alive(100);
  3184. }
  3185. fan_speed[1];
  3186. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3187. }
  3188. }break;
  3189. /**
  3190. * G80: Mesh-based Z probe, probes a grid and produces a
  3191. * mesh to compensate for variable bed height
  3192. *
  3193. * The S0 report the points as below
  3194. *
  3195. * +----> X-axis
  3196. * |
  3197. * |
  3198. * v Y-axis
  3199. *
  3200. */
  3201. case 80:
  3202. #ifdef MK1BP
  3203. break;
  3204. #endif //MK1BP
  3205. case_G80:
  3206. {
  3207. mesh_bed_leveling_flag = true;
  3208. int8_t verbosity_level = 0;
  3209. static bool run = false;
  3210. if (code_seen('V')) {
  3211. // Just 'V' without a number counts as V1.
  3212. char c = strchr_pointer[1];
  3213. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3214. }
  3215. // Firstly check if we know where we are
  3216. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3217. // We don't know where we are! HOME!
  3218. // Push the commands to the front of the message queue in the reverse order!
  3219. // There shall be always enough space reserved for these commands.
  3220. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3221. repeatcommand_front(); // repeat G80 with all its parameters
  3222. enquecommand_front_P((PSTR("G28 W0")));
  3223. }
  3224. else {
  3225. mesh_bed_leveling_flag = false;
  3226. }
  3227. break;
  3228. }
  3229. bool temp_comp_start = true;
  3230. #ifdef PINDA_THERMISTOR
  3231. temp_comp_start = false;
  3232. #endif //PINDA_THERMISTOR
  3233. if (temp_comp_start)
  3234. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3235. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3236. temp_compensation_start();
  3237. run = true;
  3238. repeatcommand_front(); // repeat G80 with all its parameters
  3239. enquecommand_front_P((PSTR("G28 W0")));
  3240. }
  3241. else {
  3242. mesh_bed_leveling_flag = false;
  3243. }
  3244. break;
  3245. }
  3246. run = false;
  3247. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3248. mesh_bed_leveling_flag = false;
  3249. break;
  3250. }
  3251. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3252. bool custom_message_old = custom_message;
  3253. unsigned int custom_message_type_old = custom_message_type;
  3254. unsigned int custom_message_state_old = custom_message_state;
  3255. custom_message = true;
  3256. custom_message_type = 1;
  3257. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3258. lcd_update(1);
  3259. mbl.reset(); //reset mesh bed leveling
  3260. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3261. // consumed during the first movements following this statement.
  3262. babystep_undo();
  3263. // Cycle through all points and probe them
  3264. // First move up. During this first movement, the babystepping will be reverted.
  3265. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3267. // The move to the first calibration point.
  3268. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3269. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3270. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3271. #ifdef SUPPORT_VERBOSITY
  3272. if (verbosity_level >= 1) {
  3273. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3274. }
  3275. #endif //SUPPORT_VERBOSITY
  3276. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3278. // Wait until the move is finished.
  3279. st_synchronize();
  3280. int mesh_point = 0; //index number of calibration point
  3281. int ix = 0;
  3282. int iy = 0;
  3283. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3284. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3285. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3286. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3287. #ifdef SUPPORT_VERBOSITY
  3288. if (verbosity_level >= 1) {
  3289. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3290. }
  3291. #endif // SUPPORT_VERBOSITY
  3292. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3293. const char *kill_message = NULL;
  3294. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3295. // Get coords of a measuring point.
  3296. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3297. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3298. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3299. float z0 = 0.f;
  3300. if (has_z && mesh_point > 0) {
  3301. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3302. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3303. //#if 0
  3304. #ifdef SUPPORT_VERBOSITY
  3305. if (verbosity_level >= 1) {
  3306. SERIAL_ECHOLNPGM("");
  3307. SERIAL_ECHOPGM("Bed leveling, point: ");
  3308. MYSERIAL.print(mesh_point);
  3309. SERIAL_ECHOPGM(", calibration z: ");
  3310. MYSERIAL.print(z0, 5);
  3311. SERIAL_ECHOLNPGM("");
  3312. }
  3313. #endif // SUPPORT_VERBOSITY
  3314. //#endif
  3315. }
  3316. // Move Z up to MESH_HOME_Z_SEARCH.
  3317. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3319. st_synchronize();
  3320. // Move to XY position of the sensor point.
  3321. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3322. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3323. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3324. #ifdef SUPPORT_VERBOSITY
  3325. if (verbosity_level >= 1) {
  3326. SERIAL_PROTOCOL(mesh_point);
  3327. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3328. }
  3329. #endif // SUPPORT_VERBOSITY
  3330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3331. st_synchronize();
  3332. // Go down until endstop is hit
  3333. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3334. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3335. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3336. break;
  3337. }
  3338. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3339. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3340. break;
  3341. }
  3342. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3343. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3344. break;
  3345. }
  3346. #ifdef SUPPORT_VERBOSITY
  3347. if (verbosity_level >= 10) {
  3348. SERIAL_ECHOPGM("X: ");
  3349. MYSERIAL.print(current_position[X_AXIS], 5);
  3350. SERIAL_ECHOLNPGM("");
  3351. SERIAL_ECHOPGM("Y: ");
  3352. MYSERIAL.print(current_position[Y_AXIS], 5);
  3353. SERIAL_PROTOCOLPGM("\n");
  3354. }
  3355. #endif // SUPPORT_VERBOSITY
  3356. float offset_z = 0;
  3357. #ifdef PINDA_THERMISTOR
  3358. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3359. #endif //PINDA_THERMISTOR
  3360. // #ifdef SUPPORT_VERBOSITY
  3361. /* if (verbosity_level >= 1)
  3362. {
  3363. SERIAL_ECHOPGM("mesh bed leveling: ");
  3364. MYSERIAL.print(current_position[Z_AXIS], 5);
  3365. SERIAL_ECHOPGM(" offset: ");
  3366. MYSERIAL.print(offset_z, 5);
  3367. SERIAL_ECHOLNPGM("");
  3368. }*/
  3369. // #endif // SUPPORT_VERBOSITY
  3370. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3371. custom_message_state--;
  3372. mesh_point++;
  3373. lcd_update(1);
  3374. }
  3375. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3376. #ifdef SUPPORT_VERBOSITY
  3377. if (verbosity_level >= 20) {
  3378. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3379. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3380. MYSERIAL.print(current_position[Z_AXIS], 5);
  3381. }
  3382. #endif // SUPPORT_VERBOSITY
  3383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3384. st_synchronize();
  3385. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3386. kill(kill_message);
  3387. SERIAL_ECHOLNPGM("killed");
  3388. }
  3389. clean_up_after_endstop_move();
  3390. // SERIAL_ECHOLNPGM("clean up finished ");
  3391. bool apply_temp_comp = true;
  3392. #ifdef PINDA_THERMISTOR
  3393. apply_temp_comp = false;
  3394. #endif
  3395. if (apply_temp_comp)
  3396. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3397. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3398. // SERIAL_ECHOLNPGM("babystep applied");
  3399. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3400. #ifdef SUPPORT_VERBOSITY
  3401. if (verbosity_level >= 1) {
  3402. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3403. }
  3404. #endif // SUPPORT_VERBOSITY
  3405. for (uint8_t i = 0; i < 4; ++i) {
  3406. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3407. long correction = 0;
  3408. if (code_seen(codes[i]))
  3409. correction = code_value_long();
  3410. else if (eeprom_bed_correction_valid) {
  3411. unsigned char *addr = (i < 2) ?
  3412. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3413. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3414. correction = eeprom_read_int8(addr);
  3415. }
  3416. if (correction == 0)
  3417. continue;
  3418. float offset = float(correction) * 0.001f;
  3419. if (fabs(offset) > 0.101f) {
  3420. SERIAL_ERROR_START;
  3421. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3422. SERIAL_ECHO(offset);
  3423. SERIAL_ECHOLNPGM(" microns");
  3424. }
  3425. else {
  3426. switch (i) {
  3427. case 0:
  3428. for (uint8_t row = 0; row < 3; ++row) {
  3429. mbl.z_values[row][1] += 0.5f * offset;
  3430. mbl.z_values[row][0] += offset;
  3431. }
  3432. break;
  3433. case 1:
  3434. for (uint8_t row = 0; row < 3; ++row) {
  3435. mbl.z_values[row][1] += 0.5f * offset;
  3436. mbl.z_values[row][2] += offset;
  3437. }
  3438. break;
  3439. case 2:
  3440. for (uint8_t col = 0; col < 3; ++col) {
  3441. mbl.z_values[1][col] += 0.5f * offset;
  3442. mbl.z_values[0][col] += offset;
  3443. }
  3444. break;
  3445. case 3:
  3446. for (uint8_t col = 0; col < 3; ++col) {
  3447. mbl.z_values[1][col] += 0.5f * offset;
  3448. mbl.z_values[2][col] += offset;
  3449. }
  3450. break;
  3451. }
  3452. }
  3453. }
  3454. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3455. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3456. // SERIAL_ECHOLNPGM("Upsample finished");
  3457. mbl.active = 1; //activate mesh bed leveling
  3458. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3459. go_home_with_z_lift();
  3460. // SERIAL_ECHOLNPGM("Go home finished");
  3461. //unretract (after PINDA preheat retraction)
  3462. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3463. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3465. }
  3466. KEEPALIVE_STATE(NOT_BUSY);
  3467. // Restore custom message state
  3468. custom_message = custom_message_old;
  3469. custom_message_type = custom_message_type_old;
  3470. custom_message_state = custom_message_state_old;
  3471. mesh_bed_leveling_flag = false;
  3472. mesh_bed_run_from_menu = false;
  3473. lcd_update(2);
  3474. }
  3475. break;
  3476. /**
  3477. * G81: Print mesh bed leveling status and bed profile if activated
  3478. */
  3479. case 81:
  3480. if (mbl.active) {
  3481. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3482. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3483. SERIAL_PROTOCOLPGM(",");
  3484. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3485. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3486. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3487. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3488. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3489. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3490. SERIAL_PROTOCOLPGM(" ");
  3491. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3492. }
  3493. SERIAL_PROTOCOLPGM("\n");
  3494. }
  3495. }
  3496. else
  3497. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3498. break;
  3499. #if 0
  3500. /**
  3501. * G82: Single Z probe at current location
  3502. *
  3503. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3504. *
  3505. */
  3506. case 82:
  3507. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3508. setup_for_endstop_move();
  3509. find_bed_induction_sensor_point_z();
  3510. clean_up_after_endstop_move();
  3511. SERIAL_PROTOCOLPGM("Bed found at: ");
  3512. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3513. SERIAL_PROTOCOLPGM("\n");
  3514. break;
  3515. /**
  3516. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3517. */
  3518. case 83:
  3519. {
  3520. int babystepz = code_seen('S') ? code_value() : 0;
  3521. int BabyPosition = code_seen('P') ? code_value() : 0;
  3522. if (babystepz != 0) {
  3523. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3524. // Is the axis indexed starting with zero or one?
  3525. if (BabyPosition > 4) {
  3526. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3527. }else{
  3528. // Save it to the eeprom
  3529. babystepLoadZ = babystepz;
  3530. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3531. // adjust the Z
  3532. babystepsTodoZadd(babystepLoadZ);
  3533. }
  3534. }
  3535. }
  3536. break;
  3537. /**
  3538. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3539. */
  3540. case 84:
  3541. babystepsTodoZsubtract(babystepLoadZ);
  3542. // babystepLoadZ = 0;
  3543. break;
  3544. /**
  3545. * G85: Prusa3D specific: Pick best babystep
  3546. */
  3547. case 85:
  3548. lcd_pick_babystep();
  3549. break;
  3550. #endif
  3551. /**
  3552. * G86: Prusa3D specific: Disable babystep correction after home.
  3553. * This G-code will be performed at the start of a calibration script.
  3554. */
  3555. case 86:
  3556. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3557. break;
  3558. /**
  3559. * G87: Prusa3D specific: Enable babystep correction after home
  3560. * This G-code will be performed at the end of a calibration script.
  3561. */
  3562. case 87:
  3563. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3564. break;
  3565. /**
  3566. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3567. */
  3568. case 88:
  3569. break;
  3570. #endif // ENABLE_MESH_BED_LEVELING
  3571. case 90: // G90
  3572. relative_mode = false;
  3573. break;
  3574. case 91: // G91
  3575. relative_mode = true;
  3576. break;
  3577. case 92: // G92
  3578. if(!code_seen(axis_codes[E_AXIS]))
  3579. st_synchronize();
  3580. for(int8_t i=0; i < NUM_AXIS; i++) {
  3581. if(code_seen(axis_codes[i])) {
  3582. if(i == E_AXIS) {
  3583. current_position[i] = code_value();
  3584. plan_set_e_position(current_position[E_AXIS]);
  3585. }
  3586. else {
  3587. current_position[i] = code_value()+add_homing[i];
  3588. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3589. }
  3590. }
  3591. }
  3592. break;
  3593. case 98: //activate farm mode
  3594. farm_mode = 1;
  3595. PingTime = millis();
  3596. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3597. break;
  3598. case 99: //deactivate farm mode
  3599. farm_mode = 0;
  3600. lcd_printer_connected();
  3601. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3602. lcd_update(2);
  3603. break;
  3604. default:
  3605. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3606. }
  3607. } // end if(code_seen('G'))
  3608. else if(code_seen('M'))
  3609. {
  3610. int index;
  3611. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3612. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3613. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3614. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3615. } else
  3616. switch((int)code_value())
  3617. {
  3618. #ifdef ULTIPANEL
  3619. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3620. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3621. {
  3622. char *src = strchr_pointer + 2;
  3623. codenum = 0;
  3624. bool hasP = false, hasS = false;
  3625. if (code_seen('P')) {
  3626. codenum = code_value(); // milliseconds to wait
  3627. hasP = codenum > 0;
  3628. }
  3629. if (code_seen('S')) {
  3630. codenum = code_value() * 1000; // seconds to wait
  3631. hasS = codenum > 0;
  3632. }
  3633. starpos = strchr(src, '*');
  3634. if (starpos != NULL) *(starpos) = '\0';
  3635. while (*src == ' ') ++src;
  3636. if (!hasP && !hasS && *src != '\0') {
  3637. lcd_setstatus(src);
  3638. } else {
  3639. LCD_MESSAGERPGM(MSG_USERWAIT);
  3640. }
  3641. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3642. st_synchronize();
  3643. previous_millis_cmd = millis();
  3644. if (codenum > 0){
  3645. codenum += millis(); // keep track of when we started waiting
  3646. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3647. while(millis() < codenum && !lcd_clicked()){
  3648. manage_heater();
  3649. manage_inactivity(true);
  3650. lcd_update();
  3651. }
  3652. KEEPALIVE_STATE(IN_HANDLER);
  3653. lcd_ignore_click(false);
  3654. }else{
  3655. if (!lcd_detected())
  3656. break;
  3657. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3658. while(!lcd_clicked()){
  3659. manage_heater();
  3660. manage_inactivity(true);
  3661. lcd_update();
  3662. }
  3663. KEEPALIVE_STATE(IN_HANDLER);
  3664. }
  3665. if (IS_SD_PRINTING)
  3666. LCD_MESSAGERPGM(MSG_RESUMING);
  3667. else
  3668. LCD_MESSAGERPGM(WELCOME_MSG);
  3669. }
  3670. break;
  3671. #endif
  3672. case 17:
  3673. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3674. enable_x();
  3675. enable_y();
  3676. enable_z();
  3677. enable_e0();
  3678. enable_e1();
  3679. enable_e2();
  3680. break;
  3681. #ifdef SDSUPPORT
  3682. case 20: // M20 - list SD card
  3683. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3684. card.ls();
  3685. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3686. break;
  3687. case 21: // M21 - init SD card
  3688. card.initsd();
  3689. break;
  3690. case 22: //M22 - release SD card
  3691. card.release();
  3692. break;
  3693. case 23: //M23 - Select file
  3694. starpos = (strchr(strchr_pointer + 4,'*'));
  3695. if(starpos!=NULL)
  3696. *(starpos)='\0';
  3697. card.openFile(strchr_pointer + 4,true);
  3698. break;
  3699. case 24: //M24 - Start SD print
  3700. if (!card.paused)
  3701. failstats_reset_print();
  3702. card.startFileprint();
  3703. starttime=millis();
  3704. break;
  3705. case 25: //M25 - Pause SD print
  3706. card.pauseSDPrint();
  3707. break;
  3708. case 26: //M26 - Set SD index
  3709. if(card.cardOK && code_seen('S')) {
  3710. card.setIndex(code_value_long());
  3711. }
  3712. break;
  3713. case 27: //M27 - Get SD status
  3714. card.getStatus();
  3715. break;
  3716. case 28: //M28 - Start SD write
  3717. starpos = (strchr(strchr_pointer + 4,'*'));
  3718. if(starpos != NULL){
  3719. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3720. strchr_pointer = strchr(npos,' ') + 1;
  3721. *(starpos) = '\0';
  3722. }
  3723. card.openFile(strchr_pointer+4,false);
  3724. break;
  3725. case 29: //M29 - Stop SD write
  3726. //processed in write to file routine above
  3727. //card,saving = false;
  3728. break;
  3729. case 30: //M30 <filename> Delete File
  3730. if (card.cardOK){
  3731. card.closefile();
  3732. starpos = (strchr(strchr_pointer + 4,'*'));
  3733. if(starpos != NULL){
  3734. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3735. strchr_pointer = strchr(npos,' ') + 1;
  3736. *(starpos) = '\0';
  3737. }
  3738. card.removeFile(strchr_pointer + 4);
  3739. }
  3740. break;
  3741. case 32: //M32 - Select file and start SD print
  3742. {
  3743. if(card.sdprinting) {
  3744. st_synchronize();
  3745. }
  3746. starpos = (strchr(strchr_pointer + 4,'*'));
  3747. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3748. if(namestartpos==NULL)
  3749. {
  3750. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3751. }
  3752. else
  3753. namestartpos++; //to skip the '!'
  3754. if(starpos!=NULL)
  3755. *(starpos)='\0';
  3756. bool call_procedure=(code_seen('P'));
  3757. if(strchr_pointer>namestartpos)
  3758. call_procedure=false; //false alert, 'P' found within filename
  3759. if( card.cardOK )
  3760. {
  3761. card.openFile(namestartpos,true,!call_procedure);
  3762. if(code_seen('S'))
  3763. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3764. card.setIndex(code_value_long());
  3765. card.startFileprint();
  3766. if(!call_procedure)
  3767. starttime=millis(); //procedure calls count as normal print time.
  3768. }
  3769. } break;
  3770. case 928: //M928 - Start SD write
  3771. starpos = (strchr(strchr_pointer + 5,'*'));
  3772. if(starpos != NULL){
  3773. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3774. strchr_pointer = strchr(npos,' ') + 1;
  3775. *(starpos) = '\0';
  3776. }
  3777. card.openLogFile(strchr_pointer+5);
  3778. break;
  3779. #endif //SDSUPPORT
  3780. case 31: //M31 take time since the start of the SD print or an M109 command
  3781. {
  3782. stoptime=millis();
  3783. char time[30];
  3784. unsigned long t=(stoptime-starttime)/1000;
  3785. int sec,min;
  3786. min=t/60;
  3787. sec=t%60;
  3788. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3789. SERIAL_ECHO_START;
  3790. SERIAL_ECHOLN(time);
  3791. lcd_setstatus(time);
  3792. autotempShutdown();
  3793. }
  3794. break;
  3795. #ifndef _DISABLE_M42_M226
  3796. case 42: //M42 -Change pin status via gcode
  3797. if (code_seen('S'))
  3798. {
  3799. int pin_status = code_value();
  3800. int pin_number = LED_PIN;
  3801. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3802. pin_number = code_value();
  3803. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3804. {
  3805. if (sensitive_pins[i] == pin_number)
  3806. {
  3807. pin_number = -1;
  3808. break;
  3809. }
  3810. }
  3811. #if defined(FAN_PIN) && FAN_PIN > -1
  3812. if (pin_number == FAN_PIN)
  3813. fanSpeed = pin_status;
  3814. #endif
  3815. if (pin_number > -1)
  3816. {
  3817. pinMode(pin_number, OUTPUT);
  3818. digitalWrite(pin_number, pin_status);
  3819. analogWrite(pin_number, pin_status);
  3820. }
  3821. }
  3822. break;
  3823. #endif //_DISABLE_M42_M226
  3824. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3825. // Reset the baby step value and the baby step applied flag.
  3826. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3827. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3828. // Reset the skew and offset in both RAM and EEPROM.
  3829. reset_bed_offset_and_skew();
  3830. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3831. // the planner will not perform any adjustments in the XY plane.
  3832. // Wait for the motors to stop and update the current position with the absolute values.
  3833. world2machine_revert_to_uncorrected();
  3834. break;
  3835. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3836. {
  3837. int8_t verbosity_level = 0;
  3838. bool only_Z = code_seen('Z');
  3839. #ifdef SUPPORT_VERBOSITY
  3840. if (code_seen('V'))
  3841. {
  3842. // Just 'V' without a number counts as V1.
  3843. char c = strchr_pointer[1];
  3844. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3845. }
  3846. #endif //SUPPORT_VERBOSITY
  3847. gcode_M45(only_Z, verbosity_level);
  3848. }
  3849. break;
  3850. /*
  3851. case 46:
  3852. {
  3853. // M46: Prusa3D: Show the assigned IP address.
  3854. uint8_t ip[4];
  3855. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3856. if (hasIP) {
  3857. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3858. SERIAL_ECHO(int(ip[0]));
  3859. SERIAL_ECHOPGM(".");
  3860. SERIAL_ECHO(int(ip[1]));
  3861. SERIAL_ECHOPGM(".");
  3862. SERIAL_ECHO(int(ip[2]));
  3863. SERIAL_ECHOPGM(".");
  3864. SERIAL_ECHO(int(ip[3]));
  3865. SERIAL_ECHOLNPGM("");
  3866. } else {
  3867. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3868. }
  3869. break;
  3870. }
  3871. */
  3872. case 47:
  3873. // M47: Prusa3D: Show end stops dialog on the display.
  3874. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3875. lcd_diag_show_end_stops();
  3876. KEEPALIVE_STATE(IN_HANDLER);
  3877. break;
  3878. #if 0
  3879. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3880. {
  3881. // Disable the default update procedure of the display. We will do a modal dialog.
  3882. lcd_update_enable(false);
  3883. // Let the planner use the uncorrected coordinates.
  3884. mbl.reset();
  3885. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3886. // the planner will not perform any adjustments in the XY plane.
  3887. // Wait for the motors to stop and update the current position with the absolute values.
  3888. world2machine_revert_to_uncorrected();
  3889. // Move the print head close to the bed.
  3890. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3892. st_synchronize();
  3893. // Home in the XY plane.
  3894. set_destination_to_current();
  3895. setup_for_endstop_move();
  3896. home_xy();
  3897. int8_t verbosity_level = 0;
  3898. if (code_seen('V')) {
  3899. // Just 'V' without a number counts as V1.
  3900. char c = strchr_pointer[1];
  3901. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3902. }
  3903. bool success = scan_bed_induction_points(verbosity_level);
  3904. clean_up_after_endstop_move();
  3905. // Print head up.
  3906. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3908. st_synchronize();
  3909. lcd_update_enable(true);
  3910. break;
  3911. }
  3912. #endif
  3913. // M48 Z-Probe repeatability measurement function.
  3914. //
  3915. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3916. //
  3917. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3918. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3919. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3920. // regenerated.
  3921. //
  3922. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3923. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3924. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3925. //
  3926. #ifdef ENABLE_AUTO_BED_LEVELING
  3927. #ifdef Z_PROBE_REPEATABILITY_TEST
  3928. case 48: // M48 Z-Probe repeatability
  3929. {
  3930. #if Z_MIN_PIN == -1
  3931. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3932. #endif
  3933. double sum=0.0;
  3934. double mean=0.0;
  3935. double sigma=0.0;
  3936. double sample_set[50];
  3937. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3938. double X_current, Y_current, Z_current;
  3939. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3940. if (code_seen('V') || code_seen('v')) {
  3941. verbose_level = code_value();
  3942. if (verbose_level<0 || verbose_level>4 ) {
  3943. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3944. goto Sigma_Exit;
  3945. }
  3946. }
  3947. if (verbose_level > 0) {
  3948. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3949. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3950. }
  3951. if (code_seen('n')) {
  3952. n_samples = code_value();
  3953. if (n_samples<4 || n_samples>50 ) {
  3954. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3955. goto Sigma_Exit;
  3956. }
  3957. }
  3958. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3959. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3960. Z_current = st_get_position_mm(Z_AXIS);
  3961. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3962. ext_position = st_get_position_mm(E_AXIS);
  3963. if (code_seen('X') || code_seen('x') ) {
  3964. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3965. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3966. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3967. goto Sigma_Exit;
  3968. }
  3969. }
  3970. if (code_seen('Y') || code_seen('y') ) {
  3971. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3972. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3973. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3974. goto Sigma_Exit;
  3975. }
  3976. }
  3977. if (code_seen('L') || code_seen('l') ) {
  3978. n_legs = code_value();
  3979. if ( n_legs==1 )
  3980. n_legs = 2;
  3981. if ( n_legs<0 || n_legs>15 ) {
  3982. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3983. goto Sigma_Exit;
  3984. }
  3985. }
  3986. //
  3987. // Do all the preliminary setup work. First raise the probe.
  3988. //
  3989. st_synchronize();
  3990. plan_bed_level_matrix.set_to_identity();
  3991. plan_buffer_line( X_current, Y_current, Z_start_location,
  3992. ext_position,
  3993. homing_feedrate[Z_AXIS]/60,
  3994. active_extruder);
  3995. st_synchronize();
  3996. //
  3997. // Now get everything to the specified probe point So we can safely do a probe to
  3998. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3999. // use that as a starting point for each probe.
  4000. //
  4001. if (verbose_level > 2)
  4002. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4003. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4004. ext_position,
  4005. homing_feedrate[X_AXIS]/60,
  4006. active_extruder);
  4007. st_synchronize();
  4008. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4009. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4010. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4011. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4012. //
  4013. // OK, do the inital probe to get us close to the bed.
  4014. // Then retrace the right amount and use that in subsequent probes
  4015. //
  4016. setup_for_endstop_move();
  4017. run_z_probe();
  4018. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4019. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4020. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4021. ext_position,
  4022. homing_feedrate[X_AXIS]/60,
  4023. active_extruder);
  4024. st_synchronize();
  4025. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4026. for( n=0; n<n_samples; n++) {
  4027. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4028. if ( n_legs) {
  4029. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4030. int rotational_direction, l;
  4031. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4032. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4033. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4034. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4035. //SERIAL_ECHOPAIR(" theta: ",theta);
  4036. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4037. //SERIAL_PROTOCOLLNPGM("");
  4038. for( l=0; l<n_legs-1; l++) {
  4039. if (rotational_direction==1)
  4040. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4041. else
  4042. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4043. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4044. if ( radius<0.0 )
  4045. radius = -radius;
  4046. X_current = X_probe_location + cos(theta) * radius;
  4047. Y_current = Y_probe_location + sin(theta) * radius;
  4048. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4049. X_current = X_MIN_POS;
  4050. if ( X_current>X_MAX_POS)
  4051. X_current = X_MAX_POS;
  4052. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4053. Y_current = Y_MIN_POS;
  4054. if ( Y_current>Y_MAX_POS)
  4055. Y_current = Y_MAX_POS;
  4056. if (verbose_level>3 ) {
  4057. SERIAL_ECHOPAIR("x: ", X_current);
  4058. SERIAL_ECHOPAIR("y: ", Y_current);
  4059. SERIAL_PROTOCOLLNPGM("");
  4060. }
  4061. do_blocking_move_to( X_current, Y_current, Z_current );
  4062. }
  4063. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4064. }
  4065. setup_for_endstop_move();
  4066. run_z_probe();
  4067. sample_set[n] = current_position[Z_AXIS];
  4068. //
  4069. // Get the current mean for the data points we have so far
  4070. //
  4071. sum=0.0;
  4072. for( j=0; j<=n; j++) {
  4073. sum = sum + sample_set[j];
  4074. }
  4075. mean = sum / (double (n+1));
  4076. //
  4077. // Now, use that mean to calculate the standard deviation for the
  4078. // data points we have so far
  4079. //
  4080. sum=0.0;
  4081. for( j=0; j<=n; j++) {
  4082. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4083. }
  4084. sigma = sqrt( sum / (double (n+1)) );
  4085. if (verbose_level > 1) {
  4086. SERIAL_PROTOCOL(n+1);
  4087. SERIAL_PROTOCOL(" of ");
  4088. SERIAL_PROTOCOL(n_samples);
  4089. SERIAL_PROTOCOLPGM(" z: ");
  4090. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4091. }
  4092. if (verbose_level > 2) {
  4093. SERIAL_PROTOCOL(" mean: ");
  4094. SERIAL_PROTOCOL_F(mean,6);
  4095. SERIAL_PROTOCOL(" sigma: ");
  4096. SERIAL_PROTOCOL_F(sigma,6);
  4097. }
  4098. if (verbose_level > 0)
  4099. SERIAL_PROTOCOLPGM("\n");
  4100. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4101. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4102. st_synchronize();
  4103. }
  4104. delay(1000);
  4105. clean_up_after_endstop_move();
  4106. // enable_endstops(true);
  4107. if (verbose_level > 0) {
  4108. SERIAL_PROTOCOLPGM("Mean: ");
  4109. SERIAL_PROTOCOL_F(mean, 6);
  4110. SERIAL_PROTOCOLPGM("\n");
  4111. }
  4112. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4113. SERIAL_PROTOCOL_F(sigma, 6);
  4114. SERIAL_PROTOCOLPGM("\n\n");
  4115. Sigma_Exit:
  4116. break;
  4117. }
  4118. #endif // Z_PROBE_REPEATABILITY_TEST
  4119. #endif // ENABLE_AUTO_BED_LEVELING
  4120. case 104: // M104
  4121. if(setTargetedHotend(104)){
  4122. break;
  4123. }
  4124. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4125. setWatch();
  4126. break;
  4127. case 112: // M112 -Emergency Stop
  4128. kill("", 3);
  4129. break;
  4130. case 140: // M140 set bed temp
  4131. if (code_seen('S')) setTargetBed(code_value());
  4132. break;
  4133. case 105 : // M105
  4134. if(setTargetedHotend(105)){
  4135. break;
  4136. }
  4137. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4138. SERIAL_PROTOCOLPGM("ok T:");
  4139. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4140. SERIAL_PROTOCOLPGM(" /");
  4141. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4142. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4143. SERIAL_PROTOCOLPGM(" B:");
  4144. SERIAL_PROTOCOL_F(degBed(),1);
  4145. SERIAL_PROTOCOLPGM(" /");
  4146. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4147. #endif //TEMP_BED_PIN
  4148. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4149. SERIAL_PROTOCOLPGM(" T");
  4150. SERIAL_PROTOCOL(cur_extruder);
  4151. SERIAL_PROTOCOLPGM(":");
  4152. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4153. SERIAL_PROTOCOLPGM(" /");
  4154. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4155. }
  4156. #else
  4157. SERIAL_ERROR_START;
  4158. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4159. #endif
  4160. SERIAL_PROTOCOLPGM(" @:");
  4161. #ifdef EXTRUDER_WATTS
  4162. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4163. SERIAL_PROTOCOLPGM("W");
  4164. #else
  4165. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4166. #endif
  4167. SERIAL_PROTOCOLPGM(" B@:");
  4168. #ifdef BED_WATTS
  4169. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4170. SERIAL_PROTOCOLPGM("W");
  4171. #else
  4172. SERIAL_PROTOCOL(getHeaterPower(-1));
  4173. #endif
  4174. #ifdef PINDA_THERMISTOR
  4175. SERIAL_PROTOCOLPGM(" P:");
  4176. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4177. #endif //PINDA_THERMISTOR
  4178. #ifdef AMBIENT_THERMISTOR
  4179. SERIAL_PROTOCOLPGM(" A:");
  4180. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4181. #endif //AMBIENT_THERMISTOR
  4182. #ifdef SHOW_TEMP_ADC_VALUES
  4183. {float raw = 0.0;
  4184. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4185. SERIAL_PROTOCOLPGM(" ADC B:");
  4186. SERIAL_PROTOCOL_F(degBed(),1);
  4187. SERIAL_PROTOCOLPGM("C->");
  4188. raw = rawBedTemp();
  4189. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4190. SERIAL_PROTOCOLPGM(" Rb->");
  4191. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4192. SERIAL_PROTOCOLPGM(" Rxb->");
  4193. SERIAL_PROTOCOL_F(raw, 5);
  4194. #endif
  4195. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4196. SERIAL_PROTOCOLPGM(" T");
  4197. SERIAL_PROTOCOL(cur_extruder);
  4198. SERIAL_PROTOCOLPGM(":");
  4199. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4200. SERIAL_PROTOCOLPGM("C->");
  4201. raw = rawHotendTemp(cur_extruder);
  4202. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4203. SERIAL_PROTOCOLPGM(" Rt");
  4204. SERIAL_PROTOCOL(cur_extruder);
  4205. SERIAL_PROTOCOLPGM("->");
  4206. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4207. SERIAL_PROTOCOLPGM(" Rx");
  4208. SERIAL_PROTOCOL(cur_extruder);
  4209. SERIAL_PROTOCOLPGM("->");
  4210. SERIAL_PROTOCOL_F(raw, 5);
  4211. }}
  4212. #endif
  4213. SERIAL_PROTOCOLLN("");
  4214. KEEPALIVE_STATE(NOT_BUSY);
  4215. return;
  4216. break;
  4217. case 109:
  4218. {// M109 - Wait for extruder heater to reach target.
  4219. if(setTargetedHotend(109)){
  4220. break;
  4221. }
  4222. LCD_MESSAGERPGM(MSG_HEATING);
  4223. heating_status = 1;
  4224. if (farm_mode) { prusa_statistics(1); };
  4225. #ifdef AUTOTEMP
  4226. autotemp_enabled=false;
  4227. #endif
  4228. if (code_seen('S')) {
  4229. setTargetHotend(code_value(), tmp_extruder);
  4230. CooldownNoWait = true;
  4231. } else if (code_seen('R')) {
  4232. setTargetHotend(code_value(), tmp_extruder);
  4233. CooldownNoWait = false;
  4234. }
  4235. #ifdef AUTOTEMP
  4236. if (code_seen('S')) autotemp_min=code_value();
  4237. if (code_seen('B')) autotemp_max=code_value();
  4238. if (code_seen('F'))
  4239. {
  4240. autotemp_factor=code_value();
  4241. autotemp_enabled=true;
  4242. }
  4243. #endif
  4244. setWatch();
  4245. codenum = millis();
  4246. /* See if we are heating up or cooling down */
  4247. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4248. KEEPALIVE_STATE(NOT_BUSY);
  4249. cancel_heatup = false;
  4250. wait_for_heater(codenum); //loops until target temperature is reached
  4251. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4252. KEEPALIVE_STATE(IN_HANDLER);
  4253. heating_status = 2;
  4254. if (farm_mode) { prusa_statistics(2); };
  4255. //starttime=millis();
  4256. previous_millis_cmd = millis();
  4257. }
  4258. break;
  4259. case 190: // M190 - Wait for bed heater to reach target.
  4260. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4261. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4262. heating_status = 3;
  4263. if (farm_mode) { prusa_statistics(1); };
  4264. if (code_seen('S'))
  4265. {
  4266. setTargetBed(code_value());
  4267. CooldownNoWait = true;
  4268. }
  4269. else if (code_seen('R'))
  4270. {
  4271. setTargetBed(code_value());
  4272. CooldownNoWait = false;
  4273. }
  4274. codenum = millis();
  4275. cancel_heatup = false;
  4276. target_direction = isHeatingBed(); // true if heating, false if cooling
  4277. KEEPALIVE_STATE(NOT_BUSY);
  4278. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4279. {
  4280. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4281. {
  4282. if (!farm_mode) {
  4283. float tt = degHotend(active_extruder);
  4284. SERIAL_PROTOCOLPGM("T:");
  4285. SERIAL_PROTOCOL(tt);
  4286. SERIAL_PROTOCOLPGM(" E:");
  4287. SERIAL_PROTOCOL((int)active_extruder);
  4288. SERIAL_PROTOCOLPGM(" B:");
  4289. SERIAL_PROTOCOL_F(degBed(), 1);
  4290. SERIAL_PROTOCOLLN("");
  4291. }
  4292. codenum = millis();
  4293. }
  4294. manage_heater();
  4295. manage_inactivity();
  4296. lcd_update();
  4297. }
  4298. LCD_MESSAGERPGM(MSG_BED_DONE);
  4299. KEEPALIVE_STATE(IN_HANDLER);
  4300. heating_status = 4;
  4301. previous_millis_cmd = millis();
  4302. #endif
  4303. break;
  4304. #if defined(FAN_PIN) && FAN_PIN > -1
  4305. case 106: //M106 Fan On
  4306. if (code_seen('S')){
  4307. fanSpeed=constrain(code_value(),0,255);
  4308. }
  4309. else {
  4310. fanSpeed=255;
  4311. }
  4312. break;
  4313. case 107: //M107 Fan Off
  4314. fanSpeed = 0;
  4315. break;
  4316. #endif //FAN_PIN
  4317. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4318. case 80: // M80 - Turn on Power Supply
  4319. SET_OUTPUT(PS_ON_PIN); //GND
  4320. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4321. // If you have a switch on suicide pin, this is useful
  4322. // if you want to start another print with suicide feature after
  4323. // a print without suicide...
  4324. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4325. SET_OUTPUT(SUICIDE_PIN);
  4326. WRITE(SUICIDE_PIN, HIGH);
  4327. #endif
  4328. #ifdef ULTIPANEL
  4329. powersupply = true;
  4330. LCD_MESSAGERPGM(WELCOME_MSG);
  4331. lcd_update();
  4332. #endif
  4333. break;
  4334. #endif
  4335. case 81: // M81 - Turn off Power Supply
  4336. disable_heater();
  4337. st_synchronize();
  4338. disable_e0();
  4339. disable_e1();
  4340. disable_e2();
  4341. finishAndDisableSteppers();
  4342. fanSpeed = 0;
  4343. delay(1000); // Wait a little before to switch off
  4344. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4345. st_synchronize();
  4346. suicide();
  4347. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4348. SET_OUTPUT(PS_ON_PIN);
  4349. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4350. #endif
  4351. #ifdef ULTIPANEL
  4352. powersupply = false;
  4353. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4354. /*
  4355. MACHNAME = "Prusa i3"
  4356. MSGOFF = "Vypnuto"
  4357. "Prusai3"" ""vypnuto""."
  4358. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4359. */
  4360. lcd_update();
  4361. #endif
  4362. break;
  4363. case 82:
  4364. axis_relative_modes[3] = false;
  4365. break;
  4366. case 83:
  4367. axis_relative_modes[3] = true;
  4368. break;
  4369. case 18: //compatibility
  4370. case 84: // M84
  4371. if(code_seen('S')){
  4372. stepper_inactive_time = code_value() * 1000;
  4373. }
  4374. else
  4375. {
  4376. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4377. if(all_axis)
  4378. {
  4379. st_synchronize();
  4380. disable_e0();
  4381. disable_e1();
  4382. disable_e2();
  4383. finishAndDisableSteppers();
  4384. }
  4385. else
  4386. {
  4387. st_synchronize();
  4388. if (code_seen('X')) disable_x();
  4389. if (code_seen('Y')) disable_y();
  4390. if (code_seen('Z')) disable_z();
  4391. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4392. if (code_seen('E')) {
  4393. disable_e0();
  4394. disable_e1();
  4395. disable_e2();
  4396. }
  4397. #endif
  4398. }
  4399. }
  4400. snmm_filaments_used = 0;
  4401. break;
  4402. case 85: // M85
  4403. if(code_seen('S')) {
  4404. max_inactive_time = code_value() * 1000;
  4405. }
  4406. break;
  4407. case 92: // M92
  4408. for(int8_t i=0; i < NUM_AXIS; i++)
  4409. {
  4410. if(code_seen(axis_codes[i]))
  4411. {
  4412. if(i == 3) { // E
  4413. float value = code_value();
  4414. if(value < 20.0) {
  4415. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4416. max_jerk[E_AXIS] *= factor;
  4417. max_feedrate[i] *= factor;
  4418. axis_steps_per_sqr_second[i] *= factor;
  4419. }
  4420. axis_steps_per_unit[i] = value;
  4421. }
  4422. else {
  4423. axis_steps_per_unit[i] = code_value();
  4424. }
  4425. }
  4426. }
  4427. break;
  4428. case 110: // M110 - reset line pos
  4429. if (code_seen('N'))
  4430. gcode_LastN = code_value_long();
  4431. break;
  4432. #ifdef HOST_KEEPALIVE_FEATURE
  4433. case 113: // M113 - Get or set Host Keepalive interval
  4434. if (code_seen('S')) {
  4435. host_keepalive_interval = (uint8_t)code_value_short();
  4436. // NOMORE(host_keepalive_interval, 60);
  4437. }
  4438. else {
  4439. SERIAL_ECHO_START;
  4440. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4441. SERIAL_PROTOCOLLN("");
  4442. }
  4443. break;
  4444. #endif
  4445. case 115: // M115
  4446. if (code_seen('V')) {
  4447. // Report the Prusa version number.
  4448. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4449. } else if (code_seen('U')) {
  4450. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4451. // pause the print and ask the user to upgrade the firmware.
  4452. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4453. } else {
  4454. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4455. }
  4456. break;
  4457. /* case 117: // M117 display message
  4458. starpos = (strchr(strchr_pointer + 5,'*'));
  4459. if(starpos!=NULL)
  4460. *(starpos)='\0';
  4461. lcd_setstatus(strchr_pointer + 5);
  4462. break;*/
  4463. case 114: // M114
  4464. gcode_M114();
  4465. break;
  4466. case 120: // M120
  4467. enable_endstops(false) ;
  4468. break;
  4469. case 121: // M121
  4470. enable_endstops(true) ;
  4471. break;
  4472. case 119: // M119
  4473. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4474. SERIAL_PROTOCOLLN("");
  4475. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4476. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4477. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4478. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4479. }else{
  4480. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4481. }
  4482. SERIAL_PROTOCOLLN("");
  4483. #endif
  4484. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4485. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4486. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4487. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4488. }else{
  4489. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4490. }
  4491. SERIAL_PROTOCOLLN("");
  4492. #endif
  4493. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4494. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4495. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4496. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4497. }else{
  4498. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4499. }
  4500. SERIAL_PROTOCOLLN("");
  4501. #endif
  4502. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4503. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4504. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4505. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4506. }else{
  4507. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4508. }
  4509. SERIAL_PROTOCOLLN("");
  4510. #endif
  4511. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4512. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4513. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4514. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4515. }else{
  4516. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4517. }
  4518. SERIAL_PROTOCOLLN("");
  4519. #endif
  4520. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4521. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4522. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4523. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4524. }else{
  4525. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4526. }
  4527. SERIAL_PROTOCOLLN("");
  4528. #endif
  4529. break;
  4530. //TODO: update for all axis, use for loop
  4531. #ifdef BLINKM
  4532. case 150: // M150
  4533. {
  4534. byte red;
  4535. byte grn;
  4536. byte blu;
  4537. if(code_seen('R')) red = code_value();
  4538. if(code_seen('U')) grn = code_value();
  4539. if(code_seen('B')) blu = code_value();
  4540. SendColors(red,grn,blu);
  4541. }
  4542. break;
  4543. #endif //BLINKM
  4544. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4545. {
  4546. tmp_extruder = active_extruder;
  4547. if(code_seen('T')) {
  4548. tmp_extruder = code_value();
  4549. if(tmp_extruder >= EXTRUDERS) {
  4550. SERIAL_ECHO_START;
  4551. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4552. break;
  4553. }
  4554. }
  4555. float area = .0;
  4556. if(code_seen('D')) {
  4557. float diameter = (float)code_value();
  4558. if (diameter == 0.0) {
  4559. // setting any extruder filament size disables volumetric on the assumption that
  4560. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4561. // for all extruders
  4562. volumetric_enabled = false;
  4563. } else {
  4564. filament_size[tmp_extruder] = (float)code_value();
  4565. // make sure all extruders have some sane value for the filament size
  4566. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4567. #if EXTRUDERS > 1
  4568. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4569. #if EXTRUDERS > 2
  4570. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4571. #endif
  4572. #endif
  4573. volumetric_enabled = true;
  4574. }
  4575. } else {
  4576. //reserved for setting filament diameter via UFID or filament measuring device
  4577. break;
  4578. }
  4579. calculate_extruder_multipliers();
  4580. }
  4581. break;
  4582. case 201: // M201
  4583. for(int8_t i=0; i < NUM_AXIS; i++)
  4584. {
  4585. if(code_seen(axis_codes[i]))
  4586. {
  4587. max_acceleration_units_per_sq_second[i] = code_value();
  4588. }
  4589. }
  4590. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4591. reset_acceleration_rates();
  4592. break;
  4593. #if 0 // Not used for Sprinter/grbl gen6
  4594. case 202: // M202
  4595. for(int8_t i=0; i < NUM_AXIS; i++) {
  4596. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4597. }
  4598. break;
  4599. #endif
  4600. case 203: // M203 max feedrate mm/sec
  4601. for(int8_t i=0; i < NUM_AXIS; i++) {
  4602. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4603. }
  4604. break;
  4605. case 204: // M204 acclereration S normal moves T filmanent only moves
  4606. {
  4607. if(code_seen('S')) acceleration = code_value() ;
  4608. if(code_seen('T')) retract_acceleration = code_value() ;
  4609. }
  4610. break;
  4611. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4612. {
  4613. if(code_seen('S')) minimumfeedrate = code_value();
  4614. if(code_seen('T')) mintravelfeedrate = code_value();
  4615. if(code_seen('B')) minsegmenttime = code_value() ;
  4616. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4617. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4618. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4619. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4620. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4621. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4622. }
  4623. break;
  4624. case 206: // M206 additional homing offset
  4625. for(int8_t i=0; i < 3; i++)
  4626. {
  4627. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4628. }
  4629. break;
  4630. #ifdef FWRETRACT
  4631. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4632. {
  4633. if(code_seen('S'))
  4634. {
  4635. retract_length = code_value() ;
  4636. }
  4637. if(code_seen('F'))
  4638. {
  4639. retract_feedrate = code_value()/60 ;
  4640. }
  4641. if(code_seen('Z'))
  4642. {
  4643. retract_zlift = code_value() ;
  4644. }
  4645. }break;
  4646. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4647. {
  4648. if(code_seen('S'))
  4649. {
  4650. retract_recover_length = code_value() ;
  4651. }
  4652. if(code_seen('F'))
  4653. {
  4654. retract_recover_feedrate = code_value()/60 ;
  4655. }
  4656. }break;
  4657. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4658. {
  4659. if(code_seen('S'))
  4660. {
  4661. int t= code_value() ;
  4662. switch(t)
  4663. {
  4664. case 0:
  4665. {
  4666. autoretract_enabled=false;
  4667. retracted[0]=false;
  4668. #if EXTRUDERS > 1
  4669. retracted[1]=false;
  4670. #endif
  4671. #if EXTRUDERS > 2
  4672. retracted[2]=false;
  4673. #endif
  4674. }break;
  4675. case 1:
  4676. {
  4677. autoretract_enabled=true;
  4678. retracted[0]=false;
  4679. #if EXTRUDERS > 1
  4680. retracted[1]=false;
  4681. #endif
  4682. #if EXTRUDERS > 2
  4683. retracted[2]=false;
  4684. #endif
  4685. }break;
  4686. default:
  4687. SERIAL_ECHO_START;
  4688. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4689. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4690. SERIAL_ECHOLNPGM("\"(1)");
  4691. }
  4692. }
  4693. }break;
  4694. #endif // FWRETRACT
  4695. #if EXTRUDERS > 1
  4696. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4697. {
  4698. if(setTargetedHotend(218)){
  4699. break;
  4700. }
  4701. if(code_seen('X'))
  4702. {
  4703. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4704. }
  4705. if(code_seen('Y'))
  4706. {
  4707. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4708. }
  4709. SERIAL_ECHO_START;
  4710. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4711. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4712. {
  4713. SERIAL_ECHO(" ");
  4714. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4715. SERIAL_ECHO(",");
  4716. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4717. }
  4718. SERIAL_ECHOLN("");
  4719. }break;
  4720. #endif
  4721. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4722. {
  4723. if(code_seen('S'))
  4724. {
  4725. feedmultiply = code_value() ;
  4726. }
  4727. }
  4728. break;
  4729. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4730. {
  4731. if(code_seen('S'))
  4732. {
  4733. int tmp_code = code_value();
  4734. if (code_seen('T'))
  4735. {
  4736. if(setTargetedHotend(221)){
  4737. break;
  4738. }
  4739. extruder_multiply[tmp_extruder] = tmp_code;
  4740. }
  4741. else
  4742. {
  4743. extrudemultiply = tmp_code ;
  4744. }
  4745. }
  4746. calculate_extruder_multipliers();
  4747. }
  4748. break;
  4749. #ifndef _DISABLE_M42_M226
  4750. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4751. {
  4752. if(code_seen('P')){
  4753. int pin_number = code_value(); // pin number
  4754. int pin_state = -1; // required pin state - default is inverted
  4755. if(code_seen('S')) pin_state = code_value(); // required pin state
  4756. if(pin_state >= -1 && pin_state <= 1){
  4757. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4758. {
  4759. if (sensitive_pins[i] == pin_number)
  4760. {
  4761. pin_number = -1;
  4762. break;
  4763. }
  4764. }
  4765. if (pin_number > -1)
  4766. {
  4767. int target = LOW;
  4768. st_synchronize();
  4769. pinMode(pin_number, INPUT);
  4770. switch(pin_state){
  4771. case 1:
  4772. target = HIGH;
  4773. break;
  4774. case 0:
  4775. target = LOW;
  4776. break;
  4777. case -1:
  4778. target = !digitalRead(pin_number);
  4779. break;
  4780. }
  4781. while(digitalRead(pin_number) != target){
  4782. manage_heater();
  4783. manage_inactivity();
  4784. lcd_update();
  4785. }
  4786. }
  4787. }
  4788. }
  4789. }
  4790. break;
  4791. #endif //_DISABLE_M42_M226
  4792. #if NUM_SERVOS > 0
  4793. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4794. {
  4795. int servo_index = -1;
  4796. int servo_position = 0;
  4797. if (code_seen('P'))
  4798. servo_index = code_value();
  4799. if (code_seen('S')) {
  4800. servo_position = code_value();
  4801. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4802. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4803. servos[servo_index].attach(0);
  4804. #endif
  4805. servos[servo_index].write(servo_position);
  4806. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4807. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4808. servos[servo_index].detach();
  4809. #endif
  4810. }
  4811. else {
  4812. SERIAL_ECHO_START;
  4813. SERIAL_ECHO("Servo ");
  4814. SERIAL_ECHO(servo_index);
  4815. SERIAL_ECHOLN(" out of range");
  4816. }
  4817. }
  4818. else if (servo_index >= 0) {
  4819. SERIAL_PROTOCOL(MSG_OK);
  4820. SERIAL_PROTOCOL(" Servo ");
  4821. SERIAL_PROTOCOL(servo_index);
  4822. SERIAL_PROTOCOL(": ");
  4823. SERIAL_PROTOCOL(servos[servo_index].read());
  4824. SERIAL_PROTOCOLLN("");
  4825. }
  4826. }
  4827. break;
  4828. #endif // NUM_SERVOS > 0
  4829. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4830. case 300: // M300
  4831. {
  4832. int beepS = code_seen('S') ? code_value() : 110;
  4833. int beepP = code_seen('P') ? code_value() : 1000;
  4834. if (beepS > 0)
  4835. {
  4836. #if BEEPER > 0
  4837. tone(BEEPER, beepS);
  4838. delay(beepP);
  4839. noTone(BEEPER);
  4840. #elif defined(ULTRALCD)
  4841. lcd_buzz(beepS, beepP);
  4842. #elif defined(LCD_USE_I2C_BUZZER)
  4843. lcd_buzz(beepP, beepS);
  4844. #endif
  4845. }
  4846. else
  4847. {
  4848. delay(beepP);
  4849. }
  4850. }
  4851. break;
  4852. #endif // M300
  4853. #ifdef PIDTEMP
  4854. case 301: // M301
  4855. {
  4856. if(code_seen('P')) Kp = code_value();
  4857. if(code_seen('I')) Ki = scalePID_i(code_value());
  4858. if(code_seen('D')) Kd = scalePID_d(code_value());
  4859. #ifdef PID_ADD_EXTRUSION_RATE
  4860. if(code_seen('C')) Kc = code_value();
  4861. #endif
  4862. updatePID();
  4863. SERIAL_PROTOCOLRPGM(MSG_OK);
  4864. SERIAL_PROTOCOL(" p:");
  4865. SERIAL_PROTOCOL(Kp);
  4866. SERIAL_PROTOCOL(" i:");
  4867. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4868. SERIAL_PROTOCOL(" d:");
  4869. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4870. #ifdef PID_ADD_EXTRUSION_RATE
  4871. SERIAL_PROTOCOL(" c:");
  4872. //Kc does not have scaling applied above, or in resetting defaults
  4873. SERIAL_PROTOCOL(Kc);
  4874. #endif
  4875. SERIAL_PROTOCOLLN("");
  4876. }
  4877. break;
  4878. #endif //PIDTEMP
  4879. #ifdef PIDTEMPBED
  4880. case 304: // M304
  4881. {
  4882. if(code_seen('P')) bedKp = code_value();
  4883. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4884. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4885. updatePID();
  4886. SERIAL_PROTOCOLRPGM(MSG_OK);
  4887. SERIAL_PROTOCOL(" p:");
  4888. SERIAL_PROTOCOL(bedKp);
  4889. SERIAL_PROTOCOL(" i:");
  4890. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4891. SERIAL_PROTOCOL(" d:");
  4892. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4893. SERIAL_PROTOCOLLN("");
  4894. }
  4895. break;
  4896. #endif //PIDTEMP
  4897. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4898. {
  4899. #ifdef CHDK
  4900. SET_OUTPUT(CHDK);
  4901. WRITE(CHDK, HIGH);
  4902. chdkHigh = millis();
  4903. chdkActive = true;
  4904. #else
  4905. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4906. const uint8_t NUM_PULSES=16;
  4907. const float PULSE_LENGTH=0.01524;
  4908. for(int i=0; i < NUM_PULSES; i++) {
  4909. WRITE(PHOTOGRAPH_PIN, HIGH);
  4910. _delay_ms(PULSE_LENGTH);
  4911. WRITE(PHOTOGRAPH_PIN, LOW);
  4912. _delay_ms(PULSE_LENGTH);
  4913. }
  4914. delay(7.33);
  4915. for(int i=0; i < NUM_PULSES; i++) {
  4916. WRITE(PHOTOGRAPH_PIN, HIGH);
  4917. _delay_ms(PULSE_LENGTH);
  4918. WRITE(PHOTOGRAPH_PIN, LOW);
  4919. _delay_ms(PULSE_LENGTH);
  4920. }
  4921. #endif
  4922. #endif //chdk end if
  4923. }
  4924. break;
  4925. #ifdef DOGLCD
  4926. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4927. {
  4928. if (code_seen('C')) {
  4929. lcd_setcontrast( ((int)code_value())&63 );
  4930. }
  4931. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4932. SERIAL_PROTOCOL(lcd_contrast);
  4933. SERIAL_PROTOCOLLN("");
  4934. }
  4935. break;
  4936. #endif
  4937. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4938. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4939. {
  4940. float temp = .0;
  4941. if (code_seen('S')) temp=code_value();
  4942. set_extrude_min_temp(temp);
  4943. }
  4944. break;
  4945. #endif
  4946. case 303: // M303 PID autotune
  4947. {
  4948. float temp = 150.0;
  4949. int e=0;
  4950. int c=5;
  4951. if (code_seen('E')) e=code_value();
  4952. if (e<0)
  4953. temp=70;
  4954. if (code_seen('S')) temp=code_value();
  4955. if (code_seen('C')) c=code_value();
  4956. PID_autotune(temp, e, c);
  4957. }
  4958. break;
  4959. case 400: // M400 finish all moves
  4960. {
  4961. st_synchronize();
  4962. }
  4963. break;
  4964. case 500: // M500 Store settings in EEPROM
  4965. {
  4966. Config_StoreSettings(EEPROM_OFFSET);
  4967. }
  4968. break;
  4969. case 501: // M501 Read settings from EEPROM
  4970. {
  4971. Config_RetrieveSettings(EEPROM_OFFSET);
  4972. }
  4973. break;
  4974. case 502: // M502 Revert to default settings
  4975. {
  4976. Config_ResetDefault();
  4977. }
  4978. break;
  4979. case 503: // M503 print settings currently in memory
  4980. {
  4981. Config_PrintSettings();
  4982. }
  4983. break;
  4984. case 509: //M509 Force language selection
  4985. {
  4986. lcd_force_language_selection();
  4987. SERIAL_ECHO_START;
  4988. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4989. }
  4990. break;
  4991. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4992. case 540:
  4993. {
  4994. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4995. }
  4996. break;
  4997. #endif
  4998. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4999. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5000. {
  5001. float value;
  5002. if (code_seen('Z'))
  5003. {
  5004. value = code_value();
  5005. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5006. {
  5007. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5008. SERIAL_ECHO_START;
  5009. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5010. SERIAL_PROTOCOLLN("");
  5011. }
  5012. else
  5013. {
  5014. SERIAL_ECHO_START;
  5015. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5016. SERIAL_ECHORPGM(MSG_Z_MIN);
  5017. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5018. SERIAL_ECHORPGM(MSG_Z_MAX);
  5019. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5020. SERIAL_PROTOCOLLN("");
  5021. }
  5022. }
  5023. else
  5024. {
  5025. SERIAL_ECHO_START;
  5026. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5027. SERIAL_ECHO(-zprobe_zoffset);
  5028. SERIAL_PROTOCOLLN("");
  5029. }
  5030. break;
  5031. }
  5032. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5033. #ifdef FILAMENTCHANGEENABLE
  5034. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5035. {
  5036. #ifdef PAT9125
  5037. bool old_fsensor_enabled = fsensor_enabled;
  5038. fsensor_enabled = false; //temporary solution for unexpected restarting
  5039. #endif //PAT9125
  5040. st_synchronize();
  5041. float target[4];
  5042. float lastpos[4];
  5043. if (farm_mode)
  5044. {
  5045. prusa_statistics(22);
  5046. }
  5047. feedmultiplyBckp=feedmultiply;
  5048. int8_t TooLowZ = 0;
  5049. float HotendTempBckp = degTargetHotend(active_extruder);
  5050. int fanSpeedBckp = fanSpeed;
  5051. target[X_AXIS]=current_position[X_AXIS];
  5052. target[Y_AXIS]=current_position[Y_AXIS];
  5053. target[Z_AXIS]=current_position[Z_AXIS];
  5054. target[E_AXIS]=current_position[E_AXIS];
  5055. lastpos[X_AXIS]=current_position[X_AXIS];
  5056. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5057. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5058. lastpos[E_AXIS]=current_position[E_AXIS];
  5059. //Restract extruder
  5060. if(code_seen('E'))
  5061. {
  5062. target[E_AXIS]+= code_value();
  5063. }
  5064. else
  5065. {
  5066. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5067. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5068. #endif
  5069. }
  5070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5071. //Lift Z
  5072. if(code_seen('Z'))
  5073. {
  5074. target[Z_AXIS]+= code_value();
  5075. }
  5076. else
  5077. {
  5078. #ifdef FILAMENTCHANGE_ZADD
  5079. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5080. if(target[Z_AXIS] < 10){
  5081. target[Z_AXIS]+= 10 ;
  5082. TooLowZ = 1;
  5083. }else{
  5084. TooLowZ = 0;
  5085. }
  5086. #endif
  5087. }
  5088. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5089. //Move XY to side
  5090. if(code_seen('X'))
  5091. {
  5092. target[X_AXIS]+= code_value();
  5093. }
  5094. else
  5095. {
  5096. #ifdef FILAMENTCHANGE_XPOS
  5097. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5098. #endif
  5099. }
  5100. if(code_seen('Y'))
  5101. {
  5102. target[Y_AXIS]= code_value();
  5103. }
  5104. else
  5105. {
  5106. #ifdef FILAMENTCHANGE_YPOS
  5107. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5108. #endif
  5109. }
  5110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5111. st_synchronize();
  5112. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5113. uint8_t cnt = 0;
  5114. int counterBeep = 0;
  5115. fanSpeed = 0;
  5116. unsigned long waiting_start_time = millis();
  5117. uint8_t wait_for_user_state = 0;
  5118. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5119. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5120. //cnt++;
  5121. manage_heater();
  5122. manage_inactivity(true);
  5123. /*#ifdef SNMM
  5124. target[E_AXIS] += 0.002;
  5125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5126. #endif // SNMM*/
  5127. //if (cnt == 0)
  5128. {
  5129. #if BEEPER > 0
  5130. if (counterBeep == 500) {
  5131. counterBeep = 0;
  5132. }
  5133. SET_OUTPUT(BEEPER);
  5134. if (counterBeep == 0) {
  5135. WRITE(BEEPER, HIGH);
  5136. }
  5137. if (counterBeep == 20) {
  5138. WRITE(BEEPER, LOW);
  5139. }
  5140. counterBeep++;
  5141. #else
  5142. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5143. lcd_buzz(1000 / 6, 100);
  5144. #else
  5145. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5146. #endif
  5147. #endif
  5148. }
  5149. switch (wait_for_user_state) {
  5150. case 0:
  5151. delay_keep_alive(4);
  5152. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5153. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5154. wait_for_user_state = 1;
  5155. setTargetHotend(0, 0);
  5156. setTargetHotend(0, 1);
  5157. setTargetHotend(0, 2);
  5158. st_synchronize();
  5159. disable_e0();
  5160. disable_e1();
  5161. disable_e2();
  5162. }
  5163. break;
  5164. case 1:
  5165. delay_keep_alive(4);
  5166. if (lcd_clicked()) {
  5167. setTargetHotend(HotendTempBckp, active_extruder);
  5168. lcd_wait_for_heater();
  5169. wait_for_user_state = 2;
  5170. }
  5171. break;
  5172. case 2:
  5173. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5174. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5175. waiting_start_time = millis();
  5176. wait_for_user_state = 0;
  5177. }
  5178. else {
  5179. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5180. lcd.setCursor(1, 4);
  5181. lcd.print(ftostr3(degHotend(active_extruder)));
  5182. }
  5183. break;
  5184. }
  5185. }
  5186. WRITE(BEEPER, LOW);
  5187. lcd_change_fil_state = 0;
  5188. // Unload filament
  5189. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5190. KEEPALIVE_STATE(IN_HANDLER);
  5191. custom_message = true;
  5192. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5193. if (code_seen('L'))
  5194. {
  5195. target[E_AXIS] += code_value();
  5196. }
  5197. else
  5198. {
  5199. #ifdef SNMM
  5200. #else
  5201. #ifdef FILAMENTCHANGE_FINALRETRACT
  5202. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5203. #endif
  5204. #endif // SNMM
  5205. }
  5206. #ifdef SNMM
  5207. target[E_AXIS] += 12;
  5208. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5209. target[E_AXIS] += 6;
  5210. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5211. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5213. st_synchronize();
  5214. target[E_AXIS] += (FIL_COOLING);
  5215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5216. target[E_AXIS] += (FIL_COOLING*-1);
  5217. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5218. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5219. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5220. st_synchronize();
  5221. #else
  5222. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5223. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5224. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5225. st_synchronize();
  5226. #ifdef TMC2130
  5227. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5228. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5229. #else
  5230. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5231. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5232. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5233. #endif //TMC2130
  5234. target[E_AXIS] -= 45;
  5235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5236. st_synchronize();
  5237. target[E_AXIS] -= 15;
  5238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5239. st_synchronize();
  5240. target[E_AXIS] -= 20;
  5241. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5242. st_synchronize();
  5243. #ifdef TMC2130
  5244. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5245. #else
  5246. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5247. if(silentMode) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5248. else st_current_set(2, tmp_motor_loud[2]);
  5249. #endif //TMC2130
  5250. #endif // SNMM
  5251. //finish moves
  5252. st_synchronize();
  5253. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5254. //disable extruder steppers so filament can be removed
  5255. disable_e0();
  5256. disable_e1();
  5257. disable_e2();
  5258. delay(100);
  5259. WRITE(BEEPER, HIGH);
  5260. counterBeep = 0;
  5261. while(!lcd_clicked() && (counterBeep < 50)) {
  5262. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5263. delay_keep_alive(100);
  5264. counterBeep++;
  5265. }
  5266. WRITE(BEEPER, LOW);
  5267. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5268. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5269. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5270. //lcd_return_to_status();
  5271. lcd_update_enable(true);
  5272. //Wait for user to insert filament
  5273. lcd_wait_interact();
  5274. //load_filament_time = millis();
  5275. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5276. #ifdef PAT9125
  5277. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5278. #endif //PAT9125
  5279. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5280. while(!lcd_clicked())
  5281. {
  5282. manage_heater();
  5283. manage_inactivity(true);
  5284. #ifdef PAT9125
  5285. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5286. {
  5287. tone(BEEPER, 1000);
  5288. delay_keep_alive(50);
  5289. noTone(BEEPER);
  5290. break;
  5291. }
  5292. #endif //PAT9125
  5293. /*#ifdef SNMM
  5294. target[E_AXIS] += 0.002;
  5295. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5296. #endif // SNMM*/
  5297. }
  5298. #ifdef PAT9125
  5299. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5300. #endif //PAT9125
  5301. //WRITE(BEEPER, LOW);
  5302. KEEPALIVE_STATE(IN_HANDLER);
  5303. #ifdef SNMM
  5304. display_loading();
  5305. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5306. do {
  5307. target[E_AXIS] += 0.002;
  5308. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5309. delay_keep_alive(2);
  5310. } while (!lcd_clicked());
  5311. KEEPALIVE_STATE(IN_HANDLER);
  5312. /*if (millis() - load_filament_time > 2) {
  5313. load_filament_time = millis();
  5314. target[E_AXIS] += 0.001;
  5315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5316. }*/
  5317. //Filament inserted
  5318. //Feed the filament to the end of nozzle quickly
  5319. st_synchronize();
  5320. target[E_AXIS] += bowden_length[snmm_extruder];
  5321. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5322. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5324. target[E_AXIS] += 40;
  5325. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5326. target[E_AXIS] += 10;
  5327. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5328. #else
  5329. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5330. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5331. #endif // SNMM
  5332. //Extrude some filament
  5333. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5334. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5335. //Wait for user to check the state
  5336. lcd_change_fil_state = 0;
  5337. lcd_loading_filament();
  5338. tone(BEEPER, 500);
  5339. delay_keep_alive(50);
  5340. noTone(BEEPER);
  5341. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5342. lcd_change_fil_state = 0;
  5343. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5344. lcd_alright();
  5345. KEEPALIVE_STATE(IN_HANDLER);
  5346. switch(lcd_change_fil_state){
  5347. // Filament failed to load so load it again
  5348. case 2:
  5349. #ifdef SNMM
  5350. display_loading();
  5351. do {
  5352. target[E_AXIS] += 0.002;
  5353. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5354. delay_keep_alive(2);
  5355. } while (!lcd_clicked());
  5356. st_synchronize();
  5357. target[E_AXIS] += bowden_length[snmm_extruder];
  5358. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5359. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5360. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5361. target[E_AXIS] += 40;
  5362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5363. target[E_AXIS] += 10;
  5364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5365. #else
  5366. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5368. #endif
  5369. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5370. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5371. lcd_loading_filament();
  5372. break;
  5373. // Filament loaded properly but color is not clear
  5374. case 3:
  5375. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5376. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5377. lcd_loading_color();
  5378. break;
  5379. // Everything good
  5380. default:
  5381. lcd_change_success();
  5382. lcd_update_enable(true);
  5383. break;
  5384. }
  5385. }
  5386. //Not let's go back to print
  5387. fanSpeed = fanSpeedBckp;
  5388. //Feed a little of filament to stabilize pressure
  5389. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5390. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5391. //Retract
  5392. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5394. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5395. //Move XY back
  5396. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5397. //Move Z back
  5398. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5399. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5400. //Unretract
  5401. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5402. //Set E position to original
  5403. plan_set_e_position(lastpos[E_AXIS]);
  5404. //Recover feed rate
  5405. feedmultiply=feedmultiplyBckp;
  5406. char cmd[9];
  5407. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5408. enquecommand(cmd);
  5409. lcd_setstatuspgm(WELCOME_MSG);
  5410. custom_message = false;
  5411. custom_message_type = 0;
  5412. #ifdef PAT9125
  5413. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5414. if (fsensor_M600)
  5415. {
  5416. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5417. st_synchronize();
  5418. while (!is_buffer_empty())
  5419. {
  5420. process_commands();
  5421. cmdqueue_pop_front();
  5422. }
  5423. fsensor_enable();
  5424. fsensor_restore_print_and_continue();
  5425. }
  5426. #endif //PAT9125
  5427. }
  5428. break;
  5429. #endif //FILAMENTCHANGEENABLE
  5430. case 601: {
  5431. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5432. }
  5433. break;
  5434. case 602: {
  5435. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5436. }
  5437. break;
  5438. #ifdef PINDA_THERMISTOR
  5439. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5440. {
  5441. int setTargetPinda = 0;
  5442. if (code_seen('S')) {
  5443. setTargetPinda = code_value();
  5444. }
  5445. else {
  5446. break;
  5447. }
  5448. LCD_MESSAGERPGM(MSG_PLEASE_WAIT);
  5449. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5450. SERIAL_PROTOCOL(setTargetPinda);
  5451. SERIAL_PROTOCOLLN("");
  5452. codenum = millis();
  5453. cancel_heatup = false;
  5454. KEEPALIVE_STATE(NOT_BUSY);
  5455. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5456. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5457. {
  5458. SERIAL_PROTOCOLPGM("P:");
  5459. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5460. SERIAL_PROTOCOLPGM("/");
  5461. SERIAL_PROTOCOL(setTargetPinda);
  5462. SERIAL_PROTOCOLLN("");
  5463. codenum = millis();
  5464. }
  5465. manage_heater();
  5466. manage_inactivity();
  5467. lcd_update();
  5468. }
  5469. LCD_MESSAGERPGM(MSG_OK);
  5470. break;
  5471. }
  5472. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5473. if (code_seen('?')) { // ? - Print out current EEPRO offset values
  5474. uint8_t cal_status = calibration_status_pinda();
  5475. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5476. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5477. for (uint8_t i = 0; i < 6; i++)
  5478. {
  5479. uint16_t usteps = 0;
  5480. if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  5481. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5482. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5483. SERIAL_PROTOCOLPGM(", ");
  5484. SERIAL_PROTOCOL(35 + (i * 5));
  5485. SERIAL_PROTOCOLPGM(", ");
  5486. SERIAL_PROTOCOL(usteps);
  5487. SERIAL_PROTOCOLPGM(", ");
  5488. SERIAL_PROTOCOL(mm * 1000);
  5489. SERIAL_PROTOCOLLN("");
  5490. }
  5491. }
  5492. else if (code_seen('!')) { // ! - Set factory default values
  5493. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5494. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  5495. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  5496. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  5497. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  5498. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  5499. SERIAL_PROTOCOLLN("factory restored");
  5500. }
  5501. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5502. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5503. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0);
  5504. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0);
  5505. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0);
  5506. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0);
  5507. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0);
  5508. SERIAL_PROTOCOLLN("zerorized");
  5509. }
  5510. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5511. uint16_t usteps = code_value();
  5512. if (code_seen('I')) {
  5513. byte index = code_value();
  5514. if ((index >= 0) && (index < 5)) {
  5515. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + index, usteps);
  5516. SERIAL_PROTOCOLLN("OK");
  5517. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5518. for (uint8_t i = 0; i < 6; i++)
  5519. {
  5520. uint16_t usteps = 0;
  5521. if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
  5522. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5523. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5524. SERIAL_PROTOCOLPGM(", ");
  5525. SERIAL_PROTOCOL(35 + (i * 5));
  5526. SERIAL_PROTOCOLPGM(", ");
  5527. SERIAL_PROTOCOL(usteps);
  5528. SERIAL_PROTOCOLPGM(", ");
  5529. SERIAL_PROTOCOL(mm * 1000);
  5530. SERIAL_PROTOCOLLN("");
  5531. }
  5532. }
  5533. }
  5534. }
  5535. else {
  5536. SERIAL_PROTOCOLPGM("no valid command");
  5537. }
  5538. break;
  5539. #endif //PINDA_THERMISTOR
  5540. #ifdef LIN_ADVANCE
  5541. case 900: // M900: Set LIN_ADVANCE options.
  5542. gcode_M900();
  5543. break;
  5544. #endif
  5545. case 907: // M907 Set digital trimpot motor current using axis codes.
  5546. {
  5547. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5548. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5549. if(code_seen('B')) st_current_set(4,code_value());
  5550. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5551. #endif
  5552. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5553. if(code_seen('X')) st_current_set(0, code_value());
  5554. #endif
  5555. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5556. if(code_seen('Z')) st_current_set(1, code_value());
  5557. #endif
  5558. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5559. if(code_seen('E')) st_current_set(2, code_value());
  5560. #endif
  5561. }
  5562. break;
  5563. case 908: // M908 Control digital trimpot directly.
  5564. {
  5565. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5566. uint8_t channel,current;
  5567. if(code_seen('P')) channel=code_value();
  5568. if(code_seen('S')) current=code_value();
  5569. digitalPotWrite(channel, current);
  5570. #endif
  5571. }
  5572. break;
  5573. #ifdef TMC2130
  5574. case 910: // M910 TMC2130 init
  5575. {
  5576. tmc2130_init();
  5577. }
  5578. break;
  5579. case 911: // M911 Set TMC2130 holding currents
  5580. {
  5581. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5582. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5583. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5584. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5585. }
  5586. break;
  5587. case 912: // M912 Set TMC2130 running currents
  5588. {
  5589. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5590. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5591. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5592. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5593. }
  5594. break;
  5595. case 913: // M913 Print TMC2130 currents
  5596. {
  5597. tmc2130_print_currents();
  5598. }
  5599. break;
  5600. case 914: // M914 Set normal mode
  5601. {
  5602. tmc2130_mode = TMC2130_MODE_NORMAL;
  5603. tmc2130_init();
  5604. }
  5605. break;
  5606. case 915: // M915 Set silent mode
  5607. {
  5608. tmc2130_mode = TMC2130_MODE_SILENT;
  5609. tmc2130_init();
  5610. }
  5611. break;
  5612. case 916: // M916 Set sg_thrs
  5613. {
  5614. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5615. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5616. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5617. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5618. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5619. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5620. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5621. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5622. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5623. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5624. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5625. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5626. }
  5627. break;
  5628. case 917: // M917 Set TMC2130 pwm_ampl
  5629. {
  5630. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5631. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5632. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5633. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5634. }
  5635. break;
  5636. case 918: // M918 Set TMC2130 pwm_grad
  5637. {
  5638. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5639. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5640. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5641. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5642. }
  5643. break;
  5644. #endif //TMC2130
  5645. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5646. {
  5647. #ifdef TMC2130
  5648. if(code_seen('E'))
  5649. {
  5650. uint16_t res_new = code_value();
  5651. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5652. {
  5653. st_synchronize();
  5654. uint8_t axis = E_AXIS;
  5655. uint16_t res = tmc2130_get_res(axis);
  5656. tmc2130_set_res(axis, res_new);
  5657. if (res_new > res)
  5658. {
  5659. uint16_t fac = (res_new / res);
  5660. axis_steps_per_unit[axis] *= fac;
  5661. position[E_AXIS] *= fac;
  5662. }
  5663. else
  5664. {
  5665. uint16_t fac = (res / res_new);
  5666. axis_steps_per_unit[axis] /= fac;
  5667. position[E_AXIS] /= fac;
  5668. }
  5669. }
  5670. }
  5671. #else //TMC2130
  5672. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5673. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5674. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5675. if(code_seen('B')) microstep_mode(4,code_value());
  5676. microstep_readings();
  5677. #endif
  5678. #endif //TMC2130
  5679. }
  5680. break;
  5681. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5682. {
  5683. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5684. if(code_seen('S')) switch((int)code_value())
  5685. {
  5686. case 1:
  5687. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5688. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5689. break;
  5690. case 2:
  5691. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5692. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5693. break;
  5694. }
  5695. microstep_readings();
  5696. #endif
  5697. }
  5698. break;
  5699. case 701: //M701: load filament
  5700. {
  5701. gcode_M701();
  5702. }
  5703. break;
  5704. case 702:
  5705. {
  5706. #ifdef SNMM
  5707. if (code_seen('U')) {
  5708. extr_unload_used(); //unload all filaments which were used in current print
  5709. }
  5710. else if (code_seen('C')) {
  5711. extr_unload(); //unload just current filament
  5712. }
  5713. else {
  5714. extr_unload_all(); //unload all filaments
  5715. }
  5716. #else
  5717. #ifdef PAT9125
  5718. bool old_fsensor_enabled = fsensor_enabled;
  5719. fsensor_enabled = false;
  5720. #endif //PAT9125
  5721. custom_message = true;
  5722. custom_message_type = 2;
  5723. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5724. // extr_unload2();
  5725. current_position[E_AXIS] -= 45;
  5726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5727. st_synchronize();
  5728. current_position[E_AXIS] -= 15;
  5729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5730. st_synchronize();
  5731. current_position[E_AXIS] -= 20;
  5732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5733. st_synchronize();
  5734. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5735. //disable extruder steppers so filament can be removed
  5736. disable_e0();
  5737. disable_e1();
  5738. disable_e2();
  5739. delay(100);
  5740. WRITE(BEEPER, HIGH);
  5741. uint8_t counterBeep = 0;
  5742. while (!lcd_clicked() && (counterBeep < 50)) {
  5743. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5744. delay_keep_alive(100);
  5745. counterBeep++;
  5746. }
  5747. WRITE(BEEPER, LOW);
  5748. st_synchronize();
  5749. while (lcd_clicked()) delay_keep_alive(100);
  5750. lcd_update_enable(true);
  5751. lcd_setstatuspgm(WELCOME_MSG);
  5752. custom_message = false;
  5753. custom_message_type = 0;
  5754. #ifdef PAT9125
  5755. fsensor_enabled = old_fsensor_enabled;
  5756. #endif //PAT9125
  5757. #endif
  5758. }
  5759. break;
  5760. case 999: // M999: Restart after being stopped
  5761. Stopped = false;
  5762. lcd_reset_alert_level();
  5763. gcode_LastN = Stopped_gcode_LastN;
  5764. FlushSerialRequestResend();
  5765. break;
  5766. default:
  5767. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5768. }
  5769. } // end if(code_seen('M')) (end of M codes)
  5770. else if(code_seen('T'))
  5771. {
  5772. int index;
  5773. st_synchronize();
  5774. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5775. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5776. SERIAL_ECHOLNPGM("Invalid T code.");
  5777. }
  5778. else {
  5779. if (*(strchr_pointer + index) == '?') {
  5780. tmp_extruder = choose_extruder_menu();
  5781. }
  5782. else {
  5783. tmp_extruder = code_value();
  5784. }
  5785. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5786. #ifdef SNMM
  5787. #ifdef LIN_ADVANCE
  5788. if (snmm_extruder != tmp_extruder)
  5789. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5790. #endif
  5791. snmm_extruder = tmp_extruder;
  5792. delay(100);
  5793. disable_e0();
  5794. disable_e1();
  5795. disable_e2();
  5796. pinMode(E_MUX0_PIN, OUTPUT);
  5797. pinMode(E_MUX1_PIN, OUTPUT);
  5798. pinMode(E_MUX2_PIN, OUTPUT);
  5799. delay(100);
  5800. SERIAL_ECHO_START;
  5801. SERIAL_ECHO("T:");
  5802. SERIAL_ECHOLN((int)tmp_extruder);
  5803. switch (tmp_extruder) {
  5804. case 1:
  5805. WRITE(E_MUX0_PIN, HIGH);
  5806. WRITE(E_MUX1_PIN, LOW);
  5807. WRITE(E_MUX2_PIN, LOW);
  5808. break;
  5809. case 2:
  5810. WRITE(E_MUX0_PIN, LOW);
  5811. WRITE(E_MUX1_PIN, HIGH);
  5812. WRITE(E_MUX2_PIN, LOW);
  5813. break;
  5814. case 3:
  5815. WRITE(E_MUX0_PIN, HIGH);
  5816. WRITE(E_MUX1_PIN, HIGH);
  5817. WRITE(E_MUX2_PIN, LOW);
  5818. break;
  5819. default:
  5820. WRITE(E_MUX0_PIN, LOW);
  5821. WRITE(E_MUX1_PIN, LOW);
  5822. WRITE(E_MUX2_PIN, LOW);
  5823. break;
  5824. }
  5825. delay(100);
  5826. #else
  5827. if (tmp_extruder >= EXTRUDERS) {
  5828. SERIAL_ECHO_START;
  5829. SERIAL_ECHOPGM("T");
  5830. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5831. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5832. }
  5833. else {
  5834. boolean make_move = false;
  5835. if (code_seen('F')) {
  5836. make_move = true;
  5837. next_feedrate = code_value();
  5838. if (next_feedrate > 0.0) {
  5839. feedrate = next_feedrate;
  5840. }
  5841. }
  5842. #if EXTRUDERS > 1
  5843. if (tmp_extruder != active_extruder) {
  5844. // Save current position to return to after applying extruder offset
  5845. memcpy(destination, current_position, sizeof(destination));
  5846. // Offset extruder (only by XY)
  5847. int i;
  5848. for (i = 0; i < 2; i++) {
  5849. current_position[i] = current_position[i] -
  5850. extruder_offset[i][active_extruder] +
  5851. extruder_offset[i][tmp_extruder];
  5852. }
  5853. // Set the new active extruder and position
  5854. active_extruder = tmp_extruder;
  5855. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5856. // Move to the old position if 'F' was in the parameters
  5857. if (make_move && Stopped == false) {
  5858. prepare_move();
  5859. }
  5860. }
  5861. #endif
  5862. SERIAL_ECHO_START;
  5863. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5864. SERIAL_PROTOCOLLN((int)active_extruder);
  5865. }
  5866. #endif
  5867. }
  5868. } // end if(code_seen('T')) (end of T codes)
  5869. #ifdef DEBUG_DCODES
  5870. else if (code_seen('D')) // D codes (debug)
  5871. {
  5872. switch((int)code_value())
  5873. {
  5874. case -1: // D-1 - Endless loop
  5875. dcode__1(); break;
  5876. case 0: // D0 - Reset
  5877. dcode_0(); break;
  5878. case 1: // D1 - Clear EEPROM
  5879. dcode_1(); break;
  5880. case 2: // D2 - Read/Write RAM
  5881. dcode_2(); break;
  5882. case 3: // D3 - Read/Write EEPROM
  5883. dcode_3(); break;
  5884. case 4: // D4 - Read/Write PIN
  5885. dcode_4(); break;
  5886. case 5: // D5 - Read/Write FLASH
  5887. // dcode_5(); break;
  5888. break;
  5889. case 6: // D6 - Read/Write external FLASH
  5890. dcode_6(); break;
  5891. case 7: // D7 - Read/Write Bootloader
  5892. dcode_7(); break;
  5893. case 8: // D8 - Read/Write PINDA
  5894. dcode_8(); break;
  5895. case 9: // D9 - Read/Write ADC
  5896. dcode_9(); break;
  5897. case 10: // D10 - XYZ calibration = OK
  5898. dcode_10(); break;
  5899. #ifdef TMC2130
  5900. case 2130: // D9125 - TMC2130
  5901. dcode_2130(); break;
  5902. #endif //TMC2130
  5903. #ifdef PAT9125
  5904. case 9125: // D9125 - PAT9125
  5905. dcode_9125(); break;
  5906. #endif //PAT9125
  5907. }
  5908. }
  5909. #endif //DEBUG_DCODES
  5910. else
  5911. {
  5912. SERIAL_ECHO_START;
  5913. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5914. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5915. SERIAL_ECHOLNPGM("\"(2)");
  5916. }
  5917. KEEPALIVE_STATE(NOT_BUSY);
  5918. ClearToSend();
  5919. }
  5920. void FlushSerialRequestResend()
  5921. {
  5922. //char cmdbuffer[bufindr][100]="Resend:";
  5923. MYSERIAL.flush();
  5924. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5925. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5926. previous_millis_cmd = millis();
  5927. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5928. }
  5929. // Confirm the execution of a command, if sent from a serial line.
  5930. // Execution of a command from a SD card will not be confirmed.
  5931. void ClearToSend()
  5932. {
  5933. previous_millis_cmd = millis();
  5934. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5935. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5936. }
  5937. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5938. void update_currents() {
  5939. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5940. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5941. float tmp_motor[3];
  5942. //SERIAL_ECHOLNPGM("Currents updated: ");
  5943. if (destination[Z_AXIS] < Z_SILENT) {
  5944. //SERIAL_ECHOLNPGM("LOW");
  5945. for (uint8_t i = 0; i < 3; i++) {
  5946. st_current_set(i, current_low[i]);
  5947. /*MYSERIAL.print(int(i));
  5948. SERIAL_ECHOPGM(": ");
  5949. MYSERIAL.println(current_low[i]);*/
  5950. }
  5951. }
  5952. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5953. //SERIAL_ECHOLNPGM("HIGH");
  5954. for (uint8_t i = 0; i < 3; i++) {
  5955. st_current_set(i, current_high[i]);
  5956. /*MYSERIAL.print(int(i));
  5957. SERIAL_ECHOPGM(": ");
  5958. MYSERIAL.println(current_high[i]);*/
  5959. }
  5960. }
  5961. else {
  5962. for (uint8_t i = 0; i < 3; i++) {
  5963. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5964. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5965. st_current_set(i, tmp_motor[i]);
  5966. /*MYSERIAL.print(int(i));
  5967. SERIAL_ECHOPGM(": ");
  5968. MYSERIAL.println(tmp_motor[i]);*/
  5969. }
  5970. }
  5971. }
  5972. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5973. void get_coordinates()
  5974. {
  5975. bool seen[4]={false,false,false,false};
  5976. for(int8_t i=0; i < NUM_AXIS; i++) {
  5977. if(code_seen(axis_codes[i]))
  5978. {
  5979. bool relative = axis_relative_modes[i] || relative_mode;
  5980. destination[i] = (float)code_value();
  5981. if (i == E_AXIS) {
  5982. float emult = extruder_multiplier[active_extruder];
  5983. if (emult != 1.) {
  5984. if (! relative) {
  5985. destination[i] -= current_position[i];
  5986. relative = true;
  5987. }
  5988. destination[i] *= emult;
  5989. }
  5990. }
  5991. if (relative)
  5992. destination[i] += current_position[i];
  5993. seen[i]=true;
  5994. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5995. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5996. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5997. }
  5998. else destination[i] = current_position[i]; //Are these else lines really needed?
  5999. }
  6000. if(code_seen('F')) {
  6001. next_feedrate = code_value();
  6002. #ifdef MAX_SILENT_FEEDRATE
  6003. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6004. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6005. #endif //MAX_SILENT_FEEDRATE
  6006. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6007. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6008. {
  6009. // float e_max_speed =
  6010. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6011. }
  6012. }
  6013. }
  6014. void get_arc_coordinates()
  6015. {
  6016. #ifdef SF_ARC_FIX
  6017. bool relative_mode_backup = relative_mode;
  6018. relative_mode = true;
  6019. #endif
  6020. get_coordinates();
  6021. #ifdef SF_ARC_FIX
  6022. relative_mode=relative_mode_backup;
  6023. #endif
  6024. if(code_seen('I')) {
  6025. offset[0] = code_value();
  6026. }
  6027. else {
  6028. offset[0] = 0.0;
  6029. }
  6030. if(code_seen('J')) {
  6031. offset[1] = code_value();
  6032. }
  6033. else {
  6034. offset[1] = 0.0;
  6035. }
  6036. }
  6037. void clamp_to_software_endstops(float target[3])
  6038. {
  6039. #ifdef DEBUG_DISABLE_SWLIMITS
  6040. return;
  6041. #endif //DEBUG_DISABLE_SWLIMITS
  6042. world2machine_clamp(target[0], target[1]);
  6043. // Clamp the Z coordinate.
  6044. if (min_software_endstops) {
  6045. float negative_z_offset = 0;
  6046. #ifdef ENABLE_AUTO_BED_LEVELING
  6047. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6048. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6049. #endif
  6050. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6051. }
  6052. if (max_software_endstops) {
  6053. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6054. }
  6055. }
  6056. #ifdef MESH_BED_LEVELING
  6057. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6058. float dx = x - current_position[X_AXIS];
  6059. float dy = y - current_position[Y_AXIS];
  6060. float dz = z - current_position[Z_AXIS];
  6061. int n_segments = 0;
  6062. if (mbl.active) {
  6063. float len = abs(dx) + abs(dy);
  6064. if (len > 0)
  6065. // Split to 3cm segments or shorter.
  6066. n_segments = int(ceil(len / 30.f));
  6067. }
  6068. if (n_segments > 1) {
  6069. float de = e - current_position[E_AXIS];
  6070. for (int i = 1; i < n_segments; ++ i) {
  6071. float t = float(i) / float(n_segments);
  6072. plan_buffer_line(
  6073. current_position[X_AXIS] + t * dx,
  6074. current_position[Y_AXIS] + t * dy,
  6075. current_position[Z_AXIS] + t * dz,
  6076. current_position[E_AXIS] + t * de,
  6077. feed_rate, extruder);
  6078. }
  6079. }
  6080. // The rest of the path.
  6081. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6082. current_position[X_AXIS] = x;
  6083. current_position[Y_AXIS] = y;
  6084. current_position[Z_AXIS] = z;
  6085. current_position[E_AXIS] = e;
  6086. }
  6087. #endif // MESH_BED_LEVELING
  6088. void prepare_move()
  6089. {
  6090. clamp_to_software_endstops(destination);
  6091. previous_millis_cmd = millis();
  6092. // Do not use feedmultiply for E or Z only moves
  6093. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6094. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6095. }
  6096. else {
  6097. #ifdef MESH_BED_LEVELING
  6098. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6099. #else
  6100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6101. #endif
  6102. }
  6103. for(int8_t i=0; i < NUM_AXIS; i++) {
  6104. current_position[i] = destination[i];
  6105. }
  6106. }
  6107. void prepare_arc_move(char isclockwise) {
  6108. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6109. // Trace the arc
  6110. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6111. // As far as the parser is concerned, the position is now == target. In reality the
  6112. // motion control system might still be processing the action and the real tool position
  6113. // in any intermediate location.
  6114. for(int8_t i=0; i < NUM_AXIS; i++) {
  6115. current_position[i] = destination[i];
  6116. }
  6117. previous_millis_cmd = millis();
  6118. }
  6119. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6120. #if defined(FAN_PIN)
  6121. #if CONTROLLERFAN_PIN == FAN_PIN
  6122. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6123. #endif
  6124. #endif
  6125. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6126. unsigned long lastMotorCheck = 0;
  6127. void controllerFan()
  6128. {
  6129. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6130. {
  6131. lastMotorCheck = millis();
  6132. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6133. #if EXTRUDERS > 2
  6134. || !READ(E2_ENABLE_PIN)
  6135. #endif
  6136. #if EXTRUDER > 1
  6137. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6138. || !READ(X2_ENABLE_PIN)
  6139. #endif
  6140. || !READ(E1_ENABLE_PIN)
  6141. #endif
  6142. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6143. {
  6144. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6145. }
  6146. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6147. {
  6148. digitalWrite(CONTROLLERFAN_PIN, 0);
  6149. analogWrite(CONTROLLERFAN_PIN, 0);
  6150. }
  6151. else
  6152. {
  6153. // allows digital or PWM fan output to be used (see M42 handling)
  6154. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6155. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6156. }
  6157. }
  6158. }
  6159. #endif
  6160. #ifdef TEMP_STAT_LEDS
  6161. static bool blue_led = false;
  6162. static bool red_led = false;
  6163. static uint32_t stat_update = 0;
  6164. void handle_status_leds(void) {
  6165. float max_temp = 0.0;
  6166. if(millis() > stat_update) {
  6167. stat_update += 500; // Update every 0.5s
  6168. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6169. max_temp = max(max_temp, degHotend(cur_extruder));
  6170. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6171. }
  6172. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6173. max_temp = max(max_temp, degTargetBed());
  6174. max_temp = max(max_temp, degBed());
  6175. #endif
  6176. if((max_temp > 55.0) && (red_led == false)) {
  6177. digitalWrite(STAT_LED_RED, 1);
  6178. digitalWrite(STAT_LED_BLUE, 0);
  6179. red_led = true;
  6180. blue_led = false;
  6181. }
  6182. if((max_temp < 54.0) && (blue_led == false)) {
  6183. digitalWrite(STAT_LED_RED, 0);
  6184. digitalWrite(STAT_LED_BLUE, 1);
  6185. red_led = false;
  6186. blue_led = true;
  6187. }
  6188. }
  6189. }
  6190. #endif
  6191. #ifdef SAFETYTIMER
  6192. /**
  6193. * @brief Turn off heating after 15 minutes of inactivity
  6194. */
  6195. static void handleSafetyTimer()
  6196. {
  6197. #if (EXTRUDERS > 1)
  6198. #error Implemented only for one extruder.
  6199. #endif //(EXTRUDERS > 1)
  6200. static Timer safetyTimer;
  6201. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6202. (!degTargetBed() && !degTargetHotend(0)))
  6203. {
  6204. safetyTimer.stop();
  6205. }
  6206. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6207. {
  6208. safetyTimer.start();
  6209. }
  6210. else if (safetyTimer.expired(15*60*1000))
  6211. {
  6212. setTargetBed(0);
  6213. setTargetHotend(0, 0);
  6214. }
  6215. }
  6216. #endif //SAFETYTIMER
  6217. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6218. {
  6219. #ifdef PAT9125
  6220. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6221. {
  6222. if (fsensor_autoload_enabled)
  6223. {
  6224. if (fsensor_check_autoload())
  6225. {
  6226. if (degHotend0() > EXTRUDE_MINTEMP)
  6227. {
  6228. fsensor_autoload_check_stop();
  6229. tone(BEEPER, 1000);
  6230. delay_keep_alive(50);
  6231. noTone(BEEPER);
  6232. loading_flag = true;
  6233. enquecommand_front_P((PSTR("M701")));
  6234. }
  6235. else
  6236. {
  6237. lcd_update_enable(false);
  6238. lcd_implementation_clear();
  6239. lcd.setCursor(0, 0);
  6240. lcd_printPGM(MSG_ERROR);
  6241. lcd.setCursor(0, 2);
  6242. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6243. delay(2000);
  6244. lcd_implementation_clear();
  6245. lcd_update_enable(true);
  6246. }
  6247. }
  6248. }
  6249. else
  6250. fsensor_autoload_check_start();
  6251. }
  6252. else
  6253. if (fsensor_autoload_enabled)
  6254. fsensor_autoload_check_stop();
  6255. #endif //PAT9125
  6256. #ifdef SAFETYTIMER
  6257. handleSafetyTimer();
  6258. #endif //SAFETYTIMER
  6259. #ifdef SAFETYTIMER
  6260. handleSafetyTimer();
  6261. #endif //SAFETYTIMER
  6262. #if defined(KILL_PIN) && KILL_PIN > -1
  6263. static int killCount = 0; // make the inactivity button a bit less responsive
  6264. const int KILL_DELAY = 10000;
  6265. #endif
  6266. if(buflen < (BUFSIZE-1)){
  6267. get_command();
  6268. }
  6269. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6270. if(max_inactive_time)
  6271. kill("", 4);
  6272. if(stepper_inactive_time) {
  6273. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6274. {
  6275. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6276. disable_x();
  6277. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6278. disable_y();
  6279. disable_z();
  6280. disable_e0();
  6281. disable_e1();
  6282. disable_e2();
  6283. }
  6284. }
  6285. }
  6286. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6287. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6288. {
  6289. chdkActive = false;
  6290. WRITE(CHDK, LOW);
  6291. }
  6292. #endif
  6293. #if defined(KILL_PIN) && KILL_PIN > -1
  6294. // Check if the kill button was pressed and wait just in case it was an accidental
  6295. // key kill key press
  6296. // -------------------------------------------------------------------------------
  6297. if( 0 == READ(KILL_PIN) )
  6298. {
  6299. killCount++;
  6300. }
  6301. else if (killCount > 0)
  6302. {
  6303. killCount--;
  6304. }
  6305. // Exceeded threshold and we can confirm that it was not accidental
  6306. // KILL the machine
  6307. // ----------------------------------------------------------------
  6308. if ( killCount >= KILL_DELAY)
  6309. {
  6310. kill("", 5);
  6311. }
  6312. #endif
  6313. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6314. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6315. #endif
  6316. #ifdef EXTRUDER_RUNOUT_PREVENT
  6317. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6318. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6319. {
  6320. bool oldstatus=READ(E0_ENABLE_PIN);
  6321. enable_e0();
  6322. float oldepos=current_position[E_AXIS];
  6323. float oldedes=destination[E_AXIS];
  6324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6325. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6326. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6327. current_position[E_AXIS]=oldepos;
  6328. destination[E_AXIS]=oldedes;
  6329. plan_set_e_position(oldepos);
  6330. previous_millis_cmd=millis();
  6331. st_synchronize();
  6332. WRITE(E0_ENABLE_PIN,oldstatus);
  6333. }
  6334. #endif
  6335. #ifdef TEMP_STAT_LEDS
  6336. handle_status_leds();
  6337. #endif
  6338. check_axes_activity();
  6339. }
  6340. void kill(const char *full_screen_message, unsigned char id)
  6341. {
  6342. SERIAL_ECHOPGM("KILL: ");
  6343. MYSERIAL.println(int(id));
  6344. //return;
  6345. cli(); // Stop interrupts
  6346. disable_heater();
  6347. disable_x();
  6348. // SERIAL_ECHOLNPGM("kill - disable Y");
  6349. disable_y();
  6350. disable_z();
  6351. disable_e0();
  6352. disable_e1();
  6353. disable_e2();
  6354. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6355. pinMode(PS_ON_PIN,INPUT);
  6356. #endif
  6357. SERIAL_ERROR_START;
  6358. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6359. if (full_screen_message != NULL) {
  6360. SERIAL_ERRORLNRPGM(full_screen_message);
  6361. lcd_display_message_fullscreen_P(full_screen_message);
  6362. } else {
  6363. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6364. }
  6365. // FMC small patch to update the LCD before ending
  6366. sei(); // enable interrupts
  6367. for ( int i=5; i--; lcd_update())
  6368. {
  6369. delay(200);
  6370. }
  6371. cli(); // disable interrupts
  6372. suicide();
  6373. while(1)
  6374. {
  6375. #ifdef WATCHDOG
  6376. wdt_reset();
  6377. #endif //WATCHDOG
  6378. /* Intentionally left empty */
  6379. } // Wait for reset
  6380. }
  6381. void Stop()
  6382. {
  6383. disable_heater();
  6384. if(Stopped == false) {
  6385. Stopped = true;
  6386. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6387. SERIAL_ERROR_START;
  6388. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6389. LCD_MESSAGERPGM(MSG_STOPPED);
  6390. }
  6391. }
  6392. bool IsStopped() { return Stopped; };
  6393. #ifdef FAST_PWM_FAN
  6394. void setPwmFrequency(uint8_t pin, int val)
  6395. {
  6396. val &= 0x07;
  6397. switch(digitalPinToTimer(pin))
  6398. {
  6399. #if defined(TCCR0A)
  6400. case TIMER0A:
  6401. case TIMER0B:
  6402. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6403. // TCCR0B |= val;
  6404. break;
  6405. #endif
  6406. #if defined(TCCR1A)
  6407. case TIMER1A:
  6408. case TIMER1B:
  6409. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6410. // TCCR1B |= val;
  6411. break;
  6412. #endif
  6413. #if defined(TCCR2)
  6414. case TIMER2:
  6415. case TIMER2:
  6416. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6417. TCCR2 |= val;
  6418. break;
  6419. #endif
  6420. #if defined(TCCR2A)
  6421. case TIMER2A:
  6422. case TIMER2B:
  6423. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6424. TCCR2B |= val;
  6425. break;
  6426. #endif
  6427. #if defined(TCCR3A)
  6428. case TIMER3A:
  6429. case TIMER3B:
  6430. case TIMER3C:
  6431. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6432. TCCR3B |= val;
  6433. break;
  6434. #endif
  6435. #if defined(TCCR4A)
  6436. case TIMER4A:
  6437. case TIMER4B:
  6438. case TIMER4C:
  6439. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6440. TCCR4B |= val;
  6441. break;
  6442. #endif
  6443. #if defined(TCCR5A)
  6444. case TIMER5A:
  6445. case TIMER5B:
  6446. case TIMER5C:
  6447. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6448. TCCR5B |= val;
  6449. break;
  6450. #endif
  6451. }
  6452. }
  6453. #endif //FAST_PWM_FAN
  6454. bool setTargetedHotend(int code){
  6455. tmp_extruder = active_extruder;
  6456. if(code_seen('T')) {
  6457. tmp_extruder = code_value();
  6458. if(tmp_extruder >= EXTRUDERS) {
  6459. SERIAL_ECHO_START;
  6460. switch(code){
  6461. case 104:
  6462. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6463. break;
  6464. case 105:
  6465. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6466. break;
  6467. case 109:
  6468. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6469. break;
  6470. case 218:
  6471. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6472. break;
  6473. case 221:
  6474. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6475. break;
  6476. }
  6477. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6478. return true;
  6479. }
  6480. }
  6481. return false;
  6482. }
  6483. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6484. {
  6485. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6486. {
  6487. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6488. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6489. }
  6490. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6491. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6492. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6493. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6494. total_filament_used = 0;
  6495. }
  6496. float calculate_extruder_multiplier(float diameter) {
  6497. float out = 1.f;
  6498. if (volumetric_enabled && diameter > 0.f) {
  6499. float area = M_PI * diameter * diameter * 0.25;
  6500. out = 1.f / area;
  6501. }
  6502. if (extrudemultiply != 100)
  6503. out *= float(extrudemultiply) * 0.01f;
  6504. return out;
  6505. }
  6506. void calculate_extruder_multipliers() {
  6507. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6508. #if EXTRUDERS > 1
  6509. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6510. #if EXTRUDERS > 2
  6511. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6512. #endif
  6513. #endif
  6514. }
  6515. void delay_keep_alive(unsigned int ms)
  6516. {
  6517. for (;;) {
  6518. manage_heater();
  6519. // Manage inactivity, but don't disable steppers on timeout.
  6520. manage_inactivity(true);
  6521. lcd_update();
  6522. if (ms == 0)
  6523. break;
  6524. else if (ms >= 50) {
  6525. delay(50);
  6526. ms -= 50;
  6527. } else {
  6528. delay(ms);
  6529. ms = 0;
  6530. }
  6531. }
  6532. }
  6533. void wait_for_heater(long codenum) {
  6534. #ifdef TEMP_RESIDENCY_TIME
  6535. long residencyStart;
  6536. residencyStart = -1;
  6537. /* continue to loop until we have reached the target temp
  6538. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6539. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6540. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6541. #else
  6542. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6543. #endif //TEMP_RESIDENCY_TIME
  6544. if ((millis() - codenum) > 1000UL)
  6545. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6546. if (!farm_mode) {
  6547. SERIAL_PROTOCOLPGM("T:");
  6548. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6549. SERIAL_PROTOCOLPGM(" E:");
  6550. SERIAL_PROTOCOL((int)tmp_extruder);
  6551. #ifdef TEMP_RESIDENCY_TIME
  6552. SERIAL_PROTOCOLPGM(" W:");
  6553. if (residencyStart > -1)
  6554. {
  6555. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6556. SERIAL_PROTOCOLLN(codenum);
  6557. }
  6558. else
  6559. {
  6560. SERIAL_PROTOCOLLN("?");
  6561. }
  6562. }
  6563. #else
  6564. SERIAL_PROTOCOLLN("");
  6565. #endif
  6566. codenum = millis();
  6567. }
  6568. manage_heater();
  6569. manage_inactivity();
  6570. lcd_update();
  6571. #ifdef TEMP_RESIDENCY_TIME
  6572. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6573. or when current temp falls outside the hysteresis after target temp was reached */
  6574. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6575. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6576. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6577. {
  6578. residencyStart = millis();
  6579. }
  6580. #endif //TEMP_RESIDENCY_TIME
  6581. }
  6582. }
  6583. void check_babystep() {
  6584. int babystep_z;
  6585. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6586. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6587. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6588. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6589. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6590. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6591. lcd_update_enable(true);
  6592. }
  6593. }
  6594. #ifdef DIS
  6595. void d_setup()
  6596. {
  6597. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6598. pinMode(D_DATA, INPUT_PULLUP);
  6599. pinMode(D_REQUIRE, OUTPUT);
  6600. digitalWrite(D_REQUIRE, HIGH);
  6601. }
  6602. float d_ReadData()
  6603. {
  6604. int digit[13];
  6605. String mergeOutput;
  6606. float output;
  6607. digitalWrite(D_REQUIRE, HIGH);
  6608. for (int i = 0; i<13; i++)
  6609. {
  6610. for (int j = 0; j < 4; j++)
  6611. {
  6612. while (digitalRead(D_DATACLOCK) == LOW) {}
  6613. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6614. bitWrite(digit[i], j, digitalRead(D_DATA));
  6615. }
  6616. }
  6617. digitalWrite(D_REQUIRE, LOW);
  6618. mergeOutput = "";
  6619. output = 0;
  6620. for (int r = 5; r <= 10; r++) //Merge digits
  6621. {
  6622. mergeOutput += digit[r];
  6623. }
  6624. output = mergeOutput.toFloat();
  6625. if (digit[4] == 8) //Handle sign
  6626. {
  6627. output *= -1;
  6628. }
  6629. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6630. {
  6631. output /= 10;
  6632. }
  6633. return output;
  6634. }
  6635. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6636. int t1 = 0;
  6637. int t_delay = 0;
  6638. int digit[13];
  6639. int m;
  6640. char str[3];
  6641. //String mergeOutput;
  6642. char mergeOutput[15];
  6643. float output;
  6644. int mesh_point = 0; //index number of calibration point
  6645. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6646. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6647. float mesh_home_z_search = 4;
  6648. float row[x_points_num];
  6649. int ix = 0;
  6650. int iy = 0;
  6651. char* filename_wldsd = "wldsd.txt";
  6652. char data_wldsd[70];
  6653. char numb_wldsd[10];
  6654. d_setup();
  6655. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6656. // We don't know where we are! HOME!
  6657. // Push the commands to the front of the message queue in the reverse order!
  6658. // There shall be always enough space reserved for these commands.
  6659. repeatcommand_front(); // repeat G80 with all its parameters
  6660. enquecommand_front_P((PSTR("G28 W0")));
  6661. enquecommand_front_P((PSTR("G1 Z5")));
  6662. return;
  6663. }
  6664. bool custom_message_old = custom_message;
  6665. unsigned int custom_message_type_old = custom_message_type;
  6666. unsigned int custom_message_state_old = custom_message_state;
  6667. custom_message = true;
  6668. custom_message_type = 1;
  6669. custom_message_state = (x_points_num * y_points_num) + 10;
  6670. lcd_update(1);
  6671. mbl.reset();
  6672. babystep_undo();
  6673. card.openFile(filename_wldsd, false);
  6674. current_position[Z_AXIS] = mesh_home_z_search;
  6675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6676. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6677. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6678. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6679. setup_for_endstop_move(false);
  6680. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6681. SERIAL_PROTOCOL(x_points_num);
  6682. SERIAL_PROTOCOLPGM(",");
  6683. SERIAL_PROTOCOL(y_points_num);
  6684. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6685. SERIAL_PROTOCOL(mesh_home_z_search);
  6686. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6687. SERIAL_PROTOCOL(x_dimension);
  6688. SERIAL_PROTOCOLPGM(",");
  6689. SERIAL_PROTOCOL(y_dimension);
  6690. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6691. while (mesh_point != x_points_num * y_points_num) {
  6692. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6693. iy = mesh_point / x_points_num;
  6694. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6695. float z0 = 0.f;
  6696. current_position[Z_AXIS] = mesh_home_z_search;
  6697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6698. st_synchronize();
  6699. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6700. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6702. st_synchronize();
  6703. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6704. break;
  6705. card.closefile();
  6706. }
  6707. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6708. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6709. //strcat(data_wldsd, numb_wldsd);
  6710. //MYSERIAL.println(data_wldsd);
  6711. //delay(1000);
  6712. //delay(3000);
  6713. //t1 = millis();
  6714. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6715. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6716. memset(digit, 0, sizeof(digit));
  6717. //cli();
  6718. digitalWrite(D_REQUIRE, LOW);
  6719. for (int i = 0; i<13; i++)
  6720. {
  6721. //t1 = millis();
  6722. for (int j = 0; j < 4; j++)
  6723. {
  6724. while (digitalRead(D_DATACLOCK) == LOW) {}
  6725. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6726. bitWrite(digit[i], j, digitalRead(D_DATA));
  6727. }
  6728. //t_delay = (millis() - t1);
  6729. //SERIAL_PROTOCOLPGM(" ");
  6730. //SERIAL_PROTOCOL_F(t_delay, 5);
  6731. //SERIAL_PROTOCOLPGM(" ");
  6732. }
  6733. //sei();
  6734. digitalWrite(D_REQUIRE, HIGH);
  6735. mergeOutput[0] = '\0';
  6736. output = 0;
  6737. for (int r = 5; r <= 10; r++) //Merge digits
  6738. {
  6739. sprintf(str, "%d", digit[r]);
  6740. strcat(mergeOutput, str);
  6741. }
  6742. output = atof(mergeOutput);
  6743. if (digit[4] == 8) //Handle sign
  6744. {
  6745. output *= -1;
  6746. }
  6747. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6748. {
  6749. output *= 0.1;
  6750. }
  6751. //output = d_ReadData();
  6752. //row[ix] = current_position[Z_AXIS];
  6753. memset(data_wldsd, 0, sizeof(data_wldsd));
  6754. for (int i = 0; i <3; i++) {
  6755. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6756. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6757. strcat(data_wldsd, numb_wldsd);
  6758. strcat(data_wldsd, ";");
  6759. }
  6760. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6761. dtostrf(output, 8, 5, numb_wldsd);
  6762. strcat(data_wldsd, numb_wldsd);
  6763. //strcat(data_wldsd, ";");
  6764. card.write_command(data_wldsd);
  6765. //row[ix] = d_ReadData();
  6766. row[ix] = output; // current_position[Z_AXIS];
  6767. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6768. for (int i = 0; i < x_points_num; i++) {
  6769. SERIAL_PROTOCOLPGM(" ");
  6770. SERIAL_PROTOCOL_F(row[i], 5);
  6771. }
  6772. SERIAL_PROTOCOLPGM("\n");
  6773. }
  6774. custom_message_state--;
  6775. mesh_point++;
  6776. lcd_update(1);
  6777. }
  6778. card.closefile();
  6779. }
  6780. #endif
  6781. void temp_compensation_start() {
  6782. custom_message = true;
  6783. custom_message_type = 5;
  6784. custom_message_state = PINDA_HEAT_T + 1;
  6785. lcd_update(2);
  6786. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6787. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6788. }
  6789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6790. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6791. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6792. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6794. st_synchronize();
  6795. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6796. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6797. delay_keep_alive(1000);
  6798. custom_message_state = PINDA_HEAT_T - i;
  6799. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6800. else lcd_update(1);
  6801. }
  6802. custom_message_type = 0;
  6803. custom_message_state = 0;
  6804. custom_message = false;
  6805. }
  6806. void temp_compensation_apply() {
  6807. int i_add;
  6808. int compensation_value;
  6809. int z_shift = 0;
  6810. float z_shift_mm;
  6811. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6812. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6813. i_add = (target_temperature_bed - 60) / 10;
  6814. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6815. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6816. }else {
  6817. //interpolation
  6818. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6819. }
  6820. SERIAL_PROTOCOLPGM("\n");
  6821. SERIAL_PROTOCOLPGM("Z shift applied:");
  6822. MYSERIAL.print(z_shift_mm);
  6823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6824. st_synchronize();
  6825. plan_set_z_position(current_position[Z_AXIS]);
  6826. }
  6827. else {
  6828. //we have no temp compensation data
  6829. }
  6830. }
  6831. float temp_comp_interpolation(float inp_temperature) {
  6832. //cubic spline interpolation
  6833. int n, i, j, k;
  6834. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6835. int shift[10];
  6836. int temp_C[10];
  6837. n = 6; //number of measured points
  6838. shift[0] = 0;
  6839. for (i = 0; i < n; i++) {
  6840. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6841. temp_C[i] = 50 + i * 10; //temperature in C
  6842. #ifdef PINDA_THERMISTOR
  6843. temp_C[i] = 35 + i * 5; //temperature in C
  6844. #else
  6845. temp_C[i] = 50 + i * 10; //temperature in C
  6846. #endif
  6847. x[i] = (float)temp_C[i];
  6848. f[i] = (float)shift[i];
  6849. }
  6850. if (inp_temperature < x[0]) return 0;
  6851. for (i = n - 1; i>0; i--) {
  6852. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6853. h[i - 1] = x[i] - x[i - 1];
  6854. }
  6855. //*********** formation of h, s , f matrix **************
  6856. for (i = 1; i<n - 1; i++) {
  6857. m[i][i] = 2 * (h[i - 1] + h[i]);
  6858. if (i != 1) {
  6859. m[i][i - 1] = h[i - 1];
  6860. m[i - 1][i] = h[i - 1];
  6861. }
  6862. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6863. }
  6864. //*********** forward elimination **************
  6865. for (i = 1; i<n - 2; i++) {
  6866. temp = (m[i + 1][i] / m[i][i]);
  6867. for (j = 1; j <= n - 1; j++)
  6868. m[i + 1][j] -= temp*m[i][j];
  6869. }
  6870. //*********** backward substitution *********
  6871. for (i = n - 2; i>0; i--) {
  6872. sum = 0;
  6873. for (j = i; j <= n - 2; j++)
  6874. sum += m[i][j] * s[j];
  6875. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6876. }
  6877. for (i = 0; i<n - 1; i++)
  6878. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6879. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6880. b = s[i] / 2;
  6881. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6882. d = f[i];
  6883. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6884. }
  6885. return sum;
  6886. }
  6887. #ifdef PINDA_THERMISTOR
  6888. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6889. {
  6890. if (!temp_cal_active) return 0;
  6891. if (!calibration_status_pinda()) return 0;
  6892. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6893. }
  6894. #endif //PINDA_THERMISTOR
  6895. void long_pause() //long pause print
  6896. {
  6897. st_synchronize();
  6898. //save currently set parameters to global variables
  6899. saved_feedmultiply = feedmultiply;
  6900. HotendTempBckp = degTargetHotend(active_extruder);
  6901. fanSpeedBckp = fanSpeed;
  6902. start_pause_print = millis();
  6903. //save position
  6904. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6905. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6906. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6907. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6908. //retract
  6909. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6911. //lift z
  6912. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6913. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6915. //set nozzle target temperature to 0
  6916. setTargetHotend(0, 0);
  6917. setTargetHotend(0, 1);
  6918. setTargetHotend(0, 2);
  6919. //Move XY to side
  6920. current_position[X_AXIS] = X_PAUSE_POS;
  6921. current_position[Y_AXIS] = Y_PAUSE_POS;
  6922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6923. // Turn off the print fan
  6924. fanSpeed = 0;
  6925. st_synchronize();
  6926. }
  6927. void serialecho_temperatures() {
  6928. float tt = degHotend(active_extruder);
  6929. SERIAL_PROTOCOLPGM("T:");
  6930. SERIAL_PROTOCOL(tt);
  6931. SERIAL_PROTOCOLPGM(" E:");
  6932. SERIAL_PROTOCOL((int)active_extruder);
  6933. SERIAL_PROTOCOLPGM(" B:");
  6934. SERIAL_PROTOCOL_F(degBed(), 1);
  6935. SERIAL_PROTOCOLLN("");
  6936. }
  6937. extern uint32_t sdpos_atomic;
  6938. #ifdef UVLO_SUPPORT
  6939. void uvlo_()
  6940. {
  6941. unsigned long time_start = millis();
  6942. bool sd_print = card.sdprinting;
  6943. // Conserve power as soon as possible.
  6944. disable_x();
  6945. disable_y();
  6946. disable_e0();
  6947. #ifdef TMC2130
  6948. tmc2130_set_current_h(Z_AXIS, 20);
  6949. tmc2130_set_current_r(Z_AXIS, 20);
  6950. tmc2130_set_current_h(E_AXIS, 20);
  6951. tmc2130_set_current_r(E_AXIS, 20);
  6952. #endif //TMC2130
  6953. // Indicate that the interrupt has been triggered.
  6954. // SERIAL_ECHOLNPGM("UVLO");
  6955. // Read out the current Z motor microstep counter. This will be later used
  6956. // for reaching the zero full step before powering off.
  6957. uint16_t z_microsteps = 0;
  6958. #ifdef TMC2130
  6959. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6960. #endif //TMC2130
  6961. // Calculate the file position, from which to resume this print.
  6962. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6963. {
  6964. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6965. sd_position -= sdlen_planner;
  6966. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6967. sd_position -= sdlen_cmdqueue;
  6968. if (sd_position < 0) sd_position = 0;
  6969. }
  6970. // Backup the feedrate in mm/min.
  6971. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6972. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6973. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6974. // are in action.
  6975. planner_abort_hard();
  6976. // Store the current extruder position.
  6977. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6978. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6979. // Clean the input command queue.
  6980. cmdqueue_reset();
  6981. card.sdprinting = false;
  6982. // card.closefile();
  6983. // Enable stepper driver interrupt to move Z axis.
  6984. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6985. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6986. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6987. sei();
  6988. plan_buffer_line(
  6989. current_position[X_AXIS],
  6990. current_position[Y_AXIS],
  6991. current_position[Z_AXIS],
  6992. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6993. 95, active_extruder);
  6994. st_synchronize();
  6995. disable_e0();
  6996. plan_buffer_line(
  6997. current_position[X_AXIS],
  6998. current_position[Y_AXIS],
  6999. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7000. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7001. 40, active_extruder);
  7002. st_synchronize();
  7003. disable_e0();
  7004. plan_buffer_line(
  7005. current_position[X_AXIS],
  7006. current_position[Y_AXIS],
  7007. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7008. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7009. 40, active_extruder);
  7010. st_synchronize();
  7011. disable_e0();
  7012. disable_z();
  7013. // Move Z up to the next 0th full step.
  7014. // Write the file position.
  7015. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7016. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7017. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7018. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7019. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7020. // Scale the z value to 1u resolution.
  7021. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7022. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7023. }
  7024. // Read out the current Z motor microstep counter. This will be later used
  7025. // for reaching the zero full step before powering off.
  7026. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7027. // Store the current position.
  7028. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7029. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7030. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7031. // Store the current feed rate, temperatures and fan speed.
  7032. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7033. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7034. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7035. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7036. // Finaly store the "power outage" flag.
  7037. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7038. st_synchronize();
  7039. SERIAL_ECHOPGM("stps");
  7040. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7041. disable_z();
  7042. // Increment power failure counter
  7043. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7044. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7045. SERIAL_ECHOLNPGM("UVLO - end");
  7046. MYSERIAL.println(millis() - time_start);
  7047. #if 0
  7048. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7049. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7051. st_synchronize();
  7052. #endif
  7053. cli();
  7054. volatile unsigned int ppcount = 0;
  7055. SET_OUTPUT(BEEPER);
  7056. WRITE(BEEPER, HIGH);
  7057. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7058. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7059. }
  7060. WRITE(BEEPER, LOW);
  7061. while(1){
  7062. #if 1
  7063. WRITE(BEEPER, LOW);
  7064. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7065. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7066. }
  7067. #endif
  7068. };
  7069. }
  7070. #endif //UVLO_SUPPORT
  7071. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7072. void setup_fan_interrupt() {
  7073. //INT7
  7074. DDRE &= ~(1 << 7); //input pin
  7075. PORTE &= ~(1 << 7); //no internal pull-up
  7076. //start with sensing rising edge
  7077. EICRB &= ~(1 << 6);
  7078. EICRB |= (1 << 7);
  7079. //enable INT7 interrupt
  7080. EIMSK |= (1 << 7);
  7081. }
  7082. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7083. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7084. ISR(INT7_vect) {
  7085. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7086. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7087. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7088. t_fan_rising_edge = millis_nc();
  7089. }
  7090. else { //interrupt was triggered by falling edge
  7091. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7092. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7093. }
  7094. }
  7095. EICRB ^= (1 << 6); //change edge
  7096. }
  7097. #endif
  7098. #ifdef UVLO_SUPPORT
  7099. void setup_uvlo_interrupt() {
  7100. DDRE &= ~(1 << 4); //input pin
  7101. PORTE &= ~(1 << 4); //no internal pull-up
  7102. //sensing falling edge
  7103. EICRB |= (1 << 0);
  7104. EICRB &= ~(1 << 1);
  7105. //enable INT4 interrupt
  7106. EIMSK |= (1 << 4);
  7107. }
  7108. ISR(INT4_vect) {
  7109. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7110. SERIAL_ECHOLNPGM("INT4");
  7111. if (IS_SD_PRINTING) uvlo_();
  7112. }
  7113. void recover_print(uint8_t automatic) {
  7114. char cmd[30];
  7115. lcd_update_enable(true);
  7116. lcd_update(2);
  7117. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  7118. recover_machine_state_after_power_panic();
  7119. // Set the target bed and nozzle temperatures.
  7120. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7121. enquecommand(cmd);
  7122. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7123. enquecommand(cmd);
  7124. // Lift the print head, so one may remove the excess priming material.
  7125. if (current_position[Z_AXIS] < 25)
  7126. enquecommand_P(PSTR("G1 Z25 F800"));
  7127. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7128. enquecommand_P(PSTR("G28 X Y"));
  7129. // Set the target bed and nozzle temperatures and wait.
  7130. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7131. enquecommand(cmd);
  7132. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7133. enquecommand(cmd);
  7134. enquecommand_P(PSTR("M83")); //E axis relative mode
  7135. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7136. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7137. if(automatic == 0){
  7138. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7139. }
  7140. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7141. // Mark the power panic status as inactive.
  7142. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7143. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7144. delay_keep_alive(1000);
  7145. }*/
  7146. SERIAL_ECHOPGM("After waiting for temp:");
  7147. SERIAL_ECHOPGM("Current position X_AXIS:");
  7148. MYSERIAL.println(current_position[X_AXIS]);
  7149. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7150. MYSERIAL.println(current_position[Y_AXIS]);
  7151. // Restart the print.
  7152. restore_print_from_eeprom();
  7153. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7154. MYSERIAL.print(current_position[Z_AXIS]);
  7155. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7156. MYSERIAL.print(current_position[E_AXIS]);
  7157. }
  7158. void recover_machine_state_after_power_panic()
  7159. {
  7160. char cmd[30];
  7161. // 1) Recover the logical cordinates at the time of the power panic.
  7162. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7163. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7164. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7165. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7166. // The current position after power panic is moved to the next closest 0th full step.
  7167. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7168. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7169. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7170. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7171. sprintf_P(cmd, PSTR("G92 E"));
  7172. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7173. enquecommand(cmd);
  7174. }
  7175. memcpy(destination, current_position, sizeof(destination));
  7176. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7177. print_world_coordinates();
  7178. // 2) Initialize the logical to physical coordinate system transformation.
  7179. world2machine_initialize();
  7180. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7181. mbl.active = false;
  7182. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7183. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7184. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7185. // Scale the z value to 10u resolution.
  7186. int16_t v;
  7187. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7188. if (v != 0)
  7189. mbl.active = true;
  7190. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7191. }
  7192. if (mbl.active)
  7193. mbl.upsample_3x3();
  7194. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7195. // print_mesh_bed_leveling_table();
  7196. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7197. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7198. babystep_load();
  7199. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7200. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7201. // 6) Power up the motors, mark their positions as known.
  7202. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7203. axis_known_position[X_AXIS] = true; enable_x();
  7204. axis_known_position[Y_AXIS] = true; enable_y();
  7205. axis_known_position[Z_AXIS] = true; enable_z();
  7206. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7207. print_physical_coordinates();
  7208. // 7) Recover the target temperatures.
  7209. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7210. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7211. }
  7212. void restore_print_from_eeprom() {
  7213. float x_rec, y_rec, z_pos;
  7214. int feedrate_rec;
  7215. uint8_t fan_speed_rec;
  7216. char cmd[30];
  7217. char* c;
  7218. char filename[13];
  7219. uint8_t depth = 0;
  7220. char dir_name[9];
  7221. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7222. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7223. SERIAL_ECHOPGM("Feedrate:");
  7224. MYSERIAL.println(feedrate_rec);
  7225. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7226. MYSERIAL.println(int(depth));
  7227. for (int i = 0; i < depth; i++) {
  7228. for (int j = 0; j < 8; j++) {
  7229. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7230. }
  7231. dir_name[8] = '\0';
  7232. MYSERIAL.println(dir_name);
  7233. card.chdir(dir_name);
  7234. }
  7235. for (int i = 0; i < 8; i++) {
  7236. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7237. }
  7238. filename[8] = '\0';
  7239. MYSERIAL.print(filename);
  7240. strcat_P(filename, PSTR(".gco"));
  7241. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7242. for (c = &cmd[4]; *c; c++)
  7243. *c = tolower(*c);
  7244. enquecommand(cmd);
  7245. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7246. SERIAL_ECHOPGM("Position read from eeprom:");
  7247. MYSERIAL.println(position);
  7248. // E axis relative mode.
  7249. enquecommand_P(PSTR("M83"));
  7250. // Move to the XY print position in logical coordinates, where the print has been killed.
  7251. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7252. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7253. strcat_P(cmd, PSTR(" F2000"));
  7254. enquecommand(cmd);
  7255. // Move the Z axis down to the print, in logical coordinates.
  7256. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7257. enquecommand(cmd);
  7258. // Unretract.
  7259. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7260. // Set the feedrate saved at the power panic.
  7261. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7262. enquecommand(cmd);
  7263. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7264. {
  7265. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7266. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7267. }
  7268. // Set the fan speed saved at the power panic.
  7269. strcpy_P(cmd, PSTR("M106 S"));
  7270. strcat(cmd, itostr3(int(fan_speed_rec)));
  7271. enquecommand(cmd);
  7272. // Set a position in the file.
  7273. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7274. enquecommand(cmd);
  7275. // Start SD print.
  7276. enquecommand_P(PSTR("M24"));
  7277. }
  7278. #endif //UVLO_SUPPORT
  7279. ////////////////////////////////////////////////////////////////////////////////
  7280. // new save/restore printing
  7281. //extern uint32_t sdpos_atomic;
  7282. bool saved_printing = false;
  7283. uint32_t saved_sdpos = 0;
  7284. float saved_pos[4] = {0, 0, 0, 0};
  7285. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7286. float saved_feedrate2 = 0;
  7287. uint8_t saved_active_extruder = 0;
  7288. bool saved_extruder_under_pressure = false;
  7289. void stop_and_save_print_to_ram(float z_move, float e_move)
  7290. {
  7291. if (saved_printing) return;
  7292. cli();
  7293. unsigned char nplanner_blocks = number_of_blocks();
  7294. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7295. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7296. saved_sdpos -= sdlen_planner;
  7297. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7298. saved_sdpos -= sdlen_cmdqueue;
  7299. #if 0
  7300. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7301. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7302. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7303. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7304. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7305. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7306. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7307. {
  7308. card.setIndex(saved_sdpos);
  7309. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7310. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7311. MYSERIAL.print(char(card.get()));
  7312. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7313. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7314. MYSERIAL.print(char(card.get()));
  7315. SERIAL_ECHOLNPGM("End of command buffer");
  7316. }
  7317. {
  7318. // Print the content of the planner buffer, line by line:
  7319. card.setIndex(saved_sdpos);
  7320. int8_t iline = 0;
  7321. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7322. SERIAL_ECHOPGM("Planner line (from file): ");
  7323. MYSERIAL.print(int(iline), DEC);
  7324. SERIAL_ECHOPGM(", length: ");
  7325. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7326. SERIAL_ECHOPGM(", steps: (");
  7327. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7328. SERIAL_ECHOPGM(",");
  7329. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7330. SERIAL_ECHOPGM(",");
  7331. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7332. SERIAL_ECHOPGM(",");
  7333. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7334. SERIAL_ECHOPGM("), events: ");
  7335. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7336. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7337. MYSERIAL.print(char(card.get()));
  7338. }
  7339. }
  7340. {
  7341. // Print the content of the command buffer, line by line:
  7342. int8_t iline = 0;
  7343. union {
  7344. struct {
  7345. char lo;
  7346. char hi;
  7347. } lohi;
  7348. uint16_t value;
  7349. } sdlen_single;
  7350. int _bufindr = bufindr;
  7351. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7352. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7353. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7354. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7355. }
  7356. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7357. MYSERIAL.print(int(iline), DEC);
  7358. SERIAL_ECHOPGM(", type: ");
  7359. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7360. SERIAL_ECHOPGM(", len: ");
  7361. MYSERIAL.println(sdlen_single.value, DEC);
  7362. // Print the content of the buffer line.
  7363. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7364. SERIAL_ECHOPGM("Buffer line (from file): ");
  7365. MYSERIAL.print(int(iline), DEC);
  7366. MYSERIAL.println(int(iline), DEC);
  7367. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7368. MYSERIAL.print(char(card.get()));
  7369. if (-- _buflen == 0)
  7370. break;
  7371. // First skip the current command ID and iterate up to the end of the string.
  7372. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7373. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7374. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7375. // If the end of the buffer was empty,
  7376. if (_bufindr == sizeof(cmdbuffer)) {
  7377. // skip to the start and find the nonzero command.
  7378. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7379. }
  7380. }
  7381. }
  7382. #endif
  7383. #if 0
  7384. saved_feedrate2 = feedrate; //save feedrate
  7385. #else
  7386. // Try to deduce the feedrate from the first block of the planner.
  7387. // Speed is in mm/min.
  7388. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7389. #endif
  7390. planner_abort_hard(); //abort printing
  7391. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7392. saved_active_extruder = active_extruder; //save active_extruder
  7393. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7394. cmdqueue_reset(); //empty cmdqueue
  7395. card.sdprinting = false;
  7396. // card.closefile();
  7397. saved_printing = true;
  7398. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7399. st_reset_timer();
  7400. sei();
  7401. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7402. #if 1
  7403. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7404. char buf[48];
  7405. strcpy_P(buf, PSTR("G1 Z"));
  7406. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7407. strcat_P(buf, PSTR(" E"));
  7408. // Relative extrusion
  7409. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7410. strcat_P(buf, PSTR(" F"));
  7411. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7412. // At this point the command queue is empty.
  7413. enquecommand(buf, false);
  7414. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7415. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7416. repeatcommand_front();
  7417. #else
  7418. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7419. st_synchronize(); //wait moving
  7420. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7421. memcpy(destination, current_position, sizeof(destination));
  7422. #endif
  7423. }
  7424. }
  7425. void restore_print_from_ram_and_continue(float e_move)
  7426. {
  7427. if (!saved_printing) return;
  7428. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7429. // current_position[axis] = st_get_position_mm(axis);
  7430. active_extruder = saved_active_extruder; //restore active_extruder
  7431. feedrate = saved_feedrate2; //restore feedrate
  7432. float e = saved_pos[E_AXIS] - e_move;
  7433. plan_set_e_position(e);
  7434. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7435. st_synchronize();
  7436. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7437. memcpy(destination, current_position, sizeof(destination));
  7438. card.setIndex(saved_sdpos);
  7439. sdpos_atomic = saved_sdpos;
  7440. card.sdprinting = true;
  7441. saved_printing = false;
  7442. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7443. }
  7444. void print_world_coordinates()
  7445. {
  7446. SERIAL_ECHOPGM("world coordinates: (");
  7447. MYSERIAL.print(current_position[X_AXIS], 3);
  7448. SERIAL_ECHOPGM(", ");
  7449. MYSERIAL.print(current_position[Y_AXIS], 3);
  7450. SERIAL_ECHOPGM(", ");
  7451. MYSERIAL.print(current_position[Z_AXIS], 3);
  7452. SERIAL_ECHOLNPGM(")");
  7453. }
  7454. void print_physical_coordinates()
  7455. {
  7456. SERIAL_ECHOPGM("physical coordinates: (");
  7457. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7458. SERIAL_ECHOPGM(", ");
  7459. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7460. SERIAL_ECHOPGM(", ");
  7461. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7462. SERIAL_ECHOLNPGM(")");
  7463. }
  7464. void print_mesh_bed_leveling_table()
  7465. {
  7466. SERIAL_ECHOPGM("mesh bed leveling: ");
  7467. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7468. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7469. MYSERIAL.print(mbl.z_values[y][x], 3);
  7470. SERIAL_ECHOPGM(" ");
  7471. }
  7472. SERIAL_ECHOLNPGM("");
  7473. }
  7474. #define FIL_LOAD_LENGTH 60
  7475. void extr_unload2() { //unloads filament
  7476. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7477. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7478. // int8_t SilentMode;
  7479. uint8_t snmm_extruder = 0;
  7480. if (degHotend0() > EXTRUDE_MINTEMP) {
  7481. lcd_implementation_clear();
  7482. lcd_display_message_fullscreen_P(PSTR(""));
  7483. max_feedrate[E_AXIS] = 50;
  7484. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7485. // lcd.print(" ");
  7486. // lcd.print(snmm_extruder + 1);
  7487. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7488. if (current_position[Z_AXIS] < 15) {
  7489. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7491. }
  7492. current_position[E_AXIS] += 10; //extrusion
  7493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7494. // st_current_set(2, E_MOTOR_HIGH_CURRENT);
  7495. if (current_temperature[0] < 230) { //PLA & all other filaments
  7496. current_position[E_AXIS] += 5.4;
  7497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7498. current_position[E_AXIS] += 3.2;
  7499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7500. current_position[E_AXIS] += 3;
  7501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7502. }
  7503. else { //ABS
  7504. current_position[E_AXIS] += 3.1;
  7505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7506. current_position[E_AXIS] += 3.1;
  7507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7508. current_position[E_AXIS] += 4;
  7509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7510. /*current_position[X_AXIS] += 23; //delay
  7511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7512. current_position[X_AXIS] -= 23; //delay
  7513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7514. delay_keep_alive(4700);
  7515. }
  7516. max_feedrate[E_AXIS] = 80;
  7517. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7519. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7521. st_synchronize();
  7522. //st_current_init();
  7523. // if (SilentMode == 1) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  7524. // else st_current_set(2, tmp_motor_loud[2]);
  7525. lcd_update_enable(true);
  7526. // lcd_return_to_status();
  7527. max_feedrate[E_AXIS] = 50;
  7528. }
  7529. else {
  7530. lcd_implementation_clear();
  7531. lcd.setCursor(0, 0);
  7532. lcd_printPGM(MSG_ERROR);
  7533. lcd.setCursor(0, 2);
  7534. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7535. delay(2000);
  7536. lcd_implementation_clear();
  7537. }
  7538. // lcd_return_to_status();
  7539. }