Marlin_main.cpp 384 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "backlight.h"
  61. #include "planner.h"
  62. #include "stepper.h"
  63. #include "temperature.h"
  64. #include "motion_control.h"
  65. #include "cardreader.h"
  66. #include "ConfigurationStore.h"
  67. #include "language.h"
  68. #include "pins_arduino.h"
  69. #include "math.h"
  70. #include "util.h"
  71. #include "Timer.h"
  72. #include <avr/wdt.h>
  73. #include <avr/pgmspace.h>
  74. #include "Dcodes.h"
  75. #include "AutoDeplete.h"
  76. #ifdef SWSPI
  77. #include "swspi.h"
  78. #endif //SWSPI
  79. #include "spi.h"
  80. #ifdef SWI2C
  81. #include "swi2c.h"
  82. #endif //SWI2C
  83. #ifdef FILAMENT_SENSOR
  84. #include "fsensor.h"
  85. #endif //FILAMENT_SENSOR
  86. #ifdef TMC2130
  87. #include "tmc2130.h"
  88. #endif //TMC2130
  89. #ifdef W25X20CL
  90. #include "w25x20cl.h"
  91. #include "optiboot_w25x20cl.h"
  92. #endif //W25X20CL
  93. #ifdef BLINKM
  94. #include "BlinkM.h"
  95. #include "Wire.h"
  96. #endif
  97. #ifdef ULTRALCD
  98. #include "ultralcd.h"
  99. #endif
  100. #if NUM_SERVOS > 0
  101. #include "Servo.h"
  102. #endif
  103. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  104. #include <SPI.h>
  105. #endif
  106. #include "mmu.h"
  107. #define VERSION_STRING "1.0.2"
  108. #include "ultralcd.h"
  109. #include "sound.h"
  110. #include "cmdqueue.h"
  111. #include "io_atmega2560.h"
  112. // Macros for bit masks
  113. #define BIT(b) (1<<(b))
  114. #define TEST(n,b) (((n)&BIT(b))!=0)
  115. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  116. //Macro for print fan speed
  117. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  244. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. // Current feedrate
  261. float feedrate = 1500.0;
  262. // Feedrate for the next move
  263. static float next_feedrate;
  264. // Original feedrate saved during homing moves
  265. static float saved_feedrate;
  266. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static unsigned long previous_millis_cmd = 0;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. unsigned long _usb_timer = 0;
  277. bool extruder_under_pressure = true;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  295. static int saved_feedmultiply2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. static void temp_compensation_start();
  312. static void temp_compensation_apply();
  313. uint16_t gcode_in_progress = 0;
  314. uint16_t mcode_in_progress = 0;
  315. void serial_echopair_P(const char *s_P, float v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, double v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, unsigned long v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  322. {
  323. #if 0
  324. char ch=pgm_read_byte(str);
  325. while(ch)
  326. {
  327. MYSERIAL.write(ch);
  328. ch=pgm_read_byte(++str);
  329. }
  330. #else
  331. // hmm, same size as the above version, the compiler did a good job optimizing the above
  332. while( uint8_t ch = pgm_read_byte(str) ){
  333. MYSERIAL.write((char)ch);
  334. ++str;
  335. }
  336. #endif
  337. }
  338. #ifdef SDSUPPORT
  339. #include "SdFatUtil.h"
  340. int freeMemory() { return SdFatUtil::FreeRam(); }
  341. #else
  342. extern "C" {
  343. extern unsigned int __bss_end;
  344. extern unsigned int __heap_start;
  345. extern void *__brkval;
  346. int freeMemory() {
  347. int free_memory;
  348. if ((int)__brkval == 0)
  349. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  350. else
  351. free_memory = ((int)&free_memory) - ((int)__brkval);
  352. return free_memory;
  353. }
  354. }
  355. #endif //!SDSUPPORT
  356. void setup_killpin()
  357. {
  358. #if defined(KILL_PIN) && KILL_PIN > -1
  359. SET_INPUT(KILL_PIN);
  360. WRITE(KILL_PIN,HIGH);
  361. #endif
  362. }
  363. // Set home pin
  364. void setup_homepin(void)
  365. {
  366. #if defined(HOME_PIN) && HOME_PIN > -1
  367. SET_INPUT(HOME_PIN);
  368. WRITE(HOME_PIN,HIGH);
  369. #endif
  370. }
  371. void setup_photpin()
  372. {
  373. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  374. SET_OUTPUT(PHOTOGRAPH_PIN);
  375. WRITE(PHOTOGRAPH_PIN, LOW);
  376. #endif
  377. }
  378. void setup_powerhold()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, HIGH);
  383. #endif
  384. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  385. SET_OUTPUT(PS_ON_PIN);
  386. #if defined(PS_DEFAULT_OFF)
  387. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  388. #else
  389. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  390. #endif
  391. #endif
  392. }
  393. void suicide()
  394. {
  395. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  396. SET_OUTPUT(SUICIDE_PIN);
  397. WRITE(SUICIDE_PIN, LOW);
  398. #endif
  399. }
  400. void servo_init()
  401. {
  402. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  403. servos[0].attach(SERVO0_PIN);
  404. #endif
  405. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  406. servos[1].attach(SERVO1_PIN);
  407. #endif
  408. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  409. servos[2].attach(SERVO2_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  412. servos[3].attach(SERVO3_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 5)
  415. #error "TODO: enter initalisation code for more servos"
  416. #endif
  417. }
  418. bool fans_check_enabled = true;
  419. #ifdef TMC2130
  420. void crashdet_stop_and_save_print()
  421. {
  422. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  423. }
  424. void crashdet_restore_print_and_continue()
  425. {
  426. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  427. // babystep_apply();
  428. }
  429. void crashdet_stop_and_save_print2()
  430. {
  431. cli();
  432. planner_abort_hard(); //abort printing
  433. cmdqueue_reset(); //empty cmdqueue
  434. card.sdprinting = false;
  435. card.closefile();
  436. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  437. st_reset_timer();
  438. sei();
  439. }
  440. void crashdet_detected(uint8_t mask)
  441. {
  442. st_synchronize();
  443. static uint8_t crashDet_counter = 0;
  444. bool automatic_recovery_after_crash = true;
  445. if (crashDet_counter++ == 0) {
  446. crashDetTimer.start();
  447. }
  448. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  453. automatic_recovery_after_crash = false;
  454. crashDetTimer.stop();
  455. crashDet_counter = 0;
  456. }
  457. else {
  458. crashDetTimer.start();
  459. }
  460. lcd_update_enable(true);
  461. lcd_clear();
  462. lcd_update(2);
  463. if (mask & X_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  467. }
  468. if (mask & Y_AXIS_MASK)
  469. {
  470. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  471. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  472. }
  473. lcd_update_enable(true);
  474. lcd_update(2);
  475. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  476. gcode_G28(true, true, false); //home X and Y
  477. st_synchronize();
  478. if (automatic_recovery_after_crash) {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }else{
  481. setTargetHotend(0, active_extruder);
  482. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  483. lcd_update_enable(true);
  484. if (yesno)
  485. {
  486. enquecommand_P(PSTR("CRASH_RECOVER"));
  487. }
  488. else
  489. {
  490. enquecommand_P(PSTR("CRASH_CANCEL"));
  491. }
  492. }
  493. }
  494. void crashdet_recover()
  495. {
  496. crashdet_restore_print_and_continue();
  497. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  498. }
  499. void crashdet_cancel()
  500. {
  501. saved_printing = false;
  502. tmc2130_sg_stop_on_crash = true;
  503. if (saved_printing_type == PRINTING_TYPE_SD) {
  504. lcd_print_stop();
  505. }else if(saved_printing_type == PRINTING_TYPE_USB){
  506. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  507. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  508. }
  509. }
  510. #endif //TMC2130
  511. void failstats_reset_print()
  512. {
  513. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  519. }
  520. #ifdef MESH_BED_LEVELING
  521. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  522. #endif
  523. // Factory reset function
  524. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  525. // Level input parameter sets depth of reset
  526. int er_progress = 0;
  527. static void factory_reset(char level)
  528. {
  529. lcd_clear();
  530. switch (level) {
  531. // Level 0: Language reset
  532. case 0:
  533. Sound_MakeCustom(100,0,false);
  534. lang_reset();
  535. break;
  536. //Level 1: Reset statistics
  537. case 1:
  538. Sound_MakeCustom(100,0,false);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. Sound_MakeCustom(100,0,false);
  583. //_delay_ms(2000);
  584. break;
  585. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  586. case 3:
  587. lcd_puts_P(PSTR("Factory RESET"));
  588. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  589. Sound_MakeCustom(100,0,false);
  590. er_progress = 0;
  591. lcd_puts_at_P(3, 3, PSTR(" "));
  592. lcd_set_cursor(3, 3);
  593. lcd_print(er_progress);
  594. // Erase EEPROM
  595. for (int i = 0; i < 4096; i++) {
  596. eeprom_update_byte((uint8_t*)i, 0xFF);
  597. if (i % 41 == 0) {
  598. er_progress++;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. lcd_puts_P(PSTR("%"));
  603. }
  604. }
  605. break;
  606. case 4:
  607. bowden_menu();
  608. break;
  609. default:
  610. break;
  611. }
  612. }
  613. extern "C" {
  614. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  615. }
  616. int uart_putchar(char c, FILE *)
  617. {
  618. MYSERIAL.write(c);
  619. return 0;
  620. }
  621. void lcd_splash()
  622. {
  623. lcd_clear(); // clears display and homes screen
  624. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if(eSoundMode!=e_SOUND_MODE_SILENT)
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. //! @brief try to check if firmware is on right type of printer
  678. static void check_if_fw_is_on_right_printer(){
  679. #ifdef FILAMENT_SENSOR
  680. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  681. #ifdef IR_SENSOR
  682. swi2c_init();
  683. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  684. if (pat9125_detected){
  685. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  686. #endif //IR_SENSOR
  687. #ifdef PAT9125
  688. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  689. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  690. if (ir_detected){
  691. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  692. #endif //PAT9125
  693. }
  694. #endif //FILAMENT_SENSOR
  695. }
  696. uint8_t check_printer_version()
  697. {
  698. uint8_t version_changed = 0;
  699. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  700. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  701. if (printer_type != PRINTER_TYPE) {
  702. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  703. else version_changed |= 0b10;
  704. }
  705. if (motherboard != MOTHERBOARD) {
  706. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  707. else version_changed |= 0b01;
  708. }
  709. return version_changed;
  710. }
  711. #ifdef BOOTAPP
  712. #include "bootapp.h" //bootloader support
  713. #endif //BOOTAPP
  714. #if (LANG_MODE != 0) //secondary language support
  715. #ifdef W25X20CL
  716. // language update from external flash
  717. #define LANGBOOT_BLOCKSIZE 0x1000u
  718. #define LANGBOOT_RAMBUFFER 0x0800
  719. void update_sec_lang_from_external_flash()
  720. {
  721. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  722. {
  723. uint8_t lang = boot_reserved >> 4;
  724. uint8_t state = boot_reserved & 0xf;
  725. lang_table_header_t header;
  726. uint32_t src_addr;
  727. if (lang_get_header(lang, &header, &src_addr))
  728. {
  729. lcd_puts_at_P(1,3,PSTR("Language update."));
  730. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  731. _delay(100);
  732. boot_reserved = (state + 1) | (lang << 4);
  733. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  734. {
  735. cli();
  736. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  737. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  738. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  739. if (state == 0)
  740. {
  741. //TODO - check header integrity
  742. }
  743. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  744. }
  745. else
  746. {
  747. //TODO - check sec lang data integrity
  748. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  749. }
  750. }
  751. }
  752. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  753. }
  754. #ifdef DEBUG_W25X20CL
  755. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  756. {
  757. lang_table_header_t header;
  758. uint8_t count = 0;
  759. uint32_t addr = 0x00000;
  760. while (1)
  761. {
  762. printf_P(_n("LANGTABLE%d:"), count);
  763. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  764. if (header.magic != LANG_MAGIC)
  765. {
  766. printf_P(_n("NG!\n"));
  767. break;
  768. }
  769. printf_P(_n("OK\n"));
  770. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  771. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  772. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  773. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  774. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  775. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  776. addr += header.size;
  777. codes[count] = header.code;
  778. count ++;
  779. }
  780. return count;
  781. }
  782. void list_sec_lang_from_external_flash()
  783. {
  784. uint16_t codes[8];
  785. uint8_t count = lang_xflash_enum_codes(codes);
  786. printf_P(_n("XFlash lang count = %hhd\n"), count);
  787. }
  788. #endif //DEBUG_W25X20CL
  789. #endif //W25X20CL
  790. #endif //(LANG_MODE != 0)
  791. static void w25x20cl_err_msg()
  792. {
  793. lcd_clear();
  794. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  795. }
  796. // "Setup" function is called by the Arduino framework on startup.
  797. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  798. // are initialized by the main() routine provided by the Arduino framework.
  799. void setup()
  800. {
  801. mmu_init();
  802. ultralcd_init();
  803. spi_init();
  804. lcd_splash();
  805. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  806. #ifdef W25X20CL
  807. bool w25x20cl_success = w25x20cl_init();
  808. if (w25x20cl_success)
  809. {
  810. optiboot_w25x20cl_enter();
  811. #if (LANG_MODE != 0) //secondary language support
  812. update_sec_lang_from_external_flash();
  813. #endif //(LANG_MODE != 0)
  814. }
  815. else
  816. {
  817. w25x20cl_err_msg();
  818. }
  819. #else
  820. const bool w25x20cl_success = true;
  821. #endif //W25X20CL
  822. setup_killpin();
  823. setup_powerhold();
  824. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  825. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  826. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  827. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  828. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  829. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  830. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  831. if (farm_mode)
  832. {
  833. no_response = true; //we need confirmation by recieving PRUSA thx
  834. important_status = 8;
  835. prusa_statistics(8);
  836. selectedSerialPort = 1;
  837. #ifdef TMC2130
  838. //increased extruder current (PFW363)
  839. tmc2130_current_h[E_AXIS] = 36;
  840. tmc2130_current_r[E_AXIS] = 36;
  841. #endif //TMC2130
  842. #ifdef FILAMENT_SENSOR
  843. //disabled filament autoload (PFW360)
  844. fsensor_autoload_set(false);
  845. #endif //FILAMENT_SENSOR
  846. // ~ FanCheck -> on
  847. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  848. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  849. }
  850. MYSERIAL.begin(BAUDRATE);
  851. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  852. #ifndef W25X20CL
  853. SERIAL_PROTOCOLLNPGM("start");
  854. #endif //W25X20CL
  855. stdout = uartout;
  856. SERIAL_ECHO_START;
  857. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  858. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  859. #ifdef DEBUG_SEC_LANG
  860. lang_table_header_t header;
  861. uint32_t src_addr = 0x00000;
  862. if (lang_get_header(1, &header, &src_addr))
  863. {
  864. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  865. #define LT_PRINT_TEST 2
  866. // flash usage
  867. // total p.test
  868. //0 252718 t+c text code
  869. //1 253142 424 170 254
  870. //2 253040 322 164 158
  871. //3 253248 530 135 395
  872. #if (LT_PRINT_TEST==1) //not optimized printf
  873. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  874. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  875. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  876. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  877. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  878. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  879. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  880. #elif (LT_PRINT_TEST==2) //optimized printf
  881. printf_P(
  882. _n(
  883. " _src_addr = 0x%08lx\n"
  884. " _lt_magic = 0x%08lx %S\n"
  885. " _lt_size = 0x%04x (%d)\n"
  886. " _lt_count = 0x%04x (%d)\n"
  887. " _lt_chsum = 0x%04x\n"
  888. " _lt_code = 0x%04x (%c%c)\n"
  889. " _lt_resv1 = 0x%08lx\n"
  890. ),
  891. src_addr,
  892. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  893. header.size, header.size,
  894. header.count, header.count,
  895. header.checksum,
  896. header.code, header.code >> 8, header.code & 0xff,
  897. header.signature
  898. );
  899. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  900. MYSERIAL.print(" _src_addr = 0x");
  901. MYSERIAL.println(src_addr, 16);
  902. MYSERIAL.print(" _lt_magic = 0x");
  903. MYSERIAL.print(header.magic, 16);
  904. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  905. MYSERIAL.print(" _lt_size = 0x");
  906. MYSERIAL.print(header.size, 16);
  907. MYSERIAL.print(" (");
  908. MYSERIAL.print(header.size, 10);
  909. MYSERIAL.println(")");
  910. MYSERIAL.print(" _lt_count = 0x");
  911. MYSERIAL.print(header.count, 16);
  912. MYSERIAL.print(" (");
  913. MYSERIAL.print(header.count, 10);
  914. MYSERIAL.println(")");
  915. MYSERIAL.print(" _lt_chsum = 0x");
  916. MYSERIAL.println(header.checksum, 16);
  917. MYSERIAL.print(" _lt_code = 0x");
  918. MYSERIAL.print(header.code, 16);
  919. MYSERIAL.print(" (");
  920. MYSERIAL.print((char)(header.code >> 8), 0);
  921. MYSERIAL.print((char)(header.code & 0xff), 0);
  922. MYSERIAL.println(")");
  923. MYSERIAL.print(" _lt_resv1 = 0x");
  924. MYSERIAL.println(header.signature, 16);
  925. #endif //(LT_PRINT_TEST==)
  926. #undef LT_PRINT_TEST
  927. #if 0
  928. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  929. for (uint16_t i = 0; i < 1024; i++)
  930. {
  931. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  932. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  933. if ((i % 16) == 15) putchar('\n');
  934. }
  935. #endif
  936. uint16_t sum = 0;
  937. for (uint16_t i = 0; i < header.size; i++)
  938. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum -= header.checksum; //subtract checksum
  941. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  942. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  943. if (sum == header.checksum)
  944. printf_P(_n("Checksum OK\n"), sum);
  945. else
  946. printf_P(_n("Checksum NG\n"), sum);
  947. }
  948. else
  949. printf_P(_n("lang_get_header failed!\n"));
  950. #if 0
  951. for (uint16_t i = 0; i < 1024*10; i++)
  952. {
  953. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  954. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  955. if ((i % 16) == 15) putchar('\n');
  956. }
  957. #endif
  958. #if 0
  959. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  960. for (int i = 0; i < 4096; ++i) {
  961. int b = eeprom_read_byte((unsigned char*)i);
  962. if (b != 255) {
  963. SERIAL_ECHO(i);
  964. SERIAL_ECHO(":");
  965. SERIAL_ECHO(b);
  966. SERIAL_ECHOLN("");
  967. }
  968. }
  969. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  970. #endif
  971. #endif //DEBUG_SEC_LANG
  972. // Check startup - does nothing if bootloader sets MCUSR to 0
  973. byte mcu = MCUSR;
  974. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  975. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  976. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  977. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  978. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  979. if (mcu & 1) puts_P(MSG_POWERUP);
  980. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  981. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  982. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  983. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  984. MCUSR = 0;
  985. //SERIAL_ECHORPGM(MSG_MARLIN);
  986. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  987. #ifdef STRING_VERSION_CONFIG_H
  988. #ifdef STRING_CONFIG_H_AUTHOR
  989. SERIAL_ECHO_START;
  990. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  991. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  992. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  993. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  994. SERIAL_ECHOPGM("Compiled: ");
  995. SERIAL_ECHOLNPGM(__DATE__);
  996. #endif
  997. #endif
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1000. SERIAL_ECHO(freeMemory());
  1001. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1002. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1003. //lcd_update_enable(false); // why do we need this?? - andre
  1004. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1005. bool previous_settings_retrieved = false;
  1006. uint8_t hw_changed = check_printer_version();
  1007. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1008. previous_settings_retrieved = Config_RetrieveSettings();
  1009. }
  1010. else { //printer version was changed so use default settings
  1011. Config_ResetDefault();
  1012. }
  1013. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1014. tp_init(); // Initialize temperature loop
  1015. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1016. else
  1017. {
  1018. w25x20cl_err_msg();
  1019. printf_P(_n("W25X20CL not responding.\n"));
  1020. }
  1021. plan_init(); // Initialize planner;
  1022. factory_reset();
  1023. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1024. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1025. {
  1026. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1027. // where all the EEPROM entries are set to 0x0ff.
  1028. // Once a firmware boots up, it forces at least a language selection, which changes
  1029. // EEPROM_LANG to number lower than 0x0ff.
  1030. // 1) Set a high power mode.
  1031. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1032. #ifdef TMC2130
  1033. tmc2130_mode = TMC2130_MODE_NORMAL;
  1034. #endif //TMC2130
  1035. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1036. }
  1037. lcd_encoder_diff=0;
  1038. #ifdef TMC2130
  1039. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1040. if (silentMode == 0xff) silentMode = 0;
  1041. tmc2130_mode = TMC2130_MODE_NORMAL;
  1042. if (lcd_crash_detect_enabled() && !farm_mode)
  1043. {
  1044. lcd_crash_detect_enable();
  1045. puts_P(_N("CrashDetect ENABLED!"));
  1046. }
  1047. else
  1048. {
  1049. lcd_crash_detect_disable();
  1050. puts_P(_N("CrashDetect DISABLED"));
  1051. }
  1052. #ifdef TMC2130_LINEARITY_CORRECTION
  1053. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1055. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1056. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1057. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1058. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1059. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1060. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1061. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1062. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1063. #endif //TMC2130_LINEARITY_CORRECTION
  1064. #ifdef TMC2130_VARIABLE_RESOLUTION
  1065. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1066. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1067. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1068. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1069. #else //TMC2130_VARIABLE_RESOLUTION
  1070. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1071. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1072. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1073. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1074. #endif //TMC2130_VARIABLE_RESOLUTION
  1075. #endif //TMC2130
  1076. st_init(); // Initialize stepper, this enables interrupts!
  1077. #ifdef UVLO_SUPPORT
  1078. setup_uvlo_interrupt();
  1079. #endif //UVLO_SUPPORT
  1080. #ifdef TMC2130
  1081. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1082. update_mode_profile();
  1083. tmc2130_init();
  1084. #endif //TMC2130
  1085. #ifdef PSU_Delta
  1086. init_force_z(); // ! important for correct Z-axis initialization
  1087. #endif // PSU_Delta
  1088. setup_photpin();
  1089. servo_init();
  1090. // Reset the machine correction matrix.
  1091. // It does not make sense to load the correction matrix until the machine is homed.
  1092. world2machine_reset();
  1093. #ifdef FILAMENT_SENSOR
  1094. fsensor_init();
  1095. #endif //FILAMENT_SENSOR
  1096. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1097. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1098. #endif
  1099. setup_homepin();
  1100. #ifdef TMC2130
  1101. if (1) {
  1102. // try to run to zero phase before powering the Z motor.
  1103. // Move in negative direction
  1104. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1105. // Round the current micro-micro steps to micro steps.
  1106. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1107. // Until the phase counter is reset to zero.
  1108. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1111. _delay(2);
  1112. }
  1113. }
  1114. #endif //TMC2130
  1115. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1116. enable_z();
  1117. #endif
  1118. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1119. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1120. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1121. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1122. if (farm_mode)
  1123. {
  1124. prusa_statistics(8);
  1125. }
  1126. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1127. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1128. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1129. // but this times out if a blocking dialog is shown in setup().
  1130. card.initsd();
  1131. #ifdef DEBUG_SD_SPEED_TEST
  1132. if (card.cardOK)
  1133. {
  1134. uint8_t* buff = (uint8_t*)block_buffer;
  1135. uint32_t block = 0;
  1136. uint32_t sumr = 0;
  1137. uint32_t sumw = 0;
  1138. for (int i = 0; i < 1024; i++)
  1139. {
  1140. uint32_t u = _micros();
  1141. bool res = card.card.readBlock(i, buff);
  1142. u = _micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumr += u;
  1147. u = _micros();
  1148. res = card.card.writeBlock(i, buff);
  1149. u = _micros() - u;
  1150. if (res)
  1151. {
  1152. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1153. sumw += u;
  1154. }
  1155. else
  1156. {
  1157. printf_P(PSTR("writeBlock %4d error\n"), i);
  1158. break;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("readBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1168. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1169. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1170. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1171. }
  1172. else
  1173. printf_P(PSTR("Card NG!\n"));
  1174. #endif //DEBUG_SD_SPEED_TEST
  1175. eeprom_init();
  1176. #ifdef SNMM
  1177. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1178. int _z = BOWDEN_LENGTH;
  1179. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1180. }
  1181. #endif
  1182. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1183. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1184. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1185. #if (LANG_MODE != 0) //secondary language support
  1186. #ifdef DEBUG_W25X20CL
  1187. W25X20CL_SPI_ENTER();
  1188. uint8_t uid[8]; // 64bit unique id
  1189. w25x20cl_rd_uid(uid);
  1190. puts_P(_n("W25X20CL UID="));
  1191. for (uint8_t i = 0; i < 8; i ++)
  1192. printf_P(PSTR("%02hhx"), uid[i]);
  1193. putchar('\n');
  1194. list_sec_lang_from_external_flash();
  1195. #endif //DEBUG_W25X20CL
  1196. // lang_reset();
  1197. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1198. lcd_language();
  1199. #ifdef DEBUG_SEC_LANG
  1200. uint16_t sec_lang_code = lang_get_code(1);
  1201. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1202. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1203. lang_print_sec_lang(uartout);
  1204. #endif //DEBUG_SEC_LANG
  1205. #endif //(LANG_MODE != 0)
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1207. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1208. temp_cal_active = false;
  1209. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1211. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1212. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1213. int16_t z_shift = 0;
  1214. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1215. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1216. temp_cal_active = false;
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1220. }
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1223. }
  1224. //mbl_mode_init();
  1225. mbl_settings_init();
  1226. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1227. if (SilentModeMenu_MMU == 255) {
  1228. SilentModeMenu_MMU = 1;
  1229. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1230. }
  1231. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1232. setup_fan_interrupt();
  1233. #endif //DEBUG_DISABLE_FANCHECK
  1234. #ifdef PAT9125
  1235. fsensor_setup_interrupt();
  1236. #endif //PAT9125
  1237. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1238. #ifndef DEBUG_DISABLE_STARTMSGS
  1239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1240. if (!farm_mode) {
  1241. check_if_fw_is_on_right_printer();
  1242. show_fw_version_warnings();
  1243. }
  1244. switch (hw_changed) {
  1245. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1246. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1247. case(0b01):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1250. break;
  1251. case(0b10):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. break;
  1255. case(0b11):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1258. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1259. break;
  1260. default: break; //no change, show no message
  1261. }
  1262. if (!previous_settings_retrieved) {
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1264. Config_StoreSettings();
  1265. }
  1266. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1267. lcd_wizard(WizState::Run);
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1270. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1271. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1272. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1273. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1274. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1277. }
  1278. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1279. // Show the message.
  1280. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1284. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1285. lcd_update_enable(true);
  1286. }
  1287. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1290. }
  1291. }
  1292. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1293. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1294. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1295. update_current_firmware_version_to_eeprom();
  1296. lcd_selftest();
  1297. }
  1298. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1299. KEEPALIVE_STATE(IN_PROCESS);
  1300. #endif //DEBUG_DISABLE_STARTMSGS
  1301. lcd_update_enable(true);
  1302. lcd_clear();
  1303. lcd_update(2);
  1304. // Store the currently running firmware into an eeprom,
  1305. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1306. update_current_firmware_version_to_eeprom();
  1307. #ifdef TMC2130
  1308. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1309. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1310. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1311. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1312. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1313. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1314. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1315. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1316. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1317. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1318. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1319. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1320. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1321. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1322. #endif //TMC2130
  1323. #ifdef UVLO_SUPPORT
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1325. /*
  1326. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1327. else {
  1328. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1329. lcd_update_enable(true);
  1330. lcd_update(2);
  1331. lcd_setstatuspgm(_T(WELCOME_MSG));
  1332. }
  1333. */
  1334. manage_heater(); // Update temperatures
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1337. #endif
  1338. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1339. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1340. puts_P(_N("Automatic recovery!"));
  1341. #endif
  1342. recover_print(1);
  1343. }
  1344. else{
  1345. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1346. puts_P(_N("Normal recovery!"));
  1347. #endif
  1348. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1349. else {
  1350. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1351. lcd_update_enable(true);
  1352. lcd_update(2);
  1353. lcd_setstatuspgm(_T(WELCOME_MSG));
  1354. }
  1355. }
  1356. }
  1357. #endif //UVLO_SUPPORT
  1358. fCheckModeInit();
  1359. fSetMmuMode(mmu_enabled);
  1360. KEEPALIVE_STATE(NOT_BUSY);
  1361. #ifdef WATCHDOG
  1362. wdt_enable(WDTO_4S);
  1363. #endif //WATCHDOG
  1364. }
  1365. void trace();
  1366. #define CHUNK_SIZE 64 // bytes
  1367. #define SAFETY_MARGIN 1
  1368. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1369. int chunkHead = 0;
  1370. void serial_read_stream() {
  1371. setAllTargetHotends(0);
  1372. setTargetBed(0);
  1373. lcd_clear();
  1374. lcd_puts_P(PSTR(" Upload in progress"));
  1375. // first wait for how many bytes we will receive
  1376. uint32_t bytesToReceive;
  1377. // receive the four bytes
  1378. char bytesToReceiveBuffer[4];
  1379. for (int i=0; i<4; i++) {
  1380. int data;
  1381. while ((data = MYSERIAL.read()) == -1) {};
  1382. bytesToReceiveBuffer[i] = data;
  1383. }
  1384. // make it a uint32
  1385. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1386. // we're ready, notify the sender
  1387. MYSERIAL.write('+');
  1388. // lock in the routine
  1389. uint32_t receivedBytes = 0;
  1390. while (prusa_sd_card_upload) {
  1391. int i;
  1392. for (i=0; i<CHUNK_SIZE; i++) {
  1393. int data;
  1394. // check if we're not done
  1395. if (receivedBytes == bytesToReceive) {
  1396. break;
  1397. }
  1398. // read the next byte
  1399. while ((data = MYSERIAL.read()) == -1) {};
  1400. receivedBytes++;
  1401. // save it to the chunk
  1402. chunk[i] = data;
  1403. }
  1404. // write the chunk to SD
  1405. card.write_command_no_newline(&chunk[0]);
  1406. // notify the sender we're ready for more data
  1407. MYSERIAL.write('+');
  1408. // for safety
  1409. manage_heater();
  1410. // check if we're done
  1411. if(receivedBytes == bytesToReceive) {
  1412. trace(); // beep
  1413. card.closefile();
  1414. prusa_sd_card_upload = false;
  1415. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1416. }
  1417. }
  1418. }
  1419. /**
  1420. * Output a "busy" message at regular intervals
  1421. * while the machine is not accepting commands.
  1422. */
  1423. void host_keepalive() {
  1424. #ifndef HOST_KEEPALIVE_FEATURE
  1425. return;
  1426. #endif //HOST_KEEPALIVE_FEATURE
  1427. if (farm_mode) return;
  1428. long ms = _millis();
  1429. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1430. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1431. switch (busy_state) {
  1432. case IN_HANDLER:
  1433. case IN_PROCESS:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: processing");
  1436. break;
  1437. case PAUSED_FOR_USER:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for user");
  1440. break;
  1441. case PAUSED_FOR_INPUT:
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHOLNPGM("busy: paused for input");
  1444. break;
  1445. default:
  1446. break;
  1447. }
  1448. }
  1449. prev_busy_signal_ms = ms;
  1450. }
  1451. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1452. // Before loop(), the setup() function is called by the main() routine.
  1453. void loop()
  1454. {
  1455. KEEPALIVE_STATE(NOT_BUSY);
  1456. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1457. {
  1458. is_usb_printing = true;
  1459. usb_printing_counter--;
  1460. _usb_timer = _millis();
  1461. }
  1462. if (usb_printing_counter == 0)
  1463. {
  1464. is_usb_printing = false;
  1465. }
  1466. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1467. {
  1468. is_usb_printing = true;
  1469. }
  1470. #ifdef FANCHECK
  1471. if (fan_check_error && isPrintPaused)
  1472. {
  1473. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1474. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1475. }
  1476. #endif
  1477. if (prusa_sd_card_upload)
  1478. {
  1479. //we read byte-by byte
  1480. serial_read_stream();
  1481. }
  1482. else
  1483. {
  1484. get_command();
  1485. #ifdef SDSUPPORT
  1486. card.checkautostart(false);
  1487. #endif
  1488. if(buflen)
  1489. {
  1490. cmdbuffer_front_already_processed = false;
  1491. #ifdef SDSUPPORT
  1492. if(card.saving)
  1493. {
  1494. // Saving a G-code file onto an SD-card is in progress.
  1495. // Saving starts with M28, saving until M29 is seen.
  1496. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1497. card.write_command(CMDBUFFER_CURRENT_STRING);
  1498. if(card.logging)
  1499. process_commands();
  1500. else
  1501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1502. } else {
  1503. card.closefile();
  1504. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1505. }
  1506. } else {
  1507. process_commands();
  1508. }
  1509. #else
  1510. process_commands();
  1511. #endif //SDSUPPORT
  1512. if (! cmdbuffer_front_already_processed && buflen)
  1513. {
  1514. // ptr points to the start of the block currently being processed.
  1515. // The first character in the block is the block type.
  1516. char *ptr = cmdbuffer + bufindr;
  1517. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1518. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1519. union {
  1520. struct {
  1521. char lo;
  1522. char hi;
  1523. } lohi;
  1524. uint16_t value;
  1525. } sdlen;
  1526. sdlen.value = 0;
  1527. {
  1528. // This block locks the interrupts globally for 3.25 us,
  1529. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1530. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1531. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1532. cli();
  1533. // Reset the command to something, which will be ignored by the power panic routine,
  1534. // so this buffer length will not be counted twice.
  1535. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1536. // Extract the current buffer length.
  1537. sdlen.lohi.lo = *ptr ++;
  1538. sdlen.lohi.hi = *ptr;
  1539. // and pass it to the planner queue.
  1540. planner_add_sd_length(sdlen.value);
  1541. sei();
  1542. }
  1543. }
  1544. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1545. cli();
  1546. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1547. // and one for each command to previous block in the planner queue.
  1548. planner_add_sd_length(1);
  1549. sei();
  1550. }
  1551. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1552. // this block's SD card length will not be counted twice as its command type has been replaced
  1553. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1554. cmdqueue_pop_front();
  1555. }
  1556. host_keepalive();
  1557. }
  1558. }
  1559. //check heater every n milliseconds
  1560. manage_heater();
  1561. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1562. checkHitEndstops();
  1563. lcd_update(0);
  1564. #ifdef TMC2130
  1565. tmc2130_check_overtemp();
  1566. if (tmc2130_sg_crash)
  1567. {
  1568. uint8_t crash = tmc2130_sg_crash;
  1569. tmc2130_sg_crash = 0;
  1570. // crashdet_stop_and_save_print();
  1571. switch (crash)
  1572. {
  1573. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1574. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1575. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1576. }
  1577. }
  1578. #endif //TMC2130
  1579. mmu_loop();
  1580. }
  1581. #define DEFINE_PGM_READ_ANY(type, reader) \
  1582. static inline type pgm_read_any(const type *p) \
  1583. { return pgm_read_##reader##_near(p); }
  1584. DEFINE_PGM_READ_ANY(float, float);
  1585. DEFINE_PGM_READ_ANY(signed char, byte);
  1586. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1587. static const PROGMEM type array##_P[3] = \
  1588. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1589. static inline type array(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); } \
  1591. type array##_ext(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); }
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1597. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1598. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1599. static void axis_is_at_home(int axis) {
  1600. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1601. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1602. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1603. }
  1604. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1605. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1606. //! @return original feedmultiply
  1607. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1608. saved_feedrate = feedrate;
  1609. int l_feedmultiply = feedmultiply;
  1610. feedmultiply = 100;
  1611. previous_millis_cmd = _millis();
  1612. enable_endstops(enable_endstops_now);
  1613. return l_feedmultiply;
  1614. }
  1615. //! @param original_feedmultiply feedmultiply to restore
  1616. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1617. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1618. enable_endstops(false);
  1619. #endif
  1620. feedrate = saved_feedrate;
  1621. feedmultiply = original_feedmultiply;
  1622. previous_millis_cmd = _millis();
  1623. }
  1624. #ifdef ENABLE_AUTO_BED_LEVELING
  1625. #ifdef AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1627. {
  1628. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1629. planeNormal.debug("planeNormal");
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. //bedLevel.debug("bedLevel");
  1632. //plan_bed_level_matrix.debug("bed level before");
  1633. //vector_3 uncorrected_position = plan_get_position_mm();
  1634. //uncorrected_position.debug("position before");
  1635. vector_3 corrected_position = plan_get_position();
  1636. // corrected_position.debug("position after");
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #else // not AUTO_BED_LEVELING_GRID
  1645. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1648. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1649. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1650. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1651. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1652. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1653. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1654. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = plan_get_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. // put the bed at 0 so we don't go below it.
  1660. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. #endif // AUTO_BED_LEVELING_GRID
  1664. static void run_z_probe() {
  1665. plan_bed_level_matrix.set_to_identity();
  1666. feedrate = homing_feedrate[Z_AXIS];
  1667. // move down until you find the bed
  1668. float zPosition = -10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // we have to let the planner know where we are right now as it is not where we said to go.
  1672. zPosition = st_get_position_mm(Z_AXIS);
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1674. // move up the retract distance
  1675. zPosition += home_retract_mm(Z_AXIS);
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. // move back down slowly to find bed
  1679. feedrate = homing_feedrate[Z_AXIS]/4;
  1680. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1684. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. }
  1687. static void do_blocking_move_to(float x, float y, float z) {
  1688. float oldFeedRate = feedrate;
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. current_position[Z_AXIS] = z;
  1691. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. feedrate = XY_TRAVEL_SPEED;
  1694. current_position[X_AXIS] = x;
  1695. current_position[Y_AXIS] = y;
  1696. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = oldFeedRate;
  1699. }
  1700. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1701. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1702. }
  1703. /// Probe bed height at position (x,y), returns the measured z value
  1704. static float probe_pt(float x, float y, float z_before) {
  1705. // move to right place
  1706. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1707. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1708. run_z_probe();
  1709. float measured_z = current_position[Z_AXIS];
  1710. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1711. SERIAL_PROTOCOLPGM(" x: ");
  1712. SERIAL_PROTOCOL(x);
  1713. SERIAL_PROTOCOLPGM(" y: ");
  1714. SERIAL_PROTOCOL(y);
  1715. SERIAL_PROTOCOLPGM(" z: ");
  1716. SERIAL_PROTOCOL(measured_z);
  1717. SERIAL_PROTOCOLPGM("\n");
  1718. return measured_z;
  1719. }
  1720. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1721. #ifdef LIN_ADVANCE
  1722. /**
  1723. * M900: Set and/or Get advance K factor and WH/D ratio
  1724. *
  1725. * K<factor> Set advance K factor
  1726. * R<ratio> Set ratio directly (overrides WH/D)
  1727. * W<width> H<height> D<diam> Set ratio from WH/D
  1728. */
  1729. inline void gcode_M900() {
  1730. st_synchronize();
  1731. const float newK = code_seen('K') ? code_value_float() : -1;
  1732. if (newK >= 0) extruder_advance_k = newK;
  1733. float newR = code_seen('R') ? code_value_float() : -1;
  1734. if (newR < 0) {
  1735. const float newD = code_seen('D') ? code_value_float() : -1,
  1736. newW = code_seen('W') ? code_value_float() : -1,
  1737. newH = code_seen('H') ? code_value_float() : -1;
  1738. if (newD >= 0 && newW >= 0 && newH >= 0)
  1739. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1740. }
  1741. if (newR >= 0) advance_ed_ratio = newR;
  1742. SERIAL_ECHO_START;
  1743. SERIAL_ECHOPGM("Advance K=");
  1744. SERIAL_ECHOLN(extruder_advance_k);
  1745. SERIAL_ECHOPGM(" E/D=");
  1746. const float ratio = advance_ed_ratio;
  1747. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1748. }
  1749. #endif // LIN_ADVANCE
  1750. bool check_commands() {
  1751. bool end_command_found = false;
  1752. while (buflen)
  1753. {
  1754. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1755. if (!cmdbuffer_front_already_processed)
  1756. cmdqueue_pop_front();
  1757. cmdbuffer_front_already_processed = false;
  1758. }
  1759. return end_command_found;
  1760. }
  1761. // raise_z_above: slowly raise Z to the requested height
  1762. //
  1763. // contrarily to a simple move, this function will carefully plan a move
  1764. // when the current Z position is unknown. In such cases, stallguard is
  1765. // enabled and will prevent prolonged pushing against the Z tops
  1766. void raise_z_above(float target, bool plan)
  1767. {
  1768. if (current_position[Z_AXIS] >= target)
  1769. return;
  1770. // Z needs raising
  1771. current_position[Z_AXIS] = target;
  1772. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1773. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1774. #else
  1775. bool z_min_endstop = false;
  1776. #endif
  1777. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1778. {
  1779. // current position is known or very low, it's safe to raise Z
  1780. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1781. return;
  1782. }
  1783. // ensure Z is powered in normal mode to overcome initial load
  1784. enable_z();
  1785. st_synchronize();
  1786. // rely on crashguard to limit damage
  1787. bool z_endstop_enabled = enable_z_endstop(true);
  1788. #ifdef TMC2130
  1789. tmc2130_home_enter(Z_AXIS_MASK);
  1790. #endif //TMC2130
  1791. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1792. st_synchronize();
  1793. #ifdef TMC2130
  1794. if (endstop_z_hit_on_purpose())
  1795. {
  1796. // not necessarily exact, but will avoid further vertical moves
  1797. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1799. current_position[Z_AXIS], current_position[E_AXIS]);
  1800. }
  1801. tmc2130_home_exit();
  1802. #endif //TMC2130
  1803. enable_z_endstop(z_endstop_enabled);
  1804. }
  1805. #ifdef TMC2130
  1806. bool calibrate_z_auto()
  1807. {
  1808. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1809. lcd_clear();
  1810. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1811. bool endstops_enabled = enable_endstops(true);
  1812. int axis_up_dir = -home_dir(Z_AXIS);
  1813. tmc2130_home_enter(Z_AXIS_MASK);
  1814. current_position[Z_AXIS] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. set_destination_to_current();
  1817. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1818. feedrate = homing_feedrate[Z_AXIS];
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1820. st_synchronize();
  1821. // current_position[axis] = 0;
  1822. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1823. tmc2130_home_exit();
  1824. enable_endstops(false);
  1825. current_position[Z_AXIS] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. set_destination_to_current();
  1828. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1829. feedrate = homing_feedrate[Z_AXIS] / 2;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1831. st_synchronize();
  1832. enable_endstops(endstops_enabled);
  1833. if (PRINTER_TYPE == PRINTER_MK3) {
  1834. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1835. }
  1836. else {
  1837. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1838. }
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. return true;
  1841. }
  1842. #endif //TMC2130
  1843. #ifdef TMC2130
  1844. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1845. #else
  1846. void homeaxis(int axis, uint8_t cnt)
  1847. #endif //TMC2130
  1848. {
  1849. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1850. #define HOMEAXIS_DO(LETTER) \
  1851. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1852. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1853. {
  1854. int axis_home_dir = home_dir(axis);
  1855. feedrate = homing_feedrate[axis];
  1856. #ifdef TMC2130
  1857. tmc2130_home_enter(X_AXIS_MASK << axis);
  1858. #endif //TMC2130
  1859. // Move away a bit, so that the print head does not touch the end position,
  1860. // and the following movement to endstop has a chance to achieve the required velocity
  1861. // for the stall guard to work.
  1862. current_position[axis] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. // destination[axis] = 11.f;
  1866. destination[axis] = -3.f * axis_home_dir;
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1870. endstops_hit_on_purpose();
  1871. enable_endstops(false);
  1872. current_position[axis] = 0;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. destination[axis] = 1. * axis_home_dir;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. // Now continue to move up to the left end stop with the collision detection enabled.
  1878. enable_endstops(true);
  1879. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. for (uint8_t i = 0; i < cnt; i++)
  1883. {
  1884. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1885. endstops_hit_on_purpose();
  1886. enable_endstops(false);
  1887. current_position[axis] = 0;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. destination[axis] = -10.f * axis_home_dir;
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. endstops_hit_on_purpose();
  1893. // Now move left up to the collision, this time with a repeatable velocity.
  1894. enable_endstops(true);
  1895. destination[axis] = 11.f * axis_home_dir;
  1896. #ifdef TMC2130
  1897. feedrate = homing_feedrate[axis];
  1898. #else //TMC2130
  1899. feedrate = homing_feedrate[axis] / 2;
  1900. #endif //TMC2130
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. #ifdef TMC2130
  1904. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1905. if (pstep) pstep[i] = mscnt >> 4;
  1906. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1907. #endif //TMC2130
  1908. }
  1909. endstops_hit_on_purpose();
  1910. enable_endstops(false);
  1911. #ifdef TMC2130
  1912. uint8_t orig = tmc2130_home_origin[axis];
  1913. uint8_t back = tmc2130_home_bsteps[axis];
  1914. if (tmc2130_home_enabled && (orig <= 63))
  1915. {
  1916. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1917. if (back > 0)
  1918. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1919. }
  1920. else
  1921. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1922. tmc2130_home_exit();
  1923. #endif //TMC2130
  1924. axis_is_at_home(axis);
  1925. axis_known_position[axis] = true;
  1926. // Move from minimum
  1927. #ifdef TMC2130
  1928. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1929. #else //TMC2130
  1930. float dist = - axis_home_dir * 0.01f * 64;
  1931. #endif //TMC2130
  1932. current_position[axis] -= dist;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. current_position[axis] += dist;
  1935. destination[axis] = current_position[axis];
  1936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1937. st_synchronize();
  1938. feedrate = 0.0;
  1939. }
  1940. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1941. {
  1942. #ifdef TMC2130
  1943. FORCE_HIGH_POWER_START;
  1944. #endif
  1945. int axis_home_dir = home_dir(axis);
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1949. feedrate = homing_feedrate[axis];
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. #ifdef TMC2130
  1953. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1954. FORCE_HIGH_POWER_END;
  1955. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1956. return;
  1957. }
  1958. #endif //TMC2130
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1965. feedrate = homing_feedrate[axis]/2 ;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. #ifdef TMC2130
  1969. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1970. FORCE_HIGH_POWER_END;
  1971. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1972. return;
  1973. }
  1974. #endif //TMC2130
  1975. axis_is_at_home(axis);
  1976. destination[axis] = current_position[axis];
  1977. feedrate = 0.0;
  1978. endstops_hit_on_purpose();
  1979. axis_known_position[axis] = true;
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_END;
  1982. #endif
  1983. }
  1984. enable_endstops(endstops_enabled);
  1985. }
  1986. /**/
  1987. void home_xy()
  1988. {
  1989. set_destination_to_current();
  1990. homeaxis(X_AXIS);
  1991. homeaxis(Y_AXIS);
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. endstops_hit_on_purpose();
  1994. }
  1995. void refresh_cmd_timeout(void)
  1996. {
  1997. previous_millis_cmd = _millis();
  1998. }
  1999. #ifdef FWRETRACT
  2000. void retract(bool retracting, bool swapretract = false) {
  2001. if(retracting && !retracted[active_extruder]) {
  2002. destination[X_AXIS]=current_position[X_AXIS];
  2003. destination[Y_AXIS]=current_position[Y_AXIS];
  2004. destination[Z_AXIS]=current_position[Z_AXIS];
  2005. destination[E_AXIS]=current_position[E_AXIS];
  2006. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2007. plan_set_e_position(current_position[E_AXIS]);
  2008. float oldFeedrate = feedrate;
  2009. feedrate=cs.retract_feedrate*60;
  2010. retracted[active_extruder]=true;
  2011. prepare_move();
  2012. current_position[Z_AXIS]-=cs.retract_zlift;
  2013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2014. prepare_move();
  2015. feedrate = oldFeedrate;
  2016. } else if(!retracting && retracted[active_extruder]) {
  2017. destination[X_AXIS]=current_position[X_AXIS];
  2018. destination[Y_AXIS]=current_position[Y_AXIS];
  2019. destination[Z_AXIS]=current_position[Z_AXIS];
  2020. destination[E_AXIS]=current_position[E_AXIS];
  2021. current_position[Z_AXIS]+=cs.retract_zlift;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2024. plan_set_e_position(current_position[E_AXIS]);
  2025. float oldFeedrate = feedrate;
  2026. feedrate=cs.retract_recover_feedrate*60;
  2027. retracted[active_extruder]=false;
  2028. prepare_move();
  2029. feedrate = oldFeedrate;
  2030. }
  2031. } //retract
  2032. #endif //FWRETRACT
  2033. void trace() {
  2034. Sound_MakeCustom(25,440,true);
  2035. }
  2036. /*
  2037. void ramming() {
  2038. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2039. if (current_temperature[0] < 230) {
  2040. //PLA
  2041. max_feedrate[E_AXIS] = 50;
  2042. //current_position[E_AXIS] -= 8;
  2043. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2044. //current_position[E_AXIS] += 8;
  2045. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5.4;
  2047. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2048. current_position[E_AXIS] += 3.2;
  2049. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2050. current_position[E_AXIS] += 3;
  2051. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2052. st_synchronize();
  2053. max_feedrate[E_AXIS] = 80;
  2054. current_position[E_AXIS] -= 82;
  2055. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2056. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2057. current_position[E_AXIS] -= 20;
  2058. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 10;
  2064. st_synchronize();
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] += 10;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 10;
  2069. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2070. current_position[E_AXIS] += 10;
  2071. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 10;
  2073. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. else {
  2077. //ABS
  2078. max_feedrate[E_AXIS] = 50;
  2079. //current_position[E_AXIS] -= 8;
  2080. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2081. //current_position[E_AXIS] += 8;
  2082. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2083. current_position[E_AXIS] += 3.1;
  2084. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2085. current_position[E_AXIS] += 3.1;
  2086. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2087. current_position[E_AXIS] += 4;
  2088. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2089. st_synchronize();
  2090. //current_position[X_AXIS] += 23; //delay
  2091. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2092. //current_position[X_AXIS] -= 23; //delay
  2093. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2094. _delay(4700);
  2095. max_feedrate[E_AXIS] = 80;
  2096. current_position[E_AXIS] -= 92;
  2097. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2098. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2099. current_position[E_AXIS] -= 5;
  2100. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2101. current_position[E_AXIS] += 5;
  2102. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2103. current_position[E_AXIS] -= 5;
  2104. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2105. st_synchronize();
  2106. current_position[E_AXIS] += 5;
  2107. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2108. current_position[E_AXIS] -= 5;
  2109. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 5;
  2113. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2114. st_synchronize();
  2115. }
  2116. }
  2117. */
  2118. #ifdef TMC2130
  2119. void force_high_power_mode(bool start_high_power_section) {
  2120. #ifdef PSU_Delta
  2121. if (start_high_power_section == true) enable_force_z();
  2122. #endif //PSU_Delta
  2123. uint8_t silent;
  2124. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2125. if (silent == 1) {
  2126. //we are in silent mode, set to normal mode to enable crash detection
  2127. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2128. st_synchronize();
  2129. cli();
  2130. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2131. update_mode_profile();
  2132. tmc2130_init();
  2133. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2134. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2135. st_reset_timer();
  2136. sei();
  2137. }
  2138. }
  2139. #endif //TMC2130
  2140. #ifdef TMC2130
  2141. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2142. #else
  2143. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2144. #endif //TMC2130
  2145. {
  2146. st_synchronize();
  2147. #if 0
  2148. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2149. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2150. #endif
  2151. // Flag for the display update routine and to disable the print cancelation during homing.
  2152. homing_flag = true;
  2153. // Which axes should be homed?
  2154. bool home_x = home_x_axis;
  2155. bool home_y = home_y_axis;
  2156. bool home_z = home_z_axis;
  2157. // Either all X,Y,Z codes are present, or none of them.
  2158. bool home_all_axes = home_x == home_y && home_x == home_z;
  2159. if (home_all_axes)
  2160. // No X/Y/Z code provided means to home all axes.
  2161. home_x = home_y = home_z = true;
  2162. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2163. if (home_all_axes) {
  2164. raise_z_above(MESH_HOME_Z_SEARCH);
  2165. st_synchronize();
  2166. }
  2167. #ifdef ENABLE_AUTO_BED_LEVELING
  2168. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2169. #endif //ENABLE_AUTO_BED_LEVELING
  2170. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2171. // the planner will not perform any adjustments in the XY plane.
  2172. // Wait for the motors to stop and update the current position with the absolute values.
  2173. world2machine_revert_to_uncorrected();
  2174. // For mesh bed leveling deactivate the matrix temporarily.
  2175. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2176. // in a single axis only.
  2177. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2178. #ifdef MESH_BED_LEVELING
  2179. uint8_t mbl_was_active = mbl.active;
  2180. mbl.active = 0;
  2181. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2182. #endif
  2183. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2184. // consumed during the first movements following this statement.
  2185. if (home_z)
  2186. babystep_undo();
  2187. saved_feedrate = feedrate;
  2188. int l_feedmultiply = feedmultiply;
  2189. feedmultiply = 100;
  2190. previous_millis_cmd = _millis();
  2191. enable_endstops(true);
  2192. memcpy(destination, current_position, sizeof(destination));
  2193. feedrate = 0.0;
  2194. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2195. if(home_z)
  2196. homeaxis(Z_AXIS);
  2197. #endif
  2198. #ifdef QUICK_HOME
  2199. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2200. if(home_x && home_y) //first diagonal move
  2201. {
  2202. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2203. int x_axis_home_dir = home_dir(X_AXIS);
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2206. feedrate = homing_feedrate[X_AXIS];
  2207. if(homing_feedrate[Y_AXIS]<feedrate)
  2208. feedrate = homing_feedrate[Y_AXIS];
  2209. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2210. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2211. } else {
  2212. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2213. }
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2215. st_synchronize();
  2216. axis_is_at_home(X_AXIS);
  2217. axis_is_at_home(Y_AXIS);
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. destination[X_AXIS] = current_position[X_AXIS];
  2220. destination[Y_AXIS] = current_position[Y_AXIS];
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2222. feedrate = 0.0;
  2223. st_synchronize();
  2224. endstops_hit_on_purpose();
  2225. current_position[X_AXIS] = destination[X_AXIS];
  2226. current_position[Y_AXIS] = destination[Y_AXIS];
  2227. current_position[Z_AXIS] = destination[Z_AXIS];
  2228. }
  2229. #endif /* QUICK_HOME */
  2230. #ifdef TMC2130
  2231. if(home_x)
  2232. {
  2233. if (!calib)
  2234. homeaxis(X_AXIS);
  2235. else
  2236. tmc2130_home_calibrate(X_AXIS);
  2237. }
  2238. if(home_y)
  2239. {
  2240. if (!calib)
  2241. homeaxis(Y_AXIS);
  2242. else
  2243. tmc2130_home_calibrate(Y_AXIS);
  2244. }
  2245. #else //TMC2130
  2246. if(home_x) homeaxis(X_AXIS);
  2247. if(home_y) homeaxis(Y_AXIS);
  2248. #endif //TMC2130
  2249. if(home_x_axis && home_x_value != 0)
  2250. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2251. if(home_y_axis && home_y_value != 0)
  2252. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2253. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2254. #ifndef Z_SAFE_HOMING
  2255. if(home_z) {
  2256. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2257. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2258. st_synchronize();
  2259. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2260. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2261. raise_z_above(MESH_HOME_Z_SEARCH);
  2262. st_synchronize();
  2263. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2264. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2265. // 1st mesh bed leveling measurement point, corrected.
  2266. world2machine_initialize();
  2267. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2268. world2machine_reset();
  2269. if (destination[Y_AXIS] < Y_MIN_POS)
  2270. destination[Y_AXIS] = Y_MIN_POS;
  2271. feedrate = homing_feedrate[X_AXIS] / 20;
  2272. enable_endstops(false);
  2273. #ifdef DEBUG_BUILD
  2274. SERIAL_ECHOLNPGM("plan_set_position()");
  2275. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2276. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2277. #endif
  2278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2279. #ifdef DEBUG_BUILD
  2280. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2281. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2282. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2283. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2284. #endif
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. current_position[X_AXIS] = destination[X_AXIS];
  2288. current_position[Y_AXIS] = destination[Y_AXIS];
  2289. enable_endstops(true);
  2290. endstops_hit_on_purpose();
  2291. homeaxis(Z_AXIS);
  2292. #else // MESH_BED_LEVELING
  2293. homeaxis(Z_AXIS);
  2294. #endif // MESH_BED_LEVELING
  2295. }
  2296. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2297. if(home_all_axes) {
  2298. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2299. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = XY_TRAVEL_SPEED/60;
  2302. current_position[Z_AXIS] = 0;
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2305. st_synchronize();
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. homeaxis(Z_AXIS);
  2309. }
  2310. // Let's see if X and Y are homed and probe is inside bed area.
  2311. if(home_z) {
  2312. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2313. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2314. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2315. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2316. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2317. current_position[Z_AXIS] = 0;
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2320. feedrate = max_feedrate[Z_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. homeaxis(Z_AXIS);
  2324. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2325. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2326. SERIAL_ECHO_START;
  2327. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2328. } else {
  2329. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2332. }
  2333. }
  2334. #endif // Z_SAFE_HOMING
  2335. #endif // Z_HOME_DIR < 0
  2336. if(home_z_axis && home_z_value != 0)
  2337. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2338. #ifdef ENABLE_AUTO_BED_LEVELING
  2339. if(home_z)
  2340. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2341. #endif
  2342. // Set the planner and stepper routine positions.
  2343. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2344. // contains the machine coordinates.
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2347. enable_endstops(false);
  2348. #endif
  2349. feedrate = saved_feedrate;
  2350. feedmultiply = l_feedmultiply;
  2351. previous_millis_cmd = _millis();
  2352. endstops_hit_on_purpose();
  2353. #ifndef MESH_BED_LEVELING
  2354. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2355. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2356. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2357. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2358. lcd_adjust_z();
  2359. #endif
  2360. // Load the machine correction matrix
  2361. world2machine_initialize();
  2362. // and correct the current_position XY axes to match the transformed coordinate system.
  2363. world2machine_update_current();
  2364. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2365. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2366. {
  2367. if (! home_z && mbl_was_active) {
  2368. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2369. mbl.active = true;
  2370. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2371. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2372. }
  2373. }
  2374. else
  2375. {
  2376. st_synchronize();
  2377. homing_flag = false;
  2378. }
  2379. #endif
  2380. if (farm_mode) { prusa_statistics(20); };
  2381. homing_flag = false;
  2382. #if 0
  2383. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2385. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2386. #endif
  2387. }
  2388. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2389. {
  2390. #ifdef TMC2130
  2391. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2392. #else
  2393. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2394. #endif //TMC2130
  2395. }
  2396. void adjust_bed_reset()
  2397. {
  2398. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2399. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2400. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2401. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2402. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2403. }
  2404. //! @brief Calibrate XYZ
  2405. //! @param onlyZ if true, calibrate only Z axis
  2406. //! @param verbosity_level
  2407. //! @retval true Succeeded
  2408. //! @retval false Failed
  2409. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2410. {
  2411. bool final_result = false;
  2412. #ifdef TMC2130
  2413. FORCE_HIGH_POWER_START;
  2414. #endif // TMC2130
  2415. FORCE_BL_ON_START;
  2416. // Only Z calibration?
  2417. if (!onlyZ)
  2418. {
  2419. setTargetBed(0);
  2420. setAllTargetHotends(0);
  2421. adjust_bed_reset(); //reset bed level correction
  2422. }
  2423. // Disable the default update procedure of the display. We will do a modal dialog.
  2424. lcd_update_enable(false);
  2425. // Let the planner use the uncorrected coordinates.
  2426. mbl.reset();
  2427. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2428. // the planner will not perform any adjustments in the XY plane.
  2429. // Wait for the motors to stop and update the current position with the absolute values.
  2430. world2machine_revert_to_uncorrected();
  2431. // Reset the baby step value applied without moving the axes.
  2432. babystep_reset();
  2433. // Mark all axes as in a need for homing.
  2434. memset(axis_known_position, 0, sizeof(axis_known_position));
  2435. // Home in the XY plane.
  2436. //set_destination_to_current();
  2437. int l_feedmultiply = setup_for_endstop_move();
  2438. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2439. home_xy();
  2440. enable_endstops(false);
  2441. current_position[X_AXIS] += 5;
  2442. current_position[Y_AXIS] += 5;
  2443. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2444. st_synchronize();
  2445. // Let the user move the Z axes up to the end stoppers.
  2446. #ifdef TMC2130
  2447. if (calibrate_z_auto())
  2448. {
  2449. #else //TMC2130
  2450. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2451. {
  2452. #endif //TMC2130
  2453. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2454. if(onlyZ){
  2455. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2456. lcd_set_cursor(0, 3);
  2457. lcd_print(1);
  2458. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2459. }else{
  2460. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2461. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2462. lcd_set_cursor(0, 2);
  2463. lcd_print(1);
  2464. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2465. }
  2466. refresh_cmd_timeout();
  2467. #ifndef STEEL_SHEET
  2468. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2469. {
  2470. lcd_wait_for_cool_down();
  2471. }
  2472. #endif //STEEL_SHEET
  2473. if(!onlyZ)
  2474. {
  2475. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2476. #ifdef STEEL_SHEET
  2477. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2478. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2479. #endif //STEEL_SHEET
  2480. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2481. KEEPALIVE_STATE(IN_HANDLER);
  2482. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2483. lcd_set_cursor(0, 2);
  2484. lcd_print(1);
  2485. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2486. }
  2487. bool endstops_enabled = enable_endstops(false);
  2488. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2489. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2490. st_synchronize();
  2491. // Move the print head close to the bed.
  2492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2493. enable_endstops(true);
  2494. #ifdef TMC2130
  2495. tmc2130_home_enter(Z_AXIS_MASK);
  2496. #endif //TMC2130
  2497. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. #ifdef TMC2130
  2500. tmc2130_home_exit();
  2501. #endif //TMC2130
  2502. enable_endstops(endstops_enabled);
  2503. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2504. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2505. {
  2506. if (onlyZ)
  2507. {
  2508. clean_up_after_endstop_move(l_feedmultiply);
  2509. // Z only calibration.
  2510. // Load the machine correction matrix
  2511. world2machine_initialize();
  2512. // and correct the current_position to match the transformed coordinate system.
  2513. world2machine_update_current();
  2514. //FIXME
  2515. bool result = sample_mesh_and_store_reference();
  2516. if (result)
  2517. {
  2518. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2519. // Shipped, the nozzle height has been set already. The user can start printing now.
  2520. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2521. final_result = true;
  2522. // babystep_apply();
  2523. }
  2524. }
  2525. else
  2526. {
  2527. // Reset the baby step value and the baby step applied flag.
  2528. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2529. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2530. // Complete XYZ calibration.
  2531. uint8_t point_too_far_mask = 0;
  2532. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2533. clean_up_after_endstop_move(l_feedmultiply);
  2534. // Print head up.
  2535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2536. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2537. st_synchronize();
  2538. //#ifndef NEW_XYZCAL
  2539. if (result >= 0)
  2540. {
  2541. #ifdef HEATBED_V2
  2542. sample_z();
  2543. #else //HEATBED_V2
  2544. point_too_far_mask = 0;
  2545. // Second half: The fine adjustment.
  2546. // Let the planner use the uncorrected coordinates.
  2547. mbl.reset();
  2548. world2machine_reset();
  2549. // Home in the XY plane.
  2550. int l_feedmultiply = setup_for_endstop_move();
  2551. home_xy();
  2552. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2553. clean_up_after_endstop_move(l_feedmultiply);
  2554. // Print head up.
  2555. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2556. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2557. st_synchronize();
  2558. // if (result >= 0) babystep_apply();
  2559. #endif //HEATBED_V2
  2560. }
  2561. //#endif //NEW_XYZCAL
  2562. lcd_update_enable(true);
  2563. lcd_update(2);
  2564. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2565. if (result >= 0)
  2566. {
  2567. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2568. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2569. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2570. final_result = true;
  2571. }
  2572. }
  2573. #ifdef TMC2130
  2574. tmc2130_home_exit();
  2575. #endif
  2576. }
  2577. else
  2578. {
  2579. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2580. final_result = false;
  2581. }
  2582. }
  2583. else
  2584. {
  2585. // Timeouted.
  2586. }
  2587. lcd_update_enable(true);
  2588. #ifdef TMC2130
  2589. FORCE_HIGH_POWER_END;
  2590. #endif // TMC2130
  2591. FORCE_BL_ON_END;
  2592. return final_result;
  2593. }
  2594. void gcode_M114()
  2595. {
  2596. SERIAL_PROTOCOLPGM("X:");
  2597. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2598. SERIAL_PROTOCOLPGM(" Y:");
  2599. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" Z:");
  2601. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2602. SERIAL_PROTOCOLPGM(" E:");
  2603. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2604. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2605. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" Y:");
  2607. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" Z:");
  2609. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" E:");
  2611. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2612. SERIAL_PROTOCOLLN("");
  2613. }
  2614. //! extracted code to compute z_shift for M600 in case of filament change operation
  2615. //! requested from fsensors.
  2616. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2617. //! unlike the previous implementation, which was adding 25mm even when the head was
  2618. //! printing at e.g. 24mm height.
  2619. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2620. //! the printout.
  2621. //! This function is templated to enable fast change of computation data type.
  2622. //! @return new z_shift value
  2623. template<typename T>
  2624. static T gcode_M600_filament_change_z_shift()
  2625. {
  2626. #ifdef FILAMENTCHANGE_ZADD
  2627. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2628. // avoid floating point arithmetics when not necessary - results in shorter code
  2629. T ztmp = T( current_position[Z_AXIS] );
  2630. T z_shift = 0;
  2631. if(ztmp < T(25)){
  2632. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2633. }
  2634. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2635. #else
  2636. return T(0);
  2637. #endif
  2638. }
  2639. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2640. {
  2641. st_synchronize();
  2642. float lastpos[4];
  2643. if (farm_mode)
  2644. {
  2645. prusa_statistics(22);
  2646. }
  2647. //First backup current position and settings
  2648. int feedmultiplyBckp = feedmultiply;
  2649. float HotendTempBckp = degTargetHotend(active_extruder);
  2650. int fanSpeedBckp = fanSpeed;
  2651. lastpos[X_AXIS] = current_position[X_AXIS];
  2652. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2653. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2654. lastpos[E_AXIS] = current_position[E_AXIS];
  2655. //Retract E
  2656. current_position[E_AXIS] += e_shift;
  2657. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2658. st_synchronize();
  2659. //Lift Z
  2660. current_position[Z_AXIS] += z_shift;
  2661. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2662. st_synchronize();
  2663. //Move XY to side
  2664. current_position[X_AXIS] = x_position;
  2665. current_position[Y_AXIS] = y_position;
  2666. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2667. st_synchronize();
  2668. //Beep, manage nozzle heater and wait for user to start unload filament
  2669. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2670. lcd_change_fil_state = 0;
  2671. // Unload filament
  2672. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2673. else unload_filament(); //unload filament for single material (used also in M702)
  2674. //finish moves
  2675. st_synchronize();
  2676. if (!mmu_enabled)
  2677. {
  2678. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2679. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2680. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2681. if (lcd_change_fil_state == 0)
  2682. {
  2683. lcd_clear();
  2684. lcd_set_cursor(0, 2);
  2685. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2686. current_position[X_AXIS] -= 100;
  2687. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2688. st_synchronize();
  2689. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2690. }
  2691. }
  2692. if (mmu_enabled)
  2693. {
  2694. if (!automatic) {
  2695. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2696. mmu_M600_wait_and_beep();
  2697. if (saved_printing) {
  2698. lcd_clear();
  2699. lcd_set_cursor(0, 2);
  2700. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2701. mmu_command(MmuCmd::R0);
  2702. manage_response(false, false);
  2703. }
  2704. }
  2705. mmu_M600_load_filament(automatic, HotendTempBckp);
  2706. }
  2707. else
  2708. M600_load_filament();
  2709. if (!automatic) M600_check_state(HotendTempBckp);
  2710. lcd_update_enable(true);
  2711. //Not let's go back to print
  2712. fanSpeed = fanSpeedBckp;
  2713. //Feed a little of filament to stabilize pressure
  2714. if (!automatic)
  2715. {
  2716. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2717. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2718. }
  2719. //Move XY back
  2720. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2721. FILAMENTCHANGE_XYFEED, active_extruder);
  2722. st_synchronize();
  2723. //Move Z back
  2724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2725. FILAMENTCHANGE_ZFEED, active_extruder);
  2726. st_synchronize();
  2727. //Set E position to original
  2728. plan_set_e_position(lastpos[E_AXIS]);
  2729. memcpy(current_position, lastpos, sizeof(lastpos));
  2730. memcpy(destination, current_position, sizeof(current_position));
  2731. //Recover feed rate
  2732. feedmultiply = feedmultiplyBckp;
  2733. char cmd[9];
  2734. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2735. enquecommand(cmd);
  2736. #ifdef IR_SENSOR
  2737. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2738. fsensor_check_autoload();
  2739. #endif //IR_SENSOR
  2740. lcd_setstatuspgm(_T(WELCOME_MSG));
  2741. custom_message_type = CustomMsg::Status;
  2742. }
  2743. void gcode_M701()
  2744. {
  2745. printf_P(PSTR("gcode_M701 begin\n"));
  2746. if (farm_mode)
  2747. {
  2748. prusa_statistics(22);
  2749. }
  2750. if (mmu_enabled)
  2751. {
  2752. extr_adj(tmp_extruder);//loads current extruder
  2753. mmu_extruder = tmp_extruder;
  2754. }
  2755. else
  2756. {
  2757. enable_z();
  2758. custom_message_type = CustomMsg::FilamentLoading;
  2759. #ifdef FSENSOR_QUALITY
  2760. fsensor_oq_meassure_start(40);
  2761. #endif //FSENSOR_QUALITY
  2762. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2763. current_position[E_AXIS] += 40;
  2764. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2765. st_synchronize();
  2766. raise_z_above(MIN_Z_FOR_LOAD, false);
  2767. current_position[E_AXIS] += 30;
  2768. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2769. load_filament_final_feed(); //slow sequence
  2770. st_synchronize();
  2771. Sound_MakeCustom(50,500,false);
  2772. if (!farm_mode && loading_flag) {
  2773. lcd_load_filament_color_check();
  2774. }
  2775. lcd_update_enable(true);
  2776. lcd_update(2);
  2777. lcd_setstatuspgm(_T(WELCOME_MSG));
  2778. disable_z();
  2779. loading_flag = false;
  2780. custom_message_type = CustomMsg::Status;
  2781. #ifdef FSENSOR_QUALITY
  2782. fsensor_oq_meassure_stop();
  2783. if (!fsensor_oq_result())
  2784. {
  2785. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2786. lcd_update_enable(true);
  2787. lcd_update(2);
  2788. if (disable)
  2789. fsensor_disable();
  2790. }
  2791. #endif //FSENSOR_QUALITY
  2792. }
  2793. }
  2794. /**
  2795. * @brief Get serial number from 32U2 processor
  2796. *
  2797. * Typical format of S/N is:CZPX0917X003XC13518
  2798. *
  2799. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2800. *
  2801. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2802. * reply is transmitted to serial port 1 character by character.
  2803. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2804. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2805. * in any case.
  2806. */
  2807. static void gcode_PRUSA_SN()
  2808. {
  2809. if (farm_mode) {
  2810. selectedSerialPort = 0;
  2811. putchar(';');
  2812. putchar('S');
  2813. int numbersRead = 0;
  2814. ShortTimer timeout;
  2815. timeout.start();
  2816. while (numbersRead < 19) {
  2817. while (MSerial.available() > 0) {
  2818. uint8_t serial_char = MSerial.read();
  2819. selectedSerialPort = 1;
  2820. putchar(serial_char);
  2821. numbersRead++;
  2822. selectedSerialPort = 0;
  2823. }
  2824. if (timeout.expired(100u)) break;
  2825. }
  2826. selectedSerialPort = 1;
  2827. putchar('\n');
  2828. #if 0
  2829. for (int b = 0; b < 3; b++) {
  2830. _tone(BEEPER, 110);
  2831. _delay(50);
  2832. _noTone(BEEPER);
  2833. _delay(50);
  2834. }
  2835. #endif
  2836. } else {
  2837. puts_P(_N("Not in farm mode."));
  2838. }
  2839. }
  2840. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2841. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2842. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2843. //! it may even interfere with other functions of the printer! You have been warned!
  2844. //! The test idea is to measure the time necessary to charge the capacitor.
  2845. //! So the algorithm is as follows:
  2846. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2847. //! 2. Wait a few ms
  2848. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2849. //! Repeat 1.-3. several times
  2850. //! Good RAMBo's times are in the range of approx. 260-320 us
  2851. //! Bad RAMBo's times are approx. 260-1200 us
  2852. //! So basically we are interested in maximum time, the minima are mostly the same.
  2853. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2854. static void gcode_PRUSA_BadRAMBoFanTest(){
  2855. //printf_P(PSTR("Enter fan pin test\n"));
  2856. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2857. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2858. unsigned long tach1max = 0;
  2859. uint8_t tach1cntr = 0;
  2860. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2861. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2862. SET_OUTPUT(TACH_1);
  2863. WRITE(TACH_1, LOW);
  2864. _delay(20); // the delay may be lower
  2865. unsigned long tachMeasure = _micros();
  2866. cli();
  2867. SET_INPUT(TACH_1);
  2868. // just wait brutally in an endless cycle until we reach HIGH
  2869. // if this becomes a problem it may be improved to non-endless cycle
  2870. while( READ(TACH_1) == 0 ) ;
  2871. sei();
  2872. tachMeasure = _micros() - tachMeasure;
  2873. if( tach1max < tachMeasure )
  2874. tach1max = tachMeasure;
  2875. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2876. }
  2877. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2878. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2879. if( tach1max > 500 ){
  2880. // bad RAMBo
  2881. SERIAL_PROTOCOLLNPGM("BAD");
  2882. } else {
  2883. SERIAL_PROTOCOLLNPGM("OK");
  2884. }
  2885. // cleanup after the test function
  2886. SET_INPUT(TACH_1);
  2887. WRITE(TACH_1, HIGH);
  2888. #endif
  2889. }
  2890. #ifdef BACKLASH_X
  2891. extern uint8_t st_backlash_x;
  2892. #endif //BACKLASH_X
  2893. #ifdef BACKLASH_Y
  2894. extern uint8_t st_backlash_y;
  2895. #endif //BACKLASH_Y
  2896. //! \ingroup marlin_main
  2897. //! @brief Parse and process commands
  2898. //!
  2899. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2900. //!
  2901. //!
  2902. //! Implemented Codes
  2903. //! -------------------
  2904. //!
  2905. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2906. //!
  2907. //!@n PRUSA CODES
  2908. //!@n P F - Returns FW versions
  2909. //!@n P R - Returns revision of printer
  2910. //!
  2911. //!@n G0 -> G1
  2912. //!@n G1 - Coordinated Movement X Y Z E
  2913. //!@n G2 - CW ARC
  2914. //!@n G3 - CCW ARC
  2915. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2916. //!@n G10 - retract filament according to settings of M207
  2917. //!@n G11 - retract recover filament according to settings of M208
  2918. //!@n G28 - Home all Axis
  2919. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2920. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2921. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2922. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2923. //!@n G80 - Automatic mesh bed leveling
  2924. //!@n G81 - Print bed profile
  2925. //!@n G90 - Use Absolute Coordinates
  2926. //!@n G91 - Use Relative Coordinates
  2927. //!@n G92 - Set current position to coordinates given
  2928. //!
  2929. //!@n M Codes
  2930. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2931. //!@n M1 - Same as M0
  2932. //!@n M17 - Enable/Power all stepper motors
  2933. //!@n M18 - Disable all stepper motors; same as M84
  2934. //!@n M20 - List SD card
  2935. //!@n M21 - Init SD card
  2936. //!@n M22 - Release SD card
  2937. //!@n M23 - Select SD file (M23 filename.g)
  2938. //!@n M24 - Start/resume SD print
  2939. //!@n M25 - Pause SD print
  2940. //!@n M26 - Set SD position in bytes (M26 S12345)
  2941. //!@n M27 - Report SD print status
  2942. //!@n M28 - Start SD write (M28 filename.g)
  2943. //!@n M29 - Stop SD write
  2944. //!@n M30 - Delete file from SD (M30 filename.g)
  2945. //!@n M31 - Output time since last M109 or SD card start to serial
  2946. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2947. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2948. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2949. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2950. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2951. //!@n M73 - Show percent done and print time remaining
  2952. //!@n M80 - Turn on Power Supply
  2953. //!@n M81 - Turn off Power Supply
  2954. //!@n M82 - Set E codes absolute (default)
  2955. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2956. //!@n M84 - Disable steppers until next move,
  2957. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2958. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2959. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2960. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2961. //!@n M104 - Set extruder target temp
  2962. //!@n M105 - Read current temp
  2963. //!@n M106 - Fan on
  2964. //!@n M107 - Fan off
  2965. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2966. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2967. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2968. //!@n M112 - Emergency stop
  2969. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2970. //!@n M114 - Output current position to serial port
  2971. //!@n M115 - Capabilities string
  2972. //!@n M117 - display message
  2973. //!@n M119 - Output Endstop status to serial port
  2974. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2975. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2976. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2977. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2978. //!@n M140 - Set bed target temp
  2979. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2980. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2981. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2982. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2983. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2984. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2985. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2986. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2987. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2988. //!@n M206 - set additional homing offset
  2989. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2990. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2991. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2992. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2993. //!@n M220 S<factor in percent>- set speed factor override percentage
  2994. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2995. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2996. //!@n M240 - Trigger a camera to take a photograph
  2997. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2998. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2999. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3000. //!@n M301 - Set PID parameters P I and D
  3001. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3002. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3003. //!@n M304 - Set bed PID parameters P I and D
  3004. //!@n M400 - Finish all moves
  3005. //!@n M401 - Lower z-probe if present
  3006. //!@n M402 - Raise z-probe if present
  3007. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3008. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3009. //!@n M406 - Turn off Filament Sensor extrusion control
  3010. //!@n M407 - Displays measured filament diameter
  3011. //!@n M500 - stores parameters in EEPROM
  3012. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3013. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3014. //!@n M503 - print the current settings (from memory not from EEPROM)
  3015. //!@n M509 - force language selection on next restart
  3016. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3017. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3018. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3019. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3020. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3021. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3022. //!@n M907 - Set digital trimpot motor current using axis codes.
  3023. //!@n M908 - Control digital trimpot directly.
  3024. //!@n M350 - Set microstepping mode.
  3025. //!@n M351 - Toggle MS1 MS2 pins directly.
  3026. //!
  3027. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3028. //!@n M999 - Restart after being stopped by error
  3029. //! <br><br>
  3030. /** @defgroup marlin_main Marlin main */
  3031. /** \ingroup GCodes */
  3032. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3033. /**
  3034. They are shown in order of appierence in the code.
  3035. There are reasons why some G Codes aren't in numerical order.
  3036. */
  3037. void process_commands()
  3038. {
  3039. #ifdef FANCHECK
  3040. if(fan_check_error){
  3041. if(fan_check_error == EFCE_DETECTED){
  3042. fan_check_error = EFCE_REPORTED;
  3043. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3044. lcd_pause_print();
  3045. } // otherwise it has already been reported, so just ignore further processing
  3046. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3047. }
  3048. #endif
  3049. if (!buflen) return; //empty command
  3050. #ifdef FILAMENT_RUNOUT_SUPPORT
  3051. SET_INPUT(FR_SENS);
  3052. #endif
  3053. #ifdef CMDBUFFER_DEBUG
  3054. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3055. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3056. SERIAL_ECHOLNPGM("");
  3057. SERIAL_ECHOPGM("In cmdqueue: ");
  3058. SERIAL_ECHO(buflen);
  3059. SERIAL_ECHOLNPGM("");
  3060. #endif /* CMDBUFFER_DEBUG */
  3061. unsigned long codenum; //throw away variable
  3062. char *starpos = NULL;
  3063. #ifdef ENABLE_AUTO_BED_LEVELING
  3064. float x_tmp, y_tmp, z_tmp, real_z;
  3065. #endif
  3066. // PRUSA GCODES
  3067. KEEPALIVE_STATE(IN_HANDLER);
  3068. #ifdef SNMM
  3069. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3070. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3071. int8_t SilentMode;
  3072. #endif
  3073. /*!
  3074. ---------------------------------------------------------------------------------
  3075. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3076. This causes the given message to be shown in the status line on an attached LCD.
  3077. It is also used by internal to display status messages on LCD.
  3078. Here the internal status messages:
  3079. Only on MK3/s (TMC2130)
  3080. - CRASH DETECTED
  3081. - CRASH RECOVER
  3082. - CRASH_CANCEL
  3083. - TMC_SET_WAVE
  3084. - TMC_SET_STEP
  3085. - TMC_SET_CHOP
  3086. */
  3087. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3088. starpos = (strchr(strchr_pointer + 5, '*'));
  3089. if (starpos != NULL)
  3090. *(starpos) = '\0';
  3091. lcd_setstatus(strchr_pointer + 5);
  3092. }
  3093. #ifdef TMC2130
  3094. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3095. {
  3096. // ### CRASH_DETECTED - TMC2130
  3097. // ---------------------------------
  3098. if(code_seen("CRASH_DETECTED"))
  3099. {
  3100. uint8_t mask = 0;
  3101. if (code_seen('X')) mask |= X_AXIS_MASK;
  3102. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3103. crashdet_detected(mask);
  3104. }
  3105. // ### CRASH_RECOVER - TMC2130
  3106. // ----------------------------------
  3107. else if(code_seen("CRASH_RECOVER"))
  3108. crashdet_recover();
  3109. // ### CRASH_CANCEL - TMC2130
  3110. // ----------------------------------
  3111. else if(code_seen("CRASH_CANCEL"))
  3112. crashdet_cancel();
  3113. }
  3114. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3115. {
  3116. // ### TMC_SET_WAVE_
  3117. // --------------------
  3118. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3119. {
  3120. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3121. axis = (axis == 'E')?3:(axis - 'X');
  3122. if (axis < 4)
  3123. {
  3124. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3125. tmc2130_set_wave(axis, 247, fac);
  3126. }
  3127. }
  3128. // ### TMC_SET_STEP_
  3129. // ------------------
  3130. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3131. {
  3132. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3133. axis = (axis == 'E')?3:(axis - 'X');
  3134. if (axis < 4)
  3135. {
  3136. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3137. uint16_t res = tmc2130_get_res(axis);
  3138. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3139. }
  3140. }
  3141. // ### TMC_SET_CHOP_
  3142. // -------------------
  3143. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3144. {
  3145. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3146. axis = (axis == 'E')?3:(axis - 'X');
  3147. if (axis < 4)
  3148. {
  3149. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3150. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3151. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3152. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3153. char* str_end = 0;
  3154. if (CMDBUFFER_CURRENT_STRING[14])
  3155. {
  3156. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3157. if (str_end && *str_end)
  3158. {
  3159. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3160. if (str_end && *str_end)
  3161. {
  3162. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3163. if (str_end && *str_end)
  3164. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3165. }
  3166. }
  3167. }
  3168. tmc2130_chopper_config[axis].toff = chop0;
  3169. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3170. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3171. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3172. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3173. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3174. }
  3175. }
  3176. }
  3177. #ifdef BACKLASH_X
  3178. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3179. {
  3180. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3181. st_backlash_x = bl;
  3182. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3183. }
  3184. #endif //BACKLASH_X
  3185. #ifdef BACKLASH_Y
  3186. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3187. {
  3188. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3189. st_backlash_y = bl;
  3190. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3191. }
  3192. #endif //BACKLASH_Y
  3193. #endif //TMC2130
  3194. else if(code_seen("PRUSA")){
  3195. /*!
  3196. ---------------------------------------------------------------------------------
  3197. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3198. Set of internal PRUSA commands
  3199. #### Usage
  3200. P RUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3201. #### Parameters
  3202. - `Ping`
  3203. - `PRN` - Prints revision of the printer
  3204. - `FAN` - Prints fan details
  3205. - `fn` - Prints farm no.
  3206. - `thx`
  3207. - `uvlo`
  3208. - `MMURES` - Reset MMU
  3209. - `RESET` - (Careful!)
  3210. - `fv` - ?
  3211. - `M28`
  3212. - `SN`
  3213. - `Fir` - Prints firmware version
  3214. - `Rev`- Prints filament size, elelectronics, nozzle type
  3215. - `Lang` - Reset the language
  3216. - `Lz`
  3217. - `Beat` - Kick farm link timer
  3218. - `FR` - Full factory reset
  3219. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3220. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3221. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3222. */
  3223. if (code_seen("Ping")) { // PRUSA Ping
  3224. if (farm_mode) {
  3225. PingTime = _millis();
  3226. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3227. }
  3228. }
  3229. else if (code_seen("PRN")) { // PRUSA PRN
  3230. printf_P(_N("%d"), status_number);
  3231. } else if( code_seen("FANPINTST") ){
  3232. gcode_PRUSA_BadRAMBoFanTest();
  3233. }else if (code_seen("FAN")) { // PRUSA FAN
  3234. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3235. }else if (code_seen("fn")) { // PRUSA fn
  3236. if (farm_mode) {
  3237. printf_P(_N("%d"), farm_no);
  3238. }
  3239. else {
  3240. puts_P(_N("Not in farm mode."));
  3241. }
  3242. }
  3243. else if (code_seen("thx")) // PRUSA thx
  3244. {
  3245. no_response = false;
  3246. }
  3247. else if (code_seen("uvlo")) // PRUSA uvlo
  3248. {
  3249. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3250. enquecommand_P(PSTR("M24"));
  3251. }
  3252. else if (code_seen("MMURES")) // PRUSA MMURES
  3253. {
  3254. mmu_reset();
  3255. }
  3256. else if (code_seen("RESET")) { // PRUSA RESET
  3257. // careful!
  3258. if (farm_mode) {
  3259. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3260. boot_app_magic = BOOT_APP_MAGIC;
  3261. boot_app_flags = BOOT_APP_FLG_RUN;
  3262. wdt_enable(WDTO_15MS);
  3263. cli();
  3264. while(1);
  3265. #else //WATCHDOG
  3266. asm volatile("jmp 0x3E000");
  3267. #endif //WATCHDOG
  3268. }
  3269. else {
  3270. MYSERIAL.println("Not in farm mode.");
  3271. }
  3272. }else if (code_seen("fv")) { // PRUSA fv
  3273. // get file version
  3274. #ifdef SDSUPPORT
  3275. card.openFile(strchr_pointer + 3,true);
  3276. while (true) {
  3277. uint16_t readByte = card.get();
  3278. MYSERIAL.write(readByte);
  3279. if (readByte=='\n') {
  3280. break;
  3281. }
  3282. }
  3283. card.closefile();
  3284. #endif // SDSUPPORT
  3285. } else if (code_seen("M28")) { // PRUSA M28
  3286. trace();
  3287. prusa_sd_card_upload = true;
  3288. card.openFile(strchr_pointer+4,false);
  3289. } else if (code_seen("SN")) { // PRUSA SN
  3290. gcode_PRUSA_SN();
  3291. } else if(code_seen("Fir")){ // PRUSA Fir
  3292. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3293. } else if(code_seen("Rev")){ // PRUSA Rev
  3294. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3295. } else if(code_seen("Lang")) { // PRUSA Lang
  3296. lang_reset();
  3297. } else if(code_seen("Lz")) { // PRUSA Lz
  3298. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3299. } else if(code_seen("Beat")) { // PRUSA Beat
  3300. // Kick farm link timer
  3301. kicktime = _millis();
  3302. } else if(code_seen("FR")) { // PRUSA FR
  3303. // Factory full reset
  3304. factory_reset(0);
  3305. //-//
  3306. /*
  3307. } else if(code_seen("rrr")) {
  3308. MYSERIAL.println("=== checking ===");
  3309. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3310. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3311. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3312. MYSERIAL.println(farm_mode,DEC);
  3313. MYSERIAL.println(eCheckMode,DEC);
  3314. } else if(code_seen("www")) {
  3315. MYSERIAL.println("=== @ FF ===");
  3316. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3317. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3318. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3319. */
  3320. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3321. uint16_t nDiameter;
  3322. if(code_seen('D'))
  3323. {
  3324. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3325. nozzle_diameter_check(nDiameter);
  3326. }
  3327. else if(code_seen("set") && farm_mode)
  3328. {
  3329. strchr_pointer++; // skip 1st char (~ 's')
  3330. strchr_pointer++; // skip 2nd char (~ 'e')
  3331. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3332. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3333. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3334. }
  3335. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3336. //-// !!! SupportMenu
  3337. /*
  3338. // musi byt PRED "PRUSA model"
  3339. } else if (code_seen("smodel")) { //! PRUSA smodel
  3340. size_t nOffset;
  3341. // ! -> "l"
  3342. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3343. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3344. if(*(strchr_pointer+1+nOffset))
  3345. printer_smodel_check(strchr_pointer);
  3346. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3347. } else if (code_seen("model")) { //! PRUSA model
  3348. uint16_t nPrinterModel;
  3349. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3350. nPrinterModel=(uint16_t)code_value_long();
  3351. if(nPrinterModel!=0)
  3352. printer_model_check(nPrinterModel);
  3353. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3354. } else if (code_seen("version")) { //! PRUSA version
  3355. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3356. while(*strchr_pointer==' ') // skip leading spaces
  3357. strchr_pointer++;
  3358. if(*strchr_pointer!=0)
  3359. fw_version_check(strchr_pointer);
  3360. else SERIAL_PROTOCOLLN(FW_VERSION);
  3361. } else if (code_seen("gcode")) { //! PRUSA gcode
  3362. uint16_t nGcodeLevel;
  3363. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3364. nGcodeLevel=(uint16_t)code_value_long();
  3365. if(nGcodeLevel!=0)
  3366. gcode_level_check(nGcodeLevel);
  3367. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3368. */
  3369. }
  3370. //else if (code_seen('Cal')) {
  3371. // lcd_calibration();
  3372. // }
  3373. }
  3374. // This prevents reading files with "^" in their names.
  3375. // Since it is unclear, if there is some usage of this construct,
  3376. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3377. // else if (code_seen('^')) {
  3378. // // nothing, this is a version line
  3379. // }
  3380. else if(code_seen('G'))
  3381. {
  3382. gcode_in_progress = (int)code_value();
  3383. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3384. switch (gcode_in_progress)
  3385. {
  3386. /*!
  3387. ---------------------------------------------------------------------------------
  3388. # G Codes
  3389. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3390. In Prusa Frimware G0 and G1 are the same.
  3391. #### Usage
  3392. G0 [ X | Y | Z | E | F | S ]
  3393. G1 [ X | Y | Z | E | F | S ]
  3394. #### Parameters
  3395. - `X` - The position to move to on the X axis
  3396. - `Y` - The position to move to on the Y axis
  3397. - `Z` - The position to move to on the Z axis
  3398. - `E` - The amount to extrude between the starting point and ending point
  3399. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3400. */
  3401. case 0: // G0 -> G1
  3402. case 1: // G1
  3403. if(Stopped == false) {
  3404. #ifdef FILAMENT_RUNOUT_SUPPORT
  3405. if(READ(FR_SENS)){
  3406. int feedmultiplyBckp=feedmultiply;
  3407. float target[4];
  3408. float lastpos[4];
  3409. target[X_AXIS]=current_position[X_AXIS];
  3410. target[Y_AXIS]=current_position[Y_AXIS];
  3411. target[Z_AXIS]=current_position[Z_AXIS];
  3412. target[E_AXIS]=current_position[E_AXIS];
  3413. lastpos[X_AXIS]=current_position[X_AXIS];
  3414. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3415. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3416. lastpos[E_AXIS]=current_position[E_AXIS];
  3417. //retract by E
  3418. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3420. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3422. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3423. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3425. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3427. //finish moves
  3428. st_synchronize();
  3429. //disable extruder steppers so filament can be removed
  3430. disable_e0();
  3431. disable_e1();
  3432. disable_e2();
  3433. _delay(100);
  3434. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3435. uint8_t cnt=0;
  3436. int counterBeep = 0;
  3437. lcd_wait_interact();
  3438. while(!lcd_clicked()){
  3439. cnt++;
  3440. manage_heater();
  3441. manage_inactivity(true);
  3442. //lcd_update(0);
  3443. if(cnt==0)
  3444. {
  3445. #if BEEPER > 0
  3446. if (counterBeep== 500){
  3447. counterBeep = 0;
  3448. }
  3449. SET_OUTPUT(BEEPER);
  3450. if (counterBeep== 0){
  3451. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3452. WRITE(BEEPER,HIGH);
  3453. }
  3454. if (counterBeep== 20){
  3455. WRITE(BEEPER,LOW);
  3456. }
  3457. counterBeep++;
  3458. #else
  3459. #endif
  3460. }
  3461. }
  3462. WRITE(BEEPER,LOW);
  3463. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3465. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3467. lcd_change_fil_state = 0;
  3468. lcd_loading_filament();
  3469. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3470. lcd_change_fil_state = 0;
  3471. lcd_alright();
  3472. switch(lcd_change_fil_state){
  3473. case 2:
  3474. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3476. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3478. lcd_loading_filament();
  3479. break;
  3480. case 3:
  3481. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3483. lcd_loading_color();
  3484. break;
  3485. default:
  3486. lcd_change_success();
  3487. break;
  3488. }
  3489. }
  3490. target[E_AXIS]+= 5;
  3491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3492. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3493. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3494. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3495. //plan_set_e_position(current_position[E_AXIS]);
  3496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3497. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3498. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3499. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3500. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3501. plan_set_e_position(lastpos[E_AXIS]);
  3502. feedmultiply=feedmultiplyBckp;
  3503. char cmd[9];
  3504. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3505. enquecommand(cmd);
  3506. }
  3507. #endif
  3508. get_coordinates(); // For X Y Z E F
  3509. // When recovering from a previous print move, restore the originally
  3510. // calculated target position on the first USB/SD command. This accounts
  3511. // properly for relative moves
  3512. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3513. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3514. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3515. {
  3516. memcpy(destination, saved_target, sizeof(destination));
  3517. saved_target[0] = SAVED_TARGET_UNSET;
  3518. }
  3519. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3520. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3521. }
  3522. #ifdef FWRETRACT
  3523. if(cs.autoretract_enabled)
  3524. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3525. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3526. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3527. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3528. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3529. retract(!retracted[active_extruder]);
  3530. return;
  3531. }
  3532. }
  3533. #endif //FWRETRACT
  3534. prepare_move();
  3535. //ClearToSend();
  3536. }
  3537. break;
  3538. /*!
  3539. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3540. #### Usage
  3541. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3542. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3543. #### Parameters
  3544. - `X` - The position to move to on the X axis
  3545. - `Y` - The position to move to on the Y axis
  3546. - `I` - The point in X space from the current X position to maintain a constant distance from
  3547. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3548. - `E` - The amount to extrude between the starting point and ending point
  3549. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3550. */
  3551. case 2:
  3552. if(Stopped == false) {
  3553. get_arc_coordinates();
  3554. prepare_arc_move(true);
  3555. }
  3556. break;
  3557. // -------------------------------
  3558. case 3:
  3559. if(Stopped == false) {
  3560. get_arc_coordinates();
  3561. prepare_arc_move(false);
  3562. }
  3563. break;
  3564. /*!
  3565. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3566. Pause the machine for a period of time.
  3567. #### Usage
  3568. G4 [ P | S ]
  3569. #### Parameters
  3570. - `P` - Time to wait, in milliseconds
  3571. - `S` - Time to wait, in seconds
  3572. */
  3573. case 4:
  3574. codenum = 0;
  3575. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3576. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3577. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3578. st_synchronize();
  3579. codenum += _millis(); // keep track of when we started waiting
  3580. previous_millis_cmd = _millis();
  3581. while(_millis() < codenum) {
  3582. manage_heater();
  3583. manage_inactivity();
  3584. lcd_update(0);
  3585. }
  3586. break;
  3587. #ifdef FWRETRACT
  3588. /*!
  3589. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3590. Retracts filament according to settings of `M207`
  3591. #### Usage
  3592. G10
  3593. */
  3594. case 10:
  3595. #if EXTRUDERS > 1
  3596. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3597. retract(true,retracted_swap[active_extruder]);
  3598. #else
  3599. retract(true);
  3600. #endif
  3601. break;
  3602. /*!
  3603. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3604. Unretracts/recovers filament according to settings of `M208`
  3605. #### Usage
  3606. G11
  3607. */
  3608. case 11:
  3609. #if EXTRUDERS > 1
  3610. retract(false,retracted_swap[active_extruder]);
  3611. #else
  3612. retract(false);
  3613. #endif
  3614. break;
  3615. #endif //FWRETRACT
  3616. /*!
  3617. ### G28 - Home all Axis one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3618. Unsing `G28` without any paramters will perfom on the Prusa i3 printers home AND mesh bed leveling, while `G28 W` will just home the printer
  3619. #### Usage
  3620. G28 [ X | Y | Z | W | C ]
  3621. #### Parameters
  3622. - `X` - Flag to go back to the X axis origin
  3623. - `Y` - Flag to go back to the Y axis origin
  3624. - `Z` - Flag to go back to the Z axis origin
  3625. - `W` - Suppress mesh bed leveling
  3626. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3627. */
  3628. case 28:
  3629. {
  3630. long home_x_value = 0;
  3631. long home_y_value = 0;
  3632. long home_z_value = 0;
  3633. // Which axes should be homed?
  3634. bool home_x = code_seen(axis_codes[X_AXIS]);
  3635. home_x_value = code_value_long();
  3636. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3637. home_y_value = code_value_long();
  3638. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3639. home_z_value = code_value_long();
  3640. bool without_mbl = code_seen('W');
  3641. // calibrate?
  3642. #ifdef TMC2130
  3643. bool calib = code_seen('C');
  3644. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3645. #else
  3646. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3647. #endif //TMC2130
  3648. if ((home_x || home_y || without_mbl || home_z) == false) {
  3649. // Push the commands to the front of the message queue in the reverse order!
  3650. // There shall be always enough space reserved for these commands.
  3651. goto case_G80;
  3652. }
  3653. break;
  3654. }
  3655. #ifdef ENABLE_AUTO_BED_LEVELING
  3656. /*!
  3657. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3658. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3659. See `G81`
  3660. */
  3661. case 29:
  3662. {
  3663. #if Z_MIN_PIN == -1
  3664. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3665. #endif
  3666. // Prevent user from running a G29 without first homing in X and Y
  3667. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3668. {
  3669. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3670. SERIAL_ECHO_START;
  3671. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3672. break; // abort G29, since we don't know where we are
  3673. }
  3674. st_synchronize();
  3675. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3676. //vector_3 corrected_position = plan_get_position_mm();
  3677. //corrected_position.debug("position before G29");
  3678. plan_bed_level_matrix.set_to_identity();
  3679. vector_3 uncorrected_position = plan_get_position();
  3680. //uncorrected_position.debug("position durring G29");
  3681. current_position[X_AXIS] = uncorrected_position.x;
  3682. current_position[Y_AXIS] = uncorrected_position.y;
  3683. current_position[Z_AXIS] = uncorrected_position.z;
  3684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3685. int l_feedmultiply = setup_for_endstop_move();
  3686. feedrate = homing_feedrate[Z_AXIS];
  3687. #ifdef AUTO_BED_LEVELING_GRID
  3688. // probe at the points of a lattice grid
  3689. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3690. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3691. // solve the plane equation ax + by + d = z
  3692. // A is the matrix with rows [x y 1] for all the probed points
  3693. // B is the vector of the Z positions
  3694. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3695. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3696. // "A" matrix of the linear system of equations
  3697. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3698. // "B" vector of Z points
  3699. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3700. int probePointCounter = 0;
  3701. bool zig = true;
  3702. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3703. {
  3704. int xProbe, xInc;
  3705. if (zig)
  3706. {
  3707. xProbe = LEFT_PROBE_BED_POSITION;
  3708. //xEnd = RIGHT_PROBE_BED_POSITION;
  3709. xInc = xGridSpacing;
  3710. zig = false;
  3711. } else // zag
  3712. {
  3713. xProbe = RIGHT_PROBE_BED_POSITION;
  3714. //xEnd = LEFT_PROBE_BED_POSITION;
  3715. xInc = -xGridSpacing;
  3716. zig = true;
  3717. }
  3718. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3719. {
  3720. float z_before;
  3721. if (probePointCounter == 0)
  3722. {
  3723. // raise before probing
  3724. z_before = Z_RAISE_BEFORE_PROBING;
  3725. } else
  3726. {
  3727. // raise extruder
  3728. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3729. }
  3730. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3731. eqnBVector[probePointCounter] = measured_z;
  3732. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3733. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3734. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3735. probePointCounter++;
  3736. xProbe += xInc;
  3737. }
  3738. }
  3739. clean_up_after_endstop_move(l_feedmultiply);
  3740. // solve lsq problem
  3741. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3742. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3743. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3744. SERIAL_PROTOCOLPGM(" b: ");
  3745. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3746. SERIAL_PROTOCOLPGM(" d: ");
  3747. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3748. set_bed_level_equation_lsq(plane_equation_coefficients);
  3749. free(plane_equation_coefficients);
  3750. #else // AUTO_BED_LEVELING_GRID not defined
  3751. // Probe at 3 arbitrary points
  3752. // probe 1
  3753. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3754. // probe 2
  3755. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3756. // probe 3
  3757. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3758. clean_up_after_endstop_move(l_feedmultiply);
  3759. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3760. #endif // AUTO_BED_LEVELING_GRID
  3761. st_synchronize();
  3762. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3763. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3764. // When the bed is uneven, this height must be corrected.
  3765. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3766. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3767. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3768. z_tmp = current_position[Z_AXIS];
  3769. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3770. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3772. }
  3773. break;
  3774. #ifndef Z_PROBE_SLED
  3775. /*!
  3776. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3777. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3778. */
  3779. case 30:
  3780. {
  3781. st_synchronize();
  3782. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3783. int l_feedmultiply = setup_for_endstop_move();
  3784. feedrate = homing_feedrate[Z_AXIS];
  3785. run_z_probe();
  3786. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3787. SERIAL_PROTOCOLPGM(" X: ");
  3788. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3789. SERIAL_PROTOCOLPGM(" Y: ");
  3790. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3791. SERIAL_PROTOCOLPGM(" Z: ");
  3792. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3793. SERIAL_PROTOCOLPGM("\n");
  3794. clean_up_after_endstop_move(l_feedmultiply);
  3795. }
  3796. break;
  3797. #else
  3798. /*!
  3799. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3800. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3801. */
  3802. case 31:
  3803. dock_sled(true);
  3804. break;
  3805. /*!
  3806. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3807. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3808. */
  3809. case 32:
  3810. dock_sled(false);
  3811. break;
  3812. #endif // Z_PROBE_SLED
  3813. #endif // ENABLE_AUTO_BED_LEVELING
  3814. #ifdef MESH_BED_LEVELING
  3815. /*!
  3816. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3817. */
  3818. case 30:
  3819. {
  3820. st_synchronize();
  3821. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3822. int l_feedmultiply = setup_for_endstop_move();
  3823. feedrate = homing_feedrate[Z_AXIS];
  3824. find_bed_induction_sensor_point_z(-10.f, 3);
  3825. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3826. clean_up_after_endstop_move(l_feedmultiply);
  3827. }
  3828. break;
  3829. /*!
  3830. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3831. Show/print PINDA temperature interpolating.
  3832. #### Usage
  3833. G75
  3834. */
  3835. case 75:
  3836. {
  3837. for (int i = 40; i <= 110; i++)
  3838. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3839. }
  3840. break;
  3841. /*!
  3842. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3843. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3844. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3845. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3846. #### Usage
  3847. G76
  3848. #### Example
  3849. ```
  3850. G76
  3851. echo PINDA probe calibration start
  3852. echo start temperature: 35.0°
  3853. echo ...
  3854. echo PINDA temperature -- Z shift (mm): 0.---
  3855. ```
  3856. */
  3857. case 76:
  3858. {
  3859. #ifdef PINDA_THERMISTOR
  3860. if (true)
  3861. {
  3862. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3863. //we need to know accurate position of first calibration point
  3864. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3865. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3866. break;
  3867. }
  3868. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3869. {
  3870. // We don't know where we are! HOME!
  3871. // Push the commands to the front of the message queue in the reverse order!
  3872. // There shall be always enough space reserved for these commands.
  3873. repeatcommand_front(); // repeat G76 with all its parameters
  3874. enquecommand_front_P((PSTR("G28 W0")));
  3875. break;
  3876. }
  3877. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3878. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3879. if (result)
  3880. {
  3881. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3882. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3883. current_position[Z_AXIS] = 50;
  3884. current_position[Y_AXIS] = 180;
  3885. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3886. st_synchronize();
  3887. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3888. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3889. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3890. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3891. st_synchronize();
  3892. gcode_G28(false, false, true);
  3893. }
  3894. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3895. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3896. current_position[Z_AXIS] = 100;
  3897. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3898. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3899. lcd_temp_cal_show_result(false);
  3900. break;
  3901. }
  3902. }
  3903. lcd_update_enable(true);
  3904. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3905. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3906. float zero_z;
  3907. int z_shift = 0; //unit: steps
  3908. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3909. if (start_temp < 35) start_temp = 35;
  3910. if (start_temp < current_temperature_pinda) start_temp += 5;
  3911. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3912. // setTargetHotend(200, 0);
  3913. setTargetBed(70 + (start_temp - 30));
  3914. custom_message_type = CustomMsg::TempCal;
  3915. custom_message_state = 1;
  3916. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3917. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3918. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3919. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3920. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3921. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3922. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3923. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3924. st_synchronize();
  3925. while (current_temperature_pinda < start_temp)
  3926. {
  3927. delay_keep_alive(1000);
  3928. serialecho_temperatures();
  3929. }
  3930. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3931. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3932. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3933. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3934. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3935. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3936. st_synchronize();
  3937. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3938. if (find_z_result == false) {
  3939. lcd_temp_cal_show_result(find_z_result);
  3940. break;
  3941. }
  3942. zero_z = current_position[Z_AXIS];
  3943. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3944. int i = -1; for (; i < 5; i++)
  3945. {
  3946. float temp = (40 + i * 5);
  3947. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3948. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3949. if (start_temp <= temp) break;
  3950. }
  3951. for (i++; i < 5; i++)
  3952. {
  3953. float temp = (40 + i * 5);
  3954. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3955. custom_message_state = i + 2;
  3956. setTargetBed(50 + 10 * (temp - 30) / 5);
  3957. // setTargetHotend(255, 0);
  3958. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3959. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3960. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3961. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3962. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3963. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3964. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3965. st_synchronize();
  3966. while (current_temperature_pinda < temp)
  3967. {
  3968. delay_keep_alive(1000);
  3969. serialecho_temperatures();
  3970. }
  3971. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3972. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3973. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3974. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3975. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3976. st_synchronize();
  3977. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3978. if (find_z_result == false) {
  3979. lcd_temp_cal_show_result(find_z_result);
  3980. break;
  3981. }
  3982. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3983. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3984. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3985. }
  3986. lcd_temp_cal_show_result(true);
  3987. break;
  3988. }
  3989. #endif //PINDA_THERMISTOR
  3990. setTargetBed(PINDA_MIN_T);
  3991. float zero_z;
  3992. int z_shift = 0; //unit: steps
  3993. int t_c; // temperature
  3994. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3995. // We don't know where we are! HOME!
  3996. // Push the commands to the front of the message queue in the reverse order!
  3997. // There shall be always enough space reserved for these commands.
  3998. repeatcommand_front(); // repeat G76 with all its parameters
  3999. enquecommand_front_P((PSTR("G28 W0")));
  4000. break;
  4001. }
  4002. puts_P(_N("PINDA probe calibration start"));
  4003. custom_message_type = CustomMsg::TempCal;
  4004. custom_message_state = 1;
  4005. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4006. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4007. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4008. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4009. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4010. st_synchronize();
  4011. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4012. delay_keep_alive(1000);
  4013. serialecho_temperatures();
  4014. }
  4015. //enquecommand_P(PSTR("M190 S50"));
  4016. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4017. delay_keep_alive(1000);
  4018. serialecho_temperatures();
  4019. }
  4020. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4021. current_position[Z_AXIS] = 5;
  4022. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4023. current_position[X_AXIS] = BED_X0;
  4024. current_position[Y_AXIS] = BED_Y0;
  4025. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4026. st_synchronize();
  4027. find_bed_induction_sensor_point_z(-1.f);
  4028. zero_z = current_position[Z_AXIS];
  4029. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4030. for (int i = 0; i<5; i++) {
  4031. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4032. custom_message_state = i + 2;
  4033. t_c = 60 + i * 10;
  4034. setTargetBed(t_c);
  4035. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4036. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4037. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4038. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4039. st_synchronize();
  4040. while (degBed() < t_c) {
  4041. delay_keep_alive(1000);
  4042. serialecho_temperatures();
  4043. }
  4044. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4045. delay_keep_alive(1000);
  4046. serialecho_temperatures();
  4047. }
  4048. current_position[Z_AXIS] = 5;
  4049. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4050. current_position[X_AXIS] = BED_X0;
  4051. current_position[Y_AXIS] = BED_Y0;
  4052. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4053. st_synchronize();
  4054. find_bed_induction_sensor_point_z(-1.f);
  4055. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4056. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4057. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4058. }
  4059. custom_message_type = CustomMsg::Status;
  4060. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4061. puts_P(_N("Temperature calibration done."));
  4062. disable_x();
  4063. disable_y();
  4064. disable_z();
  4065. disable_e0();
  4066. disable_e1();
  4067. disable_e2();
  4068. setTargetBed(0); //set bed target temperature back to 0
  4069. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4070. temp_cal_active = true;
  4071. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4072. lcd_update_enable(true);
  4073. lcd_update(2);
  4074. }
  4075. break;
  4076. /*!
  4077. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4078. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4079. #### Usage
  4080. G80 [ N | R | V | L | R | F | B ]
  4081. #### Parameters
  4082. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4083. - `R` - Probe retries. Default 3 max. 10
  4084. - `V` - Verbosity level 1=low, 10=mid, 20=high. It can be only used if firmware has been compiled with SUPPORT_VERBOSITY active.
  4085. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4086. #### Additional Parameters
  4087. - `L` - Left Bed Level correct value in um.
  4088. - `R` - Right Bed Level correct value in um.
  4089. - `F` - Front Bed Level correct value in um.
  4090. - `B` - Back Bed Level correct value in um.
  4091. */
  4092. /*
  4093. * Probes a grid and produces a mesh to compensate for variable bed height
  4094. * The S0 report the points as below
  4095. * +----> X-axis
  4096. * |
  4097. * |
  4098. * v Y-axis
  4099. */
  4100. case 80:
  4101. #ifdef MK1BP
  4102. break;
  4103. #endif //MK1BP
  4104. case_G80:
  4105. {
  4106. mesh_bed_leveling_flag = true;
  4107. #ifndef PINDA_THERMISTOR
  4108. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4109. #endif // ndef PINDA_THERMISTOR
  4110. #ifdef SUPPORT_VERBOSITY
  4111. int8_t verbosity_level = 0;
  4112. if (code_seen('V')) {
  4113. // Just 'V' without a number counts as V1.
  4114. char c = strchr_pointer[1];
  4115. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4116. }
  4117. #endif //SUPPORT_VERBOSITY
  4118. // Firstly check if we know where we are
  4119. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4120. // We don't know where we are! HOME!
  4121. // Push the commands to the front of the message queue in the reverse order!
  4122. // There shall be always enough space reserved for these commands.
  4123. if (lcd_commands_type != LcdCommands::StopPrint) {
  4124. repeatcommand_front(); // repeat G80 with all its parameters
  4125. enquecommand_front_P((PSTR("G28 W0")));
  4126. }
  4127. else {
  4128. mesh_bed_leveling_flag = false;
  4129. }
  4130. break;
  4131. }
  4132. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4133. if (code_seen('N')) {
  4134. nMeasPoints = code_value_uint8();
  4135. if (nMeasPoints != 7) {
  4136. nMeasPoints = 3;
  4137. }
  4138. }
  4139. else {
  4140. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4141. }
  4142. uint8_t nProbeRetry = 3;
  4143. if (code_seen('R')) {
  4144. nProbeRetry = code_value_uint8();
  4145. if (nProbeRetry > 10) {
  4146. nProbeRetry = 10;
  4147. }
  4148. }
  4149. else {
  4150. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4151. }
  4152. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4153. #ifndef PINDA_THERMISTOR
  4154. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4155. {
  4156. if (lcd_commands_type != LcdCommands::StopPrint) {
  4157. temp_compensation_start();
  4158. run = true;
  4159. repeatcommand_front(); // repeat G80 with all its parameters
  4160. enquecommand_front_P((PSTR("G28 W0")));
  4161. }
  4162. else {
  4163. mesh_bed_leveling_flag = false;
  4164. }
  4165. break;
  4166. }
  4167. run = false;
  4168. #endif //PINDA_THERMISTOR
  4169. if (lcd_commands_type == LcdCommands::StopPrint) {
  4170. mesh_bed_leveling_flag = false;
  4171. break;
  4172. }
  4173. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4174. CustomMsg custom_message_type_old = custom_message_type;
  4175. unsigned int custom_message_state_old = custom_message_state;
  4176. custom_message_type = CustomMsg::MeshBedLeveling;
  4177. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4178. lcd_update(1);
  4179. mbl.reset(); //reset mesh bed leveling
  4180. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4181. // consumed during the first movements following this statement.
  4182. babystep_undo();
  4183. // Cycle through all points and probe them
  4184. // First move up. During this first movement, the babystepping will be reverted.
  4185. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4186. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4187. // The move to the first calibration point.
  4188. current_position[X_AXIS] = BED_X0;
  4189. current_position[Y_AXIS] = BED_Y0;
  4190. #ifdef SUPPORT_VERBOSITY
  4191. if (verbosity_level >= 1)
  4192. {
  4193. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4194. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4195. }
  4196. #else //SUPPORT_VERBOSITY
  4197. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4198. #endif //SUPPORT_VERBOSITY
  4199. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4200. // Wait until the move is finished.
  4201. st_synchronize();
  4202. uint8_t mesh_point = 0; //index number of calibration point
  4203. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4204. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4205. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4206. #ifdef SUPPORT_VERBOSITY
  4207. if (verbosity_level >= 1) {
  4208. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4209. }
  4210. #endif // SUPPORT_VERBOSITY
  4211. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4212. const char *kill_message = NULL;
  4213. while (mesh_point != nMeasPoints * nMeasPoints) {
  4214. // Get coords of a measuring point.
  4215. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4216. uint8_t iy = mesh_point / nMeasPoints;
  4217. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4218. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4219. custom_message_state--;
  4220. mesh_point++;
  4221. continue; //skip
  4222. }*/
  4223. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4224. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4225. {
  4226. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4227. }
  4228. float z0 = 0.f;
  4229. if (has_z && (mesh_point > 0)) {
  4230. uint16_t z_offset_u = 0;
  4231. if (nMeasPoints == 7) {
  4232. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4233. }
  4234. else {
  4235. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4236. }
  4237. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4238. #ifdef SUPPORT_VERBOSITY
  4239. if (verbosity_level >= 1) {
  4240. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4241. }
  4242. #endif // SUPPORT_VERBOSITY
  4243. }
  4244. // Move Z up to MESH_HOME_Z_SEARCH.
  4245. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4246. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4247. float init_z_bckp = current_position[Z_AXIS];
  4248. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4249. st_synchronize();
  4250. // Move to XY position of the sensor point.
  4251. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4252. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4253. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4254. #ifdef SUPPORT_VERBOSITY
  4255. if (verbosity_level >= 1) {
  4256. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4257. SERIAL_PROTOCOL(mesh_point);
  4258. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4259. }
  4260. #else //SUPPORT_VERBOSITY
  4261. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4262. #endif // SUPPORT_VERBOSITY
  4263. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4264. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4265. st_synchronize();
  4266. // Go down until endstop is hit
  4267. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4268. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4269. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4270. break;
  4271. }
  4272. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4273. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4274. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4275. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4276. st_synchronize();
  4277. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4278. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4279. break;
  4280. }
  4281. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4282. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4283. break;
  4284. }
  4285. }
  4286. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4287. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4288. break;
  4289. }
  4290. #ifdef SUPPORT_VERBOSITY
  4291. if (verbosity_level >= 10) {
  4292. SERIAL_ECHOPGM("X: ");
  4293. MYSERIAL.print(current_position[X_AXIS], 5);
  4294. SERIAL_ECHOLNPGM("");
  4295. SERIAL_ECHOPGM("Y: ");
  4296. MYSERIAL.print(current_position[Y_AXIS], 5);
  4297. SERIAL_PROTOCOLPGM("\n");
  4298. }
  4299. #endif // SUPPORT_VERBOSITY
  4300. float offset_z = 0;
  4301. #ifdef PINDA_THERMISTOR
  4302. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4303. #endif //PINDA_THERMISTOR
  4304. // #ifdef SUPPORT_VERBOSITY
  4305. /* if (verbosity_level >= 1)
  4306. {
  4307. SERIAL_ECHOPGM("mesh bed leveling: ");
  4308. MYSERIAL.print(current_position[Z_AXIS], 5);
  4309. SERIAL_ECHOPGM(" offset: ");
  4310. MYSERIAL.print(offset_z, 5);
  4311. SERIAL_ECHOLNPGM("");
  4312. }*/
  4313. // #endif // SUPPORT_VERBOSITY
  4314. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4315. custom_message_state--;
  4316. mesh_point++;
  4317. lcd_update(1);
  4318. }
  4319. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4320. #ifdef SUPPORT_VERBOSITY
  4321. if (verbosity_level >= 20) {
  4322. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4323. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4324. MYSERIAL.print(current_position[Z_AXIS], 5);
  4325. }
  4326. #endif // SUPPORT_VERBOSITY
  4327. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4328. st_synchronize();
  4329. if (mesh_point != nMeasPoints * nMeasPoints) {
  4330. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4331. bool bState;
  4332. do { // repeat until Z-leveling o.k.
  4333. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4334. #ifdef TMC2130
  4335. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4336. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4337. #else // TMC2130
  4338. lcd_wait_for_click_delay(0); // ~ no timeout
  4339. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4340. #endif // TMC2130
  4341. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4342. bState=enable_z_endstop(false);
  4343. current_position[Z_AXIS] -= 1;
  4344. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4345. st_synchronize();
  4346. enable_z_endstop(true);
  4347. #ifdef TMC2130
  4348. tmc2130_home_enter(Z_AXIS_MASK);
  4349. #endif // TMC2130
  4350. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4351. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4352. st_synchronize();
  4353. #ifdef TMC2130
  4354. tmc2130_home_exit();
  4355. #endif // TMC2130
  4356. enable_z_endstop(bState);
  4357. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4358. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4359. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4360. lcd_update_enable(true); // display / status-line recovery
  4361. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4362. repeatcommand_front(); // re-run (i.e. of "G80")
  4363. break;
  4364. }
  4365. clean_up_after_endstop_move(l_feedmultiply);
  4366. // SERIAL_ECHOLNPGM("clean up finished ");
  4367. #ifndef PINDA_THERMISTOR
  4368. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4369. #endif
  4370. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4371. // SERIAL_ECHOLNPGM("babystep applied");
  4372. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4373. #ifdef SUPPORT_VERBOSITY
  4374. if (verbosity_level >= 1) {
  4375. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4376. }
  4377. #endif // SUPPORT_VERBOSITY
  4378. for (uint8_t i = 0; i < 4; ++i) {
  4379. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4380. long correction = 0;
  4381. if (code_seen(codes[i]))
  4382. correction = code_value_long();
  4383. else if (eeprom_bed_correction_valid) {
  4384. unsigned char *addr = (i < 2) ?
  4385. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4386. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4387. correction = eeprom_read_int8(addr);
  4388. }
  4389. if (correction == 0)
  4390. continue;
  4391. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4392. SERIAL_ERROR_START;
  4393. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4394. SERIAL_ECHO(correction);
  4395. SERIAL_ECHOLNPGM(" microns");
  4396. }
  4397. else {
  4398. float offset = float(correction) * 0.001f;
  4399. switch (i) {
  4400. case 0:
  4401. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4402. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4403. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4404. }
  4405. }
  4406. break;
  4407. case 1:
  4408. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4409. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4410. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4411. }
  4412. }
  4413. break;
  4414. case 2:
  4415. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4416. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4417. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4418. }
  4419. }
  4420. break;
  4421. case 3:
  4422. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4423. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4424. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4425. }
  4426. }
  4427. break;
  4428. }
  4429. }
  4430. }
  4431. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4432. if (nMeasPoints == 3) {
  4433. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4434. }
  4435. /*
  4436. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4437. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4438. SERIAL_PROTOCOLPGM(",");
  4439. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4440. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4441. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4442. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4443. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4444. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4445. SERIAL_PROTOCOLPGM(" ");
  4446. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4447. }
  4448. SERIAL_PROTOCOLPGM("\n");
  4449. }
  4450. */
  4451. if (nMeasPoints == 7 && magnet_elimination) {
  4452. mbl_interpolation(nMeasPoints);
  4453. }
  4454. /*
  4455. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4456. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4457. SERIAL_PROTOCOLPGM(",");
  4458. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4459. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4460. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4461. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4462. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4463. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4464. SERIAL_PROTOCOLPGM(" ");
  4465. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4466. }
  4467. SERIAL_PROTOCOLPGM("\n");
  4468. }
  4469. */
  4470. // SERIAL_ECHOLNPGM("Upsample finished");
  4471. mbl.active = 1; //activate mesh bed leveling
  4472. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4473. go_home_with_z_lift();
  4474. // SERIAL_ECHOLNPGM("Go home finished");
  4475. //unretract (after PINDA preheat retraction)
  4476. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4477. current_position[E_AXIS] += default_retraction;
  4478. plan_buffer_line_curposXYZE(400, active_extruder);
  4479. }
  4480. KEEPALIVE_STATE(NOT_BUSY);
  4481. // Restore custom message state
  4482. lcd_setstatuspgm(_T(WELCOME_MSG));
  4483. custom_message_type = custom_message_type_old;
  4484. custom_message_state = custom_message_state_old;
  4485. mesh_bed_leveling_flag = false;
  4486. mesh_bed_run_from_menu = false;
  4487. lcd_update(2);
  4488. }
  4489. break;
  4490. /*!
  4491. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4492. Prints mesh bed leveling status and bed profile if activated.
  4493. #### Usage
  4494. G81
  4495. */
  4496. case 81:
  4497. if (mbl.active) {
  4498. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4499. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4500. SERIAL_PROTOCOLPGM(",");
  4501. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4502. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4503. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4504. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4505. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4506. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4507. SERIAL_PROTOCOLPGM(" ");
  4508. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4509. }
  4510. SERIAL_PROTOCOLPGM("\n");
  4511. }
  4512. }
  4513. else
  4514. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4515. break;
  4516. #if 0
  4517. /*!
  4518. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4519. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4520. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4521. */
  4522. case 82:
  4523. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4524. int l_feedmultiply = setup_for_endstop_move();
  4525. find_bed_induction_sensor_point_z();
  4526. clean_up_after_endstop_move(l_feedmultiply);
  4527. SERIAL_PROTOCOLPGM("Bed found at: ");
  4528. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4529. SERIAL_PROTOCOLPGM("\n");
  4530. break;
  4531. /*!
  4532. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4533. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4534. */
  4535. case 83:
  4536. {
  4537. int babystepz = code_seen('S') ? code_value() : 0;
  4538. int BabyPosition = code_seen('P') ? code_value() : 0;
  4539. if (babystepz != 0) {
  4540. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4541. // Is the axis indexed starting with zero or one?
  4542. if (BabyPosition > 4) {
  4543. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4544. }else{
  4545. // Save it to the eeprom
  4546. babystepLoadZ = babystepz;
  4547. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4548. // adjust the Z
  4549. babystepsTodoZadd(babystepLoadZ);
  4550. }
  4551. }
  4552. }
  4553. break;
  4554. /*!
  4555. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4556. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4557. */
  4558. case 84:
  4559. babystepsTodoZsubtract(babystepLoadZ);
  4560. // babystepLoadZ = 0;
  4561. break;
  4562. /*!
  4563. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep>G85: Pick best babystep</a>
  4564. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4565. */
  4566. case 85:
  4567. lcd_pick_babystep();
  4568. break;
  4569. #endif
  4570. /*!
  4571. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4572. This G-code will be performed at the start of a calibration script.
  4573. (Prusa3D specific)
  4574. */
  4575. case 86:
  4576. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4577. break;
  4578. /*!
  4579. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4580. This G-code will be performed at the end of a calibration script.
  4581. (Prusa3D specific)
  4582. */
  4583. case 87:
  4584. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4585. break;
  4586. /*!
  4587. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4588. Currently has no effect.
  4589. */
  4590. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4591. case 88:
  4592. break;
  4593. #endif // ENABLE_MESH_BED_LEVELING
  4594. /*!
  4595. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4596. #### Usage
  4597. G90
  4598. All coordinates from now on are absolute relative to the origin of the machine.
  4599. */
  4600. case 90: {
  4601. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4602. axis_relative_modes[i] = false;
  4603. }
  4604. break;
  4605. /*!
  4606. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4607. #### Usage
  4608. G91
  4609. All coordinates from now on are relative to the last position.
  4610. */
  4611. case 91: {
  4612. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4613. axis_relative_modes[i] = true;
  4614. }
  4615. break;
  4616. /*!
  4617. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4618. #### Usage
  4619. G92 [ X | Y | Z | E ]
  4620. #### Parameters
  4621. - `X` - new X axis position
  4622. - `Y` - new Y axis position
  4623. - `Z` - new Z axis position
  4624. - `E` - new extruder position
  4625. Allows programming of absolute zero point, by reseting the current position to the values specified. This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur.
  4626. A G92 without coordinates will reset all axes to zero on some firmware.
  4627. */
  4628. case 92:
  4629. if(!code_seen(axis_codes[E_AXIS]))
  4630. st_synchronize();
  4631. for(int8_t i=0; i < NUM_AXIS; i++) {
  4632. if(code_seen(axis_codes[i])) {
  4633. if(i == E_AXIS) {
  4634. current_position[i] = code_value();
  4635. plan_set_e_position(current_position[E_AXIS]);
  4636. }
  4637. else {
  4638. current_position[i] = code_value()+cs.add_homing[i];
  4639. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4640. }
  4641. }
  4642. }
  4643. break;
  4644. /*!
  4645. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4646. Enable Prusa-specific Farm functions and g-code.
  4647. #### Usage
  4648. G98
  4649. See Internal Prusa commands
  4650. */
  4651. case 98:
  4652. farm_mode = 1;
  4653. PingTime = _millis();
  4654. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4655. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4656. SilentModeMenu = SILENT_MODE_OFF;
  4657. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4658. fCheckModeInit(); // alternatively invoke printer reset
  4659. break;
  4660. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4661. Disables Prusa-specific Farm functions and g-code.
  4662. #### Usage
  4663. G99
  4664. */
  4665. case 99:
  4666. farm_mode = 0;
  4667. lcd_printer_connected();
  4668. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4669. lcd_update(2);
  4670. fCheckModeInit(); // alternatively invoke printer reset
  4671. break;
  4672. default:
  4673. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4674. }
  4675. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4676. gcode_in_progress = 0;
  4677. } // end if(code_seen('G'))
  4678. /*!
  4679. ### End of G-Codes
  4680. */
  4681. /*!
  4682. ---------------------------------------------------------------------------------
  4683. # M Commands
  4684. */
  4685. else if(code_seen('M'))
  4686. {
  4687. int index;
  4688. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4689. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4690. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4691. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4692. } else
  4693. {
  4694. mcode_in_progress = (int)code_value();
  4695. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4696. switch(mcode_in_progress)
  4697. {
  4698. /*!
  4699. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4700. */
  4701. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4702. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4703. {
  4704. char *src = strchr_pointer + 2;
  4705. codenum = 0;
  4706. bool hasP = false, hasS = false;
  4707. if (code_seen('P')) {
  4708. codenum = code_value(); // milliseconds to wait
  4709. hasP = codenum > 0;
  4710. }
  4711. if (code_seen('S')) {
  4712. codenum = code_value() * 1000; // seconds to wait
  4713. hasS = codenum > 0;
  4714. }
  4715. starpos = strchr(src, '*');
  4716. if (starpos != NULL) *(starpos) = '\0';
  4717. while (*src == ' ') ++src;
  4718. if (!hasP && !hasS && *src != '\0') {
  4719. lcd_setstatus(src);
  4720. } else {
  4721. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4722. }
  4723. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4724. st_synchronize();
  4725. previous_millis_cmd = _millis();
  4726. if (codenum > 0){
  4727. codenum += _millis(); // keep track of when we started waiting
  4728. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4729. while(_millis() < codenum && !lcd_clicked()){
  4730. manage_heater();
  4731. manage_inactivity(true);
  4732. lcd_update(0);
  4733. }
  4734. KEEPALIVE_STATE(IN_HANDLER);
  4735. lcd_ignore_click(false);
  4736. }else{
  4737. marlin_wait_for_click();
  4738. }
  4739. if (IS_SD_PRINTING)
  4740. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4741. else
  4742. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4743. }
  4744. break;
  4745. /*!
  4746. ### M17 - Enable axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4747. */
  4748. case 17:
  4749. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4750. enable_x();
  4751. enable_y();
  4752. enable_z();
  4753. enable_e0();
  4754. enable_e1();
  4755. enable_e2();
  4756. break;
  4757. #ifdef SDSUPPORT
  4758. /*!
  4759. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4760. */
  4761. case 20:
  4762. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4763. card.ls();
  4764. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4765. break;
  4766. /*!
  4767. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4768. */
  4769. case 21:
  4770. card.initsd();
  4771. break;
  4772. /*!
  4773. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4774. */
  4775. case 22:
  4776. card.release();
  4777. break;
  4778. /*!
  4779. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4780. */
  4781. case 23:
  4782. starpos = (strchr(strchr_pointer + 4,'*'));
  4783. if(starpos!=NULL)
  4784. *(starpos)='\0';
  4785. card.openFile(strchr_pointer + 4,true);
  4786. break;
  4787. /*!
  4788. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4789. */
  4790. case 24:
  4791. if (isPrintPaused)
  4792. lcd_resume_print();
  4793. else
  4794. {
  4795. failstats_reset_print();
  4796. card.startFileprint();
  4797. starttime=_millis();
  4798. }
  4799. break;
  4800. /*!
  4801. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4802. Set position in SD card file to index in bytes.
  4803. This command is expected to be called after M23 and before M24.
  4804. Otherwise effect of this command is undefined.
  4805. M26 [ S ]
  4806. - `S` - Index in bytes
  4807. */
  4808. case 26:
  4809. if(card.cardOK && code_seen('S')) {
  4810. long index = code_value_long();
  4811. card.setIndex(index);
  4812. // We don't disable interrupt during update of sdpos_atomic
  4813. // as we expect, that SD card print is not active in this moment
  4814. sdpos_atomic = index;
  4815. }
  4816. break;
  4817. /*!
  4818. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4819. */
  4820. case 27:
  4821. card.getStatus();
  4822. break;
  4823. /*!
  4824. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4825. */
  4826. case 28:
  4827. starpos = (strchr(strchr_pointer + 4,'*'));
  4828. if(starpos != NULL){
  4829. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4830. strchr_pointer = strchr(npos,' ') + 1;
  4831. *(starpos) = '\0';
  4832. }
  4833. card.openFile(strchr_pointer+4,false);
  4834. break;
  4835. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4836. Currently has no effect.
  4837. */
  4838. case 29:
  4839. //processed in write to file routine above
  4840. //card,saving = false;
  4841. break;
  4842. /*!
  4843. ### M30 - Delete file <filename> <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4844. */
  4845. case 30:
  4846. if (card.cardOK){
  4847. card.closefile();
  4848. starpos = (strchr(strchr_pointer + 4,'*'));
  4849. if(starpos != NULL){
  4850. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4851. strchr_pointer = strchr(npos,' ') + 1;
  4852. *(starpos) = '\0';
  4853. }
  4854. card.removeFile(strchr_pointer + 4);
  4855. }
  4856. break;
  4857. /*!
  4858. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4859. @todo What are the parameters P and S for in M32?
  4860. */
  4861. case 32:
  4862. {
  4863. if(card.sdprinting) {
  4864. st_synchronize();
  4865. }
  4866. starpos = (strchr(strchr_pointer + 4,'*'));
  4867. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4868. if(namestartpos==NULL)
  4869. {
  4870. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4871. }
  4872. else
  4873. namestartpos++; //to skip the '!'
  4874. if(starpos!=NULL)
  4875. *(starpos)='\0';
  4876. bool call_procedure=(code_seen('P'));
  4877. if(strchr_pointer>namestartpos)
  4878. call_procedure=false; //false alert, 'P' found within filename
  4879. if( card.cardOK )
  4880. {
  4881. card.openFile(namestartpos,true,!call_procedure);
  4882. if(code_seen('S'))
  4883. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4884. card.setIndex(code_value_long());
  4885. card.startFileprint();
  4886. if(!call_procedure)
  4887. starttime=_millis(); //procedure calls count as normal print time.
  4888. }
  4889. } break;
  4890. /*!
  4891. ### M982 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4892. */
  4893. case 928:
  4894. starpos = (strchr(strchr_pointer + 5,'*'));
  4895. if(starpos != NULL){
  4896. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4897. strchr_pointer = strchr(npos,' ') + 1;
  4898. *(starpos) = '\0';
  4899. }
  4900. card.openLogFile(strchr_pointer+5);
  4901. break;
  4902. #endif //SDSUPPORT
  4903. /*!
  4904. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4905. */
  4906. case 31: //M31 take time since the start of the SD print or an M109 command
  4907. {
  4908. stoptime=_millis();
  4909. char time[30];
  4910. unsigned long t=(stoptime-starttime)/1000;
  4911. int sec,min;
  4912. min=t/60;
  4913. sec=t%60;
  4914. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4915. SERIAL_ECHO_START;
  4916. SERIAL_ECHOLN(time);
  4917. lcd_setstatus(time);
  4918. autotempShutdown();
  4919. }
  4920. break;
  4921. /*!
  4922. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4923. */
  4924. case 42:
  4925. if (code_seen('S'))
  4926. {
  4927. int pin_status = code_value();
  4928. int pin_number = LED_PIN;
  4929. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4930. pin_number = code_value();
  4931. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4932. {
  4933. if (sensitive_pins[i] == pin_number)
  4934. {
  4935. pin_number = -1;
  4936. break;
  4937. }
  4938. }
  4939. #if defined(FAN_PIN) && FAN_PIN > -1
  4940. if (pin_number == FAN_PIN)
  4941. fanSpeed = pin_status;
  4942. #endif
  4943. if (pin_number > -1)
  4944. {
  4945. pinMode(pin_number, OUTPUT);
  4946. digitalWrite(pin_number, pin_status);
  4947. analogWrite(pin_number, pin_status);
  4948. }
  4949. }
  4950. break;
  4951. /*!
  4952. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  4953. */
  4954. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4955. // Reset the baby step value and the baby step applied flag.
  4956. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4957. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4958. // Reset the skew and offset in both RAM and EEPROM.
  4959. reset_bed_offset_and_skew();
  4960. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4961. // the planner will not perform any adjustments in the XY plane.
  4962. // Wait for the motors to stop and update the current position with the absolute values.
  4963. world2machine_revert_to_uncorrected();
  4964. break;
  4965. /*!
  4966. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  4967. M45 [ V ]
  4968. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined.
  4969. */
  4970. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4971. {
  4972. int8_t verbosity_level = 0;
  4973. bool only_Z = code_seen('Z');
  4974. #ifdef SUPPORT_VERBOSITY
  4975. if (code_seen('V'))
  4976. {
  4977. // Just 'V' without a number counts as V1.
  4978. char c = strchr_pointer[1];
  4979. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4980. }
  4981. #endif //SUPPORT_VERBOSITY
  4982. gcode_M45(only_Z, verbosity_level);
  4983. }
  4984. break;
  4985. /*!
  4986. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  4987. */
  4988. /*
  4989. case 46:
  4990. {
  4991. // M46: Prusa3D: Show the assigned IP address.
  4992. uint8_t ip[4];
  4993. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4994. if (hasIP) {
  4995. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4996. SERIAL_ECHO(int(ip[0]));
  4997. SERIAL_ECHOPGM(".");
  4998. SERIAL_ECHO(int(ip[1]));
  4999. SERIAL_ECHOPGM(".");
  5000. SERIAL_ECHO(int(ip[2]));
  5001. SERIAL_ECHOPGM(".");
  5002. SERIAL_ECHO(int(ip[3]));
  5003. SERIAL_ECHOLNPGM("");
  5004. } else {
  5005. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5006. }
  5007. break;
  5008. }
  5009. */
  5010. /*!
  5011. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5012. */
  5013. case 47:
  5014. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5015. lcd_diag_show_end_stops();
  5016. KEEPALIVE_STATE(IN_HANDLER);
  5017. break;
  5018. #if 0
  5019. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5020. {
  5021. // Disable the default update procedure of the display. We will do a modal dialog.
  5022. lcd_update_enable(false);
  5023. // Let the planner use the uncorrected coordinates.
  5024. mbl.reset();
  5025. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5026. // the planner will not perform any adjustments in the XY plane.
  5027. // Wait for the motors to stop and update the current position with the absolute values.
  5028. world2machine_revert_to_uncorrected();
  5029. // Move the print head close to the bed.
  5030. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5032. st_synchronize();
  5033. // Home in the XY plane.
  5034. set_destination_to_current();
  5035. int l_feedmultiply = setup_for_endstop_move();
  5036. home_xy();
  5037. int8_t verbosity_level = 0;
  5038. if (code_seen('V')) {
  5039. // Just 'V' without a number counts as V1.
  5040. char c = strchr_pointer[1];
  5041. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5042. }
  5043. bool success = scan_bed_induction_points(verbosity_level);
  5044. clean_up_after_endstop_move(l_feedmultiply);
  5045. // Print head up.
  5046. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5048. st_synchronize();
  5049. lcd_update_enable(true);
  5050. break;
  5051. }
  5052. #endif
  5053. #ifdef ENABLE_AUTO_BED_LEVELING
  5054. #ifdef Z_PROBE_REPEATABILITY_TEST
  5055. /*!
  5056. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5057. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and need to be regenerated.
  5058. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5059. M48 [ n | X | Y | V | L ]
  5060. - `n` - Number of samples. Valid values 4-50
  5061. - `X` - X position for samples
  5062. - `Y` - Y position for samples
  5063. - `V` - Verbose level. Valid values 1-4
  5064. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5065. */
  5066. case 48: // M48 Z-Probe repeatability
  5067. {
  5068. #if Z_MIN_PIN == -1
  5069. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5070. #endif
  5071. double sum=0.0;
  5072. double mean=0.0;
  5073. double sigma=0.0;
  5074. double sample_set[50];
  5075. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5076. double X_current, Y_current, Z_current;
  5077. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5078. if (code_seen('V') || code_seen('v')) {
  5079. verbose_level = code_value();
  5080. if (verbose_level<0 || verbose_level>4 ) {
  5081. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5082. goto Sigma_Exit;
  5083. }
  5084. }
  5085. if (verbose_level > 0) {
  5086. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5087. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5088. }
  5089. if (code_seen('n')) {
  5090. n_samples = code_value();
  5091. if (n_samples<4 || n_samples>50 ) {
  5092. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5093. goto Sigma_Exit;
  5094. }
  5095. }
  5096. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5097. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5098. Z_current = st_get_position_mm(Z_AXIS);
  5099. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5100. ext_position = st_get_position_mm(E_AXIS);
  5101. if (code_seen('X') || code_seen('x') ) {
  5102. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5103. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5104. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5105. goto Sigma_Exit;
  5106. }
  5107. }
  5108. if (code_seen('Y') || code_seen('y') ) {
  5109. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5110. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5111. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5112. goto Sigma_Exit;
  5113. }
  5114. }
  5115. if (code_seen('L') || code_seen('l') ) {
  5116. n_legs = code_value();
  5117. if ( n_legs==1 )
  5118. n_legs = 2;
  5119. if ( n_legs<0 || n_legs>15 ) {
  5120. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5121. goto Sigma_Exit;
  5122. }
  5123. }
  5124. //
  5125. // Do all the preliminary setup work. First raise the probe.
  5126. //
  5127. st_synchronize();
  5128. plan_bed_level_matrix.set_to_identity();
  5129. plan_buffer_line( X_current, Y_current, Z_start_location,
  5130. ext_position,
  5131. homing_feedrate[Z_AXIS]/60,
  5132. active_extruder);
  5133. st_synchronize();
  5134. //
  5135. // Now get everything to the specified probe point So we can safely do a probe to
  5136. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5137. // use that as a starting point for each probe.
  5138. //
  5139. if (verbose_level > 2)
  5140. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5141. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5142. ext_position,
  5143. homing_feedrate[X_AXIS]/60,
  5144. active_extruder);
  5145. st_synchronize();
  5146. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5147. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5148. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5149. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5150. //
  5151. // OK, do the inital probe to get us close to the bed.
  5152. // Then retrace the right amount and use that in subsequent probes
  5153. //
  5154. int l_feedmultiply = setup_for_endstop_move();
  5155. run_z_probe();
  5156. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5157. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5158. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5159. ext_position,
  5160. homing_feedrate[X_AXIS]/60,
  5161. active_extruder);
  5162. st_synchronize();
  5163. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5164. for( n=0; n<n_samples; n++) {
  5165. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5166. if ( n_legs) {
  5167. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5168. int rotational_direction, l;
  5169. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5170. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5171. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5172. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5173. //SERIAL_ECHOPAIR(" theta: ",theta);
  5174. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5175. //SERIAL_PROTOCOLLNPGM("");
  5176. for( l=0; l<n_legs-1; l++) {
  5177. if (rotational_direction==1)
  5178. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5179. else
  5180. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5181. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5182. if ( radius<0.0 )
  5183. radius = -radius;
  5184. X_current = X_probe_location + cos(theta) * radius;
  5185. Y_current = Y_probe_location + sin(theta) * radius;
  5186. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5187. X_current = X_MIN_POS;
  5188. if ( X_current>X_MAX_POS)
  5189. X_current = X_MAX_POS;
  5190. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5191. Y_current = Y_MIN_POS;
  5192. if ( Y_current>Y_MAX_POS)
  5193. Y_current = Y_MAX_POS;
  5194. if (verbose_level>3 ) {
  5195. SERIAL_ECHOPAIR("x: ", X_current);
  5196. SERIAL_ECHOPAIR("y: ", Y_current);
  5197. SERIAL_PROTOCOLLNPGM("");
  5198. }
  5199. do_blocking_move_to( X_current, Y_current, Z_current );
  5200. }
  5201. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5202. }
  5203. int l_feedmultiply = setup_for_endstop_move();
  5204. run_z_probe();
  5205. sample_set[n] = current_position[Z_AXIS];
  5206. //
  5207. // Get the current mean for the data points we have so far
  5208. //
  5209. sum=0.0;
  5210. for( j=0; j<=n; j++) {
  5211. sum = sum + sample_set[j];
  5212. }
  5213. mean = sum / (double (n+1));
  5214. //
  5215. // Now, use that mean to calculate the standard deviation for the
  5216. // data points we have so far
  5217. //
  5218. sum=0.0;
  5219. for( j=0; j<=n; j++) {
  5220. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5221. }
  5222. sigma = sqrt( sum / (double (n+1)) );
  5223. if (verbose_level > 1) {
  5224. SERIAL_PROTOCOL(n+1);
  5225. SERIAL_PROTOCOL(" of ");
  5226. SERIAL_PROTOCOL(n_samples);
  5227. SERIAL_PROTOCOLPGM(" z: ");
  5228. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5229. }
  5230. if (verbose_level > 2) {
  5231. SERIAL_PROTOCOL(" mean: ");
  5232. SERIAL_PROTOCOL_F(mean,6);
  5233. SERIAL_PROTOCOL(" sigma: ");
  5234. SERIAL_PROTOCOL_F(sigma,6);
  5235. }
  5236. if (verbose_level > 0)
  5237. SERIAL_PROTOCOLPGM("\n");
  5238. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5239. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5240. st_synchronize();
  5241. }
  5242. _delay(1000);
  5243. clean_up_after_endstop_move(l_feedmultiply);
  5244. // enable_endstops(true);
  5245. if (verbose_level > 0) {
  5246. SERIAL_PROTOCOLPGM("Mean: ");
  5247. SERIAL_PROTOCOL_F(mean, 6);
  5248. SERIAL_PROTOCOLPGM("\n");
  5249. }
  5250. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5251. SERIAL_PROTOCOL_F(sigma, 6);
  5252. SERIAL_PROTOCOLPGM("\n\n");
  5253. Sigma_Exit:
  5254. break;
  5255. }
  5256. #endif // Z_PROBE_REPEATABILITY_TEST
  5257. #endif // ENABLE_AUTO_BED_LEVELING
  5258. /*!
  5259. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5260. Prusa firmware just shows percent done and time remaining.
  5261. M73 [ P | R | Q | S ]
  5262. - `P` - Percent in normal mode
  5263. - `R` - Time remaining in normal mode
  5264. - `Q` - Percent in silent mode
  5265. - `S` - Time in silent mode
  5266. */
  5267. case 73: //M73 show percent done and time remaining
  5268. if(code_seen('P')) print_percent_done_normal = code_value();
  5269. if(code_seen('R')) print_time_remaining_normal = code_value();
  5270. if(code_seen('Q')) print_percent_done_silent = code_value();
  5271. if(code_seen('S')) print_time_remaining_silent = code_value();
  5272. {
  5273. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5274. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5275. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5276. }
  5277. break;
  5278. /*!
  5279. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5280. M104 [ S ]
  5281. - `S` - Target temperature
  5282. */
  5283. case 104: // M104
  5284. {
  5285. uint8_t extruder;
  5286. if(setTargetedHotend(104,extruder)){
  5287. break;
  5288. }
  5289. if (code_seen('S'))
  5290. {
  5291. setTargetHotendSafe(code_value(), extruder);
  5292. }
  5293. break;
  5294. }
  5295. /*!
  5296. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5297. */
  5298. case 112:
  5299. kill(MSG_M112_KILL, 3);
  5300. break;
  5301. /*!
  5302. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5303. */
  5304. case 140:
  5305. if (code_seen('S')) setTargetBed(code_value());
  5306. break;
  5307. /*!
  5308. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5309. Prints temperatures:
  5310. - `T:` - Hotend (actual / target)
  5311. - `B:` - Bed (actual / target)
  5312. - `Tx:` - x Tool (actual / target)
  5313. - `@:` - Hotend power
  5314. - `B@:` - Bed power
  5315. - `P:` - PINDAv2 actual (only MK2.5/s and MK3.5/s)
  5316. - `A:` - Ambient actual (only MK3/s)
  5317. _Example:_
  5318. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5319. */
  5320. case 105:
  5321. {
  5322. uint8_t extruder;
  5323. if(setTargetedHotend(105, extruder)){
  5324. break;
  5325. }
  5326. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5327. SERIAL_PROTOCOLPGM("ok T:");
  5328. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5329. SERIAL_PROTOCOLPGM(" /");
  5330. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5331. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5332. SERIAL_PROTOCOLPGM(" B:");
  5333. SERIAL_PROTOCOL_F(degBed(),1);
  5334. SERIAL_PROTOCOLPGM(" /");
  5335. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5336. #endif //TEMP_BED_PIN
  5337. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5338. SERIAL_PROTOCOLPGM(" T");
  5339. SERIAL_PROTOCOL(cur_extruder);
  5340. SERIAL_PROTOCOLPGM(":");
  5341. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5342. SERIAL_PROTOCOLPGM(" /");
  5343. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5344. }
  5345. #else
  5346. SERIAL_ERROR_START;
  5347. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5348. #endif
  5349. SERIAL_PROTOCOLPGM(" @:");
  5350. #ifdef EXTRUDER_WATTS
  5351. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5352. SERIAL_PROTOCOLPGM("W");
  5353. #else
  5354. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5355. #endif
  5356. SERIAL_PROTOCOLPGM(" B@:");
  5357. #ifdef BED_WATTS
  5358. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5359. SERIAL_PROTOCOLPGM("W");
  5360. #else
  5361. SERIAL_PROTOCOL(getHeaterPower(-1));
  5362. #endif
  5363. #ifdef PINDA_THERMISTOR
  5364. SERIAL_PROTOCOLPGM(" P:");
  5365. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5366. #endif //PINDA_THERMISTOR
  5367. #ifdef AMBIENT_THERMISTOR
  5368. SERIAL_PROTOCOLPGM(" A:");
  5369. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5370. #endif //AMBIENT_THERMISTOR
  5371. #ifdef SHOW_TEMP_ADC_VALUES
  5372. {float raw = 0.0;
  5373. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5374. SERIAL_PROTOCOLPGM(" ADC B:");
  5375. SERIAL_PROTOCOL_F(degBed(),1);
  5376. SERIAL_PROTOCOLPGM("C->");
  5377. raw = rawBedTemp();
  5378. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5379. SERIAL_PROTOCOLPGM(" Rb->");
  5380. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5381. SERIAL_PROTOCOLPGM(" Rxb->");
  5382. SERIAL_PROTOCOL_F(raw, 5);
  5383. #endif
  5384. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5385. SERIAL_PROTOCOLPGM(" T");
  5386. SERIAL_PROTOCOL(cur_extruder);
  5387. SERIAL_PROTOCOLPGM(":");
  5388. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5389. SERIAL_PROTOCOLPGM("C->");
  5390. raw = rawHotendTemp(cur_extruder);
  5391. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5392. SERIAL_PROTOCOLPGM(" Rt");
  5393. SERIAL_PROTOCOL(cur_extruder);
  5394. SERIAL_PROTOCOLPGM("->");
  5395. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5396. SERIAL_PROTOCOLPGM(" Rx");
  5397. SERIAL_PROTOCOL(cur_extruder);
  5398. SERIAL_PROTOCOLPGM("->");
  5399. SERIAL_PROTOCOL_F(raw, 5);
  5400. }}
  5401. #endif
  5402. SERIAL_PROTOCOLLN("");
  5403. KEEPALIVE_STATE(NOT_BUSY);
  5404. return;
  5405. break;
  5406. }
  5407. /*!
  5408. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5409. Parameters (not mandatory):
  5410. - `S` - Set extruder temperature
  5411. - `R` - Set extruder temperature
  5412. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5413. Parameters S and R are treated identically.
  5414. Command always waits for both cool down and heat up.
  5415. If no parameters are supplied waits for previously
  5416. set extruder temperature.
  5417. */
  5418. case 109:
  5419. {
  5420. uint8_t extruder;
  5421. if(setTargetedHotend(109, extruder)){
  5422. break;
  5423. }
  5424. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5425. heating_status = 1;
  5426. if (farm_mode) { prusa_statistics(1); };
  5427. #ifdef AUTOTEMP
  5428. autotemp_enabled=false;
  5429. #endif
  5430. if (code_seen('S')) {
  5431. setTargetHotendSafe(code_value(), extruder);
  5432. } else if (code_seen('R')) {
  5433. setTargetHotendSafe(code_value(), extruder);
  5434. }
  5435. #ifdef AUTOTEMP
  5436. if (code_seen('S')) autotemp_min=code_value();
  5437. if (code_seen('B')) autotemp_max=code_value();
  5438. if (code_seen('F'))
  5439. {
  5440. autotemp_factor=code_value();
  5441. autotemp_enabled=true;
  5442. }
  5443. #endif
  5444. codenum = _millis();
  5445. /* See if we are heating up or cooling down */
  5446. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5447. KEEPALIVE_STATE(NOT_BUSY);
  5448. cancel_heatup = false;
  5449. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5450. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5451. KEEPALIVE_STATE(IN_HANDLER);
  5452. heating_status = 2;
  5453. if (farm_mode) { prusa_statistics(2); };
  5454. //starttime=_millis();
  5455. previous_millis_cmd = _millis();
  5456. }
  5457. break;
  5458. /*!
  5459. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5460. Parameters (not mandatory):
  5461. - `S` - Set extruder temperature and wait for heating
  5462. - `R` - Set extruder temperature and wait for heating or cooling
  5463. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5464. */
  5465. case 190:
  5466. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5467. {
  5468. bool CooldownNoWait = false;
  5469. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5470. heating_status = 3;
  5471. if (farm_mode) { prusa_statistics(1); };
  5472. if (code_seen('S'))
  5473. {
  5474. setTargetBed(code_value());
  5475. CooldownNoWait = true;
  5476. }
  5477. else if (code_seen('R'))
  5478. {
  5479. setTargetBed(code_value());
  5480. }
  5481. codenum = _millis();
  5482. cancel_heatup = false;
  5483. target_direction = isHeatingBed(); // true if heating, false if cooling
  5484. KEEPALIVE_STATE(NOT_BUSY);
  5485. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5486. {
  5487. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5488. {
  5489. if (!farm_mode) {
  5490. float tt = degHotend(active_extruder);
  5491. SERIAL_PROTOCOLPGM("T:");
  5492. SERIAL_PROTOCOL(tt);
  5493. SERIAL_PROTOCOLPGM(" E:");
  5494. SERIAL_PROTOCOL((int)active_extruder);
  5495. SERIAL_PROTOCOLPGM(" B:");
  5496. SERIAL_PROTOCOL_F(degBed(), 1);
  5497. SERIAL_PROTOCOLLN("");
  5498. }
  5499. codenum = _millis();
  5500. }
  5501. manage_heater();
  5502. manage_inactivity();
  5503. lcd_update(0);
  5504. }
  5505. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5506. KEEPALIVE_STATE(IN_HANDLER);
  5507. heating_status = 4;
  5508. previous_millis_cmd = _millis();
  5509. }
  5510. #endif
  5511. break;
  5512. #if defined(FAN_PIN) && FAN_PIN > -1
  5513. /*!
  5514. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5515. */
  5516. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5517. if (code_seen('S')){
  5518. fanSpeed=constrain(code_value(),0,255);
  5519. }
  5520. else {
  5521. fanSpeed=255;
  5522. }
  5523. break;
  5524. /*!
  5525. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5526. */
  5527. case 107:
  5528. fanSpeed = 0;
  5529. break;
  5530. #endif //FAN_PIN
  5531. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5532. /*!
  5533. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5534. */
  5535. case 80:
  5536. SET_OUTPUT(PS_ON_PIN); //GND
  5537. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5538. // If you have a switch on suicide pin, this is useful
  5539. // if you want to start another print with suicide feature after
  5540. // a print without suicide...
  5541. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5542. SET_OUTPUT(SUICIDE_PIN);
  5543. WRITE(SUICIDE_PIN, HIGH);
  5544. #endif
  5545. powersupply = true;
  5546. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5547. lcd_update(0);
  5548. break;
  5549. /*!
  5550. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5551. */
  5552. case 81:
  5553. disable_heater();
  5554. st_synchronize();
  5555. disable_e0();
  5556. disable_e1();
  5557. disable_e2();
  5558. finishAndDisableSteppers();
  5559. fanSpeed = 0;
  5560. _delay(1000); // Wait a little before to switch off
  5561. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5562. st_synchronize();
  5563. suicide();
  5564. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5565. SET_OUTPUT(PS_ON_PIN);
  5566. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5567. #endif
  5568. powersupply = false;
  5569. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5570. lcd_update(0);
  5571. break;
  5572. #endif
  5573. /*!
  5574. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5575. Makes the extruder interpret extrusion as absolute positions.
  5576. */
  5577. case 82:
  5578. axis_relative_modes[E_AXIS] = false;
  5579. break;
  5580. /*!
  5581. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5582. Makes the extruder interpret extrusion values as relative positions.
  5583. */
  5584. case 83:
  5585. axis_relative_modes[E_AXIS] = true;
  5586. break;
  5587. /*!
  5588. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5589. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5590. _This command can be used without any additional parameters._
  5591. M84 [ S | X | Y | Z | E ]
  5592. - `S` - Seconds
  5593. - `X` - X axsis
  5594. - `Y` - Y axis
  5595. - `Z` - Z axis
  5596. - `E` - Exruder drive(s)
  5597. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5598. Equal to M84 (compatibility)
  5599. */
  5600. case 18: //compatibility
  5601. case 84: // M84
  5602. if(code_seen('S')){
  5603. stepper_inactive_time = code_value() * 1000;
  5604. }
  5605. else
  5606. {
  5607. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5608. if(all_axis)
  5609. {
  5610. st_synchronize();
  5611. disable_e0();
  5612. disable_e1();
  5613. disable_e2();
  5614. finishAndDisableSteppers();
  5615. }
  5616. else
  5617. {
  5618. st_synchronize();
  5619. if (code_seen('X')) disable_x();
  5620. if (code_seen('Y')) disable_y();
  5621. if (code_seen('Z')) disable_z();
  5622. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5623. if (code_seen('E')) {
  5624. disable_e0();
  5625. disable_e1();
  5626. disable_e2();
  5627. }
  5628. #endif
  5629. }
  5630. }
  5631. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5632. print_time_remaining_init();
  5633. snmm_filaments_used = 0;
  5634. break;
  5635. /*!
  5636. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5637. Set Inactivity Shutdown Timer with parameter S<seconds>. "M85 S0" will disable the inactivity shutdown time (default)
  5638. */
  5639. case 85: // M85
  5640. if(code_seen('S')) {
  5641. max_inactive_time = code_value() * 1000;
  5642. }
  5643. break;
  5644. #ifdef SAFETYTIMER
  5645. /*!
  5646. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5647. Sets the safety timer expiration time in seconds.
  5648. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5649. M86 [ S ]
  5650. - `S` - Seconds Setting it to 0 will disable safety timer.
  5651. */
  5652. case 86:
  5653. if (code_seen('S')) {
  5654. safetytimer_inactive_time = code_value() * 1000;
  5655. safetyTimer.start();
  5656. }
  5657. break;
  5658. #endif
  5659. /*!
  5660. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5661. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5662. M92 [ X | Y | Z | E ]
  5663. - `X` - Steps per unit for the X drive
  5664. - `Y` - Steps per unit for the Y drive
  5665. - `Z` - Steps per unit for the Z drive
  5666. - `E` - Steps per unit for the extruder drive(s)
  5667. */
  5668. case 92:
  5669. for(int8_t i=0; i < NUM_AXIS; i++)
  5670. {
  5671. if(code_seen(axis_codes[i]))
  5672. {
  5673. if(i == 3) { // E
  5674. float value = code_value();
  5675. if(value < 20.0) {
  5676. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5677. cs.max_jerk[E_AXIS] *= factor;
  5678. max_feedrate[i] *= factor;
  5679. axis_steps_per_sqr_second[i] *= factor;
  5680. }
  5681. cs.axis_steps_per_unit[i] = value;
  5682. }
  5683. else {
  5684. cs.axis_steps_per_unit[i] = code_value();
  5685. }
  5686. }
  5687. }
  5688. break;
  5689. /*!
  5690. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5691. Sets the line number in G-code
  5692. M110 [ N ]
  5693. - `N` - Line number
  5694. */
  5695. case 110:
  5696. if (code_seen('N'))
  5697. gcode_LastN = code_value_long();
  5698. break;
  5699. /*!
  5700. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5701. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect.
  5702. M113 [ S ]
  5703. - `S` - Seconds Default is 2 seconds between "busy" messages
  5704. */
  5705. case 113:
  5706. if (code_seen('S')) {
  5707. host_keepalive_interval = (uint8_t)code_value_short();
  5708. // NOMORE(host_keepalive_interval, 60);
  5709. }
  5710. else {
  5711. SERIAL_ECHO_START;
  5712. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5713. SERIAL_PROTOCOLLN("");
  5714. }
  5715. break;
  5716. /*!
  5717. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5718. Print the firmware info and capabilities
  5719. M115 [ V | U ]
  5720. - V - Report current installed firmware version
  5721. - U - Firmware version provided by G-code to be compared to current one.
  5722. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5723. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5724. _Examples:_
  5725. `M115` results:
  5726. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5727. `M115 V` results:
  5728. `3.8.1`
  5729. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5730. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5731. */
  5732. case 115: // M115
  5733. if (code_seen('V')) {
  5734. // Report the Prusa version number.
  5735. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5736. } else if (code_seen('U')) {
  5737. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5738. // pause the print for 30s and ask the user to upgrade the firmware.
  5739. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5740. } else {
  5741. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5742. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5743. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5744. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5745. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5746. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5747. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5748. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5749. SERIAL_ECHOPGM(" UUID:");
  5750. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5751. }
  5752. break;
  5753. /*!
  5754. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5755. */
  5756. case 114:
  5757. gcode_M114();
  5758. break;
  5759. /*
  5760. M117 moved up to get the high priority
  5761. case 117: // M117 display message
  5762. starpos = (strchr(strchr_pointer + 5,'*'));
  5763. if(starpos!=NULL)
  5764. *(starpos)='\0';
  5765. lcd_setstatus(strchr_pointer + 5);
  5766. break;*/
  5767. /*!
  5768. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5769. */
  5770. case 120:
  5771. enable_endstops(false) ;
  5772. break;
  5773. /*!
  5774. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5775. */
  5776. case 121:
  5777. enable_endstops(true) ;
  5778. break;
  5779. /*!
  5780. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5781. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5782. */
  5783. case 119:
  5784. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5785. SERIAL_PROTOCOLLN("");
  5786. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5787. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5788. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5790. }else{
  5791. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5792. }
  5793. SERIAL_PROTOCOLLN("");
  5794. #endif
  5795. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5796. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5797. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5799. }else{
  5800. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5801. }
  5802. SERIAL_PROTOCOLLN("");
  5803. #endif
  5804. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5805. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5806. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5808. }else{
  5809. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5810. }
  5811. SERIAL_PROTOCOLLN("");
  5812. #endif
  5813. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5814. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5815. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5817. }else{
  5818. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5819. }
  5820. SERIAL_PROTOCOLLN("");
  5821. #endif
  5822. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5823. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5824. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5825. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5826. }else{
  5827. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5828. }
  5829. SERIAL_PROTOCOLLN("");
  5830. #endif
  5831. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5832. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5833. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5834. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5835. }else{
  5836. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5837. }
  5838. SERIAL_PROTOCOLLN("");
  5839. #endif
  5840. break;
  5841. //TODO: update for all axis, use for loop
  5842. #ifdef BLINKM
  5843. /*!
  5844. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5845. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5846. */
  5847. case 150:
  5848. {
  5849. byte red;
  5850. byte grn;
  5851. byte blu;
  5852. if(code_seen('R')) red = code_value();
  5853. if(code_seen('U')) grn = code_value();
  5854. if(code_seen('B')) blu = code_value();
  5855. SendColors(red,grn,blu);
  5856. }
  5857. break;
  5858. #endif //BLINKM
  5859. /*!
  5860. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5861. M200 [ D | T ]
  5862. - `D` - Diameter in mm
  5863. - `T` - Number of extruder (MMUs)
  5864. */
  5865. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5866. {
  5867. uint8_t extruder = active_extruder;
  5868. if(code_seen('T')) {
  5869. extruder = code_value();
  5870. if(extruder >= EXTRUDERS) {
  5871. SERIAL_ECHO_START;
  5872. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5873. break;
  5874. }
  5875. }
  5876. if(code_seen('D')) {
  5877. float diameter = (float)code_value();
  5878. if (diameter == 0.0) {
  5879. // setting any extruder filament size disables volumetric on the assumption that
  5880. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5881. // for all extruders
  5882. cs.volumetric_enabled = false;
  5883. } else {
  5884. cs.filament_size[extruder] = (float)code_value();
  5885. // make sure all extruders have some sane value for the filament size
  5886. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5887. #if EXTRUDERS > 1
  5888. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5889. #if EXTRUDERS > 2
  5890. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5891. #endif
  5892. #endif
  5893. cs.volumetric_enabled = true;
  5894. }
  5895. } else {
  5896. //reserved for setting filament diameter via UFID or filament measuring device
  5897. break;
  5898. }
  5899. calculate_extruder_multipliers();
  5900. }
  5901. break;
  5902. /*!
  5903. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  5904. */
  5905. case 201:
  5906. for (int8_t i = 0; i < NUM_AXIS; i++)
  5907. {
  5908. if (code_seen(axis_codes[i]))
  5909. {
  5910. unsigned long val = code_value();
  5911. #ifdef TMC2130
  5912. unsigned long val_silent = val;
  5913. if ((i == X_AXIS) || (i == Y_AXIS))
  5914. {
  5915. if (val > NORMAL_MAX_ACCEL_XY)
  5916. val = NORMAL_MAX_ACCEL_XY;
  5917. if (val_silent > SILENT_MAX_ACCEL_XY)
  5918. val_silent = SILENT_MAX_ACCEL_XY;
  5919. }
  5920. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5921. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5922. #else //TMC2130
  5923. max_acceleration_units_per_sq_second[i] = val;
  5924. #endif //TMC2130
  5925. }
  5926. }
  5927. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5928. reset_acceleration_rates();
  5929. break;
  5930. #if 0 // Not used for Sprinter/grbl gen6
  5931. case 202: // M202
  5932. for(int8_t i=0; i < NUM_AXIS; i++) {
  5933. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5934. }
  5935. break;
  5936. #endif
  5937. /*!
  5938. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  5939. */
  5940. case 203: // M203 max feedrate mm/sec
  5941. for (int8_t i = 0; i < NUM_AXIS; i++)
  5942. {
  5943. if (code_seen(axis_codes[i]))
  5944. {
  5945. float val = code_value();
  5946. #ifdef TMC2130
  5947. float val_silent = val;
  5948. if ((i == X_AXIS) || (i == Y_AXIS))
  5949. {
  5950. if (val > NORMAL_MAX_FEEDRATE_XY)
  5951. val = NORMAL_MAX_FEEDRATE_XY;
  5952. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5953. val_silent = SILENT_MAX_FEEDRATE_XY;
  5954. }
  5955. cs.max_feedrate_normal[i] = val;
  5956. cs.max_feedrate_silent[i] = val_silent;
  5957. #else //TMC2130
  5958. max_feedrate[i] = val;
  5959. #endif //TMC2130
  5960. }
  5961. }
  5962. break;
  5963. /*!
  5964. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  5965. */
  5966. /*! Supporting old format:
  5967. M204 [ S | T ]
  5968. - `S` - normal moves
  5969. - `T` - filmanent only moves
  5970. and new format:
  5971. M204 [ P | R | T ]
  5972. - `P` - printing moves
  5973. - `R` - filmanent only moves
  5974. - `T` - travel moves (as of now T is ignored)
  5975. */
  5976. case 204:
  5977. {
  5978. if(code_seen('S')) {
  5979. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5980. // and it is also generated by Slic3r to control acceleration per extrusion type
  5981. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5982. cs.acceleration = code_value();
  5983. // Interpret the T value as retract acceleration in the old Marlin format.
  5984. if(code_seen('T'))
  5985. cs.retract_acceleration = code_value();
  5986. } else {
  5987. // New acceleration format, compatible with the upstream Marlin.
  5988. if(code_seen('P'))
  5989. cs.acceleration = code_value();
  5990. if(code_seen('R'))
  5991. cs.retract_acceleration = code_value();
  5992. if(code_seen('T')) {
  5993. // Interpret the T value as the travel acceleration in the new Marlin format.
  5994. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5995. // travel_acceleration = code_value();
  5996. }
  5997. }
  5998. }
  5999. break;
  6000. /*!
  6001. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6002. */
  6003. /*! Set some advanced settings related to movement.
  6004. M205 [ S | T | B | X | Y | Z | E ]
  6005. - `S` - Minimum feedrate for print moves (unit/s)
  6006. - `T` - Minimum feedrate for travel moves (units/s)
  6007. - `B` - Minimum segment time (us)
  6008. - `X` - Maximum X jerk (units/s)
  6009. - `Y` - Maximum Y jerk (units/s)
  6010. - `Z` - Maximum Z jerk (units/s)
  6011. - `E` - Maximum E jerk (units/s)
  6012. */
  6013. case 205:
  6014. {
  6015. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6016. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6017. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6018. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6019. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6020. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6021. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  6022. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6023. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6024. }
  6025. break;
  6026. /*!
  6027. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6028. M206 [ X | Y | Z]
  6029. - `X` - X axis offset
  6030. - `Y` - Y axis offset
  6031. - `Z` - Z axis offset
  6032. */
  6033. case 206:
  6034. for(int8_t i=0; i < 3; i++)
  6035. {
  6036. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6037. }
  6038. break;
  6039. #ifdef FWRETRACT
  6040. /*!
  6041. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6042. M207 [ S | F | Z]
  6043. - `S` - positive length to retract, in mm
  6044. - `F` - retraction feedrate, in mm/min
  6045. - `Z` - additional zlift/hop
  6046. */
  6047. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6048. {
  6049. if(code_seen('S'))
  6050. {
  6051. cs.retract_length = code_value() ;
  6052. }
  6053. if(code_seen('F'))
  6054. {
  6055. cs.retract_feedrate = code_value()/60 ;
  6056. }
  6057. if(code_seen('Z'))
  6058. {
  6059. cs.retract_zlift = code_value() ;
  6060. }
  6061. }break;
  6062. /*!
  6063. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6064. M208 [ S | F ]
  6065. - `S` - positive length surplus to the M207 Snnn, in mm
  6066. - `F` - feedrate, in mm/sec
  6067. */
  6068. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6069. {
  6070. if(code_seen('S'))
  6071. {
  6072. cs.retract_recover_length = code_value() ;
  6073. }
  6074. if(code_seen('F'))
  6075. {
  6076. cs.retract_recover_feedrate = code_value()/60 ;
  6077. }
  6078. }break;
  6079. /*!
  6080. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6081. M209 [ S ]
  6082. - `S` - 1=true or 0=false
  6083. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6084. */
  6085. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6086. {
  6087. if(code_seen('S'))
  6088. {
  6089. int t= code_value() ;
  6090. switch(t)
  6091. {
  6092. case 0:
  6093. {
  6094. cs.autoretract_enabled=false;
  6095. retracted[0]=false;
  6096. #if EXTRUDERS > 1
  6097. retracted[1]=false;
  6098. #endif
  6099. #if EXTRUDERS > 2
  6100. retracted[2]=false;
  6101. #endif
  6102. }break;
  6103. case 1:
  6104. {
  6105. cs.autoretract_enabled=true;
  6106. retracted[0]=false;
  6107. #if EXTRUDERS > 1
  6108. retracted[1]=false;
  6109. #endif
  6110. #if EXTRUDERS > 2
  6111. retracted[2]=false;
  6112. #endif
  6113. }break;
  6114. default:
  6115. SERIAL_ECHO_START;
  6116. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6117. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6118. SERIAL_ECHOLNPGM("\"(1)");
  6119. }
  6120. }
  6121. }break;
  6122. #endif // FWRETRACT
  6123. #if EXTRUDERS > 1
  6124. /*!
  6125. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6126. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6127. */
  6128. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6129. {
  6130. uint8_t extruder;
  6131. if(setTargetedHotend(218, extruder)){
  6132. break;
  6133. }
  6134. if(code_seen('X'))
  6135. {
  6136. extruder_offset[X_AXIS][extruder] = code_value();
  6137. }
  6138. if(code_seen('Y'))
  6139. {
  6140. extruder_offset[Y_AXIS][extruder] = code_value();
  6141. }
  6142. SERIAL_ECHO_START;
  6143. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6144. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6145. {
  6146. SERIAL_ECHO(" ");
  6147. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6148. SERIAL_ECHO(",");
  6149. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6150. }
  6151. SERIAL_ECHOLN("");
  6152. }break;
  6153. #endif
  6154. /*!
  6155. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6156. M220 [ B | S | R ]
  6157. - `B` - Backup current speed factor
  6158. - `S` - Speed factor override percentage (0..100 or higher)
  6159. - `R` - Restore previous speed factor
  6160. */
  6161. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6162. {
  6163. if (code_seen('B')) //backup current speed factor
  6164. {
  6165. saved_feedmultiply_mm = feedmultiply;
  6166. }
  6167. if(code_seen('S'))
  6168. {
  6169. feedmultiply = code_value() ;
  6170. }
  6171. if (code_seen('R')) { //restore previous feedmultiply
  6172. feedmultiply = saved_feedmultiply_mm;
  6173. }
  6174. }
  6175. break;
  6176. /*!
  6177. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6178. M221 [ S | T ]
  6179. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6180. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6181. */
  6182. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6183. {
  6184. if(code_seen('S'))
  6185. {
  6186. int tmp_code = code_value();
  6187. if (code_seen('T'))
  6188. {
  6189. uint8_t extruder;
  6190. if(setTargetedHotend(221, extruder)){
  6191. break;
  6192. }
  6193. extruder_multiply[extruder] = tmp_code;
  6194. }
  6195. else
  6196. {
  6197. extrudemultiply = tmp_code ;
  6198. }
  6199. }
  6200. calculate_extruder_multipliers();
  6201. }
  6202. break;
  6203. /*!
  6204. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6205. M226 [ P | S ]
  6206. - `P` - pin number
  6207. - `S` - pin state
  6208. Wait until the specified pin reaches the state required
  6209. */
  6210. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6211. {
  6212. if(code_seen('P')){
  6213. int pin_number = code_value(); // pin number
  6214. int pin_state = -1; // required pin state - default is inverted
  6215. if(code_seen('S')) pin_state = code_value(); // required pin state
  6216. if(pin_state >= -1 && pin_state <= 1){
  6217. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6218. {
  6219. if (sensitive_pins[i] == pin_number)
  6220. {
  6221. pin_number = -1;
  6222. break;
  6223. }
  6224. }
  6225. if (pin_number > -1)
  6226. {
  6227. int target = LOW;
  6228. st_synchronize();
  6229. pinMode(pin_number, INPUT);
  6230. switch(pin_state){
  6231. case 1:
  6232. target = HIGH;
  6233. break;
  6234. case 0:
  6235. target = LOW;
  6236. break;
  6237. case -1:
  6238. target = !digitalRead(pin_number);
  6239. break;
  6240. }
  6241. while(digitalRead(pin_number) != target){
  6242. manage_heater();
  6243. manage_inactivity();
  6244. lcd_update(0);
  6245. }
  6246. }
  6247. }
  6248. }
  6249. }
  6250. break;
  6251. #if NUM_SERVOS > 0
  6252. /*!
  6253. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6254. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6255. */
  6256. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6257. {
  6258. int servo_index = -1;
  6259. int servo_position = 0;
  6260. if (code_seen('P'))
  6261. servo_index = code_value();
  6262. if (code_seen('S')) {
  6263. servo_position = code_value();
  6264. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6265. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6266. servos[servo_index].attach(0);
  6267. #endif
  6268. servos[servo_index].write(servo_position);
  6269. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6270. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6271. servos[servo_index].detach();
  6272. #endif
  6273. }
  6274. else {
  6275. SERIAL_ECHO_START;
  6276. SERIAL_ECHO("Servo ");
  6277. SERIAL_ECHO(servo_index);
  6278. SERIAL_ECHOLN(" out of range");
  6279. }
  6280. }
  6281. else if (servo_index >= 0) {
  6282. SERIAL_PROTOCOL(MSG_OK);
  6283. SERIAL_PROTOCOL(" Servo ");
  6284. SERIAL_PROTOCOL(servo_index);
  6285. SERIAL_PROTOCOL(": ");
  6286. SERIAL_PROTOCOL(servos[servo_index].read());
  6287. SERIAL_PROTOCOLLN("");
  6288. }
  6289. }
  6290. break;
  6291. #endif // NUM_SERVOS > 0
  6292. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6293. /*!
  6294. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6295. M300 [ S | P ]
  6296. - `S` - frequency in Hz
  6297. - `P` - duration in milliseconds
  6298. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6299. */
  6300. case 300: // M300
  6301. {
  6302. int beepS = code_seen('S') ? code_value() : 110;
  6303. int beepP = code_seen('P') ? code_value() : 1000;
  6304. if (beepS > 0)
  6305. {
  6306. #if BEEPER > 0
  6307. Sound_MakeCustom(beepP,beepS,false);
  6308. #endif
  6309. }
  6310. else
  6311. {
  6312. _delay(beepP);
  6313. }
  6314. }
  6315. break;
  6316. #endif // M300
  6317. #ifdef PIDTEMP
  6318. /*!
  6319. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6320. M301 [ P | I | D | C ]
  6321. - `P` - proportional (Kp)
  6322. - `I` - integral (Ki)
  6323. - `D` - derivative (Kd)
  6324. - `C` - heating power=Kc*(e_speed0)
  6325. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6326. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6327. */
  6328. case 301:
  6329. {
  6330. if(code_seen('P')) cs.Kp = code_value();
  6331. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6332. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6333. #ifdef PID_ADD_EXTRUSION_RATE
  6334. if(code_seen('C')) Kc = code_value();
  6335. #endif
  6336. updatePID();
  6337. SERIAL_PROTOCOLRPGM(MSG_OK);
  6338. SERIAL_PROTOCOL(" p:");
  6339. SERIAL_PROTOCOL(cs.Kp);
  6340. SERIAL_PROTOCOL(" i:");
  6341. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6342. SERIAL_PROTOCOL(" d:");
  6343. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6344. #ifdef PID_ADD_EXTRUSION_RATE
  6345. SERIAL_PROTOCOL(" c:");
  6346. //Kc does not have scaling applied above, or in resetting defaults
  6347. SERIAL_PROTOCOL(Kc);
  6348. #endif
  6349. SERIAL_PROTOCOLLN("");
  6350. }
  6351. break;
  6352. #endif //PIDTEMP
  6353. #ifdef PIDTEMPBED
  6354. /*!
  6355. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6356. M304 [ P | I | D ]
  6357. - `P` - proportional (Kp)
  6358. - `I` - integral (Ki)
  6359. - `D` - derivative (Kd)
  6360. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6361. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6362. */
  6363. case 304:
  6364. {
  6365. if(code_seen('P')) cs.bedKp = code_value();
  6366. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6367. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6368. updatePID();
  6369. SERIAL_PROTOCOLRPGM(MSG_OK);
  6370. SERIAL_PROTOCOL(" p:");
  6371. SERIAL_PROTOCOL(cs.bedKp);
  6372. SERIAL_PROTOCOL(" i:");
  6373. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6374. SERIAL_PROTOCOL(" d:");
  6375. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6376. SERIAL_PROTOCOLLN("");
  6377. }
  6378. break;
  6379. #endif //PIDTEMP
  6380. /*!
  6381. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6382. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6383. You need to define `CHDK` and assign a `PHOTOGRAPH_PIN` to bea ble to use it.
  6384. */
  6385. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6386. {
  6387. #ifdef CHDK
  6388. SET_OUTPUT(CHDK);
  6389. WRITE(CHDK, HIGH);
  6390. chdkHigh = _millis();
  6391. chdkActive = true;
  6392. #else
  6393. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6394. const uint8_t NUM_PULSES=16;
  6395. const float PULSE_LENGTH=0.01524;
  6396. for(int i=0; i < NUM_PULSES; i++) {
  6397. WRITE(PHOTOGRAPH_PIN, HIGH);
  6398. _delay_ms(PULSE_LENGTH);
  6399. WRITE(PHOTOGRAPH_PIN, LOW);
  6400. _delay_ms(PULSE_LENGTH);
  6401. }
  6402. _delay(7.33);
  6403. for(int i=0; i < NUM_PULSES; i++) {
  6404. WRITE(PHOTOGRAPH_PIN, HIGH);
  6405. _delay_ms(PULSE_LENGTH);
  6406. WRITE(PHOTOGRAPH_PIN, LOW);
  6407. _delay_ms(PULSE_LENGTH);
  6408. }
  6409. #endif
  6410. #endif //chdk end if
  6411. }
  6412. break;
  6413. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6414. /*!
  6415. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6416. M302 [ S ]
  6417. - `S` - Cold extrude minimum temperature
  6418. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6419. */
  6420. case 302:
  6421. {
  6422. float temp = .0;
  6423. if (code_seen('S')) temp=code_value();
  6424. set_extrude_min_temp(temp);
  6425. }
  6426. break;
  6427. #endif
  6428. /*!
  6429. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6430. M303 [ E | S | C ]
  6431. - `E` - Extruder, default `E0`.
  6432. - `S` - Target temperature, default `210°C`
  6433. - `C` - Cycles, default `5`
  6434. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed (`E-1`). Send the appropriate code and wait for the output to update the firmware.
  6435. */
  6436. case 303:
  6437. {
  6438. float temp = 150.0;
  6439. int e=0;
  6440. int c=5;
  6441. if (code_seen('E')) e=code_value();
  6442. if (e<0)
  6443. temp=70;
  6444. if (code_seen('S')) temp=code_value();
  6445. if (code_seen('C')) c=code_value();
  6446. PID_autotune(temp, e, c);
  6447. }
  6448. break;
  6449. /*!
  6450. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6451. Finishes all current moves and and thus clears the buffer.
  6452. */
  6453. case 400:
  6454. {
  6455. st_synchronize();
  6456. }
  6457. break;
  6458. /*!
  6459. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6460. M403 [ E | F ]
  6461. - `E` - Extruder number
  6462. - `F` - Filament type
  6463. Currently three different materials are needed (default, flex and PVA).
  6464. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6465. */
  6466. case 403:
  6467. {
  6468. // currently three different materials are needed (default, flex and PVA)
  6469. // add storing this information for different load/unload profiles etc. in the future
  6470. // firmware does not wait for "ok" from mmu
  6471. if (mmu_enabled)
  6472. {
  6473. uint8_t extruder = 255;
  6474. uint8_t filament = FILAMENT_UNDEFINED;
  6475. if(code_seen('E')) extruder = code_value();
  6476. if(code_seen('F')) filament = code_value();
  6477. mmu_set_filament_type(extruder, filament);
  6478. }
  6479. }
  6480. break;
  6481. /*!
  6482. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6483. Save current parameters to EEPROM, SD card or other non-volatile storage.
  6484. */
  6485. case 500:
  6486. {
  6487. Config_StoreSettings();
  6488. }
  6489. break;
  6490. /*!
  6491. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6492. Set the active parameters to those stored in the EEPROM, SD card or other non-volatile storage. This is useful to revert parameters after experimenting with them.
  6493. */
  6494. case 501:
  6495. {
  6496. Config_RetrieveSettings();
  6497. }
  6498. break;
  6499. /*!
  6500. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6501. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed with M500 to reboot with default settings.
  6502. */
  6503. case 502:
  6504. {
  6505. Config_ResetDefault();
  6506. }
  6507. break;
  6508. /*!
  6509. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6510. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6511. */
  6512. case 503:
  6513. {
  6514. Config_PrintSettings();
  6515. }
  6516. break;
  6517. /*!
  6518. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6519. Resets the language to English.
  6520. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6521. */
  6522. case 509:
  6523. {
  6524. lang_reset();
  6525. SERIAL_ECHO_START;
  6526. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6527. }
  6528. break;
  6529. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6530. /*!
  6531. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6532. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6533. */
  6534. case 540:
  6535. {
  6536. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6537. }
  6538. break;
  6539. #endif
  6540. /*!
  6541. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6542. M4861 [ Z ]
  6543. - `Z` - Z offset probe to nozzle.
  6544. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6545. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6546. */
  6547. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6548. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6549. {
  6550. float value;
  6551. if (code_seen('Z'))
  6552. {
  6553. value = code_value();
  6554. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6555. {
  6556. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6557. SERIAL_ECHO_START;
  6558. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6559. SERIAL_PROTOCOLLN("");
  6560. }
  6561. else
  6562. {
  6563. SERIAL_ECHO_START;
  6564. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6565. SERIAL_ECHORPGM(MSG_Z_MIN);
  6566. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6567. SERIAL_ECHORPGM(MSG_Z_MAX);
  6568. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6569. SERIAL_PROTOCOLLN("");
  6570. }
  6571. }
  6572. else
  6573. {
  6574. SERIAL_ECHO_START;
  6575. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6576. SERIAL_ECHO(-cs.zprobe_zoffset);
  6577. SERIAL_PROTOCOLLN("");
  6578. }
  6579. break;
  6580. }
  6581. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6582. #ifdef FILAMENTCHANGEENABLE
  6583. /*!
  6584. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6585. M600 [ X | Y | Z | E | L | AUTO ]
  6586. - `X` - X position, default 211
  6587. - `Y` - Y position, default 0
  6588. - `Z` - relative lift Z, default 2.
  6589. - `E` - initial retract, default -2
  6590. - `L` - later retract distance for removal, default -80
  6591. - `AUTO` - Automatically (only with MMU)
  6592. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6593. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6594. */
  6595. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6596. {
  6597. st_synchronize();
  6598. float x_position = current_position[X_AXIS];
  6599. float y_position = current_position[Y_AXIS];
  6600. float z_shift = 0; // is it necessary to be a float?
  6601. float e_shift_init = 0;
  6602. float e_shift_late = 0;
  6603. bool automatic = false;
  6604. //Retract extruder
  6605. if(code_seen('E'))
  6606. {
  6607. e_shift_init = code_value();
  6608. }
  6609. else
  6610. {
  6611. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6612. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6613. #endif
  6614. }
  6615. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6616. if (code_seen('L'))
  6617. {
  6618. e_shift_late = code_value();
  6619. }
  6620. else
  6621. {
  6622. #ifdef FILAMENTCHANGE_FINALRETRACT
  6623. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6624. #endif
  6625. }
  6626. //Lift Z
  6627. if(code_seen('Z'))
  6628. {
  6629. z_shift = code_value();
  6630. }
  6631. else
  6632. {
  6633. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6634. }
  6635. //Move XY to side
  6636. if(code_seen('X'))
  6637. {
  6638. x_position = code_value();
  6639. }
  6640. else
  6641. {
  6642. #ifdef FILAMENTCHANGE_XPOS
  6643. x_position = FILAMENTCHANGE_XPOS;
  6644. #endif
  6645. }
  6646. if(code_seen('Y'))
  6647. {
  6648. y_position = code_value();
  6649. }
  6650. else
  6651. {
  6652. #ifdef FILAMENTCHANGE_YPOS
  6653. y_position = FILAMENTCHANGE_YPOS ;
  6654. #endif
  6655. }
  6656. if (mmu_enabled && code_seen("AUTO"))
  6657. automatic = true;
  6658. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6659. }
  6660. break;
  6661. #endif //FILAMENTCHANGEENABLE
  6662. /*!
  6663. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6664. */
  6665. /*!
  6666. ### M125 - Pause print (TODO: not implemented)
  6667. */
  6668. /*!
  6669. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6670. */
  6671. case 25:
  6672. case 601:
  6673. {
  6674. if (!isPrintPaused)
  6675. {
  6676. st_synchronize();
  6677. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6678. lcd_pause_print();
  6679. }
  6680. }
  6681. break;
  6682. /*!
  6683. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6684. */
  6685. case 602: {
  6686. if (isPrintPaused)
  6687. lcd_resume_print();
  6688. }
  6689. break;
  6690. /*!
  6691. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6692. */
  6693. case 603: {
  6694. lcd_print_stop();
  6695. }
  6696. break;
  6697. #ifdef PINDA_THERMISTOR
  6698. /*!
  6699. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6700. M860 [ S ]
  6701. - `S` - Target temperature
  6702. Wait for PINDA thermistor to reach target temperature
  6703. */
  6704. case 860:
  6705. {
  6706. int set_target_pinda = 0;
  6707. if (code_seen('S')) {
  6708. set_target_pinda = code_value();
  6709. }
  6710. else {
  6711. break;
  6712. }
  6713. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6714. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6715. SERIAL_PROTOCOL(set_target_pinda);
  6716. SERIAL_PROTOCOLLN("");
  6717. codenum = _millis();
  6718. cancel_heatup = false;
  6719. bool is_pinda_cooling = false;
  6720. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6721. is_pinda_cooling = true;
  6722. }
  6723. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6724. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6725. {
  6726. SERIAL_PROTOCOLPGM("P:");
  6727. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6728. SERIAL_PROTOCOLPGM("/");
  6729. SERIAL_PROTOCOL(set_target_pinda);
  6730. SERIAL_PROTOCOLLN("");
  6731. codenum = _millis();
  6732. }
  6733. manage_heater();
  6734. manage_inactivity();
  6735. lcd_update(0);
  6736. }
  6737. LCD_MESSAGERPGM(MSG_OK);
  6738. break;
  6739. }
  6740. /*!
  6741. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6742. M861 [ ? | ! | Z | S | I ]
  6743. - `?` - Print current EEPROM offset values
  6744. - `!` - Set factory default values
  6745. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6746. - `S` - Microsteps
  6747. - `I` - Table index
  6748. Set compensation ustep value `S` for compensation table index `I`.
  6749. */
  6750. case 861:
  6751. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6752. uint8_t cal_status = calibration_status_pinda();
  6753. int16_t usteps = 0;
  6754. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6755. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6756. for (uint8_t i = 0; i < 6; i++)
  6757. {
  6758. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6759. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6760. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6761. SERIAL_PROTOCOLPGM(", ");
  6762. SERIAL_PROTOCOL(35 + (i * 5));
  6763. SERIAL_PROTOCOLPGM(", ");
  6764. SERIAL_PROTOCOL(usteps);
  6765. SERIAL_PROTOCOLPGM(", ");
  6766. SERIAL_PROTOCOL(mm * 1000);
  6767. SERIAL_PROTOCOLLN("");
  6768. }
  6769. }
  6770. else if (code_seen('!')) { // ! - Set factory default values
  6771. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6772. int16_t z_shift = 8; //40C - 20um - 8usteps
  6773. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6774. z_shift = 24; //45C - 60um - 24usteps
  6775. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6776. z_shift = 48; //50C - 120um - 48usteps
  6777. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6778. z_shift = 80; //55C - 200um - 80usteps
  6779. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6780. z_shift = 120; //60C - 300um - 120usteps
  6781. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6782. SERIAL_PROTOCOLLN("factory restored");
  6783. }
  6784. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6785. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6786. int16_t z_shift = 0;
  6787. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6788. SERIAL_PROTOCOLLN("zerorized");
  6789. }
  6790. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6791. int16_t usteps = code_value();
  6792. if (code_seen('I')) {
  6793. uint8_t index = code_value();
  6794. if (index < 5) {
  6795. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6796. SERIAL_PROTOCOLLN("OK");
  6797. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6798. for (uint8_t i = 0; i < 6; i++)
  6799. {
  6800. usteps = 0;
  6801. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6802. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6803. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6804. SERIAL_PROTOCOLPGM(", ");
  6805. SERIAL_PROTOCOL(35 + (i * 5));
  6806. SERIAL_PROTOCOLPGM(", ");
  6807. SERIAL_PROTOCOL(usteps);
  6808. SERIAL_PROTOCOLPGM(", ");
  6809. SERIAL_PROTOCOL(mm * 1000);
  6810. SERIAL_PROTOCOLLN("");
  6811. }
  6812. }
  6813. }
  6814. }
  6815. else {
  6816. SERIAL_PROTOCOLPGM("no valid command");
  6817. }
  6818. break;
  6819. #endif //PINDA_THERMISTOR
  6820. /*!
  6821. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  6822. Checks the parameters of the printer and gcode and performs compatibility check
  6823. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  6824. - M862.2 { P<model_code> | Q }
  6825. - M862.3 { P"<model_name>" | Q }
  6826. - M862.4 { P<fw_version> | Q }
  6827. - M862.5 { P<gcode_level> | Q }
  6828. When run with P<> argument, the check is performed against the input value.
  6829. When run with Q argument, the current value is shown.
  6830. M862.3 accepts text identifiers of printer types too.
  6831. The syntax of M862.3 is (note the quotes around the type):
  6832. M862.3 P "MK3S"
  6833. Accepted printer type identifiers and their numeric counterparts:
  6834. - MK1 (100)
  6835. - MK2 (200)
  6836. - MK2MM (201)
  6837. - MK2S (202)
  6838. - MK2SMM (203)
  6839. - MK2.5 (250)
  6840. - MK2.5MMU2 (20250)
  6841. - MK2.5S (252)
  6842. - MK2.5SMMU2S (20252)
  6843. - MK3 (300)
  6844. - MK3MMU2 (20300)
  6845. - MK3S (302)
  6846. - MK3SMMU2S (20302)
  6847. */
  6848. case 862: // M862: print checking
  6849. float nDummy;
  6850. uint8_t nCommand;
  6851. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6852. switch((ClPrintChecking)nCommand)
  6853. {
  6854. case ClPrintChecking::_Nozzle: // ~ .1
  6855. uint16_t nDiameter;
  6856. if(code_seen('P'))
  6857. {
  6858. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6859. nozzle_diameter_check(nDiameter);
  6860. }
  6861. /*
  6862. else if(code_seen('S')&&farm_mode)
  6863. {
  6864. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6865. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6866. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6867. }
  6868. */
  6869. else if(code_seen('Q'))
  6870. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6871. break;
  6872. case ClPrintChecking::_Model: // ~ .2
  6873. if(code_seen('P'))
  6874. {
  6875. uint16_t nPrinterModel;
  6876. nPrinterModel=(uint16_t)code_value_long();
  6877. printer_model_check(nPrinterModel);
  6878. }
  6879. else if(code_seen('Q'))
  6880. SERIAL_PROTOCOLLN(nPrinterType);
  6881. break;
  6882. case ClPrintChecking::_Smodel: // ~ .3
  6883. if(code_seen('P'))
  6884. printer_smodel_check(strchr_pointer);
  6885. else if(code_seen('Q'))
  6886. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6887. break;
  6888. case ClPrintChecking::_Version: // ~ .4
  6889. if(code_seen('P'))
  6890. fw_version_check(++strchr_pointer);
  6891. else if(code_seen('Q'))
  6892. SERIAL_PROTOCOLLN(FW_VERSION);
  6893. break;
  6894. case ClPrintChecking::_Gcode: // ~ .5
  6895. if(code_seen('P'))
  6896. {
  6897. uint16_t nGcodeLevel;
  6898. nGcodeLevel=(uint16_t)code_value_long();
  6899. gcode_level_check(nGcodeLevel);
  6900. }
  6901. else if(code_seen('Q'))
  6902. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6903. break;
  6904. }
  6905. break;
  6906. #ifdef LIN_ADVANCE
  6907. /*!
  6908. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  6909. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  6910. M900 [ K | R | W | H | D]
  6911. - `K` - Advance K factor
  6912. - `R` - Set ratio directly (overrides WH/D)
  6913. - `W` - Width
  6914. - `H` - Height
  6915. - `D` - Diameter Set ratio from WH/D
  6916. */
  6917. case 900:
  6918. gcode_M900();
  6919. break;
  6920. #endif
  6921. /*!
  6922. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  6923. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  6924. M907 [ X | Y | Z | E | B | S ]
  6925. - `X` - X motor driver
  6926. - `Y` - Y motor driver
  6927. - `Z` - Z motor driver
  6928. - `E` - Extruder motor driver
  6929. - `B` - ??
  6930. - `S` - ??
  6931. @todo What are `B` and `S` in M907?
  6932. */
  6933. case 907:
  6934. {
  6935. #ifdef TMC2130
  6936. // See tmc2130_cur2val() for translation to 0 .. 63 range
  6937. for (int i = 0; i < NUM_AXIS; i++)
  6938. if(code_seen(axis_codes[i]))
  6939. {
  6940. long cur_mA = code_value_long();
  6941. uint8_t val = tmc2130_cur2val(cur_mA);
  6942. tmc2130_set_current_h(i, val);
  6943. tmc2130_set_current_r(i, val);
  6944. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6945. }
  6946. #else //TMC2130
  6947. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6948. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6949. if(code_seen('B')) st_current_set(4,code_value());
  6950. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6951. #endif
  6952. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6953. if(code_seen('X')) st_current_set(0, code_value());
  6954. #endif
  6955. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6956. if(code_seen('Z')) st_current_set(1, code_value());
  6957. #endif
  6958. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6959. if(code_seen('E')) st_current_set(2, code_value());
  6960. #endif
  6961. #endif //TMC2130
  6962. }
  6963. break;
  6964. /*!
  6965. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  6966. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6967. */
  6968. case 908:
  6969. {
  6970. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6971. uint8_t channel,current;
  6972. if(code_seen('P')) channel=code_value();
  6973. if(code_seen('S')) current=code_value();
  6974. digitalPotWrite(channel, current);
  6975. #endif
  6976. }
  6977. break;
  6978. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6979. /*!
  6980. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  6981. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  6982. */
  6983. case 910:
  6984. {
  6985. tmc2130_init();
  6986. }
  6987. break;
  6988. /*!
  6989. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  6990. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  6991. M911 [ X | Y | Z | E ]
  6992. - `X` - X stepper driver holding current value
  6993. - `Y` - Y stepper driver holding current value
  6994. - `Z` - Z stepper driver holding current value
  6995. - `E` - Extruder stepper driver holding current value
  6996. */
  6997. case 911:
  6998. {
  6999. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7000. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7001. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7002. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7003. }
  7004. break;
  7005. /*!
  7006. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7007. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7008. M912 [ X | Y | Z | E ]
  7009. - `X` - X stepper driver running current value
  7010. - `Y` - Y stepper driver running current value
  7011. - `Z` - Z stepper driver running current value
  7012. - `E` - Extruder stepper driver running current value
  7013. */
  7014. case 912:
  7015. {
  7016. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7017. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7018. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7019. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7020. }
  7021. break;
  7022. /*!
  7023. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7024. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7025. Shows TMC2130 currents.
  7026. */
  7027. case 913:
  7028. {
  7029. tmc2130_print_currents();
  7030. }
  7031. break;
  7032. /*!
  7033. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7034. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7035. */
  7036. case 914:
  7037. {
  7038. tmc2130_mode = TMC2130_MODE_NORMAL;
  7039. update_mode_profile();
  7040. tmc2130_init();
  7041. }
  7042. break;
  7043. /*!
  7044. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7045. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7046. */
  7047. case 915:
  7048. {
  7049. tmc2130_mode = TMC2130_MODE_SILENT;
  7050. update_mode_profile();
  7051. tmc2130_init();
  7052. }
  7053. break;
  7054. /*!
  7055. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7056. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7057. M916 [ X | Y | Z | E ]
  7058. - `X` - X stepper driver stallguard sensitivity threshold value
  7059. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7060. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7061. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7062. */
  7063. case 916:
  7064. {
  7065. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7066. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7067. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7068. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7069. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7070. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7071. }
  7072. break;
  7073. /*!
  7074. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7075. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7076. M917 [ X | Y | Z | E ]
  7077. - `X` - X stepper driver PWM amplitude offset value
  7078. - `Y` - Y stepper driver PWM amplitude offset value
  7079. - `Z` - Z stepper driver PWM amplitude offset value
  7080. - `E` - Extruder stepper driver PWM amplitude offset value
  7081. */
  7082. case 917:
  7083. {
  7084. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7085. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7086. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7087. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7088. }
  7089. break;
  7090. /*!
  7091. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7092. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7093. M918 [ X | Y | Z | E ]
  7094. - `X` - X stepper driver PWM amplitude gradient value
  7095. - `Y` - Y stepper driver PWM amplitude gradient value
  7096. - `Z` - Z stepper driver PWM amplitude gradient value
  7097. - `E` - Extruder stepper driver PWM amplitude gradient value
  7098. */
  7099. case 918:
  7100. {
  7101. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7102. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7103. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7104. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7105. }
  7106. break;
  7107. #endif //TMC2130_SERVICE_CODES_M910_M918
  7108. /*!
  7109. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7110. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7111. */
  7112. case 350:
  7113. {
  7114. #ifdef TMC2130
  7115. for (int i=0; i<NUM_AXIS; i++)
  7116. {
  7117. if(code_seen(axis_codes[i]))
  7118. {
  7119. uint16_t res_new = code_value();
  7120. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7121. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7122. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7123. if (res_valid)
  7124. {
  7125. st_synchronize();
  7126. uint16_t res = tmc2130_get_res(i);
  7127. tmc2130_set_res(i, res_new);
  7128. cs.axis_ustep_resolution[i] = res_new;
  7129. if (res_new > res)
  7130. {
  7131. uint16_t fac = (res_new / res);
  7132. cs.axis_steps_per_unit[i] *= fac;
  7133. position[i] *= fac;
  7134. }
  7135. else
  7136. {
  7137. uint16_t fac = (res / res_new);
  7138. cs.axis_steps_per_unit[i] /= fac;
  7139. position[i] /= fac;
  7140. }
  7141. }
  7142. }
  7143. }
  7144. #else //TMC2130
  7145. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7146. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7147. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7148. if(code_seen('B')) microstep_mode(4,code_value());
  7149. microstep_readings();
  7150. #endif
  7151. #endif //TMC2130
  7152. }
  7153. break;
  7154. /*!
  7155. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7156. Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7157. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7158. */
  7159. case 351:
  7160. {
  7161. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7162. if(code_seen('S')) switch((int)code_value())
  7163. {
  7164. case 1:
  7165. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7166. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7167. break;
  7168. case 2:
  7169. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7170. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7171. break;
  7172. }
  7173. microstep_readings();
  7174. #endif
  7175. }
  7176. break;
  7177. /*!
  7178. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7179. */
  7180. case 701:
  7181. {
  7182. if (mmu_enabled && code_seen('E'))
  7183. tmp_extruder = code_value();
  7184. gcode_M701();
  7185. }
  7186. break;
  7187. /*!
  7188. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7189. M702 [ U | C]
  7190. - `U` - Unload all filaments used in current print
  7191. - `C` - Unload just current filament
  7192. - without any parameters unload all filaments
  7193. */
  7194. case 702:
  7195. {
  7196. #ifdef SNMM
  7197. if (code_seen('U'))
  7198. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7199. else if (code_seen('C'))
  7200. extr_unload(); //! if "C" unload just current filament
  7201. else
  7202. extr_unload_all(); //! otherwise unload all filaments
  7203. #else
  7204. if (code_seen('C')) {
  7205. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7206. }
  7207. else {
  7208. if(mmu_enabled) extr_unload(); //! unload current filament
  7209. else unload_filament();
  7210. }
  7211. #endif //SNMM
  7212. }
  7213. break;
  7214. /*!
  7215. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7216. */
  7217. case 999:
  7218. Stopped = false;
  7219. lcd_reset_alert_level();
  7220. gcode_LastN = Stopped_gcode_LastN;
  7221. FlushSerialRequestResend();
  7222. break;
  7223. /*!
  7224. #### End of M-Commands
  7225. */
  7226. default:
  7227. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7228. }
  7229. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7230. mcode_in_progress = 0;
  7231. }
  7232. }
  7233. // end if(code_seen('M')) (end of M codes)
  7234. //! -----------------------------------------------------------------------------------------
  7235. //! # T Codes
  7236. //!
  7237. //! T<extruder nr.> - select extruder in case of multi extruder printer
  7238. //! select filament in case of MMU_V2
  7239. //! if extruder is "?", open menu to let the user select extruder/filament
  7240. //!
  7241. //! For MMU_V2:
  7242. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7243. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7244. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7245. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7246. else if(code_seen('T'))
  7247. {
  7248. int index;
  7249. bool load_to_nozzle = false;
  7250. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7251. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7252. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7253. SERIAL_ECHOLNPGM("Invalid T code.");
  7254. }
  7255. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7256. if (mmu_enabled)
  7257. {
  7258. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7259. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7260. {
  7261. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7262. }
  7263. else
  7264. {
  7265. st_synchronize();
  7266. mmu_command(MmuCmd::T0 + tmp_extruder);
  7267. manage_response(true, true, MMU_TCODE_MOVE);
  7268. }
  7269. }
  7270. }
  7271. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7272. if (mmu_enabled)
  7273. {
  7274. st_synchronize();
  7275. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7276. mmu_extruder = tmp_extruder; //filament change is finished
  7277. mmu_load_to_nozzle();
  7278. }
  7279. }
  7280. else {
  7281. if (*(strchr_pointer + index) == '?')
  7282. {
  7283. if(mmu_enabled)
  7284. {
  7285. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7286. load_to_nozzle = true;
  7287. } else
  7288. {
  7289. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7290. }
  7291. }
  7292. else {
  7293. tmp_extruder = code_value();
  7294. if (mmu_enabled && lcd_autoDepleteEnabled())
  7295. {
  7296. tmp_extruder = ad_getAlternative(tmp_extruder);
  7297. }
  7298. }
  7299. st_synchronize();
  7300. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7301. if (mmu_enabled)
  7302. {
  7303. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7304. {
  7305. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7306. }
  7307. else
  7308. {
  7309. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7310. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7311. {
  7312. mmu_command(MmuCmd::K0 + tmp_extruder);
  7313. manage_response(true, true, MMU_UNLOAD_MOVE);
  7314. }
  7315. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7316. mmu_command(MmuCmd::T0 + tmp_extruder);
  7317. manage_response(true, true, MMU_TCODE_MOVE);
  7318. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7319. mmu_extruder = tmp_extruder; //filament change is finished
  7320. if (load_to_nozzle)// for single material usage with mmu
  7321. {
  7322. mmu_load_to_nozzle();
  7323. }
  7324. }
  7325. }
  7326. else
  7327. {
  7328. #ifdef SNMM
  7329. #ifdef LIN_ADVANCE
  7330. if (mmu_extruder != tmp_extruder)
  7331. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  7332. #endif
  7333. mmu_extruder = tmp_extruder;
  7334. _delay(100);
  7335. disable_e0();
  7336. disable_e1();
  7337. disable_e2();
  7338. pinMode(E_MUX0_PIN, OUTPUT);
  7339. pinMode(E_MUX1_PIN, OUTPUT);
  7340. _delay(100);
  7341. SERIAL_ECHO_START;
  7342. SERIAL_ECHO("T:");
  7343. SERIAL_ECHOLN((int)tmp_extruder);
  7344. switch (tmp_extruder) {
  7345. case 1:
  7346. WRITE(E_MUX0_PIN, HIGH);
  7347. WRITE(E_MUX1_PIN, LOW);
  7348. break;
  7349. case 2:
  7350. WRITE(E_MUX0_PIN, LOW);
  7351. WRITE(E_MUX1_PIN, HIGH);
  7352. break;
  7353. case 3:
  7354. WRITE(E_MUX0_PIN, HIGH);
  7355. WRITE(E_MUX1_PIN, HIGH);
  7356. break;
  7357. default:
  7358. WRITE(E_MUX0_PIN, LOW);
  7359. WRITE(E_MUX1_PIN, LOW);
  7360. break;
  7361. }
  7362. _delay(100);
  7363. #else //SNMM
  7364. if (tmp_extruder >= EXTRUDERS) {
  7365. SERIAL_ECHO_START;
  7366. SERIAL_ECHOPGM("T");
  7367. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7368. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7369. }
  7370. else {
  7371. #if EXTRUDERS > 1
  7372. boolean make_move = false;
  7373. #endif
  7374. if (code_seen('F')) {
  7375. #if EXTRUDERS > 1
  7376. make_move = true;
  7377. #endif
  7378. next_feedrate = code_value();
  7379. if (next_feedrate > 0.0) {
  7380. feedrate = next_feedrate;
  7381. }
  7382. }
  7383. #if EXTRUDERS > 1
  7384. if (tmp_extruder != active_extruder) {
  7385. // Save current position to return to after applying extruder offset
  7386. memcpy(destination, current_position, sizeof(destination));
  7387. // Offset extruder (only by XY)
  7388. int i;
  7389. for (i = 0; i < 2; i++) {
  7390. current_position[i] = current_position[i] -
  7391. extruder_offset[i][active_extruder] +
  7392. extruder_offset[i][tmp_extruder];
  7393. }
  7394. // Set the new active extruder and position
  7395. active_extruder = tmp_extruder;
  7396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7397. // Move to the old position if 'F' was in the parameters
  7398. if (make_move && Stopped == false) {
  7399. prepare_move();
  7400. }
  7401. }
  7402. #endif
  7403. SERIAL_ECHO_START;
  7404. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7405. SERIAL_PROTOCOLLN((int)active_extruder);
  7406. }
  7407. #endif //SNMM
  7408. }
  7409. }
  7410. } // end if(code_seen('T')) (end of T codes)
  7411. /*!
  7412. #### End of T-Codes
  7413. */
  7414. /**
  7415. *---------------------------------------------------------------------------------
  7416. *# D codes
  7417. */
  7418. else if (code_seen('D')) // D codes (debug)
  7419. {
  7420. switch((int)code_value())
  7421. {
  7422. /*!
  7423. *
  7424. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7425. D-1
  7426. *
  7427. */
  7428. case -1:
  7429. dcode__1(); break;
  7430. #ifdef DEBUG_DCODES
  7431. /*!
  7432. *
  7433. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7434. D0 [ B ]
  7435. - `B` - Bootloader
  7436. *
  7437. */
  7438. case 0:
  7439. dcode_0(); break;
  7440. /*!
  7441. *
  7442. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7443. D1
  7444. *
  7445. */
  7446. case 1:
  7447. dcode_1(); break;
  7448. /*!
  7449. *
  7450. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7451. This command can be used without any additional parameters. It will read the entire RAM.
  7452. D3 [ A | C | X ]
  7453. - `A` - Address (0x0000-0x1fff)
  7454. - `C` - Count (0x0001-0x2000)
  7455. - `X` - Data
  7456. *
  7457. */
  7458. case 2:
  7459. dcode_2(); break;
  7460. #endif //DEBUG_DCODES
  7461. #ifdef DEBUG_DCODE3
  7462. /*!
  7463. *
  7464. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7465. This command can be used without any additional parameters. It will read the entire eeprom.
  7466. D3 [ A | C | X ]
  7467. - `A` - Address (0x0000-0x0fff)
  7468. - `C` - Count (0x0001-0x1000)
  7469. - `X` - Data
  7470. *
  7471. */
  7472. case 3:
  7473. dcode_3(); break;
  7474. #endif //DEBUG_DCODE3
  7475. #ifdef DEBUG_DCODES
  7476. /*!
  7477. *
  7478. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7479. To read the digital value of a pin you need only to define the pin number.
  7480. D4 [ P | F | V ]
  7481. - `P` - Pin (0-255)
  7482. - `F` - Function in/out (0/1)
  7483. - `V` - Value (0/1)
  7484. *
  7485. */
  7486. case 4:
  7487. dcode_4(); break;
  7488. #endif //DEBUG_DCODES
  7489. #ifdef DEBUG_DCODE5
  7490. /*!
  7491. *
  7492. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7493. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7494. D3 [ A | C | X | E ]
  7495. - `A` - Address (0x00000-0x3ffff)
  7496. - `C` - Count (0x0001-0x2000)
  7497. - `X` - Data
  7498. - `E` - Erase
  7499. *
  7500. */
  7501. case 5:
  7502. dcode_5(); break;
  7503. break;
  7504. #endif //DEBUG_DCODE5
  7505. #ifdef DEBUG_DCODES
  7506. /*!
  7507. *
  7508. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7509. Reserved
  7510. *
  7511. */
  7512. case 6:
  7513. dcode_6(); break;
  7514. /*!
  7515. *
  7516. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7517. Reserved
  7518. *
  7519. */
  7520. case 7:
  7521. dcode_7(); break;
  7522. /*!
  7523. *
  7524. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7525. D8 [ ? | ! | P | Z ]
  7526. - `?` - Read PINDA temperature shift values
  7527. - `!` - Reset PINDA temperature shift values to default
  7528. - `P` - Pinda temperature [C]
  7529. - `Z` - Z Offset [mm]
  7530. *
  7531. */
  7532. case 8:
  7533. dcode_8(); break;
  7534. /*!
  7535. *
  7536. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7537. D9 [ I | V ]
  7538. - `I` - ADC channel index
  7539. - `0` - Heater 0 temperature
  7540. - `1` - Heater 1 temperature
  7541. - `2` - Bed temperature
  7542. - `3` - PINDA temperature
  7543. - `4` - PWR voltage
  7544. - `5` - Ambient temperature
  7545. - `6` - BED voltage
  7546. - `V` Value to be written as simulated
  7547. *
  7548. */
  7549. case 9:
  7550. dcode_9(); break;
  7551. /*!
  7552. *
  7553. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7554. *
  7555. */
  7556. case 10:
  7557. dcode_10(); break;
  7558. /*!
  7559. *
  7560. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7561. Writes the actual time in the log file.
  7562. *
  7563. */
  7564. #endif //DEBUG_DCODES
  7565. #ifdef HEATBED_ANALYSIS
  7566. /*!
  7567. *
  7568. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7569. This command will log data to SD card file "mesh.txt".
  7570. D80 [ E | F | G | H | I | J ]
  7571. - `E` - Dimension X (default 40)
  7572. - `F` - Dimention Y (default 40)
  7573. - `G` - Points X (default 40)
  7574. - `H` - Points Y (default 40)
  7575. - `I` - Offset X (default 74)
  7576. - `J` - Offset Y (default 34)
  7577. */
  7578. case 80:
  7579. {
  7580. float dimension_x = 40;
  7581. float dimension_y = 40;
  7582. int points_x = 40;
  7583. int points_y = 40;
  7584. float offset_x = 74;
  7585. float offset_y = 33;
  7586. if (code_seen('E')) dimension_x = code_value();
  7587. if (code_seen('F')) dimension_y = code_value();
  7588. if (code_seen('G')) {points_x = code_value(); }
  7589. if (code_seen('H')) {points_y = code_value(); }
  7590. if (code_seen('I')) {offset_x = code_value(); }
  7591. if (code_seen('J')) {offset_y = code_value(); }
  7592. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7593. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7594. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7595. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7596. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7597. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7598. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7599. }break;
  7600. /*!
  7601. *
  7602. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7603. This command will log data to SD card file "wldsd.txt".
  7604. D81 [ E | F | G | H | I | J ]
  7605. - `E` - Dimension X (default 40)
  7606. - `F` - Dimention Y (default 40)
  7607. - `G` - Points X (default 40)
  7608. - `H` - Points Y (default 40)
  7609. - `I` - Offset X (default 74)
  7610. - `J` - Offset Y (default 34)
  7611. */
  7612. case 81:
  7613. {
  7614. float dimension_x = 40;
  7615. float dimension_y = 40;
  7616. int points_x = 40;
  7617. int points_y = 40;
  7618. float offset_x = 74;
  7619. float offset_y = 33;
  7620. if (code_seen('E')) dimension_x = code_value();
  7621. if (code_seen('F')) dimension_y = code_value();
  7622. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7623. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7624. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7625. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7626. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7627. } break;
  7628. #endif //HEATBED_ANALYSIS
  7629. #ifdef DEBUG_DCODES
  7630. /*!
  7631. *
  7632. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7633. */
  7634. case 106:
  7635. {
  7636. for (int i = 255; i > 0; i = i - 5) {
  7637. fanSpeed = i;
  7638. //delay_keep_alive(2000);
  7639. for (int j = 0; j < 100; j++) {
  7640. delay_keep_alive(100);
  7641. }
  7642. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7643. }
  7644. }break;
  7645. #ifdef TMC2130
  7646. /*!
  7647. *
  7648. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7649. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7650. D2130 [ Axis | Command | Subcommand | Value ]
  7651. - Axis
  7652. - `X` - X stepper driver
  7653. - `Y` - Y stepper driver
  7654. - `Z` - Z stepper driver
  7655. - `E` - Extruder stepper driver
  7656. - Commands
  7657. - `0` - Current off
  7658. - `1` - Current on
  7659. - `+` - Single step
  7660. - `-` - Single step oposite direction
  7661. - `NNN` - Value sereval steps
  7662. - `?` - Read register
  7663. - Subcommands for read register
  7664. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7665. - `step` - Step
  7666. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7667. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7668. - `wave` - Microstep linearity compensation curve
  7669. - `!` - Set register
  7670. - Subcommands for set register
  7671. - `mres` - Micro step resolution
  7672. - `step` - Step
  7673. - `wave` - Microstep linearity compensation curve
  7674. - Values for set register
  7675. - `0, 180 --> 250` - Off
  7676. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7677. - `@` - Home calibrate axis
  7678. Examples:
  7679. D2130E?wave
  7680. Print extruder microstep linearity compensation curve
  7681. D2130E!wave0
  7682. Disable extruder linearity compensation curve, (sine curve is used)
  7683. D2130E!wave220
  7684. (sin(x))^1.1 extruder microstep compensation curve used
  7685. Notes:
  7686. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7687. *
  7688. */
  7689. case 2130:
  7690. dcode_2130(); break;
  7691. #endif //TMC2130
  7692. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7693. /*!
  7694. *
  7695. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7696. D9125 [ ? | ! | R | X | Y | L ]
  7697. - `?` - Print values
  7698. - `!` - Print values
  7699. - `R` - Resolution. Not active in code
  7700. - `X` - X values
  7701. - `Y` - Y values
  7702. - `L` - Activate filament sensor log
  7703. *
  7704. */
  7705. case 9125:
  7706. dcode_9125(); break;
  7707. #endif //FILAMENT_SENSOR
  7708. #endif //DEBUG_DCODES
  7709. }
  7710. }
  7711. else
  7712. {
  7713. SERIAL_ECHO_START;
  7714. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7715. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7716. SERIAL_ECHOLNPGM("\"(2)");
  7717. }
  7718. KEEPALIVE_STATE(NOT_BUSY);
  7719. ClearToSend();
  7720. }
  7721. /*!
  7722. #### End of D-Codes
  7723. */
  7724. /** @defgroup GCodes G-Code List
  7725. */
  7726. // ---------------------------------------------------
  7727. void FlushSerialRequestResend()
  7728. {
  7729. //char cmdbuffer[bufindr][100]="Resend:";
  7730. MYSERIAL.flush();
  7731. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7732. }
  7733. // Confirm the execution of a command, if sent from a serial line.
  7734. // Execution of a command from a SD card will not be confirmed.
  7735. void ClearToSend()
  7736. {
  7737. previous_millis_cmd = _millis();
  7738. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7739. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7740. }
  7741. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7742. void update_currents() {
  7743. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7744. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7745. float tmp_motor[3];
  7746. //SERIAL_ECHOLNPGM("Currents updated: ");
  7747. if (destination[Z_AXIS] < Z_SILENT) {
  7748. //SERIAL_ECHOLNPGM("LOW");
  7749. for (uint8_t i = 0; i < 3; i++) {
  7750. st_current_set(i, current_low[i]);
  7751. /*MYSERIAL.print(int(i));
  7752. SERIAL_ECHOPGM(": ");
  7753. MYSERIAL.println(current_low[i]);*/
  7754. }
  7755. }
  7756. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7757. //SERIAL_ECHOLNPGM("HIGH");
  7758. for (uint8_t i = 0; i < 3; i++) {
  7759. st_current_set(i, current_high[i]);
  7760. /*MYSERIAL.print(int(i));
  7761. SERIAL_ECHOPGM(": ");
  7762. MYSERIAL.println(current_high[i]);*/
  7763. }
  7764. }
  7765. else {
  7766. for (uint8_t i = 0; i < 3; i++) {
  7767. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7768. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7769. st_current_set(i, tmp_motor[i]);
  7770. /*MYSERIAL.print(int(i));
  7771. SERIAL_ECHOPGM(": ");
  7772. MYSERIAL.println(tmp_motor[i]);*/
  7773. }
  7774. }
  7775. }
  7776. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7777. void get_coordinates()
  7778. {
  7779. bool seen[4]={false,false,false,false};
  7780. for(int8_t i=0; i < NUM_AXIS; i++) {
  7781. if(code_seen(axis_codes[i]))
  7782. {
  7783. bool relative = axis_relative_modes[i];
  7784. destination[i] = (float)code_value();
  7785. if (i == E_AXIS) {
  7786. float emult = extruder_multiplier[active_extruder];
  7787. if (emult != 1.) {
  7788. if (! relative) {
  7789. destination[i] -= current_position[i];
  7790. relative = true;
  7791. }
  7792. destination[i] *= emult;
  7793. }
  7794. }
  7795. if (relative)
  7796. destination[i] += current_position[i];
  7797. seen[i]=true;
  7798. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7799. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7800. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7801. }
  7802. else destination[i] = current_position[i]; //Are these else lines really needed?
  7803. }
  7804. if(code_seen('F')) {
  7805. next_feedrate = code_value();
  7806. #ifdef MAX_SILENT_FEEDRATE
  7807. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7808. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7809. #endif //MAX_SILENT_FEEDRATE
  7810. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7811. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7812. {
  7813. // float e_max_speed =
  7814. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7815. }
  7816. }
  7817. }
  7818. void get_arc_coordinates()
  7819. {
  7820. #ifdef SF_ARC_FIX
  7821. bool relative_mode_backup = relative_mode;
  7822. relative_mode = true;
  7823. #endif
  7824. get_coordinates();
  7825. #ifdef SF_ARC_FIX
  7826. relative_mode=relative_mode_backup;
  7827. #endif
  7828. if(code_seen('I')) {
  7829. offset[0] = code_value();
  7830. }
  7831. else {
  7832. offset[0] = 0.0;
  7833. }
  7834. if(code_seen('J')) {
  7835. offset[1] = code_value();
  7836. }
  7837. else {
  7838. offset[1] = 0.0;
  7839. }
  7840. }
  7841. void clamp_to_software_endstops(float target[3])
  7842. {
  7843. #ifdef DEBUG_DISABLE_SWLIMITS
  7844. return;
  7845. #endif //DEBUG_DISABLE_SWLIMITS
  7846. world2machine_clamp(target[0], target[1]);
  7847. // Clamp the Z coordinate.
  7848. if (min_software_endstops) {
  7849. float negative_z_offset = 0;
  7850. #ifdef ENABLE_AUTO_BED_LEVELING
  7851. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7852. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7853. #endif
  7854. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7855. }
  7856. if (max_software_endstops) {
  7857. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7858. }
  7859. }
  7860. #ifdef MESH_BED_LEVELING
  7861. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7862. float dx = x - current_position[X_AXIS];
  7863. float dy = y - current_position[Y_AXIS];
  7864. int n_segments = 0;
  7865. if (mbl.active) {
  7866. float len = abs(dx) + abs(dy);
  7867. if (len > 0)
  7868. // Split to 3cm segments or shorter.
  7869. n_segments = int(ceil(len / 30.f));
  7870. }
  7871. if (n_segments > 1) {
  7872. // In a multi-segment move explicitly set the final target in the plan
  7873. // as the move will be recalculated in it's entirety
  7874. float gcode_target[NUM_AXIS];
  7875. gcode_target[X_AXIS] = x;
  7876. gcode_target[Y_AXIS] = y;
  7877. gcode_target[Z_AXIS] = z;
  7878. gcode_target[E_AXIS] = e;
  7879. float dz = z - current_position[Z_AXIS];
  7880. float de = e - current_position[E_AXIS];
  7881. for (int i = 1; i < n_segments; ++ i) {
  7882. float t = float(i) / float(n_segments);
  7883. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7884. current_position[Y_AXIS] + t * dy,
  7885. current_position[Z_AXIS] + t * dz,
  7886. current_position[E_AXIS] + t * de,
  7887. feed_rate, extruder, gcode_target);
  7888. if (waiting_inside_plan_buffer_line_print_aborted)
  7889. return;
  7890. }
  7891. }
  7892. // The rest of the path.
  7893. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7894. }
  7895. #endif // MESH_BED_LEVELING
  7896. void prepare_move()
  7897. {
  7898. clamp_to_software_endstops(destination);
  7899. previous_millis_cmd = _millis();
  7900. // Do not use feedmultiply for E or Z only moves
  7901. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7903. }
  7904. else {
  7905. #ifdef MESH_BED_LEVELING
  7906. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7907. #else
  7908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7909. #endif
  7910. }
  7911. set_current_to_destination();
  7912. }
  7913. void prepare_arc_move(char isclockwise) {
  7914. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7915. // Trace the arc
  7916. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7917. // As far as the parser is concerned, the position is now == target. In reality the
  7918. // motion control system might still be processing the action and the real tool position
  7919. // in any intermediate location.
  7920. for(int8_t i=0; i < NUM_AXIS; i++) {
  7921. current_position[i] = destination[i];
  7922. }
  7923. previous_millis_cmd = _millis();
  7924. }
  7925. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7926. #if defined(FAN_PIN)
  7927. #if CONTROLLERFAN_PIN == FAN_PIN
  7928. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7929. #endif
  7930. #endif
  7931. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7932. unsigned long lastMotorCheck = 0;
  7933. void controllerFan()
  7934. {
  7935. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7936. {
  7937. lastMotorCheck = _millis();
  7938. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7939. #if EXTRUDERS > 2
  7940. || !READ(E2_ENABLE_PIN)
  7941. #endif
  7942. #if EXTRUDER > 1
  7943. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7944. || !READ(X2_ENABLE_PIN)
  7945. #endif
  7946. || !READ(E1_ENABLE_PIN)
  7947. #endif
  7948. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7949. {
  7950. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7951. }
  7952. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7953. {
  7954. digitalWrite(CONTROLLERFAN_PIN, 0);
  7955. analogWrite(CONTROLLERFAN_PIN, 0);
  7956. }
  7957. else
  7958. {
  7959. // allows digital or PWM fan output to be used (see M42 handling)
  7960. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7961. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7962. }
  7963. }
  7964. }
  7965. #endif
  7966. #ifdef TEMP_STAT_LEDS
  7967. static bool blue_led = false;
  7968. static bool red_led = false;
  7969. static uint32_t stat_update = 0;
  7970. void handle_status_leds(void) {
  7971. float max_temp = 0.0;
  7972. if(_millis() > stat_update) {
  7973. stat_update += 500; // Update every 0.5s
  7974. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7975. max_temp = max(max_temp, degHotend(cur_extruder));
  7976. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7977. }
  7978. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7979. max_temp = max(max_temp, degTargetBed());
  7980. max_temp = max(max_temp, degBed());
  7981. #endif
  7982. if((max_temp > 55.0) && (red_led == false)) {
  7983. digitalWrite(STAT_LED_RED, 1);
  7984. digitalWrite(STAT_LED_BLUE, 0);
  7985. red_led = true;
  7986. blue_led = false;
  7987. }
  7988. if((max_temp < 54.0) && (blue_led == false)) {
  7989. digitalWrite(STAT_LED_RED, 0);
  7990. digitalWrite(STAT_LED_BLUE, 1);
  7991. red_led = false;
  7992. blue_led = true;
  7993. }
  7994. }
  7995. }
  7996. #endif
  7997. #ifdef SAFETYTIMER
  7998. /**
  7999. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8000. *
  8001. * Full screen blocking notification message is shown after heater turning off.
  8002. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8003. * damage print.
  8004. *
  8005. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8006. */
  8007. static void handleSafetyTimer()
  8008. {
  8009. #if (EXTRUDERS > 1)
  8010. #error Implemented only for one extruder.
  8011. #endif //(EXTRUDERS > 1)
  8012. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8013. {
  8014. safetyTimer.stop();
  8015. }
  8016. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8017. {
  8018. safetyTimer.start();
  8019. }
  8020. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8021. {
  8022. setTargetBed(0);
  8023. setAllTargetHotends(0);
  8024. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8025. }
  8026. }
  8027. #endif //SAFETYTIMER
  8028. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8029. {
  8030. bool bInhibitFlag;
  8031. #ifdef FILAMENT_SENSOR
  8032. if (mmu_enabled == false)
  8033. {
  8034. //-// if (mcode_in_progress != 600) //M600 not in progress
  8035. #ifdef PAT9125
  8036. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8037. #endif // PAT9125
  8038. #ifdef IR_SENSOR
  8039. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8040. #endif // IR_SENSOR
  8041. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8042. {
  8043. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8044. {
  8045. if (fsensor_check_autoload())
  8046. {
  8047. #ifdef PAT9125
  8048. fsensor_autoload_check_stop();
  8049. #endif //PAT9125
  8050. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8051. if(0)
  8052. {
  8053. Sound_MakeCustom(50,1000,false);
  8054. loading_flag = true;
  8055. enquecommand_front_P((PSTR("M701")));
  8056. }
  8057. else
  8058. {
  8059. /*
  8060. lcd_update_enable(false);
  8061. show_preheat_nozzle_warning();
  8062. lcd_update_enable(true);
  8063. */
  8064. eFilamentAction=FilamentAction::AutoLoad;
  8065. bFilamentFirstRun=false;
  8066. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  8067. {
  8068. bFilamentPreheatState=true;
  8069. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8070. menu_submenu(mFilamentItemForce);
  8071. }
  8072. else
  8073. {
  8074. menu_submenu(lcd_generic_preheat_menu);
  8075. lcd_timeoutToStatus.start();
  8076. }
  8077. }
  8078. }
  8079. }
  8080. else
  8081. {
  8082. #ifdef PAT9125
  8083. fsensor_autoload_check_stop();
  8084. #endif //PAT9125
  8085. fsensor_update();
  8086. }
  8087. }
  8088. }
  8089. #endif //FILAMENT_SENSOR
  8090. #ifdef SAFETYTIMER
  8091. handleSafetyTimer();
  8092. #endif //SAFETYTIMER
  8093. #if defined(KILL_PIN) && KILL_PIN > -1
  8094. static int killCount = 0; // make the inactivity button a bit less responsive
  8095. const int KILL_DELAY = 10000;
  8096. #endif
  8097. if(buflen < (BUFSIZE-1)){
  8098. get_command();
  8099. }
  8100. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8101. if(max_inactive_time)
  8102. kill(_n("Inactivity Shutdown"), 4);
  8103. if(stepper_inactive_time) {
  8104. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8105. {
  8106. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8107. disable_x();
  8108. disable_y();
  8109. disable_z();
  8110. disable_e0();
  8111. disable_e1();
  8112. disable_e2();
  8113. }
  8114. }
  8115. }
  8116. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8117. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8118. {
  8119. chdkActive = false;
  8120. WRITE(CHDK, LOW);
  8121. }
  8122. #endif
  8123. #if defined(KILL_PIN) && KILL_PIN > -1
  8124. // Check if the kill button was pressed and wait just in case it was an accidental
  8125. // key kill key press
  8126. // -------------------------------------------------------------------------------
  8127. if( 0 == READ(KILL_PIN) )
  8128. {
  8129. killCount++;
  8130. }
  8131. else if (killCount > 0)
  8132. {
  8133. killCount--;
  8134. }
  8135. // Exceeded threshold and we can confirm that it was not accidental
  8136. // KILL the machine
  8137. // ----------------------------------------------------------------
  8138. if ( killCount >= KILL_DELAY)
  8139. {
  8140. kill(NULL, 5);
  8141. }
  8142. #endif
  8143. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8144. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8145. #endif
  8146. #ifdef EXTRUDER_RUNOUT_PREVENT
  8147. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8148. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8149. {
  8150. bool oldstatus=READ(E0_ENABLE_PIN);
  8151. enable_e0();
  8152. float oldepos=current_position[E_AXIS];
  8153. float oldedes=destination[E_AXIS];
  8154. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8155. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8156. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8157. current_position[E_AXIS]=oldepos;
  8158. destination[E_AXIS]=oldedes;
  8159. plan_set_e_position(oldepos);
  8160. previous_millis_cmd=_millis();
  8161. st_synchronize();
  8162. WRITE(E0_ENABLE_PIN,oldstatus);
  8163. }
  8164. #endif
  8165. #ifdef TEMP_STAT_LEDS
  8166. handle_status_leds();
  8167. #endif
  8168. check_axes_activity();
  8169. mmu_loop();
  8170. }
  8171. void kill(const char *full_screen_message, unsigned char id)
  8172. {
  8173. printf_P(_N("KILL: %d\n"), id);
  8174. //return;
  8175. cli(); // Stop interrupts
  8176. disable_heater();
  8177. disable_x();
  8178. // SERIAL_ECHOLNPGM("kill - disable Y");
  8179. disable_y();
  8180. disable_z();
  8181. disable_e0();
  8182. disable_e1();
  8183. disable_e2();
  8184. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8185. pinMode(PS_ON_PIN,INPUT);
  8186. #endif
  8187. SERIAL_ERROR_START;
  8188. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8189. if (full_screen_message != NULL) {
  8190. SERIAL_ERRORLNRPGM(full_screen_message);
  8191. lcd_display_message_fullscreen_P(full_screen_message);
  8192. } else {
  8193. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8194. }
  8195. // FMC small patch to update the LCD before ending
  8196. sei(); // enable interrupts
  8197. for ( int i=5; i--; lcd_update(0))
  8198. {
  8199. _delay(200);
  8200. }
  8201. cli(); // disable interrupts
  8202. suicide();
  8203. while(1)
  8204. {
  8205. #ifdef WATCHDOG
  8206. wdt_reset();
  8207. #endif //WATCHDOG
  8208. /* Intentionally left empty */
  8209. } // Wait for reset
  8210. }
  8211. // Stop: Emergency stop used by overtemp functions which allows recovery
  8212. //
  8213. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8214. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8215. // manually started from scratch with the LCD.
  8216. //
  8217. // Note that the current instruction is completely discarded, so resuming from Stop()
  8218. // will introduce either over/under extrusion on the current segment, and will not
  8219. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8220. // the addition of disabling the headers) could allow true recovery in the future.
  8221. void Stop()
  8222. {
  8223. disable_heater();
  8224. if(Stopped == false) {
  8225. Stopped = true;
  8226. lcd_print_stop();
  8227. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8228. SERIAL_ERROR_START;
  8229. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8230. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8231. }
  8232. }
  8233. bool IsStopped() { return Stopped; };
  8234. #ifdef FAST_PWM_FAN
  8235. void setPwmFrequency(uint8_t pin, int val)
  8236. {
  8237. val &= 0x07;
  8238. switch(digitalPinToTimer(pin))
  8239. {
  8240. #if defined(TCCR0A)
  8241. case TIMER0A:
  8242. case TIMER0B:
  8243. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8244. // TCCR0B |= val;
  8245. break;
  8246. #endif
  8247. #if defined(TCCR1A)
  8248. case TIMER1A:
  8249. case TIMER1B:
  8250. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8251. // TCCR1B |= val;
  8252. break;
  8253. #endif
  8254. #if defined(TCCR2)
  8255. case TIMER2:
  8256. case TIMER2:
  8257. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8258. TCCR2 |= val;
  8259. break;
  8260. #endif
  8261. #if defined(TCCR2A)
  8262. case TIMER2A:
  8263. case TIMER2B:
  8264. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8265. TCCR2B |= val;
  8266. break;
  8267. #endif
  8268. #if defined(TCCR3A)
  8269. case TIMER3A:
  8270. case TIMER3B:
  8271. case TIMER3C:
  8272. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8273. TCCR3B |= val;
  8274. break;
  8275. #endif
  8276. #if defined(TCCR4A)
  8277. case TIMER4A:
  8278. case TIMER4B:
  8279. case TIMER4C:
  8280. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8281. TCCR4B |= val;
  8282. break;
  8283. #endif
  8284. #if defined(TCCR5A)
  8285. case TIMER5A:
  8286. case TIMER5B:
  8287. case TIMER5C:
  8288. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8289. TCCR5B |= val;
  8290. break;
  8291. #endif
  8292. }
  8293. }
  8294. #endif //FAST_PWM_FAN
  8295. //! @brief Get and validate extruder number
  8296. //!
  8297. //! If it is not specified, active_extruder is returned in parameter extruder.
  8298. //! @param [in] code M code number
  8299. //! @param [out] extruder
  8300. //! @return error
  8301. //! @retval true Invalid extruder specified in T code
  8302. //! @retval false Valid extruder specified in T code, or not specifiead
  8303. bool setTargetedHotend(int code, uint8_t &extruder)
  8304. {
  8305. extruder = active_extruder;
  8306. if(code_seen('T')) {
  8307. extruder = code_value();
  8308. if(extruder >= EXTRUDERS) {
  8309. SERIAL_ECHO_START;
  8310. switch(code){
  8311. case 104:
  8312. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8313. break;
  8314. case 105:
  8315. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8316. break;
  8317. case 109:
  8318. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8319. break;
  8320. case 218:
  8321. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8322. break;
  8323. case 221:
  8324. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8325. break;
  8326. }
  8327. SERIAL_PROTOCOLLN((int)extruder);
  8328. return true;
  8329. }
  8330. }
  8331. return false;
  8332. }
  8333. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8334. {
  8335. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8336. {
  8337. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8338. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8339. }
  8340. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8341. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8342. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8343. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8344. total_filament_used = 0;
  8345. }
  8346. float calculate_extruder_multiplier(float diameter) {
  8347. float out = 1.f;
  8348. if (cs.volumetric_enabled && diameter > 0.f) {
  8349. float area = M_PI * diameter * diameter * 0.25;
  8350. out = 1.f / area;
  8351. }
  8352. if (extrudemultiply != 100)
  8353. out *= float(extrudemultiply) * 0.01f;
  8354. return out;
  8355. }
  8356. void calculate_extruder_multipliers() {
  8357. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8358. #if EXTRUDERS > 1
  8359. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8360. #if EXTRUDERS > 2
  8361. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8362. #endif
  8363. #endif
  8364. }
  8365. void delay_keep_alive(unsigned int ms)
  8366. {
  8367. for (;;) {
  8368. manage_heater();
  8369. // Manage inactivity, but don't disable steppers on timeout.
  8370. manage_inactivity(true);
  8371. lcd_update(0);
  8372. if (ms == 0)
  8373. break;
  8374. else if (ms >= 50) {
  8375. _delay(50);
  8376. ms -= 50;
  8377. } else {
  8378. _delay(ms);
  8379. ms = 0;
  8380. }
  8381. }
  8382. }
  8383. static void wait_for_heater(long codenum, uint8_t extruder) {
  8384. if (!degTargetHotend(extruder))
  8385. return;
  8386. #ifdef TEMP_RESIDENCY_TIME
  8387. long residencyStart;
  8388. residencyStart = -1;
  8389. /* continue to loop until we have reached the target temp
  8390. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8391. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8392. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8393. #else
  8394. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8395. #endif //TEMP_RESIDENCY_TIME
  8396. if ((_millis() - codenum) > 1000UL)
  8397. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8398. if (!farm_mode) {
  8399. SERIAL_PROTOCOLPGM("T:");
  8400. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8401. SERIAL_PROTOCOLPGM(" E:");
  8402. SERIAL_PROTOCOL((int)extruder);
  8403. #ifdef TEMP_RESIDENCY_TIME
  8404. SERIAL_PROTOCOLPGM(" W:");
  8405. if (residencyStart > -1)
  8406. {
  8407. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8408. SERIAL_PROTOCOLLN(codenum);
  8409. }
  8410. else
  8411. {
  8412. SERIAL_PROTOCOLLN("?");
  8413. }
  8414. }
  8415. #else
  8416. SERIAL_PROTOCOLLN("");
  8417. #endif
  8418. codenum = _millis();
  8419. }
  8420. manage_heater();
  8421. manage_inactivity(true); //do not disable steppers
  8422. lcd_update(0);
  8423. #ifdef TEMP_RESIDENCY_TIME
  8424. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8425. or when current temp falls outside the hysteresis after target temp was reached */
  8426. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8427. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8428. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8429. {
  8430. residencyStart = _millis();
  8431. }
  8432. #endif //TEMP_RESIDENCY_TIME
  8433. }
  8434. }
  8435. void check_babystep()
  8436. {
  8437. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8438. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8439. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8440. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8441. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8442. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8443. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8444. babystep_z);
  8445. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8446. lcd_update_enable(true);
  8447. }
  8448. }
  8449. #ifdef HEATBED_ANALYSIS
  8450. void d_setup()
  8451. {
  8452. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8453. pinMode(D_DATA, INPUT_PULLUP);
  8454. pinMode(D_REQUIRE, OUTPUT);
  8455. digitalWrite(D_REQUIRE, HIGH);
  8456. }
  8457. float d_ReadData()
  8458. {
  8459. int digit[13];
  8460. String mergeOutput;
  8461. float output;
  8462. digitalWrite(D_REQUIRE, HIGH);
  8463. for (int i = 0; i<13; i++)
  8464. {
  8465. for (int j = 0; j < 4; j++)
  8466. {
  8467. while (digitalRead(D_DATACLOCK) == LOW) {}
  8468. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8469. bitWrite(digit[i], j, digitalRead(D_DATA));
  8470. }
  8471. }
  8472. digitalWrite(D_REQUIRE, LOW);
  8473. mergeOutput = "";
  8474. output = 0;
  8475. for (int r = 5; r <= 10; r++) //Merge digits
  8476. {
  8477. mergeOutput += digit[r];
  8478. }
  8479. output = mergeOutput.toFloat();
  8480. if (digit[4] == 8) //Handle sign
  8481. {
  8482. output *= -1;
  8483. }
  8484. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8485. {
  8486. output /= 10;
  8487. }
  8488. return output;
  8489. }
  8490. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8491. int t1 = 0;
  8492. int t_delay = 0;
  8493. int digit[13];
  8494. int m;
  8495. char str[3];
  8496. //String mergeOutput;
  8497. char mergeOutput[15];
  8498. float output;
  8499. int mesh_point = 0; //index number of calibration point
  8500. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8501. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8502. float mesh_home_z_search = 4;
  8503. float measure_z_height = 0.2f;
  8504. float row[x_points_num];
  8505. int ix = 0;
  8506. int iy = 0;
  8507. const char* filename_wldsd = "mesh.txt";
  8508. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8509. char numb_wldsd[8]; // (" -A.BCD" + null)
  8510. #ifdef MICROMETER_LOGGING
  8511. d_setup();
  8512. #endif //MICROMETER_LOGGING
  8513. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8514. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8515. unsigned int custom_message_type_old = custom_message_type;
  8516. unsigned int custom_message_state_old = custom_message_state;
  8517. custom_message_type = CustomMsg::MeshBedLeveling;
  8518. custom_message_state = (x_points_num * y_points_num) + 10;
  8519. lcd_update(1);
  8520. //mbl.reset();
  8521. babystep_undo();
  8522. card.openFile(filename_wldsd, false);
  8523. /*destination[Z_AXIS] = mesh_home_z_search;
  8524. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8525. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8526. for(int8_t i=0; i < NUM_AXIS; i++) {
  8527. current_position[i] = destination[i];
  8528. }
  8529. st_synchronize();
  8530. */
  8531. destination[Z_AXIS] = measure_z_height;
  8532. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8533. for(int8_t i=0; i < NUM_AXIS; i++) {
  8534. current_position[i] = destination[i];
  8535. }
  8536. st_synchronize();
  8537. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8538. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8539. SERIAL_PROTOCOL(x_points_num);
  8540. SERIAL_PROTOCOLPGM(",");
  8541. SERIAL_PROTOCOL(y_points_num);
  8542. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8543. SERIAL_PROTOCOL(mesh_home_z_search);
  8544. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8545. SERIAL_PROTOCOL(x_dimension);
  8546. SERIAL_PROTOCOLPGM(",");
  8547. SERIAL_PROTOCOL(y_dimension);
  8548. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8549. while (mesh_point != x_points_num * y_points_num) {
  8550. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8551. iy = mesh_point / x_points_num;
  8552. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8553. float z0 = 0.f;
  8554. /*destination[Z_AXIS] = mesh_home_z_search;
  8555. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8557. for(int8_t i=0; i < NUM_AXIS; i++) {
  8558. current_position[i] = destination[i];
  8559. }
  8560. st_synchronize();*/
  8561. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8562. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8563. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8564. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8565. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8566. set_current_to_destination();
  8567. st_synchronize();
  8568. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8569. delay_keep_alive(1000);
  8570. #ifdef MICROMETER_LOGGING
  8571. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8572. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8573. //strcat(data_wldsd, numb_wldsd);
  8574. //MYSERIAL.println(data_wldsd);
  8575. //delay(1000);
  8576. //delay(3000);
  8577. //t1 = millis();
  8578. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8579. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8580. memset(digit, 0, sizeof(digit));
  8581. //cli();
  8582. digitalWrite(D_REQUIRE, LOW);
  8583. for (int i = 0; i<13; i++)
  8584. {
  8585. //t1 = millis();
  8586. for (int j = 0; j < 4; j++)
  8587. {
  8588. while (digitalRead(D_DATACLOCK) == LOW) {}
  8589. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8590. //printf_P(PSTR("Done %d\n"), j);
  8591. bitWrite(digit[i], j, digitalRead(D_DATA));
  8592. }
  8593. //t_delay = (millis() - t1);
  8594. //SERIAL_PROTOCOLPGM(" ");
  8595. //SERIAL_PROTOCOL_F(t_delay, 5);
  8596. //SERIAL_PROTOCOLPGM(" ");
  8597. }
  8598. //sei();
  8599. digitalWrite(D_REQUIRE, HIGH);
  8600. mergeOutput[0] = '\0';
  8601. output = 0;
  8602. for (int r = 5; r <= 10; r++) //Merge digits
  8603. {
  8604. sprintf(str, "%d", digit[r]);
  8605. strcat(mergeOutput, str);
  8606. }
  8607. output = atof(mergeOutput);
  8608. if (digit[4] == 8) //Handle sign
  8609. {
  8610. output *= -1;
  8611. }
  8612. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8613. {
  8614. output *= 0.1;
  8615. }
  8616. //output = d_ReadData();
  8617. //row[ix] = current_position[Z_AXIS];
  8618. //row[ix] = d_ReadData();
  8619. row[ix] = output;
  8620. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8621. memset(data_wldsd, 0, sizeof(data_wldsd));
  8622. for (int i = 0; i < x_points_num; i++) {
  8623. SERIAL_PROTOCOLPGM(" ");
  8624. SERIAL_PROTOCOL_F(row[i], 5);
  8625. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8626. dtostrf(row[i], 7, 3, numb_wldsd);
  8627. strcat(data_wldsd, numb_wldsd);
  8628. }
  8629. card.write_command(data_wldsd);
  8630. SERIAL_PROTOCOLPGM("\n");
  8631. }
  8632. custom_message_state--;
  8633. mesh_point++;
  8634. lcd_update(1);
  8635. }
  8636. #endif //MICROMETER_LOGGING
  8637. card.closefile();
  8638. //clean_up_after_endstop_move(l_feedmultiply);
  8639. }
  8640. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8641. int t1 = 0;
  8642. int t_delay = 0;
  8643. int digit[13];
  8644. int m;
  8645. char str[3];
  8646. //String mergeOutput;
  8647. char mergeOutput[15];
  8648. float output;
  8649. int mesh_point = 0; //index number of calibration point
  8650. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8651. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8652. float mesh_home_z_search = 4;
  8653. float row[x_points_num];
  8654. int ix = 0;
  8655. int iy = 0;
  8656. const char* filename_wldsd = "wldsd.txt";
  8657. char data_wldsd[70];
  8658. char numb_wldsd[10];
  8659. d_setup();
  8660. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8661. // We don't know where we are! HOME!
  8662. // Push the commands to the front of the message queue in the reverse order!
  8663. // There shall be always enough space reserved for these commands.
  8664. repeatcommand_front(); // repeat G80 with all its parameters
  8665. enquecommand_front_P((PSTR("G28 W0")));
  8666. enquecommand_front_P((PSTR("G1 Z5")));
  8667. return;
  8668. }
  8669. unsigned int custom_message_type_old = custom_message_type;
  8670. unsigned int custom_message_state_old = custom_message_state;
  8671. custom_message_type = CustomMsg::MeshBedLeveling;
  8672. custom_message_state = (x_points_num * y_points_num) + 10;
  8673. lcd_update(1);
  8674. mbl.reset();
  8675. babystep_undo();
  8676. card.openFile(filename_wldsd, false);
  8677. current_position[Z_AXIS] = mesh_home_z_search;
  8678. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8679. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8680. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8681. int l_feedmultiply = setup_for_endstop_move(false);
  8682. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8683. SERIAL_PROTOCOL(x_points_num);
  8684. SERIAL_PROTOCOLPGM(",");
  8685. SERIAL_PROTOCOL(y_points_num);
  8686. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8687. SERIAL_PROTOCOL(mesh_home_z_search);
  8688. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8689. SERIAL_PROTOCOL(x_dimension);
  8690. SERIAL_PROTOCOLPGM(",");
  8691. SERIAL_PROTOCOL(y_dimension);
  8692. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8693. while (mesh_point != x_points_num * y_points_num) {
  8694. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8695. iy = mesh_point / x_points_num;
  8696. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8697. float z0 = 0.f;
  8698. current_position[Z_AXIS] = mesh_home_z_search;
  8699. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8700. st_synchronize();
  8701. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8702. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8703. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8704. st_synchronize();
  8705. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8706. break;
  8707. card.closefile();
  8708. }
  8709. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8710. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8711. //strcat(data_wldsd, numb_wldsd);
  8712. //MYSERIAL.println(data_wldsd);
  8713. //_delay(1000);
  8714. //_delay(3000);
  8715. //t1 = _millis();
  8716. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8717. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8718. memset(digit, 0, sizeof(digit));
  8719. //cli();
  8720. digitalWrite(D_REQUIRE, LOW);
  8721. for (int i = 0; i<13; i++)
  8722. {
  8723. //t1 = _millis();
  8724. for (int j = 0; j < 4; j++)
  8725. {
  8726. while (digitalRead(D_DATACLOCK) == LOW) {}
  8727. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8728. bitWrite(digit[i], j, digitalRead(D_DATA));
  8729. }
  8730. //t_delay = (_millis() - t1);
  8731. //SERIAL_PROTOCOLPGM(" ");
  8732. //SERIAL_PROTOCOL_F(t_delay, 5);
  8733. //SERIAL_PROTOCOLPGM(" ");
  8734. }
  8735. //sei();
  8736. digitalWrite(D_REQUIRE, HIGH);
  8737. mergeOutput[0] = '\0';
  8738. output = 0;
  8739. for (int r = 5; r <= 10; r++) //Merge digits
  8740. {
  8741. sprintf(str, "%d", digit[r]);
  8742. strcat(mergeOutput, str);
  8743. }
  8744. output = atof(mergeOutput);
  8745. if (digit[4] == 8) //Handle sign
  8746. {
  8747. output *= -1;
  8748. }
  8749. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8750. {
  8751. output *= 0.1;
  8752. }
  8753. //output = d_ReadData();
  8754. //row[ix] = current_position[Z_AXIS];
  8755. memset(data_wldsd, 0, sizeof(data_wldsd));
  8756. for (int i = 0; i <3; i++) {
  8757. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8758. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8759. strcat(data_wldsd, numb_wldsd);
  8760. strcat(data_wldsd, ";");
  8761. }
  8762. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8763. dtostrf(output, 8, 5, numb_wldsd);
  8764. strcat(data_wldsd, numb_wldsd);
  8765. //strcat(data_wldsd, ";");
  8766. card.write_command(data_wldsd);
  8767. //row[ix] = d_ReadData();
  8768. row[ix] = output; // current_position[Z_AXIS];
  8769. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8770. for (int i = 0; i < x_points_num; i++) {
  8771. SERIAL_PROTOCOLPGM(" ");
  8772. SERIAL_PROTOCOL_F(row[i], 5);
  8773. }
  8774. SERIAL_PROTOCOLPGM("\n");
  8775. }
  8776. custom_message_state--;
  8777. mesh_point++;
  8778. lcd_update(1);
  8779. }
  8780. card.closefile();
  8781. clean_up_after_endstop_move(l_feedmultiply);
  8782. }
  8783. #endif //HEATBED_ANALYSIS
  8784. #ifndef PINDA_THERMISTOR
  8785. static void temp_compensation_start() {
  8786. custom_message_type = CustomMsg::TempCompPreheat;
  8787. custom_message_state = PINDA_HEAT_T + 1;
  8788. lcd_update(2);
  8789. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8790. current_position[E_AXIS] -= default_retraction;
  8791. }
  8792. plan_buffer_line_curposXYZE(400, active_extruder);
  8793. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8794. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8795. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8796. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8797. st_synchronize();
  8798. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8799. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8800. delay_keep_alive(1000);
  8801. custom_message_state = PINDA_HEAT_T - i;
  8802. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8803. else lcd_update(1);
  8804. }
  8805. custom_message_type = CustomMsg::Status;
  8806. custom_message_state = 0;
  8807. }
  8808. static void temp_compensation_apply() {
  8809. int i_add;
  8810. int z_shift = 0;
  8811. float z_shift_mm;
  8812. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8813. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8814. i_add = (target_temperature_bed - 60) / 10;
  8815. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8816. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8817. }else {
  8818. //interpolation
  8819. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8820. }
  8821. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8823. st_synchronize();
  8824. plan_set_z_position(current_position[Z_AXIS]);
  8825. }
  8826. else {
  8827. //we have no temp compensation data
  8828. }
  8829. }
  8830. #endif //ndef PINDA_THERMISTOR
  8831. float temp_comp_interpolation(float inp_temperature) {
  8832. //cubic spline interpolation
  8833. int n, i, j;
  8834. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8835. int shift[10];
  8836. int temp_C[10];
  8837. n = 6; //number of measured points
  8838. shift[0] = 0;
  8839. for (i = 0; i < n; i++) {
  8840. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8841. temp_C[i] = 50 + i * 10; //temperature in C
  8842. #ifdef PINDA_THERMISTOR
  8843. temp_C[i] = 35 + i * 5; //temperature in C
  8844. #else
  8845. temp_C[i] = 50 + i * 10; //temperature in C
  8846. #endif
  8847. x[i] = (float)temp_C[i];
  8848. f[i] = (float)shift[i];
  8849. }
  8850. if (inp_temperature < x[0]) return 0;
  8851. for (i = n - 1; i>0; i--) {
  8852. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8853. h[i - 1] = x[i] - x[i - 1];
  8854. }
  8855. //*********** formation of h, s , f matrix **************
  8856. for (i = 1; i<n - 1; i++) {
  8857. m[i][i] = 2 * (h[i - 1] + h[i]);
  8858. if (i != 1) {
  8859. m[i][i - 1] = h[i - 1];
  8860. m[i - 1][i] = h[i - 1];
  8861. }
  8862. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8863. }
  8864. //*********** forward elimination **************
  8865. for (i = 1; i<n - 2; i++) {
  8866. temp = (m[i + 1][i] / m[i][i]);
  8867. for (j = 1; j <= n - 1; j++)
  8868. m[i + 1][j] -= temp*m[i][j];
  8869. }
  8870. //*********** backward substitution *********
  8871. for (i = n - 2; i>0; i--) {
  8872. sum = 0;
  8873. for (j = i; j <= n - 2; j++)
  8874. sum += m[i][j] * s[j];
  8875. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8876. }
  8877. for (i = 0; i<n - 1; i++)
  8878. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8879. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8880. b = s[i] / 2;
  8881. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8882. d = f[i];
  8883. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8884. }
  8885. return sum;
  8886. }
  8887. #ifdef PINDA_THERMISTOR
  8888. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8889. {
  8890. if (!temp_cal_active) return 0;
  8891. if (!calibration_status_pinda()) return 0;
  8892. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8893. }
  8894. #endif //PINDA_THERMISTOR
  8895. void long_pause() //long pause print
  8896. {
  8897. st_synchronize();
  8898. start_pause_print = _millis();
  8899. // Stop heaters
  8900. setAllTargetHotends(0);
  8901. //retract
  8902. current_position[E_AXIS] -= default_retraction;
  8903. plan_buffer_line_curposXYZE(400, active_extruder);
  8904. //lift z
  8905. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8906. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8907. plan_buffer_line_curposXYZE(15, active_extruder);
  8908. //Move XY to side
  8909. current_position[X_AXIS] = X_PAUSE_POS;
  8910. current_position[Y_AXIS] = Y_PAUSE_POS;
  8911. plan_buffer_line_curposXYZE(50, active_extruder);
  8912. // Turn off the print fan
  8913. fanSpeed = 0;
  8914. }
  8915. void serialecho_temperatures() {
  8916. float tt = degHotend(active_extruder);
  8917. SERIAL_PROTOCOLPGM("T:");
  8918. SERIAL_PROTOCOL(tt);
  8919. SERIAL_PROTOCOLPGM(" E:");
  8920. SERIAL_PROTOCOL((int)active_extruder);
  8921. SERIAL_PROTOCOLPGM(" B:");
  8922. SERIAL_PROTOCOL_F(degBed(), 1);
  8923. SERIAL_PROTOCOLLN("");
  8924. }
  8925. #ifdef UVLO_SUPPORT
  8926. void uvlo_()
  8927. {
  8928. unsigned long time_start = _millis();
  8929. bool sd_print = card.sdprinting;
  8930. // Conserve power as soon as possible.
  8931. #ifdef LCD_BL_PIN
  8932. backlightMode = BACKLIGHT_MODE_DIM;
  8933. backlightLevel_LOW = 0;
  8934. backlight_update();
  8935. #endif //LCD_BL_PIN
  8936. disable_x();
  8937. disable_y();
  8938. #ifdef TMC2130
  8939. tmc2130_set_current_h(Z_AXIS, 20);
  8940. tmc2130_set_current_r(Z_AXIS, 20);
  8941. tmc2130_set_current_h(E_AXIS, 20);
  8942. tmc2130_set_current_r(E_AXIS, 20);
  8943. #endif //TMC2130
  8944. // Indicate that the interrupt has been triggered.
  8945. // SERIAL_ECHOLNPGM("UVLO");
  8946. // Read out the current Z motor microstep counter. This will be later used
  8947. // for reaching the zero full step before powering off.
  8948. uint16_t z_microsteps = 0;
  8949. #ifdef TMC2130
  8950. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8951. #endif //TMC2130
  8952. // Calculate the file position, from which to resume this print.
  8953. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8954. {
  8955. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8956. sd_position -= sdlen_planner;
  8957. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8958. sd_position -= sdlen_cmdqueue;
  8959. if (sd_position < 0) sd_position = 0;
  8960. }
  8961. // save the global state at planning time
  8962. uint16_t feedrate_bckp;
  8963. if (blocks_queued())
  8964. {
  8965. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8966. feedrate_bckp = current_block->gcode_feedrate;
  8967. }
  8968. else
  8969. {
  8970. saved_target[0] = SAVED_TARGET_UNSET;
  8971. feedrate_bckp = feedrate;
  8972. }
  8973. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8974. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8975. // are in action.
  8976. planner_abort_hard();
  8977. // Store the current extruder position.
  8978. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8979. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8980. // Clean the input command queue.
  8981. cmdqueue_reset();
  8982. card.sdprinting = false;
  8983. // card.closefile();
  8984. // Enable stepper driver interrupt to move Z axis.
  8985. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8986. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8987. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8988. sei();
  8989. plan_buffer_line(
  8990. current_position[X_AXIS],
  8991. current_position[Y_AXIS],
  8992. current_position[Z_AXIS],
  8993. current_position[E_AXIS] - default_retraction,
  8994. 95, active_extruder);
  8995. st_synchronize();
  8996. disable_e0();
  8997. plan_buffer_line(
  8998. current_position[X_AXIS],
  8999. current_position[Y_AXIS],
  9000. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  9001. current_position[E_AXIS] - default_retraction,
  9002. 40, active_extruder);
  9003. st_synchronize();
  9004. disable_e0();
  9005. plan_buffer_line(
  9006. current_position[X_AXIS],
  9007. current_position[Y_AXIS],
  9008. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  9009. current_position[E_AXIS] - default_retraction,
  9010. 40, active_extruder);
  9011. st_synchronize();
  9012. disable_e0();
  9013. // Move Z up to the next 0th full step.
  9014. // Write the file position.
  9015. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9016. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9017. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9018. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9019. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9020. // Scale the z value to 1u resolution.
  9021. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9022. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9023. }
  9024. // Read out the current Z motor microstep counter. This will be later used
  9025. // for reaching the zero full step before powering off.
  9026. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9027. // Store the current position.
  9028. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9029. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9030. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  9031. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9032. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9033. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  9034. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  9035. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  9036. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9037. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9038. #if EXTRUDERS > 1
  9039. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9040. #if EXTRUDERS > 2
  9041. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9042. #endif
  9043. #endif
  9044. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9045. // Store the saved target
  9046. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9047. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9048. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9049. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9050. // Finaly store the "power outage" flag.
  9051. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9052. st_synchronize();
  9053. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  9054. // Increment power failure counter
  9055. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9056. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9057. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9058. #if 0
  9059. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  9060. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9061. plan_buffer_line_curposXYZE(500, active_extruder);
  9062. st_synchronize();
  9063. #endif
  9064. wdt_enable(WDTO_500MS);
  9065. WRITE(BEEPER,HIGH);
  9066. while(1)
  9067. ;
  9068. }
  9069. void uvlo_tiny()
  9070. {
  9071. uint16_t z_microsteps=0;
  9072. // Conserve power as soon as possible.
  9073. disable_x();
  9074. disable_y();
  9075. disable_e0();
  9076. #ifdef TMC2130
  9077. tmc2130_set_current_h(Z_AXIS, 20);
  9078. tmc2130_set_current_r(Z_AXIS, 20);
  9079. #endif //TMC2130
  9080. // Read out the current Z motor microstep counter
  9081. #ifdef TMC2130
  9082. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  9083. #endif //TMC2130
  9084. planner_abort_hard();
  9085. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  9086. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  9087. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  9088. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9089. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  9090. }
  9091. //after multiple power panics current Z axis is unknow
  9092. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  9093. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  9094. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  9095. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  9096. }
  9097. // Finaly store the "power outage" flag.
  9098. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9099. // Increment power failure counter
  9100. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9101. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9102. wdt_enable(WDTO_500MS);
  9103. WRITE(BEEPER,HIGH);
  9104. while(1)
  9105. ;
  9106. }
  9107. #endif //UVLO_SUPPORT
  9108. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9109. void setup_fan_interrupt() {
  9110. //INT7
  9111. DDRE &= ~(1 << 7); //input pin
  9112. PORTE &= ~(1 << 7); //no internal pull-up
  9113. //start with sensing rising edge
  9114. EICRB &= ~(1 << 6);
  9115. EICRB |= (1 << 7);
  9116. //enable INT7 interrupt
  9117. EIMSK |= (1 << 7);
  9118. }
  9119. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9120. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9121. ISR(INT7_vect) {
  9122. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9123. #ifdef FAN_SOFT_PWM
  9124. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9125. #else //FAN_SOFT_PWM
  9126. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9127. #endif //FAN_SOFT_PWM
  9128. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9129. t_fan_rising_edge = millis_nc();
  9130. }
  9131. else { //interrupt was triggered by falling edge
  9132. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9133. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9134. }
  9135. }
  9136. EICRB ^= (1 << 6); //change edge
  9137. }
  9138. #endif
  9139. #ifdef UVLO_SUPPORT
  9140. void setup_uvlo_interrupt() {
  9141. DDRE &= ~(1 << 4); //input pin
  9142. PORTE &= ~(1 << 4); //no internal pull-up
  9143. //sensing falling edge
  9144. EICRB |= (1 << 0);
  9145. EICRB &= ~(1 << 1);
  9146. //enable INT4 interrupt
  9147. EIMSK |= (1 << 4);
  9148. }
  9149. ISR(INT4_vect) {
  9150. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9151. SERIAL_ECHOLNPGM("INT4");
  9152. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9153. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9154. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9155. }
  9156. void recover_print(uint8_t automatic) {
  9157. char cmd[30];
  9158. lcd_update_enable(true);
  9159. lcd_update(2);
  9160. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  9161. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  9162. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  9163. // Lift the print head, so one may remove the excess priming material.
  9164. if(!bTiny&&(current_position[Z_AXIS]<25))
  9165. enquecommand_P(PSTR("G1 Z25 F800"));
  9166. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  9167. enquecommand_P(PSTR("G28 X Y"));
  9168. // Set the target bed and nozzle temperatures and wait.
  9169. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9170. enquecommand(cmd);
  9171. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9172. enquecommand(cmd);
  9173. enquecommand_P(PSTR("M83")); //E axis relative mode
  9174. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9175. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  9176. if(automatic == 0){
  9177. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9178. }
  9179. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  9180. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9181. // Restart the print.
  9182. restore_print_from_eeprom();
  9183. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9184. }
  9185. void recover_machine_state_after_power_panic(bool bTiny)
  9186. {
  9187. char cmd[30];
  9188. // 1) Recover the logical cordinates at the time of the power panic.
  9189. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  9190. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9191. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9192. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9193. mbl.active = false;
  9194. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9195. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9196. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9197. // Scale the z value to 10u resolution.
  9198. int16_t v;
  9199. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9200. if (v != 0)
  9201. mbl.active = true;
  9202. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9203. }
  9204. // Recover the logical coordinate of the Z axis at the time of the power panic.
  9205. // The current position after power panic is moved to the next closest 0th full step.
  9206. if(bTiny){
  9207. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  9208. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  9209. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9210. //after multiple power panics the print is slightly in the air so get it little bit down.
  9211. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  9212. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  9213. }
  9214. else{
  9215. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  9216. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  9217. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9218. }
  9219. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  9220. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9221. sprintf_P(cmd, PSTR("G92 E"));
  9222. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  9223. enquecommand(cmd);
  9224. }
  9225. memcpy(destination, current_position, sizeof(destination));
  9226. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9227. print_world_coordinates();
  9228. // 3) Initialize the logical to physical coordinate system transformation.
  9229. world2machine_initialize();
  9230. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9231. // print_mesh_bed_leveling_table();
  9232. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9233. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9234. babystep_load();
  9235. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  9236. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  9237. // 6) Power up the motors, mark their positions as known.
  9238. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  9239. axis_known_position[X_AXIS] = true; enable_x();
  9240. axis_known_position[Y_AXIS] = true; enable_y();
  9241. axis_known_position[Z_AXIS] = true; enable_z();
  9242. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9243. print_physical_coordinates();
  9244. // 7) Recover the target temperatures.
  9245. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  9246. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9247. // 8) Recover extruder multipilers
  9248. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9249. #if EXTRUDERS > 1
  9250. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9251. #if EXTRUDERS > 2
  9252. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9253. #endif
  9254. #endif
  9255. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9256. // 9) Recover the saved target
  9257. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9258. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9259. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9260. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9261. }
  9262. void restore_print_from_eeprom() {
  9263. int feedrate_rec;
  9264. int feedmultiply_rec;
  9265. uint8_t fan_speed_rec;
  9266. char cmd[30];
  9267. char filename[13];
  9268. uint8_t depth = 0;
  9269. char dir_name[9];
  9270. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9271. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9272. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  9273. SERIAL_ECHOPGM("Feedrate:");
  9274. MYSERIAL.print(feedrate_rec);
  9275. SERIAL_ECHOPGM(", feedmultiply:");
  9276. MYSERIAL.println(feedmultiply_rec);
  9277. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9278. MYSERIAL.println(int(depth));
  9279. for (int i = 0; i < depth; i++) {
  9280. for (int j = 0; j < 8; j++) {
  9281. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9282. }
  9283. dir_name[8] = '\0';
  9284. MYSERIAL.println(dir_name);
  9285. strcpy(dir_names[i], dir_name);
  9286. card.chdir(dir_name);
  9287. }
  9288. for (int i = 0; i < 8; i++) {
  9289. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9290. }
  9291. filename[8] = '\0';
  9292. MYSERIAL.print(filename);
  9293. strcat_P(filename, PSTR(".gco"));
  9294. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9295. enquecommand(cmd);
  9296. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9297. SERIAL_ECHOPGM("Position read from eeprom:");
  9298. MYSERIAL.println(position);
  9299. // E axis relative mode.
  9300. enquecommand_P(PSTR("M83"));
  9301. // Move to the XY print position in logical coordinates, where the print has been killed.
  9302. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  9303. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  9304. strcat_P(cmd, PSTR(" F2000"));
  9305. enquecommand(cmd);
  9306. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  9307. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  9308. // Move the Z axis down to the print, in logical coordinates.
  9309. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  9310. enquecommand(cmd);
  9311. // Unretract.
  9312. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  9313. // Set the feedrates saved at the power panic.
  9314. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9315. enquecommand(cmd);
  9316. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9317. enquecommand(cmd);
  9318. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9319. {
  9320. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9321. }
  9322. // Set the fan speed saved at the power panic.
  9323. strcpy_P(cmd, PSTR("M106 S"));
  9324. strcat(cmd, itostr3(int(fan_speed_rec)));
  9325. enquecommand(cmd);
  9326. // Set a position in the file.
  9327. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9328. enquecommand(cmd);
  9329. enquecommand_P(PSTR("G4 S0"));
  9330. enquecommand_P(PSTR("PRUSA uvlo"));
  9331. }
  9332. #endif //UVLO_SUPPORT
  9333. //! @brief Immediately stop print moves
  9334. //!
  9335. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9336. //! If printing from sd card, position in file is saved.
  9337. //! If printing from USB, line number is saved.
  9338. //!
  9339. //! @param z_move
  9340. //! @param e_move
  9341. void stop_and_save_print_to_ram(float z_move, float e_move)
  9342. {
  9343. if (saved_printing) return;
  9344. #if 0
  9345. unsigned char nplanner_blocks;
  9346. #endif
  9347. unsigned char nlines;
  9348. uint16_t sdlen_planner;
  9349. uint16_t sdlen_cmdqueue;
  9350. cli();
  9351. if (card.sdprinting) {
  9352. #if 0
  9353. nplanner_blocks = number_of_blocks();
  9354. #endif
  9355. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9356. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9357. saved_sdpos -= sdlen_planner;
  9358. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9359. saved_sdpos -= sdlen_cmdqueue;
  9360. saved_printing_type = PRINTING_TYPE_SD;
  9361. }
  9362. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9363. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9364. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9365. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9366. saved_sdpos -= nlines;
  9367. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9368. saved_printing_type = PRINTING_TYPE_USB;
  9369. }
  9370. else {
  9371. saved_printing_type = PRINTING_TYPE_NONE;
  9372. //not sd printing nor usb printing
  9373. }
  9374. #if 0
  9375. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9376. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9377. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9378. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9379. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9380. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9381. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9382. {
  9383. card.setIndex(saved_sdpos);
  9384. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9385. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9386. MYSERIAL.print(char(card.get()));
  9387. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9388. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9389. MYSERIAL.print(char(card.get()));
  9390. SERIAL_ECHOLNPGM("End of command buffer");
  9391. }
  9392. {
  9393. // Print the content of the planner buffer, line by line:
  9394. card.setIndex(saved_sdpos);
  9395. int8_t iline = 0;
  9396. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9397. SERIAL_ECHOPGM("Planner line (from file): ");
  9398. MYSERIAL.print(int(iline), DEC);
  9399. SERIAL_ECHOPGM(", length: ");
  9400. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9401. SERIAL_ECHOPGM(", steps: (");
  9402. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9403. SERIAL_ECHOPGM(",");
  9404. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9405. SERIAL_ECHOPGM(",");
  9406. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9407. SERIAL_ECHOPGM(",");
  9408. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9409. SERIAL_ECHOPGM("), events: ");
  9410. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9411. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9412. MYSERIAL.print(char(card.get()));
  9413. }
  9414. }
  9415. {
  9416. // Print the content of the command buffer, line by line:
  9417. int8_t iline = 0;
  9418. union {
  9419. struct {
  9420. char lo;
  9421. char hi;
  9422. } lohi;
  9423. uint16_t value;
  9424. } sdlen_single;
  9425. int _bufindr = bufindr;
  9426. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9427. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9428. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9429. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9430. }
  9431. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9432. MYSERIAL.print(int(iline), DEC);
  9433. SERIAL_ECHOPGM(", type: ");
  9434. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9435. SERIAL_ECHOPGM(", len: ");
  9436. MYSERIAL.println(sdlen_single.value, DEC);
  9437. // Print the content of the buffer line.
  9438. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9439. SERIAL_ECHOPGM("Buffer line (from file): ");
  9440. MYSERIAL.println(int(iline), DEC);
  9441. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9442. MYSERIAL.print(char(card.get()));
  9443. if (-- _buflen == 0)
  9444. break;
  9445. // First skip the current command ID and iterate up to the end of the string.
  9446. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9447. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9448. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9449. // If the end of the buffer was empty,
  9450. if (_bufindr == sizeof(cmdbuffer)) {
  9451. // skip to the start and find the nonzero command.
  9452. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9453. }
  9454. }
  9455. }
  9456. #endif
  9457. // save the global state at planning time
  9458. if (blocks_queued())
  9459. {
  9460. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9461. saved_feedrate2 = current_block->gcode_feedrate;
  9462. }
  9463. else
  9464. {
  9465. saved_target[0] = SAVED_TARGET_UNSET;
  9466. saved_feedrate2 = feedrate;
  9467. }
  9468. planner_abort_hard(); //abort printing
  9469. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9470. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9471. saved_active_extruder = active_extruder; //save active_extruder
  9472. saved_extruder_temperature = degTargetHotend(active_extruder);
  9473. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  9474. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  9475. saved_fanSpeed = fanSpeed;
  9476. cmdqueue_reset(); //empty cmdqueue
  9477. card.sdprinting = false;
  9478. // card.closefile();
  9479. saved_printing = true;
  9480. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9481. st_reset_timer();
  9482. sei();
  9483. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9484. #if 1
  9485. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9486. // the caller can continue processing. This is used during powerpanic to save the state as we
  9487. // move away from the print.
  9488. char buf[48];
  9489. // First unretract (relative extrusion)
  9490. if(!saved_extruder_relative_mode){
  9491. enquecommand(PSTR("M83"), true);
  9492. }
  9493. //retract 45mm/s
  9494. // A single sprintf may not be faster, but is definitely 20B shorter
  9495. // than a sequence of commands building the string piece by piece
  9496. // A snprintf would have been a safer call, but since it is not used
  9497. // in the whole program, its implementation would bring more bytes to the total size
  9498. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9499. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9500. enquecommand(buf, false);
  9501. // Then lift Z axis
  9502. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9503. // At this point the command queue is empty.
  9504. enquecommand(buf, false);
  9505. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9506. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9507. repeatcommand_front();
  9508. #else
  9509. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9510. st_synchronize(); //wait moving
  9511. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9512. memcpy(destination, current_position, sizeof(destination));
  9513. #endif
  9514. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9515. }
  9516. }
  9517. //! @brief Restore print from ram
  9518. //!
  9519. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9520. //! print fan speed, waits for extruder temperature restore, then restores
  9521. //! position and continues print moves.
  9522. //!
  9523. //! Internally lcd_update() is called by wait_for_heater().
  9524. //!
  9525. //! @param e_move
  9526. void restore_print_from_ram_and_continue(float e_move)
  9527. {
  9528. if (!saved_printing) return;
  9529. #ifdef FANCHECK
  9530. // Do not allow resume printing if fans are still not ok
  9531. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9532. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9533. #endif
  9534. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9535. // current_position[axis] = st_get_position_mm(axis);
  9536. active_extruder = saved_active_extruder; //restore active_extruder
  9537. fanSpeed = saved_fanSpeed;
  9538. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9539. {
  9540. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9541. heating_status = 1;
  9542. wait_for_heater(_millis(), saved_active_extruder);
  9543. heating_status = 2;
  9544. }
  9545. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  9546. float e = saved_pos[E_AXIS] - e_move;
  9547. plan_set_e_position(e);
  9548. #ifdef FANCHECK
  9549. fans_check_enabled = false;
  9550. #endif
  9551. //first move print head in XY to the saved position:
  9552. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9553. st_synchronize();
  9554. //then move Z
  9555. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9556. st_synchronize();
  9557. //and finaly unretract (35mm/s)
  9558. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  9559. st_synchronize();
  9560. #ifdef FANCHECK
  9561. fans_check_enabled = true;
  9562. #endif
  9563. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9564. feedrate = saved_feedrate2;
  9565. feedmultiply = saved_feedmultiply2;
  9566. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9567. memcpy(destination, current_position, sizeof(destination));
  9568. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9569. card.setIndex(saved_sdpos);
  9570. sdpos_atomic = saved_sdpos;
  9571. card.sdprinting = true;
  9572. }
  9573. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9574. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9575. serial_count = 0;
  9576. FlushSerialRequestResend();
  9577. }
  9578. else {
  9579. //not sd printing nor usb printing
  9580. }
  9581. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9582. lcd_setstatuspgm(_T(WELCOME_MSG));
  9583. saved_printing_type = PRINTING_TYPE_NONE;
  9584. saved_printing = false;
  9585. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9586. }
  9587. // Cancel the state related to a currently saved print
  9588. void cancel_saved_printing()
  9589. {
  9590. saved_target[0] = SAVED_TARGET_UNSET;
  9591. saved_printing_type = PRINTING_TYPE_NONE;
  9592. saved_printing = false;
  9593. }
  9594. void print_world_coordinates()
  9595. {
  9596. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9597. }
  9598. void print_physical_coordinates()
  9599. {
  9600. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9601. }
  9602. void print_mesh_bed_leveling_table()
  9603. {
  9604. SERIAL_ECHOPGM("mesh bed leveling: ");
  9605. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9606. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9607. MYSERIAL.print(mbl.z_values[y][x], 3);
  9608. SERIAL_ECHOPGM(" ");
  9609. }
  9610. SERIAL_ECHOLNPGM("");
  9611. }
  9612. uint16_t print_time_remaining() {
  9613. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9614. #ifdef TMC2130
  9615. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9616. else print_t = print_time_remaining_silent;
  9617. #else
  9618. print_t = print_time_remaining_normal;
  9619. #endif //TMC2130
  9620. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9621. return print_t;
  9622. }
  9623. uint8_t calc_percent_done()
  9624. {
  9625. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9626. uint8_t percent_done = 0;
  9627. #ifdef TMC2130
  9628. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9629. percent_done = print_percent_done_normal;
  9630. }
  9631. else if (print_percent_done_silent <= 100) {
  9632. percent_done = print_percent_done_silent;
  9633. }
  9634. #else
  9635. if (print_percent_done_normal <= 100) {
  9636. percent_done = print_percent_done_normal;
  9637. }
  9638. #endif //TMC2130
  9639. else {
  9640. percent_done = card.percentDone();
  9641. }
  9642. return percent_done;
  9643. }
  9644. static void print_time_remaining_init()
  9645. {
  9646. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9647. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9648. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9649. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9650. }
  9651. void load_filament_final_feed()
  9652. {
  9653. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9654. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9655. }
  9656. //! @brief Wait for user to check the state
  9657. //! @par nozzle_temp nozzle temperature to load filament
  9658. void M600_check_state(float nozzle_temp)
  9659. {
  9660. lcd_change_fil_state = 0;
  9661. while (lcd_change_fil_state != 1)
  9662. {
  9663. lcd_change_fil_state = 0;
  9664. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9665. lcd_alright();
  9666. KEEPALIVE_STATE(IN_HANDLER);
  9667. switch(lcd_change_fil_state)
  9668. {
  9669. // Filament failed to load so load it again
  9670. case 2:
  9671. if (mmu_enabled)
  9672. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9673. else
  9674. M600_load_filament_movements();
  9675. break;
  9676. // Filament loaded properly but color is not clear
  9677. case 3:
  9678. st_synchronize();
  9679. load_filament_final_feed();
  9680. lcd_loading_color();
  9681. st_synchronize();
  9682. break;
  9683. // Everything good
  9684. default:
  9685. lcd_change_success();
  9686. break;
  9687. }
  9688. }
  9689. }
  9690. //! @brief Wait for user action
  9691. //!
  9692. //! Beep, manage nozzle heater and wait for user to start unload filament
  9693. //! If times out, active extruder temperature is set to 0.
  9694. //!
  9695. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9696. void M600_wait_for_user(float HotendTempBckp) {
  9697. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9698. int counterBeep = 0;
  9699. unsigned long waiting_start_time = _millis();
  9700. uint8_t wait_for_user_state = 0;
  9701. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9702. bool bFirst=true;
  9703. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9704. manage_heater();
  9705. manage_inactivity(true);
  9706. #if BEEPER > 0
  9707. if (counterBeep == 500) {
  9708. counterBeep = 0;
  9709. }
  9710. SET_OUTPUT(BEEPER);
  9711. if (counterBeep == 0) {
  9712. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9713. {
  9714. bFirst=false;
  9715. WRITE(BEEPER, HIGH);
  9716. }
  9717. }
  9718. if (counterBeep == 20) {
  9719. WRITE(BEEPER, LOW);
  9720. }
  9721. counterBeep++;
  9722. #endif //BEEPER > 0
  9723. switch (wait_for_user_state) {
  9724. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9725. delay_keep_alive(4);
  9726. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9727. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9728. wait_for_user_state = 1;
  9729. setAllTargetHotends(0);
  9730. st_synchronize();
  9731. disable_e0();
  9732. disable_e1();
  9733. disable_e2();
  9734. }
  9735. break;
  9736. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9737. delay_keep_alive(4);
  9738. if (lcd_clicked()) {
  9739. setTargetHotend(HotendTempBckp, active_extruder);
  9740. lcd_wait_for_heater();
  9741. wait_for_user_state = 2;
  9742. }
  9743. break;
  9744. case 2: //waiting for nozzle to reach target temperature
  9745. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9746. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9747. waiting_start_time = _millis();
  9748. wait_for_user_state = 0;
  9749. }
  9750. else {
  9751. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9752. lcd_set_cursor(1, 4);
  9753. lcd_print(ftostr3(degHotend(active_extruder)));
  9754. }
  9755. break;
  9756. }
  9757. }
  9758. WRITE(BEEPER, LOW);
  9759. }
  9760. void M600_load_filament_movements()
  9761. {
  9762. #ifdef SNMM
  9763. display_loading();
  9764. do
  9765. {
  9766. current_position[E_AXIS] += 0.002;
  9767. plan_buffer_line_curposXYZE(500, active_extruder);
  9768. delay_keep_alive(2);
  9769. }
  9770. while (!lcd_clicked());
  9771. st_synchronize();
  9772. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9773. plan_buffer_line_curposXYZE(3000, active_extruder);
  9774. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9775. plan_buffer_line_curposXYZE(1400, active_extruder);
  9776. current_position[E_AXIS] += 40;
  9777. plan_buffer_line_curposXYZE(400, active_extruder);
  9778. current_position[E_AXIS] += 10;
  9779. plan_buffer_line_curposXYZE(50, active_extruder);
  9780. #else
  9781. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9782. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9783. #endif
  9784. load_filament_final_feed();
  9785. lcd_loading_filament();
  9786. st_synchronize();
  9787. }
  9788. void M600_load_filament() {
  9789. //load filament for single material and SNMM
  9790. lcd_wait_interact();
  9791. //load_filament_time = _millis();
  9792. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9793. #ifdef PAT9125
  9794. fsensor_autoload_check_start();
  9795. #endif //PAT9125
  9796. while(!lcd_clicked())
  9797. {
  9798. manage_heater();
  9799. manage_inactivity(true);
  9800. #ifdef FILAMENT_SENSOR
  9801. if (fsensor_check_autoload())
  9802. {
  9803. Sound_MakeCustom(50,1000,false);
  9804. break;
  9805. }
  9806. #endif //FILAMENT_SENSOR
  9807. }
  9808. #ifdef PAT9125
  9809. fsensor_autoload_check_stop();
  9810. #endif //PAT9125
  9811. KEEPALIVE_STATE(IN_HANDLER);
  9812. #ifdef FSENSOR_QUALITY
  9813. fsensor_oq_meassure_start(70);
  9814. #endif //FSENSOR_QUALITY
  9815. M600_load_filament_movements();
  9816. Sound_MakeCustom(50,1000,false);
  9817. #ifdef FSENSOR_QUALITY
  9818. fsensor_oq_meassure_stop();
  9819. if (!fsensor_oq_result())
  9820. {
  9821. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9822. lcd_update_enable(true);
  9823. lcd_update(2);
  9824. if (disable)
  9825. fsensor_disable();
  9826. }
  9827. #endif //FSENSOR_QUALITY
  9828. lcd_update_enable(false);
  9829. }
  9830. //! @brief Wait for click
  9831. //!
  9832. //! Set
  9833. void marlin_wait_for_click()
  9834. {
  9835. int8_t busy_state_backup = busy_state;
  9836. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9837. lcd_consume_click();
  9838. while(!lcd_clicked())
  9839. {
  9840. manage_heater();
  9841. manage_inactivity(true);
  9842. lcd_update(0);
  9843. }
  9844. KEEPALIVE_STATE(busy_state_backup);
  9845. }
  9846. #define FIL_LOAD_LENGTH 60
  9847. #ifdef PSU_Delta
  9848. bool bEnableForce_z;
  9849. void init_force_z()
  9850. {
  9851. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9852. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9853. disable_force_z();
  9854. }
  9855. void check_force_z()
  9856. {
  9857. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9858. init_force_z(); // causes enforced switching into disable-state
  9859. }
  9860. void disable_force_z()
  9861. {
  9862. uint16_t z_microsteps=0;
  9863. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9864. bEnableForce_z=false;
  9865. // switching to silent mode
  9866. #ifdef TMC2130
  9867. tmc2130_mode=TMC2130_MODE_SILENT;
  9868. update_mode_profile();
  9869. tmc2130_init(true);
  9870. #endif // TMC2130
  9871. axis_known_position[Z_AXIS]=false;
  9872. }
  9873. void enable_force_z()
  9874. {
  9875. if(bEnableForce_z)
  9876. return; // motor already enabled (may be ;-p )
  9877. bEnableForce_z=true;
  9878. // mode recovering
  9879. #ifdef TMC2130
  9880. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9881. update_mode_profile();
  9882. tmc2130_init(true);
  9883. #endif // TMC2130
  9884. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9885. }
  9886. #endif // PSU_Delta