mmu.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. bool mmu_enabled = false;
  20. bool mmu_ready = false;
  21. int8_t mmu_state = 0;
  22. uint8_t mmu_cmd = 0;
  23. uint8_t mmu_extruder = 0;
  24. uint8_t tmp_extruder = 0;
  25. int8_t mmu_finda = -1;
  26. int16_t mmu_version = -1;
  27. int16_t mmu_buildnr = -1;
  28. uint32_t mmu_last_request = 0;
  29. uint32_t mmu_last_response = 0;
  30. //clear rx buffer
  31. void mmu_clr_rx_buf(void)
  32. {
  33. while (fgetc(uart2io) >= 0);
  34. }
  35. //send command - puts
  36. int mmu_puts_P(const char* str)
  37. {
  38. mmu_clr_rx_buf(); //clear rx buffer
  39. int r = fputs_P(str, uart2io); //send command
  40. mmu_last_request = millis();
  41. return r;
  42. }
  43. //send command - printf
  44. int mmu_printf_P(const char* format, ...)
  45. {
  46. va_list args;
  47. va_start(args, format);
  48. mmu_clr_rx_buf(); //clear rx buffer
  49. int r = vfprintf_P(uart2io, format, args); //send command
  50. va_end(args);
  51. mmu_last_request = millis();
  52. return r;
  53. }
  54. //check 'ok' response
  55. int8_t mmu_rx_ok(void)
  56. {
  57. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  58. if (res == 1) mmu_last_response = millis();
  59. return res;
  60. }
  61. //check 'start' response
  62. int8_t mmu_rx_start(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //initialize mmu2 unit - first part - should be done at begining of startup process
  69. void mmu_init(void)
  70. {
  71. digitalWrite(MMU_RST_PIN, HIGH);
  72. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  73. uart2_init(); //init uart2
  74. _delay_ms(10); //wait 10ms for sure
  75. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  76. mmu_state = -1;
  77. }
  78. //mmu main loop - state machine processing
  79. void mmu_loop(void)
  80. {
  81. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  82. switch (mmu_state)
  83. {
  84. case 0:
  85. return;
  86. case -1:
  87. if (mmu_rx_start() > 0)
  88. {
  89. puts_P(PSTR("MMU => 'start'"));
  90. puts_P(PSTR("MMU <= 'S1'"));
  91. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  92. mmu_state = -2;
  93. }
  94. else if (millis() > 30000) //30sec after reset disable mmu
  95. {
  96. puts_P(PSTR("MMU not responding - DISABLED"));
  97. mmu_state = 0;
  98. }
  99. return;
  100. case -2:
  101. if (mmu_rx_ok() > 0)
  102. {
  103. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  104. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  105. puts_P(PSTR("MMU <= 'S2'"));
  106. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  107. mmu_state = -3;
  108. }
  109. return;
  110. case -3:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  114. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  115. puts_P(PSTR("MMU <= 'P0'"));
  116. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  117. mmu_state = -4;
  118. }
  119. return;
  120. case -4:
  121. if (mmu_rx_ok() > 0)
  122. {
  123. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  124. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  125. puts_P(PSTR("MMU - ENABLED"));
  126. mmu_enabled = true;
  127. mmu_state = 1;
  128. }
  129. return;
  130. case 1:
  131. if (mmu_cmd) //command request ?
  132. {
  133. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  134. {
  135. int extruder = mmu_cmd - MMU_CMD_T0;
  136. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  137. mmu_printf_P(PSTR("T%d\n"), extruder);
  138. mmu_state = 3; // wait for response
  139. }
  140. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  141. {
  142. int filament = mmu_cmd - MMU_CMD_L0;
  143. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  144. mmu_printf_P(PSTR("L%d\n"), filament);
  145. mmu_state = 3; // wait for response
  146. }
  147. mmu_cmd = 0;
  148. }
  149. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  150. {
  151. puts_P(PSTR("MMU <= 'P0'"));
  152. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  153. mmu_state = 2;
  154. }
  155. return;
  156. case 2: //response to command P0
  157. if (mmu_rx_ok() > 0)
  158. {
  159. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  160. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  161. mmu_state = 1;
  162. if (mmu_cmd == 0)
  163. mmu_ready = true;
  164. }
  165. else if ((mmu_last_request + 30000) < millis())
  166. { //resend request after timeout (30s)
  167. mmu_state = 1;
  168. }
  169. return;
  170. case 3: //response to commands T0-T4
  171. if (mmu_rx_ok() > 0)
  172. {
  173. printf_P(PSTR("MMU => 'ok'\n"), mmu_finda);
  174. mmu_ready = true;
  175. mmu_state = 1;
  176. }
  177. else if ((mmu_last_request + 30000) < millis())
  178. { //resend request after timeout (30s)
  179. mmu_state = 1;
  180. }
  181. return;
  182. }
  183. }
  184. void mmu_reset(void)
  185. {
  186. #ifdef MMU_HWRESET //HW - pulse reset pin
  187. digitalWrite(MMU_RST_PIN, LOW);
  188. _delay_us(100);
  189. digitalWrite(MMU_RST_PIN, HIGH);
  190. #else //SW - send X0 command
  191. mmu_puts_P(PSTR("X0\n"));
  192. #endif
  193. }
  194. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  195. {
  196. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  197. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  198. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  199. while ((mmu_rx_ok() <= 0) && (--timeout))
  200. delay_keep_alive(MMU_TODELAY);
  201. return timeout?1:0;
  202. }
  203. void mmu_command(uint8_t cmd)
  204. {
  205. mmu_cmd = cmd;
  206. mmu_ready = false;
  207. }
  208. bool mmu_get_response(void)
  209. {
  210. // printf_P(PSTR("mmu_get_response - begin\n"));
  211. KEEPALIVE_STATE(IN_PROCESS);
  212. while (mmu_cmd != 0)
  213. {
  214. // mmu_loop();
  215. delay_keep_alive(100);
  216. }
  217. while (!mmu_ready)
  218. {
  219. // mmu_loop();
  220. if (mmu_state != 3)
  221. break;
  222. delay_keep_alive(100);
  223. }
  224. bool ret = mmu_ready;
  225. mmu_ready = false;
  226. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  227. return ret;
  228. /* //waits for "ok" from mmu
  229. //function returns true if "ok" was received
  230. //if timeout is set to true function return false if there is no "ok" received before timeout
  231. bool response = true;
  232. LongTimer mmu_get_reponse_timeout;
  233. KEEPALIVE_STATE(IN_PROCESS);
  234. mmu_get_reponse_timeout.start();
  235. while (mmu_rx_ok() <= 0)
  236. {
  237. delay_keep_alive(100);
  238. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  239. { //5 minutes timeout
  240. response = false;
  241. break;
  242. }
  243. }
  244. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  245. return response;*/
  246. }
  247. void manage_response(bool move_axes, bool turn_off_nozzle)
  248. {
  249. bool response = false;
  250. mmu_print_saved = false;
  251. bool lcd_update_was_enabled = false;
  252. float hotend_temp_bckp = degTargetHotend(active_extruder);
  253. float z_position_bckp = current_position[Z_AXIS];
  254. float x_position_bckp = current_position[X_AXIS];
  255. float y_position_bckp = current_position[Y_AXIS];
  256. while(!response)
  257. {
  258. response = mmu_get_response(); //wait for "ok" from mmu
  259. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  260. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  261. if (lcd_update_enabled) {
  262. lcd_update_was_enabled = true;
  263. lcd_update_enable(false);
  264. }
  265. st_synchronize();
  266. mmu_print_saved = true;
  267. hotend_temp_bckp = degTargetHotend(active_extruder);
  268. if (move_axes) {
  269. z_position_bckp = current_position[Z_AXIS];
  270. x_position_bckp = current_position[X_AXIS];
  271. y_position_bckp = current_position[Y_AXIS];
  272. //lift z
  273. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  274. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  275. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  276. st_synchronize();
  277. //Move XY to side
  278. current_position[X_AXIS] = X_PAUSE_POS;
  279. current_position[Y_AXIS] = Y_PAUSE_POS;
  280. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  281. st_synchronize();
  282. }
  283. if (turn_off_nozzle) {
  284. //set nozzle target temperature to 0
  285. setAllTargetHotends(0);
  286. printf_P(PSTR("MMU not responding\n"));
  287. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  288. setTargetHotend(hotend_temp_bckp, active_extruder);
  289. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  290. delay_keep_alive(1000);
  291. lcd_wait_for_heater();
  292. }
  293. }
  294. }
  295. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  296. delay_keep_alive(1000);
  297. }
  298. else if (mmu_print_saved) {
  299. printf_P(PSTR("MMU start responding\n"));
  300. lcd_clear();
  301. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  302. if (move_axes) {
  303. current_position[X_AXIS] = x_position_bckp;
  304. current_position[Y_AXIS] = y_position_bckp;
  305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  306. st_synchronize();
  307. current_position[Z_AXIS] = z_position_bckp;
  308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  309. st_synchronize();
  310. }
  311. else {
  312. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  313. }
  314. }
  315. }
  316. if (lcd_update_was_enabled) lcd_update_enable(true);
  317. }
  318. void mmu_load_to_nozzle()
  319. {
  320. st_synchronize();
  321. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  322. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  323. current_position[E_AXIS] += 7.2f;
  324. float feedrate = 562;
  325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  326. st_synchronize();
  327. current_position[E_AXIS] += 14.4f;
  328. feedrate = 871;
  329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  330. st_synchronize();
  331. current_position[E_AXIS] += 36.0f;
  332. feedrate = 1393;
  333. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  334. st_synchronize();
  335. current_position[E_AXIS] += 14.4f;
  336. feedrate = 871;
  337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  338. st_synchronize();
  339. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  340. }
  341. void mmu_M600_load_filament(bool automatic)
  342. {
  343. //load filament for mmu v2
  344. bool response = false;
  345. bool yes = false;
  346. if (!automatic) {
  347. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  348. if(yes) tmp_extruder = choose_extruder_menu();
  349. else tmp_extruder = mmu_extruder;
  350. }
  351. else {
  352. tmp_extruder = (tmp_extruder+1)%5;
  353. }
  354. lcd_update_enable(false);
  355. lcd_clear();
  356. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  357. lcd_print(" ");
  358. lcd_print(tmp_extruder + 1);
  359. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  360. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  361. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  362. mmu_command(MMU_CMD_T0 + tmp_extruder);
  363. manage_response(false, true);
  364. mmu_extruder = tmp_extruder; //filament change is finished
  365. mmu_load_to_nozzle();
  366. st_synchronize();
  367. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  369. }
  370. void extr_mov(float shift, float feed_rate)
  371. { //move extruder no matter what the current heater temperature is
  372. set_extrude_min_temp(.0);
  373. current_position[E_AXIS] += shift;
  374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  375. set_extrude_min_temp(EXTRUDE_MINTEMP);
  376. }
  377. void change_extr(int extr) { //switches multiplexer for extruders
  378. #ifdef SNMM
  379. st_synchronize();
  380. delay(100);
  381. disable_e0();
  382. disable_e1();
  383. disable_e2();
  384. mmu_extruder = extr;
  385. pinMode(E_MUX0_PIN, OUTPUT);
  386. pinMode(E_MUX1_PIN, OUTPUT);
  387. switch (extr) {
  388. case 1:
  389. WRITE(E_MUX0_PIN, HIGH);
  390. WRITE(E_MUX1_PIN, LOW);
  391. break;
  392. case 2:
  393. WRITE(E_MUX0_PIN, LOW);
  394. WRITE(E_MUX1_PIN, HIGH);
  395. break;
  396. case 3:
  397. WRITE(E_MUX0_PIN, HIGH);
  398. WRITE(E_MUX1_PIN, HIGH);
  399. break;
  400. default:
  401. WRITE(E_MUX0_PIN, LOW);
  402. WRITE(E_MUX1_PIN, LOW);
  403. break;
  404. }
  405. delay(100);
  406. #endif
  407. }
  408. int get_ext_nr()
  409. { //reads multiplexer input pins and return current extruder number (counted from 0)
  410. #ifndef SNMM
  411. return(mmu_extruder); //update needed
  412. #else
  413. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  414. #endif
  415. }
  416. void display_loading()
  417. {
  418. switch (mmu_extruder)
  419. {
  420. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  421. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  422. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  423. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  424. }
  425. }
  426. void extr_adj(int extruder) //loading filament for SNMM
  427. {
  428. #ifndef SNMM
  429. uint8_t cmd = MMU_CMD_L0 + extruder;
  430. if (cmd > MMU_CMD_L4)
  431. {
  432. printf_P(PSTR("Filament out of range %d \n"),extruder);
  433. return;
  434. }
  435. mmu_command(cmd);
  436. //show which filament is currently loaded
  437. lcd_update_enable(false);
  438. lcd_clear();
  439. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  440. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  441. //else lcd.print(" ");
  442. lcd_print(" ");
  443. lcd_print(extruder + 1);
  444. // get response
  445. manage_response(false, false);
  446. lcd_update_enable(true);
  447. //lcd_return_to_status();
  448. #else
  449. bool correct;
  450. max_feedrate[E_AXIS] =80;
  451. //max_feedrate[E_AXIS] = 50;
  452. START:
  453. lcd_clear();
  454. lcd_set_cursor(0, 0);
  455. switch (extruder) {
  456. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  457. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  458. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  459. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  460. }
  461. KEEPALIVE_STATE(PAUSED_FOR_USER);
  462. do{
  463. extr_mov(0.001,1000);
  464. delay_keep_alive(2);
  465. } while (!lcd_clicked());
  466. //delay_keep_alive(500);
  467. KEEPALIVE_STATE(IN_HANDLER);
  468. st_synchronize();
  469. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  470. //if (!correct) goto START;
  471. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  472. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  473. extr_mov(bowden_length[extruder], 500);
  474. lcd_clear();
  475. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  476. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  477. else lcd_print(" ");
  478. lcd_print(mmu_extruder + 1);
  479. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  480. st_synchronize();
  481. max_feedrate[E_AXIS] = 50;
  482. lcd_update_enable(true);
  483. lcd_return_to_status();
  484. lcdDrawUpdate = 2;
  485. #endif
  486. }
  487. void extr_unload()
  488. { //unload just current filament for multimaterial printers
  489. #ifdef SNMM
  490. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  491. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  492. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  493. #endif
  494. if (degHotend0() > EXTRUDE_MINTEMP)
  495. {
  496. #ifndef SNMM
  497. st_synchronize();
  498. //show which filament is currently unloaded
  499. lcd_update_enable(false);
  500. lcd_clear();
  501. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  502. lcd_print(" ");
  503. lcd_print(mmu_extruder + 1);
  504. current_position[E_AXIS] -= 80;
  505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  506. st_synchronize();
  507. printf_P(PSTR("U0\n"));
  508. fprintf_P(uart2io, PSTR("U0\n"));
  509. // get response
  510. manage_response(false, true);
  511. lcd_update_enable(true);
  512. #else //SNMM
  513. lcd_clear();
  514. lcd_display_message_fullscreen_P(PSTR(""));
  515. max_feedrate[E_AXIS] = 50;
  516. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  517. lcd_print(" ");
  518. lcd_print(mmu_extruder + 1);
  519. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  520. if (current_position[Z_AXIS] < 15) {
  521. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  523. }
  524. current_position[E_AXIS] += 10; //extrusion
  525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  526. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  527. if (current_temperature[0] < 230) { //PLA & all other filaments
  528. current_position[E_AXIS] += 5.4;
  529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  530. current_position[E_AXIS] += 3.2;
  531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  532. current_position[E_AXIS] += 3;
  533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  534. }
  535. else { //ABS
  536. current_position[E_AXIS] += 3.1;
  537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  538. current_position[E_AXIS] += 3.1;
  539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  540. current_position[E_AXIS] += 4;
  541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  542. /*current_position[X_AXIS] += 23; //delay
  543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  544. current_position[X_AXIS] -= 23; //delay
  545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  546. delay_keep_alive(4700);
  547. }
  548. max_feedrate[E_AXIS] = 80;
  549. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  551. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  553. st_synchronize();
  554. //st_current_init();
  555. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  556. else st_current_set(2, tmp_motor_loud[2]);
  557. lcd_update_enable(true);
  558. lcd_return_to_status();
  559. max_feedrate[E_AXIS] = 50;
  560. #endif //SNMM
  561. }
  562. else
  563. {
  564. lcd_clear();
  565. lcd_set_cursor(0, 0);
  566. lcd_puts_P(_T(MSG_ERROR));
  567. lcd_set_cursor(0, 2);
  568. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  569. delay(2000);
  570. lcd_clear();
  571. }
  572. //lcd_return_to_status();
  573. }
  574. //wrapper functions for loading filament
  575. void extr_adj_0()
  576. {
  577. #ifndef SNMM
  578. enquecommand_P(PSTR("M701 E0"));
  579. #else
  580. change_extr(0);
  581. extr_adj(0);
  582. #endif
  583. }
  584. void extr_adj_1()
  585. {
  586. #ifndef SNMM
  587. enquecommand_P(PSTR("M701 E1"));
  588. #else
  589. change_extr(1);
  590. extr_adj(1);
  591. #endif
  592. }
  593. void extr_adj_2()
  594. {
  595. #ifndef SNMM
  596. enquecommand_P(PSTR("M701 E2"));
  597. #else
  598. change_extr(2);
  599. extr_adj(2);
  600. #endif
  601. }
  602. void extr_adj_3()
  603. {
  604. #ifndef SNMM
  605. enquecommand_P(PSTR("M701 E3"));
  606. #else
  607. change_extr(3);
  608. extr_adj(3);
  609. #endif
  610. }
  611. void extr_adj_4()
  612. {
  613. #ifndef SNMM
  614. enquecommand_P(PSTR("M701 E4"));
  615. #else
  616. change_extr(4);
  617. extr_adj(4);
  618. #endif
  619. }
  620. void load_all()
  621. {
  622. #ifndef SNMM
  623. enquecommand_P(PSTR("M701 E0"));
  624. enquecommand_P(PSTR("M701 E1"));
  625. enquecommand_P(PSTR("M701 E2"));
  626. enquecommand_P(PSTR("M701 E3"));
  627. enquecommand_P(PSTR("M701 E4"));
  628. #else
  629. for (int i = 0; i < 4; i++)
  630. {
  631. change_extr(i);
  632. extr_adj(i);
  633. }
  634. #endif
  635. }
  636. //wrapper functions for changing extruders
  637. void extr_change_0()
  638. {
  639. change_extr(0);
  640. lcd_return_to_status();
  641. }
  642. void extr_change_1()
  643. {
  644. change_extr(1);
  645. lcd_return_to_status();
  646. }
  647. void extr_change_2()
  648. {
  649. change_extr(2);
  650. lcd_return_to_status();
  651. }
  652. void extr_change_3()
  653. {
  654. change_extr(3);
  655. lcd_return_to_status();
  656. }
  657. //wrapper functions for unloading filament
  658. void extr_unload_all()
  659. {
  660. if (degHotend0() > EXTRUDE_MINTEMP)
  661. {
  662. for (int i = 0; i < 4; i++)
  663. {
  664. change_extr(i);
  665. extr_unload();
  666. }
  667. }
  668. else
  669. {
  670. lcd_clear();
  671. lcd_set_cursor(0, 0);
  672. lcd_puts_P(_T(MSG_ERROR));
  673. lcd_set_cursor(0, 2);
  674. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  675. delay(2000);
  676. lcd_clear();
  677. lcd_return_to_status();
  678. }
  679. }
  680. //unloading just used filament (for snmm)
  681. void extr_unload_used()
  682. {
  683. if (degHotend0() > EXTRUDE_MINTEMP) {
  684. for (int i = 0; i < 4; i++) {
  685. if (snmm_filaments_used & (1 << i)) {
  686. change_extr(i);
  687. extr_unload();
  688. }
  689. }
  690. snmm_filaments_used = 0;
  691. }
  692. else {
  693. lcd_clear();
  694. lcd_set_cursor(0, 0);
  695. lcd_puts_P(_T(MSG_ERROR));
  696. lcd_set_cursor(0, 2);
  697. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  698. delay(2000);
  699. lcd_clear();
  700. lcd_return_to_status();
  701. }
  702. }
  703. void extr_unload_0()
  704. {
  705. change_extr(0);
  706. extr_unload();
  707. }
  708. void extr_unload_1()
  709. {
  710. change_extr(1);
  711. extr_unload();
  712. }
  713. void extr_unload_2()
  714. {
  715. change_extr(2);
  716. extr_unload();
  717. }
  718. void extr_unload_3()
  719. {
  720. change_extr(3);
  721. extr_unload();
  722. }
  723. void extr_unload_4()
  724. {
  725. change_extr(4);
  726. extr_unload();
  727. }