Marlin_main.cpp 386 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "backlight.h"
  63. #include "planner.h"
  64. #include "stepper.h"
  65. #include "temperature.h"
  66. #include "fancheck.h"
  67. #include "motion_control.h"
  68. #include "cardreader.h"
  69. #include "ConfigurationStore.h"
  70. #include "language.h"
  71. #include "math.h"
  72. #include "util.h"
  73. #include "Timer.h"
  74. #include "Prusa_farm.h"
  75. #include <avr/wdt.h>
  76. #include <util/atomic.h>
  77. #include <avr/pgmspace.h>
  78. #include "Tcodes.h"
  79. #include "Dcodes.h"
  80. #include "SpoolJoin.h"
  81. #ifndef LA_NOCOMPAT
  82. #include "la10compat.h"
  83. #endif
  84. #include "spi.h"
  85. #include "Filament_sensor.h"
  86. #ifdef TMC2130
  87. #include "tmc2130.h"
  88. #endif //TMC2130
  89. #ifdef XFLASH
  90. #include "xflash.h"
  91. #include "optiboot_xflash.h"
  92. #endif //XFLASH
  93. #include "xflash_dump.h"
  94. #ifdef BLINKM
  95. #include "BlinkM.h"
  96. #include "Wire.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #include "mmu2.h"
  105. #define VERSION_STRING "1.0.2"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. //Macro for print fan speed
  109. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  110. //filament types
  111. #define FILAMENT_DEFAULT 0
  112. #define FILAMENT_FLEX 1
  113. #define FILAMENT_PVA 2
  114. #define FILAMENT_UNDEFINED 255
  115. //Stepper Movement Variables
  116. //===========================================================================
  117. //=============================imported variables============================
  118. //===========================================================================
  119. //===========================================================================
  120. //=============================public variables=============================
  121. //===========================================================================
  122. #ifdef SDSUPPORT
  123. CardReader card;
  124. #endif
  125. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  126. //used for PINDA temp calibration and pause print
  127. #define DEFAULT_RETRACTION 1
  128. #define DEFAULT_RETRACTION_MM 4 //MM
  129. float default_retraction = DEFAULT_RETRACTION;
  130. float homing_feedrate[] = HOMING_FEEDRATE;
  131. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  132. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  133. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  134. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  135. uint8_t axis_relative_modes = 0;
  136. int feedmultiply=100; //100->1 200->2
  137. int extrudemultiply=100; //100->1 200->2
  138. bool homing_flag = false;
  139. unsigned long pause_time = 0;
  140. unsigned long start_pause_print = _millis();
  141. unsigned long t_fan_rising_edge = _millis();
  142. LongTimer safetyTimer;
  143. static LongTimer crashDetTimer;
  144. //unsigned long load_filament_time;
  145. bool mesh_bed_leveling_flag = false;
  146. unsigned long total_filament_used;
  147. HeatingStatus heating_status;
  148. uint8_t heating_status_counter;
  149. bool loading_flag = false;
  150. #define XY_NO_RESTORE_FLAG (mesh_bed_leveling_flag || homing_flag)
  151. bool fan_state[2];
  152. int fan_edge_counter[2];
  153. int fan_speed[2];
  154. float extruder_multiplier[EXTRUDERS] = {1.0
  155. #if EXTRUDERS > 1
  156. , 1.0
  157. #if EXTRUDERS > 2
  158. , 1.0
  159. #endif
  160. #endif
  161. };
  162. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  163. //shortcuts for more readable code
  164. #define _x current_position[X_AXIS]
  165. #define _y current_position[Y_AXIS]
  166. #define _z current_position[Z_AXIS]
  167. #define _e current_position[E_AXIS]
  168. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  169. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  170. bool axis_known_position[3] = {false, false, false};
  171. // Extruder offset
  172. #if EXTRUDERS > 1
  173. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  174. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  175. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  176. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  177. #endif
  178. };
  179. #endif
  180. int fanSpeed=0;
  181. uint8_t newFanSpeed = 0;
  182. #ifdef FWRETRACT
  183. bool retracted[EXTRUDERS]={false
  184. #if EXTRUDERS > 1
  185. , false
  186. #if EXTRUDERS > 2
  187. , false
  188. #endif
  189. #endif
  190. };
  191. bool retracted_swap[EXTRUDERS]={false
  192. #if EXTRUDERS > 1
  193. , false
  194. #if EXTRUDERS > 2
  195. , false
  196. #endif
  197. #endif
  198. };
  199. float retract_length_swap = RETRACT_LENGTH_SWAP;
  200. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  201. #endif
  202. #ifdef PS_DEFAULT_OFF
  203. bool powersupply = false;
  204. #else
  205. bool powersupply = true;
  206. #endif
  207. bool cancel_heatup = false;
  208. int8_t busy_state = NOT_BUSY;
  209. static long prev_busy_signal_ms = -1;
  210. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  211. const char errormagic[] PROGMEM = "Error:";
  212. const char echomagic[] PROGMEM = "echo:";
  213. const char G28W0[] PROGMEM = "G28 W0";
  214. // Define some coordinates outside the clamp limits (making them invalid past the parsing stage) so
  215. // that they can be used later for various logical checks
  216. #define X_COORD_INVALID (X_MIN_POS-1)
  217. #define SAVED_START_POSITION_UNSET X_COORD_INVALID
  218. float saved_start_position[NUM_AXIS] = {SAVED_START_POSITION_UNSET, 0, 0, 0};
  219. uint16_t saved_segment_idx = 0;
  220. // storing estimated time to end of print counted by slicer
  221. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  222. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  223. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  224. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  225. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  226. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  227. uint32_t IP_address = 0;
  228. //===========================================================================
  229. //=============================Private Variables=============================
  230. //===========================================================================
  231. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  232. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  233. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  234. // For tracing an arc
  235. static float offset[3] = {0.0, 0.0, 0.0};
  236. // Current feedrate
  237. float feedrate = 1500.0;
  238. // Feedrate for the next move
  239. static float next_feedrate;
  240. // Original feedrate saved during homing moves
  241. static float saved_feedrate;
  242. const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; // Sensitive pin list for M42
  243. //static float tt = 0;
  244. //static float bt = 0;
  245. //Inactivity shutdown variables
  246. static LongTimer previous_millis_cmd;
  247. unsigned long max_inactive_time = 0;
  248. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  249. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  250. unsigned long starttime=0;
  251. unsigned long stoptime=0;
  252. ShortTimer usb_timer;
  253. bool Stopped=false;
  254. #if NUM_SERVOS > 0
  255. Servo servos[NUM_SERVOS];
  256. #endif
  257. bool target_direction;
  258. //Insert variables if CHDK is defined
  259. #ifdef CHDK
  260. unsigned long chdkHigh = 0;
  261. bool chdkActive = false;
  262. #endif
  263. //! @name RAM save/restore printing
  264. //! @{
  265. bool saved_printing = false; //!< Print is paused and saved in RAM
  266. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  267. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  268. static float saved_pos[4] = { X_COORD_INVALID, 0, 0, 0 };
  269. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  270. static int saved_feedmultiply2 = 0;
  271. float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  272. float saved_bed_temperature = 0.0;
  273. static bool saved_extruder_relative_mode = false;
  274. int saved_fan_speed = 0; //!< Print fan speed
  275. //! @}
  276. static int saved_feedmultiply_mm = 100;
  277. class AutoReportFeatures {
  278. union {
  279. struct {
  280. uint8_t temp : 1; //Temperature flag
  281. uint8_t fans : 1; //Fans flag
  282. uint8_t pos: 1; //Position flag
  283. uint8_t ar4 : 1; //Unused
  284. uint8_t ar5 : 1; //Unused
  285. uint8_t ar6 : 1; //Unused
  286. uint8_t ar7 : 1; //Unused
  287. } __attribute__((packed)) bits;
  288. uint8_t byte;
  289. } arFunctionsActive;
  290. uint8_t auto_report_period;
  291. public:
  292. LongTimer auto_report_timer;
  293. AutoReportFeatures():auto_report_period(0){
  294. #if defined(AUTO_REPORT)
  295. arFunctionsActive.byte = 0xff;
  296. #else
  297. arFunctionsActive.byte = 0;
  298. #endif //AUTO_REPORT
  299. }
  300. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  301. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  302. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  303. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  304. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  305. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  306. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  307. /// sets the autoreporting timer's period
  308. /// setting it to zero stops the timer
  309. void SetPeriod(uint8_t p){
  310. auto_report_period = p;
  311. if (auto_report_period != 0){
  312. auto_report_timer.start();
  313. } else{
  314. auto_report_timer.stop();
  315. }
  316. }
  317. inline void TimerStart() { auto_report_timer.start(); }
  318. inline bool TimerRunning()const { return auto_report_timer.running(); }
  319. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  320. };
  321. AutoReportFeatures autoReportFeatures;
  322. //===========================================================================
  323. //=============================Routines======================================
  324. //===========================================================================
  325. static bool setTargetedHotend(int code, uint8_t &extruder);
  326. static void print_time_remaining_init();
  327. static void wait_for_heater(long codenum, uint8_t extruder);
  328. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  329. static void gcode_M105(uint8_t extruder);
  330. #ifndef PINDA_THERMISTOR
  331. static void temp_compensation_start();
  332. static void temp_compensation_apply();
  333. #endif
  334. #ifdef PRUSA_SN_SUPPORT
  335. static uint8_t get_PRUSA_SN(char* SN);
  336. #endif //PRUSA_SN_SUPPORT
  337. uint16_t gcode_in_progress = 0;
  338. uint16_t mcode_in_progress = 0;
  339. void serial_echopair_P(const char *s_P, float v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, double v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. void serial_echopair_P(const char *s_P, unsigned long v)
  344. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  345. void serialprintPGM(const char *str) {
  346. while(uint8_t ch = pgm_read_byte(str)) {
  347. MYSERIAL.write((char)ch);
  348. ++str;
  349. }
  350. }
  351. void serialprintlnPGM(const char *str) {
  352. serialprintPGM(str);
  353. MYSERIAL.println();
  354. }
  355. #ifdef SDSUPPORT
  356. #include "SdFatUtil.h"
  357. int freeMemory() { return SdFatUtil::FreeRam(); }
  358. #else
  359. extern "C" {
  360. extern unsigned int __bss_end;
  361. extern unsigned int __heap_start;
  362. extern void *__brkval;
  363. int freeMemory() {
  364. int free_memory;
  365. if ((int)__brkval == 0)
  366. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  367. else
  368. free_memory = ((int)&free_memory) - ((int)__brkval);
  369. return free_memory;
  370. }
  371. }
  372. #endif //!SDSUPPORT
  373. void setup_killpin()
  374. {
  375. #if defined(KILL_PIN) && KILL_PIN > -1
  376. SET_INPUT(KILL_PIN);
  377. WRITE(KILL_PIN,HIGH);
  378. #endif
  379. }
  380. // Set home pin
  381. void setup_homepin(void)
  382. {
  383. #if defined(HOME_PIN) && HOME_PIN > -1
  384. SET_INPUT(HOME_PIN);
  385. WRITE(HOME_PIN,HIGH);
  386. #endif
  387. }
  388. void setup_photpin()
  389. {
  390. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  391. SET_OUTPUT(PHOTOGRAPH_PIN);
  392. WRITE(PHOTOGRAPH_PIN, LOW);
  393. #endif
  394. }
  395. void setup_powerhold()
  396. {
  397. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  398. SET_OUTPUT(SUICIDE_PIN);
  399. WRITE(SUICIDE_PIN, HIGH);
  400. #endif
  401. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  402. SET_OUTPUT(PS_ON_PIN);
  403. #if defined(PS_DEFAULT_OFF)
  404. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  405. #else
  406. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  407. #endif
  408. #endif
  409. }
  410. void suicide()
  411. {
  412. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  413. SET_OUTPUT(SUICIDE_PIN);
  414. WRITE(SUICIDE_PIN, LOW);
  415. #endif
  416. }
  417. void servo_init()
  418. {
  419. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  420. servos[0].attach(SERVO0_PIN);
  421. #endif
  422. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  423. servos[1].attach(SERVO1_PIN);
  424. #endif
  425. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  426. servos[2].attach(SERVO2_PIN);
  427. #endif
  428. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  429. servos[3].attach(SERVO3_PIN);
  430. #endif
  431. #if (NUM_SERVOS >= 5)
  432. #error "TODO: enter initalisation code for more servos"
  433. #endif
  434. }
  435. bool __attribute__((noinline)) printer_active() {
  436. return IS_SD_PRINTING
  437. || usb_timer.running()
  438. || isPrintPaused
  439. || (custom_message_type == CustomMsg::TempCal)
  440. || saved_printing
  441. || (lcd_commands_type == LcdCommands::Layer1Cal)
  442. || MMU2::mmu2.MMU_PRINT_SAVED()
  443. || homing_flag
  444. || mesh_bed_leveling_flag;
  445. }
  446. // Currently only used in one place, allowed to be inlined
  447. bool check_fsensor() {
  448. return (IS_SD_PRINTING || usb_timer.running())
  449. && mcode_in_progress != 600
  450. && !saved_printing
  451. && e_active();
  452. }
  453. bool fans_check_enabled = true;
  454. #ifdef TMC2130
  455. void crashdet_stop_and_save_print()
  456. {
  457. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  458. }
  459. void crashdet_restore_print_and_continue()
  460. {
  461. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  462. // babystep_apply();
  463. }
  464. void crashdet_fmt_error(char* buf, uint8_t mask)
  465. {
  466. if(mask & X_AXIS_MASK) *buf++ = axis_codes[X_AXIS];
  467. if(mask & Y_AXIS_MASK) *buf++ = axis_codes[Y_AXIS];
  468. *buf++ = ' ';
  469. strcpy_P(buf, _T(MSG_CRASH_DETECTED));
  470. }
  471. void crashdet_detected(uint8_t mask)
  472. {
  473. st_synchronize();
  474. static uint8_t crashDet_counter = 0;
  475. static uint8_t crashDet_axes = 0;
  476. bool automatic_recovery_after_crash = true;
  477. char msg[LCD_WIDTH+1] = "";
  478. if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)) {
  479. crashDet_counter = 0;
  480. }
  481. if(++crashDet_counter >= CRASHDET_COUNTER_MAX) {
  482. automatic_recovery_after_crash = false;
  483. }
  484. crashDetTimer.start();
  485. crashDet_axes |= mask;
  486. lcd_update_enable(true);
  487. lcd_clear();
  488. lcd_update(2);
  489. if (mask & X_AXIS_MASK)
  490. {
  491. eeprom_increment_byte((uint8_t*)EEPROM_CRASH_COUNT_X);
  492. eeprom_increment_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT);
  493. }
  494. if (mask & Y_AXIS_MASK)
  495. {
  496. eeprom_increment_byte((uint8_t*)EEPROM_CRASH_COUNT_Y);
  497. eeprom_increment_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT);
  498. }
  499. lcd_update_enable(true);
  500. lcd_update(2);
  501. // prepare the status message with the _current_ axes status
  502. crashdet_fmt_error(msg, mask);
  503. lcd_setstatus(msg);
  504. gcode_G28(true, true, false); //home X and Y
  505. if (automatic_recovery_after_crash) {
  506. enquecommand_P(PSTR("CRASH_RECOVER"));
  507. }else{
  508. setTargetHotend(0, active_extruder);
  509. // notify the user of *all* the axes previously affected, not just the last one
  510. lcd_update_enable(false);
  511. lcd_clear();
  512. crashdet_fmt_error(msg, crashDet_axes);
  513. crashDet_axes = 0;
  514. lcd_print(msg);
  515. // ask whether to resume printing
  516. lcd_set_cursor(0, 1);
  517. lcd_puts_P(_T(MSG_RESUME_PRINT));
  518. lcd_putc('?');
  519. uint8_t yesno = lcd_show_yes_no_and_wait(false);
  520. if (yesno == LCD_LEFT_BUTTON_CHOICE)
  521. {
  522. enquecommand_P(PSTR("CRASH_RECOVER"));
  523. }
  524. else // LCD_MIDDLE_BUTTON_CHOICE
  525. {
  526. enquecommand_P(PSTR("CRASH_CANCEL"));
  527. }
  528. }
  529. }
  530. void crashdet_recover()
  531. {
  532. crashdet_restore_print_and_continue();
  533. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  534. }
  535. void crashdet_cancel()
  536. {
  537. saved_printing = false;
  538. tmc2130_sg_stop_on_crash = true;
  539. if (saved_printing_type == PRINTING_TYPE_SD) {
  540. print_stop();
  541. }else if(saved_printing_type == PRINTING_TYPE_USB){
  542. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  543. cmdqueue_reset();
  544. }
  545. }
  546. #endif //TMC2130
  547. void failstats_reset_print()
  548. {
  549. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. }
  556. void watchdogEarlyDisable(void) {
  557. // Regardless if the watchdog support is enabled or not, disable the watchdog very early
  558. // after the program starts since there's no danger in doing this.
  559. // The reason for this is because old bootloaders might not handle the watchdog timer at all,
  560. // leaving it enabled when jumping to the program. This could cause another watchdog reset
  561. // during setup() if not handled properly. So to avoid any issue of this kind, stop the
  562. // watchdog timer manually.
  563. ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
  564. wdt_reset();
  565. MCUSR &= ~_BV(WDRF);
  566. wdt_disable();
  567. }
  568. }
  569. void softReset(void) {
  570. cli();
  571. #ifdef WATCHDOG
  572. // If the watchdog support is enabled, use that for resetting. The timeout value is customized
  573. // for each board since the miniRambo ships with a bootloader which doesn't properly handle the
  574. // WDT. In order to avoid bootlooping, the watchdog is set to a value large enough for the
  575. // usual timeout of the bootloader to pass.
  576. wdt_enable(WATCHDOG_SOFT_RESET_VALUE);
  577. #else
  578. #warning WATCHDOG not defined. See the following comment for more details about the implications
  579. // In case the watchdog is not enabled, the reset is acomplished by jumping to the bootloader
  580. // vector manually. This however is somewhat dangerous since the peripherals don't get reset
  581. // by this operation. Considering this is not going to be used in any production firmware,
  582. // it can be left as is and just be cautious with it. The only way to accomplish a peripheral
  583. // reset is by an external reset, by a watchdog reset or by a power cycle. All of these options
  584. // can't be accomplished just from software. One way to minimize the dangers of this is by
  585. // setting all dangerous pins to INPUT before jumping to the bootloader, but that still doesn't
  586. // reset other peripherals such as UART, timers, INT, PCINT, etc...
  587. asm volatile("jmp 0x3E000");
  588. #endif
  589. while(1);
  590. }
  591. #ifdef MESH_BED_LEVELING
  592. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  593. #endif
  594. static void factory_reset_stats(){
  595. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  596. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  597. failstats_reset_print();
  598. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  599. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  600. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  601. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  602. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  603. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  604. eeprom_update_dword((uint32_t *)EEPROM_TOTAL_TOOLCHANGE_COUNT, 0);
  605. }
  606. // Factory reset function
  607. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  608. // Level input parameter sets depth of reset
  609. static void factory_reset(char level)
  610. {
  611. lcd_clear();
  612. Sound_MakeCustom(100,0,false);
  613. switch (level) {
  614. case 0: // Level 0: Language reset
  615. lang_reset();
  616. break;
  617. case 1: //Level 1: Reset statistics
  618. factory_reset_stats();
  619. lcd_menu_statistics();
  620. break;
  621. case 2: // Level 2: Prepare for shipping
  622. factory_reset_stats();
  623. // FALLTHRU
  624. case 3: // Level 3: Preparation after being serviced
  625. // Force language selection at the next boot up.
  626. lang_reset();
  627. // Force the "Follow calibration flow" message at the next boot up.
  628. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  629. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  630. farm_disable();
  631. #ifdef FILAMENT_SENSOR
  632. fsensor.setEnabled(true);
  633. fsensor.setAutoLoadEnabled(true, true);
  634. fsensor.setRunoutEnabled(true, true);
  635. #if (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  636. fsensor.setJamDetectionEnabled(true, true);
  637. #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  638. #endif //FILAMENT_SENSOR
  639. break;
  640. case 4:
  641. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  642. // Erase EEPROM
  643. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  644. eeprom_update_byte((uint8_t*)i, 0xFF);
  645. menu_progressbar_update(i);
  646. }
  647. menu_progressbar_finish();
  648. softReset();
  649. break;
  650. default:
  651. break;
  652. }
  653. }
  654. extern "C" {
  655. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  656. }
  657. int uart_putchar(char c, FILE *)
  658. {
  659. MYSERIAL.write(c);
  660. return 0;
  661. }
  662. void lcd_splash()
  663. {
  664. lcd_clear(); // clears display and homes screen
  665. lcd_printf_P(PSTR("\n Original Prusa i3\n Prusa Research\n%20.20S"), PSTR(FW_VERSION));
  666. }
  667. void factory_reset()
  668. {
  669. KEEPALIVE_STATE(PAUSED_FOR_USER);
  670. if (!READ(BTN_ENC))
  671. {
  672. _delay_ms(1000);
  673. if (!READ(BTN_ENC))
  674. {
  675. lcd_clear();
  676. lcd_puts_P(PSTR("Factory RESET"));
  677. SET_OUTPUT(BEEPER);
  678. if(eSoundMode!=e_SOUND_MODE_SILENT)
  679. WRITE(BEEPER, HIGH);
  680. while (!READ(BTN_ENC));
  681. WRITE(BEEPER, LOW);
  682. _delay_ms(2000);
  683. char level = reset_menu();
  684. factory_reset(level);
  685. switch (level) {
  686. case 0:
  687. case 1:
  688. case 2:
  689. case 3:
  690. case 4: _delay_ms(0); break;
  691. }
  692. }
  693. }
  694. KEEPALIVE_STATE(IN_HANDLER);
  695. }
  696. #if 0
  697. void show_fw_version_warnings() {
  698. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  699. switch (FW_DEV_VERSION) {
  700. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  701. case(FW_VERSION_ALPHA):
  702. case(FW_VERSION_DEVEL):
  703. case(FW_VERSION_DEBUG):
  704. lcd_update_enable(false);
  705. lcd_clear();
  706. #if (FW_DEV_VERSION == FW_VERSION_DEVEL || FW_DEV_VERSION == FW_VERSION_ALPHA)
  707. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  708. #else
  709. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  710. #endif
  711. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  712. lcd_puts_at_P(0, 2, PSTR("FW")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  713. lcd_puts_at_P(0, 3, PSTR("Repo: ")); lcd_puts_P(PSTR(FW_REPOSITORY));
  714. lcd_wait_for_click();
  715. break;
  716. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  717. }
  718. lcd_update_enable(true);
  719. }
  720. #endif
  721. #if defined(FILAMENT_SENSOR) && defined(FSENSOR_PROBING)
  722. //! @brief try to check if firmware is on right type of printer
  723. static void check_if_fw_is_on_right_printer() {
  724. if (fsensor.probeOtherType()) {
  725. lcd_show_fullscreen_message_and_wait_P(_i(PRINTER_NAME " firmware detected on " PRINTER_NAME_ALTERNATE " printer"));////c=20 r=4
  726. }
  727. }
  728. #endif //defined(FILAMENT_SENSOR) && defined(FSENSOR_PROBING)
  729. uint8_t check_printer_version()
  730. {
  731. uint8_t version_changed = 0;
  732. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  733. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  734. if (printer_type != PRINTER_TYPE) {
  735. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  736. else version_changed |= 0b10;
  737. }
  738. if (motherboard != MOTHERBOARD) {
  739. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  740. else version_changed |= 0b01;
  741. }
  742. return version_changed;
  743. }
  744. #ifdef BOOTAPP
  745. #include "bootapp.h" //bootloader support
  746. #endif //BOOTAPP
  747. #if (LANG_MODE != 0) //secondary language support
  748. #ifdef XFLASH
  749. // language update from external flash
  750. #define LANGBOOT_BLOCKSIZE 0x1000u
  751. #define LANGBOOT_RAMBUFFER 0x0800
  752. void update_sec_lang_from_external_flash()
  753. {
  754. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  755. {
  756. uint8_t lang = boot_reserved >> 3;
  757. uint8_t state = boot_reserved & 0x07;
  758. lang_table_header_t header;
  759. uint32_t src_addr;
  760. if (lang_get_header(lang, &header, &src_addr))
  761. {
  762. lcd_puts_at_P(1,3,PSTR("Language update."));
  763. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  764. _delay(100);
  765. boot_reserved = (boot_reserved & 0xF8) | ((state + 1) & 0x07);
  766. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  767. {
  768. cli();
  769. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  770. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  771. xflash_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  772. if (state == 0)
  773. {
  774. //TODO - check header integrity
  775. }
  776. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  777. }
  778. else
  779. {
  780. //TODO - check sec lang data integrity
  781. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  782. }
  783. }
  784. }
  785. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  786. }
  787. #ifdef DEBUG_XFLASH
  788. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  789. {
  790. lang_table_header_t header;
  791. uint8_t count = 0;
  792. uint32_t addr = 0x00000;
  793. while (1)
  794. {
  795. printf_P(_n("LANGTABLE%d:"), count);
  796. xflash_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  797. if (header.magic != LANG_MAGIC)
  798. {
  799. puts_P(_n("NG!"));
  800. break;
  801. }
  802. puts_P(_n("OK"));
  803. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  804. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  805. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  806. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  807. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  808. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  809. addr += header.size;
  810. codes[count] = header.code;
  811. count ++;
  812. }
  813. return count;
  814. }
  815. void list_sec_lang_from_external_flash()
  816. {
  817. uint16_t codes[8];
  818. uint8_t count = lang_xflash_enum_codes(codes);
  819. printf_P(_n("XFlash lang count = %hhd\n"), count);
  820. }
  821. #endif //DEBUG_XFLASH
  822. #endif //XFLASH
  823. #endif //(LANG_MODE != 0)
  824. static void fw_crash_init()
  825. {
  826. #ifdef XFLASH_DUMP
  827. dump_crash_reason crash_reason;
  828. if(xfdump_check_state(&crash_reason))
  829. {
  830. // always signal to the host that a dump is available for retrieval
  831. puts_P(_N("// action:dump_available"));
  832. #ifdef EMERGENCY_DUMP
  833. if(crash_reason != dump_crash_reason::manual &&
  834. eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG) != 0xFF)
  835. {
  836. lcd_show_fullscreen_message_and_wait_P(
  837. _n("FW crash detected! "
  838. "You can continue printing. "
  839. "Debug data available for analysis. "
  840. "Contact support to submit details."));
  841. }
  842. #endif
  843. }
  844. #else //XFLASH_DUMP
  845. dump_crash_reason crash_reason = (dump_crash_reason)eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG);
  846. if(crash_reason != dump_crash_reason::manual && (uint8_t)crash_reason != 0xFF)
  847. {
  848. lcd_beeper_quick_feedback();
  849. lcd_clear();
  850. lcd_puts_P(_n("FIRMWARE CRASH!\nCrash reason:\n"));
  851. switch(crash_reason)
  852. {
  853. case dump_crash_reason::stack_error:
  854. lcd_puts_P(_n("Static memory has\nbeen overwritten"));
  855. break;
  856. case dump_crash_reason::watchdog:
  857. lcd_puts_P(_n("Watchdog timeout"));
  858. break;
  859. case dump_crash_reason::bad_isr:
  860. lcd_puts_P(_n("Bad interrupt"));
  861. break;
  862. default:
  863. lcd_print((uint8_t)crash_reason);
  864. break;
  865. }
  866. lcd_wait_for_click();
  867. }
  868. #endif //XFLASH_DUMP
  869. // prevent crash prompts to reappear once acknowledged
  870. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, 0xFF);
  871. }
  872. static void xflash_err_msg()
  873. {
  874. puts_P(_n("XFLASH not responding."));
  875. lcd_show_fullscreen_message_and_wait_P(_n("External SPI flash\nXFLASH is not res-\nponding. Language\nswitch unavailable."));
  876. }
  877. // "Setup" function is called by the Arduino framework on startup.
  878. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  879. // are initialized by the main() routine provided by the Arduino framework.
  880. void setup()
  881. {
  882. watchdogEarlyDisable();
  883. timer2_init(); // enables functional millis
  884. ultralcd_init();
  885. spi_init();
  886. lcd_splash();
  887. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  888. selectedSerialPort = eeprom_init_default_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, 0);
  889. MYSERIAL.begin(BAUDRATE);
  890. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  891. stdout = uartout;
  892. #ifdef XFLASH
  893. bool xflash_success = xflash_init();
  894. uint8_t optiboot_status = 1;
  895. if (xflash_success)
  896. {
  897. optiboot_status = optiboot_xflash_enter();
  898. #if (LANG_MODE != 0) //secondary language support
  899. update_sec_lang_from_external_flash();
  900. #endif //(LANG_MODE != 0)
  901. }
  902. #else
  903. const bool xflash_success = true;
  904. #endif //XFLASH
  905. setup_killpin();
  906. setup_powerhold();
  907. farm_mode_init();
  908. #ifdef TMC2130
  909. if( FarmOrUserECool() ){
  910. //increased extruder current (PFW363)
  911. tmc2130_current_h[E_AXIS] = TMC2130_CURRENTS_FARM;
  912. tmc2130_current_r[E_AXIS] = TMC2130_CURRENTS_FARM;
  913. }
  914. #endif //TMC2130
  915. #ifdef PRUSA_SN_SUPPORT
  916. //Check for valid SN in EEPROM. Try to retrieve it in case it's invalid.
  917. //SN is valid only if it is NULL terminated and starts with "CZPX".
  918. {
  919. char SN[20];
  920. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  921. if (SN[19] || strncmp_P(SN, PSTR("CZPX"), 4))
  922. {
  923. if (!get_PRUSA_SN(SN))
  924. {
  925. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  926. puts_P(PSTR("SN updated"));
  927. }
  928. else
  929. puts_P(PSTR("SN update failed"));
  930. }
  931. }
  932. #endif //PRUSA_SN_SUPPORT
  933. #ifndef XFLASH
  934. SERIAL_PROTOCOLLNPGM("start");
  935. #else
  936. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  937. SERIAL_PROTOCOLLNPGM("start");
  938. #endif
  939. SERIAL_ECHO_START;
  940. puts_P(PSTR(" " FW_VERSION_FULL));
  941. if (eeprom_read_byte((uint8_t *)EEPROM_MMU_ENABLED)) {
  942. MMU2::mmu2.Start();
  943. }
  944. SpoolJoin::spooljoin.initSpoolJoinStatus();
  945. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  946. #ifdef DEBUG_SEC_LANG
  947. lang_table_header_t header;
  948. uint32_t src_addr = 0x00000;
  949. if (lang_get_header(1, &header, &src_addr))
  950. {
  951. printf_P(
  952. _n(
  953. " _src_addr = 0x%08lx\n"
  954. " _lt_magic = 0x%08lx %S\n"
  955. " _lt_size = 0x%04x (%d)\n"
  956. " _lt_count = 0x%04x (%d)\n"
  957. " _lt_chsum = 0x%04x\n"
  958. " _lt_code = 0x%04x (%c%c)\n"
  959. " _lt_resv1 = 0x%08lx\n"
  960. ),
  961. src_addr,
  962. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  963. header.size, header.size,
  964. header.count, header.count,
  965. header.checksum,
  966. header.code, header.code >> 8, header.code & 0xff,
  967. header.signature
  968. );
  969. #if 0
  970. xflash_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  971. for (uint16_t i = 0; i < 1024; i++)
  972. {
  973. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  974. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  975. if ((i % 16) == 15) putchar('\n');
  976. }
  977. #endif
  978. uint16_t sum = 0;
  979. for (uint16_t i = 0; i < header.size; i++)
  980. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  981. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  982. sum -= header.checksum; //subtract checksum
  983. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  984. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  985. if (sum == header.checksum)
  986. puts_P(_n("Checksum OK"));
  987. else
  988. puts_P(_n("Checksum NG"));
  989. }
  990. else
  991. puts_P(_n("lang_get_header failed!"));
  992. #if 0
  993. for (uint16_t i = 0; i < 1024*10; i++)
  994. {
  995. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  996. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  997. if ((i % 16) == 15) putchar('\n');
  998. }
  999. #endif
  1000. #if 0
  1001. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1002. for (int i = 0; i < 4096; ++i) {
  1003. int b = eeprom_read_byte((unsigned char*)i);
  1004. if (b != 255) {
  1005. SERIAL_ECHO(i);
  1006. SERIAL_ECHO(":");
  1007. SERIAL_ECHO(b);
  1008. SERIAL_ECHOLN("");
  1009. }
  1010. }
  1011. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1012. #endif
  1013. #endif //DEBUG_SEC_LANG
  1014. // Check startup - does nothing if bootloader sets MCUSR to 0
  1015. byte mcu = MCUSR;
  1016. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1017. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1018. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1019. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1020. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1021. if (mcu & 1) puts_P(MSG_POWERUP);
  1022. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1023. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1024. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1025. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1026. MCUSR = 0;
  1027. //SERIAL_ECHORPGM(MSG_MARLIN);
  1028. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1029. #ifdef STRING_VERSION_CONFIG_H
  1030. #ifdef STRING_CONFIG_H_AUTHOR
  1031. SERIAL_ECHO_START;
  1032. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1033. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1034. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1035. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1036. #endif
  1037. #endif
  1038. SERIAL_ECHO_START;
  1039. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1040. SERIAL_ECHO(freeMemory());
  1041. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1042. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1043. //lcd_update_enable(false); // why do we need this?? - andre
  1044. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1045. bool previous_settings_retrieved = false;
  1046. uint8_t hw_changed = check_printer_version();
  1047. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1048. previous_settings_retrieved = Config_RetrieveSettings();
  1049. }
  1050. else { //printer version was changed so use default settings
  1051. Config_ResetDefault();
  1052. }
  1053. // writes a magic number at the end of static variables to monitor against incorrect overwriting
  1054. // of static memory by stack (this needs to be done before soft_pwm_init, since the check is
  1055. // performed inside the soft_pwm_isr)
  1056. SdFatUtil::set_stack_guard();
  1057. // Initialize pwm/temperature loops
  1058. soft_pwm_init();
  1059. temp_mgr_init();
  1060. #ifdef EXTRUDER_ALTFAN_DETECT
  1061. SERIAL_ECHORPGM(_n("Hotend fan type: "));
  1062. if (extruder_altfan_detect())
  1063. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1064. else
  1065. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1066. #endif //EXTRUDER_ALTFAN_DETECT
  1067. plan_init(); // Initialize planner;
  1068. factory_reset();
  1069. eeprom_init_default_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1070. eeprom_init_default_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard if uninitialized
  1071. lcd_encoder_diff=0;
  1072. #ifdef TMC2130
  1073. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1074. if (silentMode == 0xff) silentMode = 0;
  1075. tmc2130_mode = TMC2130_MODE_NORMAL;
  1076. if (lcd_crash_detect_enabled() && !farm_mode)
  1077. {
  1078. lcd_crash_detect_enable();
  1079. puts_P(_N("CrashDetect ENABLED!"));
  1080. }
  1081. else
  1082. {
  1083. lcd_crash_detect_disable();
  1084. puts_P(_N("CrashDetect DISABLED"));
  1085. }
  1086. #ifdef TMC2130_LINEARITY_CORRECTION
  1087. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1088. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1089. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1090. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1091. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1092. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1093. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1094. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1095. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1096. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1097. #endif //TMC2130_LINEARITY_CORRECTION
  1098. #ifdef TMC2130_VARIABLE_RESOLUTION
  1099. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1100. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1101. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1102. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1103. #else //TMC2130_VARIABLE_RESOLUTION
  1104. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1105. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1106. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1107. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1108. #endif //TMC2130_VARIABLE_RESOLUTION
  1109. #endif //TMC2130
  1110. st_init(); // Initialize stepper, this enables interrupts!
  1111. #ifdef TMC2130
  1112. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1113. update_mode_profile();
  1114. tmc2130_init(TMCInitParams(false, FarmOrUserECool() ));
  1115. #endif //TMC2130
  1116. #ifdef PSU_Delta
  1117. init_force_z(); // ! important for correct Z-axis initialization
  1118. #endif // PSU_Delta
  1119. setup_photpin();
  1120. #if 0
  1121. servo_init();
  1122. #endif
  1123. // Reset the machine correction matrix.
  1124. // It does not make sense to load the correction matrix until the machine is homed.
  1125. world2machine_reset();
  1126. // Initialize current_position accounting for software endstops to
  1127. // avoid unexpected initial shifts on the first move
  1128. clamp_to_software_endstops(current_position);
  1129. plan_set_position_curposXYZE();
  1130. // Show the xflash error message now that serial, lcd and encoder are available
  1131. if (!xflash_success)
  1132. xflash_err_msg();
  1133. #ifdef FILAMENT_SENSOR
  1134. fsensor.init();
  1135. #endif //FILAMENT_SENSOR
  1136. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1137. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1138. #endif
  1139. setup_homepin();
  1140. #if defined(Z_AXIS_ALWAYS_ON)
  1141. enable_z();
  1142. #endif
  1143. // The farm monitoring SW may accidentally expect
  1144. // 2 messages of "printer started" to consider a printer working.
  1145. prusa_statistics(8);
  1146. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1147. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1148. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1149. // but this times out if a blocking dialog is shown in setup().
  1150. card.initsd();
  1151. #ifdef DEBUG_SD_SPEED_TEST
  1152. if (card.cardOK)
  1153. {
  1154. uint8_t* buff = (uint8_t*)block_buffer;
  1155. uint32_t block = 0;
  1156. uint32_t sumr = 0;
  1157. uint32_t sumw = 0;
  1158. for (int i = 0; i < 1024; i++)
  1159. {
  1160. uint32_t u = _micros();
  1161. bool res = card.card.readBlock(i, buff);
  1162. u = _micros() - u;
  1163. if (res)
  1164. {
  1165. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1166. sumr += u;
  1167. u = _micros();
  1168. res = card.card.writeBlock(i, buff);
  1169. u = _micros() - u;
  1170. if (res)
  1171. {
  1172. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1173. sumw += u;
  1174. }
  1175. else
  1176. {
  1177. printf_P(PSTR("writeBlock %4d error\n"), i);
  1178. break;
  1179. }
  1180. }
  1181. else
  1182. {
  1183. printf_P(PSTR("readBlock %4d error\n"), i);
  1184. break;
  1185. }
  1186. }
  1187. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1188. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1189. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1190. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1191. }
  1192. else
  1193. printf_P(PSTR("Card NG!\n"));
  1194. #endif //DEBUG_SD_SPEED_TEST
  1195. eeprom_init();
  1196. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1197. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1198. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1199. #if (LANG_MODE != 0) //secondary language support
  1200. #ifdef DEBUG_XFLASH
  1201. XFLASH_SPI_ENTER();
  1202. uint8_t uid[8]; // 64bit unique id
  1203. xflash_rd_uid(uid);
  1204. puts_P(_n("XFLASH UID="));
  1205. for (uint8_t i = 0; i < 8; i ++)
  1206. printf_P(PSTR("%02x"), uid[i]);
  1207. putchar('\n');
  1208. list_sec_lang_from_external_flash();
  1209. #endif //DEBUG_XFLASH
  1210. // lang_reset();
  1211. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1212. lcd_language();
  1213. #ifdef DEBUG_SEC_LANG
  1214. uint16_t sec_lang_code = lang_get_code(1);
  1215. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1216. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1217. lang_print_sec_lang(uartout);
  1218. #endif //DEBUG_SEC_LANG
  1219. #endif //(LANG_MODE != 0)
  1220. eeprom_init_default_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1222. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1223. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1224. int16_t z_shift = 0;
  1225. for (uint8_t i = 0; i < 5; i++) {
  1226. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  1227. }
  1228. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1229. }
  1230. eeprom_init_default_byte((uint8_t*)EEPROM_UVLO, 0);
  1231. eeprom_init_default_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1232. //mbl_mode_init();
  1233. mbl_settings_init();
  1234. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1235. if (SilentModeMenu_MMU == 255) {
  1236. SilentModeMenu_MMU = 1;
  1237. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1238. }
  1239. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1240. setup_fan_interrupt();
  1241. #endif //DEBUG_DISABLE_FANCHECK
  1242. #ifndef DEBUG_DISABLE_STARTMSGS
  1243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1244. if (!farm_mode) {
  1245. #if defined(FILAMENT_SENSOR) && defined(FSENSOR_PROBING)
  1246. check_if_fw_is_on_right_printer();
  1247. #endif //defined(FILAMENT_SENSOR) && defined(FSENSOR_PROBING)
  1248. #if 0
  1249. show_fw_version_warnings();
  1250. #endif
  1251. }
  1252. switch (hw_changed) {
  1253. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1254. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1255. case(0b01):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1258. break;
  1259. case(0b10):
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1261. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1262. break;
  1263. case(0b11):
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1265. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1266. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1267. break;
  1268. default: break; //no change, show no message
  1269. }
  1270. if (!previous_settings_retrieved) {
  1271. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=6
  1272. Config_StoreSettings();
  1273. }
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1275. lcd_wizard(WizState::Run);
  1276. }
  1277. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1278. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1279. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1280. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1281. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1282. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1283. // Show the message.
  1284. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1285. }
  1286. #ifdef TEMP_MODEL
  1287. else if (calibration_status() == CALIBRATION_STATUS_TEMP_MODEL_CALIBRATION) {
  1288. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TM_NOT_CAL));
  1289. lcd_update_enable(true);
  1290. }
  1291. #endif //TEMP_MODEL
  1292. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1298. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1302. // Show the message.
  1303. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1304. }
  1305. }
  1306. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1307. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1308. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1309. update_current_firmware_version_to_eeprom();
  1310. lcd_selftest();
  1311. }
  1312. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1313. KEEPALIVE_STATE(IN_PROCESS);
  1314. #endif //DEBUG_DISABLE_STARTMSGS
  1315. lcd_update_enable(true);
  1316. lcd_clear();
  1317. lcd_update(2);
  1318. // Store the currently running firmware into an eeprom,
  1319. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1320. update_current_firmware_version_to_eeprom();
  1321. #ifdef TMC2130
  1322. tmc2130_home_origin[X_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, 0);
  1323. tmc2130_home_bsteps[X_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS, 48);
  1324. tmc2130_home_fsteps[X_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS, 48);
  1325. tmc2130_home_origin[Y_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, 0);
  1326. tmc2130_home_bsteps[Y_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS, 48);
  1327. tmc2130_home_fsteps[Y_AXIS] = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS, 48);
  1328. tmc2130_home_enabled = eeprom_init_default_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, 0);
  1329. #endif //TMC2130
  1330. // report crash failures
  1331. fw_crash_init();
  1332. #ifdef UVLO_SUPPORT
  1333. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1334. /*
  1335. if (!lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1336. else {
  1337. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1338. lcd_update_enable(true);
  1339. lcd_update(2);
  1340. lcd_setstatuspgm(MSG_WELCOME);
  1341. }
  1342. */
  1343. manage_heater(); // Update temperatures
  1344. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1345. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1346. #endif
  1347. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1348. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1349. puts_P(_N("Automatic recovery!"));
  1350. #endif
  1351. recover_print(1);
  1352. }
  1353. else{
  1354. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1355. puts_P(_N("Normal recovery!"));
  1356. #endif
  1357. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) == LCD_LEFT_BUTTON_CHOICE) {
  1358. recover_print(0);
  1359. } else {
  1360. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. lcd_update_enable(true);
  1362. lcd_update(2);
  1363. lcd_setstatuspgm(MSG_WELCOME);
  1364. }
  1365. }
  1366. }
  1367. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1368. // the entire state machine initialized.
  1369. setup_uvlo_interrupt();
  1370. #endif //UVLO_SUPPORT
  1371. fCheckModeInit();
  1372. KEEPALIVE_STATE(NOT_BUSY);
  1373. #ifdef WATCHDOG
  1374. wdt_enable(WDTO_4S);
  1375. #ifdef EMERGENCY_HANDLERS
  1376. WDTCSR |= (1 << WDIE);
  1377. #endif //EMERGENCY_HANDLERS
  1378. #endif //WATCHDOG
  1379. }
  1380. static inline void crash_and_burn(dump_crash_reason reason)
  1381. {
  1382. WRITE(BEEPER, HIGH);
  1383. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, (uint8_t)reason);
  1384. #ifdef EMERGENCY_DUMP
  1385. xfdump_full_dump_and_reset(reason);
  1386. #elif defined(EMERGENCY_SERIAL_DUMP)
  1387. if(emergency_serial_dump)
  1388. serial_dump_and_reset(reason);
  1389. #endif
  1390. softReset();
  1391. }
  1392. #ifdef EMERGENCY_HANDLERS
  1393. #ifdef WATCHDOG
  1394. ISR(WDT_vect)
  1395. {
  1396. crash_and_burn(dump_crash_reason::watchdog);
  1397. }
  1398. #endif
  1399. ISR(BADISR_vect)
  1400. {
  1401. crash_and_burn(dump_crash_reason::bad_isr);
  1402. }
  1403. #endif //EMERGENCY_HANDLERS
  1404. void stack_error() {
  1405. crash_and_burn(dump_crash_reason::stack_error);
  1406. }
  1407. /**
  1408. * Output autoreport values according to features requested in M155
  1409. */
  1410. #if defined(AUTO_REPORT)
  1411. void host_autoreport()
  1412. {
  1413. if (autoReportFeatures.TimerExpired())
  1414. {
  1415. if(autoReportFeatures.Temp()){
  1416. gcode_M105(active_extruder);
  1417. }
  1418. if(autoReportFeatures.Pos()){
  1419. gcode_M114();
  1420. }
  1421. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1422. if(autoReportFeatures.Fans()){
  1423. gcode_M123();
  1424. }
  1425. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1426. autoReportFeatures.TimerStart();
  1427. }
  1428. }
  1429. #endif //AUTO_REPORT
  1430. /**
  1431. * Output a "busy" message at regular intervals
  1432. * while the machine is not accepting commands.
  1433. */
  1434. void host_keepalive() {
  1435. #ifndef HOST_KEEPALIVE_FEATURE
  1436. return;
  1437. #endif //HOST_KEEPALIVE_FEATURE
  1438. if (farm_mode) return;
  1439. long ms = _millis();
  1440. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1441. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1442. switch (busy_state) {
  1443. case IN_HANDLER:
  1444. case IN_PROCESS:
  1445. SERIAL_ECHO_START;
  1446. SERIAL_ECHOLNPGM("busy: processing");
  1447. break;
  1448. case PAUSED_FOR_USER:
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLNPGM("busy: paused for user");
  1451. break;
  1452. case PAUSED_FOR_INPUT:
  1453. SERIAL_ECHO_START;
  1454. SERIAL_ECHOLNPGM("busy: paused for input");
  1455. break;
  1456. default:
  1457. break;
  1458. }
  1459. }
  1460. prev_busy_signal_ms = ms;
  1461. }
  1462. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1463. // Before loop(), the setup() function is called by the main() routine.
  1464. void loop()
  1465. {
  1466. // Reset a previously aborted command, we can now start processing motion again
  1467. planner_aborted = false;
  1468. if(Stopped) {
  1469. // Currently Stopped (possibly due to an error) and not accepting new serial commands.
  1470. // Signal to the host that we're currently busy waiting for supervision.
  1471. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1472. } else {
  1473. // Printer is available for processing, reset state
  1474. KEEPALIVE_STATE(NOT_BUSY);
  1475. }
  1476. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) { //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1477. usb_timer.start();
  1478. }
  1479. else if (usb_timer.expired(10000)) { //just need to check if it expired. Nothing else is needed to be done.
  1480. ;
  1481. }
  1482. #ifdef PRUSA_M28
  1483. if (prusa_sd_card_upload)
  1484. {
  1485. //we read byte-by byte
  1486. serial_read_stream();
  1487. }
  1488. else
  1489. #endif
  1490. {
  1491. get_command();
  1492. #ifdef SDSUPPORT
  1493. card.checkautostart(false);
  1494. #endif
  1495. if(buflen)
  1496. {
  1497. cmdbuffer_front_already_processed = false;
  1498. #ifdef SDSUPPORT
  1499. if(card.saving)
  1500. {
  1501. // Saving a G-code file onto an SD-card is in progress.
  1502. // Saving starts with M28, saving until M29 is seen.
  1503. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1504. card.write_command(CMDBUFFER_CURRENT_STRING);
  1505. if(card.logging)
  1506. process_commands();
  1507. else
  1508. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1509. } else {
  1510. card.closefile();
  1511. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1512. }
  1513. } else {
  1514. process_commands();
  1515. }
  1516. #else
  1517. process_commands();
  1518. #endif //SDSUPPORT
  1519. if (! cmdbuffer_front_already_processed && buflen)
  1520. {
  1521. // ptr points to the start of the block currently being processed.
  1522. // The first character in the block is the block type.
  1523. char *ptr = cmdbuffer + bufindr;
  1524. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1525. // To support power panic, move the length of the command on the SD card to a planner buffer.
  1526. union {
  1527. struct {
  1528. char lo;
  1529. char hi;
  1530. } lohi;
  1531. uint16_t value;
  1532. } sdlen;
  1533. sdlen.value = 0;
  1534. {
  1535. // This block locks the interrupts globally for 3.25 us,
  1536. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1537. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1538. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1539. cli();
  1540. // Reset the command to something, which will be ignored by the power panic routine,
  1541. // so this buffer length will not be counted twice.
  1542. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1543. // Extract the current buffer length.
  1544. sdlen.lohi.lo = *ptr ++;
  1545. sdlen.lohi.hi = *ptr;
  1546. // and pass it to the planner queue.
  1547. planner_add_sd_length(sdlen.value);
  1548. sei();
  1549. }
  1550. }
  1551. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1552. cli();
  1553. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1554. // and one for each command to previous block in the planner queue.
  1555. planner_add_sd_length(1);
  1556. sei();
  1557. }
  1558. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1559. // this block's SD card length will not be counted twice as its command type has been replaced
  1560. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1561. cmdqueue_pop_front();
  1562. }
  1563. host_keepalive();
  1564. }
  1565. }
  1566. //check heater every n milliseconds
  1567. manage_heater();
  1568. manage_inactivity(isPrintPaused);
  1569. checkHitEndstops();
  1570. lcd_update(0);
  1571. #ifdef TMC2130
  1572. tmc2130_check_overtemp();
  1573. if (tmc2130_sg_crash)
  1574. {
  1575. uint8_t crash = tmc2130_sg_crash;
  1576. tmc2130_sg_crash = 0;
  1577. // crashdet_stop_and_save_print();
  1578. switch (crash)
  1579. {
  1580. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1581. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1582. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1583. }
  1584. }
  1585. #endif //TMC2130
  1586. MMU2::mmu2.mmu_loop();
  1587. }
  1588. #define DEFINE_PGM_READ_ANY(type, reader) \
  1589. static inline type pgm_read_any(const type *p) \
  1590. { return pgm_read_##reader##_near(p); }
  1591. DEFINE_PGM_READ_ANY(float, float);
  1592. DEFINE_PGM_READ_ANY(signed char, byte);
  1593. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1594. static const PROGMEM type array##_P[3] = \
  1595. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1596. static inline type array(uint8_t axis) \
  1597. { return pgm_read_any(&array##_P[axis]); } \
  1598. type array##_ext(uint8_t axis) \
  1599. { return pgm_read_any(&array##_P[axis]); }
  1600. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1601. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1602. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1603. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1604. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1605. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1606. static void axis_is_at_home(uint8_t axis) {
  1607. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1608. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1609. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1610. }
  1611. //! @return original feedmultiply
  1612. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1613. saved_feedrate = feedrate;
  1614. int l_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd.start();
  1617. enable_endstops(enable_endstops_now);
  1618. return l_feedmultiply;
  1619. }
  1620. //! @param original_feedmultiply feedmultiply to restore
  1621. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1622. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1623. enable_endstops(false);
  1624. #endif
  1625. feedrate = saved_feedrate;
  1626. feedmultiply = original_feedmultiply;
  1627. previous_millis_cmd.start();
  1628. }
  1629. #ifdef ENABLE_AUTO_BED_LEVELING
  1630. #ifdef AUTO_BED_LEVELING_GRID
  1631. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1632. {
  1633. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1634. planeNormal.debug("planeNormal");
  1635. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1636. //bedLevel.debug("bedLevel");
  1637. //plan_bed_level_matrix.debug("bed level before");
  1638. //vector_3 uncorrected_position = plan_get_position_mm();
  1639. //uncorrected_position.debug("position before");
  1640. vector_3 corrected_position = plan_get_position();
  1641. // corrected_position.debug("position after");
  1642. current_position[X_AXIS] = corrected_position.x;
  1643. current_position[Y_AXIS] = corrected_position.y;
  1644. current_position[Z_AXIS] = corrected_position.z;
  1645. // put the bed at 0 so we don't go below it.
  1646. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1647. plan_set_position_curposXYZE();
  1648. }
  1649. #else // not AUTO_BED_LEVELING_GRID
  1650. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1651. plan_bed_level_matrix.set_to_identity();
  1652. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1653. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1654. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1655. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1656. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1657. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1658. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1659. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1660. vector_3 corrected_position = plan_get_position();
  1661. current_position[X_AXIS] = corrected_position.x;
  1662. current_position[Y_AXIS] = corrected_position.y;
  1663. current_position[Z_AXIS] = corrected_position.z;
  1664. // put the bed at 0 so we don't go below it.
  1665. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1666. plan_set_position_curposXYZE();
  1667. }
  1668. #endif // AUTO_BED_LEVELING_GRID
  1669. static void run_z_probe() {
  1670. plan_bed_level_matrix.set_to_identity();
  1671. feedrate = homing_feedrate[Z_AXIS];
  1672. // move down until you find the bed
  1673. float zPosition = -10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // we have to let the planner know where we are right now as it is not where we said to go.
  1677. zPosition = st_get_position_mm(Z_AXIS);
  1678. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1679. // move up the retract distance
  1680. zPosition += home_retract_mm(Z_AXIS);
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. // move back down slowly to find bed
  1684. feedrate = homing_feedrate[Z_AXIS]/4;
  1685. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1687. st_synchronize();
  1688. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1689. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1690. plan_set_position_curposXYZE();
  1691. }
  1692. static void do_blocking_move_to(float x, float y, float z) {
  1693. float oldFeedRate = feedrate;
  1694. feedrate = homing_feedrate[Z_AXIS];
  1695. current_position[Z_AXIS] = z;
  1696. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = XY_TRAVEL_SPEED;
  1699. current_position[X_AXIS] = x;
  1700. current_position[Y_AXIS] = y;
  1701. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. feedrate = oldFeedRate;
  1704. }
  1705. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1706. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1707. }
  1708. /// Probe bed height at position (x,y), returns the measured z value
  1709. static float probe_pt(float x, float y, float z_before) {
  1710. // move to right place
  1711. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1712. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1713. run_z_probe();
  1714. float measured_z = current_position[Z_AXIS];
  1715. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1716. SERIAL_PROTOCOLPGM(" x: ");
  1717. SERIAL_PROTOCOL(x);
  1718. SERIAL_PROTOCOLPGM(" y: ");
  1719. SERIAL_PROTOCOL(y);
  1720. SERIAL_PROTOCOLPGM(" z: ");
  1721. SERIAL_PROTOCOL(measured_z);
  1722. SERIAL_PROTOCOLPGM("\n");
  1723. return measured_z;
  1724. }
  1725. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1726. #ifdef LIN_ADVANCE
  1727. /**
  1728. * M900: Set and/or Get advance K factor
  1729. *
  1730. * K<factor> Set advance K factor
  1731. */
  1732. inline void gcode_M900() {
  1733. float newK = code_seen('K') ? code_value_float() : -2;
  1734. #ifdef LA_NOCOMPAT
  1735. if (newK >= 0 && newK < LA_K_MAX)
  1736. extruder_advance_K = newK;
  1737. else
  1738. SERIAL_ECHOLNPGM("K out of allowed range!");
  1739. #else
  1740. if (newK == 0)
  1741. {
  1742. extruder_advance_K = 0;
  1743. la10c_reset();
  1744. }
  1745. else
  1746. {
  1747. newK = la10c_value(newK);
  1748. if (newK < 0)
  1749. SERIAL_ECHOLNPGM("K out of allowed range!");
  1750. else
  1751. extruder_advance_K = newK;
  1752. }
  1753. #endif
  1754. SERIAL_ECHO_START;
  1755. SERIAL_ECHOPGM("Advance K=");
  1756. SERIAL_ECHOLN(extruder_advance_K);
  1757. }
  1758. #endif // LIN_ADVANCE
  1759. bool check_commands() {
  1760. bool end_command_found = false;
  1761. while (buflen)
  1762. {
  1763. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1764. if (!cmdbuffer_front_already_processed)
  1765. cmdqueue_pop_front();
  1766. cmdbuffer_front_already_processed = false;
  1767. }
  1768. return end_command_found;
  1769. }
  1770. /// @brief Safely move Z-axis by distance delta (mm)
  1771. /// @param delta travel distance in mm
  1772. /// @returns The actual travel distance in mm. Endstop may limit the requested move.
  1773. float raise_z(float delta)
  1774. {
  1775. float travel_z = current_position[Z_AXIS];
  1776. // Prepare to move Z axis
  1777. current_position[Z_AXIS] += delta;
  1778. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1779. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1780. #else
  1781. bool z_min_endstop = false;
  1782. #endif
  1783. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1784. {
  1785. // current position is known or very low, it's safe to raise Z
  1786. clamp_to_software_endstops(current_position);
  1787. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1788. st_synchronize();
  1789. // Get the final travel distance
  1790. travel_z = current_position[Z_AXIS] - travel_z;
  1791. } else {
  1792. // ensure Z is powered in normal mode to overcome initial load
  1793. enable_z();
  1794. st_synchronize();
  1795. // rely on crashguard to limit damage
  1796. bool z_endstop_enabled = enable_z_endstop(true);
  1797. #ifdef TMC2130
  1798. tmc2130_home_enter(Z_AXIS_MASK);
  1799. #endif //TMC2130
  1800. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1801. st_synchronize();
  1802. // Get the final travel distance
  1803. travel_z = st_get_position_mm(Z_AXIS) - travel_z;
  1804. #ifdef TMC2130
  1805. if (endstop_z_hit_on_purpose())
  1806. {
  1807. // not necessarily exact, but will avoid further vertical moves
  1808. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1809. plan_set_position_curposXYZE();
  1810. }
  1811. tmc2130_home_exit();
  1812. #endif //TMC2130
  1813. enable_z_endstop(z_endstop_enabled);
  1814. }
  1815. return travel_z;
  1816. }
  1817. // raise_z_above: slowly raise Z to the requested height
  1818. //
  1819. // contrarily to a simple move, this function will carefully plan a move
  1820. // when the current Z position is unknown. In such cases, stallguard is
  1821. // enabled and will prevent prolonged pushing against the Z tops
  1822. void raise_z_above(float target)
  1823. {
  1824. if (current_position[Z_AXIS] >= target)
  1825. return;
  1826. // Use absolute value in case the current position is unknown
  1827. raise_z(fabs(current_position[Z_AXIS] - target));
  1828. }
  1829. #ifdef TMC2130
  1830. bool calibrate_z_auto()
  1831. {
  1832. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1833. lcd_clear();
  1834. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1835. bool endstops_enabled = enable_endstops(true);
  1836. int axis_up_dir = -home_dir(Z_AXIS);
  1837. tmc2130_home_enter(Z_AXIS_MASK);
  1838. current_position[Z_AXIS] = 0;
  1839. plan_set_position_curposXYZE();
  1840. set_destination_to_current();
  1841. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1842. feedrate = homing_feedrate[Z_AXIS];
  1843. plan_buffer_line_destinationXYZE(feedrate / 60);
  1844. st_synchronize();
  1845. // current_position[axis] = 0;
  1846. // plan_set_position_curposXYZE();
  1847. tmc2130_home_exit();
  1848. enable_endstops(false);
  1849. current_position[Z_AXIS] = 0;
  1850. plan_set_position_curposXYZE();
  1851. set_destination_to_current();
  1852. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1853. feedrate = homing_feedrate[Z_AXIS] / 2;
  1854. plan_buffer_line_destinationXYZE(feedrate / 60);
  1855. st_synchronize();
  1856. enable_endstops(endstops_enabled);
  1857. if (PRINTER_TYPE == PRINTER_MK3) {
  1858. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1859. }
  1860. else {
  1861. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1862. }
  1863. plan_set_position_curposXYZE();
  1864. return true;
  1865. }
  1866. #endif //TMC2130
  1867. #ifdef TMC2130
  1868. static void check_Z_crash(void)
  1869. {
  1870. if (!READ(Z_TMC2130_DIAG)) { //Z crash
  1871. FORCE_HIGH_POWER_END;
  1872. current_position[Z_AXIS] = 0;
  1873. plan_set_position_curposXYZE();
  1874. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1875. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1876. st_synchronize();
  1877. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1878. }
  1879. }
  1880. #endif //TMC2130
  1881. #ifdef TMC2130
  1882. void homeaxis(uint8_t axis, uint8_t cnt, uint8_t* pstep)
  1883. #else
  1884. void homeaxis(uint8_t axis, uint8_t cnt)
  1885. #endif //TMC2130
  1886. {
  1887. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1888. #define HOMEAXIS_DO(LETTER) \
  1889. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1890. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1891. {
  1892. int axis_home_dir = home_dir(axis);
  1893. feedrate = homing_feedrate[axis];
  1894. #ifdef TMC2130
  1895. tmc2130_home_enter(X_AXIS_MASK << axis);
  1896. #endif //TMC2130
  1897. // Move away a bit, so that the print head does not touch the end position,
  1898. // and the following movement to endstop has a chance to achieve the required velocity
  1899. // for the stall guard to work.
  1900. current_position[axis] = 0;
  1901. plan_set_position_curposXYZE();
  1902. set_destination_to_current();
  1903. // destination[axis] = 11.f;
  1904. destination[axis] = -3.f * axis_home_dir;
  1905. plan_buffer_line_destinationXYZE(feedrate/60);
  1906. st_synchronize();
  1907. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1908. endstops_hit_on_purpose();
  1909. enable_endstops(false);
  1910. current_position[axis] = 0;
  1911. plan_set_position_curposXYZE();
  1912. destination[axis] = 1. * axis_home_dir;
  1913. plan_buffer_line_destinationXYZE(feedrate/60);
  1914. st_synchronize();
  1915. // Now continue to move up to the left end stop with the collision detection enabled.
  1916. enable_endstops(true);
  1917. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1918. plan_buffer_line_destinationXYZE(feedrate/60);
  1919. st_synchronize();
  1920. for (uint8_t i = 0; i < cnt; i++)
  1921. {
  1922. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1923. endstops_hit_on_purpose();
  1924. enable_endstops(false);
  1925. current_position[axis] = 0;
  1926. plan_set_position_curposXYZE();
  1927. destination[axis] = -10.f * axis_home_dir;
  1928. plan_buffer_line_destinationXYZE(feedrate/60);
  1929. st_synchronize();
  1930. endstops_hit_on_purpose();
  1931. // Now move left up to the collision, this time with a repeatable velocity.
  1932. enable_endstops(true);
  1933. destination[axis] = 11.f * axis_home_dir;
  1934. #ifdef TMC2130
  1935. feedrate = homing_feedrate[axis];
  1936. #else //TMC2130
  1937. feedrate = homing_feedrate[axis] / 2;
  1938. #endif //TMC2130
  1939. plan_buffer_line_destinationXYZE(feedrate/60);
  1940. st_synchronize();
  1941. #ifdef TMC2130
  1942. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1943. if (pstep) pstep[i] = mscnt >> 4;
  1944. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1945. #endif //TMC2130
  1946. }
  1947. endstops_hit_on_purpose();
  1948. enable_endstops(false);
  1949. #ifdef TMC2130
  1950. uint8_t orig = tmc2130_home_origin[axis];
  1951. uint8_t back = tmc2130_home_bsteps[axis];
  1952. if (tmc2130_home_enabled && (orig <= 63))
  1953. {
  1954. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1955. if (back > 0)
  1956. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1957. }
  1958. else
  1959. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1960. tmc2130_home_exit();
  1961. #endif //TMC2130
  1962. axis_is_at_home(axis);
  1963. axis_known_position[axis] = true;
  1964. // Move from minimum
  1965. #ifdef TMC2130
  1966. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1967. #else //TMC2130
  1968. float dist = - axis_home_dir * 0.01f * 64;
  1969. #endif //TMC2130
  1970. current_position[axis] -= dist;
  1971. plan_set_position_curposXYZE();
  1972. current_position[axis] += dist;
  1973. destination[axis] = current_position[axis];
  1974. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  1975. st_synchronize();
  1976. feedrate = 0.0;
  1977. }
  1978. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1979. {
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_START;
  1982. #endif
  1983. int axis_home_dir = home_dir(axis);
  1984. current_position[axis] = 0;
  1985. plan_set_position_curposXYZE();
  1986. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1987. feedrate = homing_feedrate[axis];
  1988. plan_buffer_line_destinationXYZE(feedrate/60);
  1989. st_synchronize();
  1990. #ifdef TMC2130
  1991. check_Z_crash();
  1992. #endif //TMC2130
  1993. current_position[axis] = 0;
  1994. plan_set_position_curposXYZE();
  1995. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1996. plan_buffer_line_destinationXYZE(feedrate/60);
  1997. st_synchronize();
  1998. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1999. feedrate = homing_feedrate[axis]/2 ;
  2000. plan_buffer_line_destinationXYZE(feedrate/60);
  2001. st_synchronize();
  2002. #ifdef TMC2130
  2003. check_Z_crash();
  2004. #endif //TMC2130
  2005. axis_is_at_home(axis);
  2006. destination[axis] = current_position[axis];
  2007. feedrate = 0.0;
  2008. endstops_hit_on_purpose();
  2009. axis_known_position[axis] = true;
  2010. #ifdef TMC2130
  2011. FORCE_HIGH_POWER_END;
  2012. #endif
  2013. }
  2014. enable_endstops(endstops_enabled);
  2015. }
  2016. /**/
  2017. void home_xy()
  2018. {
  2019. set_destination_to_current();
  2020. homeaxis(X_AXIS);
  2021. homeaxis(Y_AXIS);
  2022. plan_set_position_curposXYZE();
  2023. endstops_hit_on_purpose();
  2024. }
  2025. void refresh_cmd_timeout(void)
  2026. {
  2027. previous_millis_cmd.start();
  2028. }
  2029. #ifdef FWRETRACT
  2030. void retract(bool retracting, bool swapretract = false) {
  2031. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2032. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2033. // position, which requires a sync
  2034. if(retracting && !retracted[active_extruder]) {
  2035. st_synchronize();
  2036. set_destination_to_current();
  2037. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2038. plan_set_e_position(current_position[E_AXIS]);
  2039. float oldFeedrate = feedrate;
  2040. feedrate=cs.retract_feedrate*60;
  2041. retracted[active_extruder]=true;
  2042. prepare_move();
  2043. if(cs.retract_zlift) {
  2044. st_synchronize();
  2045. current_position[Z_AXIS]-=cs.retract_zlift;
  2046. plan_set_position_curposXYZE();
  2047. prepare_move();
  2048. }
  2049. feedrate = oldFeedrate;
  2050. } else if(!retracting && retracted[active_extruder]) {
  2051. st_synchronize();
  2052. set_destination_to_current();
  2053. float oldFeedrate = feedrate;
  2054. feedrate=cs.retract_recover_feedrate*60;
  2055. if(cs.retract_zlift) {
  2056. current_position[Z_AXIS]+=cs.retract_zlift;
  2057. plan_set_position_curposXYZE();
  2058. prepare_move();
  2059. st_synchronize();
  2060. }
  2061. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2062. plan_set_e_position(current_position[E_AXIS]);
  2063. retracted[active_extruder]=false;
  2064. prepare_move();
  2065. feedrate = oldFeedrate;
  2066. }
  2067. } //retract
  2068. #endif //FWRETRACT
  2069. #ifdef TMC2130
  2070. void force_high_power_mode(bool start_high_power_section) {
  2071. #ifdef PSU_Delta
  2072. if (start_high_power_section == true) enable_force_z();
  2073. #endif //PSU_Delta
  2074. uint8_t silent;
  2075. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2076. if (silent == 1) {
  2077. //we are in silent mode, set to normal mode to enable crash detection
  2078. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2079. st_synchronize();
  2080. cli();
  2081. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2082. update_mode_profile();
  2083. tmc2130_init(TMCInitParams(FarmOrUserECool()));
  2084. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2085. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2086. st_reset_timer();
  2087. sei();
  2088. }
  2089. }
  2090. #endif //TMC2130
  2091. void gcode_M105(uint8_t extruder)
  2092. {
  2093. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2094. SERIAL_PROTOCOLPGM("T:");
  2095. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2096. SERIAL_PROTOCOLPGM(" /");
  2097. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2098. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2099. SERIAL_PROTOCOLPGM(" B:");
  2100. SERIAL_PROTOCOL_F(degBed(),1);
  2101. SERIAL_PROTOCOLPGM(" /");
  2102. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2103. #endif //TEMP_BED_PIN
  2104. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2105. SERIAL_PROTOCOLPGM(" T");
  2106. SERIAL_PROTOCOL(cur_extruder);
  2107. SERIAL_PROTOCOL(':');
  2108. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2109. SERIAL_PROTOCOLPGM(" /");
  2110. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2111. }
  2112. #else
  2113. SERIAL_ERROR_START;
  2114. SERIAL_ERRORLNRPGM(_n("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2115. #endif
  2116. SERIAL_PROTOCOLPGM(" @:");
  2117. #ifdef EXTRUDER_WATTS
  2118. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2119. SERIAL_PROTOCOLPGM("W");
  2120. #else
  2121. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2122. #endif
  2123. SERIAL_PROTOCOLPGM(" B@:");
  2124. #ifdef BED_WATTS
  2125. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2126. SERIAL_PROTOCOLPGM("W");
  2127. #else
  2128. SERIAL_PROTOCOL(getHeaterPower(-1));
  2129. #endif
  2130. #ifdef PINDA_THERMISTOR
  2131. SERIAL_PROTOCOLPGM(" P:");
  2132. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2133. #endif //PINDA_THERMISTOR
  2134. #ifdef AMBIENT_THERMISTOR
  2135. SERIAL_PROTOCOLPGM(" A:");
  2136. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2137. #endif //AMBIENT_THERMISTOR
  2138. #ifdef SHOW_TEMP_ADC_VALUES
  2139. {
  2140. float raw = 0.0;
  2141. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2142. SERIAL_PROTOCOLPGM(" ADC B:");
  2143. SERIAL_PROTOCOL_F(degBed(),1);
  2144. SERIAL_PROTOCOLPGM("C->");
  2145. raw = rawBedTemp();
  2146. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2147. SERIAL_PROTOCOLPGM(" Rb->");
  2148. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2149. SERIAL_PROTOCOLPGM(" Rxb->");
  2150. SERIAL_PROTOCOL_F(raw, 5);
  2151. #endif
  2152. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2153. SERIAL_PROTOCOLPGM(" T");
  2154. SERIAL_PROTOCOL(cur_extruder);
  2155. SERIAL_PROTOCOLPGM(":");
  2156. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2157. SERIAL_PROTOCOLPGM("C->");
  2158. raw = rawHotendTemp(cur_extruder);
  2159. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2160. SERIAL_PROTOCOLPGM(" Rt");
  2161. SERIAL_PROTOCOL(cur_extruder);
  2162. SERIAL_PROTOCOLPGM("->");
  2163. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2164. SERIAL_PROTOCOLPGM(" Rx");
  2165. SERIAL_PROTOCOL(cur_extruder);
  2166. SERIAL_PROTOCOLPGM("->");
  2167. SERIAL_PROTOCOL_F(raw, 5);
  2168. }
  2169. }
  2170. #endif
  2171. SERIAL_PROTOCOLLN();
  2172. }
  2173. #ifdef TMC2130
  2174. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2175. #else
  2176. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2177. #endif //TMC2130
  2178. {
  2179. // Flag for the display update routine and to disable the print cancelation during homing.
  2180. st_synchronize();
  2181. homing_flag = true;
  2182. #if 0
  2183. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2184. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2185. #endif
  2186. // Which axes should be homed?
  2187. bool home_x = home_x_axis;
  2188. bool home_y = home_y_axis;
  2189. bool home_z = home_z_axis;
  2190. // Either all X,Y,Z codes are present, or none of them.
  2191. bool home_all_axes = home_x == home_y && home_x == home_z;
  2192. if (home_all_axes)
  2193. // No X/Y/Z code provided means to home all axes.
  2194. home_x = home_y = home_z = true;
  2195. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2196. if (home_all_axes) {
  2197. raise_z_above(MESH_HOME_Z_SEARCH);
  2198. }
  2199. #ifdef ENABLE_AUTO_BED_LEVELING
  2200. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2201. #endif //ENABLE_AUTO_BED_LEVELING
  2202. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2203. // the planner will not perform any adjustments in the XY plane.
  2204. // Wait for the motors to stop and update the current position with the absolute values.
  2205. world2machine_revert_to_uncorrected();
  2206. // For mesh bed leveling deactivate the matrix temporarily.
  2207. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2208. // in a single axis only.
  2209. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2210. #ifdef MESH_BED_LEVELING
  2211. uint8_t mbl_was_active = mbl.active;
  2212. mbl.active = 0;
  2213. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2214. #endif
  2215. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2216. if (home_z)
  2217. babystep_undo();
  2218. int l_feedmultiply = setup_for_endstop_move();
  2219. set_destination_to_current();
  2220. feedrate = 0.0;
  2221. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2222. if(home_z)
  2223. homeaxis(Z_AXIS);
  2224. #endif
  2225. #ifdef QUICK_HOME
  2226. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2227. if(home_x && home_y) //first diagonal move
  2228. {
  2229. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2230. uint8_t x_axis_home_dir = home_dir(X_AXIS);
  2231. plan_set_position_curposXYZE();
  2232. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2233. feedrate = homing_feedrate[X_AXIS];
  2234. if(homing_feedrate[Y_AXIS]<feedrate)
  2235. feedrate = homing_feedrate[Y_AXIS];
  2236. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2237. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2238. } else {
  2239. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2240. }
  2241. plan_buffer_line_destinationXYZE(feedrate/60);
  2242. st_synchronize();
  2243. axis_is_at_home(X_AXIS);
  2244. axis_is_at_home(Y_AXIS);
  2245. plan_set_position_curposXYZE();
  2246. destination[X_AXIS] = current_position[X_AXIS];
  2247. destination[Y_AXIS] = current_position[Y_AXIS];
  2248. plan_buffer_line_destinationXYZE(feedrate/60);
  2249. feedrate = 0.0;
  2250. st_synchronize();
  2251. endstops_hit_on_purpose();
  2252. current_position[X_AXIS] = destination[X_AXIS];
  2253. current_position[Y_AXIS] = destination[Y_AXIS];
  2254. current_position[Z_AXIS] = destination[Z_AXIS];
  2255. }
  2256. #endif /* QUICK_HOME */
  2257. #ifdef TMC2130
  2258. if(home_x)
  2259. {
  2260. if (!calib)
  2261. homeaxis(X_AXIS);
  2262. else
  2263. tmc2130_home_calibrate(X_AXIS);
  2264. }
  2265. if(home_y)
  2266. {
  2267. if (!calib)
  2268. homeaxis(Y_AXIS);
  2269. else
  2270. tmc2130_home_calibrate(Y_AXIS);
  2271. }
  2272. #else //TMC2130
  2273. if(home_x) homeaxis(X_AXIS);
  2274. if(home_y) homeaxis(Y_AXIS);
  2275. #endif //TMC2130
  2276. if(home_x_axis && home_x_value != 0)
  2277. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2278. if(home_y_axis && home_y_value != 0)
  2279. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2280. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2281. #ifndef Z_SAFE_HOMING
  2282. if(home_z) {
  2283. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2284. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2285. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2286. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, move X&Y to safe position for home
  2287. raise_z_above(MESH_HOME_Z_SEARCH);
  2288. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2289. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2290. // 1st mesh bed leveling measurement point, corrected.
  2291. world2machine_initialize();
  2292. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2293. world2machine_reset();
  2294. if (destination[Y_AXIS] < Y_MIN_POS)
  2295. destination[Y_AXIS] = Y_MIN_POS;
  2296. feedrate = homing_feedrate[X_AXIS] / 20;
  2297. enable_endstops(false);
  2298. #ifdef DEBUG_BUILD
  2299. SERIAL_ECHOLNPGM("plan_set_position()");
  2300. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2301. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2302. #endif
  2303. plan_set_position_curposXYZE();
  2304. #ifdef DEBUG_BUILD
  2305. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2306. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2307. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2308. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2309. #endif
  2310. plan_buffer_line_destinationXYZE(feedrate);
  2311. st_synchronize();
  2312. current_position[X_AXIS] = destination[X_AXIS];
  2313. current_position[Y_AXIS] = destination[Y_AXIS];
  2314. enable_endstops(true);
  2315. endstops_hit_on_purpose();
  2316. homeaxis(Z_AXIS);
  2317. #else // MESH_BED_LEVELING
  2318. homeaxis(Z_AXIS);
  2319. #endif // MESH_BED_LEVELING
  2320. }
  2321. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2322. if(home_all_axes) {
  2323. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2324. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2325. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2326. feedrate = XY_TRAVEL_SPEED/60;
  2327. current_position[Z_AXIS] = 0;
  2328. plan_set_position_curposXYZE();
  2329. plan_buffer_line_destinationXYZE(feedrate);
  2330. st_synchronize();
  2331. current_position[X_AXIS] = destination[X_AXIS];
  2332. current_position[Y_AXIS] = destination[Y_AXIS];
  2333. homeaxis(Z_AXIS);
  2334. }
  2335. // Let's see if X and Y are homed and probe is inside bed area.
  2336. if(home_z) {
  2337. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2338. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2339. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2340. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2341. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2342. current_position[Z_AXIS] = 0;
  2343. plan_set_position_curposXYZE();
  2344. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2345. feedrate = max_feedrate[Z_AXIS];
  2346. plan_buffer_line_destinationXYZE(feedrate);
  2347. st_synchronize();
  2348. homeaxis(Z_AXIS);
  2349. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2350. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2351. SERIAL_ECHO_START;
  2352. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2353. } else {
  2354. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2355. SERIAL_ECHO_START;
  2356. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2357. }
  2358. }
  2359. #endif // Z_SAFE_HOMING
  2360. #endif // Z_HOME_DIR < 0
  2361. if(home_z_axis && home_z_value != 0)
  2362. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2363. #ifdef ENABLE_AUTO_BED_LEVELING
  2364. if(home_z)
  2365. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2366. #endif
  2367. // Set the planner and stepper routine positions.
  2368. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2369. // contains the machine coordinates.
  2370. plan_set_position_curposXYZE();
  2371. clean_up_after_endstop_move(l_feedmultiply);
  2372. endstops_hit_on_purpose();
  2373. // Load the machine correction matrix
  2374. world2machine_initialize();
  2375. // and correct the current_position XY axes to match the transformed coordinate system.
  2376. world2machine_update_current();
  2377. #ifdef MESH_BED_LEVELING
  2378. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2379. {
  2380. if (! home_z && mbl_was_active) {
  2381. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2382. mbl.active = true;
  2383. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2384. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2385. }
  2386. }
  2387. #endif
  2388. prusa_statistics(20);
  2389. st_synchronize();
  2390. homing_flag = false;
  2391. #if 0
  2392. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2393. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2394. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2395. #endif
  2396. }
  2397. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2398. {
  2399. #ifdef TMC2130
  2400. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2401. #else
  2402. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2403. #endif //TMC2130
  2404. }
  2405. // G80 - Automatic mesh bed leveling
  2406. static void gcode_G80()
  2407. {
  2408. st_synchronize();
  2409. if (planner_aborted)
  2410. return;
  2411. mesh_bed_leveling_flag = true;
  2412. #ifndef PINDA_THERMISTOR
  2413. static bool run = false; // thermistor-less PINDA temperature compensation is running
  2414. #endif // ndef PINDA_THERMISTOR
  2415. #ifdef SUPPORT_VERBOSITY
  2416. int8_t verbosity_level = 0;
  2417. if (code_seen('V')) {
  2418. // Just 'V' without a number counts as V1.
  2419. char c = strchr_pointer[1];
  2420. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2421. }
  2422. #endif //SUPPORT_VERBOSITY
  2423. // Firstly check if we know where we are
  2424. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2425. // We don't know where we are! HOME!
  2426. // Push the commands to the front of the message queue in the reverse order!
  2427. // There shall be always enough space reserved for these commands.
  2428. repeatcommand_front(); // repeat G80 with all its parameters
  2429. enquecommand_front_P(G28W0);
  2430. return;
  2431. }
  2432. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  2433. if (code_seen('N')) {
  2434. nMeasPoints = code_value_uint8();
  2435. if (nMeasPoints != 7) {
  2436. nMeasPoints = 3;
  2437. }
  2438. }
  2439. else {
  2440. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  2441. }
  2442. uint8_t nProbeRetry = 3;
  2443. if (code_seen('R')) {
  2444. nProbeRetry = code_value_uint8();
  2445. if (nProbeRetry > 10) {
  2446. nProbeRetry = 10;
  2447. }
  2448. }
  2449. else {
  2450. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  2451. }
  2452. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  2453. #ifndef PINDA_THERMISTOR
  2454. if (run == false && eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true && target_temperature_bed >= 50)
  2455. {
  2456. temp_compensation_start();
  2457. run = true;
  2458. repeatcommand_front(); // repeat G80 with all its parameters
  2459. enquecommand_front_P(G28W0);
  2460. break;
  2461. }
  2462. run = false;
  2463. #endif //PINDA_THERMISTOR
  2464. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2465. CustomMsg custom_message_type_old = custom_message_type;
  2466. uint8_t custom_message_state_old = custom_message_state;
  2467. custom_message_type = CustomMsg::MeshBedLeveling;
  2468. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  2469. lcd_update(1);
  2470. mbl.reset(); //reset mesh bed leveling
  2471. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2472. babystep_undo();
  2473. // Cycle through all points and probe them
  2474. // First move up. During this first movement, the babystepping will be reverted.
  2475. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2476. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  2477. // The move to the first calibration point.
  2478. current_position[X_AXIS] = BED_X0;
  2479. current_position[Y_AXIS] = BED_Y0;
  2480. #ifdef SUPPORT_VERBOSITY
  2481. if (verbosity_level >= 1)
  2482. {
  2483. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2484. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2485. }
  2486. #else //SUPPORT_VERBOSITY
  2487. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2488. #endif //SUPPORT_VERBOSITY
  2489. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2490. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2491. // Wait until the move is finished.
  2492. st_synchronize();
  2493. if (planner_aborted)
  2494. {
  2495. custom_message_type = custom_message_type_old;
  2496. custom_message_state = custom_message_state_old;
  2497. return;
  2498. }
  2499. uint8_t mesh_point = 0; //index number of calibration point
  2500. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2501. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2502. #ifdef SUPPORT_VERBOSITY
  2503. if (verbosity_level >= 1) {
  2504. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2505. }
  2506. #endif // SUPPORT_VERBOSITY
  2507. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2508. while (mesh_point != nMeasPoints * nMeasPoints) {
  2509. // Get coords of a measuring point.
  2510. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  2511. uint8_t iy = mesh_point / nMeasPoints;
  2512. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  2513. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  2514. custom_message_state--;
  2515. mesh_point++;
  2516. continue; //skip
  2517. }*/
  2518. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  2519. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  2520. {
  2521. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  2522. }
  2523. float z0 = 0.f;
  2524. if (has_z && (mesh_point > 0)) {
  2525. uint16_t z_offset_u = 0;
  2526. if (nMeasPoints == 7) {
  2527. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  2528. }
  2529. else {
  2530. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2531. }
  2532. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2533. #ifdef SUPPORT_VERBOSITY
  2534. if (verbosity_level >= 1) {
  2535. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  2536. }
  2537. #endif // SUPPORT_VERBOSITY
  2538. }
  2539. // Move Z up to MESH_HOME_Z_SEARCH.
  2540. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2541. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  2542. float init_z_bckp = current_position[Z_AXIS];
  2543. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2544. st_synchronize();
  2545. // Move to XY position of the sensor point.
  2546. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  2547. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  2548. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2549. #ifdef SUPPORT_VERBOSITY
  2550. if (verbosity_level >= 1) {
  2551. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2552. SERIAL_PROTOCOL(mesh_point);
  2553. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2554. }
  2555. #else //SUPPORT_VERBOSITY
  2556. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2557. #endif // SUPPORT_VERBOSITY
  2558. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2559. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2560. st_synchronize();
  2561. if (planner_aborted)
  2562. {
  2563. custom_message_type = custom_message_type_old;
  2564. custom_message_state = custom_message_state_old;
  2565. return;
  2566. }
  2567. // Go down until endstop is hit
  2568. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2569. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2570. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2571. break;
  2572. }
  2573. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  2574. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  2575. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2576. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2577. st_synchronize();
  2578. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2579. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2580. break;
  2581. }
  2582. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2583. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  2584. break;
  2585. }
  2586. }
  2587. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2588. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  2589. break;
  2590. }
  2591. #ifdef SUPPORT_VERBOSITY
  2592. if (verbosity_level >= 10) {
  2593. SERIAL_ECHOPGM("X: ");
  2594. MYSERIAL.print(current_position[X_AXIS], 5);
  2595. SERIAL_ECHOLNPGM("");
  2596. SERIAL_ECHOPGM("Y: ");
  2597. MYSERIAL.print(current_position[Y_AXIS], 5);
  2598. SERIAL_PROTOCOLPGM("\n");
  2599. }
  2600. #endif // SUPPORT_VERBOSITY
  2601. float offset_z = 0;
  2602. #ifdef PINDA_THERMISTOR
  2603. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2604. #endif //PINDA_THERMISTOR
  2605. // #ifdef SUPPORT_VERBOSITY
  2606. /* if (verbosity_level >= 1)
  2607. {
  2608. SERIAL_ECHOPGM("mesh bed leveling: ");
  2609. MYSERIAL.print(current_position[Z_AXIS], 5);
  2610. SERIAL_ECHOPGM(" offset: ");
  2611. MYSERIAL.print(offset_z, 5);
  2612. SERIAL_ECHOLNPGM("");
  2613. }*/
  2614. // #endif // SUPPORT_VERBOSITY
  2615. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2616. custom_message_state--;
  2617. mesh_point++;
  2618. lcd_update(1);
  2619. }
  2620. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2621. #ifdef SUPPORT_VERBOSITY
  2622. if (verbosity_level >= 20) {
  2623. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2624. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2625. MYSERIAL.print(current_position[Z_AXIS], 5);
  2626. }
  2627. #endif // SUPPORT_VERBOSITY
  2628. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2629. st_synchronize();
  2630. if (mesh_point != nMeasPoints * nMeasPoints) {
  2631. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  2632. bool bState;
  2633. do { // repeat until Z-leveling o.k.
  2634. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ...")); ////MSG_ZLEVELING_ENFORCED c=20 r=4
  2635. #ifdef TMC2130
  2636. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  2637. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  2638. #else // TMC2130
  2639. lcd_wait_for_click_delay(0); // ~ no timeout
  2640. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  2641. #endif // TMC2130
  2642. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  2643. bState=enable_z_endstop(false);
  2644. raise_z(-1);
  2645. enable_z_endstop(true);
  2646. #ifdef TMC2130
  2647. tmc2130_home_enter(Z_AXIS_MASK);
  2648. #endif // TMC2130
  2649. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2650. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2651. st_synchronize();
  2652. #ifdef TMC2130
  2653. tmc2130_home_exit();
  2654. #endif // TMC2130
  2655. enable_z_endstop(bState);
  2656. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  2657. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  2658. custom_message_type = custom_message_type_old;
  2659. custom_message_state = custom_message_state_old;
  2660. lcd_update_enable(true); // display / status-line recovery
  2661. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  2662. repeatcommand_front(); // re-run (i.e. of "G80")
  2663. return;
  2664. }
  2665. clean_up_after_endstop_move(l_feedmultiply);
  2666. // SERIAL_ECHOLNPGM("clean up finished ");
  2667. #ifndef PINDA_THERMISTOR
  2668. if(eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2669. #endif
  2670. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2671. // SERIAL_ECHOLNPGM("babystep applied");
  2672. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2673. #ifdef SUPPORT_VERBOSITY
  2674. if (verbosity_level >= 1) {
  2675. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2676. }
  2677. #endif // SUPPORT_VERBOSITY
  2678. for (uint8_t i = 0; i < 4; ++i) {
  2679. static const char codes[4] PROGMEM = { 'L', 'R', 'F', 'B' };
  2680. static uint8_t *const eep_addresses[4] PROGMEM = {
  2681. (uint8_t*)EEPROM_BED_CORRECTION_LEFT,
  2682. (uint8_t*)EEPROM_BED_CORRECTION_RIGHT,
  2683. (uint8_t*)EEPROM_BED_CORRECTION_FRONT,
  2684. (uint8_t*)EEPROM_BED_CORRECTION_REAR,
  2685. };
  2686. long correction = 0;
  2687. if (code_seen(pgm_read_byte(&codes[i])))
  2688. correction = code_value_long();
  2689. else if (eeprom_bed_correction_valid)
  2690. correction = (int8_t)eeprom_read_byte((uint8_t*)pgm_read_ptr(&eep_addresses[i]));
  2691. if (correction == 0)
  2692. continue;
  2693. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  2694. SERIAL_ERROR_START;
  2695. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2696. SERIAL_ECHO(correction);
  2697. SERIAL_ECHOLNPGM(" microns");
  2698. }
  2699. else {
  2700. float offset = float(correction) * 0.001f;
  2701. switch (i) {
  2702. case 0:
  2703. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2704. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  2705. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  2706. }
  2707. }
  2708. break;
  2709. case 1:
  2710. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2711. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  2712. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  2713. }
  2714. }
  2715. break;
  2716. case 2:
  2717. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2718. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2719. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  2720. }
  2721. }
  2722. break;
  2723. case 3:
  2724. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2725. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  2726. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  2727. }
  2728. }
  2729. break;
  2730. }
  2731. }
  2732. }
  2733. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2734. if (nMeasPoints == 3) {
  2735. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2736. }
  2737. /*
  2738. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2739. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2740. SERIAL_PROTOCOLPGM(",");
  2741. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2742. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2743. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2744. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2745. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2746. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2747. SERIAL_PROTOCOLPGM(" ");
  2748. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2749. }
  2750. SERIAL_PROTOCOLPGM("\n");
  2751. }
  2752. */
  2753. if (nMeasPoints == 7 && magnet_elimination) {
  2754. mbl_interpolation(nMeasPoints);
  2755. }
  2756. /*
  2757. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2758. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2759. SERIAL_PROTOCOLPGM(",");
  2760. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2761. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2762. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2763. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2764. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2765. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2766. SERIAL_PROTOCOLPGM(" ");
  2767. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2768. }
  2769. SERIAL_PROTOCOLPGM("\n");
  2770. }
  2771. */
  2772. // SERIAL_ECHOLNPGM("Upsample finished");
  2773. mbl.active = 1; //activate mesh bed leveling
  2774. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2775. go_home_with_z_lift();
  2776. // SERIAL_ECHOLNPGM("Go home finished");
  2777. //unretract (after PINDA preheat retraction)
  2778. if (((int)degHotend(active_extruder) > extrude_min_temp) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  2779. current_position[E_AXIS] += default_retraction;
  2780. plan_buffer_line_curposXYZE(400);
  2781. }
  2782. KEEPALIVE_STATE(NOT_BUSY);
  2783. // Restore custom message state
  2784. lcd_setstatuspgm(MSG_WELCOME);
  2785. custom_message_type = custom_message_type_old;
  2786. custom_message_state = custom_message_state_old;
  2787. lcd_update(2);
  2788. st_synchronize();
  2789. mesh_bed_leveling_flag = false;
  2790. }
  2791. void adjust_bed_reset()
  2792. {
  2793. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2794. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2795. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2796. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2797. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2798. }
  2799. //! @brief Calibrate XYZ
  2800. //! @param onlyZ if true, calibrate only Z axis
  2801. //! @param verbosity_level
  2802. //! @retval true Succeeded
  2803. //! @retval false Failed
  2804. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2805. {
  2806. bool final_result = false;
  2807. #ifdef TMC2130
  2808. FORCE_HIGH_POWER_START;
  2809. #endif // TMC2130
  2810. FORCE_BL_ON_START;
  2811. // Only Z calibration?
  2812. if (!onlyZ)
  2813. {
  2814. setTargetBed(0);
  2815. setAllTargetHotends(0);
  2816. adjust_bed_reset(); //reset bed level correction
  2817. }
  2818. // Disable the default update procedure of the display. We will do a modal dialog.
  2819. lcd_update_enable(false);
  2820. // Let the planner use the uncorrected coordinates.
  2821. mbl.reset();
  2822. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2823. // the planner will not perform any adjustments in the XY plane.
  2824. // Wait for the motors to stop and update the current position with the absolute values.
  2825. world2machine_revert_to_uncorrected();
  2826. // Reset the baby step value applied without moving the axes.
  2827. babystep_reset();
  2828. // Mark all axes as in a need for homing.
  2829. memset(axis_known_position, 0, sizeof(axis_known_position));
  2830. // Home in the XY plane.
  2831. //set_destination_to_current();
  2832. int l_feedmultiply = setup_for_endstop_move();
  2833. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2834. raise_z_above(MESH_HOME_Z_SEARCH);
  2835. home_xy();
  2836. enable_endstops(false);
  2837. current_position[X_AXIS] += 5;
  2838. current_position[Y_AXIS] += 5;
  2839. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2840. st_synchronize();
  2841. // Let the user move the Z axes up to the end stoppers.
  2842. #ifdef TMC2130
  2843. if (calibrate_z_auto())
  2844. {
  2845. #else //TMC2130
  2846. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2847. {
  2848. #endif //TMC2130
  2849. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2850. if(onlyZ){
  2851. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2852. lcd_puts_at_P(0,3,_n("1/9"));
  2853. }else{
  2854. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2855. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2856. lcd_puts_at_P(0,3,_n("1/4"));
  2857. }
  2858. refresh_cmd_timeout();
  2859. #ifndef STEEL_SHEET
  2860. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2861. {
  2862. lcd_wait_for_cool_down();
  2863. }
  2864. #endif //STEEL_SHEET
  2865. if(!onlyZ)
  2866. {
  2867. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2868. #ifdef STEEL_SHEET
  2869. uint8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false);
  2870. if(result == LCD_LEFT_BUTTON_CHOICE) {
  2871. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2872. }
  2873. #endif //STEEL_SHEET
  2874. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2875. KEEPALIVE_STATE(IN_HANDLER);
  2876. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2877. lcd_puts_at_P(0,3,_n("1/4"));
  2878. }
  2879. bool endstops_enabled = enable_endstops(false);
  2880. raise_z(-1);
  2881. // Move the print head close to the bed.
  2882. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2883. enable_endstops(true);
  2884. #ifdef TMC2130
  2885. tmc2130_home_enter(Z_AXIS_MASK);
  2886. #endif //TMC2130
  2887. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2888. st_synchronize();
  2889. #ifdef TMC2130
  2890. tmc2130_home_exit();
  2891. #endif //TMC2130
  2892. enable_endstops(endstops_enabled);
  2893. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2894. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2895. {
  2896. if (onlyZ)
  2897. {
  2898. clean_up_after_endstop_move(l_feedmultiply);
  2899. // Z only calibration.
  2900. // Load the machine correction matrix
  2901. world2machine_initialize();
  2902. // and correct the current_position to match the transformed coordinate system.
  2903. world2machine_update_current();
  2904. //FIXME
  2905. bool result = sample_mesh_and_store_reference();
  2906. if (result)
  2907. {
  2908. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2909. {
  2910. // Shipped, the nozzle height has been set already. The user can start printing now.
  2911. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2912. }
  2913. final_result = true;
  2914. // babystep_apply();
  2915. }
  2916. }
  2917. else
  2918. {
  2919. // Reset the baby step value and the baby step applied flag.
  2920. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2921. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2922. // Complete XYZ calibration.
  2923. uint8_t point_too_far_mask = 0;
  2924. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2925. clean_up_after_endstop_move(l_feedmultiply);
  2926. // Print head up.
  2927. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2928. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2929. st_synchronize();
  2930. //#ifndef NEW_XYZCAL
  2931. if (result >= 0)
  2932. {
  2933. #ifdef HEATBED_V2
  2934. sample_z();
  2935. #else //HEATBED_V2
  2936. point_too_far_mask = 0;
  2937. // Second half: The fine adjustment.
  2938. // Let the planner use the uncorrected coordinates.
  2939. mbl.reset();
  2940. world2machine_reset();
  2941. // Home in the XY plane.
  2942. int l_feedmultiply = setup_for_endstop_move();
  2943. home_xy();
  2944. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2945. clean_up_after_endstop_move(l_feedmultiply);
  2946. // Print head up.
  2947. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2948. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2949. st_synchronize();
  2950. // if (result >= 0) babystep_apply();
  2951. #endif //HEATBED_V2
  2952. }
  2953. //#endif //NEW_XYZCAL
  2954. lcd_update_enable(true);
  2955. lcd_update(2);
  2956. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2957. if (result >= 0)
  2958. {
  2959. #ifdef TEMP_MODEL
  2960. calibration_status_store(CALIBRATION_STATUS_TEMP_MODEL_CALIBRATION);
  2961. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_TM_NOT_CAL));
  2962. #else
  2963. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2964. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2965. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2966. #endif //TEMP_MODEL
  2967. final_result = true;
  2968. }
  2969. }
  2970. #ifdef TMC2130
  2971. tmc2130_home_exit();
  2972. #endif
  2973. }
  2974. else
  2975. {
  2976. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2977. final_result = false;
  2978. }
  2979. }
  2980. else
  2981. {
  2982. // Timeouted.
  2983. }
  2984. lcd_update_enable(true);
  2985. #ifdef TMC2130
  2986. FORCE_HIGH_POWER_END;
  2987. #endif // TMC2130
  2988. FORCE_BL_ON_END;
  2989. return final_result;
  2990. }
  2991. void gcode_M114()
  2992. {
  2993. SERIAL_PROTOCOLPGM("X:");
  2994. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2995. SERIAL_PROTOCOLPGM(" Y:");
  2996. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2997. SERIAL_PROTOCOLPGM(" Z:");
  2998. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2999. SERIAL_PROTOCOLPGM(" E:");
  3000. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3001. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  3002. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  3003. SERIAL_PROTOCOLPGM(" Y:");
  3004. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  3005. SERIAL_PROTOCOLPGM(" Z:");
  3006. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  3007. SERIAL_PROTOCOLPGM(" E:");
  3008. SERIAL_PROTOCOLLN(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  3009. }
  3010. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3011. void gcode_M123()
  3012. {
  3013. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  3014. }
  3015. #endif //FANCHECK and TACH_0 or TACH_1
  3016. static void mmu_M600_wait_and_beep() {
  3017. // Beep and wait for user to remove old filament and prepare new filament for load
  3018. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3019. int counterBeep = 0;
  3020. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament.")); ////MSG_REMOVE_OLD_FILAMENT c=20 r=5
  3021. bool bFirst = true;
  3022. while (!lcd_clicked()) {
  3023. manage_heater();
  3024. manage_inactivity(true);
  3025. #if BEEPER > 0
  3026. if (counterBeep == 500) {
  3027. counterBeep = 0;
  3028. }
  3029. SET_OUTPUT(BEEPER);
  3030. if (counterBeep == 0) {
  3031. if ((eSoundMode == e_SOUND_MODE_BLIND) || (eSoundMode == e_SOUND_MODE_LOUD) || ((eSoundMode == e_SOUND_MODE_ONCE) && bFirst)) {
  3032. bFirst = false;
  3033. WRITE(BEEPER, HIGH);
  3034. }
  3035. }
  3036. if (counterBeep == 20) {
  3037. WRITE(BEEPER, LOW);
  3038. }
  3039. counterBeep++;
  3040. #endif // BEEPER > 0
  3041. delay_keep_alive(4);
  3042. }
  3043. WRITE(BEEPER, LOW);
  3044. }
  3045. /**
  3046. * @brief Handling of unload when using MMU with M600
  3047. * A fullscreen message showing "Unloading Filament x"
  3048. * should be shown on the LCD and LCD updates should be
  3049. * are disabled in the meantime.
  3050. */
  3051. static void mmu_M600_unload_filament() {
  3052. if (MMU2::mmu2.get_current_tool() == (uint8_t)MMU2::FILAMENT_UNKNOWN) return;
  3053. lcd_update_enable(false);
  3054. lcd_clear();
  3055. lcd_puts_at_P(0, 1, _T(MSG_UNLOADING_FILAMENT));
  3056. lcd_print(' ');
  3057. lcd_print(MMU2::mmu2.get_current_tool() + 1);
  3058. // unload just current filament for multimaterial printers (used also in M702)
  3059. MMU2::mmu2.unload();
  3060. lcd_update_enable(true);
  3061. }
  3062. /// @brief load filament for mmu v2
  3063. /// @par nozzle_temp nozzle temperature to load filament
  3064. static void mmu_M600_load_filament(bool automatic, float nozzle_temp) {
  3065. uint8_t slot;
  3066. if (automatic) {
  3067. slot = SpoolJoin::spooljoin.nextSlot();
  3068. } else {
  3069. // Only ask for the slot if automatic/SpoolJoin is off
  3070. slot = choose_menu_P(_T(MSG_SELECT_EXTRUDER), _T(MSG_EXTRUDER));
  3071. }
  3072. setTargetHotend(nozzle_temp, active_extruder);
  3073. MMU2::mmu2.load_filament_to_nozzle(slot);
  3074. load_filament_final_feed(); // @@TODO verify
  3075. st_synchronize();
  3076. }
  3077. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/) {
  3078. st_synchronize();
  3079. float lastpos[4];
  3080. prusa_statistics(22);
  3081. //First backup current position and settings
  3082. int feedmultiplyBckp = feedmultiply;
  3083. float HotendTempBckp = degTargetHotend(active_extruder);
  3084. int fanSpeedBckp = fanSpeed;
  3085. memcpy(lastpos, current_position, sizeof(lastpos));
  3086. // Turn off the fan
  3087. fanSpeed = 0;
  3088. // Retract E
  3089. current_position[E_AXIS] += e_shift;
  3090. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  3091. st_synchronize();
  3092. // Raise the Z axis
  3093. raise_z(z_shift);
  3094. // Move XY to side
  3095. current_position[X_AXIS] = x_position;
  3096. current_position[Y_AXIS] = y_position;
  3097. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3098. st_synchronize();
  3099. // Beep, manage nozzle heater and wait for user to start unload filament
  3100. if (!MMU2::mmu2.Enabled())
  3101. M600_wait_for_user(HotendTempBckp);
  3102. // Unload filament
  3103. if (MMU2::mmu2.Enabled())
  3104. mmu_M600_unload_filament();
  3105. else
  3106. unload_filament(FILAMENTCHANGE_FINALRETRACT);
  3107. st_synchronize(); // finish moves
  3108. {
  3109. FSensorBlockRunout fsBlockRunout;
  3110. if (!MMU2::mmu2.Enabled())
  3111. {
  3112. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3113. uint8_t choice =
  3114. lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, LCD_LEFT_BUTTON_CHOICE); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  3115. if (choice == LCD_MIDDLE_BUTTON_CHOICE) {
  3116. lcd_clear();
  3117. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3118. current_position[X_AXIS] -= 100;
  3119. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3120. st_synchronize();
  3121. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually.")); ////MSG_CHECK_IDLER c=20 r=5
  3122. }
  3123. M600_load_filament();
  3124. }
  3125. else // MMU is enabled
  3126. {
  3127. if (!automatic) {
  3128. if (saved_printing){
  3129. // if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  3130. MMU2::mmu2.eject_filament(MMU2::mmu2.get_current_tool(), false);
  3131. }
  3132. mmu_M600_wait_and_beep();
  3133. if (saved_printing) {
  3134. lcd_clear();
  3135. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3136. //@@TODO mmu_command(MmuCmd::R0);
  3137. // manage_response(false, false);
  3138. }
  3139. }
  3140. mmu_M600_load_filament(automatic, HotendTempBckp);
  3141. }
  3142. if (!automatic)
  3143. M600_check_state(HotendTempBckp);
  3144. lcd_update_enable(true);
  3145. // Not let's go back to print
  3146. fanSpeed = fanSpeedBckp;
  3147. // Feed a little of filament to stabilize pressure
  3148. if (!automatic) {
  3149. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  3150. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  3151. }
  3152. // Move XY back
  3153. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3154. st_synchronize();
  3155. // Move Z back
  3156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3157. st_synchronize();
  3158. // Set E position to original
  3159. plan_set_e_position(lastpos[E_AXIS]);
  3160. memcpy(current_position, lastpos, sizeof(lastpos));
  3161. set_destination_to_current();
  3162. // Recover feed rate
  3163. feedmultiply = feedmultiplyBckp;
  3164. char cmd[9];
  3165. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3166. enquecommand(cmd);
  3167. }
  3168. lcd_setstatuspgm(MSG_WELCOME);
  3169. custom_message_type = CustomMsg::Status;
  3170. }
  3171. void gcode_M701(float fastLoadLength, uint8_t mmuSlotIndex){
  3172. FSensorBlockRunout fsBlockRunout;
  3173. prusa_statistics(22);
  3174. if (MMU2::mmu2.Enabled() && mmuSlotIndex < MMU_FILAMENT_COUNT) {
  3175. MMU2::mmu2.load_filament_to_nozzle(mmuSlotIndex);
  3176. } else {
  3177. custom_message_type = CustomMsg::FilamentLoading;
  3178. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  3179. current_position[E_AXIS] += fastLoadLength;
  3180. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST); //fast sequence
  3181. load_filament_final_feed(); // slow sequence
  3182. st_synchronize();
  3183. Sound_MakeCustom(50, 500, false);
  3184. if (!farm_mode && loading_flag) {
  3185. lcd_load_filament_color_check();
  3186. }
  3187. lcd_update_enable(true);
  3188. lcd_update(2);
  3189. lcd_setstatuspgm(MSG_WELCOME);
  3190. loading_flag = false;
  3191. custom_message_type = CustomMsg::Status;
  3192. }
  3193. eFilamentAction = FilamentAction::None;
  3194. }
  3195. // Common gcode shared by the gcodes. This saves some flash memory
  3196. static void gcodes_M704_M705_M706(uint16_t gcode)
  3197. {
  3198. uint8_t mmuSlotIndex = 0xffU;
  3199. if (MMU2::mmu2.Enabled() && code_seen('P'))
  3200. {
  3201. mmuSlotIndex = code_value_uint8();
  3202. if (mmuSlotIndex < MMU_FILAMENT_COUNT) {
  3203. switch (gcode)
  3204. {
  3205. case 704:
  3206. MMU2::mmu2.load_filament(mmuSlotIndex);
  3207. break;
  3208. case 705:
  3209. MMU2::mmu2.eject_filament(mmuSlotIndex, false);
  3210. break;
  3211. case 706:
  3212. #ifdef MMU_HAS_CUTTER
  3213. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED) != 0){
  3214. MMU2::mmu2.cut_filament(mmuSlotIndex);
  3215. }
  3216. #endif // MMU_HAS_CUTTER
  3217. break;
  3218. default:
  3219. break;
  3220. }
  3221. }
  3222. }
  3223. }
  3224. /**
  3225. * @brief Get serial number from 32U2 processor
  3226. *
  3227. * Typical format of S/N is:CZPX0917X003XC13518
  3228. *
  3229. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  3230. * reply is stored in *SN.
  3231. * Operation takes typically 23 ms. If no valid SN can be retrieved within the 250ms window, the function aborts
  3232. * and returns a general failure flag.
  3233. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  3234. * In that case the value that is stored in the EEPROM should be used instead.
  3235. *
  3236. * @return 0 on success
  3237. * @return 1 on general failure
  3238. */
  3239. #ifdef PRUSA_SN_SUPPORT
  3240. static uint8_t get_PRUSA_SN(char* SN)
  3241. {
  3242. uint8_t selectedSerialPort_bak = selectedSerialPort;
  3243. uint8_t rxIndex;
  3244. bool SN_valid = false;
  3245. ShortTimer timeout;
  3246. selectedSerialPort = 0;
  3247. timeout.start();
  3248. while (!SN_valid)
  3249. {
  3250. rxIndex = 0;
  3251. _delay(50);
  3252. MYSERIAL.flush(); //clear RX buffer
  3253. SERIAL_ECHOLNRPGM(PSTR(";S"));
  3254. while (rxIndex < 19)
  3255. {
  3256. if (timeout.expired(250u))
  3257. goto exit;
  3258. if (MYSERIAL.available() > 0)
  3259. {
  3260. SN[rxIndex] = MYSERIAL.read();
  3261. rxIndex++;
  3262. }
  3263. }
  3264. SN[rxIndex] = 0;
  3265. // printf_P(PSTR("SN:%s\n"), SN);
  3266. SN_valid = (strncmp_P(SN, PSTR("CZPX"), 4) == 0);
  3267. }
  3268. exit:
  3269. selectedSerialPort = selectedSerialPort_bak;
  3270. return !SN_valid;
  3271. }
  3272. #endif //PRUSA_SN_SUPPORT
  3273. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  3274. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  3275. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  3276. //! it may even interfere with other functions of the printer! You have been warned!
  3277. //! The test idea is to measure the time necessary to charge the capacitor.
  3278. //! So the algorithm is as follows:
  3279. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3280. //! 2. Wait a few ms
  3281. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3282. //! Repeat 1.-3. several times
  3283. //! Good RAMBo's times are in the range of approx. 260-320 us
  3284. //! Bad RAMBo's times are approx. 260-1200 us
  3285. //! So basically we are interested in maximum time, the minima are mostly the same.
  3286. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3287. static void gcode_PRUSA_BadRAMBoFanTest(){
  3288. //printf_P(PSTR("Enter fan pin test\n"));
  3289. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3290. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3291. unsigned long tach1max = 0;
  3292. uint8_t tach1cntr = 0;
  3293. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3294. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3295. SET_OUTPUT(TACH_1);
  3296. WRITE(TACH_1, LOW);
  3297. _delay(20); // the delay may be lower
  3298. unsigned long tachMeasure = _micros();
  3299. cli();
  3300. SET_INPUT(TACH_1);
  3301. // just wait brutally in an endless cycle until we reach HIGH
  3302. // if this becomes a problem it may be improved to non-endless cycle
  3303. while( READ(TACH_1) == 0 ) ;
  3304. sei();
  3305. tachMeasure = _micros() - tachMeasure;
  3306. if( tach1max < tachMeasure )
  3307. tach1max = tachMeasure;
  3308. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3309. }
  3310. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3311. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3312. if( tach1max > 500 ){
  3313. // bad RAMBo
  3314. SERIAL_PROTOCOLLNPGM("BAD");
  3315. } else {
  3316. SERIAL_PROTOCOLLNPGM("OK");
  3317. }
  3318. // cleanup after the test function
  3319. SET_INPUT(TACH_1);
  3320. WRITE(TACH_1, HIGH);
  3321. #endif
  3322. }
  3323. // G92 - Set current position to coordinates given
  3324. static void gcode_G92()
  3325. {
  3326. bool codes[NUM_AXIS];
  3327. float values[NUM_AXIS];
  3328. // Check which axes need to be set
  3329. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3330. {
  3331. codes[i] = code_seen(axis_codes[i]);
  3332. if(codes[i])
  3333. values[i] = code_value();
  3334. }
  3335. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3336. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3337. {
  3338. // As a special optimization, when _just_ clearing the E position
  3339. // we schedule a flag asynchronously along with the next block to
  3340. // reset the starting E position instead of stopping the planner
  3341. current_position[E_AXIS] = 0;
  3342. plan_reset_next_e();
  3343. }
  3344. else
  3345. {
  3346. // In any other case we're forced to synchronize
  3347. st_synchronize();
  3348. for(uint8_t i = 0; i < 3; ++i)
  3349. {
  3350. if(codes[i])
  3351. current_position[i] = values[i] + cs.add_homing[i];
  3352. }
  3353. if(codes[E_AXIS])
  3354. current_position[E_AXIS] = values[E_AXIS];
  3355. // Set all at once
  3356. plan_set_position_curposXYZE();
  3357. }
  3358. }
  3359. #ifdef EXTENDED_CAPABILITIES_REPORT
  3360. static void cap_line(const char* name, bool ena = false) {
  3361. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3362. }
  3363. static void extended_capabilities_report()
  3364. {
  3365. // AUTOREPORT_TEMP (M155)
  3366. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3367. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3368. // AUTOREPORT_FANS (M123)
  3369. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3370. #endif //FANCHECK and TACH_0 or TACH_1
  3371. // AUTOREPORT_POSITION (M114)
  3372. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3373. // EXTENDED_M20 (support for L and T parameters)
  3374. cap_line(PSTR("EXTENDED_M20"), 1);
  3375. cap_line(PSTR("PRUSA_MMU2"), 1); //this will soon change to ENABLED(PRUSA_MMU2_SUPPORT)
  3376. }
  3377. #endif //EXTENDED_CAPABILITIES_REPORT
  3378. #ifdef BACKLASH_X
  3379. extern uint8_t st_backlash_x;
  3380. #endif //BACKLASH_X
  3381. #ifdef BACKLASH_Y
  3382. extern uint8_t st_backlash_y;
  3383. #endif //BACKLASH_Y
  3384. //! \ingroup marlin_main
  3385. //! @brief Parse and process commands
  3386. //!
  3387. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3388. //!
  3389. //!
  3390. //! Implemented Codes
  3391. //! -------------------
  3392. //!
  3393. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3394. //!
  3395. //!@n PRUSA CODES
  3396. //!@n P F - Returns FW versions
  3397. //!@n P R - Returns revision of printer
  3398. //!
  3399. //!@n G0 -> G1
  3400. //!@n G1 - Coordinated Movement X Y Z E
  3401. //!@n G2 - CW ARC
  3402. //!@n G3 - CCW ARC
  3403. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3404. //!@n G10 - retract filament according to settings of M207
  3405. //!@n G11 - retract recover filament according to settings of M208
  3406. //!@n G28 - Home all Axes
  3407. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3408. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3409. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3410. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3411. //!@n G80 - Automatic mesh bed leveling
  3412. //!@n G81 - Print bed profile
  3413. //!@n G90 - Use Absolute Coordinates
  3414. //!@n G91 - Use Relative Coordinates
  3415. //!@n G92 - Set current position to coordinates given
  3416. //!
  3417. //!@n M Codes
  3418. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3419. //!@n M1 - Same as M0
  3420. //!@n M17 - Enable/Power all stepper motors
  3421. //!@n M18 - Disable all stepper motors; same as M84
  3422. //!@n M20 - List SD card
  3423. //!@n M21 - Init SD card
  3424. //!@n M22 - Release SD card
  3425. //!@n M23 - Select SD file (M23 filename.g)
  3426. //!@n M24 - Start/resume SD print
  3427. //!@n M25 - Pause SD print
  3428. //!@n M26 - Set SD position in bytes (M26 S12345)
  3429. //!@n M27 - Report SD print status
  3430. //!@n M28 - Start SD write (M28 filename.g)
  3431. //!@n M29 - Stop SD write
  3432. //!@n M30 - Delete file from SD (M30 filename.g)
  3433. //!@n M31 - Output time since last M109 or SD card start to serial
  3434. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3435. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3436. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3437. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3438. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3439. //!@n M73 - Show percent done and print time remaining
  3440. //!@n M80 - Turn on Power Supply
  3441. //!@n M81 - Turn off Power Supply
  3442. //!@n M82 - Set E codes absolute (default)
  3443. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3444. //!@n M84 - Disable steppers until next move,
  3445. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3446. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3447. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3448. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3449. //!@n M104 - Set extruder target temp
  3450. //!@n M105 - Read current temp
  3451. //!@n M106 - Fan on
  3452. //!@n M107 - Fan off
  3453. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3454. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3455. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3456. //!@n M112 - Emergency stop
  3457. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3458. //!@n M114 - Output current position to serial port
  3459. //!@n M115 - Capabilities string
  3460. //!@n M117 - display message
  3461. //!@n M119 - Output Endstop status to serial port
  3462. //!@n M123 - Tachometer value
  3463. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3464. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3465. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3466. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3467. //!@n M140 - Set bed target temp
  3468. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3469. //!@n M155 - Automatically send temperatures, fan speeds, position
  3470. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3471. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3472. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3473. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3474. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3475. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3476. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3477. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3478. //!@n M206 - set additional homing offset
  3479. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3480. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3481. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3482. //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  3483. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3484. //!@n M220 S<factor in percent>- set speed factor override percentage
  3485. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3486. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3487. //!@n M240 - Trigger a camera to take a photograph
  3488. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3489. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3490. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3491. //!@n M301 - Set PID parameters P I and D
  3492. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3493. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3494. //!@n M304 - Set bed PID parameters P I and D
  3495. //!@n M310 - Temperature model settings
  3496. //!@n M400 - Finish all moves
  3497. //!@n M401 - Lower z-probe if present
  3498. //!@n M402 - Raise z-probe if present
  3499. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3500. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3501. //!@n M406 - Turn off Filament Sensor extrusion control
  3502. //!@n M407 - Displays measured filament diameter
  3503. //!@n M500 - stores parameters in EEPROM
  3504. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3505. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3506. //!@n M503 - print the current settings (from memory not from EEPROM)
  3507. //!@n M509 - force language selection on next restart
  3508. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3509. //!@n M552 - Set IP address
  3510. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3511. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3512. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3513. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3514. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3515. //!@n M907 - Set digital trimpot motor current using axis codes.
  3516. //!@n M908 - Control digital trimpot directly.
  3517. //!@n M350 - Set microstepping mode.
  3518. //!@n M351 - Toggle MS1 MS2 pins directly.
  3519. //!
  3520. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3521. //!@n M999 - Restart after being stopped by error
  3522. //! <br><br>
  3523. /** @defgroup marlin_main Marlin main */
  3524. /** \ingroup GCodes */
  3525. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3526. /**
  3527. They are shown in order of appearance in the code.
  3528. There are reasons why some G Codes aren't in numerical order.
  3529. */
  3530. void process_commands()
  3531. {
  3532. if (!buflen) return; //empty command
  3533. #ifdef CMDBUFFER_DEBUG
  3534. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3535. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3536. SERIAL_ECHOLNPGM("");
  3537. SERIAL_ECHOPGM("In cmdqueue: ");
  3538. SERIAL_ECHO(buflen);
  3539. SERIAL_ECHOLNPGM("");
  3540. #endif /* CMDBUFFER_DEBUG */
  3541. unsigned long codenum; //throw away variable
  3542. #ifdef ENABLE_AUTO_BED_LEVELING
  3543. float x_tmp, y_tmp, z_tmp, real_z;
  3544. #endif
  3545. // PRUSA GCODES
  3546. KEEPALIVE_STATE(IN_HANDLER);
  3547. /*!
  3548. ---------------------------------------------------------------------------------
  3549. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3550. This causes the given message to be shown in the status line on an attached LCD.
  3551. It is processed early as to allow printing messages that contain G, M, N or T.
  3552. ---------------------------------------------------------------------------------
  3553. ### Special internal commands
  3554. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3555. They are processed early as the commands are complex (strings).
  3556. These are only available on the MK3(S) as these require TMC2130 drivers:
  3557. - CRASH DETECTED
  3558. - CRASH RECOVER
  3559. - CRASH_CANCEL
  3560. - TMC_SET_WAVE
  3561. - TMC_SET_STEP
  3562. - TMC_SET_CHOP
  3563. */
  3564. if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("M117"), 4) == 0) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3565. {
  3566. const char *src = CMDBUFFER_CURRENT_STRING + 4;
  3567. lcd_setstatus(*src? src + 1: src);
  3568. custom_message_type = CustomMsg::M117;
  3569. }
  3570. /*!
  3571. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3572. #### Usage
  3573. M0 [P<ms<] [S<sec>] [string]
  3574. M1 [P<ms>] [S<sec>] [string]
  3575. #### Parameters
  3576. - `P<ms>` - Expire time, in milliseconds
  3577. - `S<sec>` - Expire time, in seconds
  3578. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3579. */
  3580. else if ((strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("M0"), 2) == 0)
  3581. || (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("M1 "), 3) == 0)) { // M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3582. const char *src = CMDBUFFER_CURRENT_STRING + 2;
  3583. codenum = 0;
  3584. bool hasP = false, hasS = false;
  3585. if (code_seen('P')) {
  3586. codenum = code_value_long(); // milliseconds to wait
  3587. hasP = codenum > 0;
  3588. }
  3589. if (code_seen('S')) {
  3590. codenum = code_value_long() * 1000; // seconds to wait
  3591. hasS = codenum > 0;
  3592. }
  3593. while (*src == ' ') ++src;
  3594. custom_message_type = CustomMsg::M0Wait;
  3595. if (!hasP && !hasS && *src != '\0') {
  3596. lcd_setstatus(src);
  3597. } else {
  3598. // farmers want to abuse a bug from the previous firmware releases
  3599. // - they need to see the filename on the status screen instead of "Wait for user..."
  3600. // So we won't update the message in farm mode...
  3601. if( ! farm_mode){
  3602. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=20
  3603. } else {
  3604. custom_message_type = CustomMsg::Status; // let the lcd display the name of the printed G-code file in farm mode
  3605. }
  3606. }
  3607. lcd_ignore_click(); //call lcd_ignore_click also for else ???
  3608. st_synchronize();
  3609. previous_millis_cmd.start();
  3610. if (codenum > 0 ) {
  3611. codenum += _millis(); // keep track of when we started waiting
  3612. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3613. while(_millis() < codenum && !lcd_clicked()) {
  3614. manage_heater();
  3615. manage_inactivity(true);
  3616. lcd_update(0);
  3617. }
  3618. KEEPALIVE_STATE(IN_HANDLER);
  3619. lcd_ignore_click(false);
  3620. } else {
  3621. marlin_wait_for_click();
  3622. }
  3623. if (IS_SD_PRINTING)
  3624. custom_message_type = CustomMsg::Status;
  3625. else
  3626. LCD_MESSAGERPGM(MSG_WELCOME);
  3627. }
  3628. #ifdef TMC2130
  3629. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3630. {
  3631. // ### CRASH_DETECTED - TMC2130
  3632. // ---------------------------------
  3633. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3634. {
  3635. uint8_t mask = 0;
  3636. if (code_seen('X')) mask |= X_AXIS_MASK;
  3637. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3638. crashdet_detected(mask);
  3639. }
  3640. // ### CRASH_RECOVER - TMC2130
  3641. // ----------------------------------
  3642. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3643. crashdet_recover();
  3644. // ### CRASH_CANCEL - TMC2130
  3645. // ----------------------------------
  3646. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3647. crashdet_cancel();
  3648. }
  3649. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3650. {
  3651. // ### TMC_SET_WAVE_
  3652. // --------------------
  3653. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3654. {
  3655. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3656. axis = (axis == 'E')?3:(axis - 'X');
  3657. if (axis < 4)
  3658. {
  3659. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3660. tmc2130_set_wave(axis, 247, fac);
  3661. }
  3662. }
  3663. // ### TMC_SET_STEP_
  3664. // ------------------
  3665. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3666. {
  3667. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3668. axis = (axis == 'E')?3:(axis - 'X');
  3669. if (axis < 4)
  3670. {
  3671. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3672. uint16_t res = tmc2130_get_res(axis);
  3673. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3674. }
  3675. }
  3676. // ### TMC_SET_CHOP_
  3677. // -------------------
  3678. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3679. {
  3680. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3681. axis = (axis == 'E')?3:(axis - 'X');
  3682. if (axis < 4)
  3683. {
  3684. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3685. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3686. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3687. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3688. char* str_end = 0;
  3689. if (CMDBUFFER_CURRENT_STRING[14])
  3690. {
  3691. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3692. if (str_end && *str_end)
  3693. {
  3694. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3695. if (str_end && *str_end)
  3696. {
  3697. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3698. if (str_end && *str_end)
  3699. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3700. }
  3701. }
  3702. }
  3703. tmc2130_chopper_config[axis].toff = chop0;
  3704. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3705. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3706. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3707. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3708. //printf_P(_N("TMC_SET_CHOP_%c %d %d %d %d\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3709. }
  3710. }
  3711. }
  3712. #ifdef BACKLASH_X
  3713. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3714. {
  3715. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3716. st_backlash_x = bl;
  3717. printf_P(_N("st_backlash_x = %d\n"), st_backlash_x);
  3718. }
  3719. #endif //BACKLASH_X
  3720. #ifdef BACKLASH_Y
  3721. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3722. {
  3723. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3724. st_backlash_y = bl;
  3725. printf_P(_N("st_backlash_y = %d\n"), st_backlash_y);
  3726. }
  3727. #endif //BACKLASH_Y
  3728. #endif //TMC2130
  3729. else if(strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("PRUSA"), 5) == 0) {
  3730. /*!
  3731. ---------------------------------------------------------------------------------
  3732. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3733. Set of internal PRUSA commands
  3734. #### Usage
  3735. PRUSA [ PRN | FAN | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | FR ]
  3736. #### Parameters
  3737. - `PRN` - Prints revision of the printer
  3738. - `FAN` - Prints fan details
  3739. - `thx`
  3740. - `uvlo`
  3741. - `MMURES` - Reset MMU
  3742. - `RESET` - (Careful!)
  3743. - `fv` - ?
  3744. - `M28`
  3745. - `SN`
  3746. - `Fir` - Prints firmware version
  3747. - `Rev`- Prints filament size, elelectronics, nozzle type
  3748. - `Lang` - Reset the language
  3749. - `Lz`
  3750. - `FR` - Full factory reset
  3751. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3752. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3753. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3754. */
  3755. if (farm_prusa_code_seen()) {}
  3756. else if(code_seen_P(PSTR("FANPINTST"))) {
  3757. gcode_PRUSA_BadRAMBoFanTest();
  3758. }
  3759. else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3760. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3761. }
  3762. else if (code_seen_P(PSTR("uvlo"))) { // PRUSA uvlo
  3763. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3764. enquecommand_P(PSTR("M24"));
  3765. }
  3766. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3767. {
  3768. MMU2::mmu2.Reset(MMU2::MMU2::Software);
  3769. }
  3770. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3771. #if defined(XFLASH) && defined(BOOTAPP)
  3772. boot_app_magic = BOOT_APP_MAGIC;
  3773. boot_app_flags = BOOT_APP_FLG_RUN;
  3774. #endif //defined(XFLASH) && defined(BOOTAPP)
  3775. softReset();
  3776. }
  3777. else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  3778. char SN[20];
  3779. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  3780. if (SN[19])
  3781. puts_P(PSTR("SN invalid"));
  3782. else
  3783. puts(SN);
  3784. }
  3785. else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  3786. SERIAL_PROTOCOLLNPGM(FW_VERSION_FULL);
  3787. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  3788. SERIAL_PROTOCOLLNPGM(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3789. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  3790. lang_reset();
  3791. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  3792. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3793. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  3794. // Factory full reset
  3795. factory_reset(0);
  3796. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  3797. // Change the MBL status without changing the logical Z position.
  3798. if(code_seen('V')) {
  3799. bool value = code_value_short();
  3800. st_synchronize();
  3801. if(value != mbl.active) {
  3802. mbl.active = value;
  3803. // Use plan_set_z_position to reset the physical values
  3804. plan_set_z_position(current_position[Z_AXIS]);
  3805. }
  3806. }
  3807. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  3808. uint16_t nDiameter;
  3809. if(code_seen('D'))
  3810. {
  3811. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3812. nozzle_diameter_check(nDiameter);
  3813. }
  3814. else if(code_seen_P(PSTR("set")) && farm_mode)
  3815. {
  3816. strchr_pointer++; // skip 1st char (~ 's')
  3817. strchr_pointer++; // skip 2nd char (~ 'e')
  3818. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3819. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3820. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3821. }
  3822. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3823. }
  3824. }
  3825. else if(code_seen('G'))
  3826. {
  3827. gcode_in_progress = code_value_short();
  3828. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3829. switch (gcode_in_progress)
  3830. {
  3831. /*!
  3832. ---------------------------------------------------------------------------------
  3833. # G Codes
  3834. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3835. In Prusa Firmware G0 and G1 are the same.
  3836. #### Usage
  3837. G0 [ X | Y | Z | E | F | S ]
  3838. G1 [ X | Y | Z | E | F | S ]
  3839. #### Parameters
  3840. - `X` - The position to move to on the X axis
  3841. - `Y` - The position to move to on the Y axis
  3842. - `Z` - The position to move to on the Z axis
  3843. - `E` - The amount to extrude between the starting point and ending point
  3844. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3845. */
  3846. case 0: // G0 -> G1
  3847. case 1: // G1
  3848. {
  3849. uint16_t start_segment_idx = restore_interrupted_gcode();
  3850. get_coordinates(); // For X Y Z E F
  3851. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3852. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3853. }
  3854. #ifdef FWRETRACT
  3855. if(cs.autoretract_enabled) {
  3856. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3857. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3858. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3859. st_synchronize();
  3860. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3861. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3862. retract(!retracted[active_extruder]);
  3863. return;
  3864. }
  3865. }
  3866. }
  3867. #endif //FWRETRACT
  3868. prepare_move(start_segment_idx);
  3869. //ClearToSend();
  3870. }
  3871. break;
  3872. /*!
  3873. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3874. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3875. #### Usage
  3876. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3877. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3878. #### Parameters
  3879. - `X` - The position to move to on the X axis
  3880. - `Y` - The position to move to on the Y axis
  3881. - 'Z' - The position to move to on the Z axis
  3882. - `I` - The point in X space from the current X position to maintain a constant distance from
  3883. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3884. - `E` - The amount to extrude between the starting point and ending point
  3885. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3886. */
  3887. case 2:
  3888. case 3:
  3889. {
  3890. uint16_t start_segment_idx = restore_interrupted_gcode();
  3891. #ifdef SF_ARC_FIX
  3892. bool relative_mode_backup = relative_mode;
  3893. relative_mode = true;
  3894. #endif
  3895. get_coordinates(); // For X Y Z E F
  3896. #ifdef SF_ARC_FIX
  3897. relative_mode=relative_mode_backup;
  3898. #endif
  3899. offset[0] = code_seen('I') ? code_value() : 0.f;
  3900. offset[1] = code_seen('J') ? code_value() : 0.f;
  3901. prepare_arc_move((gcode_in_progress == 2), start_segment_idx);
  3902. } break;
  3903. /*!
  3904. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3905. Pause the machine for a period of time.
  3906. #### Usage
  3907. G4 [ P | S ]
  3908. #### Parameters
  3909. - `P` - Time to wait, in milliseconds
  3910. - `S` - Time to wait, in seconds
  3911. */
  3912. case 4:
  3913. codenum = 0;
  3914. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3915. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3916. if(codenum != 0)
  3917. {
  3918. if(custom_message_type != CustomMsg::M117)
  3919. {
  3920. LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3921. }
  3922. }
  3923. st_synchronize();
  3924. codenum += _millis(); // keep track of when we started waiting
  3925. previous_millis_cmd.start();
  3926. while(_millis() < codenum) {
  3927. manage_heater();
  3928. manage_inactivity();
  3929. lcd_update(0);
  3930. }
  3931. break;
  3932. #ifdef FWRETRACT
  3933. /*!
  3934. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3935. Retracts filament according to settings of `M207`
  3936. */
  3937. case 10:
  3938. #if EXTRUDERS > 1
  3939. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3940. retract(true,retracted_swap[active_extruder]);
  3941. #else
  3942. retract(true);
  3943. #endif
  3944. break;
  3945. /*!
  3946. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3947. Unretracts/recovers filament according to settings of `M208`
  3948. */
  3949. case 11:
  3950. #if EXTRUDERS > 1
  3951. retract(false,retracted_swap[active_extruder]);
  3952. #else
  3953. retract(false);
  3954. #endif
  3955. break;
  3956. #endif //FWRETRACT
  3957. /*!
  3958. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  3959. Units are in millimeters. Prusa doesn't support inches.
  3960. */
  3961. case 21:
  3962. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  3963. /*!
  3964. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3965. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3966. #### Usage
  3967. G28 [ X | Y | Z | W | C ]
  3968. #### Parameters
  3969. - `X` - Flag to go back to the X axis origin
  3970. - `Y` - Flag to go back to the Y axis origin
  3971. - `Z` - Flag to go back to the Z axis origin
  3972. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3973. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3974. */
  3975. case 28:
  3976. {
  3977. long home_x_value = 0;
  3978. long home_y_value = 0;
  3979. long home_z_value = 0;
  3980. // Which axes should be homed?
  3981. bool home_x = code_seen(axis_codes[X_AXIS]);
  3982. if (home_x) home_x_value = code_value_long();
  3983. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3984. if (home_y) home_y_value = code_value_long();
  3985. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3986. if (home_z) home_z_value = code_value_long();
  3987. bool without_mbl = code_seen('W');
  3988. // calibrate?
  3989. #ifdef TMC2130
  3990. bool calib = code_seen('C');
  3991. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3992. #else
  3993. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3994. #endif //TMC2130
  3995. if ((home_x || home_y || without_mbl || home_z) == false) {
  3996. gcode_G80();
  3997. }
  3998. break;
  3999. }
  4000. #ifdef ENABLE_AUTO_BED_LEVELING
  4001. /*!
  4002. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  4003. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4004. See `G81`
  4005. */
  4006. case 29:
  4007. {
  4008. #if Z_MIN_PIN == -1
  4009. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  4010. #endif
  4011. // Prevent user from running a G29 without first homing in X and Y
  4012. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  4013. {
  4014. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  4015. SERIAL_ECHO_START;
  4016. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  4017. break; // abort G29, since we don't know where we are
  4018. }
  4019. st_synchronize();
  4020. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  4021. //vector_3 corrected_position = plan_get_position_mm();
  4022. //corrected_position.debug("position before G29");
  4023. plan_bed_level_matrix.set_to_identity();
  4024. vector_3 uncorrected_position = plan_get_position();
  4025. //uncorrected_position.debug("position durring G29");
  4026. current_position[X_AXIS] = uncorrected_position.x;
  4027. current_position[Y_AXIS] = uncorrected_position.y;
  4028. current_position[Z_AXIS] = uncorrected_position.z;
  4029. plan_set_position_curposXYZE();
  4030. int l_feedmultiply = setup_for_endstop_move();
  4031. feedrate = homing_feedrate[Z_AXIS];
  4032. #ifdef AUTO_BED_LEVELING_GRID
  4033. // probe at the points of a lattice grid
  4034. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4035. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4036. // solve the plane equation ax + by + d = z
  4037. // A is the matrix with rows [x y 1] for all the probed points
  4038. // B is the vector of the Z positions
  4039. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4040. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4041. // "A" matrix of the linear system of equations
  4042. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  4043. // "B" vector of Z points
  4044. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  4045. int probePointCounter = 0;
  4046. bool zig = true;
  4047. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  4048. {
  4049. int xProbe, xInc;
  4050. if (zig)
  4051. {
  4052. xProbe = LEFT_PROBE_BED_POSITION;
  4053. //xEnd = RIGHT_PROBE_BED_POSITION;
  4054. xInc = xGridSpacing;
  4055. zig = false;
  4056. } else // zag
  4057. {
  4058. xProbe = RIGHT_PROBE_BED_POSITION;
  4059. //xEnd = LEFT_PROBE_BED_POSITION;
  4060. xInc = -xGridSpacing;
  4061. zig = true;
  4062. }
  4063. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  4064. {
  4065. float z_before;
  4066. if (probePointCounter == 0)
  4067. {
  4068. // raise before probing
  4069. z_before = Z_RAISE_BEFORE_PROBING;
  4070. } else
  4071. {
  4072. // raise extruder
  4073. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4074. }
  4075. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4076. eqnBVector[probePointCounter] = measured_z;
  4077. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4078. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4079. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4080. probePointCounter++;
  4081. xProbe += xInc;
  4082. }
  4083. }
  4084. clean_up_after_endstop_move(l_feedmultiply);
  4085. // solve lsq problem
  4086. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4087. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4088. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4089. SERIAL_PROTOCOLPGM(" b: ");
  4090. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4091. SERIAL_PROTOCOLPGM(" d: ");
  4092. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4093. set_bed_level_equation_lsq(plane_equation_coefficients);
  4094. free(plane_equation_coefficients);
  4095. #else // AUTO_BED_LEVELING_GRID not defined
  4096. // Probe at 3 arbitrary points
  4097. // probe 1
  4098. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4099. // probe 2
  4100. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4101. // probe 3
  4102. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4103. clean_up_after_endstop_move(l_feedmultiply);
  4104. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4105. #endif // AUTO_BED_LEVELING_GRID
  4106. st_synchronize();
  4107. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4108. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4109. // When the bed is uneven, this height must be corrected.
  4110. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4111. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4112. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4113. z_tmp = current_position[Z_AXIS];
  4114. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4115. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4116. plan_set_position_curposXYZE();
  4117. }
  4118. break;
  4119. #ifndef Z_PROBE_SLED
  4120. /*!
  4121. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4122. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4123. */
  4124. case 30:
  4125. {
  4126. st_synchronize();
  4127. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4128. int l_feedmultiply = setup_for_endstop_move();
  4129. feedrate = homing_feedrate[Z_AXIS];
  4130. run_z_probe();
  4131. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4132. SERIAL_PROTOCOLPGM(" X: ");
  4133. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4134. SERIAL_PROTOCOLPGM(" Y: ");
  4135. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4136. SERIAL_PROTOCOLPGM(" Z: ");
  4137. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4138. SERIAL_PROTOCOLPGM("\n");
  4139. clean_up_after_endstop_move(l_feedmultiply);
  4140. }
  4141. break;
  4142. #else
  4143. /*!
  4144. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4145. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4146. */
  4147. case 31:
  4148. dock_sled(true);
  4149. break;
  4150. /*!
  4151. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4152. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4153. */
  4154. case 32:
  4155. dock_sled(false);
  4156. break;
  4157. #endif // Z_PROBE_SLED
  4158. #endif // ENABLE_AUTO_BED_LEVELING
  4159. #ifdef MESH_BED_LEVELING
  4160. /*!
  4161. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4162. Sensor must be over the bed.
  4163. The maximum travel distance before an error is triggered is 10mm.
  4164. */
  4165. case 30:
  4166. {
  4167. st_synchronize();
  4168. homing_flag = true;
  4169. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4170. int l_feedmultiply = setup_for_endstop_move();
  4171. feedrate = homing_feedrate[Z_AXIS];
  4172. find_bed_induction_sensor_point_z(-10.f, 3);
  4173. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4174. clean_up_after_endstop_move(l_feedmultiply);
  4175. homing_flag = false;
  4176. }
  4177. break;
  4178. /*!
  4179. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4180. Show/print PINDA temperature interpolating.
  4181. */
  4182. case 75:
  4183. {
  4184. for (uint8_t i = 40; i <= 110; i++)
  4185. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4186. }
  4187. break;
  4188. /*!
  4189. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4190. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4191. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4192. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4193. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4194. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4195. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4196. #### Example
  4197. ```
  4198. G76
  4199. echo PINDA probe calibration start
  4200. echo start temperature: 35.0°
  4201. echo ...
  4202. echo PINDA temperature -- Z shift (mm): 0.---
  4203. ```
  4204. */
  4205. case 76:
  4206. {
  4207. #ifdef PINDA_THERMISTOR
  4208. if (!has_temperature_compensation())
  4209. {
  4210. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4211. break;
  4212. }
  4213. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4214. //we need to know accurate position of first calibration point
  4215. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4216. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first.")); ////MSG_RUN_XYZ c=20 r=4
  4217. break;
  4218. }
  4219. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4220. {
  4221. // We don't know where we are! HOME!
  4222. // Push the commands to the front of the message queue in the reverse order!
  4223. // There shall be always enough space reserved for these commands.
  4224. repeatcommand_front(); // repeat G76 with all its parameters
  4225. enquecommand_front_P(G28W0);
  4226. break;
  4227. }
  4228. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4229. uint8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false);
  4230. if (result == LCD_LEFT_BUTTON_CHOICE)
  4231. {
  4232. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4233. plan_buffer_line_curposXYZE(3000 / 60);
  4234. current_position[Z_AXIS] = 50;
  4235. current_position[Y_AXIS] = 180;
  4236. plan_buffer_line_curposXYZE(3000 / 60);
  4237. st_synchronize();
  4238. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4239. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4240. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4241. plan_buffer_line_curposXYZE(3000 / 60);
  4242. st_synchronize();
  4243. gcode_G28(false, false, true);
  4244. }
  4245. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4246. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4247. current_position[Z_AXIS] = 100;
  4248. plan_buffer_line_curposXYZE(3000 / 60);
  4249. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4250. lcd_temp_cal_show_result(false);
  4251. break;
  4252. }
  4253. }
  4254. st_synchronize();
  4255. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4256. lcd_update_enable(true);
  4257. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4258. float zero_z;
  4259. int z_shift = 0; //unit: steps
  4260. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4261. if (start_temp < 35) start_temp = 35;
  4262. if (start_temp < current_temperature_pinda) start_temp += 5;
  4263. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4264. // setTargetHotend(200, 0);
  4265. setTargetBed(70 + (start_temp - 30));
  4266. custom_message_type = CustomMsg::TempCal;
  4267. custom_message_state = 1;
  4268. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4269. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4270. plan_buffer_line_curposXYZE(3000 / 60);
  4271. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4272. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4273. plan_buffer_line_curposXYZE(3000 / 60);
  4274. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4275. plan_buffer_line_curposXYZE(3000 / 60);
  4276. st_synchronize();
  4277. while (current_temperature_pinda < start_temp)
  4278. {
  4279. delay_keep_alive(1000);
  4280. serialecho_temperatures();
  4281. }
  4282. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4283. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4284. plan_buffer_line_curposXYZE(3000 / 60);
  4285. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4286. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4287. plan_buffer_line_curposXYZE(3000 / 60);
  4288. st_synchronize();
  4289. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4290. if (find_z_result == false) {
  4291. lcd_temp_cal_show_result(find_z_result);
  4292. homing_flag = false;
  4293. break;
  4294. }
  4295. zero_z = current_position[Z_AXIS];
  4296. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4297. int i = -1; for (; i < 5; i++)
  4298. {
  4299. float temp = (40 + i * 5);
  4300. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4301. if (i >= 0) {
  4302. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4303. }
  4304. if (start_temp <= temp) break;
  4305. }
  4306. for (i++; i < 5; i++)
  4307. {
  4308. float temp = (40 + i * 5);
  4309. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4310. custom_message_state = i + 2;
  4311. setTargetBed(50 + 10 * (temp - 30) / 5);
  4312. // setTargetHotend(255, 0);
  4313. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4314. plan_buffer_line_curposXYZE(3000 / 60);
  4315. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4316. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4317. plan_buffer_line_curposXYZE(3000 / 60);
  4318. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4319. plan_buffer_line_curposXYZE(3000 / 60);
  4320. st_synchronize();
  4321. while (current_temperature_pinda < temp)
  4322. {
  4323. delay_keep_alive(1000);
  4324. serialecho_temperatures();
  4325. }
  4326. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4327. plan_buffer_line_curposXYZE(3000 / 60);
  4328. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4329. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4330. plan_buffer_line_curposXYZE(3000 / 60);
  4331. st_synchronize();
  4332. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4333. if (find_z_result == false) {
  4334. lcd_temp_cal_show_result(find_z_result);
  4335. break;
  4336. }
  4337. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4338. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4339. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4340. }
  4341. lcd_temp_cal_show_result(true);
  4342. homing_flag = false;
  4343. #else //PINDA_THERMISTOR
  4344. setTargetBed(PINDA_MIN_T);
  4345. float zero_z;
  4346. int z_shift = 0; //unit: steps
  4347. int t_c; // temperature
  4348. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4349. // We don't know where we are! HOME!
  4350. // Push the commands to the front of the message queue in the reverse order!
  4351. // There shall be always enough space reserved for these commands.
  4352. repeatcommand_front(); // repeat G76 with all its parameters
  4353. enquecommand_front_P(G28W0);
  4354. break;
  4355. }
  4356. puts_P(_N("PINDA probe calibration start"));
  4357. custom_message_type = CustomMsg::TempCal;
  4358. custom_message_state = 1;
  4359. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4360. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4361. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4362. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4363. plan_buffer_line_curposXYZE(3000 / 60);
  4364. st_synchronize();
  4365. while (fabs(degBed() - PINDA_MIN_T) > 1) {
  4366. delay_keep_alive(1000);
  4367. serialecho_temperatures();
  4368. }
  4369. //enquecommand_P(PSTR("M190 S50"));
  4370. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4371. delay_keep_alive(1000);
  4372. serialecho_temperatures();
  4373. }
  4374. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4375. current_position[Z_AXIS] = 5;
  4376. plan_buffer_line_curposXYZE(3000 / 60);
  4377. current_position[X_AXIS] = BED_X0;
  4378. current_position[Y_AXIS] = BED_Y0;
  4379. plan_buffer_line_curposXYZE(3000 / 60);
  4380. st_synchronize();
  4381. find_bed_induction_sensor_point_z(-1.f);
  4382. zero_z = current_position[Z_AXIS];
  4383. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4384. for (int i = 0; i<5; i++) {
  4385. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4386. custom_message_state = i + 2;
  4387. t_c = 60 + i * 10;
  4388. setTargetBed(t_c);
  4389. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4390. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4391. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4392. plan_buffer_line_curposXYZE(3000 / 60);
  4393. st_synchronize();
  4394. while (degBed() < t_c) {
  4395. delay_keep_alive(1000);
  4396. serialecho_temperatures();
  4397. }
  4398. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4399. delay_keep_alive(1000);
  4400. serialecho_temperatures();
  4401. }
  4402. current_position[Z_AXIS] = 5;
  4403. plan_buffer_line_curposXYZE(3000 / 60);
  4404. current_position[X_AXIS] = BED_X0;
  4405. current_position[Y_AXIS] = BED_Y0;
  4406. plan_buffer_line_curposXYZE(3000 / 60);
  4407. st_synchronize();
  4408. find_bed_induction_sensor_point_z(-1.f);
  4409. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4410. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4411. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4412. }
  4413. custom_message_type = CustomMsg::Status;
  4414. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4415. puts_P(_N("Temperature calibration done."));
  4416. disable_x();
  4417. disable_y();
  4418. disable_z();
  4419. disable_e0();
  4420. disable_e1();
  4421. disable_e2();
  4422. setTargetBed(0); //set bed target temperature back to 0
  4423. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PINDA_CALIBRATION_DONE));
  4424. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4425. lcd_update_enable(true);
  4426. lcd_update(2);
  4427. #endif //PINDA_THERMISTOR
  4428. }
  4429. break;
  4430. /*!
  4431. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4432. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4433. #### Usage
  4434. G80 [ N | R | V | L | R | F | B ]
  4435. #### Parameters
  4436. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4437. - `R` - Probe retries. Default 3 max. 10
  4438. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4439. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4440. #### Additional Parameters
  4441. - `L` - Left Bed Level correct value in um.
  4442. - `R` - Right Bed Level correct value in um.
  4443. - `F` - Front Bed Level correct value in um.
  4444. - `B` - Back Bed Level correct value in um.
  4445. */
  4446. /*
  4447. * Probes a grid and produces a mesh to compensate for variable bed height
  4448. * The S0 report the points as below
  4449. * +----> X-axis
  4450. * |
  4451. * |
  4452. * v Y-axis
  4453. */
  4454. case 80: {
  4455. gcode_G80();
  4456. }
  4457. break;
  4458. /*!
  4459. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4460. Prints mesh bed leveling status and bed profile if activated.
  4461. */
  4462. case 81:
  4463. if (mbl.active) {
  4464. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4465. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4466. SERIAL_PROTOCOL(',');
  4467. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4468. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4469. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4470. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4471. for (uint8_t y = MESH_NUM_Y_POINTS; y-- > 0;) {
  4472. for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) {
  4473. SERIAL_PROTOCOLPGM(" ");
  4474. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4475. }
  4476. SERIAL_PROTOCOLLN();
  4477. }
  4478. }
  4479. else
  4480. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4481. break;
  4482. #if 0
  4483. /*!
  4484. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4485. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4486. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4487. */
  4488. case 82:
  4489. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4490. int l_feedmultiply = setup_for_endstop_move();
  4491. find_bed_induction_sensor_point_z();
  4492. clean_up_after_endstop_move(l_feedmultiply);
  4493. SERIAL_PROTOCOLPGM("Bed found at: ");
  4494. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4495. SERIAL_PROTOCOLPGM("\n");
  4496. break;
  4497. /*!
  4498. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4499. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4500. */
  4501. case 83:
  4502. {
  4503. int babystepz = code_seen('S') ? code_value() : 0;
  4504. int BabyPosition = code_seen('P') ? code_value() : 0;
  4505. if (babystepz != 0) {
  4506. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4507. // Is the axis indexed starting with zero or one?
  4508. if (BabyPosition > 4) {
  4509. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4510. }else{
  4511. // Save it to the eeprom
  4512. babystepLoadZ = babystepz;
  4513. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z0 + BabyPosition, babystepLoadZ);
  4514. // adjust the Z
  4515. babystepsTodoZadd(babystepLoadZ);
  4516. }
  4517. }
  4518. }
  4519. break;
  4520. /*!
  4521. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4522. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4523. */
  4524. case 84:
  4525. babystepsTodoZsubtract(babystepLoadZ);
  4526. // babystepLoadZ = 0;
  4527. break;
  4528. /*!
  4529. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4530. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4531. */
  4532. case 85:
  4533. lcd_pick_babystep();
  4534. break;
  4535. #endif
  4536. /*!
  4537. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4538. This G-code will be performed at the start of a calibration script.
  4539. (Prusa3D specific)
  4540. */
  4541. case 86:
  4542. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4543. break;
  4544. /*!
  4545. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4546. This G-code will be performed at the end of a calibration script.
  4547. (Prusa3D specific)
  4548. */
  4549. case 87:
  4550. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4551. break;
  4552. /*!
  4553. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4554. Currently has no effect.
  4555. */
  4556. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4557. case 88:
  4558. break;
  4559. #endif // ENABLE_MESH_BED_LEVELING
  4560. /*!
  4561. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4562. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4563. */
  4564. case 90: {
  4565. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4566. }
  4567. break;
  4568. /*!
  4569. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4570. All coordinates from now on are relative to the last position. E axis is left intact.
  4571. */
  4572. case 91: {
  4573. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4574. }
  4575. break;
  4576. /*!
  4577. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4578. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4579. If a parameter is omitted, that axis will not be affected.
  4580. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4581. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4582. #### Usage
  4583. G92 [ X | Y | Z | E ]
  4584. #### Parameters
  4585. - `X` - new X axis position
  4586. - `Y` - new Y axis position
  4587. - `Z` - new Z axis position
  4588. - `E` - new extruder position
  4589. */
  4590. case 92: {
  4591. gcode_G92();
  4592. }
  4593. break;
  4594. #ifdef PRUSA_FARM
  4595. /*!
  4596. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4597. Enable Prusa-specific Farm functions and g-code.
  4598. See Internal Prusa commands.
  4599. */
  4600. case 98:
  4601. farm_gcode_g98();
  4602. break;
  4603. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4604. Disables Prusa-specific Farm functions and g-code.
  4605. */
  4606. case 99:
  4607. farm_gcode_g99();
  4608. break;
  4609. #endif //PRUSA_FARM
  4610. default:
  4611. printf_P(MSG_UNKNOWN_CODE, 'G', cmdbuffer + bufindr + CMDHDRSIZE);
  4612. }
  4613. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4614. gcode_in_progress = 0;
  4615. } // end if(code_seen('G'))
  4616. /*!
  4617. ### End of G-Codes
  4618. */
  4619. /*!
  4620. ---------------------------------------------------------------------------------
  4621. # M Commands
  4622. */
  4623. else if(code_seen('M'))
  4624. {
  4625. int index;
  4626. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4627. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4628. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4629. printf_P(PSTR("Invalid M code: %s\n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4630. } else
  4631. {
  4632. mcode_in_progress = code_value_short();
  4633. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4634. switch(mcode_in_progress)
  4635. {
  4636. /*!
  4637. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4638. */
  4639. case 17:
  4640. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=20
  4641. enable_x();
  4642. enable_y();
  4643. enable_z();
  4644. enable_e0();
  4645. enable_e1();
  4646. enable_e2();
  4647. break;
  4648. #ifdef SDSUPPORT
  4649. /*!
  4650. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4651. #### Usage
  4652. M20 [ L | T ]
  4653. #### Parameters
  4654. - `T` - Report timestamps as well. The value is one uint32_t encoded as hex. Requires host software parsing (Cap:EXTENDED_M20).
  4655. - `L` - Reports long filenames instead of just short filenames. Requires host software parsing (Cap:EXTENDED_M20).
  4656. */
  4657. case 20:
  4658. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  4659. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4660. card.ls(CardReader::ls_param(code_seen('L'), code_seen('T')));
  4661. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4662. break;
  4663. /*!
  4664. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4665. */
  4666. case 21:
  4667. card.initsd();
  4668. break;
  4669. /*!
  4670. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4671. */
  4672. case 22:
  4673. card.release();
  4674. break;
  4675. /*!
  4676. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4677. #### Usage
  4678. M23 [filename]
  4679. */
  4680. case 23:
  4681. card.openFileReadFilteredGcode(strchr_pointer + 4, true);
  4682. break;
  4683. /*!
  4684. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4685. */
  4686. case 24:
  4687. if (isPrintPaused)
  4688. lcd_resume_print();
  4689. else
  4690. {
  4691. if (!card.get_sdpos())
  4692. {
  4693. // A new print has started from scratch, reset stats
  4694. failstats_reset_print();
  4695. sdpos_atomic = 0;
  4696. #ifndef LA_NOCOMPAT
  4697. la10c_reset();
  4698. #endif
  4699. }
  4700. card.startFileprint();
  4701. starttime=_millis();
  4702. if (MMU2::mmu2.Enabled())
  4703. {
  4704. if (MMU2::mmu2.FindaDetectsFilament() && !fsensor.getFilamentPresent())
  4705. { // Filament only half way into the PTFE. Unload the filament.
  4706. MMU2::mmu2.unload();
  4707. // Tx and Tc gcodes take care of loading the filament to the nozzle.
  4708. }
  4709. }
  4710. }
  4711. break;
  4712. /*!
  4713. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4714. Set position in SD card file to index in bytes.
  4715. This command is expected to be called after M23 and before M24.
  4716. Otherwise effect of this command is undefined.
  4717. #### Usage
  4718. M26 [ S ]
  4719. #### Parameters
  4720. - `S` - Index in bytes
  4721. */
  4722. case 26:
  4723. if(card.cardOK && code_seen('S')) {
  4724. long index = code_value_long();
  4725. card.setIndex(index);
  4726. // We don't disable interrupt during update of sdpos_atomic
  4727. // as we expect, that SD card print is not active in this moment
  4728. sdpos_atomic = index;
  4729. }
  4730. break;
  4731. /*!
  4732. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4733. #### Usage
  4734. M27 [ P ]
  4735. #### Parameters
  4736. - `P` - Show full SFN path instead of LFN only.
  4737. */
  4738. case 27:
  4739. card.getStatus(code_seen('P'));
  4740. break;
  4741. /*!
  4742. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4743. */
  4744. case 28:
  4745. card.openFileWrite(strchr_pointer+4);
  4746. break;
  4747. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4748. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4749. */
  4750. case 29:
  4751. //processed in write to file routine above
  4752. //card,saving = false;
  4753. break;
  4754. /*!
  4755. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4756. #### Usage
  4757. M30 [filename]
  4758. */
  4759. case 30:
  4760. if (card.cardOK){
  4761. card.closefile();
  4762. card.removeFile(strchr_pointer + 4);
  4763. }
  4764. break;
  4765. /*!
  4766. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4767. @todo What are the parameters P and S for in M32?
  4768. */
  4769. case 32:
  4770. {
  4771. if(card.sdprinting) {
  4772. st_synchronize();
  4773. }
  4774. const char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4775. if(namestartpos==NULL)
  4776. {
  4777. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4778. }
  4779. else
  4780. namestartpos++; //to skip the '!'
  4781. bool call_procedure=(code_seen('P'));
  4782. if(strchr_pointer>namestartpos)
  4783. call_procedure=false; //false alert, 'P' found within filename
  4784. if( card.cardOK )
  4785. {
  4786. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  4787. if(code_seen('S'))
  4788. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4789. card.setIndex(code_value_long());
  4790. card.startFileprint();
  4791. if(!call_procedure)
  4792. {
  4793. if(!card.get_sdpos())
  4794. {
  4795. // A new print has started from scratch, reset stats
  4796. failstats_reset_print();
  4797. sdpos_atomic = 0;
  4798. #ifndef LA_NOCOMPAT
  4799. la10c_reset();
  4800. #endif
  4801. }
  4802. starttime=_millis(); // procedure calls count as normal print time.
  4803. }
  4804. }
  4805. } break;
  4806. /*!
  4807. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4808. #### Usage
  4809. M928 [filename]
  4810. */
  4811. case 928:
  4812. card.openLogFile(strchr_pointer+5);
  4813. break;
  4814. #endif //SDSUPPORT
  4815. /*!
  4816. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4817. */
  4818. case 31: //M31 take time since the start of the SD print or an M109 command
  4819. {
  4820. stoptime=_millis();
  4821. char time[30];
  4822. unsigned long t=(stoptime-starttime)/1000;
  4823. int sec,min;
  4824. min=t/60;
  4825. sec=t%60;
  4826. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4827. SERIAL_ECHO_START;
  4828. SERIAL_ECHOLN(time);
  4829. lcd_setstatus(time);
  4830. autotempShutdown();
  4831. }
  4832. break;
  4833. /*!
  4834. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4835. #### Usage
  4836. M42 [ P | S ]
  4837. #### Parameters
  4838. - `P` - Pin number.
  4839. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  4840. */
  4841. case 42:
  4842. if (code_seen('S'))
  4843. {
  4844. uint8_t pin_status = code_value_uint8();
  4845. int8_t pin_number = LED_PIN;
  4846. if (code_seen('P'))
  4847. pin_number = code_value_uint8();
  4848. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  4849. {
  4850. if ((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number)
  4851. {
  4852. pin_number = -1;
  4853. break;
  4854. }
  4855. }
  4856. #if defined(FAN_PIN) && FAN_PIN > -1
  4857. if (pin_number == FAN_PIN)
  4858. fanSpeed = pin_status;
  4859. #endif
  4860. if (pin_number > -1)
  4861. {
  4862. pinMode(pin_number, OUTPUT);
  4863. digitalWrite(pin_number, pin_status);
  4864. analogWrite(pin_number, pin_status);
  4865. }
  4866. }
  4867. break;
  4868. /*!
  4869. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  4870. */
  4871. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4872. // Reset the baby step value and the baby step applied flag.
  4873. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4874. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4875. // Reset the skew and offset in both RAM and EEPROM.
  4876. reset_bed_offset_and_skew();
  4877. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4878. // the planner will not perform any adjustments in the XY plane.
  4879. // Wait for the motors to stop and update the current position with the absolute values.
  4880. world2machine_revert_to_uncorrected();
  4881. break;
  4882. /*!
  4883. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  4884. #### Usage
  4885. M45 [ V ]
  4886. #### Parameters
  4887. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  4888. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  4889. */
  4890. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4891. {
  4892. int8_t verbosity_level = 0;
  4893. bool only_Z = code_seen('Z');
  4894. #ifdef SUPPORT_VERBOSITY
  4895. if (code_seen('V'))
  4896. {
  4897. // Just 'V' without a number counts as V1.
  4898. char c = strchr_pointer[1];
  4899. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4900. }
  4901. #endif //SUPPORT_VERBOSITY
  4902. gcode_M45(only_Z, verbosity_level);
  4903. }
  4904. break;
  4905. /*!
  4906. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  4907. */
  4908. case 46:
  4909. {
  4910. // M46: Prusa3D: Show the assigned IP address.
  4911. if (card.ToshibaFlashAir_isEnabled()) {
  4912. uint8_t ip[4];
  4913. if (card.ToshibaFlashAir_GetIP(ip)) {
  4914. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  4915. SERIAL_PROTOCOL(uint8_t(ip[0]));
  4916. SERIAL_PROTOCOL('.');
  4917. SERIAL_PROTOCOL(uint8_t(ip[1]));
  4918. SERIAL_PROTOCOL('.');
  4919. SERIAL_PROTOCOL(uint8_t(ip[2]));
  4920. SERIAL_PROTOCOL('.');
  4921. SERIAL_PROTOCOLLN(uint8_t(ip[3]));
  4922. } else {
  4923. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  4924. }
  4925. } else {
  4926. SERIAL_PROTOCOLLNPGM("n/a");
  4927. }
  4928. break;
  4929. }
  4930. /*!
  4931. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  4932. */
  4933. case 47:
  4934. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4935. lcd_diag_show_end_stops();
  4936. KEEPALIVE_STATE(IN_HANDLER);
  4937. break;
  4938. #if 0
  4939. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4940. {
  4941. // Disable the default update procedure of the display. We will do a modal dialog.
  4942. lcd_update_enable(false);
  4943. // Let the planner use the uncorrected coordinates.
  4944. mbl.reset();
  4945. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4946. // the planner will not perform any adjustments in the XY plane.
  4947. // Wait for the motors to stop and update the current position with the absolute values.
  4948. world2machine_revert_to_uncorrected();
  4949. // Move the print head close to the bed.
  4950. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4952. st_synchronize();
  4953. // Home in the XY plane.
  4954. set_destination_to_current();
  4955. int l_feedmultiply = setup_for_endstop_move();
  4956. home_xy();
  4957. int8_t verbosity_level = 0;
  4958. if (code_seen('V')) {
  4959. // Just 'V' without a number counts as V1.
  4960. char c = strchr_pointer[1];
  4961. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4962. }
  4963. bool success = scan_bed_induction_points(verbosity_level);
  4964. clean_up_after_endstop_move(l_feedmultiply);
  4965. // Print head up.
  4966. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4968. st_synchronize();
  4969. lcd_update_enable(true);
  4970. break;
  4971. }
  4972. #endif
  4973. #ifdef ENABLE_AUTO_BED_LEVELING
  4974. #ifdef Z_PROBE_REPEATABILITY_TEST
  4975. /*!
  4976. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  4977. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  4978. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  4979. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  4980. #### Usage
  4981. M48 [ n | X | Y | V | L ]
  4982. #### Parameters
  4983. - `n` - Number of samples. Valid values 4-50
  4984. - `X` - X position for samples
  4985. - `Y` - Y position for samples
  4986. - `V` - Verbose level. Valid values 1-4
  4987. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  4988. */
  4989. case 48: // M48 Z-Probe repeatability
  4990. {
  4991. #if Z_MIN_PIN == -1
  4992. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4993. #endif
  4994. double sum=0.0;
  4995. double mean=0.0;
  4996. double sigma=0.0;
  4997. double sample_set[50];
  4998. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4999. double X_current, Y_current, Z_current;
  5000. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5001. if (code_seen('V') || code_seen('v')) {
  5002. verbose_level = code_value();
  5003. if (verbose_level<0 || verbose_level>4 ) {
  5004. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5005. goto Sigma_Exit;
  5006. }
  5007. }
  5008. if (verbose_level > 0) {
  5009. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5010. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5011. }
  5012. if (code_seen('n')) {
  5013. n_samples = code_value();
  5014. if (n_samples<4 || n_samples>50 ) {
  5015. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5016. goto Sigma_Exit;
  5017. }
  5018. }
  5019. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5020. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5021. Z_current = st_get_position_mm(Z_AXIS);
  5022. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5023. ext_position = st_get_position_mm(E_AXIS);
  5024. if (code_seen('X') || code_seen('x') ) {
  5025. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5026. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5027. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5028. goto Sigma_Exit;
  5029. }
  5030. }
  5031. if (code_seen('Y') || code_seen('y') ) {
  5032. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5033. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5034. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5035. goto Sigma_Exit;
  5036. }
  5037. }
  5038. if (code_seen('L') || code_seen('l') ) {
  5039. n_legs = code_value();
  5040. if ( n_legs==1 )
  5041. n_legs = 2;
  5042. if ( n_legs<0 || n_legs>15 ) {
  5043. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5044. goto Sigma_Exit;
  5045. }
  5046. }
  5047. //
  5048. // Do all the preliminary setup work. First raise the probe.
  5049. //
  5050. st_synchronize();
  5051. plan_bed_level_matrix.set_to_identity();
  5052. plan_buffer_line( X_current, Y_current, Z_start_location,
  5053. ext_position,
  5054. homing_feedrate[Z_AXIS]/60,
  5055. active_extruder);
  5056. st_synchronize();
  5057. //
  5058. // Now get everything to the specified probe point So we can safely do a probe to
  5059. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5060. // use that as a starting point for each probe.
  5061. //
  5062. if (verbose_level > 2)
  5063. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5064. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5065. ext_position,
  5066. homing_feedrate[X_AXIS]/60,
  5067. active_extruder);
  5068. st_synchronize();
  5069. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5070. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5071. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5072. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5073. //
  5074. // OK, do the inital probe to get us close to the bed.
  5075. // Then retrace the right amount and use that in subsequent probes
  5076. //
  5077. int l_feedmultiply = setup_for_endstop_move();
  5078. run_z_probe();
  5079. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5080. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5081. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5082. ext_position,
  5083. homing_feedrate[X_AXIS]/60,
  5084. active_extruder);
  5085. st_synchronize();
  5086. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5087. for( n=0; n<n_samples; n++) {
  5088. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5089. if ( n_legs) {
  5090. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5091. int rotational_direction, l;
  5092. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5093. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5094. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5095. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5096. //SERIAL_ECHOPAIR(" theta: ",theta);
  5097. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5098. //SERIAL_PROTOCOLLNPGM("");
  5099. for( l=0; l<n_legs-1; l++) {
  5100. if (rotational_direction==1)
  5101. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5102. else
  5103. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5104. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5105. if ( radius<0.0 )
  5106. radius = -radius;
  5107. X_current = X_probe_location + cos(theta) * radius;
  5108. Y_current = Y_probe_location + sin(theta) * radius;
  5109. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5110. X_current = X_MIN_POS;
  5111. if ( X_current>X_MAX_POS)
  5112. X_current = X_MAX_POS;
  5113. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5114. Y_current = Y_MIN_POS;
  5115. if ( Y_current>Y_MAX_POS)
  5116. Y_current = Y_MAX_POS;
  5117. if (verbose_level>3 ) {
  5118. SERIAL_ECHOPAIR("x: ", X_current);
  5119. SERIAL_ECHOPAIR("y: ", Y_current);
  5120. SERIAL_PROTOCOLLNPGM("");
  5121. }
  5122. do_blocking_move_to( X_current, Y_current, Z_current );
  5123. }
  5124. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5125. }
  5126. int l_feedmultiply = setup_for_endstop_move();
  5127. run_z_probe();
  5128. sample_set[n] = current_position[Z_AXIS];
  5129. //
  5130. // Get the current mean for the data points we have so far
  5131. //
  5132. sum=0.0;
  5133. for( j=0; j<=n; j++) {
  5134. sum = sum + sample_set[j];
  5135. }
  5136. mean = sum / (double (n+1));
  5137. //
  5138. // Now, use that mean to calculate the standard deviation for the
  5139. // data points we have so far
  5140. //
  5141. sum=0.0;
  5142. for( j=0; j<=n; j++) {
  5143. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5144. }
  5145. sigma = sqrt( sum / (double (n+1)) );
  5146. if (verbose_level > 1) {
  5147. SERIAL_PROTOCOL(n+1);
  5148. SERIAL_PROTOCOL(" of ");
  5149. SERIAL_PROTOCOL(n_samples);
  5150. SERIAL_PROTOCOLPGM(" z: ");
  5151. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5152. }
  5153. if (verbose_level > 2) {
  5154. SERIAL_PROTOCOL(" mean: ");
  5155. SERIAL_PROTOCOL_F(mean,6);
  5156. SERIAL_PROTOCOL(" sigma: ");
  5157. SERIAL_PROTOCOL_F(sigma,6);
  5158. }
  5159. if (verbose_level > 0)
  5160. SERIAL_PROTOCOLPGM("\n");
  5161. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5162. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5163. st_synchronize();
  5164. }
  5165. _delay(1000);
  5166. clean_up_after_endstop_move(l_feedmultiply);
  5167. // enable_endstops(true);
  5168. if (verbose_level > 0) {
  5169. SERIAL_PROTOCOLPGM("Mean: ");
  5170. SERIAL_PROTOCOL_F(mean, 6);
  5171. SERIAL_PROTOCOLPGM("\n");
  5172. }
  5173. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5174. SERIAL_PROTOCOL_F(sigma, 6);
  5175. SERIAL_PROTOCOLPGM("\n\n");
  5176. Sigma_Exit:
  5177. break;
  5178. }
  5179. #endif // Z_PROBE_REPEATABILITY_TEST
  5180. #endif // ENABLE_AUTO_BED_LEVELING
  5181. /*!
  5182. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5183. #### Usage
  5184. M73 [ P | R | Q | S | C | D ]
  5185. #### Parameters
  5186. - `P` - Percent in normal mode
  5187. - `R` - Time remaining in normal mode
  5188. - `Q` - Percent in silent mode
  5189. - `S` - Time in silent mode
  5190. - `C` - Time to change/pause/user interaction in normal mode
  5191. - `D` - Time to change/pause/user interaction in silent mode
  5192. */
  5193. case 73: //M73 show percent done, time remaining and time to change/pause
  5194. {
  5195. if(code_seen('P')) print_percent_done_normal = code_value_uint8();
  5196. if(code_seen('R')) print_time_remaining_normal = code_value();
  5197. if(code_seen('Q')) print_percent_done_silent = code_value_uint8();
  5198. if(code_seen('S')) print_time_remaining_silent = code_value();
  5199. if(code_seen('C')){
  5200. float print_time_to_change_normal_f = code_value_float();
  5201. print_time_to_change_normal = ( print_time_to_change_normal_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_normal_f;
  5202. }
  5203. if(code_seen('D')){
  5204. float print_time_to_change_silent_f = code_value_float();
  5205. print_time_to_change_silent = ( print_time_to_change_silent_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_silent_f;
  5206. }
  5207. {
  5208. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %hhd; print time remaining in mins: %d; Change in mins: %d\n");
  5209. printf_P(_msg_mode_done_remain, _N("NORMAL"), int8_t(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5210. printf_P(_msg_mode_done_remain, _N("SILENT"), int8_t(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5211. }
  5212. break;
  5213. }
  5214. /*!
  5215. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5216. #### Usage
  5217. M104 [ S ]
  5218. #### Parameters
  5219. - `S` - Target temperature
  5220. */
  5221. case 104: // M104
  5222. {
  5223. uint8_t extruder;
  5224. if(setTargetedHotend(104,extruder)){
  5225. break;
  5226. }
  5227. if (code_seen('S'))
  5228. {
  5229. setTargetHotendSafe(code_value(), extruder);
  5230. }
  5231. break;
  5232. }
  5233. /*!
  5234. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5235. It is processed much earlier as to bypass the cmdqueue.
  5236. */
  5237. case 112:
  5238. kill(MSG_M112_KILL, 3);
  5239. break;
  5240. /*!
  5241. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5242. #### Usage
  5243. M140 [ S ]
  5244. #### Parameters
  5245. - `S` - Target temperature
  5246. */
  5247. case 140:
  5248. if (code_seen('S')) setTargetBed(code_value());
  5249. break;
  5250. /*!
  5251. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5252. Prints temperatures:
  5253. - `T:` - Hotend (actual / target)
  5254. - `B:` - Bed (actual / target)
  5255. - `Tx:` - x Tool (actual / target)
  5256. - `@:` - Hotend power
  5257. - `B@:` - Bed power
  5258. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5259. - `A:` - Ambient actual (only MK3/s)
  5260. _Example:_
  5261. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5262. */
  5263. case 105:
  5264. {
  5265. uint8_t extruder;
  5266. if(setTargetedHotend(105, extruder)){
  5267. break;
  5268. }
  5269. SERIAL_PROTOCOLPGM("ok ");
  5270. gcode_M105(extruder);
  5271. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5272. cmdbuffer_front_already_processed = true;
  5273. break;
  5274. }
  5275. #if defined(AUTO_REPORT)
  5276. /*!
  5277. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5278. #### Usage
  5279. M155 [ S ] [ C ]
  5280. #### Parameters
  5281. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5282. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5283. bit 0 = Auto-report temperatures
  5284. bit 1 = Auto-report fans
  5285. bit 2 = Auto-report position
  5286. bit 3 = free
  5287. bit 4 = free
  5288. bit 5 = free
  5289. bit 6 = free
  5290. bit 7 = free
  5291. */
  5292. case 155:
  5293. {
  5294. if (code_seen('S')){
  5295. autoReportFeatures.SetPeriod( code_value_uint8() );
  5296. }
  5297. if (code_seen('C')){
  5298. autoReportFeatures.SetMask(code_value_uint8());
  5299. } else{
  5300. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5301. }
  5302. }
  5303. break;
  5304. #endif //AUTO_REPORT
  5305. /*!
  5306. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5307. #### Usage
  5308. M104 [ B | R | S ]
  5309. #### Parameters (not mandatory)
  5310. - `S` - Set extruder temperature
  5311. - `R` - Set extruder temperature
  5312. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5313. Parameters S and R are treated identically.
  5314. Command always waits for both cool down and heat up.
  5315. If no parameters are supplied waits for previously set extruder temperature.
  5316. */
  5317. case 109:
  5318. {
  5319. uint8_t extruder;
  5320. if(setTargetedHotend(109, extruder)){
  5321. break;
  5322. }
  5323. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5324. heating_status = HeatingStatus::EXTRUDER_HEATING;
  5325. prusa_statistics(1);
  5326. #ifdef AUTOTEMP
  5327. autotemp_enabled=false;
  5328. #endif
  5329. if (code_seen('S')) {
  5330. setTargetHotendSafe(code_value(), extruder);
  5331. } else if (code_seen('R')) {
  5332. setTargetHotendSafe(code_value(), extruder);
  5333. }
  5334. #ifdef AUTOTEMP
  5335. if (code_seen('S')) autotemp_min=code_value();
  5336. if (code_seen('B')) autotemp_max=code_value();
  5337. if (code_seen('F'))
  5338. {
  5339. autotemp_factor=code_value();
  5340. autotemp_enabled=true;
  5341. }
  5342. #endif
  5343. codenum = _millis();
  5344. /* See if we are heating up or cooling down */
  5345. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5346. cancel_heatup = false;
  5347. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5348. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5349. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  5350. prusa_statistics(2);
  5351. //starttime=_millis();
  5352. previous_millis_cmd.start();
  5353. }
  5354. break;
  5355. /*!
  5356. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5357. #### Usage
  5358. M190 [ R | S ]
  5359. #### Parameters (not mandatory)
  5360. - `S` - Set extruder temperature and wait for heating
  5361. - `R` - Set extruder temperature and wait for heating or cooling
  5362. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5363. */
  5364. case 190:
  5365. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5366. {
  5367. bool CooldownNoWait = false;
  5368. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5369. heating_status = HeatingStatus::BED_HEATING;
  5370. prusa_statistics(1);
  5371. if (code_seen('S'))
  5372. {
  5373. setTargetBed(code_value());
  5374. CooldownNoWait = true;
  5375. }
  5376. else if (code_seen('R'))
  5377. {
  5378. setTargetBed(code_value());
  5379. }
  5380. codenum = _millis();
  5381. cancel_heatup = false;
  5382. target_direction = isHeatingBed(); // true if heating, false if cooling
  5383. while ( (!cancel_heatup) && (target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false))) )
  5384. {
  5385. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5386. {
  5387. if (!farm_mode) {
  5388. float tt = degHotend(active_extruder);
  5389. SERIAL_PROTOCOLPGM("T:");
  5390. SERIAL_PROTOCOL(tt);
  5391. SERIAL_PROTOCOLPGM(" E:");
  5392. SERIAL_PROTOCOL((int)active_extruder);
  5393. SERIAL_PROTOCOLPGM(" B:");
  5394. SERIAL_PROTOCOL_F(degBed(), 1);
  5395. SERIAL_PROTOCOLLN();
  5396. }
  5397. codenum = _millis();
  5398. }
  5399. manage_heater();
  5400. manage_inactivity();
  5401. lcd_update(0);
  5402. }
  5403. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5404. heating_status = HeatingStatus::BED_HEATING_COMPLETE;
  5405. previous_millis_cmd.start();
  5406. }
  5407. #endif
  5408. break;
  5409. #if defined(FAN_PIN) && FAN_PIN > -1
  5410. /*!
  5411. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5412. #### Usage
  5413. M106 [ S ]
  5414. #### Parameters
  5415. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5416. */
  5417. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5418. if (code_seen('S')){
  5419. fanSpeed = code_value_uint8();
  5420. }
  5421. else {
  5422. fanSpeed = 255;
  5423. }
  5424. break;
  5425. /*!
  5426. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5427. */
  5428. case 107:
  5429. fanSpeed = 0;
  5430. break;
  5431. #endif //FAN_PIN
  5432. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5433. /*!
  5434. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5435. Only works if the firmware is compiled with PS_ON_PIN defined.
  5436. */
  5437. case 80:
  5438. SET_OUTPUT(PS_ON_PIN); //GND
  5439. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5440. // If you have a switch on suicide pin, this is useful
  5441. // if you want to start another print with suicide feature after
  5442. // a print without suicide...
  5443. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5444. SET_OUTPUT(SUICIDE_PIN);
  5445. WRITE(SUICIDE_PIN, HIGH);
  5446. #endif
  5447. powersupply = true;
  5448. LCD_MESSAGERPGM(MSG_WELCOME);
  5449. lcd_update(0);
  5450. break;
  5451. /*!
  5452. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5453. Only works if the firmware is compiled with PS_ON_PIN defined.
  5454. */
  5455. case 81:
  5456. disable_heater();
  5457. st_synchronize();
  5458. disable_e0();
  5459. disable_e1();
  5460. disable_e2();
  5461. finishAndDisableSteppers();
  5462. fanSpeed = 0;
  5463. _delay(1000); // Wait a little before to switch off
  5464. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5465. st_synchronize();
  5466. suicide();
  5467. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5468. SET_OUTPUT(PS_ON_PIN);
  5469. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5470. #endif
  5471. powersupply = false;
  5472. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5473. lcd_update(0);
  5474. break;
  5475. #endif
  5476. /*!
  5477. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5478. Makes the extruder interpret extrusion as absolute positions.
  5479. */
  5480. case 82:
  5481. axis_relative_modes &= ~E_AXIS_MASK;
  5482. break;
  5483. /*!
  5484. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5485. Makes the extruder interpret extrusion values as relative positions.
  5486. */
  5487. case 83:
  5488. axis_relative_modes |= E_AXIS_MASK;
  5489. break;
  5490. /*!
  5491. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5492. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5493. This command can be used without any additional parameters. In that case all steppers are disabled.
  5494. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5495. M84 [ S | X | Y | Z | E ]
  5496. - `S` - Seconds
  5497. - `X` - X axis
  5498. - `Y` - Y axis
  5499. - `Z` - Z axis
  5500. - `E` - Extruder
  5501. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5502. Equal to M84 (compatibility)
  5503. */
  5504. case 18: //compatibility
  5505. case 84: // M84
  5506. if(code_seen('S')){
  5507. stepper_inactive_time = code_value() * 1000;
  5508. }
  5509. else
  5510. {
  5511. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5512. if(all_axis)
  5513. {
  5514. st_synchronize();
  5515. disable_e0();
  5516. disable_e1();
  5517. disable_e2();
  5518. finishAndDisableSteppers();
  5519. }
  5520. else
  5521. {
  5522. st_synchronize();
  5523. if (code_seen('X')) disable_x();
  5524. if (code_seen('Y')) disable_y();
  5525. if (code_seen('Z')) disable_z();
  5526. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5527. if (code_seen('E')) {
  5528. disable_e0();
  5529. disable_e1();
  5530. disable_e2();
  5531. }
  5532. #endif
  5533. }
  5534. }
  5535. break;
  5536. /*!
  5537. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5538. #### Usage
  5539. M85 [ S ]
  5540. #### Parameters
  5541. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5542. */
  5543. case 85: // M85
  5544. if(code_seen('S')) {
  5545. max_inactive_time = code_value() * 1000;
  5546. }
  5547. break;
  5548. #ifdef SAFETYTIMER
  5549. /*!
  5550. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5551. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5552. #### Usage
  5553. M86 [ S ]
  5554. #### Parameters
  5555. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5556. */
  5557. case 86:
  5558. if (code_seen('S')) {
  5559. safetytimer_inactive_time = code_value() * 1000;
  5560. safetyTimer.start();
  5561. }
  5562. break;
  5563. #endif
  5564. /*!
  5565. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5566. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5567. #### Usage
  5568. M92 [ X | Y | Z | E ]
  5569. #### Parameters
  5570. - `X` - Steps per unit for the X drive
  5571. - `Y` - Steps per unit for the Y drive
  5572. - `Z` - Steps per unit for the Z drive
  5573. - `E` - Steps per unit for the extruder drive
  5574. */
  5575. case 92:
  5576. for(int8_t i=0; i < NUM_AXIS; i++)
  5577. {
  5578. if(code_seen(axis_codes[i]))
  5579. {
  5580. if(i == E_AXIS) { // E
  5581. float value = code_value();
  5582. if(value < 20.0) {
  5583. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5584. cs.max_jerk[E_AXIS] *= factor;
  5585. max_feedrate[i] *= factor;
  5586. axis_steps_per_sqr_second[i] *= factor;
  5587. }
  5588. cs.axis_steps_per_unit[i] = value;
  5589. #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  5590. fsensor.init();
  5591. #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  5592. }
  5593. else {
  5594. cs.axis_steps_per_unit[i] = code_value();
  5595. }
  5596. }
  5597. }
  5598. reset_acceleration_rates();
  5599. break;
  5600. /*!
  5601. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5602. Sets the line number in G-code
  5603. #### Usage
  5604. M110 [ N ]
  5605. #### Parameters
  5606. - `N` - Line number
  5607. */
  5608. case 110:
  5609. if (code_seen('N'))
  5610. gcode_LastN = code_value_long();
  5611. break;
  5612. /*!
  5613. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5614. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5615. #### Usage
  5616. M113 [ S ]
  5617. #### Parameters
  5618. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5619. */
  5620. case 113:
  5621. if (code_seen('S')) {
  5622. host_keepalive_interval = code_value_uint8();
  5623. // NOMORE(host_keepalive_interval, 60);
  5624. }
  5625. else {
  5626. SERIAL_ECHO_START;
  5627. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5628. SERIAL_PROTOCOLLN();
  5629. }
  5630. break;
  5631. /*!
  5632. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5633. Print the firmware info and capabilities
  5634. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5635. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5636. _Examples:_
  5637. `M115` results:
  5638. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5639. `M115 V` results:
  5640. `3.8.1`
  5641. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5642. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5643. #### Usage
  5644. M115 [ V | U ]
  5645. #### Parameters
  5646. - V - Report current installed firmware version
  5647. - U - Firmware version provided by G-code to be compared to current one.
  5648. */
  5649. case 115: // M115
  5650. if (code_seen('V')) {
  5651. // Report the Prusa version number.
  5652. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5653. } else if (code_seen('U')) {
  5654. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5655. // pause the print for 30s and ask the user to upgrade the firmware.
  5656. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5657. } else {
  5658. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5659. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5660. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5661. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5662. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5663. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5664. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5665. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5666. SERIAL_ECHOPGM(" UUID:");
  5667. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5668. #ifdef EXTENDED_CAPABILITIES_REPORT
  5669. extended_capabilities_report();
  5670. #endif //EXTENDED_CAPABILITIES_REPORT
  5671. }
  5672. break;
  5673. /*!
  5674. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5675. */
  5676. case 114:
  5677. gcode_M114();
  5678. break;
  5679. /* M117 moved up to get higher priority */
  5680. #ifdef M120_M121_ENABLED
  5681. /*!
  5682. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5683. */
  5684. case 120:
  5685. enable_endstops(true) ;
  5686. break;
  5687. /*!
  5688. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5689. */
  5690. case 121:
  5691. enable_endstops(false) ;
  5692. break;
  5693. #endif //M120_M121_ENABLED
  5694. /*!
  5695. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5696. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5697. */
  5698. case 119:
  5699. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5700. SERIAL_PROTOCOLLN();
  5701. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5702. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5703. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5704. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5705. }else{
  5706. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5707. }
  5708. SERIAL_PROTOCOLLN();
  5709. #endif
  5710. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5711. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5712. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5713. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5714. }else{
  5715. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5716. }
  5717. SERIAL_PROTOCOLLN();
  5718. #endif
  5719. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5720. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5721. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5722. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5723. }else{
  5724. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5725. }
  5726. SERIAL_PROTOCOLLN();
  5727. #endif
  5728. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5729. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5730. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5731. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5732. }else{
  5733. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5734. }
  5735. SERIAL_PROTOCOLLN();
  5736. #endif
  5737. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5738. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5739. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5740. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5741. }else{
  5742. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5743. }
  5744. SERIAL_PROTOCOLLN();
  5745. #endif
  5746. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5747. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5748. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5749. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5750. }else{
  5751. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5752. }
  5753. SERIAL_PROTOCOLLN();
  5754. #endif
  5755. break;
  5756. //!@todo update for all axes, use for loop
  5757. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  5758. /*!
  5759. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap_.26_Prusa.29">M123: Tachometer value</a>
  5760. This command is used to report fan speeds and fan pwm values.
  5761. #### Usage
  5762. M123
  5763. - E0: - Hotend fan speed in RPM
  5764. - PRN1: - Part cooling fans speed in RPM
  5765. - E0@: - Hotend fan PWM value
  5766. - PRN1@: -Part cooling fan PWM value
  5767. _Example:_
  5768. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  5769. */
  5770. case 123:
  5771. gcode_M123();
  5772. break;
  5773. #endif //FANCHECK and TACH_0 and TACH_1
  5774. #ifdef BLINKM
  5775. /*!
  5776. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5777. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5778. #### Usage
  5779. M150 [ R | U | B ]
  5780. #### Parameters
  5781. - `R` - Red color value
  5782. - `U` - Green color value. It is NOT `G`!
  5783. - `B` - Blue color value
  5784. */
  5785. case 150:
  5786. {
  5787. byte red;
  5788. byte grn;
  5789. byte blu;
  5790. if(code_seen('R')) red = code_value();
  5791. if(code_seen('U')) grn = code_value();
  5792. if(code_seen('B')) blu = code_value();
  5793. SendColors(red,grn,blu);
  5794. }
  5795. break;
  5796. #endif //BLINKM
  5797. /*!
  5798. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5799. #### Usage
  5800. M200 [ D | T ]
  5801. #### Parameters
  5802. - `D` - Diameter in mm
  5803. - `T` - Number of extruder (MMUs)
  5804. */
  5805. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5806. {
  5807. uint8_t extruder = active_extruder;
  5808. if(code_seen('T')) {
  5809. extruder = code_value_uint8();
  5810. if(extruder >= EXTRUDERS) {
  5811. SERIAL_ECHO_START;
  5812. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5813. break;
  5814. }
  5815. }
  5816. if(code_seen('D')) {
  5817. float diameter = code_value();
  5818. if (diameter == 0.0) {
  5819. // setting any extruder filament size disables volumetric on the assumption that
  5820. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5821. // for all extruders
  5822. cs.volumetric_enabled = false;
  5823. } else {
  5824. cs.filament_size[extruder] = code_value();
  5825. // make sure all extruders have some sane value for the filament size
  5826. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5827. #if EXTRUDERS > 1
  5828. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5829. #if EXTRUDERS > 2
  5830. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5831. #endif
  5832. #endif
  5833. cs.volumetric_enabled = true;
  5834. }
  5835. } else {
  5836. //reserved for setting filament diameter via UFID or filament measuring device
  5837. break;
  5838. }
  5839. calculate_extruder_multipliers();
  5840. }
  5841. break;
  5842. /*!
  5843. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_acceleration">M201: Set max printing acceleration</a>
  5844. For each axis individually.
  5845. ##### Usage
  5846. M201 [ X | Y | Z | E ]
  5847. ##### Parameters
  5848. - `X` - Acceleration for X axis in units/s^2
  5849. - `Y` - Acceleration for Y axis in units/s^2
  5850. - `Z` - Acceleration for Z axis in units/s^2
  5851. - `E` - Acceleration for the active or specified extruder in units/s^2
  5852. */
  5853. case 201:
  5854. for (int8_t i = 0; i < NUM_AXIS; i++)
  5855. {
  5856. if (code_seen(axis_codes[i]))
  5857. {
  5858. unsigned long val = code_value();
  5859. #ifdef TMC2130
  5860. unsigned long val_silent = val;
  5861. if ((i == X_AXIS) || (i == Y_AXIS))
  5862. {
  5863. if (val > NORMAL_MAX_ACCEL_XY)
  5864. val = NORMAL_MAX_ACCEL_XY;
  5865. if (val_silent > SILENT_MAX_ACCEL_XY)
  5866. val_silent = SILENT_MAX_ACCEL_XY;
  5867. }
  5868. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5869. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5870. #else //TMC2130
  5871. max_acceleration_units_per_sq_second[i] = val;
  5872. #endif //TMC2130
  5873. }
  5874. }
  5875. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5876. reset_acceleration_rates();
  5877. break;
  5878. #if 0 // Not used for Sprinter/grbl gen6
  5879. case 202: // M202
  5880. for(int8_t i=0; i < NUM_AXIS; i++) {
  5881. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5882. }
  5883. break;
  5884. #endif
  5885. /*!
  5886. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  5887. For each axis individually.
  5888. ##### Usage
  5889. M203 [ X | Y | Z | E ]
  5890. ##### Parameters
  5891. - `X` - Maximum feedrate for X axis
  5892. - `Y` - Maximum feedrate for Y axis
  5893. - `Z` - Maximum feedrate for Z axis
  5894. - `E` - Maximum feedrate for extruder drives
  5895. */
  5896. case 203: // M203 max feedrate mm/sec
  5897. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5898. {
  5899. if (code_seen(axis_codes[i]))
  5900. {
  5901. float val = code_value();
  5902. #ifdef TMC2130
  5903. float val_silent = val;
  5904. if ((i == X_AXIS) || (i == Y_AXIS))
  5905. {
  5906. if (val > NORMAL_MAX_FEEDRATE_XY)
  5907. val = NORMAL_MAX_FEEDRATE_XY;
  5908. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5909. val_silent = SILENT_MAX_FEEDRATE_XY;
  5910. }
  5911. cs.max_feedrate_normal[i] = val;
  5912. cs.max_feedrate_silent[i] = val_silent;
  5913. #else //TMC2130
  5914. max_feedrate[i] = val;
  5915. #endif //TMC2130
  5916. }
  5917. }
  5918. break;
  5919. /*!
  5920. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  5921. #### Old format:
  5922. ##### Usage
  5923. M204 [ S | T ]
  5924. ##### Parameters
  5925. - `S` - normal moves
  5926. - `T` - filmanent only moves
  5927. #### New format:
  5928. ##### Usage
  5929. M204 [ P | R | T ]
  5930. ##### Parameters
  5931. - `P` - printing moves
  5932. - `R` - filmanent only moves
  5933. - `T` - travel moves (as of now T is ignored)
  5934. */
  5935. case 204:
  5936. {
  5937. if(code_seen('S')) {
  5938. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5939. // and it is also generated by Slic3r to control acceleration per extrusion type
  5940. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5941. cs.acceleration = cs.travel_acceleration = code_value();
  5942. // Interpret the T value as retract acceleration in the old Marlin format.
  5943. if(code_seen('T'))
  5944. cs.retract_acceleration = code_value();
  5945. } else {
  5946. // New acceleration format, compatible with the upstream Marlin.
  5947. if(code_seen('P'))
  5948. cs.acceleration = code_value();
  5949. if(code_seen('R'))
  5950. cs.retract_acceleration = code_value();
  5951. if(code_seen('T'))
  5952. cs.travel_acceleration = code_value();
  5953. }
  5954. }
  5955. break;
  5956. /*!
  5957. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  5958. Set some advanced settings related to movement.
  5959. #### Usage
  5960. M205 [ S | T | B | X | Y | Z | E ]
  5961. #### Parameters
  5962. - `S` - Minimum feedrate for print moves (unit/s)
  5963. - `T` - Minimum feedrate for travel moves (units/s)
  5964. - `B` - Minimum segment time (us)
  5965. - `X` - Maximum X jerk (units/s)
  5966. - `Y` - Maximum Y jerk (units/s)
  5967. - `Z` - Maximum Z jerk (units/s)
  5968. - `E` - Maximum E jerk (units/s)
  5969. */
  5970. case 205:
  5971. {
  5972. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5973. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5974. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5975. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5976. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5977. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5978. if(code_seen('E'))
  5979. {
  5980. float e = code_value();
  5981. #ifndef LA_NOCOMPAT
  5982. e = la10c_jerk(e);
  5983. #endif
  5984. cs.max_jerk[E_AXIS] = e;
  5985. }
  5986. }
  5987. break;
  5988. /*!
  5989. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  5990. #### Usage
  5991. M206 [ X | Y | Z ]
  5992. #### Parameters
  5993. - `X` - X axis offset
  5994. - `Y` - Y axis offset
  5995. - `Z` - Z axis offset
  5996. */
  5997. case 206:
  5998. for(uint8_t i=0; i < 3; i++)
  5999. {
  6000. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6001. }
  6002. break;
  6003. #ifdef FWRETRACT
  6004. /*!
  6005. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6006. #### Usage
  6007. M207 [ S | F | Z ]
  6008. #### Parameters
  6009. - `S` - positive length to retract, in mm
  6010. - `F` - retraction feedrate, in mm/min
  6011. - `Z` - additional zlift/hop
  6012. */
  6013. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6014. {
  6015. if(code_seen('S'))
  6016. {
  6017. cs.retract_length = code_value() ;
  6018. }
  6019. if(code_seen('F'))
  6020. {
  6021. cs.retract_feedrate = code_value()/60 ;
  6022. }
  6023. if(code_seen('Z'))
  6024. {
  6025. cs.retract_zlift = code_value() ;
  6026. }
  6027. }break;
  6028. /*!
  6029. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6030. #### Usage
  6031. M208 [ S | F ]
  6032. #### Parameters
  6033. - `S` - positive length surplus to the M207 Snnn, in mm
  6034. - `F` - feedrate, in mm/sec
  6035. */
  6036. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6037. {
  6038. if(code_seen('S'))
  6039. {
  6040. cs.retract_recover_length = code_value() ;
  6041. }
  6042. if(code_seen('F'))
  6043. {
  6044. cs.retract_recover_feedrate = code_value()/60 ;
  6045. }
  6046. }break;
  6047. /*!
  6048. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6049. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6050. #### Usage
  6051. M209 [ S ]
  6052. #### Parameters
  6053. - `S` - 1=true or 0=false
  6054. */
  6055. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6056. {
  6057. if(code_seen('S'))
  6058. {
  6059. switch(code_value_uint8())
  6060. {
  6061. case 0:
  6062. {
  6063. cs.autoretract_enabled=false;
  6064. retracted[0]=false;
  6065. #if EXTRUDERS > 1
  6066. retracted[1]=false;
  6067. #endif
  6068. #if EXTRUDERS > 2
  6069. retracted[2]=false;
  6070. #endif
  6071. }break;
  6072. case 1:
  6073. {
  6074. cs.autoretract_enabled=true;
  6075. retracted[0]=false;
  6076. #if EXTRUDERS > 1
  6077. retracted[1]=false;
  6078. #endif
  6079. #if EXTRUDERS > 2
  6080. retracted[2]=false;
  6081. #endif
  6082. }break;
  6083. default:
  6084. SERIAL_ECHO_START;
  6085. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6086. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6087. SERIAL_ECHOLNPGM("\"(1)");
  6088. }
  6089. }
  6090. }break;
  6091. #endif // FWRETRACT
  6092. /*!
  6093. ### M214 - Set Arc configuration values (Use M500 to store in eeprom)
  6094. #### Usage
  6095. M214 [P] [S] [N] [R] [F]
  6096. #### Parameters
  6097. - `P` - A float representing the max and default millimeters per arc segment. Must be greater than 0.
  6098. - `S` - A float representing the minimum allowable millimeters per arc segment. Set to 0 to disable
  6099. - `N` - An int representing the number of arcs to draw before correcting the small angle approximation. Set to 0 to disable.
  6100. - `R` - An int representing the minimum number of segments per arcs of any radius,
  6101. except when the results in segment lengths greater than or less than the minimum
  6102. and maximum segment length. Set to 0 to disable.
  6103. - 'F' - An int representing the number of segments per second, unless this results in segment lengths
  6104. greater than or less than the minimum and maximum segment length. Set to 0 to disable.
  6105. */
  6106. case 214: //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  6107. {
  6108. // Extract all possible parameters if they appear
  6109. float p = code_seen('P') ? code_value_float() : cs.mm_per_arc_segment;
  6110. float s = code_seen('S') ? code_value_float() : cs.min_mm_per_arc_segment;
  6111. unsigned char n = code_seen('N') ? code_value() : cs.n_arc_correction;
  6112. unsigned short r = code_seen('R') ? code_value() : cs.min_arc_segments;
  6113. unsigned short f = code_seen('F') ? code_value() : cs.arc_segments_per_sec;
  6114. // Ensure mm_per_arc_segment is greater than 0, and that min_mm_per_arc_segment is sero or greater than or equal to mm_per_arc_segment
  6115. if (p <=0 || s < 0 || p < s)
  6116. {
  6117. // Should we display some error here?
  6118. break;
  6119. }
  6120. cs.mm_per_arc_segment = p;
  6121. cs.min_mm_per_arc_segment = s;
  6122. cs.n_arc_correction = n;
  6123. cs.min_arc_segments = r;
  6124. cs.arc_segments_per_sec = f;
  6125. }break;
  6126. #if EXTRUDERS > 1
  6127. /*!
  6128. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6129. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6130. #### Usage
  6131. M218 [ X | Y ]
  6132. #### Parameters
  6133. - `X` - X offset
  6134. - `Y` - Y offset
  6135. */
  6136. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6137. {
  6138. uint8_t extruder;
  6139. if(setTargetedHotend(218, extruder)){
  6140. break;
  6141. }
  6142. if(code_seen('X'))
  6143. {
  6144. extruder_offset[X_AXIS][extruder] = code_value();
  6145. }
  6146. if(code_seen('Y'))
  6147. {
  6148. extruder_offset[Y_AXIS][extruder] = code_value();
  6149. }
  6150. SERIAL_ECHO_START;
  6151. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6152. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6153. {
  6154. SERIAL_ECHO(" ");
  6155. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6156. SERIAL_ECHO(",");
  6157. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6158. }
  6159. SERIAL_ECHOLN("");
  6160. }break;
  6161. #endif
  6162. /*!
  6163. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6164. #### Usage
  6165. M220 [ B | S | R ]
  6166. #### Parameters
  6167. - `B` - Backup current speed factor
  6168. - `S` - Speed factor override percentage (0..100 or higher)
  6169. - `R` - Restore previous speed factor
  6170. */
  6171. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6172. {
  6173. bool codesWereSeen = false;
  6174. if (code_seen('B')) //backup current speed factor
  6175. {
  6176. saved_feedmultiply_mm = feedmultiply;
  6177. codesWereSeen = true;
  6178. }
  6179. if (code_seen('S'))
  6180. {
  6181. feedmultiply = code_value_short();
  6182. codesWereSeen = true;
  6183. }
  6184. if (code_seen('R')) //restore previous feedmultiply
  6185. {
  6186. feedmultiply = saved_feedmultiply_mm;
  6187. codesWereSeen = true;
  6188. }
  6189. if (!codesWereSeen)
  6190. {
  6191. printf_P(PSTR("%i%%\n"), feedmultiply);
  6192. }
  6193. }
  6194. break;
  6195. /*!
  6196. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6197. #### Usage
  6198. M221 [ S ]
  6199. #### Parameters
  6200. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6201. */
  6202. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6203. {
  6204. if (code_seen('S'))
  6205. {
  6206. extrudemultiply = code_value_short();
  6207. calculate_extruder_multipliers();
  6208. }
  6209. else
  6210. {
  6211. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6212. }
  6213. }
  6214. break;
  6215. /*!
  6216. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6217. Wait until the specified pin reaches the state required
  6218. #### Usage
  6219. M226 [ P | S ]
  6220. #### Parameters
  6221. - `P` - pin number
  6222. - `S` - pin state
  6223. */
  6224. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6225. {
  6226. if(code_seen('P')){
  6227. int pin_number = code_value_short(); // pin number
  6228. int pin_state = -1; // required pin state - default is inverted
  6229. if(code_seen('S')) pin_state = code_value_short(); // required pin state
  6230. if(pin_state >= -1 && pin_state <= 1){
  6231. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  6232. {
  6233. if (((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number))
  6234. {
  6235. pin_number = -1;
  6236. break;
  6237. }
  6238. }
  6239. if (pin_number > -1)
  6240. {
  6241. int target = LOW;
  6242. st_synchronize();
  6243. pinMode(pin_number, INPUT);
  6244. switch(pin_state){
  6245. case 1:
  6246. target = HIGH;
  6247. break;
  6248. case 0:
  6249. target = LOW;
  6250. break;
  6251. case -1:
  6252. target = !digitalRead(pin_number);
  6253. break;
  6254. }
  6255. while(digitalRead(pin_number) != target){
  6256. manage_heater();
  6257. manage_inactivity();
  6258. lcd_update(0);
  6259. }
  6260. }
  6261. }
  6262. }
  6263. }
  6264. break;
  6265. #if NUM_SERVOS > 0
  6266. /*!
  6267. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6268. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6269. #### Usage
  6270. M280 [ P | S ]
  6271. #### Parameters
  6272. - `P` - Servo index (id)
  6273. - `S` - Target position
  6274. */
  6275. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6276. {
  6277. int servo_index = -1;
  6278. int servo_position = 0;
  6279. if (code_seen('P'))
  6280. servo_index = code_value();
  6281. if (code_seen('S')) {
  6282. servo_position = code_value();
  6283. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6284. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6285. servos[servo_index].attach(0);
  6286. #endif
  6287. servos[servo_index].write(servo_position);
  6288. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6289. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6290. servos[servo_index].detach();
  6291. #endif
  6292. }
  6293. else {
  6294. SERIAL_ECHO_START;
  6295. SERIAL_ECHO("Servo ");
  6296. SERIAL_ECHO(servo_index);
  6297. SERIAL_ECHOLN(" out of range");
  6298. }
  6299. }
  6300. else if (servo_index >= 0) {
  6301. SERIAL_PROTOCOL(MSG_OK);
  6302. SERIAL_PROTOCOL(" Servo ");
  6303. SERIAL_PROTOCOL(servo_index);
  6304. SERIAL_PROTOCOL(": ");
  6305. SERIAL_PROTOCOLLN(servos[servo_index].read());
  6306. }
  6307. }
  6308. break;
  6309. #endif // NUM_SERVOS > 0
  6310. #if (LARGE_FLASH == true && BEEPER > 0 )
  6311. /*!
  6312. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6313. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6314. #### Usage
  6315. M300 [ S | P ]
  6316. #### Parameters
  6317. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6318. - `P` - duration in milliseconds
  6319. */
  6320. case 300: // M300
  6321. {
  6322. uint16_t beepS = code_seen('S') ? code_value() : 0;
  6323. uint16_t beepP = code_seen('P') ? code_value() : 1000;
  6324. #if BEEPER > 0
  6325. if (beepP > 0)
  6326. Sound_MakeCustom(beepP,beepS,false);
  6327. #endif
  6328. }
  6329. break;
  6330. #endif // M300
  6331. #ifdef PIDTEMP
  6332. /*!
  6333. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6334. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6335. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6336. #### Usage
  6337. M301 [ P | I | D ]
  6338. #### Parameters
  6339. - `P` - proportional (Kp)
  6340. - `I` - integral (Ki)
  6341. - `D` - derivative (Kd)
  6342. */
  6343. case 301:
  6344. {
  6345. if(code_seen('P')) cs.Kp = code_value();
  6346. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6347. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6348. updatePID();
  6349. SERIAL_PROTOCOLRPGM(MSG_OK);
  6350. SERIAL_PROTOCOLPGM(" p:");
  6351. SERIAL_PROTOCOL(cs.Kp);
  6352. SERIAL_PROTOCOLPGM(" i:");
  6353. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6354. SERIAL_PROTOCOLPGM(" d:");
  6355. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6356. SERIAL_PROTOCOLLN();
  6357. }
  6358. break;
  6359. #endif //PIDTEMP
  6360. #ifdef PIDTEMPBED
  6361. /*!
  6362. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6363. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6364. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6365. #### Usage
  6366. M304 [ P | I | D ]
  6367. #### Parameters
  6368. - `P` - proportional (Kp)
  6369. - `I` - integral (Ki)
  6370. - `D` - derivative (Kd)
  6371. */
  6372. case 304:
  6373. {
  6374. if(code_seen('P')) cs.bedKp = code_value();
  6375. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6376. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6377. updatePID();
  6378. SERIAL_PROTOCOLRPGM(MSG_OK);
  6379. SERIAL_PROTOCOLPGM(" p:");
  6380. SERIAL_PROTOCOL(cs.bedKp);
  6381. SERIAL_PROTOCOLPGM(" i:");
  6382. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6383. SERIAL_PROTOCOLPGM(" d:");
  6384. SERIAL_PROTOCOLLN(unscalePID_d(cs.bedKd));
  6385. }
  6386. break;
  6387. #endif //PIDTEMP
  6388. /*!
  6389. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6390. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6391. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6392. */
  6393. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6394. {
  6395. #ifdef CHDK
  6396. SET_OUTPUT(CHDK);
  6397. WRITE(CHDK, HIGH);
  6398. chdkHigh = _millis();
  6399. chdkActive = true;
  6400. #else
  6401. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6402. const uint8_t NUM_PULSES=16;
  6403. const float PULSE_LENGTH=0.01524;
  6404. for(int i=0; i < NUM_PULSES; i++) {
  6405. WRITE(PHOTOGRAPH_PIN, HIGH);
  6406. _delay_ms(PULSE_LENGTH);
  6407. WRITE(PHOTOGRAPH_PIN, LOW);
  6408. _delay_ms(PULSE_LENGTH);
  6409. }
  6410. _delay(7.33);
  6411. for(int i=0; i < NUM_PULSES; i++) {
  6412. WRITE(PHOTOGRAPH_PIN, HIGH);
  6413. _delay_ms(PULSE_LENGTH);
  6414. WRITE(PHOTOGRAPH_PIN, LOW);
  6415. _delay_ms(PULSE_LENGTH);
  6416. }
  6417. #endif
  6418. #endif //chdk end if
  6419. }
  6420. break;
  6421. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6422. /*!
  6423. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6424. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6425. #### Usage
  6426. M302 [ S ]
  6427. #### Parameters
  6428. - `S` - Cold extrude minimum temperature
  6429. */
  6430. case 302:
  6431. {
  6432. int temp = 0;
  6433. if (code_seen('S')) temp=code_value_short();
  6434. set_extrude_min_temp(temp);
  6435. }
  6436. break;
  6437. #endif
  6438. /*!
  6439. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6440. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6441. #### Usage
  6442. M303 [ E | S | C ]
  6443. #### Parameters
  6444. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6445. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6446. - `C` - Cycles, default `5`
  6447. */
  6448. case 303:
  6449. {
  6450. float temp = 150.0;
  6451. int e = 0;
  6452. int c = 5;
  6453. if (code_seen('E')) e = code_value_short();
  6454. if (e < 0)
  6455. temp = 70;
  6456. if (code_seen('S')) temp = code_value();
  6457. if (code_seen('C')) c = code_value_short();
  6458. PID_autotune(temp, e, c);
  6459. }
  6460. break;
  6461. #ifdef TEMP_MODEL
  6462. /*!
  6463. ### M310 - Temperature model settings <a href="https://reprap.org/wiki/G-code#M310:_Temperature_model_settings">M310: Temperature model settings</a>
  6464. #### Usage
  6465. M310 ; report values
  6466. M310 [ A ] [ F ] ; autotune
  6467. M310 [ S ] ; set 0=disable 1=enable
  6468. M310 [ I ] [ R ] ; set resistance at index
  6469. M310 [ P | C ] ; set power, capacitance
  6470. M310 [ B | E | W ] ; set beeper, warning and error threshold
  6471. M310 [ T ] ; set ambient temperature correction
  6472. #### Parameters
  6473. - `I` - resistance index position (0-15)
  6474. - `R` - resistance value at index (K/W; requires `I`)
  6475. - `P` - power (W)
  6476. - `C` - capacitance (J/K)
  6477. - `S` - set 0=disable 1=enable
  6478. - `B` - beep and warn when reaching warning threshold 0=disable 1=enable (default: 1)
  6479. - `E` - error threshold (K/s; default in variant)
  6480. - `W` - warning threshold (K/s; default in variant)
  6481. - `T` - ambient temperature correction (K; default in variant)
  6482. - `A` - autotune C+R values
  6483. - `F` - force model self-test state (0=off 1=on) during autotune using current values
  6484. */
  6485. case 310:
  6486. {
  6487. // parse all parameters
  6488. float P = NAN, C = NAN, R = NAN, E = NAN, W = NAN, T = NAN;
  6489. int8_t I = -1, S = -1, B = -1, A = -1, F = -1;
  6490. if(code_seen('C')) C = code_value();
  6491. if(code_seen('P')) P = code_value();
  6492. if(code_seen('I')) I = code_value_short();
  6493. if(code_seen('R')) R = code_value();
  6494. if(code_seen('S')) S = code_value_short();
  6495. if(code_seen('B')) B = code_value_short();
  6496. if(code_seen('E')) E = code_value();
  6497. if(code_seen('W')) W = code_value();
  6498. if(code_seen('T')) T = code_value();
  6499. if(code_seen('A')) A = code_value_short();
  6500. if(code_seen('F')) F = code_value_short();
  6501. // report values if nothing has been requested
  6502. if(isnan(C) && isnan(P) && isnan(R) && isnan(E) && isnan(W) && isnan(T) && I < 0 && S < 0 && B < 0 && A < 0) {
  6503. temp_model_report_settings();
  6504. break;
  6505. }
  6506. // update all parameters
  6507. if(B >= 0) temp_model_set_warn_beep(B);
  6508. if(!isnan(C) || !isnan(P) || !isnan(T) || !isnan(W) || !isnan(E)) temp_model_set_params(C, P, T, W, E);
  6509. if(I >= 0 && !isnan(R)) temp_model_set_resistance(I, R);
  6510. // enable the model last, if requested
  6511. if(S >= 0) temp_model_set_enabled(S);
  6512. // run autotune
  6513. if(A >= 0) temp_model_autotune(A, F > 0);
  6514. }
  6515. break;
  6516. #endif
  6517. /*!
  6518. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6519. Finishes all current moves and and thus clears the buffer.
  6520. Equivalent to `G4` with no parameters.
  6521. */
  6522. case 400:
  6523. {
  6524. st_synchronize();
  6525. }
  6526. break;
  6527. /*!
  6528. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6529. Currently three different materials are needed (default, flex and PVA).
  6530. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6531. #### Usage
  6532. M403 [ E | F ]
  6533. #### Parameters
  6534. - `E` - Extruder number. 0-indexed.
  6535. - `F` - Filament type
  6536. */
  6537. case 403:
  6538. {
  6539. // currently three different materials are needed (default, flex and PVA)
  6540. // add storing this information for different load/unload profiles etc. in the future
  6541. if (MMU2::mmu2.Enabled())
  6542. {
  6543. uint8_t extruder = 255;
  6544. uint8_t filament = FILAMENT_UNDEFINED;
  6545. if(code_seen('E')) extruder = code_value_uint8();
  6546. if(code_seen('F')) filament = code_value_uint8();
  6547. MMU2::mmu2.set_filament_type(extruder, filament);
  6548. }
  6549. }
  6550. break;
  6551. /*!
  6552. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6553. Save current parameters to EEPROM.
  6554. */
  6555. case 500:
  6556. {
  6557. Config_StoreSettings();
  6558. }
  6559. break;
  6560. /*!
  6561. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6562. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6563. */
  6564. case 501:
  6565. {
  6566. Config_RetrieveSettings();
  6567. }
  6568. break;
  6569. /*!
  6570. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6571. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6572. */
  6573. case 502:
  6574. {
  6575. Config_ResetDefault();
  6576. }
  6577. break;
  6578. /*!
  6579. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6580. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6581. */
  6582. case 503:
  6583. {
  6584. Config_PrintSettings();
  6585. }
  6586. break;
  6587. /*!
  6588. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6589. Resets the language to English.
  6590. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6591. */
  6592. case 509:
  6593. {
  6594. lang_reset();
  6595. SERIAL_ECHO_START;
  6596. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6597. }
  6598. break;
  6599. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6600. /*!
  6601. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6602. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6603. #### Usage
  6604. M540 [ S ]
  6605. #### Parameters
  6606. - `S` - disabled=0, enabled=1
  6607. */
  6608. case 540:
  6609. {
  6610. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6611. }
  6612. break;
  6613. #endif
  6614. #ifdef ENABLE_AUTO_BED_LEVELING
  6615. /*!
  6616. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6617. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6618. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6619. #### Usage
  6620. M851 [ Z ]
  6621. #### Parameters
  6622. - `Z` - Z offset probe to nozzle.
  6623. */
  6624. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6625. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6626. {
  6627. float value;
  6628. if (code_seen('Z'))
  6629. {
  6630. value = code_value();
  6631. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6632. {
  6633. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6634. SERIAL_ECHO_START;
  6635. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6636. SERIAL_PROTOCOLLN();
  6637. }
  6638. else
  6639. {
  6640. SERIAL_ECHO_START;
  6641. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6642. SERIAL_ECHORPGM(MSG_Z_MIN);
  6643. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6644. SERIAL_ECHORPGM(MSG_Z_MAX);
  6645. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6646. SERIAL_PROTOCOLLN();
  6647. }
  6648. }
  6649. else
  6650. {
  6651. SERIAL_ECHO_START;
  6652. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6653. SERIAL_ECHO(-cs.zprobe_zoffset);
  6654. SERIAL_PROTOCOLLN();
  6655. }
  6656. break;
  6657. }
  6658. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6659. #endif // ENABLE_AUTO_BED_LEVELING
  6660. /*!
  6661. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6662. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6663. If P is not specified nothing happens.
  6664. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6665. #### Usage
  6666. M552 [ P<IP_address> ]
  6667. #### Parameters
  6668. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  6669. */
  6670. case 552:
  6671. {
  6672. if (code_seen('P'))
  6673. {
  6674. uint8_t valCnt = 0;
  6675. IP_address = 0;
  6676. do
  6677. {
  6678. *strchr_pointer = '*';
  6679. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  6680. valCnt++;
  6681. } while ((valCnt < 4) && code_seen('.'));
  6682. if (valCnt != 4)
  6683. IP_address = 0;
  6684. }
  6685. } break;
  6686. #ifdef FILAMENTCHANGEENABLE
  6687. /*!
  6688. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6689. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6690. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6691. #### Usage
  6692. M600 [ X | Y | Z | E | L | AUTO ]
  6693. - `X` - X position, default 211
  6694. - `Y` - Y position, default 0
  6695. - `Z` - relative lift Z, default MIN_Z_FOR_SWAP.
  6696. - `E` - initial retract, default -2
  6697. - `L` - later retract distance for removal, default -80
  6698. - `AUTO` - Automatically (only with MMU)
  6699. */
  6700. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6701. {
  6702. st_synchronize();
  6703. float x_position = current_position[X_AXIS];
  6704. float y_position = current_position[Y_AXIS];
  6705. float z_shift = MIN_Z_FOR_SWAP;
  6706. float e_shift_init = 0;
  6707. float e_shift_late = 0;
  6708. bool automatic = false;
  6709. //Retract extruder
  6710. if(code_seen('E'))
  6711. {
  6712. e_shift_init = code_value();
  6713. }
  6714. else
  6715. {
  6716. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6717. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6718. #endif
  6719. }
  6720. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6721. if (code_seen('L'))
  6722. {
  6723. e_shift_late = code_value();
  6724. }
  6725. else
  6726. {
  6727. #ifdef FILAMENTCHANGE_FINALRETRACT
  6728. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6729. #endif
  6730. }
  6731. // Z lift. For safety only allow positive values
  6732. if (code_seen('Z')) z_shift = fabs(code_value());
  6733. //Move XY to side
  6734. if(code_seen('X'))
  6735. {
  6736. x_position = code_value();
  6737. }
  6738. else
  6739. {
  6740. #ifdef FILAMENTCHANGE_XPOS
  6741. x_position = FILAMENTCHANGE_XPOS;
  6742. #endif
  6743. }
  6744. if(code_seen('Y'))
  6745. {
  6746. y_position = code_value();
  6747. }
  6748. else
  6749. {
  6750. #ifdef FILAMENTCHANGE_YPOS
  6751. y_position = FILAMENTCHANGE_YPOS ;
  6752. #endif
  6753. }
  6754. if (MMU2::mmu2.Enabled() && code_seen_P(PSTR("AUTO")))
  6755. automatic = true;
  6756. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6757. }
  6758. break;
  6759. #endif //FILAMENTCHANGEENABLE
  6760. /*!
  6761. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6762. */
  6763. /*!
  6764. ### M125 - Pause print (TODO: not implemented)
  6765. */
  6766. /*!
  6767. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6768. */
  6769. case 25:
  6770. case 601:
  6771. {
  6772. if (!isPrintPaused) {
  6773. st_synchronize();
  6774. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  6775. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6776. lcd_pause_print();
  6777. }
  6778. }
  6779. break;
  6780. /*!
  6781. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6782. */
  6783. case 602:
  6784. {
  6785. if (isPrintPaused) lcd_resume_print();
  6786. }
  6787. break;
  6788. /*!
  6789. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6790. */
  6791. case 603: {
  6792. print_stop();
  6793. }
  6794. break;
  6795. #ifdef PINDA_THERMISTOR
  6796. /*!
  6797. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6798. Wait for PINDA thermistor to reach target temperature
  6799. #### Usage
  6800. M860 [ S ]
  6801. #### Parameters
  6802. - `S` - Target temperature
  6803. */
  6804. case 860:
  6805. {
  6806. int set_target_pinda = 0;
  6807. if (code_seen('S')) {
  6808. set_target_pinda = code_value_short();
  6809. }
  6810. else {
  6811. break;
  6812. }
  6813. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6814. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6815. SERIAL_PROTOCOLLN(set_target_pinda);
  6816. codenum = _millis();
  6817. cancel_heatup = false;
  6818. bool is_pinda_cooling = false;
  6819. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6820. is_pinda_cooling = true;
  6821. }
  6822. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6823. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6824. {
  6825. SERIAL_PROTOCOLPGM("P:");
  6826. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6827. SERIAL_PROTOCOL('/');
  6828. SERIAL_PROTOCOLLN(set_target_pinda);
  6829. codenum = _millis();
  6830. }
  6831. manage_heater();
  6832. manage_inactivity();
  6833. lcd_update(0);
  6834. }
  6835. LCD_MESSAGERPGM(MSG_OK);
  6836. break;
  6837. }
  6838. /*!
  6839. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6840. Set compensation ustep value `S` for compensation table index `I`.
  6841. #### Usage
  6842. M861 [ ? | ! | Z | S | I ]
  6843. #### Parameters
  6844. - `?` - Print current EEPROM offset values
  6845. - `!` - Set factory default values
  6846. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6847. - `S` - Microsteps
  6848. - `I` - Table index
  6849. */
  6850. case 861: {
  6851. const char * const _header = PSTR("index, temp, ustep, um");
  6852. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6853. int16_t usteps = 0;
  6854. SERIAL_PROTOCOLPGM("PINDA cal status: ");
  6855. SERIAL_PROTOCOLLN(calibration_status_pinda());
  6856. SERIAL_PROTOCOLLNRPGM(_header);
  6857. for (uint8_t i = 0; i < 6; i++)
  6858. {
  6859. if(i > 0) {
  6860. usteps = eeprom_read_word((uint16_t*) EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  6861. }
  6862. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6863. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6864. SERIAL_PROTOCOLPGM(", ");
  6865. SERIAL_PROTOCOL(35 + (i * 5));
  6866. SERIAL_PROTOCOLPGM(", ");
  6867. SERIAL_PROTOCOL(usteps);
  6868. SERIAL_PROTOCOLPGM(", ");
  6869. SERIAL_PROTOCOLLN(mm * 1000);
  6870. }
  6871. }
  6872. else if (code_seen('!')) { // ! - Set factory default values
  6873. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6874. int16_t z_shift = 8; //40C - 20um - 8usteps
  6875. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT, z_shift);
  6876. z_shift = 24; //45C - 60um - 24usteps
  6877. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 1, z_shift);
  6878. z_shift = 48; //50C - 120um - 48usteps
  6879. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 2, z_shift);
  6880. z_shift = 80; //55C - 200um - 80usteps
  6881. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 3, z_shift);
  6882. z_shift = 120; //60C - 300um - 120usteps
  6883. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 4, z_shift);
  6884. SERIAL_PROTOCOLLNPGM("factory restored");
  6885. }
  6886. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6887. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6888. int16_t z_shift = 0;
  6889. for (uint8_t i = 0; i < 5; i++) {
  6890. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  6891. }
  6892. SERIAL_PROTOCOLLNPGM("zerorized");
  6893. }
  6894. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6895. int16_t usteps = code_value_short();
  6896. if (code_seen('I')) {
  6897. uint8_t index = code_value_uint8();
  6898. if (index < 5) {
  6899. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + index, usteps);
  6900. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6901. SERIAL_PROTOCOLLNRPGM(_header);
  6902. for (uint8_t i = 0; i < 6; i++)
  6903. {
  6904. usteps = 0;
  6905. if (i > 0) {
  6906. usteps = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  6907. }
  6908. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6909. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6910. SERIAL_PROTOCOLPGM(", ");
  6911. SERIAL_PROTOCOL(35 + (i * 5));
  6912. SERIAL_PROTOCOLPGM(", ");
  6913. SERIAL_PROTOCOL(usteps);
  6914. SERIAL_PROTOCOLPGM(", ");
  6915. SERIAL_PROTOCOLLN(mm * 1000);
  6916. }
  6917. }
  6918. }
  6919. }
  6920. else {
  6921. SERIAL_PROTOCOLLNPGM("no valid command");
  6922. }
  6923. } break;
  6924. #endif //PINDA_THERMISTOR
  6925. /*!
  6926. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  6927. Checks the parameters of the printer and gcode and performs compatibility check
  6928. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  6929. - M862.2 { P<model_code> | Q }
  6930. - M862.3 { P"<model_name>" | Q }
  6931. - M862.4 { P<fw_version> | Q }
  6932. - M862.5 { P<gcode_level> | Q }
  6933. When run with P<> argument, the check is performed against the input value.
  6934. When run with Q argument, the current value is shown.
  6935. M862.3 accepts text identifiers of printer types too.
  6936. The syntax of M862.3 is (note the quotes around the type):
  6937. M862.3 P "MK3S"
  6938. Accepted printer type identifiers and their numeric counterparts:
  6939. - MK1 (100)
  6940. - MK2 (200)
  6941. - MK2MM (201)
  6942. - MK2S (202)
  6943. - MK2SMM (203)
  6944. - MK2.5 (250)
  6945. - MK2.5MMU2 (20250)
  6946. - MK2.5S (252)
  6947. - MK2.5SMMU2S (20252)
  6948. - MK3 (300)
  6949. - MK3MMU2 (20300)
  6950. - MK3S (302)
  6951. - MK3SMMU2S (20302)
  6952. */
  6953. case 862: // M862: print checking
  6954. float nDummy;
  6955. uint8_t nCommand;
  6956. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6957. switch((ClPrintChecking)nCommand)
  6958. {
  6959. case ClPrintChecking::_Nozzle: // ~ .1
  6960. uint16_t nDiameter;
  6961. if(code_seen('P'))
  6962. {
  6963. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6964. nozzle_diameter_check(nDiameter);
  6965. }
  6966. else if(code_seen('Q'))
  6967. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6968. break;
  6969. case ClPrintChecking::_Model: { // ~ .2
  6970. uint16_t type = nPrinterType(MMU2::mmu2.Enabled());
  6971. if(code_seen('P'))
  6972. {
  6973. uint16_t nPrinterModel;
  6974. nPrinterModel=(uint16_t)code_value_long();
  6975. // based on current state of MMU (active/stopped/connecting) perform a runtime update of the printer type
  6976. printer_model_check(nPrinterModel, type);
  6977. }
  6978. else if(code_seen('Q'))
  6979. SERIAL_PROTOCOLLN(type);
  6980. } break;
  6981. case ClPrintChecking::_Smodel: { // ~ .3
  6982. const char *type = sPrinterType(MMU2::mmu2.Enabled());
  6983. if(code_seen('P'))
  6984. {
  6985. printer_smodel_check(strchr_pointer, type);
  6986. }
  6987. else if(code_seen('Q'))
  6988. SERIAL_PROTOCOLLNRPGM(type);
  6989. } break;
  6990. case ClPrintChecking::_Version: // ~ .4
  6991. if(code_seen('P'))
  6992. fw_version_check(++strchr_pointer);
  6993. else if(code_seen('Q'))
  6994. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  6995. break;
  6996. case ClPrintChecking::_Gcode: // ~ .5
  6997. if(code_seen('P'))
  6998. {
  6999. uint16_t nGcodeLevel;
  7000. nGcodeLevel=(uint16_t)code_value_long();
  7001. gcode_level_check(nGcodeLevel);
  7002. }
  7003. else if(code_seen('Q'))
  7004. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7005. break;
  7006. }
  7007. break;
  7008. #ifdef LIN_ADVANCE
  7009. /*!
  7010. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7011. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7012. #### Usage
  7013. M900 [ K | R | W | H | D]
  7014. #### Parameters
  7015. - `K` - Advance K factor
  7016. - `R` - Set ratio directly (overrides WH/D)
  7017. - `W` - Width
  7018. - `H` - Height
  7019. - `D` - Diameter Set ratio from WH/D
  7020. */
  7021. case 900:
  7022. gcode_M900();
  7023. break;
  7024. #endif
  7025. /*!
  7026. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7027. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7028. M907 has no effect when the experimental Extruder motor current scaling mode is active (that applies to farm printing as well)
  7029. #### Usage
  7030. M907 [ X | Y | Z | E | B | S ]
  7031. #### Parameters
  7032. - `X` - X motor driver
  7033. - `Y` - Y motor driver
  7034. - `Z` - Z motor driver
  7035. - `E` - Extruder motor driver
  7036. - `B` - Second Extruder motor driver
  7037. - `S` - All motors
  7038. */
  7039. case 907:
  7040. {
  7041. #ifdef TMC2130
  7042. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7043. for (uint_least8_t i = 0; i < NUM_AXIS; i++){
  7044. if(code_seen(axis_codes[i])){
  7045. if( i == E_AXIS && FarmOrUserECool() ){
  7046. SERIAL_ECHORPGM(eMotorCurrentScalingEnabled);
  7047. SERIAL_ECHOLNPGM(", M907 E ignored");
  7048. continue;
  7049. }
  7050. long cur_mA = code_value_long();
  7051. uint8_t val = tmc2130_cur2val(cur_mA);
  7052. tmc2130_set_current_h(i, val);
  7053. tmc2130_set_current_r(i, val);
  7054. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7055. }
  7056. }
  7057. #else //TMC2130
  7058. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7059. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7060. if(code_seen('B')) st_current_set(4,code_value());
  7061. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7062. #endif
  7063. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7064. if(code_seen('X')) st_current_set(0, code_value());
  7065. #endif
  7066. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7067. if(code_seen('Z')) st_current_set(1, code_value());
  7068. #endif
  7069. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7070. if(code_seen('E')) st_current_set(2, code_value());
  7071. #endif
  7072. #endif //TMC2130
  7073. }
  7074. break;
  7075. /*!
  7076. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7077. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7078. #### Usage
  7079. M908 [ P | S ]
  7080. #### Parameters
  7081. - `P` - channel
  7082. - `S` - current
  7083. */
  7084. case 908:
  7085. {
  7086. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7087. uint8_t channel,current;
  7088. if(code_seen('P')) channel=code_value();
  7089. if(code_seen('S')) current=code_value();
  7090. digitalPotWrite(channel, current);
  7091. #endif
  7092. }
  7093. break;
  7094. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7095. /*!
  7096. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7097. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7098. */
  7099. case 910:
  7100. {
  7101. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7102. }
  7103. break;
  7104. /*!
  7105. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7106. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7107. #### Usage
  7108. M911 [ X | Y | Z | E ]
  7109. #### Parameters
  7110. - `X` - X stepper driver holding current value
  7111. - `Y` - Y stepper driver holding current value
  7112. - `Z` - Z stepper driver holding current value
  7113. - `E` - Extruder stepper driver holding current value
  7114. */
  7115. case 911:
  7116. {
  7117. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7118. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7119. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7120. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7121. }
  7122. break;
  7123. /*!
  7124. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7125. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7126. #### Usage
  7127. M912 [ X | Y | Z | E ]
  7128. #### Parameters
  7129. - `X` - X stepper driver running current value
  7130. - `Y` - Y stepper driver running current value
  7131. - `Z` - Z stepper driver running current value
  7132. - `E` - Extruder stepper driver running current value
  7133. */
  7134. case 912:
  7135. {
  7136. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7137. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7138. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7139. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7140. }
  7141. break;
  7142. /*!
  7143. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7144. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7145. Shows TMC2130 currents.
  7146. */
  7147. case 913:
  7148. {
  7149. tmc2130_print_currents();
  7150. }
  7151. break;
  7152. /*!
  7153. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7154. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7155. */
  7156. case 914:
  7157. {
  7158. tmc2130_mode = TMC2130_MODE_NORMAL;
  7159. update_mode_profile();
  7160. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7161. }
  7162. break;
  7163. /*!
  7164. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7165. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7166. */
  7167. case 915:
  7168. {
  7169. tmc2130_mode = TMC2130_MODE_SILENT;
  7170. update_mode_profile();
  7171. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7172. }
  7173. break;
  7174. /*!
  7175. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7176. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7177. #### Usage
  7178. M916 [ X | Y | Z | E ]
  7179. #### Parameters
  7180. - `X` - X stepper driver stallguard sensitivity threshold value
  7181. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7182. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7183. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7184. */
  7185. case 916:
  7186. {
  7187. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7188. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7189. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7190. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7191. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7192. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7193. }
  7194. break;
  7195. /*!
  7196. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7197. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7198. #### Usage
  7199. M917 [ X | Y | Z | E ]
  7200. #### Parameters
  7201. - `X` - X stepper driver PWM amplitude offset value
  7202. - `Y` - Y stepper driver PWM amplitude offset value
  7203. - `Z` - Z stepper driver PWM amplitude offset value
  7204. - `E` - Extruder stepper driver PWM amplitude offset value
  7205. */
  7206. case 917:
  7207. {
  7208. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7209. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7210. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7211. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7212. }
  7213. break;
  7214. /*!
  7215. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7216. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7217. #### Usage
  7218. M918 [ X | Y | Z | E ]
  7219. #### Parameters
  7220. - `X` - X stepper driver PWM amplitude gradient value
  7221. - `Y` - Y stepper driver PWM amplitude gradient value
  7222. - `Z` - Z stepper driver PWM amplitude gradient value
  7223. - `E` - Extruder stepper driver PWM amplitude gradient value
  7224. */
  7225. case 918:
  7226. {
  7227. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7228. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7229. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7230. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7231. }
  7232. break;
  7233. #endif //TMC2130_SERVICE_CODES_M910_M918
  7234. /*!
  7235. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7236. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7237. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7238. #### Usage
  7239. M350 [ X | Y | Z | E | B | S ]
  7240. #### Parameters
  7241. - `X` - X new resolution
  7242. - `Y` - Y new resolution
  7243. - `Z` - Z new resolution
  7244. - `E` - E new resolution
  7245. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7246. - `B` - Second extruder new resolution
  7247. - `S` - All axes new resolution
  7248. */
  7249. case 350:
  7250. {
  7251. #ifdef TMC2130
  7252. for (uint_least8_t i=0; i<NUM_AXIS; i++)
  7253. {
  7254. if(code_seen(axis_codes[i]))
  7255. {
  7256. uint16_t res_new = code_value();
  7257. #ifdef ALLOW_ALL_MRES
  7258. bool res_valid = res_new > 0 && res_new <= 256 && !(res_new & (res_new - 1)); // must be a power of two
  7259. #else
  7260. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7261. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7262. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7263. #endif
  7264. if (res_valid)
  7265. {
  7266. st_synchronize();
  7267. uint16_t res = tmc2130_get_res(i);
  7268. tmc2130_set_res(i, res_new);
  7269. cs.axis_ustep_resolution[i] = res_new;
  7270. if (res_new > res)
  7271. {
  7272. uint16_t fac = (res_new / res);
  7273. cs.axis_steps_per_unit[i] *= fac;
  7274. position[i] *= fac;
  7275. }
  7276. else
  7277. {
  7278. uint16_t fac = (res / res_new);
  7279. cs.axis_steps_per_unit[i] /= fac;
  7280. position[i] /= fac;
  7281. }
  7282. #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  7283. if (i == E_AXIS)
  7284. fsensor.init();
  7285. #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  7286. }
  7287. }
  7288. }
  7289. reset_acceleration_rates();
  7290. #else //TMC2130
  7291. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7292. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7293. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7294. if(code_seen('B')) microstep_mode(4,code_value());
  7295. microstep_readings();
  7296. #endif
  7297. #endif //TMC2130
  7298. }
  7299. break;
  7300. /*!
  7301. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7302. Toggle MS1 MS2 pins directly.
  7303. #### Usage
  7304. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7305. #### Parameters
  7306. - `X` - Update X axis
  7307. - `Y` - Update Y axis
  7308. - `Z` - Update Z axis
  7309. - `E` - Update E axis
  7310. - `S` - which MSx pin to toggle
  7311. - `B` - new pin value
  7312. */
  7313. case 351:
  7314. {
  7315. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7316. if(code_seen('S')) switch((int)code_value())
  7317. {
  7318. case 1:
  7319. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7320. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7321. break;
  7322. case 2:
  7323. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7324. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7325. break;
  7326. }
  7327. microstep_readings();
  7328. #endif
  7329. }
  7330. break;
  7331. /*!
  7332. ### M701 - Load filament to extruder <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7333. Load filament into the active extruder.
  7334. #### Usage
  7335. M701 [ P | T | L | Z ]
  7336. #### Parameters
  7337. - `P` - n index of MMU slot (zero based, so 0-4 like T0 and T4)
  7338. - `T` - Alias of `P`. Used for compatibility with Marlin
  7339. - `L` - Extrude distance for insertion (positive value)(manual reload)
  7340. - `Z` - Move the Z axis by this distance. Default value MIN_Z_FOR_LOAD
  7341. */
  7342. case 701:
  7343. {
  7344. uint8_t mmuSlotIndex = 0xffU;
  7345. float fastLoadLength = FILAMENTCHANGE_FIRSTFEED; // Only used without MMU
  7346. float z_target = MIN_Z_FOR_LOAD;
  7347. if( MMU2::mmu2.Enabled() )
  7348. {
  7349. if( code_seen('P') || code_seen('T') ) {
  7350. mmuSlotIndex = code_value_uint8();
  7351. }
  7352. }
  7353. if (code_seen('L')) fastLoadLength = code_value();
  7354. // Z lift. For safety only allow positive values
  7355. if (code_seen('Z')) z_target = fabs(code_value());
  7356. // Raise the Z axis
  7357. float delta = raise_z(z_target);
  7358. // Load filament
  7359. gcode_M701(fastLoadLength, mmuSlotIndex);
  7360. // Restore Z axis
  7361. raise_z(-delta);
  7362. }
  7363. break;
  7364. /*!
  7365. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7366. #### Usage
  7367. M702 [ U | Z ]
  7368. #### Parameters
  7369. - `U` - Retract distance for removal (manual reload). Default value is 0.
  7370. - `Z` - Move the Z axis by this distance. Default value MIN_Z_FOR_UNLOAD.
  7371. */
  7372. case 702:
  7373. {
  7374. float z_target = MIN_Z_FOR_UNLOAD;
  7375. float unloadLength = FILAMENTCHANGE_FINALRETRACT;
  7376. if (code_seen('U')) unloadLength = code_value();
  7377. // For safety only allow positive values
  7378. if (code_seen('Z')) z_target = fabs(code_value());
  7379. // Raise the Z axis
  7380. float delta = raise_z(z_target);
  7381. // Unload filament
  7382. if (MMU2::mmu2.Enabled()) MMU2::mmu2.unload();
  7383. else unload_filament(unloadLength);
  7384. // Restore Z axis
  7385. raise_z(-delta);
  7386. }
  7387. break;
  7388. /*!
  7389. ### M704 - Load to MMU <a href="https://reprap.org/wiki/G-code#M704:_Load_to_MMU">M704: Load to MMU</a>
  7390. #### Usage
  7391. M704 [ P ]
  7392. #### Parameters
  7393. - `P` - n index of slot (zero based, so 0-4 like T0 and T4)
  7394. */
  7395. case 704:
  7396. {
  7397. gcodes_M704_M705_M706(704);
  7398. }
  7399. break;
  7400. /*!
  7401. ### M705 - Eject filament <a href="https://reprap.org/wiki/G-code#M705:_Eject_filament">M705: Eject filament</a>
  7402. #### Usage
  7403. M705 [ P ]
  7404. #### Parameters
  7405. - `P` - n index of slot (zero based, so 0-4 like T0 and T4)
  7406. */
  7407. case 705:
  7408. {
  7409. gcodes_M704_M705_M706(705);
  7410. }
  7411. break;
  7412. /*!
  7413. ### M706 - Cut filament <a href="https://reprap.org/wiki/G-code#M706:_Cut_filament">M706: Cut filament</a>
  7414. #### Usage
  7415. M706 [ P ]
  7416. #### Parameters
  7417. - `P` - n index of slot (zero based, so 0-4 like T0 and T4)
  7418. */
  7419. case 706:
  7420. {
  7421. gcodes_M704_M705_M706(706);
  7422. }
  7423. break;
  7424. /*!
  7425. ### M707 - Read from MMU register <a href="https://reprap.org/wiki/G-code#M707:_Read_from_MMU_register">M707: Read from MMU register</a>
  7426. #### Usage
  7427. M707 [ A ]
  7428. #### Parameters
  7429. - `A` - Address of register in hexidecimal.
  7430. #### Example
  7431. M707 A0x1b - Read a 8bit integer from register 0x1b and prints the result onto the serial line.
  7432. Does nothing if the A parameter is not present or if MMU is not enabled.
  7433. */
  7434. case 707: {
  7435. if ( MMU2::mmu2.Enabled() ) {
  7436. if( code_seen('A') ) {
  7437. MMU2::mmu2.ReadRegister(uint8_t(strtol(strchr_pointer+1, NULL, 16)));
  7438. }
  7439. }
  7440. } break;
  7441. /*!
  7442. ### M708 - Write to MMU register <a href="https://reprap.org/wiki/G-code#M708:_Write_to_MMU_register">M707: Write to MMU register</a>
  7443. #### Usage
  7444. M708 [ A | X ]
  7445. #### Parameters
  7446. - `A` - Address of register in hexidecimal.
  7447. - `X` - Data to write (16-bit integer). Default value 0.
  7448. #### Example
  7449. M708 A0x1b X05 - Write to register 0x1b the value 05.
  7450. Does nothing if A parameter is missing or if MMU is not enabled.
  7451. */
  7452. case 708: {
  7453. if ( MMU2::mmu2.Enabled() ){
  7454. uint8_t addr = 0;
  7455. if( code_seen('A') ) {
  7456. addr = uint8_t(strtol(strchr_pointer+1, NULL, 16));
  7457. }
  7458. uint16_t data = 0;
  7459. if( code_seen('X') ) {
  7460. data = code_value_short();
  7461. }
  7462. if(addr){
  7463. MMU2::mmu2.WriteRegister(addr, data);
  7464. }
  7465. }
  7466. } break;
  7467. /*!
  7468. ### M709 - MMU reset <a href="https://reprap.org/wiki/G-code#M709:_MMU_reset">M709: MMU reset</a>
  7469. The MK3S cannot not power off the MMU, for that reason the functionality is not supported.
  7470. #### Usage
  7471. M709 [ X ]
  7472. #### Parameters
  7473. - `X` - Reset MMU (0:soft reset | 1:hardware reset)
  7474. #### Example
  7475. M709 X0 - issue an X0 command via communication into the MMU (soft reset)
  7476. M709 X1 - toggle the MMU's reset pin (hardware reset)
  7477. */
  7478. case 709:
  7479. {
  7480. if (MMU2::mmu2.Enabled() && code_seen('X'))
  7481. {
  7482. switch (code_value_uint8())
  7483. {
  7484. case 0:
  7485. MMU2::mmu2.Reset(MMU2::MMU2::Software);
  7486. break;
  7487. case 1:
  7488. MMU2::mmu2.Reset(MMU2::MMU2::ResetPin);
  7489. break;
  7490. default:
  7491. break;
  7492. }
  7493. }
  7494. }
  7495. break;
  7496. /*!
  7497. #### End of M-Commands
  7498. */
  7499. default:
  7500. printf_P(MSG_UNKNOWN_CODE, 'M', cmdbuffer + bufindr + CMDHDRSIZE);
  7501. }
  7502. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7503. mcode_in_progress = 0;
  7504. }
  7505. }
  7506. // end if(code_seen('M')) (end of M codes)
  7507. /*!
  7508. -----------------------------------------------------------------------------------------
  7509. # T Codes
  7510. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7511. #### For MMU_V2:
  7512. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7513. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7514. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7515. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7516. */
  7517. else if(code_seen('T')){
  7518. TCodes(strchr_pointer, code_value_uint8());
  7519. } // end if(code_seen('T')) (end of T codes)
  7520. /*!
  7521. #### End of T-Codes
  7522. */
  7523. /**
  7524. *---------------------------------------------------------------------------------
  7525. *# D codes
  7526. */
  7527. else if (code_seen('D')) // D codes (debug)
  7528. {
  7529. switch(code_value_short())
  7530. {
  7531. /*!
  7532. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7533. */
  7534. case -1:
  7535. dcode__1(); break;
  7536. #ifdef DEBUG_DCODES
  7537. /*!
  7538. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7539. #### Usage
  7540. D0 [ B ]
  7541. #### Parameters
  7542. - `B` - Bootloader
  7543. */
  7544. case 0:
  7545. dcode_0(); break;
  7546. /*!
  7547. *
  7548. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7549. D1
  7550. *
  7551. */
  7552. case 1:
  7553. dcode_1(); break;
  7554. #endif
  7555. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  7556. /*!
  7557. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7558. This command can be used without any additional parameters. It will read the entire RAM.
  7559. #### Usage
  7560. D2 [ A | C | X ]
  7561. #### Parameters
  7562. - `A` - Address (x0000-x1fff)
  7563. - `C` - Count (1-8192)
  7564. - `X` - Data
  7565. #### Notes
  7566. - The hex address needs to be lowercase without the 0 before the x
  7567. - Count is decimal
  7568. - The hex data needs to be lowercase
  7569. */
  7570. case 2:
  7571. dcode_2(); break;
  7572. #endif //DEBUG_DCODES
  7573. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7574. /*!
  7575. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7576. This command can be used without any additional parameters. It will read the entire eeprom.
  7577. #### Usage
  7578. D3 [ A | C | X ]
  7579. #### Parameters
  7580. - `A` - Address (x0000-x0fff)
  7581. - `C` - Count (1-4096)
  7582. - `X` - Data (hex)
  7583. #### Notes
  7584. - The hex address needs to be lowercase without the 0 before the x
  7585. - Count is decimal
  7586. - The hex data needs to be lowercase
  7587. */
  7588. case 3:
  7589. dcode_3(); break;
  7590. #endif //DEBUG_DCODE3
  7591. #ifdef DEBUG_DCODES
  7592. /*!
  7593. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7594. To read the digital value of a pin you need only to define the pin number.
  7595. #### Usage
  7596. D4 [ P | F | V ]
  7597. #### Parameters
  7598. - `P` - Pin (0-255)
  7599. - `F` - Function in/out (0/1)
  7600. - `V` - Value (0/1)
  7601. */
  7602. case 4:
  7603. dcode_4(); break;
  7604. #endif //DEBUG_DCODES
  7605. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7606. /*!
  7607. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7608. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7609. #### Usage
  7610. D5 [ A | C | X | E ]
  7611. #### Parameters
  7612. - `A` - Address (x00000-x3ffff)
  7613. - `C` - Count (1-8192)
  7614. - `X` - Data (hex)
  7615. - `E` - Erase
  7616. #### Notes
  7617. - The hex address needs to be lowercase without the 0 before the x
  7618. - Count is decimal
  7619. - The hex data needs to be lowercase
  7620. */
  7621. case 5:
  7622. dcode_5(); break;
  7623. #endif //DEBUG_DCODE5
  7624. #if defined DEBUG_DCODE6 || defined DEBUG_DCODES
  7625. /*!
  7626. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7627. Reserved
  7628. */
  7629. case 6:
  7630. dcode_6(); break;
  7631. #endif
  7632. #ifdef DEBUG_DCODES
  7633. /*!
  7634. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7635. Reserved
  7636. */
  7637. case 7:
  7638. dcode_7(); break;
  7639. /*!
  7640. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7641. #### Usage
  7642. D8 [ ? | ! | P | Z ]
  7643. #### Parameters
  7644. - `?` - Read PINDA temperature shift values
  7645. - `!` - Reset PINDA temperature shift values to default
  7646. - `P` - Pinda temperature [C]
  7647. - `Z` - Z Offset [mm]
  7648. */
  7649. case 8:
  7650. dcode_8(); break;
  7651. /*!
  7652. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7653. #### Usage
  7654. D9 [ I | V ]
  7655. #### Parameters
  7656. - `I` - ADC channel index
  7657. - `0` - Heater 0 temperature
  7658. - `1` - Heater 1 temperature
  7659. - `2` - Bed temperature
  7660. - `3` - PINDA temperature
  7661. - `4` - PWR voltage
  7662. - `5` - Ambient temperature
  7663. - `6` - BED voltage
  7664. - `V` Value to be written as simulated
  7665. */
  7666. case 9:
  7667. dcode_9(); break;
  7668. /*!
  7669. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7670. */
  7671. case 10:
  7672. dcode_10(); break;
  7673. /*!
  7674. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7675. Writes the current time in the log file.
  7676. */
  7677. #endif //DEBUG_DCODES
  7678. #ifdef XFLASH_DUMP
  7679. /*!
  7680. ### D20 - Generate an offline crash dump <a href="https://reprap.org/wiki/G-code#D20:_Generate_an_offline_crash_dump">D20: Generate an offline crash dump</a>
  7681. Generate a crash dump for later retrival.
  7682. #### Usage
  7683. D20 [E]
  7684. ### Parameters
  7685. - `E` - Perform an emergency crash dump (resets the printer).
  7686. ### Notes
  7687. - A crash dump can be later recovered with D21, or cleared with D22.
  7688. - An emergency crash dump includes register data, but will cause the printer to reset after the dump
  7689. is completed.
  7690. */
  7691. case 20: {
  7692. dcode_20();
  7693. break;
  7694. };
  7695. /*!
  7696. ### D21 - Print crash dump to serial <a href="https://reprap.org/wiki/G-code#D21:_Print_crash_dump_to_serial">D21: Print crash dump to serial</a>
  7697. Output the complete crash dump (if present) to the serial.
  7698. #### Usage
  7699. D21
  7700. ### Notes
  7701. - The starting address can vary between builds, but it's always at the beginning of the data section.
  7702. */
  7703. case 21: {
  7704. dcode_21();
  7705. break;
  7706. };
  7707. /*!
  7708. ### D22 - Clear crash dump state <a href="https://reprap.org/wiki/G-code#D22:_Clear_crash_dump_state">D22: Clear crash dump state</a>
  7709. Clear an existing internal crash dump.
  7710. #### Usage
  7711. D22
  7712. */
  7713. case 22: {
  7714. dcode_22();
  7715. break;
  7716. };
  7717. #endif //XFLASH_DUMP
  7718. #ifdef EMERGENCY_SERIAL_DUMP
  7719. /*!
  7720. ### D23 - Request emergency dump on serial <a href="https://reprap.org/wiki/G-code#D23:_Request_emergency_dump_on_serial">D23: Request emergency dump on serial</a>
  7721. On boards without offline dump support, request online dumps to the serial port on firmware faults.
  7722. When online dumps are enabled, the FW will dump memory on the serial before resetting.
  7723. #### Usage
  7724. D23 [E] [R]
  7725. #### Parameters
  7726. - `E` - Perform an emergency crash dump (resets the printer).
  7727. - `R` - Disable online dumps.
  7728. */
  7729. case 23: {
  7730. dcode_23();
  7731. break;
  7732. };
  7733. #endif
  7734. #ifdef TEMP_MODEL_DEBUG
  7735. /*!
  7736. ## D70 - Enable low-level temperature model logging for offline simulation
  7737. #### Usage
  7738. D70 [ S ]
  7739. #### Parameters
  7740. - `S` - Enable 0-1 (default 0)
  7741. */
  7742. case 70: {
  7743. if(code_seen('S'))
  7744. temp_model_log_enable(code_value_short());
  7745. break;
  7746. }
  7747. #endif
  7748. #ifdef HEATBED_ANALYSIS
  7749. /*!
  7750. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7751. This command will log data to SD card file "mesh.txt".
  7752. #### Usage
  7753. D80 [ E | F | G | H | I | J ]
  7754. #### Parameters
  7755. - `E` - Dimension X (default 40)
  7756. - `F` - Dimention Y (default 40)
  7757. - `G` - Points X (default 40)
  7758. - `H` - Points Y (default 40)
  7759. - `I` - Offset X (default 74)
  7760. - `J` - Offset Y (default 34)
  7761. */
  7762. case 80:
  7763. dcode_80(); break;
  7764. /*!
  7765. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7766. This command will log data to SD card file "wldsd.txt".
  7767. #### Usage
  7768. D81 [ E | F | G | H | I | J ]
  7769. #### Parameters
  7770. - `E` - Dimension X (default 40)
  7771. - `F` - Dimention Y (default 40)
  7772. - `G` - Points X (default 40)
  7773. - `H` - Points Y (default 40)
  7774. - `I` - Offset X (default 74)
  7775. - `J` - Offset Y (default 34)
  7776. */
  7777. case 81:
  7778. dcode_81(); break;
  7779. #endif //HEATBED_ANALYSIS
  7780. #ifdef DEBUG_DCODES
  7781. /*!
  7782. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7783. */
  7784. case 106:
  7785. dcode_106(); break;
  7786. #ifdef TMC2130
  7787. /*!
  7788. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7789. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7790. #### Usage
  7791. D2130 [ Axis | Command | Subcommand | Value ]
  7792. #### Parameters
  7793. - Axis
  7794. - `X` - X stepper driver
  7795. - `Y` - Y stepper driver
  7796. - `Z` - Z stepper driver
  7797. - `E` - Extruder stepper driver
  7798. - Commands
  7799. - `0` - Current off
  7800. - `1` - Current on
  7801. - `+` - Single step
  7802. - `-` - Single step oposite direction
  7803. - `NNN` - Value sereval steps
  7804. - `?` - Read register
  7805. - Subcommands for read register
  7806. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7807. - `step` - Step
  7808. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7809. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7810. - `wave` - Microstep linearity compensation curve
  7811. - `!` - Set register
  7812. - Subcommands for set register
  7813. - `mres` - Micro step resolution
  7814. - `step` - Step
  7815. - `wave` - Microstep linearity compensation curve
  7816. - Values for set register
  7817. - `0, 180 --> 250` - Off
  7818. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7819. - `@` - Home calibrate axis
  7820. Examples:
  7821. D2130E?wave
  7822. Print extruder microstep linearity compensation curve
  7823. D2130E!wave0
  7824. Disable extruder linearity compensation curve, (sine curve is used)
  7825. D2130E!wave220
  7826. (sin(x))^1.1 extruder microstep compensation curve used
  7827. Notes:
  7828. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7829. *
  7830. */
  7831. case 2130:
  7832. dcode_2130(); break;
  7833. #endif //TMC2130
  7834. #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  7835. /*!
  7836. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7837. #### Usage
  7838. D9125 [ ? | ! | R | X | Y | L ]
  7839. #### Parameters
  7840. - `?` - Print values
  7841. - `!` - Print values
  7842. - `R` - Resolution. Not active in code
  7843. - `X` - X values
  7844. - `Y` - Y values
  7845. - `L` - Activate filament sensor log
  7846. */
  7847. case 9125:
  7848. dcode_9125(); break;
  7849. #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)
  7850. #endif //DEBUG_DCODES
  7851. default:
  7852. printf_P(MSG_UNKNOWN_CODE, 'D', cmdbuffer + bufindr + CMDHDRSIZE);
  7853. }
  7854. }
  7855. else
  7856. {
  7857. SERIAL_ECHO_START;
  7858. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7859. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7860. SERIAL_ECHOLNPGM("\"(2)");
  7861. }
  7862. KEEPALIVE_STATE(NOT_BUSY);
  7863. ClearToSend();
  7864. }
  7865. /*!
  7866. #### End of D-Codes
  7867. */
  7868. /** @defgroup GCodes G-Code List
  7869. */
  7870. // ---------------------------------------------------
  7871. void FlushSerialRequestResend()
  7872. {
  7873. //char cmdbuffer[bufindr][100]="Resend:";
  7874. MYSERIAL.flush();
  7875. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7876. }
  7877. // Confirm the execution of a command, if sent from a serial line.
  7878. // Execution of a command from a SD card will not be confirmed.
  7879. void ClearToSend()
  7880. {
  7881. previous_millis_cmd.start();
  7882. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  7883. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7884. }
  7885. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7886. void update_currents() {
  7887. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7888. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7889. float tmp_motor[3];
  7890. //SERIAL_ECHOLNPGM("Currents updated: ");
  7891. if (destination[Z_AXIS] < Z_SILENT) {
  7892. //SERIAL_ECHOLNPGM("LOW");
  7893. for (uint8_t i = 0; i < 3; i++) {
  7894. st_current_set(i, current_low[i]);
  7895. /*MYSERIAL.print(int(i));
  7896. SERIAL_ECHOPGM(": ");
  7897. MYSERIAL.println(current_low[i]);*/
  7898. }
  7899. }
  7900. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7901. //SERIAL_ECHOLNPGM("HIGH");
  7902. for (uint8_t i = 0; i < 3; i++) {
  7903. st_current_set(i, current_high[i]);
  7904. /*MYSERIAL.print(int(i));
  7905. SERIAL_ECHOPGM(": ");
  7906. MYSERIAL.println(current_high[i]);*/
  7907. }
  7908. }
  7909. else {
  7910. for (uint8_t i = 0; i < 3; i++) {
  7911. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7912. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7913. st_current_set(i, tmp_motor[i]);
  7914. /*MYSERIAL.print(int(i));
  7915. SERIAL_ECHOPGM(": ");
  7916. MYSERIAL.println(tmp_motor[i]);*/
  7917. }
  7918. }
  7919. }
  7920. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7921. void get_coordinates() {
  7922. bool seen[4]={false,false,false,false};
  7923. for(int8_t i=0; i < NUM_AXIS; i++) {
  7924. if(code_seen(axis_codes[i]))
  7925. {
  7926. bool relative = axis_relative_modes & (1 << i);
  7927. destination[i] = code_value();
  7928. if (i == E_AXIS) {
  7929. float emult = extruder_multiplier[active_extruder];
  7930. if (emult != 1.) {
  7931. if (! relative) {
  7932. destination[i] -= current_position[i];
  7933. relative = true;
  7934. }
  7935. destination[i] *= emult;
  7936. }
  7937. }
  7938. if (relative)
  7939. destination[i] += current_position[i];
  7940. seen[i]=true;
  7941. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7942. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7943. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7944. }
  7945. else destination[i] = current_position[i]; //Are these else lines really needed?
  7946. }
  7947. if(code_seen('F')) {
  7948. next_feedrate = code_value();
  7949. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7950. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7951. {
  7952. // float e_max_speed =
  7953. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7954. }
  7955. }
  7956. }
  7957. void clamp_to_software_endstops(float target[3])
  7958. {
  7959. #ifdef DEBUG_DISABLE_SWLIMITS
  7960. return;
  7961. #endif //DEBUG_DISABLE_SWLIMITS
  7962. world2machine_clamp(target[0], target[1]);
  7963. // Clamp the Z coordinate.
  7964. if (min_software_endstops) {
  7965. float negative_z_offset = 0;
  7966. #ifdef ENABLE_AUTO_BED_LEVELING
  7967. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7968. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7969. #endif
  7970. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7971. }
  7972. if (max_software_endstops) {
  7973. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7974. }
  7975. }
  7976. uint16_t restore_interrupted_gcode() {
  7977. // When recovering from a previous print move, restore the originally
  7978. // calculated start position on the first USB/SD command. This accounts
  7979. // properly for relative moves
  7980. if (
  7981. (saved_start_position[0] != SAVED_START_POSITION_UNSET) && (
  7982. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  7983. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)
  7984. )
  7985. ) {
  7986. memcpy(current_position, saved_start_position, sizeof(current_position));
  7987. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  7988. return saved_segment_idx;
  7989. }
  7990. else
  7991. return 1; //begin with the first segment
  7992. }
  7993. #ifdef MESH_BED_LEVELING
  7994. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder, uint16_t start_segment_idx = 0) {
  7995. float dx = x - current_position[X_AXIS];
  7996. float dy = y - current_position[Y_AXIS];
  7997. uint16_t n_segments = 0;
  7998. if (mbl.active) {
  7999. float len = fabs(dx) + fabs(dy);
  8000. if (len > 0)
  8001. // Split to 3cm segments or shorter.
  8002. n_segments = uint16_t(ceil(len / 30.f));
  8003. }
  8004. if (n_segments > 1 && start_segment_idx) {
  8005. float dz = z - current_position[Z_AXIS];
  8006. float de = e - current_position[E_AXIS];
  8007. for (uint16_t i = start_segment_idx; i < n_segments; ++ i) {
  8008. float t = float(i) / float(n_segments);
  8009. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8010. current_position[Y_AXIS] + t * dy,
  8011. current_position[Z_AXIS] + t * dz,
  8012. current_position[E_AXIS] + t * de,
  8013. feed_rate, extruder, current_position, i);
  8014. if (planner_aborted)
  8015. return;
  8016. }
  8017. }
  8018. // The rest of the path.
  8019. plan_buffer_line(x, y, z, e, feed_rate, extruder, current_position);
  8020. }
  8021. #endif // MESH_BED_LEVELING
  8022. void prepare_move(uint16_t start_segment_idx)
  8023. {
  8024. clamp_to_software_endstops(destination);
  8025. previous_millis_cmd.start();
  8026. // Do not use feedmultiply for E or Z only moves
  8027. if((current_position[X_AXIS] == destination[X_AXIS]) && (current_position[Y_AXIS] == destination[Y_AXIS])) {
  8028. plan_buffer_line_destinationXYZE(feedrate/60);
  8029. }
  8030. else {
  8031. #ifdef MESH_BED_LEVELING
  8032. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder, start_segment_idx);
  8033. #else
  8034. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8035. #endif
  8036. }
  8037. set_current_to_destination();
  8038. }
  8039. void prepare_arc_move(bool isclockwise, uint16_t start_segment_idx) {
  8040. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8041. // Trace the arc
  8042. mc_arc(current_position, destination, offset, feedrate * feedmultiply / 60 / 100.0, r, isclockwise, active_extruder, start_segment_idx);
  8043. // As far as the parser is concerned, the position is now == target. In reality the
  8044. // motion control system might still be processing the action and the real tool position
  8045. // in any intermediate location.
  8046. set_current_to_destination();
  8047. previous_millis_cmd.start();
  8048. }
  8049. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8050. #if defined(FAN_PIN)
  8051. #if CONTROLLERFAN_PIN == FAN_PIN
  8052. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8053. #endif
  8054. #endif
  8055. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8056. unsigned long lastMotorCheck = 0;
  8057. void controllerFan()
  8058. {
  8059. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8060. {
  8061. lastMotorCheck = _millis();
  8062. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8063. #if EXTRUDERS > 2
  8064. || !READ(E2_ENABLE_PIN)
  8065. #endif
  8066. #if EXTRUDER > 1
  8067. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8068. || !READ(X2_ENABLE_PIN)
  8069. #endif
  8070. || !READ(E1_ENABLE_PIN)
  8071. #endif
  8072. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8073. {
  8074. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8075. }
  8076. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8077. {
  8078. digitalWrite(CONTROLLERFAN_PIN, 0);
  8079. analogWrite(CONTROLLERFAN_PIN, 0);
  8080. }
  8081. else
  8082. {
  8083. // allows digital or PWM fan output to be used (see M42 handling)
  8084. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8085. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8086. }
  8087. }
  8088. }
  8089. #endif
  8090. #ifdef SAFETYTIMER
  8091. /**
  8092. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8093. *
  8094. * Full screen blocking notification message is shown after heater turning off.
  8095. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8096. * damage print.
  8097. *
  8098. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8099. */
  8100. static void handleSafetyTimer()
  8101. {
  8102. #if (EXTRUDERS > 1)
  8103. #error Implemented only for one extruder.
  8104. #endif //(EXTRUDERS > 1)
  8105. if (printer_active() || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8106. {
  8107. safetyTimer.stop();
  8108. }
  8109. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8110. {
  8111. safetyTimer.start();
  8112. }
  8113. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8114. {
  8115. setTargetBed(0);
  8116. setAllTargetHotends(0);
  8117. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=20 r=4
  8118. }
  8119. }
  8120. #endif //SAFETYTIMER
  8121. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8122. {
  8123. #ifdef FILAMENT_SENSOR
  8124. if (fsensor.update()) {
  8125. lcd_draw_update = 1; //cause lcd update so that fsensor event polling can be done from the lcd draw routine.
  8126. }
  8127. #endif
  8128. #ifdef SAFETYTIMER
  8129. handleSafetyTimer();
  8130. #endif //SAFETYTIMER
  8131. #if defined(KILL_PIN) && KILL_PIN > -1
  8132. static int killCount = 0; // make the inactivity button a bit less responsive
  8133. const int KILL_DELAY = 10000;
  8134. #endif
  8135. if(buflen < (BUFSIZE-1)){
  8136. get_command();
  8137. }
  8138. if(previous_millis_cmd.expired(max_inactive_time))
  8139. if(max_inactive_time)
  8140. kill(_n("Inactivity Shutdown"), 4);
  8141. if(stepper_inactive_time) {
  8142. if(previous_millis_cmd.expired(stepper_inactive_time))
  8143. {
  8144. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8145. disable_x();
  8146. disable_y();
  8147. disable_z();
  8148. disable_e0();
  8149. disable_e1();
  8150. disable_e2();
  8151. }
  8152. }
  8153. }
  8154. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8155. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8156. {
  8157. chdkActive = false;
  8158. WRITE(CHDK, LOW);
  8159. }
  8160. #endif
  8161. #if defined(KILL_PIN) && KILL_PIN > -1
  8162. // Check if the kill button was pressed and wait just in case it was an accidental
  8163. // key kill key press
  8164. // -------------------------------------------------------------------------------
  8165. if( 0 == READ(KILL_PIN) )
  8166. {
  8167. killCount++;
  8168. }
  8169. else if (killCount > 0)
  8170. {
  8171. killCount--;
  8172. }
  8173. // Exceeded threshold and we can confirm that it was not accidental
  8174. // KILL the machine
  8175. // ----------------------------------------------------------------
  8176. if ( killCount >= KILL_DELAY)
  8177. {
  8178. kill(NULL, 5);
  8179. }
  8180. #endif
  8181. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8182. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8183. #endif
  8184. #ifdef EXTRUDER_RUNOUT_PREVENT
  8185. if(previous_millis_cmd.expired(EXTRUDER_RUNOUT_SECONDS*1000))
  8186. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8187. {
  8188. bool oldstatus=READ(E0_ENABLE_PIN);
  8189. enable_e0();
  8190. float oldepos=current_position[E_AXIS];
  8191. float oldedes=destination[E_AXIS];
  8192. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8193. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8194. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8195. current_position[E_AXIS]=oldepos;
  8196. destination[E_AXIS]=oldedes;
  8197. plan_set_e_position(oldepos);
  8198. previous_millis_cmd.start();
  8199. st_synchronize();
  8200. WRITE(E0_ENABLE_PIN,oldstatus);
  8201. }
  8202. #endif
  8203. check_axes_activity();
  8204. MMU2::mmu2.mmu_loop();
  8205. // handle longpress
  8206. if(lcd_longpress_trigger)
  8207. {
  8208. // long press is not possible in modal mode, wait until ready
  8209. if (lcd_longpress_func && lcd_update_enabled)
  8210. {
  8211. lcd_longpress_func();
  8212. lcd_longpress_trigger = 0;
  8213. }
  8214. }
  8215. #if defined(AUTO_REPORT)
  8216. host_autoreport();
  8217. #endif //AUTO_REPORT
  8218. host_keepalive();
  8219. }
  8220. void kill(const char *full_screen_message, unsigned char id)
  8221. {
  8222. printf_P(_N("KILL: %d\n"), id);
  8223. //return;
  8224. cli(); // Stop interrupts
  8225. disable_heater();
  8226. disable_x();
  8227. // SERIAL_ECHOLNPGM("kill - disable Y");
  8228. disable_y();
  8229. poweroff_z();
  8230. disable_e0();
  8231. disable_e1();
  8232. disable_e2();
  8233. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8234. pinMode(PS_ON_PIN,INPUT);
  8235. #endif
  8236. SERIAL_ERROR_START;
  8237. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8238. if (full_screen_message != NULL) {
  8239. SERIAL_ERRORLNRPGM(full_screen_message);
  8240. lcd_display_message_fullscreen_P(full_screen_message);
  8241. } else {
  8242. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8243. }
  8244. // FMC small patch to update the LCD before ending
  8245. sei(); // enable interrupts
  8246. for ( int i=5; i--; lcd_update(0))
  8247. {
  8248. _delay(200);
  8249. }
  8250. cli(); // disable interrupts
  8251. suicide();
  8252. while(1)
  8253. {
  8254. #ifdef WATCHDOG
  8255. wdt_reset();
  8256. #endif //WATCHDOG
  8257. /* Intentionally left empty */
  8258. } // Wait for reset
  8259. }
  8260. void UnconditionalStop()
  8261. {
  8262. CRITICAL_SECTION_START;
  8263. // Disable all heaters and unroll the temperature wait loop stack
  8264. disable_heater();
  8265. cancel_heatup = true;
  8266. heating_status = HeatingStatus::NO_HEATING;
  8267. // Clear any saved printing state
  8268. cancel_saved_printing();
  8269. // Abort the planner
  8270. planner_abort_hard();
  8271. // Reset the queue
  8272. cmdqueue_reset();
  8273. cmdqueue_serial_disabled = false;
  8274. // Reset the sd status
  8275. card.sdprinting = false;
  8276. card.closefile();
  8277. st_reset_timer();
  8278. CRITICAL_SECTION_END;
  8279. }
  8280. // Emergency stop used by overtemp functions which allows recovery
  8281. // WARNING: This function is called *continuously* during a thermal failure.
  8282. //
  8283. // This either pauses (for thermal model errors) or stops *without recovery* depending on
  8284. // "allow_recovery". If recovery is allowed, this forces a printer-initiated instantanenous pause
  8285. // (just like an LCD pause) that bypasses the host pausing functionality. In this state the printer
  8286. // is kept in busy state and *must* be recovered from the LCD.
  8287. void ThermalStop(bool allow_recovery)
  8288. {
  8289. if(Stopped == false) {
  8290. Stopped = true;
  8291. if(allow_recovery && (IS_SD_PRINTING || usb_timer.running())) {
  8292. if (!isPrintPaused) {
  8293. lcd_setalertstatuspgm(_T(MSG_PAUSED_THERMAL_ERROR), LCD_STATUS_CRITICAL);
  8294. // we cannot make a distinction for the host here, the pause must be instantaneous
  8295. // so we call the lcd_pause_print to save the print state internally. Thermal errors
  8296. // disable heaters and save the original temperatures to saved_*, which will get
  8297. // overwritten by stop_and_save_print_to_ram. For this corner-case, re-instate the
  8298. // original values after the pause handler is called.
  8299. float bed_temp = saved_bed_temperature;
  8300. float ext_temp = saved_extruder_temperature;
  8301. int fan_speed = saved_fan_speed;
  8302. lcd_pause_print();
  8303. saved_bed_temperature = bed_temp;
  8304. saved_extruder_temperature = ext_temp;
  8305. saved_fan_speed = fan_speed;
  8306. }
  8307. } else {
  8308. // We got a hard thermal error and/or there is no print going on. Just stop.
  8309. print_stop();
  8310. }
  8311. // Report the status on the serial, switch to a busy state
  8312. SERIAL_ERROR_START;
  8313. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8314. // Eventually report the stopped status on the lcd (though this is usually overridden by a
  8315. // higher-priority alert status message)
  8316. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8317. // Make a warning sound! We cannot use Sound_MakeCustom as this would stop further moves.
  8318. // Turn on the speaker here (if not already), and turn it off when back in the main loop.
  8319. WRITE(BEEPER, HIGH);
  8320. // Always return to the status screen to ensure the NEW error is immediately shown.
  8321. lcd_return_to_status();
  8322. if(!allow_recovery) {
  8323. // prevent menu access for all fatal errors
  8324. menu_set_block(MENU_BLOCK_THERMAL_ERROR);
  8325. }
  8326. }
  8327. }
  8328. bool IsStopped() { return Stopped; };
  8329. void finishAndDisableSteppers()
  8330. {
  8331. st_synchronize();
  8332. disable_x();
  8333. disable_y();
  8334. disable_z();
  8335. disable_e0();
  8336. disable_e1();
  8337. disable_e2();
  8338. #ifndef LA_NOCOMPAT
  8339. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8340. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8341. // state for the next print.
  8342. la10c_reset();
  8343. #endif
  8344. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  8345. print_time_remaining_init();
  8346. }
  8347. #ifdef FAST_PWM_FAN
  8348. void setPwmFrequency(uint8_t pin, int val)
  8349. {
  8350. val &= 0x07;
  8351. switch(digitalPinToTimer(pin))
  8352. {
  8353. #if defined(TCCR0A)
  8354. case TIMER0A:
  8355. case TIMER0B:
  8356. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8357. // TCCR0B |= val;
  8358. break;
  8359. #endif
  8360. #if defined(TCCR1A)
  8361. case TIMER1A:
  8362. case TIMER1B:
  8363. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8364. // TCCR1B |= val;
  8365. break;
  8366. #endif
  8367. #if defined(TCCR2)
  8368. case TIMER2:
  8369. case TIMER2:
  8370. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8371. TCCR2 |= val;
  8372. break;
  8373. #endif
  8374. #if defined(TCCR2A)
  8375. case TIMER2A:
  8376. case TIMER2B:
  8377. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8378. TCCR2B |= val;
  8379. break;
  8380. #endif
  8381. #if defined(TCCR3A)
  8382. case TIMER3A:
  8383. case TIMER3B:
  8384. case TIMER3C:
  8385. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8386. TCCR3B |= val;
  8387. break;
  8388. #endif
  8389. #if defined(TCCR4A)
  8390. case TIMER4A:
  8391. case TIMER4B:
  8392. case TIMER4C:
  8393. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8394. TCCR4B |= val;
  8395. break;
  8396. #endif
  8397. #if defined(TCCR5A)
  8398. case TIMER5A:
  8399. case TIMER5B:
  8400. case TIMER5C:
  8401. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8402. TCCR5B |= val;
  8403. break;
  8404. #endif
  8405. }
  8406. }
  8407. #endif //FAST_PWM_FAN
  8408. //! @brief Get and validate extruder number
  8409. //!
  8410. //! If it is not specified, active_extruder is returned in parameter extruder.
  8411. //! @param [in] code M code number
  8412. //! @param [out] extruder
  8413. //! @return error
  8414. //! @retval true Invalid extruder specified in T code
  8415. //! @retval false Valid extruder specified in T code, or not specifiead
  8416. bool setTargetedHotend(int code, uint8_t &extruder)
  8417. {
  8418. extruder = active_extruder;
  8419. if(code_seen('T')) {
  8420. extruder = code_value_uint8();
  8421. if(extruder >= EXTRUDERS) {
  8422. SERIAL_ECHO_START;
  8423. serialprintPGM(PSTR("M"));
  8424. SERIAL_ECHO(code);
  8425. SERIAL_ECHOPGM(" Invalid extruder ");
  8426. SERIAL_PROTOCOLLN((int)extruder);
  8427. return true;
  8428. }
  8429. }
  8430. return false;
  8431. }
  8432. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) { //_total_filament_used unit: mm/100; print time in s
  8433. uint32_t _previous_filament = eeprom_init_default_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); //_previous_filament unit: cm
  8434. uint32_t _previous_time = eeprom_init_default_dword((uint32_t *)EEPROM_TOTALTIME, 0); //_previous_time unit: min
  8435. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time / 60)); // EEPROM_TOTALTIME unit: min
  8436. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8437. total_filament_used = 0;
  8438. if (MMU2::mmu2.Enabled()) {
  8439. eeprom_add_dword((uint32_t *)EEPROM_TOTAL_TOOLCHANGE_COUNT, MMU2::mmu2.ToolChangeCounter());
  8440. // @@TODO why were EEPROM_MMU_FAIL_TOT and EEPROM_MMU_LOAD_FAIL_TOT behaving differently - i.e. updated with every change?
  8441. MMU2::mmu2.ClearToolChangeCounter();
  8442. MMU2::mmu2.ClearTMCFailures(); // not stored into EEPROM
  8443. }
  8444. }
  8445. float calculate_extruder_multiplier(float diameter) {
  8446. float out = 1.f;
  8447. if (cs.volumetric_enabled && diameter > 0.f) {
  8448. float area = M_PI * diameter * diameter * 0.25;
  8449. out = 1.f / area;
  8450. }
  8451. if (extrudemultiply != 100)
  8452. out *= float(extrudemultiply) * 0.01f;
  8453. return out;
  8454. }
  8455. void calculate_extruder_multipliers() {
  8456. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8457. #if EXTRUDERS > 1
  8458. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8459. #if EXTRUDERS > 2
  8460. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8461. #endif
  8462. #endif
  8463. }
  8464. void delay_keep_alive(unsigned int ms)
  8465. {
  8466. for (;;) {
  8467. manage_heater();
  8468. // Manage inactivity, but don't disable steppers on timeout.
  8469. manage_inactivity(true);
  8470. lcd_update(0);
  8471. if (ms == 0)
  8472. break;
  8473. else if (ms >= 50) {
  8474. _delay(50);
  8475. ms -= 50;
  8476. } else {
  8477. _delay(ms);
  8478. ms = 0;
  8479. }
  8480. }
  8481. }
  8482. static void wait_for_heater(long codenum, uint8_t extruder) {
  8483. if (!degTargetHotend(extruder))
  8484. return;
  8485. #ifdef TEMP_RESIDENCY_TIME
  8486. long residencyStart;
  8487. residencyStart = -1;
  8488. /* continue to loop until we have reached the target temp
  8489. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8490. cancel_heatup = false;
  8491. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8492. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8493. #else
  8494. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8495. #endif //TEMP_RESIDENCY_TIME
  8496. if ((_millis() - codenum) > 1000UL)
  8497. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8498. if (!farm_mode) {
  8499. SERIAL_PROTOCOLPGM("T:");
  8500. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8501. SERIAL_PROTOCOLPGM(" E:");
  8502. SERIAL_PROTOCOL((int)extruder);
  8503. #ifdef TEMP_RESIDENCY_TIME
  8504. SERIAL_PROTOCOLPGM(" W:");
  8505. if (residencyStart > -1)
  8506. {
  8507. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8508. SERIAL_PROTOCOLLN(codenum);
  8509. }
  8510. else
  8511. {
  8512. SERIAL_PROTOCOLLN('?');
  8513. }
  8514. }
  8515. #else
  8516. SERIAL_PROTOCOLLN();
  8517. #endif
  8518. codenum = _millis();
  8519. }
  8520. manage_heater();
  8521. manage_inactivity(true); //do not disable steppers
  8522. lcd_update(0);
  8523. #ifdef TEMP_RESIDENCY_TIME
  8524. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8525. or when current temp falls outside the hysteresis after target temp was reached */
  8526. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8527. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8528. (residencyStart > -1 && fabs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8529. {
  8530. residencyStart = _millis();
  8531. }
  8532. #endif //TEMP_RESIDENCY_TIME
  8533. }
  8534. }
  8535. void check_babystep()
  8536. {
  8537. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8538. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8539. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8540. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8541. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8542. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8543. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8544. babystep_z);
  8545. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8546. lcd_update_enable(true);
  8547. }
  8548. }
  8549. #ifdef HEATBED_ANALYSIS
  8550. void d_setup()
  8551. {
  8552. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8553. pinMode(D_DATA, INPUT_PULLUP);
  8554. pinMode(D_REQUIRE, OUTPUT);
  8555. digitalWrite(D_REQUIRE, HIGH);
  8556. }
  8557. float d_ReadData()
  8558. {
  8559. int digit[13];
  8560. String mergeOutput;
  8561. float output;
  8562. digitalWrite(D_REQUIRE, HIGH);
  8563. for (int i = 0; i<13; i++)
  8564. {
  8565. for (int j = 0; j < 4; j++)
  8566. {
  8567. while (digitalRead(D_DATACLOCK) == LOW) {}
  8568. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8569. bitWrite(digit[i], j, digitalRead(D_DATA));
  8570. }
  8571. }
  8572. digitalWrite(D_REQUIRE, LOW);
  8573. mergeOutput = "";
  8574. output = 0;
  8575. for (int r = 5; r <= 10; r++) //Merge digits
  8576. {
  8577. mergeOutput += digit[r];
  8578. }
  8579. output = mergeOutput.toFloat();
  8580. if (digit[4] == 8) //Handle sign
  8581. {
  8582. output *= -1;
  8583. }
  8584. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8585. {
  8586. output /= 10;
  8587. }
  8588. return output;
  8589. }
  8590. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8591. int t1 = 0;
  8592. int t_delay = 0;
  8593. int digit[13];
  8594. int m;
  8595. char str[3];
  8596. //String mergeOutput;
  8597. char mergeOutput[15];
  8598. float output;
  8599. int mesh_point = 0; //index number of calibration point
  8600. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8601. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8602. float mesh_home_z_search = 4;
  8603. float measure_z_height = 0.2f;
  8604. float row[x_points_num];
  8605. int ix = 0;
  8606. int iy = 0;
  8607. const char* filename_wldsd = "mesh.txt";
  8608. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8609. char numb_wldsd[8]; // (" -A.BCD" + null)
  8610. #ifdef MICROMETER_LOGGING
  8611. d_setup();
  8612. #endif //MICROMETER_LOGGING
  8613. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8614. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8615. unsigned int custom_message_type_old = custom_message_type;
  8616. unsigned int custom_message_state_old = custom_message_state;
  8617. custom_message_type = CustomMsg::MeshBedLeveling;
  8618. custom_message_state = (x_points_num * y_points_num) + 10;
  8619. lcd_update(1);
  8620. //mbl.reset();
  8621. babystep_undo();
  8622. card.openFile(filename_wldsd, false);
  8623. /*destination[Z_AXIS] = mesh_home_z_search;
  8624. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8625. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8626. for(int8_t i=0; i < NUM_AXIS; i++) {
  8627. current_position[i] = destination[i];
  8628. }
  8629. st_synchronize();
  8630. */
  8631. destination[Z_AXIS] = measure_z_height;
  8632. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8633. for(int8_t i=0; i < NUM_AXIS; i++) {
  8634. current_position[i] = destination[i];
  8635. }
  8636. st_synchronize();
  8637. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8638. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8639. SERIAL_PROTOCOL(x_points_num);
  8640. SERIAL_PROTOCOLPGM(",");
  8641. SERIAL_PROTOCOL(y_points_num);
  8642. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8643. SERIAL_PROTOCOL(mesh_home_z_search);
  8644. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8645. SERIAL_PROTOCOL(x_dimension);
  8646. SERIAL_PROTOCOLPGM(",");
  8647. SERIAL_PROTOCOL(y_dimension);
  8648. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8649. while (mesh_point != x_points_num * y_points_num) {
  8650. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8651. iy = mesh_point / x_points_num;
  8652. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8653. float z0 = 0.f;
  8654. /*destination[Z_AXIS] = mesh_home_z_search;
  8655. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8656. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8657. for(int8_t i=0; i < NUM_AXIS; i++) {
  8658. current_position[i] = destination[i];
  8659. }
  8660. st_synchronize();*/
  8661. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8662. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8663. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8664. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8665. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8666. set_current_to_destination();
  8667. st_synchronize();
  8668. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8669. delay_keep_alive(1000);
  8670. #ifdef MICROMETER_LOGGING
  8671. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8672. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8673. //strcat(data_wldsd, numb_wldsd);
  8674. //MYSERIAL.println(data_wldsd);
  8675. //delay(1000);
  8676. //delay(3000);
  8677. //t1 = millis();
  8678. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8679. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8680. memset(digit, 0, sizeof(digit));
  8681. //cli();
  8682. digitalWrite(D_REQUIRE, LOW);
  8683. for (int i = 0; i<13; i++)
  8684. {
  8685. //t1 = millis();
  8686. for (int j = 0; j < 4; j++)
  8687. {
  8688. while (digitalRead(D_DATACLOCK) == LOW) {}
  8689. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8690. //printf_P(PSTR("Done %d\n"), j);
  8691. bitWrite(digit[i], j, digitalRead(D_DATA));
  8692. }
  8693. //t_delay = (millis() - t1);
  8694. //SERIAL_PROTOCOLPGM(" ");
  8695. //SERIAL_PROTOCOL_F(t_delay, 5);
  8696. //SERIAL_PROTOCOLPGM(" ");
  8697. }
  8698. //sei();
  8699. digitalWrite(D_REQUIRE, HIGH);
  8700. mergeOutput[0] = '\0';
  8701. output = 0;
  8702. for (int r = 5; r <= 10; r++) //Merge digits
  8703. {
  8704. sprintf(str, "%d", digit[r]);
  8705. strcat(mergeOutput, str);
  8706. }
  8707. output = atof(mergeOutput);
  8708. if (digit[4] == 8) //Handle sign
  8709. {
  8710. output *= -1;
  8711. }
  8712. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8713. {
  8714. output *= 0.1;
  8715. }
  8716. //output = d_ReadData();
  8717. //row[ix] = current_position[Z_AXIS];
  8718. //row[ix] = d_ReadData();
  8719. row[ix] = output;
  8720. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8721. memset(data_wldsd, 0, sizeof(data_wldsd));
  8722. for (int i = 0; i < x_points_num; i++) {
  8723. SERIAL_PROTOCOLPGM(" ");
  8724. SERIAL_PROTOCOL_F(row[i], 5);
  8725. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8726. dtostrf(row[i], 7, 3, numb_wldsd);
  8727. strcat(data_wldsd, numb_wldsd);
  8728. }
  8729. card.write_command(data_wldsd);
  8730. SERIAL_PROTOCOLPGM("\n");
  8731. }
  8732. custom_message_state--;
  8733. mesh_point++;
  8734. lcd_update(1);
  8735. }
  8736. #endif //MICROMETER_LOGGING
  8737. card.closefile();
  8738. //clean_up_after_endstop_move(l_feedmultiply);
  8739. }
  8740. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8741. int t1 = 0;
  8742. int t_delay = 0;
  8743. int digit[13];
  8744. int m;
  8745. char str[3];
  8746. //String mergeOutput;
  8747. char mergeOutput[15];
  8748. float output;
  8749. int mesh_point = 0; //index number of calibration point
  8750. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8751. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8752. float mesh_home_z_search = 4;
  8753. float row[x_points_num];
  8754. int ix = 0;
  8755. int iy = 0;
  8756. const char* filename_wldsd = "wldsd.txt";
  8757. char data_wldsd[70];
  8758. char numb_wldsd[10];
  8759. d_setup();
  8760. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8761. // We don't know where we are! HOME!
  8762. // Push the commands to the front of the message queue in the reverse order!
  8763. // There shall be always enough space reserved for these commands.
  8764. repeatcommand_front(); // repeat G80 with all its parameters
  8765. enquecommand_front_P(G28W0);
  8766. enquecommand_front_P((PSTR("G1 Z5")));
  8767. return;
  8768. }
  8769. unsigned int custom_message_type_old = custom_message_type;
  8770. unsigned int custom_message_state_old = custom_message_state;
  8771. custom_message_type = CustomMsg::MeshBedLeveling;
  8772. custom_message_state = (x_points_num * y_points_num) + 10;
  8773. lcd_update(1);
  8774. mbl.reset();
  8775. babystep_undo();
  8776. card.openFile(filename_wldsd, false);
  8777. current_position[Z_AXIS] = mesh_home_z_search;
  8778. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8779. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8780. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8781. int l_feedmultiply = setup_for_endstop_move(false);
  8782. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8783. SERIAL_PROTOCOL(x_points_num);
  8784. SERIAL_PROTOCOLPGM(",");
  8785. SERIAL_PROTOCOL(y_points_num);
  8786. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8787. SERIAL_PROTOCOL(mesh_home_z_search);
  8788. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8789. SERIAL_PROTOCOL(x_dimension);
  8790. SERIAL_PROTOCOLPGM(",");
  8791. SERIAL_PROTOCOL(y_dimension);
  8792. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8793. while (mesh_point != x_points_num * y_points_num) {
  8794. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8795. iy = mesh_point / x_points_num;
  8796. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8797. float z0 = 0.f;
  8798. current_position[Z_AXIS] = mesh_home_z_search;
  8799. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8800. st_synchronize();
  8801. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8802. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8803. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8804. st_synchronize();
  8805. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8806. break;
  8807. card.closefile();
  8808. }
  8809. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8810. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8811. //strcat(data_wldsd, numb_wldsd);
  8812. //MYSERIAL.println(data_wldsd);
  8813. //_delay(1000);
  8814. //_delay(3000);
  8815. //t1 = _millis();
  8816. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8817. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8818. memset(digit, 0, sizeof(digit));
  8819. //cli();
  8820. digitalWrite(D_REQUIRE, LOW);
  8821. for (int i = 0; i<13; i++)
  8822. {
  8823. //t1 = _millis();
  8824. for (int j = 0; j < 4; j++)
  8825. {
  8826. while (digitalRead(D_DATACLOCK) == LOW) {}
  8827. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8828. bitWrite(digit[i], j, digitalRead(D_DATA));
  8829. }
  8830. //t_delay = (_millis() - t1);
  8831. //SERIAL_PROTOCOLPGM(" ");
  8832. //SERIAL_PROTOCOL_F(t_delay, 5);
  8833. //SERIAL_PROTOCOLPGM(" ");
  8834. }
  8835. //sei();
  8836. digitalWrite(D_REQUIRE, HIGH);
  8837. mergeOutput[0] = '\0';
  8838. output = 0;
  8839. for (int r = 5; r <= 10; r++) //Merge digits
  8840. {
  8841. sprintf(str, "%d", digit[r]);
  8842. strcat(mergeOutput, str);
  8843. }
  8844. output = atof(mergeOutput);
  8845. if (digit[4] == 8) //Handle sign
  8846. {
  8847. output *= -1;
  8848. }
  8849. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8850. {
  8851. output *= 0.1;
  8852. }
  8853. //output = d_ReadData();
  8854. //row[ix] = current_position[Z_AXIS];
  8855. memset(data_wldsd, 0, sizeof(data_wldsd));
  8856. for (int i = 0; i <3; i++) {
  8857. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8858. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8859. strcat(data_wldsd, numb_wldsd);
  8860. strcat(data_wldsd, ";");
  8861. }
  8862. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8863. dtostrf(output, 8, 5, numb_wldsd);
  8864. strcat(data_wldsd, numb_wldsd);
  8865. //strcat(data_wldsd, ";");
  8866. card.write_command(data_wldsd);
  8867. //row[ix] = d_ReadData();
  8868. row[ix] = output; // current_position[Z_AXIS];
  8869. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8870. for (int i = 0; i < x_points_num; i++) {
  8871. SERIAL_PROTOCOLPGM(" ");
  8872. SERIAL_PROTOCOL_F(row[i], 5);
  8873. }
  8874. SERIAL_PROTOCOLPGM("\n");
  8875. }
  8876. custom_message_state--;
  8877. mesh_point++;
  8878. lcd_update(1);
  8879. }
  8880. card.closefile();
  8881. clean_up_after_endstop_move(l_feedmultiply);
  8882. }
  8883. #endif //HEATBED_ANALYSIS
  8884. #ifndef PINDA_THERMISTOR
  8885. static void temp_compensation_start() {
  8886. custom_message_type = CustomMsg::TempCompPreheat;
  8887. custom_message_state = PINDA_HEAT_T + 1;
  8888. lcd_update(2);
  8889. if ((int)degHotend(active_extruder) > extrude_min_temp) {
  8890. current_position[E_AXIS] -= default_retraction;
  8891. }
  8892. plan_buffer_line_curposXYZE(400, active_extruder);
  8893. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8894. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8895. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8896. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8897. st_synchronize();
  8898. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8899. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8900. delay_keep_alive(1000);
  8901. custom_message_state = PINDA_HEAT_T - i;
  8902. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8903. else lcd_update(1);
  8904. }
  8905. custom_message_type = CustomMsg::Status;
  8906. custom_message_state = 0;
  8907. }
  8908. static void temp_compensation_apply() {
  8909. int i_add;
  8910. int z_shift = 0;
  8911. float z_shift_mm;
  8912. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8913. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8914. i_add = (target_temperature_bed - 60) / 10;
  8915. z_shift = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i_add);
  8916. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8917. }else {
  8918. //interpolation
  8919. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8920. }
  8921. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8923. st_synchronize();
  8924. plan_set_z_position(current_position[Z_AXIS]);
  8925. }
  8926. else {
  8927. //we have no temp compensation data
  8928. }
  8929. }
  8930. #endif //ndef PINDA_THERMISTOR
  8931. float temp_comp_interpolation(float inp_temperature) {
  8932. //cubic spline interpolation
  8933. int n, i, j;
  8934. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8935. int shift[10];
  8936. int temp_C[10];
  8937. n = 6; //number of measured points
  8938. shift[0] = 0;
  8939. for (i = 0; i < n; i++) {
  8940. if (i > 0) {
  8941. //read shift in steps from EEPROM
  8942. shift[i] = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  8943. }
  8944. temp_C[i] = 50 + i * 10; //temperature in C
  8945. #ifdef PINDA_THERMISTOR
  8946. constexpr int start_compensating_temp = 35;
  8947. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  8948. #ifdef SUPERPINDA_SUPPORT
  8949. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  8950. #endif //SUPERPINDA_SUPPORT
  8951. #else
  8952. temp_C[i] = 50 + i * 10; //temperature in C
  8953. #endif
  8954. x[i] = (float)temp_C[i];
  8955. f[i] = (float)shift[i];
  8956. }
  8957. if (inp_temperature < x[0]) return 0;
  8958. for (i = n - 1; i>0; i--) {
  8959. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8960. h[i - 1] = x[i] - x[i - 1];
  8961. }
  8962. //*********** formation of h, s , f matrix **************
  8963. for (i = 1; i<n - 1; i++) {
  8964. m[i][i] = 2 * (h[i - 1] + h[i]);
  8965. if (i != 1) {
  8966. m[i][i - 1] = h[i - 1];
  8967. m[i - 1][i] = h[i - 1];
  8968. }
  8969. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8970. }
  8971. //*********** forward elimination **************
  8972. for (i = 1; i<n - 2; i++) {
  8973. temp = (m[i + 1][i] / m[i][i]);
  8974. for (j = 1; j <= n - 1; j++)
  8975. m[i + 1][j] -= temp*m[i][j];
  8976. }
  8977. //*********** backward substitution *********
  8978. for (i = n - 2; i>0; i--) {
  8979. sum = 0;
  8980. for (j = i; j <= n - 2; j++)
  8981. sum += m[i][j] * s[j];
  8982. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8983. }
  8984. for (i = 0; i<n - 1; i++)
  8985. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8986. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8987. b = s[i] / 2;
  8988. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8989. d = f[i];
  8990. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8991. }
  8992. return sum;
  8993. }
  8994. #ifdef PINDA_THERMISTOR
  8995. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8996. {
  8997. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  8998. if (!calibration_status_pinda()) return 0;
  8999. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9000. }
  9001. #endif //PINDA_THERMISTOR
  9002. void long_pause() //long pause print
  9003. {
  9004. st_synchronize();
  9005. start_pause_print = _millis();
  9006. // Stop heaters
  9007. heating_status = HeatingStatus::NO_HEATING;
  9008. setAllTargetHotends(0);
  9009. // Lift z
  9010. raise_z(Z_PAUSE_LIFT);
  9011. // Move XY to side
  9012. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  9013. current_position[X_AXIS] = X_PAUSE_POS;
  9014. current_position[Y_AXIS] = Y_PAUSE_POS;
  9015. plan_buffer_line_curposXYZE(50);
  9016. }
  9017. // did we come here from a thermal error?
  9018. if(get_temp_error()) {
  9019. // time to stop the error beep
  9020. WRITE(BEEPER, LOW);
  9021. } else {
  9022. // Turn off the print fan
  9023. fanSpeed = 0;
  9024. }
  9025. }
  9026. void serialecho_temperatures() {
  9027. float tt = degHotend(active_extruder);
  9028. SERIAL_PROTOCOLPGM("T:");
  9029. SERIAL_PROTOCOL(tt);
  9030. SERIAL_PROTOCOLPGM(" E:");
  9031. SERIAL_PROTOCOL((int)active_extruder);
  9032. SERIAL_PROTOCOLPGM(" B:");
  9033. SERIAL_PROTOCOL_F(degBed(), 1);
  9034. SERIAL_PROTOCOLLN();
  9035. }
  9036. #ifdef UVLO_SUPPORT
  9037. void uvlo_drain_reset()
  9038. {
  9039. // burn all that residual power
  9040. wdt_enable(WDTO_1S);
  9041. WRITE(BEEPER,HIGH);
  9042. lcd_clear();
  9043. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9044. while(1);
  9045. }
  9046. void uvlo_()
  9047. {
  9048. unsigned long time_start = _millis();
  9049. bool sd_print = card.sdprinting;
  9050. // Conserve power as soon as possible.
  9051. #ifdef LCD_BL_PIN
  9052. backlightMode = BACKLIGHT_MODE_DIM;
  9053. backlightLevel_LOW = 0;
  9054. backlight_update();
  9055. #endif //LCD_BL_PIN
  9056. disable_x();
  9057. disable_y();
  9058. #ifdef TMC2130
  9059. tmc2130_set_current_h(Z_AXIS, 20);
  9060. tmc2130_set_current_r(Z_AXIS, 20);
  9061. tmc2130_set_current_h(E_AXIS, 20);
  9062. tmc2130_set_current_r(E_AXIS, 20);
  9063. #endif //TMC2130
  9064. // Stop all heaters
  9065. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9066. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9067. setAllTargetHotends(0);
  9068. setTargetBed(0);
  9069. // Calculate the file position, from which to resume this print.
  9070. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9071. {
  9072. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9073. sd_position -= sdlen_planner;
  9074. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9075. sd_position -= sdlen_cmdqueue;
  9076. if (sd_position < 0) sd_position = 0;
  9077. }
  9078. // save the global state at planning time
  9079. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9080. uint16_t feedrate_bckp;
  9081. if (current_block && !pos_invalid)
  9082. {
  9083. memcpy(saved_start_position, current_block->gcode_start_position, sizeof(saved_start_position));
  9084. feedrate_bckp = current_block->gcode_feedrate;
  9085. saved_segment_idx = current_block->segment_idx;
  9086. }
  9087. else
  9088. {
  9089. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  9090. feedrate_bckp = feedrate;
  9091. saved_segment_idx = 0;
  9092. }
  9093. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9094. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9095. // get the physical Z for further manipulation.
  9096. bool mbl_was_active = mbl.active;
  9097. mbl.active = false;
  9098. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9099. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9100. // are in action.
  9101. planner_abort_hard();
  9102. // Store the print logical Z position, which we need to recover (a slight error here would be
  9103. // recovered on the next Gcode instruction, while a physical location error would not)
  9104. float logical_z = current_position[Z_AXIS];
  9105. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9106. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9107. // Store the print E position before we lose track
  9108. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9109. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9110. // Clean the input command queue, inhibit serial processing using saved_printing
  9111. cmdqueue_reset();
  9112. card.sdprinting = false;
  9113. saved_printing = true;
  9114. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9115. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9116. planner_aborted = false;
  9117. sei();
  9118. // Retract
  9119. current_position[E_AXIS] -= default_retraction;
  9120. plan_buffer_line_curposXYZE(95);
  9121. st_synchronize();
  9122. disable_e0();
  9123. // Read out the current Z motor microstep counter to move the axis up towards
  9124. // a full step before powering off. NOTE: we need to ensure to schedule more
  9125. // than "dropsegments" steps in order to move (this is always the case here
  9126. // due to UVLO_Z_AXIS_SHIFT being used)
  9127. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9128. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9129. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9130. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9131. + UVLO_Z_AXIS_SHIFT;
  9132. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9133. st_synchronize();
  9134. poweroff_z();
  9135. // Write the file position.
  9136. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9137. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9138. for (uint8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9139. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9140. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9141. // Scale the z value to 1u resolution.
  9142. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9143. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9144. }
  9145. // Write the _final_ Z position and motor microstep counter (unused).
  9146. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9147. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9148. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9149. // Store the current position.
  9150. if (pos_invalid)
  9151. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), X_COORD_INVALID);
  9152. else
  9153. {
  9154. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9155. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9156. }
  9157. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9158. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9159. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9160. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9161. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9162. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9163. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9164. #if EXTRUDERS > 1
  9165. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9166. #if EXTRUDERS > 2
  9167. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9168. #endif
  9169. #endif
  9170. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9171. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9172. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9173. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9174. // Store the saved target
  9175. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+0*4), saved_start_position[X_AXIS]);
  9176. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+1*4), saved_start_position[Y_AXIS]);
  9177. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+2*4), saved_start_position[Z_AXIS]);
  9178. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+3*4), saved_start_position[E_AXIS]);
  9179. eeprom_update_word((uint16_t*)EEPROM_UVLO_SAVED_SEGMENT_IDX, saved_segment_idx);
  9180. #ifdef LIN_ADVANCE
  9181. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9182. #endif
  9183. // Finaly store the "power outage" flag.
  9184. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9185. // Increment power failure counter
  9186. eeprom_increment_byte((uint8_t*)EEPROM_POWER_COUNT);
  9187. eeprom_increment_word((uint16_t*)EEPROM_POWER_COUNT_TOT);
  9188. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9189. WRITE(BEEPER,HIGH);
  9190. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9191. poweron_z();
  9192. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9193. plan_buffer_line_curposXYZE(500);
  9194. st_synchronize();
  9195. wdt_enable(WDTO_1S);
  9196. while(1);
  9197. }
  9198. void uvlo_tiny()
  9199. {
  9200. unsigned long time_start = _millis();
  9201. // Conserve power as soon as possible.
  9202. disable_x();
  9203. disable_y();
  9204. disable_e0();
  9205. #ifdef TMC2130
  9206. tmc2130_set_current_h(Z_AXIS, 20);
  9207. tmc2130_set_current_r(Z_AXIS, 20);
  9208. #endif //TMC2130
  9209. // Stop all heaters
  9210. setAllTargetHotends(0);
  9211. setTargetBed(0);
  9212. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9213. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9214. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9215. // Disable MBL (if not already) to work with physical coordinates.
  9216. mbl.active = false;
  9217. planner_abort_hard();
  9218. // Allow for small roundoffs to be ignored
  9219. if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9220. {
  9221. // Clean the input command queue, inhibit serial processing using saved_printing
  9222. cmdqueue_reset();
  9223. card.sdprinting = false;
  9224. saved_printing = true;
  9225. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9226. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9227. planner_aborted = false;
  9228. sei();
  9229. // The axis was moved: adjust Z as done on a regular UVLO.
  9230. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9231. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9232. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9233. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9234. + UVLO_TINY_Z_AXIS_SHIFT;
  9235. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9236. st_synchronize();
  9237. poweroff_z();
  9238. // Update Z position
  9239. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9240. // Update the _final_ Z motor microstep counter (unused).
  9241. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9242. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9243. }
  9244. // Update the the "power outage" flag.
  9245. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9246. // Increment power failure counter
  9247. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9248. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9249. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9250. uvlo_drain_reset();
  9251. }
  9252. #endif //UVLO_SUPPORT
  9253. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9254. void setup_fan_interrupt() {
  9255. //INT7
  9256. DDRE &= ~(1 << 7); //input pin
  9257. PORTE &= ~(1 << 7); //no internal pull-up
  9258. //start with sensing rising edge
  9259. EICRB &= ~(1 << 6);
  9260. EICRB |= (1 << 7);
  9261. //enable INT7 interrupt
  9262. EIMSK |= (1 << 7);
  9263. }
  9264. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9265. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9266. ISR(INT7_vect) {
  9267. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9268. #ifdef FAN_SOFT_PWM
  9269. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9270. #else //FAN_SOFT_PWM
  9271. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9272. #endif //FAN_SOFT_PWM
  9273. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9274. t_fan_rising_edge = millis_nc();
  9275. }
  9276. else { //interrupt was triggered by falling edge
  9277. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9278. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9279. }
  9280. }
  9281. EICRB ^= (1 << 6); //change edge
  9282. }
  9283. #endif
  9284. #ifdef UVLO_SUPPORT
  9285. void setup_uvlo_interrupt() {
  9286. DDRE &= ~(1 << 4); //input pin
  9287. PORTE &= ~(1 << 4); //no internal pull-up
  9288. // sensing falling edge
  9289. EICRB |= (1 << 0);
  9290. EICRB &= ~(1 << 1);
  9291. // enable INT4 interrupt
  9292. EIMSK |= (1 << 4);
  9293. // check if power was lost before we armed the interrupt
  9294. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9295. {
  9296. SERIAL_ECHOLNPGM("INT4");
  9297. uvlo_drain_reset();
  9298. }
  9299. }
  9300. ISR(INT4_vect) {
  9301. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9302. SERIAL_ECHOLNPGM("INT4");
  9303. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9304. if(printer_active() && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9305. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9306. }
  9307. void recover_print(uint8_t automatic) {
  9308. char cmd[30];
  9309. lcd_update_enable(true);
  9310. lcd_update(2);
  9311. lcd_setstatuspgm(_i("Recovering print"));////MSG_RECOVERING_PRINT c=20
  9312. // Recover position, temperatures and extrude_multipliers
  9313. bool mbl_was_active = recover_machine_state_after_power_panic();
  9314. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9315. // and second also so one may remove the excess priming material.
  9316. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9317. {
  9318. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9319. enquecommand(cmd);
  9320. }
  9321. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9322. // transformation status. G28 will not touch Z when MBL is off.
  9323. enquecommand_P(PSTR("G28 X Y"));
  9324. // Set the target bed and nozzle temperatures and wait.
  9325. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9326. enquecommand(cmd);
  9327. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  9328. enquecommand(cmd);
  9329. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9330. enquecommand(cmd);
  9331. enquecommand_P(PSTR("M83")); //E axis relative mode
  9332. // If not automatically recoreverd (long power loss)
  9333. if(automatic == 0){
  9334. //Extrude some filament to stabilize the pressure
  9335. enquecommand_P(PSTR("G1 E5 F120"));
  9336. // Retract to be consistent with a short pause
  9337. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9338. enquecommand(cmd);
  9339. }
  9340. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9341. // Restart the print.
  9342. restore_print_from_eeprom(mbl_was_active);
  9343. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9344. }
  9345. bool recover_machine_state_after_power_panic()
  9346. {
  9347. // 1) Preset some dummy values for the XY axes
  9348. current_position[X_AXIS] = 0;
  9349. current_position[Y_AXIS] = 0;
  9350. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9351. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9352. bool mbl_was_active = false;
  9353. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9354. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9355. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9356. // Scale the z value to 10u resolution.
  9357. int16_t v;
  9358. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9359. if (v != 0)
  9360. mbl_was_active = true;
  9361. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9362. }
  9363. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9364. // The current position after power panic is moved to the next closest 0th full step.
  9365. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9366. // Recover last E axis position
  9367. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9368. // 3) Initialize the logical to physical coordinate system transformation.
  9369. world2machine_initialize();
  9370. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9371. // print_mesh_bed_leveling_table();
  9372. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9373. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9374. babystep_load();
  9375. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9376. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9377. clamp_to_software_endstops(current_position);
  9378. set_destination_to_current();
  9379. plan_set_position_curposXYZE();
  9380. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9381. print_world_coordinates();
  9382. // 6) Power up the Z motors, mark their positions as known.
  9383. axis_known_position[Z_AXIS] = true;
  9384. enable_z();
  9385. // 7) Recover the target temperatures.
  9386. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9387. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9388. // 8) Recover extruder multipilers
  9389. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9390. #if EXTRUDERS > 1
  9391. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9392. #if EXTRUDERS > 2
  9393. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9394. #endif
  9395. #endif
  9396. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9397. // 9) Recover the saved target
  9398. saved_start_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+0*4));
  9399. saved_start_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+1*4));
  9400. saved_start_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+2*4));
  9401. saved_start_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+3*4));
  9402. saved_segment_idx = eeprom_read_word((uint16_t*)EEPROM_UVLO_SAVED_SEGMENT_IDX);
  9403. #ifdef LIN_ADVANCE
  9404. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9405. #endif
  9406. return mbl_was_active;
  9407. }
  9408. void restore_print_from_eeprom(bool mbl_was_active) {
  9409. int feedrate_rec;
  9410. int feedmultiply_rec;
  9411. uint8_t fan_speed_rec;
  9412. char cmd[48];
  9413. char filename[FILENAME_LENGTH];
  9414. uint8_t depth = 0;
  9415. char dir_name[9];
  9416. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9417. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9418. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9419. SERIAL_ECHOPGM("Feedrate:");
  9420. MYSERIAL.print(feedrate_rec);
  9421. SERIAL_ECHOPGM(", feedmultiply:");
  9422. MYSERIAL.println(feedmultiply_rec);
  9423. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9424. MYSERIAL.println(int(depth));
  9425. for (uint8_t i = 0; i < depth; i++) {
  9426. for (uint8_t j = 0; j < 8; j++) {
  9427. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9428. }
  9429. dir_name[8] = '\0';
  9430. MYSERIAL.println(dir_name);
  9431. // strcpy(card.dir_names[i], dir_name);
  9432. card.chdir(dir_name, false);
  9433. }
  9434. for (uint8_t i = 0; i < 8; i++) {
  9435. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9436. }
  9437. filename[8] = '\0';
  9438. MYSERIAL.print(filename);
  9439. strcat_P(filename, PSTR(".gco"));
  9440. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9441. enquecommand(cmd);
  9442. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9443. SERIAL_ECHOPGM("Position read from eeprom:");
  9444. MYSERIAL.println(position);
  9445. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9446. // without shifting Z along the way. This requires performing the move without mbl.
  9447. float pos_x = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9448. float pos_y = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9449. if (pos_x != X_COORD_INVALID)
  9450. {
  9451. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"), pos_x, pos_y);
  9452. enquecommand(cmd);
  9453. }
  9454. // Enable MBL and switch to logical positioning
  9455. if (mbl_was_active)
  9456. enquecommand_P(PSTR("PRUSA MBL V1"));
  9457. // Move the Z axis down to the print, in logical coordinates.
  9458. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9459. enquecommand(cmd);
  9460. // Restore acceleration settings
  9461. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9462. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9463. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9464. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9465. enquecommand(cmd);
  9466. // Unretract.
  9467. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9468. enquecommand(cmd);
  9469. // Recover final E axis position and mode
  9470. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9471. sprintf_P(cmd, PSTR("G92 E%6.3f"), pos_e);
  9472. enquecommand(cmd);
  9473. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9474. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9475. // Set the feedrates saved at the power panic.
  9476. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9477. enquecommand(cmd);
  9478. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9479. enquecommand(cmd);
  9480. // Set the fan speed saved at the power panic.
  9481. sprintf_P(cmd, PSTR("M106 S%u"), fan_speed_rec);
  9482. enquecommand(cmd);
  9483. // Set a position in the file.
  9484. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9485. enquecommand(cmd);
  9486. enquecommand_P(PSTR("G4 S0"));
  9487. enquecommand_P(PSTR("PRUSA uvlo"));
  9488. }
  9489. #endif //UVLO_SUPPORT
  9490. //! @brief Immediately stop print moves
  9491. //!
  9492. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9493. //! If printing from sd card, position in file is saved.
  9494. //! If printing from USB, line number is saved.
  9495. //!
  9496. //! @param z_move
  9497. //! @param e_move
  9498. void stop_and_save_print_to_ram(float z_move, float e_move)
  9499. {
  9500. if (saved_printing) return;
  9501. #if 0
  9502. unsigned char nplanner_blocks;
  9503. #endif
  9504. unsigned char nlines;
  9505. uint16_t sdlen_planner;
  9506. uint16_t sdlen_cmdqueue;
  9507. cli();
  9508. if (card.sdprinting) {
  9509. #if 0
  9510. nplanner_blocks = number_of_blocks();
  9511. #endif
  9512. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9513. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9514. saved_sdpos -= sdlen_planner;
  9515. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9516. saved_sdpos -= sdlen_cmdqueue;
  9517. saved_printing_type = PRINTING_TYPE_SD;
  9518. }
  9519. else if (usb_timer.running()) { //reuse saved_sdpos for storing line number
  9520. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9521. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9522. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9523. saved_sdpos -= nlines;
  9524. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9525. saved_printing_type = PRINTING_TYPE_USB;
  9526. }
  9527. else {
  9528. saved_printing_type = PRINTING_TYPE_NONE;
  9529. //not sd printing nor usb printing
  9530. }
  9531. #if 0
  9532. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9533. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9534. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9535. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9536. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9537. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9538. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9539. {
  9540. card.setIndex(saved_sdpos);
  9541. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9542. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9543. MYSERIAL.print(char(card.get()));
  9544. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9545. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9546. MYSERIAL.print(char(card.get()));
  9547. SERIAL_ECHOLNPGM("End of command buffer");
  9548. }
  9549. {
  9550. // Print the content of the planner buffer, line by line:
  9551. card.setIndex(saved_sdpos);
  9552. int8_t iline = 0;
  9553. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9554. SERIAL_ECHOPGM("Planner line (from file): ");
  9555. MYSERIAL.print(int(iline), DEC);
  9556. SERIAL_ECHOPGM(", length: ");
  9557. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9558. SERIAL_ECHOPGM(", steps: (");
  9559. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9560. SERIAL_ECHOPGM(",");
  9561. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9562. SERIAL_ECHOPGM(",");
  9563. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9564. SERIAL_ECHOPGM(",");
  9565. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9566. SERIAL_ECHOPGM("), events: ");
  9567. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9568. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9569. MYSERIAL.print(char(card.get()));
  9570. }
  9571. }
  9572. {
  9573. // Print the content of the command buffer, line by line:
  9574. int8_t iline = 0;
  9575. union {
  9576. struct {
  9577. char lo;
  9578. char hi;
  9579. } lohi;
  9580. uint16_t value;
  9581. } sdlen_single;
  9582. int _bufindr = bufindr;
  9583. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9584. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9585. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9586. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9587. }
  9588. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9589. MYSERIAL.print(int(iline), DEC);
  9590. SERIAL_ECHOPGM(", type: ");
  9591. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9592. SERIAL_ECHOPGM(", len: ");
  9593. MYSERIAL.println(sdlen_single.value, DEC);
  9594. // Print the content of the buffer line.
  9595. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9596. SERIAL_ECHOPGM("Buffer line (from file): ");
  9597. MYSERIAL.println(int(iline), DEC);
  9598. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9599. MYSERIAL.print(char(card.get()));
  9600. if (-- _buflen == 0)
  9601. break;
  9602. // First skip the current command ID and iterate up to the end of the string.
  9603. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9604. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9605. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9606. // If the end of the buffer was empty,
  9607. if (_bufindr == sizeof(cmdbuffer)) {
  9608. // skip to the start and find the nonzero command.
  9609. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9610. }
  9611. }
  9612. }
  9613. #endif
  9614. // save the global state at planning time
  9615. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9616. if (current_block && !pos_invalid)
  9617. {
  9618. memcpy(saved_start_position, current_block->gcode_start_position, sizeof(saved_start_position));
  9619. saved_feedrate2 = current_block->gcode_feedrate;
  9620. saved_segment_idx = current_block->segment_idx;
  9621. // printf_P(PSTR("stop_and_save_print_to_ram: %f, %f, %f, %f, %u\n"), saved_start_position[0], saved_start_position[1], saved_start_position[2], saved_start_position[3], saved_segment_idx);
  9622. }
  9623. else
  9624. {
  9625. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  9626. saved_feedrate2 = feedrate;
  9627. saved_segment_idx = 0;
  9628. }
  9629. planner_abort_hard(); //abort printing
  9630. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9631. if (pos_invalid) saved_pos[X_AXIS] = X_COORD_INVALID;
  9632. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9633. saved_extruder_temperature = degTargetHotend(active_extruder);
  9634. saved_bed_temperature = degTargetBed();
  9635. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9636. saved_fan_speed = fanSpeed;
  9637. cmdqueue_reset(); //empty cmdqueue
  9638. card.sdprinting = false;
  9639. // card.closefile();
  9640. saved_printing = true;
  9641. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9642. st_reset_timer();
  9643. sei();
  9644. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9645. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9646. // the caller can continue processing. This is used during powerpanic to save the state as we
  9647. // move away from the print.
  9648. char buf[48];
  9649. if(e_move)
  9650. {
  9651. // First unretract (relative extrusion)
  9652. if(!saved_extruder_relative_mode){
  9653. enquecommand(PSTR("M83"), true);
  9654. }
  9655. //retract 45mm/s
  9656. // A single sprintf may not be faster, but is definitely 20B shorter
  9657. // than a sequence of commands building the string piece by piece
  9658. // A snprintf would have been a safer call, but since it is not used
  9659. // in the whole program, its implementation would bring more bytes to the total size
  9660. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9661. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9662. enquecommand(buf, false);
  9663. }
  9664. if(z_move)
  9665. {
  9666. // Then lift Z axis
  9667. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9668. enquecommand(buf, false);
  9669. }
  9670. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9671. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9672. repeatcommand_front();
  9673. }
  9674. }
  9675. void restore_extruder_temperature_from_ram() {
  9676. if (degTargetHotend(active_extruder) != saved_extruder_temperature)
  9677. {
  9678. setTargetHotendSafe(saved_extruder_temperature, active_extruder);
  9679. heating_status = HeatingStatus::EXTRUDER_HEATING;
  9680. wait_for_heater(_millis(), active_extruder);
  9681. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  9682. }
  9683. }
  9684. //! @brief Restore print from ram
  9685. //!
  9686. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9687. //! print fan speed, waits for extruder temperature restore, then restores
  9688. //! position and continues print moves.
  9689. //!
  9690. //! Internally lcd_update() is called by wait_for_heater().
  9691. //!
  9692. //! @param e_move
  9693. void restore_print_from_ram_and_continue(float e_move)
  9694. {
  9695. if (!saved_printing) return;
  9696. #ifdef FANCHECK
  9697. // Do not allow resume printing if fans are still not ok
  9698. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9699. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9700. #endif
  9701. // Make sure fan is turned off
  9702. fanSpeed = 0;
  9703. // restore bed temperature (bed can be disabled during a thermal warning)
  9704. if (degBed() != saved_bed_temperature)
  9705. setTargetBed(saved_bed_temperature);
  9706. restore_extruder_temperature_from_ram();
  9707. // Restore saved fan speed
  9708. fanSpeed = saved_fan_speed;
  9709. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  9710. float e = saved_pos[E_AXIS] - e_move;
  9711. plan_set_e_position(e);
  9712. #ifdef FANCHECK
  9713. fans_check_enabled = false;
  9714. #endif
  9715. // do not restore XY for commands that do not require that
  9716. if (saved_pos[X_AXIS] == X_COORD_INVALID)
  9717. {
  9718. saved_pos[X_AXIS] = current_position[X_AXIS];
  9719. saved_pos[Y_AXIS] = current_position[Y_AXIS];
  9720. }
  9721. //first move print head in XY to the saved position:
  9722. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9723. //then move Z
  9724. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9725. //and finaly unretract (35mm/s)
  9726. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9727. st_synchronize();
  9728. #ifdef FANCHECK
  9729. fans_check_enabled = true;
  9730. #endif
  9731. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9732. feedrate = saved_feedrate2;
  9733. feedmultiply = saved_feedmultiply2;
  9734. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9735. set_destination_to_current();
  9736. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9737. card.setIndex(saved_sdpos);
  9738. sdpos_atomic = saved_sdpos;
  9739. card.sdprinting = true;
  9740. }
  9741. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9742. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9743. serial_count = 0;
  9744. FlushSerialRequestResend();
  9745. }
  9746. else {
  9747. //not sd printing nor usb printing
  9748. }
  9749. lcd_setstatuspgm(MSG_WELCOME);
  9750. saved_printing_type = PRINTING_TYPE_NONE;
  9751. saved_printing = false;
  9752. planner_aborted = true; // unroll the stack
  9753. }
  9754. // Cancel the state related to a currently saved print
  9755. void cancel_saved_printing()
  9756. {
  9757. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  9758. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  9759. saved_printing_type = PRINTING_TYPE_NONE;
  9760. saved_printing = false;
  9761. }
  9762. void print_world_coordinates()
  9763. {
  9764. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9765. }
  9766. void print_physical_coordinates()
  9767. {
  9768. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9769. }
  9770. void print_mesh_bed_leveling_table()
  9771. {
  9772. SERIAL_ECHOPGM("mesh bed leveling: ");
  9773. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9774. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9775. MYSERIAL.print(mbl.z_values[y][x], 3);
  9776. SERIAL_ECHO(' ');
  9777. }
  9778. SERIAL_ECHOLN();
  9779. }
  9780. uint8_t calc_percent_done()
  9781. {
  9782. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9783. uint8_t percent_done = 0;
  9784. #ifdef TMC2130
  9785. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  9786. {
  9787. percent_done = print_percent_done_normal;
  9788. }
  9789. else if (print_percent_done_silent <= 100)
  9790. {
  9791. percent_done = print_percent_done_silent;
  9792. }
  9793. #else
  9794. if (print_percent_done_normal <= 100)
  9795. {
  9796. percent_done = print_percent_done_normal;
  9797. }
  9798. #endif //TMC2130
  9799. else
  9800. {
  9801. percent_done = card.percentDone();
  9802. }
  9803. return percent_done;
  9804. }
  9805. static void print_time_remaining_init()
  9806. {
  9807. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9808. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9809. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9810. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9811. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  9812. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  9813. }
  9814. void load_filament_final_feed()
  9815. {
  9816. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9817. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  9818. }
  9819. //! @brief Wait for user to check the state
  9820. //! @par nozzle_temp nozzle temperature to load filament
  9821. void M600_check_state(float nozzle_temp)
  9822. {
  9823. uint8_t lcd_change_filament_state = 0;
  9824. while (lcd_change_filament_state != 1)
  9825. {
  9826. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9827. lcd_change_filament_state = lcd_alright();
  9828. KEEPALIVE_STATE(IN_HANDLER);
  9829. switch(lcd_change_filament_state)
  9830. {
  9831. // Filament failed to load so load it again
  9832. case 2:
  9833. if (MMU2::mmu2.Enabled()){
  9834. // Unload filament
  9835. mmu_M600_unload_filament();
  9836. // Ask to remove any old filament and load new
  9837. mmu_M600_wait_and_beep();
  9838. // After user clicks knob, MMU will load the filament
  9839. mmu_M600_load_filament(false, nozzle_temp);
  9840. } else {
  9841. M600_load_filament_movements();
  9842. }
  9843. break;
  9844. // Filament loaded properly but color is not clear
  9845. case 3:
  9846. st_synchronize();
  9847. load_filament_final_feed();
  9848. lcd_loading_color();
  9849. st_synchronize();
  9850. break;
  9851. // Everything good
  9852. default:
  9853. lcd_change_success();
  9854. break;
  9855. }
  9856. }
  9857. }
  9858. //! @brief Wait for user action
  9859. //!
  9860. //! Beep, manage nozzle heater and wait for user to start unload filament
  9861. //! If times out, active extruder temperature is set to 0.
  9862. //!
  9863. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9864. void M600_wait_for_user(float HotendTempBckp) {
  9865. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9866. int counterBeep = 0;
  9867. unsigned long waiting_start_time = _millis();
  9868. uint8_t wait_for_user_state = 0;
  9869. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9870. bool bFirst=true;
  9871. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9872. manage_heater();
  9873. manage_inactivity(true);
  9874. #if BEEPER > 0
  9875. if (counterBeep == 500) {
  9876. counterBeep = 0;
  9877. }
  9878. SET_OUTPUT(BEEPER);
  9879. if (counterBeep == 0) {
  9880. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9881. {
  9882. bFirst=false;
  9883. WRITE(BEEPER, HIGH);
  9884. }
  9885. }
  9886. if (counterBeep == 20) {
  9887. WRITE(BEEPER, LOW);
  9888. }
  9889. counterBeep++;
  9890. #endif //BEEPER > 0
  9891. switch (wait_for_user_state) {
  9892. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9893. delay_keep_alive(4);
  9894. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9895. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9896. wait_for_user_state = 1;
  9897. setAllTargetHotends(0);
  9898. st_synchronize();
  9899. disable_e0();
  9900. disable_e1();
  9901. disable_e2();
  9902. }
  9903. break;
  9904. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9905. delay_keep_alive(4);
  9906. if (lcd_clicked()) {
  9907. setTargetHotend(HotendTempBckp, active_extruder);
  9908. lcd_wait_for_heater();
  9909. wait_for_user_state = 2;
  9910. }
  9911. break;
  9912. case 2: //waiting for nozzle to reach target temperature
  9913. if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9914. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9915. waiting_start_time = _millis();
  9916. wait_for_user_state = 0;
  9917. }
  9918. else {
  9919. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9920. lcd_set_cursor(1, 4);
  9921. lcd_printf_P(PSTR("%3d"), (int16_t)degHotend(active_extruder));
  9922. }
  9923. break;
  9924. }
  9925. }
  9926. WRITE(BEEPER, LOW);
  9927. }
  9928. void M600_load_filament_movements()
  9929. {
  9930. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED;
  9931. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  9932. load_filament_final_feed();
  9933. lcd_loading_filament();
  9934. st_synchronize();
  9935. }
  9936. void M600_load_filament() {
  9937. //load filament for single material and MMU
  9938. lcd_wait_interact();
  9939. //load_filament_time = _millis();
  9940. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9941. while(!lcd_clicked())
  9942. {
  9943. manage_heater();
  9944. manage_inactivity(true);
  9945. #ifdef FILAMENT_SENSOR
  9946. if (fsensor.getFilamentLoadEvent()) {
  9947. Sound_MakeCustom(50,1000,false);
  9948. break;
  9949. }
  9950. #endif //FILAMENT_SENSOR
  9951. }
  9952. KEEPALIVE_STATE(IN_HANDLER);
  9953. M600_load_filament_movements();
  9954. Sound_MakeCustom(50,1000,false);
  9955. lcd_update_enable(false);
  9956. }
  9957. //! @brief Wait for click
  9958. //!
  9959. //! Set
  9960. void marlin_wait_for_click()
  9961. {
  9962. int8_t busy_state_backup = busy_state;
  9963. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9964. lcd_consume_click();
  9965. while(!lcd_clicked())
  9966. {
  9967. manage_heater();
  9968. manage_inactivity(true);
  9969. lcd_update(0);
  9970. }
  9971. KEEPALIVE_STATE(busy_state_backup);
  9972. }
  9973. #ifdef PSU_Delta
  9974. bool bEnableForce_z;
  9975. void init_force_z()
  9976. {
  9977. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9978. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9979. disable_force_z();
  9980. }
  9981. void check_force_z()
  9982. {
  9983. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9984. init_force_z(); // causes enforced switching into disable-state
  9985. }
  9986. void disable_force_z()
  9987. {
  9988. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9989. bEnableForce_z=false;
  9990. // switching to silent mode
  9991. #ifdef TMC2130
  9992. tmc2130_mode=TMC2130_MODE_SILENT;
  9993. update_mode_profile();
  9994. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  9995. #endif // TMC2130
  9996. }
  9997. void enable_force_z()
  9998. {
  9999. if(bEnableForce_z)
  10000. return; // motor already enabled (may be ;-p )
  10001. bEnableForce_z=true;
  10002. // mode recovering
  10003. #ifdef TMC2130
  10004. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10005. update_mode_profile();
  10006. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10007. #endif // TMC2130
  10008. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10009. }
  10010. #endif // PSU_Delta