123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /*
- motion_control.c - high level interface for issuing motion commands
- Part of Grbl
- Copyright (c) 2009-2011 Simen Svale Skogsrud
- Copyright (c) 2011 Sungeun K. Jeon
- Copyright (c) 2020 Brad Hochgesang
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "Marlin.h"
- #include "stepper.h"
- #include "planner.h"
- // The arc is approximated by generating a huge number of tiny, linear segments. The length of each
- // segment is configured in settings.mm_per_arc_segment.
- void mc_arc(const float* position, float* target, const float* offset, float feed_rate, float radius, bool isclockwise, uint8_t extruder, uint16_t start_segment_idx)
- {
- float start_position[4];
- memcpy(start_position, position, sizeof(start_position));
-
- float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
- float r_axis_y = -offset[Y_AXIS];
- float center_axis_x = start_position[X_AXIS] - r_axis_x;
- float center_axis_y = start_position[Y_AXIS] - r_axis_y;
- float travel_z = target[Z_AXIS] - start_position[Z_AXIS];
- float rt_x = target[X_AXIS] - center_axis_x;
- float rt_y = target[Y_AXIS] - center_axis_y;
- // 20200419 - Add a variable that will be used to hold the arc segment length
- float mm_per_arc_segment = cs.mm_per_arc_segment;
- // 20210109 - Add a variable to hold the n_arc_correction value
- unsigned char n_arc_correction = cs.n_arc_correction;
- // CCW angle between start_position and target from circle center. Only one atan2() trig computation required.
- float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
- if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
- if (cs.min_arc_segments > 0)
- {
- // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
- // Do this before converting the angular travel for clockwise rotation
- mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
- }
- if (cs.arc_segments_per_sec > 0)
- {
- // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
- float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
- if (mm_per_arc_segment_sec < mm_per_arc_segment)
- mm_per_arc_segment = mm_per_arc_segment_sec;
- }
- // Note: no need to check to see if min_mm_per_arc_segment is enabled or not (i.e. = 0), since mm_per_arc_segment can never be below 0.
- if (mm_per_arc_segment < cs.min_mm_per_arc_segment)
- {
- // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
- // This prevents a very high number of segments from being generated for curves of a short radius
- mm_per_arc_segment = cs.min_mm_per_arc_segment;
- }
- else if (mm_per_arc_segment > cs.mm_per_arc_segment) {
- // 20210113 - This can be implemented in an else if since we can't be below the min AND above the max at the same time.
- // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
- mm_per_arc_segment = cs.mm_per_arc_segment;
- }
- // Adjust the angular travel if the direction is clockwise
- if (isclockwise) { angular_travel_total -= 2 * M_PI; }
- //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
- //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
- if (start_position[X_AXIS] == target[X_AXIS] && start_position[Y_AXIS] == target[Y_AXIS] && angular_travel_total == 0)
- {
- angular_travel_total += 2 * M_PI;
- }
- //end fix G03
- // 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
- // calculating here
- const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
- if (millimeters_of_travel_arc < 0.001) { return; }
-
- // Calculate the number of arc segments
- unsigned short segments = static_cast<unsigned short>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
- /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
- and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
- r_T = [cos(phi) -sin(phi);
- sin(phi) cos(phi] * r ;
- For arc generation, the center of the circle is the axis of rotation and the radius vector is
- defined from the circle center to the initial position. Each line segment is formed by successive
- vector rotations. This requires only two cos() and sin() computations to form the rotation
- matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
- all double numbers are single precision on the Arduino. (True double precision will not have
- round off issues for CNC applications.) Single precision error can accumulate to be greater than
- tool precision in some cases. Therefore, arc path correction is implemented.
- The small angle approximation was removed because of excessive errors for small circles (perhaps unique to
- 3d printing applications, causing significant path deviation and extrusion issues).
- Now there will be no corrections applied, but an accurate initial sin and cos will be calculated.
- This seems to work with a very high degree of accuracy and results in much simpler code.
- Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
- arc when using the previous approximation, would be beneficial.
- */
- // If there is only one segment, no need to do a bunch of work since this is a straight line!
- if (segments > 1 && start_segment_idx)
- {
- // Calculate theta per segments, and linear (z) travel per segment, e travel per segment
- // as well as the small angle approximation for sin and cos.
- const float theta_per_segment = angular_travel_total / segments,
- linear_per_segment = travel_z / (segments),
- segment_extruder_travel = (target[E_AXIS] - start_position[E_AXIS]) / (segments),
- sq_theta_per_segment = theta_per_segment * theta_per_segment,
- sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
- cos_T = 1 - 0.5f * sq_theta_per_segment;
- // Loop through all but one of the segments. The last one can be done simply
- // by moving to the target.
- for (uint16_t i = 1; i < segments; i++) {
- if (n_arc_correction-- == 0) {
- // Calculate the actual position for r_axis_x and r_axis_y
- const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
- r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
- r_axis_y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
- // reset n_arc_correction
- n_arc_correction = cs.n_arc_correction;
- }
- else {
- // Calculate X and Y using the small angle approximation
- const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
- r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
- r_axis_y = r_axisi;
- }
- // Update Position
- start_position[X_AXIS] = center_axis_x + r_axis_x;
- start_position[Y_AXIS] = center_axis_y + r_axis_y;
- start_position[Z_AXIS] += linear_per_segment;
- start_position[E_AXIS] += segment_extruder_travel;
- // Clamp to the calculated position.
- clamp_to_software_endstops(start_position);
- // Insert the segment into the buffer
- if (i >= start_segment_idx)
- plan_buffer_line(start_position[X_AXIS], start_position[Y_AXIS], start_position[Z_AXIS], start_position[E_AXIS], feed_rate, extruder, position, i);
- // Handle the situation where the planner is aborted hard.
- if (planner_aborted)
- return;
- }
- }
- // Clamp to the target position.
- clamp_to_software_endstops(target);
- // Ensure last segment arrives at target location.
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder, position, 0);
- }
|