Marlin_main.cpp 249 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #endif //PAT9125
  58. #ifdef TMC2130
  59. #include "tmc2130.h"
  60. #endif //TMC2130
  61. #ifdef BLINKM
  62. #include "BlinkM.h"
  63. #include "Wire.h"
  64. #endif
  65. #ifdef ULTRALCD
  66. #include "ultralcd.h"
  67. #endif
  68. #if NUM_SERVOS > 0
  69. #include "Servo.h"
  70. #endif
  71. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  72. #include <SPI.h>
  73. #endif
  74. #define VERSION_STRING "1.0.2"
  75. #include "ultralcd.h"
  76. #include "cmdqueue.h"
  77. // Macros for bit masks
  78. #define BIT(b) (1<<(b))
  79. #define TEST(n,b) (((n)&BIT(b))!=0)
  80. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  81. //Macro for print fan speed
  82. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  83. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  84. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  85. //Implemented Codes
  86. //-------------------
  87. // PRUSA CODES
  88. // P F - Returns FW versions
  89. // P R - Returns revision of printer
  90. // G0 -> G1
  91. // G1 - Coordinated Movement X Y Z E
  92. // G2 - CW ARC
  93. // G3 - CCW ARC
  94. // G4 - Dwell S<seconds> or P<milliseconds>
  95. // G10 - retract filament according to settings of M207
  96. // G11 - retract recover filament according to settings of M208
  97. // G28 - Home all Axis
  98. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  99. // G30 - Single Z Probe, probes bed at current XY location.
  100. // G31 - Dock sled (Z_PROBE_SLED only)
  101. // G32 - Undock sled (Z_PROBE_SLED only)
  102. // G80 - Automatic mesh bed leveling
  103. // G81 - Print bed profile
  104. // G90 - Use Absolute Coordinates
  105. // G91 - Use Relative Coordinates
  106. // G92 - Set current position to coordinates given
  107. // M Codes
  108. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  109. // M1 - Same as M0
  110. // M17 - Enable/Power all stepper motors
  111. // M18 - Disable all stepper motors; same as M84
  112. // M20 - List SD card
  113. // M21 - Init SD card
  114. // M22 - Release SD card
  115. // M23 - Select SD file (M23 filename.g)
  116. // M24 - Start/resume SD print
  117. // M25 - Pause SD print
  118. // M26 - Set SD position in bytes (M26 S12345)
  119. // M27 - Report SD print status
  120. // M28 - Start SD write (M28 filename.g)
  121. // M29 - Stop SD write
  122. // M30 - Delete file from SD (M30 filename.g)
  123. // M31 - Output time since last M109 or SD card start to serial
  124. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  125. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  126. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  127. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  128. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  129. // M80 - Turn on Power Supply
  130. // M81 - Turn off Power Supply
  131. // M82 - Set E codes absolute (default)
  132. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  133. // M84 - Disable steppers until next move,
  134. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  135. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  136. // M92 - Set axis_steps_per_unit - same syntax as G92
  137. // M104 - Set extruder target temp
  138. // M105 - Read current temp
  139. // M106 - Fan on
  140. // M107 - Fan off
  141. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  142. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  143. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  144. // M112 - Emergency stop
  145. // M114 - Output current position to serial port
  146. // M115 - Capabilities string
  147. // M117 - display message
  148. // M119 - Output Endstop status to serial port
  149. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. // M140 - Set bed target temp
  154. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  155. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  156. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  157. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  158. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  159. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  160. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  161. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  162. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  163. // M206 - set additional homing offset
  164. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  165. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  166. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  167. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  168. // M220 S<factor in percent>- set speed factor override percentage
  169. // M221 S<factor in percent>- set extrude factor override percentage
  170. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  171. // M240 - Trigger a camera to take a photograph
  172. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  173. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  174. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. // M301 - Set PID parameters P I and D
  176. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  177. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  178. // M304 - Set bed PID parameters P I and D
  179. // M400 - Finish all moves
  180. // M401 - Lower z-probe if present
  181. // M402 - Raise z-probe if present
  182. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  183. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  184. // M406 - Turn off Filament Sensor extrusion control
  185. // M407 - Displays measured filament diameter
  186. // M500 - stores parameters in EEPROM
  187. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  188. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  189. // M503 - print the current settings (from memory not from EEPROM)
  190. // M509 - force language selection on next restart
  191. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  192. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  193. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  194. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  195. // M907 - Set digital trimpot motor current using axis codes.
  196. // M908 - Control digital trimpot directly.
  197. // M350 - Set microstepping mode.
  198. // M351 - Toggle MS1 MS2 pins directly.
  199. // M928 - Start SD logging (M928 filename.g) - ended by M29
  200. // M999 - Restart after being stopped by error
  201. //Stepper Movement Variables
  202. //===========================================================================
  203. //=============================imported variables============================
  204. //===========================================================================
  205. //===========================================================================
  206. //=============================public variables=============================
  207. //===========================================================================
  208. #ifdef SDSUPPORT
  209. CardReader card;
  210. #endif
  211. unsigned long PingTime = millis();
  212. union Data
  213. {
  214. byte b[2];
  215. int value;
  216. };
  217. float homing_feedrate[] = HOMING_FEEDRATE;
  218. // Currently only the extruder axis may be switched to a relative mode.
  219. // Other axes are always absolute or relative based on the common relative_mode flag.
  220. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  221. int feedmultiply=100; //100->1 200->2
  222. int saved_feedmultiply;
  223. int extrudemultiply=100; //100->1 200->2
  224. int extruder_multiply[EXTRUDERS] = {100
  225. #if EXTRUDERS > 1
  226. , 100
  227. #if EXTRUDERS > 2
  228. , 100
  229. #endif
  230. #endif
  231. };
  232. int bowden_length[4];
  233. bool is_usb_printing = false;
  234. bool homing_flag = false;
  235. bool temp_cal_active = false;
  236. unsigned long kicktime = millis()+100000;
  237. unsigned int usb_printing_counter;
  238. int lcd_change_fil_state = 0;
  239. int feedmultiplyBckp = 100;
  240. float HotendTempBckp = 0;
  241. int fanSpeedBckp = 0;
  242. float pause_lastpos[4];
  243. unsigned long pause_time = 0;
  244. unsigned long start_pause_print = millis();
  245. unsigned long t_fan_rising_edge = millis();
  246. unsigned long load_filament_time;
  247. bool mesh_bed_leveling_flag = false;
  248. bool mesh_bed_run_from_menu = false;
  249. unsigned char lang_selected = 0;
  250. int8_t FarmMode = 0;
  251. bool prusa_sd_card_upload = false;
  252. unsigned int status_number = 0;
  253. unsigned long total_filament_used;
  254. unsigned int heating_status;
  255. unsigned int heating_status_counter;
  256. bool custom_message;
  257. bool loading_flag = false;
  258. unsigned int custom_message_type;
  259. unsigned int custom_message_state;
  260. char snmm_filaments_used = 0;
  261. float distance_from_min[3];
  262. float angleDiff;
  263. bool fan_state[2];
  264. int fan_edge_counter[2];
  265. int fan_speed[2];
  266. bool volumetric_enabled = false;
  267. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  268. #if EXTRUDERS > 1
  269. , DEFAULT_NOMINAL_FILAMENT_DIA
  270. #if EXTRUDERS > 2
  271. , DEFAULT_NOMINAL_FILAMENT_DIA
  272. #endif
  273. #endif
  274. };
  275. float volumetric_multiplier[EXTRUDERS] = {1.0
  276. #if EXTRUDERS > 1
  277. , 1.0
  278. #if EXTRUDERS > 2
  279. , 1.0
  280. #endif
  281. #endif
  282. };
  283. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  284. float add_homing[3]={0,0,0};
  285. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  286. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  287. bool axis_known_position[3] = {false, false, false};
  288. float zprobe_zoffset;
  289. // Extruder offset
  290. #if EXTRUDERS > 1
  291. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  292. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  293. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  294. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  295. #endif
  296. };
  297. #endif
  298. uint8_t active_extruder = 0;
  299. int fanSpeed=0;
  300. #ifdef FWRETRACT
  301. bool autoretract_enabled=false;
  302. bool retracted[EXTRUDERS]={false
  303. #if EXTRUDERS > 1
  304. , false
  305. #if EXTRUDERS > 2
  306. , false
  307. #endif
  308. #endif
  309. };
  310. bool retracted_swap[EXTRUDERS]={false
  311. #if EXTRUDERS > 1
  312. , false
  313. #if EXTRUDERS > 2
  314. , false
  315. #endif
  316. #endif
  317. };
  318. float retract_length = RETRACT_LENGTH;
  319. float retract_length_swap = RETRACT_LENGTH_SWAP;
  320. float retract_feedrate = RETRACT_FEEDRATE;
  321. float retract_zlift = RETRACT_ZLIFT;
  322. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  323. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  324. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  325. #endif
  326. #ifdef ULTIPANEL
  327. #ifdef PS_DEFAULT_OFF
  328. bool powersupply = false;
  329. #else
  330. bool powersupply = true;
  331. #endif
  332. #endif
  333. bool cancel_heatup = false ;
  334. #ifdef FILAMENT_SENSOR
  335. //Variables for Filament Sensor input
  336. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  337. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  338. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  339. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  340. int delay_index1=0; //index into ring buffer
  341. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  342. float delay_dist=0; //delay distance counter
  343. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  344. #endif
  345. const char errormagic[] PROGMEM = "Error:";
  346. const char echomagic[] PROGMEM = "echo:";
  347. //===========================================================================
  348. //=============================Private Variables=============================
  349. //===========================================================================
  350. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  351. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  352. static float delta[3] = {0.0, 0.0, 0.0};
  353. // For tracing an arc
  354. static float offset[3] = {0.0, 0.0, 0.0};
  355. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  356. // Determines Absolute or Relative Coordinates.
  357. // Also there is bool axis_relative_modes[] per axis flag.
  358. static bool relative_mode = false;
  359. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  360. //static float tt = 0;
  361. //static float bt = 0;
  362. //Inactivity shutdown variables
  363. static unsigned long previous_millis_cmd = 0;
  364. unsigned long max_inactive_time = 0;
  365. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  366. unsigned long starttime=0;
  367. unsigned long stoptime=0;
  368. unsigned long _usb_timer = 0;
  369. static uint8_t tmp_extruder;
  370. bool extruder_under_pressure = true;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. void setup_killpin()
  412. {
  413. #if defined(KILL_PIN) && KILL_PIN > -1
  414. SET_INPUT(KILL_PIN);
  415. WRITE(KILL_PIN,HIGH);
  416. #endif
  417. }
  418. // Set home pin
  419. void setup_homepin(void)
  420. {
  421. #if defined(HOME_PIN) && HOME_PIN > -1
  422. SET_INPUT(HOME_PIN);
  423. WRITE(HOME_PIN,HIGH);
  424. #endif
  425. }
  426. void setup_photpin()
  427. {
  428. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  429. SET_OUTPUT(PHOTOGRAPH_PIN);
  430. WRITE(PHOTOGRAPH_PIN, LOW);
  431. #endif
  432. }
  433. void setup_powerhold()
  434. {
  435. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  436. SET_OUTPUT(SUICIDE_PIN);
  437. WRITE(SUICIDE_PIN, HIGH);
  438. #endif
  439. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  440. SET_OUTPUT(PS_ON_PIN);
  441. #if defined(PS_DEFAULT_OFF)
  442. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  443. #else
  444. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  445. #endif
  446. #endif
  447. }
  448. void suicide()
  449. {
  450. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  451. SET_OUTPUT(SUICIDE_PIN);
  452. WRITE(SUICIDE_PIN, LOW);
  453. #endif
  454. }
  455. void servo_init()
  456. {
  457. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  458. servos[0].attach(SERVO0_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  461. servos[1].attach(SERVO1_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  464. servos[2].attach(SERVO2_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  467. servos[3].attach(SERVO3_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 5)
  470. #error "TODO: enter initalisation code for more servos"
  471. #endif
  472. }
  473. static void lcd_language_menu();
  474. void stop_and_save_print_to_ram(float z_move, float e_move);
  475. void restore_print_from_ram_and_continue(float e_move);
  476. extern int8_t CrashDetectMenu;
  477. void crashdet_enable()
  478. {
  479. MYSERIAL.println("crashdet_enable");
  480. tmc2130_sg_stop_on_crash = true;
  481. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  482. CrashDetectMenu = 1;
  483. }
  484. void crashdet_disable()
  485. {
  486. MYSERIAL.println("crashdet_disable");
  487. tmc2130_sg_stop_on_crash = false;
  488. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  489. CrashDetectMenu = 0;
  490. }
  491. void crashdet_stop_and_save_print()
  492. {
  493. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  494. }
  495. void crashdet_restore_print_and_continue()
  496. {
  497. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  498. // babystep_apply();
  499. }
  500. void crashdet_stop_and_save_print2()
  501. {
  502. cli();
  503. planner_abort_hard(); //abort printing
  504. cmdqueue_reset(); //empty cmdqueue
  505. card.sdprinting = false;
  506. card.closefile();
  507. sei();
  508. }
  509. #ifdef PAT9125
  510. void fsensor_stop_and_save_print()
  511. {
  512. // stop_and_save_print_to_ram(10, -0.8); //XY - no change, Z 10mm up, E 0.8mm in
  513. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  514. }
  515. void fsensor_restore_print_and_continue()
  516. {
  517. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  518. }
  519. bool fsensor_enabled = true;
  520. bool fsensor_ignore_error = true;
  521. bool fsensor_M600 = false;
  522. long fsensor_prev_pos_e = 0;
  523. uint8_t fsensor_err_cnt = 0;
  524. #define FSENS_ESTEPS 280 //extruder resolution [steps/mm]
  525. //#define FSENS_MINDEL 560 //filament sensor min delta [steps] (3mm)
  526. #define FSENS_MINDEL 280 //filament sensor min delta [steps] (3mm)
  527. #define FSENS_MINFAC 3 //filament sensor minimum factor [count/mm]
  528. //#define FSENS_MAXFAC 50 //filament sensor maximum factor [count/mm]
  529. #define FSENS_MAXFAC 40 //filament sensor maximum factor [count/mm]
  530. //#define FSENS_MAXERR 2 //filament sensor max error count
  531. #define FSENS_MAXERR 5 //filament sensor max error count
  532. extern int8_t FSensorStateMenu;
  533. void fsensor_enable()
  534. {
  535. MYSERIAL.println("fsensor_enable");
  536. pat9125_y = 0;
  537. fsensor_prev_pos_e = st_get_position(E_AXIS);
  538. fsensor_err_cnt = 0;
  539. fsensor_enabled = true;
  540. fsensor_ignore_error = true;
  541. fsensor_M600 = false;
  542. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0xFF);
  543. FSensorStateMenu = 1;
  544. }
  545. void fsensor_disable()
  546. {
  547. MYSERIAL.println("fsensor_disable");
  548. fsensor_enabled = false;
  549. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  550. FSensorStateMenu = 0;
  551. }
  552. void fsensor_update()
  553. {
  554. if (!fsensor_enabled) return;
  555. long pos_e = st_get_position(E_AXIS); //current position
  556. pat9125_update();
  557. long del_e = pos_e - fsensor_prev_pos_e; //delta
  558. if (abs(del_e) < FSENS_MINDEL) return;
  559. float de = ((float)del_e / FSENS_ESTEPS);
  560. int cmin = de * FSENS_MINFAC;
  561. int cmax = de * FSENS_MAXFAC;
  562. int cnt = -pat9125_y;
  563. fsensor_prev_pos_e = pos_e;
  564. pat9125_y = 0;
  565. bool err = false;
  566. if ((del_e > 0) && ((cnt < cmin) || (cnt > cmax))) err = true;
  567. if ((del_e < 0) && ((cnt > cmin) || (cnt < cmax))) err = true;
  568. if (err)
  569. fsensor_err_cnt++;
  570. else
  571. fsensor_err_cnt = 0;
  572. /**/
  573. MYSERIAL.print("pos_e=");
  574. MYSERIAL.print(pos_e);
  575. MYSERIAL.print(" de=");
  576. MYSERIAL.print(de);
  577. MYSERIAL.print(" cmin=");
  578. MYSERIAL.print((int)cmin);
  579. MYSERIAL.print(" cmax=");
  580. MYSERIAL.print((int)cmax);
  581. MYSERIAL.print(" cnt=");
  582. MYSERIAL.print((int)cnt);
  583. MYSERIAL.print(" err=");
  584. MYSERIAL.println((int)fsensor_err_cnt);/**/
  585. // return;
  586. if (fsensor_err_cnt > FSENS_MAXERR)
  587. {
  588. MYSERIAL.println("fsensor_update (fsensor_err_cnt > FSENS_MAXERR)");
  589. if (fsensor_ignore_error)
  590. {
  591. MYSERIAL.println("fsensor_update - error ignored)");
  592. fsensor_ignore_error = false;
  593. }
  594. else
  595. {
  596. MYSERIAL.println("fsensor_update - ERROR!!!");
  597. fsensor_stop_and_save_print();
  598. enquecommand_front_P((PSTR("M600")));
  599. fsensor_M600 = true;
  600. fsensor_enabled = false;
  601. }
  602. }
  603. }
  604. #endif //PAT9125
  605. #ifdef MESH_BED_LEVELING
  606. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  607. #endif
  608. // Factory reset function
  609. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  610. // Level input parameter sets depth of reset
  611. // Quiet parameter masks all waitings for user interact.
  612. int er_progress = 0;
  613. void factory_reset(char level, bool quiet)
  614. {
  615. lcd_implementation_clear();
  616. int cursor_pos = 0;
  617. switch (level) {
  618. // Level 0: Language reset
  619. case 0:
  620. WRITE(BEEPER, HIGH);
  621. _delay_ms(100);
  622. WRITE(BEEPER, LOW);
  623. lcd_force_language_selection();
  624. break;
  625. //Level 1: Reset statistics
  626. case 1:
  627. WRITE(BEEPER, HIGH);
  628. _delay_ms(100);
  629. WRITE(BEEPER, LOW);
  630. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  631. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  632. lcd_menu_statistics();
  633. break;
  634. // Level 2: Prepare for shipping
  635. case 2:
  636. //lcd_printPGM(PSTR("Factory RESET"));
  637. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  638. // Force language selection at the next boot up.
  639. lcd_force_language_selection();
  640. // Force the "Follow calibration flow" message at the next boot up.
  641. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  642. farm_no = 0;
  643. farm_mode == false;
  644. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  645. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. //_delay_ms(2000);
  650. break;
  651. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  652. case 3:
  653. lcd_printPGM(PSTR("Factory RESET"));
  654. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. er_progress = 0;
  659. lcd_print_at_PGM(3, 3, PSTR(" "));
  660. lcd_implementation_print_at(3, 3, er_progress);
  661. // Erase EEPROM
  662. for (int i = 0; i < 4096; i++) {
  663. eeprom_write_byte((uint8_t*)i, 0xFF);
  664. if (i % 41 == 0) {
  665. er_progress++;
  666. lcd_print_at_PGM(3, 3, PSTR(" "));
  667. lcd_implementation_print_at(3, 3, er_progress);
  668. lcd_printPGM(PSTR("%"));
  669. }
  670. }
  671. break;
  672. case 4:
  673. bowden_menu();
  674. break;
  675. default:
  676. break;
  677. }
  678. }
  679. // "Setup" function is called by the Arduino framework on startup.
  680. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  681. // are initialized by the main() routine provided by the Arduino framework.
  682. void setup()
  683. {
  684. lcd_init();
  685. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  686. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  687. setup_killpin();
  688. setup_powerhold();
  689. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  690. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  691. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  692. if (farm_no == 0xFFFF) farm_no = 0;
  693. if (farm_mode)
  694. {
  695. prusa_statistics(8);
  696. selectedSerialPort = 1;
  697. }
  698. else
  699. selectedSerialPort = 0;
  700. MYSERIAL.begin(BAUDRATE);
  701. SERIAL_PROTOCOLLNPGM("start");
  702. SERIAL_ECHO_START;
  703. #if 0
  704. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  705. for (int i = 0; i < 4096; ++i) {
  706. int b = eeprom_read_byte((unsigned char*)i);
  707. if (b != 255) {
  708. SERIAL_ECHO(i);
  709. SERIAL_ECHO(":");
  710. SERIAL_ECHO(b);
  711. SERIAL_ECHOLN("");
  712. }
  713. }
  714. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  715. #endif
  716. // Check startup - does nothing if bootloader sets MCUSR to 0
  717. byte mcu = MCUSR;
  718. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  719. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  720. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  721. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  722. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  723. MCUSR = 0;
  724. //SERIAL_ECHORPGM(MSG_MARLIN);
  725. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  726. #ifdef STRING_VERSION_CONFIG_H
  727. #ifdef STRING_CONFIG_H_AUTHOR
  728. SERIAL_ECHO_START;
  729. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  730. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  731. SERIAL_ECHORPGM(MSG_AUTHOR);
  732. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  733. SERIAL_ECHOPGM("Compiled: ");
  734. SERIAL_ECHOLNPGM(__DATE__);
  735. #endif
  736. #endif
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  739. SERIAL_ECHO(freeMemory());
  740. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  741. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  742. //lcd_update_enable(false); // why do we need this?? - andre
  743. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  744. Config_RetrieveSettings(EEPROM_OFFSET);
  745. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  746. tp_init(); // Initialize temperature loop
  747. plan_init(); // Initialize planner;
  748. watchdog_init();
  749. #ifdef TMC2130
  750. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  751. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  752. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  753. if (crashdet)
  754. {
  755. crashdet_enable();
  756. MYSERIAL.println("CrashDetect ENABLED!");
  757. }
  758. else
  759. {
  760. crashdet_disable();
  761. MYSERIAL.println("CrashDetect DISABLED");
  762. }
  763. #endif //TMC2130
  764. #ifdef PAT9125
  765. MYSERIAL.print("PAT9125_init:");
  766. MYSERIAL.println(pat9125_init(200, 200));
  767. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  768. if (fsensor)
  769. {
  770. fsensor_enable();
  771. MYSERIAL.println("Filament Sensor ENABLED!");
  772. }
  773. else
  774. {
  775. fsensor_disable();
  776. MYSERIAL.println("Filament Sensor DISABLED");
  777. }
  778. #endif //PAT9125
  779. st_init(); // Initialize stepper, this enables interrupts!
  780. setup_photpin();
  781. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  782. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  783. servo_init();
  784. // Reset the machine correction matrix.
  785. // It does not make sense to load the correction matrix until the machine is homed.
  786. world2machine_reset();
  787. if (!READ(BTN_ENC))
  788. {
  789. _delay_ms(1000);
  790. if (!READ(BTN_ENC))
  791. {
  792. lcd_implementation_clear();
  793. lcd_printPGM(PSTR("Factory RESET"));
  794. SET_OUTPUT(BEEPER);
  795. WRITE(BEEPER, HIGH);
  796. while (!READ(BTN_ENC));
  797. WRITE(BEEPER, LOW);
  798. _delay_ms(2000);
  799. char level = reset_menu();
  800. factory_reset(level, false);
  801. switch (level) {
  802. case 0: _delay_ms(0); break;
  803. case 1: _delay_ms(0); break;
  804. case 2: _delay_ms(0); break;
  805. case 3: _delay_ms(0); break;
  806. }
  807. // _delay_ms(100);
  808. /*
  809. #ifdef MESH_BED_LEVELING
  810. _delay_ms(2000);
  811. if (!READ(BTN_ENC))
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. _delay_ms(200);
  817. WRITE(BEEPER, HIGH);
  818. _delay_ms(100);
  819. WRITE(BEEPER, LOW);
  820. int _z = 0;
  821. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  822. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  823. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  824. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  825. }
  826. else
  827. {
  828. WRITE(BEEPER, HIGH);
  829. _delay_ms(100);
  830. WRITE(BEEPER, LOW);
  831. }
  832. #endif // mesh */
  833. }
  834. }
  835. else
  836. {
  837. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  838. }
  839. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  840. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  841. #endif
  842. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  843. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  844. #endif
  845. #ifdef DIGIPOT_I2C
  846. digipot_i2c_init();
  847. #endif
  848. setup_homepin();
  849. if (1) {
  850. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  851. // try to run to zero phase before powering the Z motor.
  852. // Move in negative direction
  853. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  854. // Round the current micro-micro steps to micro steps.
  855. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  856. // Until the phase counter is reset to zero.
  857. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  858. delay(2);
  859. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  860. delay(2);
  861. }
  862. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  863. }
  864. #if defined(Z_AXIS_ALWAYS_ON)
  865. enable_z();
  866. #endif
  867. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  868. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  869. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  870. if (farm_no == 0xFFFF) farm_no = 0;
  871. if (farm_mode)
  872. {
  873. prusa_statistics(8);
  874. }
  875. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  876. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  877. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  878. // but this times out if a blocking dialog is shown in setup().
  879. card.initsd();
  880. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  881. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  882. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  883. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  884. // where all the EEPROM entries are set to 0x0ff.
  885. // Once a firmware boots up, it forces at least a language selection, which changes
  886. // EEPROM_LANG to number lower than 0x0ff.
  887. // 1) Set a high power mode.
  888. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  889. }
  890. #ifdef SNMM
  891. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  892. int _z = BOWDEN_LENGTH;
  893. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  894. }
  895. #endif
  896. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  897. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  898. // is being written into the EEPROM, so the update procedure will be triggered only once.
  899. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  900. if (lang_selected >= LANG_NUM){
  901. lcd_mylang();
  902. }
  903. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  904. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  905. temp_cal_active = false;
  906. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  907. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  908. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  909. }
  910. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  911. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  912. }
  913. check_babystep(); //checking if Z babystep is in allowed range
  914. setup_uvlo_interrupt();
  915. setup_fan_interrupt();
  916. #ifndef DEBUG_DISABLE_STARTMSGS
  917. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  918. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  919. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  920. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  921. // Show the message.
  922. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  923. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  924. // Show the message.
  925. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  926. lcd_update_enable(true);
  927. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  928. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  929. lcd_update_enable(true);
  930. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  931. // Show the message.
  932. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  933. }
  934. #endif //DEBUG_DISABLE_STARTMSGS
  935. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  936. lcd_update_enable(true);
  937. lcd_implementation_clear();
  938. lcd_update(2);
  939. // Store the currently running firmware into an eeprom,
  940. // so the next time the firmware gets updated, it will know from which version it has been updated.
  941. update_current_firmware_version_to_eeprom();
  942. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  943. /*
  944. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  945. else {
  946. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  947. lcd_update_enable(true);
  948. lcd_update(2);
  949. lcd_setstatuspgm(WELCOME_MSG);
  950. }
  951. */
  952. manage_heater(); // Update temperatures
  953. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  954. MYSERIAL.println("Power panic detected!");
  955. MYSERIAL.print("Current bed temp:");
  956. MYSERIAL.println(degBed());
  957. MYSERIAL.print("Saved bed temp:");
  958. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  959. #endif
  960. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  961. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  962. MYSERIAL.println("Automatic recovery!");
  963. #endif
  964. recover_print(1);
  965. }
  966. else{
  967. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  968. MYSERIAL.println("Normal recovery!");
  969. #endif
  970. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  971. else {
  972. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  973. lcd_update_enable(true);
  974. lcd_update(2);
  975. lcd_setstatuspgm(WELCOME_MSG);
  976. }
  977. }
  978. }
  979. }
  980. void trace();
  981. #define CHUNK_SIZE 64 // bytes
  982. #define SAFETY_MARGIN 1
  983. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  984. int chunkHead = 0;
  985. int serial_read_stream() {
  986. setTargetHotend(0, 0);
  987. setTargetBed(0);
  988. lcd_implementation_clear();
  989. lcd_printPGM(PSTR(" Upload in progress"));
  990. // first wait for how many bytes we will receive
  991. uint32_t bytesToReceive;
  992. // receive the four bytes
  993. char bytesToReceiveBuffer[4];
  994. for (int i=0; i<4; i++) {
  995. int data;
  996. while ((data = MYSERIAL.read()) == -1) {};
  997. bytesToReceiveBuffer[i] = data;
  998. }
  999. // make it a uint32
  1000. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1001. // we're ready, notify the sender
  1002. MYSERIAL.write('+');
  1003. // lock in the routine
  1004. uint32_t receivedBytes = 0;
  1005. while (prusa_sd_card_upload) {
  1006. int i;
  1007. for (i=0; i<CHUNK_SIZE; i++) {
  1008. int data;
  1009. // check if we're not done
  1010. if (receivedBytes == bytesToReceive) {
  1011. break;
  1012. }
  1013. // read the next byte
  1014. while ((data = MYSERIAL.read()) == -1) {};
  1015. receivedBytes++;
  1016. // save it to the chunk
  1017. chunk[i] = data;
  1018. }
  1019. // write the chunk to SD
  1020. card.write_command_no_newline(&chunk[0]);
  1021. // notify the sender we're ready for more data
  1022. MYSERIAL.write('+');
  1023. // for safety
  1024. manage_heater();
  1025. // check if we're done
  1026. if(receivedBytes == bytesToReceive) {
  1027. trace(); // beep
  1028. card.closefile();
  1029. prusa_sd_card_upload = false;
  1030. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1031. return 0;
  1032. }
  1033. }
  1034. }
  1035. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1036. // Before loop(), the setup() function is called by the main() routine.
  1037. void loop()
  1038. {
  1039. bool stack_integrity = true;
  1040. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1041. {
  1042. is_usb_printing = true;
  1043. usb_printing_counter--;
  1044. _usb_timer = millis();
  1045. }
  1046. if (usb_printing_counter == 0)
  1047. {
  1048. is_usb_printing = false;
  1049. }
  1050. if (prusa_sd_card_upload)
  1051. {
  1052. //we read byte-by byte
  1053. serial_read_stream();
  1054. } else
  1055. {
  1056. get_command();
  1057. #ifdef SDSUPPORT
  1058. card.checkautostart(false);
  1059. #endif
  1060. if(buflen)
  1061. {
  1062. cmdbuffer_front_already_processed = false;
  1063. #ifdef SDSUPPORT
  1064. if(card.saving)
  1065. {
  1066. // Saving a G-code file onto an SD-card is in progress.
  1067. // Saving starts with M28, saving until M29 is seen.
  1068. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1069. card.write_command(CMDBUFFER_CURRENT_STRING);
  1070. if(card.logging)
  1071. process_commands();
  1072. else
  1073. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1074. } else {
  1075. card.closefile();
  1076. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1077. }
  1078. } else {
  1079. process_commands();
  1080. }
  1081. #else
  1082. process_commands();
  1083. #endif //SDSUPPORT
  1084. if (! cmdbuffer_front_already_processed && buflen)
  1085. {
  1086. cli();
  1087. union {
  1088. struct {
  1089. char lo;
  1090. char hi;
  1091. } lohi;
  1092. uint16_t value;
  1093. } sdlen;
  1094. sdlen.value = 0;
  1095. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1096. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1097. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1098. }
  1099. cmdqueue_pop_front();
  1100. planner_add_sd_length(sdlen.value);
  1101. sei();
  1102. }
  1103. }
  1104. }
  1105. //check heater every n milliseconds
  1106. manage_heater();
  1107. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1108. checkHitEndstops();
  1109. lcd_update();
  1110. #ifdef PAT9125
  1111. fsensor_update();
  1112. #endif //PAT9125
  1113. #ifdef TMC2130
  1114. tmc2130_check_overtemp();
  1115. if (tmc2130_sg_crash)
  1116. {
  1117. tmc2130_sg_crash = false;
  1118. // crashdet_stop_and_save_print();
  1119. enquecommand_P((PSTR("D999")));
  1120. }
  1121. #endif //TMC2130
  1122. }
  1123. #define DEFINE_PGM_READ_ANY(type, reader) \
  1124. static inline type pgm_read_any(const type *p) \
  1125. { return pgm_read_##reader##_near(p); }
  1126. DEFINE_PGM_READ_ANY(float, float);
  1127. DEFINE_PGM_READ_ANY(signed char, byte);
  1128. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1129. static const PROGMEM type array##_P[3] = \
  1130. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1131. static inline type array(int axis) \
  1132. { return pgm_read_any(&array##_P[axis]); } \
  1133. type array##_ext(int axis) \
  1134. { return pgm_read_any(&array##_P[axis]); }
  1135. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1136. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1137. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1138. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1139. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1140. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1141. static void axis_is_at_home(int axis) {
  1142. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1143. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1144. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1145. }
  1146. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1147. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1148. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1149. saved_feedrate = feedrate;
  1150. saved_feedmultiply = feedmultiply;
  1151. feedmultiply = 100;
  1152. previous_millis_cmd = millis();
  1153. enable_endstops(enable_endstops_now);
  1154. }
  1155. static void clean_up_after_endstop_move() {
  1156. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1157. enable_endstops(false);
  1158. #endif
  1159. feedrate = saved_feedrate;
  1160. feedmultiply = saved_feedmultiply;
  1161. previous_millis_cmd = millis();
  1162. }
  1163. #ifdef ENABLE_AUTO_BED_LEVELING
  1164. #ifdef AUTO_BED_LEVELING_GRID
  1165. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1166. {
  1167. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1168. planeNormal.debug("planeNormal");
  1169. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1170. //bedLevel.debug("bedLevel");
  1171. //plan_bed_level_matrix.debug("bed level before");
  1172. //vector_3 uncorrected_position = plan_get_position_mm();
  1173. //uncorrected_position.debug("position before");
  1174. vector_3 corrected_position = plan_get_position();
  1175. // corrected_position.debug("position after");
  1176. current_position[X_AXIS] = corrected_position.x;
  1177. current_position[Y_AXIS] = corrected_position.y;
  1178. current_position[Z_AXIS] = corrected_position.z;
  1179. // put the bed at 0 so we don't go below it.
  1180. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1181. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1182. }
  1183. #else // not AUTO_BED_LEVELING_GRID
  1184. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1185. plan_bed_level_matrix.set_to_identity();
  1186. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1187. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1188. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1189. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1190. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1191. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1192. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1193. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1194. vector_3 corrected_position = plan_get_position();
  1195. current_position[X_AXIS] = corrected_position.x;
  1196. current_position[Y_AXIS] = corrected_position.y;
  1197. current_position[Z_AXIS] = corrected_position.z;
  1198. // put the bed at 0 so we don't go below it.
  1199. current_position[Z_AXIS] = zprobe_zoffset;
  1200. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1201. }
  1202. #endif // AUTO_BED_LEVELING_GRID
  1203. static void run_z_probe() {
  1204. plan_bed_level_matrix.set_to_identity();
  1205. feedrate = homing_feedrate[Z_AXIS];
  1206. // move down until you find the bed
  1207. float zPosition = -10;
  1208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1209. st_synchronize();
  1210. // we have to let the planner know where we are right now as it is not where we said to go.
  1211. zPosition = st_get_position_mm(Z_AXIS);
  1212. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1213. // move up the retract distance
  1214. zPosition += home_retract_mm(Z_AXIS);
  1215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1216. st_synchronize();
  1217. // move back down slowly to find bed
  1218. feedrate = homing_feedrate[Z_AXIS]/4;
  1219. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1221. st_synchronize();
  1222. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1223. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1225. }
  1226. static void do_blocking_move_to(float x, float y, float z) {
  1227. float oldFeedRate = feedrate;
  1228. feedrate = homing_feedrate[Z_AXIS];
  1229. current_position[Z_AXIS] = z;
  1230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1231. st_synchronize();
  1232. feedrate = XY_TRAVEL_SPEED;
  1233. current_position[X_AXIS] = x;
  1234. current_position[Y_AXIS] = y;
  1235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1236. st_synchronize();
  1237. feedrate = oldFeedRate;
  1238. }
  1239. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1240. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1241. }
  1242. /// Probe bed height at position (x,y), returns the measured z value
  1243. static float probe_pt(float x, float y, float z_before) {
  1244. // move to right place
  1245. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1246. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1247. run_z_probe();
  1248. float measured_z = current_position[Z_AXIS];
  1249. SERIAL_PROTOCOLRPGM(MSG_BED);
  1250. SERIAL_PROTOCOLPGM(" x: ");
  1251. SERIAL_PROTOCOL(x);
  1252. SERIAL_PROTOCOLPGM(" y: ");
  1253. SERIAL_PROTOCOL(y);
  1254. SERIAL_PROTOCOLPGM(" z: ");
  1255. SERIAL_PROTOCOL(measured_z);
  1256. SERIAL_PROTOCOLPGM("\n");
  1257. return measured_z;
  1258. }
  1259. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1260. #ifdef LIN_ADVANCE
  1261. /**
  1262. * M900: Set and/or Get advance K factor and WH/D ratio
  1263. *
  1264. * K<factor> Set advance K factor
  1265. * R<ratio> Set ratio directly (overrides WH/D)
  1266. * W<width> H<height> D<diam> Set ratio from WH/D
  1267. */
  1268. inline void gcode_M900() {
  1269. st_synchronize();
  1270. const float newK = code_seen('K') ? code_value_float() : -1;
  1271. if (newK >= 0) extruder_advance_k = newK;
  1272. float newR = code_seen('R') ? code_value_float() : -1;
  1273. if (newR < 0) {
  1274. const float newD = code_seen('D') ? code_value_float() : -1,
  1275. newW = code_seen('W') ? code_value_float() : -1,
  1276. newH = code_seen('H') ? code_value_float() : -1;
  1277. if (newD >= 0 && newW >= 0 && newH >= 0)
  1278. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1279. }
  1280. if (newR >= 0) advance_ed_ratio = newR;
  1281. SERIAL_ECHO_START;
  1282. SERIAL_ECHOPGM("Advance K=");
  1283. SERIAL_ECHOLN(extruder_advance_k);
  1284. SERIAL_ECHOPGM(" E/D=");
  1285. const float ratio = advance_ed_ratio;
  1286. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1287. }
  1288. #endif // LIN_ADVANCE
  1289. #ifdef TMC2130
  1290. bool calibrate_z_auto()
  1291. {
  1292. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1293. bool endstops_enabled = enable_endstops(true);
  1294. int axis_up_dir = -home_dir(Z_AXIS);
  1295. tmc2130_home_enter(Z_AXIS_MASK);
  1296. current_position[Z_AXIS] = 0;
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1298. set_destination_to_current();
  1299. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1300. feedrate = homing_feedrate[Z_AXIS];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. tmc2130_home_restart(Z_AXIS);
  1303. st_synchronize();
  1304. // current_position[axis] = 0;
  1305. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. tmc2130_home_exit();
  1307. enable_endstops(false);
  1308. current_position[Z_AXIS] = 0;
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. set_destination_to_current();
  1311. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1312. feedrate = homing_feedrate[Z_AXIS] / 2;
  1313. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1314. st_synchronize();
  1315. enable_endstops(endstops_enabled);
  1316. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. return true;
  1319. }
  1320. #endif //TMC2130
  1321. void homeaxis(int axis)
  1322. {
  1323. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1324. #define HOMEAXIS_DO(LETTER) \
  1325. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1326. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1327. {
  1328. int axis_home_dir = home_dir(axis);
  1329. feedrate = homing_feedrate[axis];
  1330. #ifdef TMC2130
  1331. tmc2130_home_enter(X_AXIS_MASK << axis);
  1332. #endif
  1333. // Move right a bit, so that the print head does not touch the left end position,
  1334. // and the following left movement has a chance to achieve the required velocity
  1335. // for the stall guard to work.
  1336. current_position[axis] = 0;
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. // destination[axis] = 11.f;
  1339. destination[axis] = 3.f;
  1340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1341. st_synchronize();
  1342. // Move left away from the possible collision with the collision detection disabled.
  1343. endstops_hit_on_purpose();
  1344. enable_endstops(false);
  1345. current_position[axis] = 0;
  1346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1347. destination[axis] = - 1.;
  1348. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1349. st_synchronize();
  1350. // Now continue to move up to the left end stop with the collision detection enabled.
  1351. enable_endstops(true);
  1352. destination[axis] = - 1.1 * max_length(axis);
  1353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1354. st_synchronize();
  1355. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1356. endstops_hit_on_purpose();
  1357. enable_endstops(false);
  1358. current_position[axis] = 0;
  1359. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1360. destination[axis] = 10.f;
  1361. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1362. st_synchronize();
  1363. endstops_hit_on_purpose();
  1364. // Now move left up to the collision, this time with a repeatable velocity.
  1365. enable_endstops(true);
  1366. destination[axis] = - 15.f;
  1367. feedrate = homing_feedrate[axis]/2;
  1368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1369. st_synchronize();
  1370. axis_is_at_home(axis);
  1371. axis_known_position[axis] = true;
  1372. #ifdef TMC2130
  1373. tmc2130_home_exit();
  1374. #endif
  1375. // Move the X carriage away from the collision.
  1376. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1377. endstops_hit_on_purpose();
  1378. enable_endstops(false);
  1379. {
  1380. // Two full periods (4 full steps).
  1381. float gap = 0.32f * 2.f;
  1382. current_position[axis] -= gap;
  1383. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1384. current_position[axis] += gap;
  1385. }
  1386. destination[axis] = current_position[axis];
  1387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1388. st_synchronize();
  1389. feedrate = 0.0;
  1390. }
  1391. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1392. {
  1393. int axis_home_dir = home_dir(axis);
  1394. current_position[axis] = 0;
  1395. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1396. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1397. feedrate = homing_feedrate[axis];
  1398. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1399. st_synchronize();
  1400. current_position[axis] = 0;
  1401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1402. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1404. st_synchronize();
  1405. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1406. feedrate = homing_feedrate[axis]/2 ;
  1407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1408. st_synchronize();
  1409. axis_is_at_home(axis);
  1410. destination[axis] = current_position[axis];
  1411. feedrate = 0.0;
  1412. endstops_hit_on_purpose();
  1413. axis_known_position[axis] = true;
  1414. }
  1415. enable_endstops(endstops_enabled);
  1416. }
  1417. /**/
  1418. void home_xy()
  1419. {
  1420. set_destination_to_current();
  1421. homeaxis(X_AXIS);
  1422. homeaxis(Y_AXIS);
  1423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1424. endstops_hit_on_purpose();
  1425. }
  1426. void refresh_cmd_timeout(void)
  1427. {
  1428. previous_millis_cmd = millis();
  1429. }
  1430. #ifdef FWRETRACT
  1431. void retract(bool retracting, bool swapretract = false) {
  1432. if(retracting && !retracted[active_extruder]) {
  1433. destination[X_AXIS]=current_position[X_AXIS];
  1434. destination[Y_AXIS]=current_position[Y_AXIS];
  1435. destination[Z_AXIS]=current_position[Z_AXIS];
  1436. destination[E_AXIS]=current_position[E_AXIS];
  1437. if (swapretract) {
  1438. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1439. } else {
  1440. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1441. }
  1442. plan_set_e_position(current_position[E_AXIS]);
  1443. float oldFeedrate = feedrate;
  1444. feedrate=retract_feedrate*60;
  1445. retracted[active_extruder]=true;
  1446. prepare_move();
  1447. current_position[Z_AXIS]-=retract_zlift;
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1449. prepare_move();
  1450. feedrate = oldFeedrate;
  1451. } else if(!retracting && retracted[active_extruder]) {
  1452. destination[X_AXIS]=current_position[X_AXIS];
  1453. destination[Y_AXIS]=current_position[Y_AXIS];
  1454. destination[Z_AXIS]=current_position[Z_AXIS];
  1455. destination[E_AXIS]=current_position[E_AXIS];
  1456. current_position[Z_AXIS]+=retract_zlift;
  1457. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1458. //prepare_move();
  1459. if (swapretract) {
  1460. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1461. } else {
  1462. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1463. }
  1464. plan_set_e_position(current_position[E_AXIS]);
  1465. float oldFeedrate = feedrate;
  1466. feedrate=retract_recover_feedrate*60;
  1467. retracted[active_extruder]=false;
  1468. prepare_move();
  1469. feedrate = oldFeedrate;
  1470. }
  1471. } //retract
  1472. #endif //FWRETRACT
  1473. void trace() {
  1474. tone(BEEPER, 440);
  1475. delay(25);
  1476. noTone(BEEPER);
  1477. delay(20);
  1478. }
  1479. /*
  1480. void ramming() {
  1481. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1482. if (current_temperature[0] < 230) {
  1483. //PLA
  1484. max_feedrate[E_AXIS] = 50;
  1485. //current_position[E_AXIS] -= 8;
  1486. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1487. //current_position[E_AXIS] += 8;
  1488. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1489. current_position[E_AXIS] += 5.4;
  1490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1491. current_position[E_AXIS] += 3.2;
  1492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1493. current_position[E_AXIS] += 3;
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1495. st_synchronize();
  1496. max_feedrate[E_AXIS] = 80;
  1497. current_position[E_AXIS] -= 82;
  1498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1499. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1500. current_position[E_AXIS] -= 20;
  1501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1502. current_position[E_AXIS] += 5;
  1503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1504. current_position[E_AXIS] += 5;
  1505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1506. current_position[E_AXIS] -= 10;
  1507. st_synchronize();
  1508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1509. current_position[E_AXIS] += 10;
  1510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1511. current_position[E_AXIS] -= 10;
  1512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1513. current_position[E_AXIS] += 10;
  1514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1515. current_position[E_AXIS] -= 10;
  1516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1517. st_synchronize();
  1518. }
  1519. else {
  1520. //ABS
  1521. max_feedrate[E_AXIS] = 50;
  1522. //current_position[E_AXIS] -= 8;
  1523. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1524. //current_position[E_AXIS] += 8;
  1525. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1526. current_position[E_AXIS] += 3.1;
  1527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1528. current_position[E_AXIS] += 3.1;
  1529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1530. current_position[E_AXIS] += 4;
  1531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1532. st_synchronize();
  1533. //current_position[X_AXIS] += 23; //delay
  1534. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1535. //current_position[X_AXIS] -= 23; //delay
  1536. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1537. delay(4700);
  1538. max_feedrate[E_AXIS] = 80;
  1539. current_position[E_AXIS] -= 92;
  1540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1541. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1542. current_position[E_AXIS] -= 5;
  1543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1544. current_position[E_AXIS] += 5;
  1545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1546. current_position[E_AXIS] -= 5;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1548. st_synchronize();
  1549. current_position[E_AXIS] += 5;
  1550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1551. current_position[E_AXIS] -= 5;
  1552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1553. current_position[E_AXIS] += 5;
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1555. current_position[E_AXIS] -= 5;
  1556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1557. st_synchronize();
  1558. }
  1559. }
  1560. */
  1561. void process_commands()
  1562. {
  1563. #ifdef FILAMENT_RUNOUT_SUPPORT
  1564. SET_INPUT(FR_SENS);
  1565. #endif
  1566. #ifdef CMDBUFFER_DEBUG
  1567. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1568. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1569. SERIAL_ECHOLNPGM("");
  1570. SERIAL_ECHOPGM("In cmdqueue: ");
  1571. SERIAL_ECHO(buflen);
  1572. SERIAL_ECHOLNPGM("");
  1573. #endif /* CMDBUFFER_DEBUG */
  1574. unsigned long codenum; //throw away variable
  1575. char *starpos = NULL;
  1576. #ifdef ENABLE_AUTO_BED_LEVELING
  1577. float x_tmp, y_tmp, z_tmp, real_z;
  1578. #endif
  1579. // PRUSA GCODES
  1580. #ifdef SNMM
  1581. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1582. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1583. int8_t SilentMode;
  1584. #endif
  1585. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1586. starpos = (strchr(strchr_pointer + 5, '*'));
  1587. if (starpos != NULL)
  1588. *(starpos) = '\0';
  1589. lcd_setstatus(strchr_pointer + 5);
  1590. }
  1591. else if(code_seen("PRUSA")){
  1592. if (code_seen("Ping")) { //PRUSA Ping
  1593. if (farm_mode) {
  1594. PingTime = millis();
  1595. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1596. }
  1597. }
  1598. else if (code_seen("PRN")) {
  1599. MYSERIAL.println(status_number);
  1600. }else if (code_seen("fn")) {
  1601. if (farm_mode) {
  1602. MYSERIAL.println(farm_no);
  1603. }
  1604. else {
  1605. MYSERIAL.println("Not in farm mode.");
  1606. }
  1607. }else if (code_seen("fv")) {
  1608. // get file version
  1609. #ifdef SDSUPPORT
  1610. card.openFile(strchr_pointer + 3,true);
  1611. while (true) {
  1612. uint16_t readByte = card.get();
  1613. MYSERIAL.write(readByte);
  1614. if (readByte=='\n') {
  1615. break;
  1616. }
  1617. }
  1618. card.closefile();
  1619. #endif // SDSUPPORT
  1620. } else if (code_seen("M28")) {
  1621. trace();
  1622. prusa_sd_card_upload = true;
  1623. card.openFile(strchr_pointer+4,false);
  1624. } else if (code_seen("SN")) {
  1625. if (farm_mode) {
  1626. selectedSerialPort = 0;
  1627. MSerial.write(";S");
  1628. // S/N is:CZPX0917X003XC13518
  1629. int numbersRead = 0;
  1630. while (numbersRead < 19) {
  1631. while (MSerial.available() > 0) {
  1632. uint8_t serial_char = MSerial.read();
  1633. selectedSerialPort = 1;
  1634. MSerial.write(serial_char);
  1635. numbersRead++;
  1636. selectedSerialPort = 0;
  1637. }
  1638. }
  1639. selectedSerialPort = 1;
  1640. MSerial.write('\n');
  1641. /*for (int b = 0; b < 3; b++) {
  1642. tone(BEEPER, 110);
  1643. delay(50);
  1644. noTone(BEEPER);
  1645. delay(50);
  1646. }*/
  1647. } else {
  1648. MYSERIAL.println("Not in farm mode.");
  1649. }
  1650. } else if(code_seen("Fir")){
  1651. SERIAL_PROTOCOLLN(FW_version);
  1652. } else if(code_seen("Rev")){
  1653. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1654. } else if(code_seen("Lang")) {
  1655. lcd_force_language_selection();
  1656. } else if(code_seen("Lz")) {
  1657. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1658. } else if (code_seen("SERIAL LOW")) {
  1659. MYSERIAL.println("SERIAL LOW");
  1660. MYSERIAL.begin(BAUDRATE);
  1661. return;
  1662. } else if (code_seen("SERIAL HIGH")) {
  1663. MYSERIAL.println("SERIAL HIGH");
  1664. MYSERIAL.begin(1152000);
  1665. return;
  1666. } else if(code_seen("Beat")) {
  1667. // Kick farm link timer
  1668. kicktime = millis();
  1669. } else if(code_seen("FR")) {
  1670. // Factory full reset
  1671. factory_reset(0,true);
  1672. }
  1673. //else if (code_seen('Cal')) {
  1674. // lcd_calibration();
  1675. // }
  1676. }
  1677. else if (code_seen('^')) {
  1678. // nothing, this is a version line
  1679. } else if(code_seen('G'))
  1680. {
  1681. switch((int)code_value())
  1682. {
  1683. case 0: // G0 -> G1
  1684. case 1: // G1
  1685. if(Stopped == false) {
  1686. #ifdef FILAMENT_RUNOUT_SUPPORT
  1687. if(READ(FR_SENS)){
  1688. feedmultiplyBckp=feedmultiply;
  1689. float target[4];
  1690. float lastpos[4];
  1691. target[X_AXIS]=current_position[X_AXIS];
  1692. target[Y_AXIS]=current_position[Y_AXIS];
  1693. target[Z_AXIS]=current_position[Z_AXIS];
  1694. target[E_AXIS]=current_position[E_AXIS];
  1695. lastpos[X_AXIS]=current_position[X_AXIS];
  1696. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1697. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1698. lastpos[E_AXIS]=current_position[E_AXIS];
  1699. //retract by E
  1700. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1702. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1703. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1704. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1705. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1707. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1709. //finish moves
  1710. st_synchronize();
  1711. //disable extruder steppers so filament can be removed
  1712. disable_e0();
  1713. disable_e1();
  1714. disable_e2();
  1715. delay(100);
  1716. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1717. uint8_t cnt=0;
  1718. int counterBeep = 0;
  1719. lcd_wait_interact();
  1720. while(!lcd_clicked()){
  1721. cnt++;
  1722. manage_heater();
  1723. manage_inactivity(true);
  1724. //lcd_update();
  1725. if(cnt==0)
  1726. {
  1727. #if BEEPER > 0
  1728. if (counterBeep== 500){
  1729. counterBeep = 0;
  1730. }
  1731. SET_OUTPUT(BEEPER);
  1732. if (counterBeep== 0){
  1733. WRITE(BEEPER,HIGH);
  1734. }
  1735. if (counterBeep== 20){
  1736. WRITE(BEEPER,LOW);
  1737. }
  1738. counterBeep++;
  1739. #else
  1740. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1741. lcd_buzz(1000/6,100);
  1742. #else
  1743. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1744. #endif
  1745. #endif
  1746. }
  1747. }
  1748. WRITE(BEEPER,LOW);
  1749. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1751. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1753. lcd_change_fil_state = 0;
  1754. lcd_loading_filament();
  1755. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1756. lcd_change_fil_state = 0;
  1757. lcd_alright();
  1758. switch(lcd_change_fil_state){
  1759. case 2:
  1760. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1762. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1763. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1764. lcd_loading_filament();
  1765. break;
  1766. case 3:
  1767. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1768. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1769. lcd_loading_color();
  1770. break;
  1771. default:
  1772. lcd_change_success();
  1773. break;
  1774. }
  1775. }
  1776. target[E_AXIS]+= 5;
  1777. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1778. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1779. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1780. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1781. //plan_set_e_position(current_position[E_AXIS]);
  1782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1783. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1784. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1785. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1786. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1787. plan_set_e_position(lastpos[E_AXIS]);
  1788. feedmultiply=feedmultiplyBckp;
  1789. char cmd[9];
  1790. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1791. enquecommand(cmd);
  1792. }
  1793. #endif
  1794. get_coordinates(); // For X Y Z E F
  1795. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1796. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1797. }
  1798. #ifdef FWRETRACT
  1799. if(autoretract_enabled)
  1800. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1801. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1802. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1803. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1804. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1805. retract(!retracted);
  1806. return;
  1807. }
  1808. }
  1809. #endif //FWRETRACT
  1810. prepare_move();
  1811. //ClearToSend();
  1812. }
  1813. break;
  1814. case 2: // G2 - CW ARC
  1815. if(Stopped == false) {
  1816. get_arc_coordinates();
  1817. prepare_arc_move(true);
  1818. }
  1819. break;
  1820. case 3: // G3 - CCW ARC
  1821. if(Stopped == false) {
  1822. get_arc_coordinates();
  1823. prepare_arc_move(false);
  1824. }
  1825. break;
  1826. case 4: // G4 dwell
  1827. codenum = 0;
  1828. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1829. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1830. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1831. st_synchronize();
  1832. codenum += millis(); // keep track of when we started waiting
  1833. previous_millis_cmd = millis();
  1834. while(millis() < codenum) {
  1835. manage_heater();
  1836. manage_inactivity();
  1837. lcd_update();
  1838. }
  1839. break;
  1840. #ifdef FWRETRACT
  1841. case 10: // G10 retract
  1842. #if EXTRUDERS > 1
  1843. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1844. retract(true,retracted_swap[active_extruder]);
  1845. #else
  1846. retract(true);
  1847. #endif
  1848. break;
  1849. case 11: // G11 retract_recover
  1850. #if EXTRUDERS > 1
  1851. retract(false,retracted_swap[active_extruder]);
  1852. #else
  1853. retract(false);
  1854. #endif
  1855. break;
  1856. #endif //FWRETRACT
  1857. case 28: //G28 Home all Axis one at a time
  1858. {
  1859. st_synchronize();
  1860. #if 1
  1861. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1862. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1863. #endif
  1864. // Flag for the display update routine and to disable the print cancelation during homing.
  1865. homing_flag = true;
  1866. // Which axes should be homed?
  1867. bool home_x = code_seen(axis_codes[X_AXIS]);
  1868. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1869. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1870. // Either all X,Y,Z codes are present, or none of them.
  1871. bool home_all_axes = home_x == home_y && home_x == home_z;
  1872. if (home_all_axes)
  1873. // No X/Y/Z code provided means to home all axes.
  1874. home_x = home_y = home_z = true;
  1875. #ifdef ENABLE_AUTO_BED_LEVELING
  1876. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1877. #endif //ENABLE_AUTO_BED_LEVELING
  1878. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1879. // the planner will not perform any adjustments in the XY plane.
  1880. // Wait for the motors to stop and update the current position with the absolute values.
  1881. world2machine_revert_to_uncorrected();
  1882. // For mesh bed leveling deactivate the matrix temporarily.
  1883. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1884. // in a single axis only.
  1885. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1886. #ifdef MESH_BED_LEVELING
  1887. uint8_t mbl_was_active = mbl.active;
  1888. mbl.active = 0;
  1889. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1890. #endif
  1891. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1892. // consumed during the first movements following this statement.
  1893. if (home_z)
  1894. babystep_undo();
  1895. saved_feedrate = feedrate;
  1896. saved_feedmultiply = feedmultiply;
  1897. feedmultiply = 100;
  1898. previous_millis_cmd = millis();
  1899. enable_endstops(true);
  1900. memcpy(destination, current_position, sizeof(destination));
  1901. feedrate = 0.0;
  1902. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1903. if(home_z)
  1904. homeaxis(Z_AXIS);
  1905. #endif
  1906. #ifdef QUICK_HOME
  1907. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1908. if(home_x && home_y) //first diagonal move
  1909. {
  1910. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1911. int x_axis_home_dir = home_dir(X_AXIS);
  1912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1913. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1914. feedrate = homing_feedrate[X_AXIS];
  1915. if(homing_feedrate[Y_AXIS]<feedrate)
  1916. feedrate = homing_feedrate[Y_AXIS];
  1917. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1918. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1919. } else {
  1920. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1921. }
  1922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1923. st_synchronize();
  1924. axis_is_at_home(X_AXIS);
  1925. axis_is_at_home(Y_AXIS);
  1926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1927. destination[X_AXIS] = current_position[X_AXIS];
  1928. destination[Y_AXIS] = current_position[Y_AXIS];
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. feedrate = 0.0;
  1931. st_synchronize();
  1932. endstops_hit_on_purpose();
  1933. current_position[X_AXIS] = destination[X_AXIS];
  1934. current_position[Y_AXIS] = destination[Y_AXIS];
  1935. current_position[Z_AXIS] = destination[Z_AXIS];
  1936. }
  1937. #endif /* QUICK_HOME */
  1938. if(home_x)
  1939. homeaxis(X_AXIS);
  1940. if(home_y)
  1941. homeaxis(Y_AXIS);
  1942. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1943. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1944. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1945. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1946. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1947. #ifndef Z_SAFE_HOMING
  1948. if(home_z) {
  1949. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1950. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1951. feedrate = max_feedrate[Z_AXIS];
  1952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1953. st_synchronize();
  1954. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1955. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1956. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1957. {
  1958. homeaxis(X_AXIS);
  1959. homeaxis(Y_AXIS);
  1960. }
  1961. // 1st mesh bed leveling measurement point, corrected.
  1962. world2machine_initialize();
  1963. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1964. world2machine_reset();
  1965. if (destination[Y_AXIS] < Y_MIN_POS)
  1966. destination[Y_AXIS] = Y_MIN_POS;
  1967. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1968. feedrate = homing_feedrate[Z_AXIS]/10;
  1969. current_position[Z_AXIS] = 0;
  1970. enable_endstops(false);
  1971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1973. st_synchronize();
  1974. current_position[X_AXIS] = destination[X_AXIS];
  1975. current_position[Y_AXIS] = destination[Y_AXIS];
  1976. enable_endstops(true);
  1977. endstops_hit_on_purpose();
  1978. homeaxis(Z_AXIS);
  1979. #else // MESH_BED_LEVELING
  1980. homeaxis(Z_AXIS);
  1981. #endif // MESH_BED_LEVELING
  1982. }
  1983. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1984. if(home_all_axes) {
  1985. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1986. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1987. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1988. feedrate = XY_TRAVEL_SPEED/60;
  1989. current_position[Z_AXIS] = 0;
  1990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1992. st_synchronize();
  1993. current_position[X_AXIS] = destination[X_AXIS];
  1994. current_position[Y_AXIS] = destination[Y_AXIS];
  1995. homeaxis(Z_AXIS);
  1996. }
  1997. // Let's see if X and Y are homed and probe is inside bed area.
  1998. if(home_z) {
  1999. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2000. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2001. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2002. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2003. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2004. current_position[Z_AXIS] = 0;
  2005. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2006. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2007. feedrate = max_feedrate[Z_AXIS];
  2008. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2009. st_synchronize();
  2010. homeaxis(Z_AXIS);
  2011. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2012. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2013. SERIAL_ECHO_START;
  2014. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2015. } else {
  2016. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2017. SERIAL_ECHO_START;
  2018. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2019. }
  2020. }
  2021. #endif // Z_SAFE_HOMING
  2022. #endif // Z_HOME_DIR < 0
  2023. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2024. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2025. #ifdef ENABLE_AUTO_BED_LEVELING
  2026. if(home_z)
  2027. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2028. #endif
  2029. // Set the planner and stepper routine positions.
  2030. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2031. // contains the machine coordinates.
  2032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2033. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2034. enable_endstops(false);
  2035. #endif
  2036. feedrate = saved_feedrate;
  2037. feedmultiply = saved_feedmultiply;
  2038. previous_millis_cmd = millis();
  2039. endstops_hit_on_purpose();
  2040. #ifndef MESH_BED_LEVELING
  2041. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2042. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2043. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2044. lcd_adjust_z();
  2045. #endif
  2046. // Load the machine correction matrix
  2047. world2machine_initialize();
  2048. // and correct the current_position XY axes to match the transformed coordinate system.
  2049. world2machine_update_current();
  2050. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2051. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2052. {
  2053. if (! home_z && mbl_was_active) {
  2054. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2055. mbl.active = true;
  2056. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2057. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2058. }
  2059. }
  2060. else
  2061. {
  2062. st_synchronize();
  2063. homing_flag = false;
  2064. // Push the commands to the front of the message queue in the reverse order!
  2065. // There shall be always enough space reserved for these commands.
  2066. // enquecommand_front_P((PSTR("G80")));
  2067. goto case_G80;
  2068. }
  2069. #endif
  2070. if (farm_mode) { prusa_statistics(20); };
  2071. homing_flag = false;
  2072. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2073. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2074. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2075. break;
  2076. }
  2077. #ifdef ENABLE_AUTO_BED_LEVELING
  2078. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2079. {
  2080. #if Z_MIN_PIN == -1
  2081. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2082. #endif
  2083. // Prevent user from running a G29 without first homing in X and Y
  2084. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2085. {
  2086. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2087. SERIAL_ECHO_START;
  2088. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2089. break; // abort G29, since we don't know where we are
  2090. }
  2091. st_synchronize();
  2092. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2093. //vector_3 corrected_position = plan_get_position_mm();
  2094. //corrected_position.debug("position before G29");
  2095. plan_bed_level_matrix.set_to_identity();
  2096. vector_3 uncorrected_position = plan_get_position();
  2097. //uncorrected_position.debug("position durring G29");
  2098. current_position[X_AXIS] = uncorrected_position.x;
  2099. current_position[Y_AXIS] = uncorrected_position.y;
  2100. current_position[Z_AXIS] = uncorrected_position.z;
  2101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2102. setup_for_endstop_move();
  2103. feedrate = homing_feedrate[Z_AXIS];
  2104. #ifdef AUTO_BED_LEVELING_GRID
  2105. // probe at the points of a lattice grid
  2106. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2107. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2108. // solve the plane equation ax + by + d = z
  2109. // A is the matrix with rows [x y 1] for all the probed points
  2110. // B is the vector of the Z positions
  2111. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2112. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2113. // "A" matrix of the linear system of equations
  2114. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2115. // "B" vector of Z points
  2116. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2117. int probePointCounter = 0;
  2118. bool zig = true;
  2119. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2120. {
  2121. int xProbe, xInc;
  2122. if (zig)
  2123. {
  2124. xProbe = LEFT_PROBE_BED_POSITION;
  2125. //xEnd = RIGHT_PROBE_BED_POSITION;
  2126. xInc = xGridSpacing;
  2127. zig = false;
  2128. } else // zag
  2129. {
  2130. xProbe = RIGHT_PROBE_BED_POSITION;
  2131. //xEnd = LEFT_PROBE_BED_POSITION;
  2132. xInc = -xGridSpacing;
  2133. zig = true;
  2134. }
  2135. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2136. {
  2137. float z_before;
  2138. if (probePointCounter == 0)
  2139. {
  2140. // raise before probing
  2141. z_before = Z_RAISE_BEFORE_PROBING;
  2142. } else
  2143. {
  2144. // raise extruder
  2145. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2146. }
  2147. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2148. eqnBVector[probePointCounter] = measured_z;
  2149. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2150. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2151. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2152. probePointCounter++;
  2153. xProbe += xInc;
  2154. }
  2155. }
  2156. clean_up_after_endstop_move();
  2157. // solve lsq problem
  2158. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2159. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2160. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2161. SERIAL_PROTOCOLPGM(" b: ");
  2162. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2163. SERIAL_PROTOCOLPGM(" d: ");
  2164. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2165. set_bed_level_equation_lsq(plane_equation_coefficients);
  2166. free(plane_equation_coefficients);
  2167. #else // AUTO_BED_LEVELING_GRID not defined
  2168. // Probe at 3 arbitrary points
  2169. // probe 1
  2170. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2171. // probe 2
  2172. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2173. // probe 3
  2174. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2175. clean_up_after_endstop_move();
  2176. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2177. #endif // AUTO_BED_LEVELING_GRID
  2178. st_synchronize();
  2179. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2180. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2181. // When the bed is uneven, this height must be corrected.
  2182. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2183. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2184. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2185. z_tmp = current_position[Z_AXIS];
  2186. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2187. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2189. }
  2190. break;
  2191. #ifndef Z_PROBE_SLED
  2192. case 30: // G30 Single Z Probe
  2193. {
  2194. st_synchronize();
  2195. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2196. setup_for_endstop_move();
  2197. feedrate = homing_feedrate[Z_AXIS];
  2198. run_z_probe();
  2199. SERIAL_PROTOCOLPGM(MSG_BED);
  2200. SERIAL_PROTOCOLPGM(" X: ");
  2201. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2202. SERIAL_PROTOCOLPGM(" Y: ");
  2203. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2204. SERIAL_PROTOCOLPGM(" Z: ");
  2205. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2206. SERIAL_PROTOCOLPGM("\n");
  2207. clean_up_after_endstop_move();
  2208. }
  2209. break;
  2210. #else
  2211. case 31: // dock the sled
  2212. dock_sled(true);
  2213. break;
  2214. case 32: // undock the sled
  2215. dock_sled(false);
  2216. break;
  2217. #endif // Z_PROBE_SLED
  2218. #endif // ENABLE_AUTO_BED_LEVELING
  2219. #ifdef MESH_BED_LEVELING
  2220. case 30: // G30 Single Z Probe
  2221. {
  2222. st_synchronize();
  2223. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2224. setup_for_endstop_move();
  2225. feedrate = homing_feedrate[Z_AXIS];
  2226. find_bed_induction_sensor_point_z(-10.f, 3);
  2227. SERIAL_PROTOCOLRPGM(MSG_BED);
  2228. SERIAL_PROTOCOLPGM(" X: ");
  2229. MYSERIAL.print(current_position[X_AXIS], 5);
  2230. SERIAL_PROTOCOLPGM(" Y: ");
  2231. MYSERIAL.print(current_position[Y_AXIS], 5);
  2232. SERIAL_PROTOCOLPGM(" Z: ");
  2233. MYSERIAL.print(current_position[Z_AXIS], 5);
  2234. SERIAL_PROTOCOLPGM("\n");
  2235. clean_up_after_endstop_move();
  2236. }
  2237. break;
  2238. case 75:
  2239. {
  2240. for (int i = 40; i <= 110; i++) {
  2241. MYSERIAL.print(i);
  2242. MYSERIAL.print(" ");
  2243. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2244. }
  2245. }
  2246. break;
  2247. case 76: //PINDA probe temperature calibration
  2248. {
  2249. #ifdef PINDA_THERMISTOR
  2250. if (true)
  2251. {
  2252. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2253. // We don't know where we are! HOME!
  2254. // Push the commands to the front of the message queue in the reverse order!
  2255. // There shall be always enough space reserved for these commands.
  2256. repeatcommand_front(); // repeat G76 with all its parameters
  2257. enquecommand_front_P((PSTR("G28 W0")));
  2258. break;
  2259. }
  2260. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2261. float zero_z;
  2262. int z_shift = 0; //unit: steps
  2263. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2264. if (start_temp < 35) start_temp = 35;
  2265. if (start_temp < current_temperature_pinda) start_temp += 5;
  2266. SERIAL_ECHOPGM("start temperature: ");
  2267. MYSERIAL.println(start_temp);
  2268. // setTargetHotend(200, 0);
  2269. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2270. custom_message = true;
  2271. custom_message_type = 4;
  2272. custom_message_state = 1;
  2273. custom_message = MSG_TEMP_CALIBRATION;
  2274. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2275. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2276. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2278. st_synchronize();
  2279. while (current_temperature_pinda < start_temp)
  2280. {
  2281. delay_keep_alive(1000);
  2282. serialecho_temperatures();
  2283. }
  2284. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2285. current_position[Z_AXIS] = 5;
  2286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2287. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2288. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2290. st_synchronize();
  2291. find_bed_induction_sensor_point_z(-1.f);
  2292. zero_z = current_position[Z_AXIS];
  2293. //current_position[Z_AXIS]
  2294. SERIAL_ECHOLNPGM("");
  2295. SERIAL_ECHOPGM("ZERO: ");
  2296. MYSERIAL.print(current_position[Z_AXIS]);
  2297. SERIAL_ECHOLNPGM("");
  2298. int i = -1; for (; i < 5; i++)
  2299. {
  2300. float temp = (40 + i * 5);
  2301. SERIAL_ECHOPGM("Step: ");
  2302. MYSERIAL.print(i + 2);
  2303. SERIAL_ECHOLNPGM("/6 (skipped)");
  2304. SERIAL_ECHOPGM("PINDA temperature: ");
  2305. MYSERIAL.print((40 + i*5));
  2306. SERIAL_ECHOPGM(" Z shift (mm):");
  2307. MYSERIAL.print(0);
  2308. SERIAL_ECHOLNPGM("");
  2309. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2310. if (start_temp <= temp) break;
  2311. }
  2312. for (i++; i < 5; i++)
  2313. {
  2314. float temp = (40 + i * 5);
  2315. SERIAL_ECHOPGM("Step: ");
  2316. MYSERIAL.print(i + 2);
  2317. SERIAL_ECHOLNPGM("/6");
  2318. custom_message_state = i + 2;
  2319. setTargetBed(50 + 10 * (temp - 30) / 5);
  2320. // setTargetHotend(255, 0);
  2321. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2322. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2323. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2325. st_synchronize();
  2326. while (current_temperature_pinda < temp)
  2327. {
  2328. delay_keep_alive(1000);
  2329. serialecho_temperatures();
  2330. }
  2331. current_position[Z_AXIS] = 5;
  2332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2333. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2334. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2336. st_synchronize();
  2337. find_bed_induction_sensor_point_z(-1.f);
  2338. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2339. SERIAL_ECHOLNPGM("");
  2340. SERIAL_ECHOPGM("PINDA temperature: ");
  2341. MYSERIAL.print(current_temperature_pinda);
  2342. SERIAL_ECHOPGM(" Z shift (mm):");
  2343. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2344. SERIAL_ECHOLNPGM("");
  2345. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2346. }
  2347. custom_message_type = 0;
  2348. custom_message = false;
  2349. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2350. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2351. disable_x();
  2352. disable_y();
  2353. disable_z();
  2354. disable_e0();
  2355. disable_e1();
  2356. disable_e2();
  2357. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2358. lcd_update_enable(true);
  2359. lcd_update(2);
  2360. setTargetBed(0); //set bed target temperature back to 0
  2361. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2362. break;
  2363. }
  2364. #endif //PINDA_THERMISTOR
  2365. setTargetBed(PINDA_MIN_T);
  2366. float zero_z;
  2367. int z_shift = 0; //unit: steps
  2368. int t_c; // temperature
  2369. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2370. // We don't know where we are! HOME!
  2371. // Push the commands to the front of the message queue in the reverse order!
  2372. // There shall be always enough space reserved for these commands.
  2373. repeatcommand_front(); // repeat G76 with all its parameters
  2374. enquecommand_front_P((PSTR("G28 W0")));
  2375. break;
  2376. }
  2377. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2378. custom_message = true;
  2379. custom_message_type = 4;
  2380. custom_message_state = 1;
  2381. custom_message = MSG_TEMP_CALIBRATION;
  2382. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2383. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2384. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2386. st_synchronize();
  2387. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2388. delay_keep_alive(1000);
  2389. serialecho_temperatures();
  2390. }
  2391. //enquecommand_P(PSTR("M190 S50"));
  2392. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2393. delay_keep_alive(1000);
  2394. serialecho_temperatures();
  2395. }
  2396. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2397. current_position[Z_AXIS] = 5;
  2398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2399. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2400. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2402. st_synchronize();
  2403. find_bed_induction_sensor_point_z(-1.f);
  2404. zero_z = current_position[Z_AXIS];
  2405. //current_position[Z_AXIS]
  2406. SERIAL_ECHOLNPGM("");
  2407. SERIAL_ECHOPGM("ZERO: ");
  2408. MYSERIAL.print(current_position[Z_AXIS]);
  2409. SERIAL_ECHOLNPGM("");
  2410. for (int i = 0; i<5; i++) {
  2411. SERIAL_ECHOPGM("Step: ");
  2412. MYSERIAL.print(i+2);
  2413. SERIAL_ECHOLNPGM("/6");
  2414. custom_message_state = i + 2;
  2415. t_c = 60 + i * 10;
  2416. setTargetBed(t_c);
  2417. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2418. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2419. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2421. st_synchronize();
  2422. while (degBed() < t_c) {
  2423. delay_keep_alive(1000);
  2424. serialecho_temperatures();
  2425. }
  2426. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2427. delay_keep_alive(1000);
  2428. serialecho_temperatures();
  2429. }
  2430. current_position[Z_AXIS] = 5;
  2431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2432. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2433. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2435. st_synchronize();
  2436. find_bed_induction_sensor_point_z(-1.f);
  2437. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2438. SERIAL_ECHOLNPGM("");
  2439. SERIAL_ECHOPGM("Temperature: ");
  2440. MYSERIAL.print(t_c);
  2441. SERIAL_ECHOPGM(" Z shift (mm):");
  2442. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2443. SERIAL_ECHOLNPGM("");
  2444. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2445. }
  2446. custom_message_type = 0;
  2447. custom_message = false;
  2448. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2449. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2450. disable_x();
  2451. disable_y();
  2452. disable_z();
  2453. disable_e0();
  2454. disable_e1();
  2455. disable_e2();
  2456. setTargetBed(0); //set bed target temperature back to 0
  2457. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2458. lcd_update_enable(true);
  2459. lcd_update(2);
  2460. }
  2461. break;
  2462. #ifdef DIS
  2463. case 77:
  2464. {
  2465. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2466. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2467. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2468. float dimension_x = 40;
  2469. float dimension_y = 40;
  2470. int points_x = 40;
  2471. int points_y = 40;
  2472. float offset_x = 74;
  2473. float offset_y = 33;
  2474. if (code_seen('X')) dimension_x = code_value();
  2475. if (code_seen('Y')) dimension_y = code_value();
  2476. if (code_seen('XP')) points_x = code_value();
  2477. if (code_seen('YP')) points_y = code_value();
  2478. if (code_seen('XO')) offset_x = code_value();
  2479. if (code_seen('YO')) offset_y = code_value();
  2480. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2481. } break;
  2482. #endif
  2483. case 79: {
  2484. for (int i = 255; i > 0; i = i - 5) {
  2485. fanSpeed = i;
  2486. //delay_keep_alive(2000);
  2487. for (int j = 0; j < 100; j++) {
  2488. delay_keep_alive(100);
  2489. }
  2490. fan_speed[1];
  2491. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2492. }
  2493. }break;
  2494. /**
  2495. * G80: Mesh-based Z probe, probes a grid and produces a
  2496. * mesh to compensate for variable bed height
  2497. *
  2498. * The S0 report the points as below
  2499. *
  2500. * +----> X-axis
  2501. * |
  2502. * |
  2503. * v Y-axis
  2504. *
  2505. */
  2506. case 80:
  2507. #ifdef MK1BP
  2508. break;
  2509. #endif //MK1BP
  2510. case_G80:
  2511. {
  2512. mesh_bed_leveling_flag = true;
  2513. int8_t verbosity_level = 0;
  2514. static bool run = false;
  2515. if (code_seen('V')) {
  2516. // Just 'V' without a number counts as V1.
  2517. char c = strchr_pointer[1];
  2518. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2519. }
  2520. // Firstly check if we know where we are
  2521. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2522. // We don't know where we are! HOME!
  2523. // Push the commands to the front of the message queue in the reverse order!
  2524. // There shall be always enough space reserved for these commands.
  2525. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2526. repeatcommand_front(); // repeat G80 with all its parameters
  2527. enquecommand_front_P((PSTR("G28 W0")));
  2528. }
  2529. else {
  2530. mesh_bed_leveling_flag = false;
  2531. }
  2532. break;
  2533. }
  2534. bool temp_comp_start = true;
  2535. #ifdef PINDA_THERMISTOR
  2536. temp_comp_start = false;
  2537. #endif //PINDA_THERMISTOR
  2538. if (temp_comp_start)
  2539. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2540. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2541. temp_compensation_start();
  2542. run = true;
  2543. repeatcommand_front(); // repeat G80 with all its parameters
  2544. enquecommand_front_P((PSTR("G28 W0")));
  2545. }
  2546. else {
  2547. mesh_bed_leveling_flag = false;
  2548. }
  2549. break;
  2550. }
  2551. run = false;
  2552. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2553. mesh_bed_leveling_flag = false;
  2554. break;
  2555. }
  2556. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2557. bool custom_message_old = custom_message;
  2558. unsigned int custom_message_type_old = custom_message_type;
  2559. unsigned int custom_message_state_old = custom_message_state;
  2560. custom_message = true;
  2561. custom_message_type = 1;
  2562. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2563. lcd_update(1);
  2564. mbl.reset(); //reset mesh bed leveling
  2565. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2566. // consumed during the first movements following this statement.
  2567. babystep_undo();
  2568. // Cycle through all points and probe them
  2569. // First move up. During this first movement, the babystepping will be reverted.
  2570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2572. // The move to the first calibration point.
  2573. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2574. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2575. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2576. if (verbosity_level >= 1) {
  2577. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2578. }
  2579. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2581. // Wait until the move is finished.
  2582. st_synchronize();
  2583. int mesh_point = 0; //index number of calibration point
  2584. int ix = 0;
  2585. int iy = 0;
  2586. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2587. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2588. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2589. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2590. if (verbosity_level >= 1) {
  2591. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2592. }
  2593. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2594. const char *kill_message = NULL;
  2595. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2596. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2597. // Get coords of a measuring point.
  2598. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2599. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2600. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2601. float z0 = 0.f;
  2602. if (has_z && mesh_point > 0) {
  2603. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2604. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2605. //#if 0
  2606. if (verbosity_level >= 1) {
  2607. SERIAL_ECHOPGM("Bed leveling, point: ");
  2608. MYSERIAL.print(mesh_point);
  2609. SERIAL_ECHOPGM(", calibration z: ");
  2610. MYSERIAL.print(z0, 5);
  2611. SERIAL_ECHOLNPGM("");
  2612. }
  2613. //#endif
  2614. }
  2615. // Move Z up to MESH_HOME_Z_SEARCH.
  2616. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2618. st_synchronize();
  2619. // Move to XY position of the sensor point.
  2620. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2621. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2622. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2623. if (verbosity_level >= 1) {
  2624. SERIAL_PROTOCOL(mesh_point);
  2625. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2626. }
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2628. st_synchronize();
  2629. // Go down until endstop is hit
  2630. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2631. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2632. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2633. break;
  2634. }
  2635. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2636. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2637. break;
  2638. }
  2639. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2640. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2641. break;
  2642. }
  2643. if (verbosity_level >= 10) {
  2644. SERIAL_ECHOPGM("X: ");
  2645. MYSERIAL.print(current_position[X_AXIS], 5);
  2646. SERIAL_ECHOLNPGM("");
  2647. SERIAL_ECHOPGM("Y: ");
  2648. MYSERIAL.print(current_position[Y_AXIS], 5);
  2649. SERIAL_PROTOCOLPGM("\n");
  2650. }
  2651. float offset_z = 0;
  2652. #ifdef PINDA_THERMISTOR
  2653. offset_z = temp_compensation_pinda_thermistor_offset();
  2654. #endif //PINDA_THERMISTOR
  2655. if (verbosity_level >= 1) {
  2656. SERIAL_ECHOPGM("mesh bed leveling: ");
  2657. MYSERIAL.print(current_position[Z_AXIS], 5);
  2658. SERIAL_ECHOPGM(" offset: ");
  2659. MYSERIAL.print(offset_z, 5);
  2660. SERIAL_ECHOLNPGM("");
  2661. }
  2662. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2663. custom_message_state--;
  2664. mesh_point++;
  2665. lcd_update(1);
  2666. }
  2667. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2668. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2669. if (verbosity_level >= 20) {
  2670. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2671. MYSERIAL.print(current_position[Z_AXIS], 5);
  2672. }
  2673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2674. st_synchronize();
  2675. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2676. kill(kill_message);
  2677. SERIAL_ECHOLNPGM("killed");
  2678. }
  2679. clean_up_after_endstop_move();
  2680. SERIAL_ECHOLNPGM("clean up finished ");
  2681. bool apply_temp_comp = true;
  2682. #ifdef PINDA_THERMISTOR
  2683. apply_temp_comp = false;
  2684. #endif
  2685. if (apply_temp_comp)
  2686. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2687. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2688. SERIAL_ECHOLNPGM("babystep applied");
  2689. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2690. if (verbosity_level >= 1) {
  2691. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2692. }
  2693. for (uint8_t i = 0; i < 4; ++i) {
  2694. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2695. long correction = 0;
  2696. if (code_seen(codes[i]))
  2697. correction = code_value_long();
  2698. else if (eeprom_bed_correction_valid) {
  2699. unsigned char *addr = (i < 2) ?
  2700. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2701. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2702. correction = eeprom_read_int8(addr);
  2703. }
  2704. if (correction == 0)
  2705. continue;
  2706. float offset = float(correction) * 0.001f;
  2707. if (fabs(offset) > 0.101f) {
  2708. SERIAL_ERROR_START;
  2709. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2710. SERIAL_ECHO(offset);
  2711. SERIAL_ECHOLNPGM(" microns");
  2712. }
  2713. else {
  2714. switch (i) {
  2715. case 0:
  2716. for (uint8_t row = 0; row < 3; ++row) {
  2717. mbl.z_values[row][1] += 0.5f * offset;
  2718. mbl.z_values[row][0] += offset;
  2719. }
  2720. break;
  2721. case 1:
  2722. for (uint8_t row = 0; row < 3; ++row) {
  2723. mbl.z_values[row][1] += 0.5f * offset;
  2724. mbl.z_values[row][2] += offset;
  2725. }
  2726. break;
  2727. case 2:
  2728. for (uint8_t col = 0; col < 3; ++col) {
  2729. mbl.z_values[1][col] += 0.5f * offset;
  2730. mbl.z_values[0][col] += offset;
  2731. }
  2732. break;
  2733. case 3:
  2734. for (uint8_t col = 0; col < 3; ++col) {
  2735. mbl.z_values[1][col] += 0.5f * offset;
  2736. mbl.z_values[2][col] += offset;
  2737. }
  2738. break;
  2739. }
  2740. }
  2741. }
  2742. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2743. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2744. SERIAL_ECHOLNPGM("Upsample finished");
  2745. mbl.active = 1; //activate mesh bed leveling
  2746. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2747. go_home_with_z_lift();
  2748. SERIAL_ECHOLNPGM("Go home finished");
  2749. //unretract (after PINDA preheat retraction)
  2750. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2751. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2753. }
  2754. // Restore custom message state
  2755. custom_message = custom_message_old;
  2756. custom_message_type = custom_message_type_old;
  2757. custom_message_state = custom_message_state_old;
  2758. mesh_bed_leveling_flag = false;
  2759. mesh_bed_run_from_menu = false;
  2760. lcd_update(2);
  2761. }
  2762. break;
  2763. /**
  2764. * G81: Print mesh bed leveling status and bed profile if activated
  2765. */
  2766. case 81:
  2767. if (mbl.active) {
  2768. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2769. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2770. SERIAL_PROTOCOLPGM(",");
  2771. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2772. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2773. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2774. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2775. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2776. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2777. SERIAL_PROTOCOLPGM(" ");
  2778. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2779. }
  2780. SERIAL_PROTOCOLPGM("\n");
  2781. }
  2782. }
  2783. else
  2784. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2785. break;
  2786. #if 0
  2787. /**
  2788. * G82: Single Z probe at current location
  2789. *
  2790. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2791. *
  2792. */
  2793. case 82:
  2794. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2795. setup_for_endstop_move();
  2796. find_bed_induction_sensor_point_z();
  2797. clean_up_after_endstop_move();
  2798. SERIAL_PROTOCOLPGM("Bed found at: ");
  2799. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2800. SERIAL_PROTOCOLPGM("\n");
  2801. break;
  2802. /**
  2803. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2804. */
  2805. case 83:
  2806. {
  2807. int babystepz = code_seen('S') ? code_value() : 0;
  2808. int BabyPosition = code_seen('P') ? code_value() : 0;
  2809. if (babystepz != 0) {
  2810. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2811. // Is the axis indexed starting with zero or one?
  2812. if (BabyPosition > 4) {
  2813. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2814. }else{
  2815. // Save it to the eeprom
  2816. babystepLoadZ = babystepz;
  2817. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2818. // adjust the Z
  2819. babystepsTodoZadd(babystepLoadZ);
  2820. }
  2821. }
  2822. }
  2823. break;
  2824. /**
  2825. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2826. */
  2827. case 84:
  2828. babystepsTodoZsubtract(babystepLoadZ);
  2829. // babystepLoadZ = 0;
  2830. break;
  2831. /**
  2832. * G85: Prusa3D specific: Pick best babystep
  2833. */
  2834. case 85:
  2835. lcd_pick_babystep();
  2836. break;
  2837. #endif
  2838. /**
  2839. * G86: Prusa3D specific: Disable babystep correction after home.
  2840. * This G-code will be performed at the start of a calibration script.
  2841. */
  2842. case 86:
  2843. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2844. break;
  2845. /**
  2846. * G87: Prusa3D specific: Enable babystep correction after home
  2847. * This G-code will be performed at the end of a calibration script.
  2848. */
  2849. case 87:
  2850. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2851. break;
  2852. /**
  2853. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2854. */
  2855. case 88:
  2856. break;
  2857. #endif // ENABLE_MESH_BED_LEVELING
  2858. case 90: // G90
  2859. relative_mode = false;
  2860. break;
  2861. case 91: // G91
  2862. relative_mode = true;
  2863. break;
  2864. case 92: // G92
  2865. if(!code_seen(axis_codes[E_AXIS]))
  2866. st_synchronize();
  2867. for(int8_t i=0; i < NUM_AXIS; i++) {
  2868. if(code_seen(axis_codes[i])) {
  2869. if(i == E_AXIS) {
  2870. current_position[i] = code_value();
  2871. plan_set_e_position(current_position[E_AXIS]);
  2872. }
  2873. else {
  2874. current_position[i] = code_value()+add_homing[i];
  2875. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2876. }
  2877. }
  2878. }
  2879. break;
  2880. case 98: //activate farm mode
  2881. farm_mode = 1;
  2882. PingTime = millis();
  2883. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2884. break;
  2885. case 99: //deactivate farm mode
  2886. farm_mode = 0;
  2887. lcd_printer_connected();
  2888. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2889. lcd_update(2);
  2890. break;
  2891. }
  2892. } // end if(code_seen('G'))
  2893. else if(code_seen('M'))
  2894. {
  2895. int index;
  2896. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2897. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2898. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2899. SERIAL_ECHOLNPGM("Invalid M code");
  2900. } else
  2901. switch((int)code_value())
  2902. {
  2903. #ifdef ULTIPANEL
  2904. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2905. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2906. {
  2907. char *src = strchr_pointer + 2;
  2908. codenum = 0;
  2909. bool hasP = false, hasS = false;
  2910. if (code_seen('P')) {
  2911. codenum = code_value(); // milliseconds to wait
  2912. hasP = codenum > 0;
  2913. }
  2914. if (code_seen('S')) {
  2915. codenum = code_value() * 1000; // seconds to wait
  2916. hasS = codenum > 0;
  2917. }
  2918. starpos = strchr(src, '*');
  2919. if (starpos != NULL) *(starpos) = '\0';
  2920. while (*src == ' ') ++src;
  2921. if (!hasP && !hasS && *src != '\0') {
  2922. lcd_setstatus(src);
  2923. } else {
  2924. LCD_MESSAGERPGM(MSG_USERWAIT);
  2925. }
  2926. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2927. st_synchronize();
  2928. previous_millis_cmd = millis();
  2929. if (codenum > 0){
  2930. codenum += millis(); // keep track of when we started waiting
  2931. while(millis() < codenum && !lcd_clicked()){
  2932. manage_heater();
  2933. manage_inactivity(true);
  2934. lcd_update();
  2935. }
  2936. lcd_ignore_click(false);
  2937. }else{
  2938. if (!lcd_detected())
  2939. break;
  2940. while(!lcd_clicked()){
  2941. manage_heater();
  2942. manage_inactivity(true);
  2943. lcd_update();
  2944. }
  2945. }
  2946. if (IS_SD_PRINTING)
  2947. LCD_MESSAGERPGM(MSG_RESUMING);
  2948. else
  2949. LCD_MESSAGERPGM(WELCOME_MSG);
  2950. }
  2951. break;
  2952. #endif
  2953. case 17:
  2954. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2955. enable_x();
  2956. enable_y();
  2957. enable_z();
  2958. enable_e0();
  2959. enable_e1();
  2960. enable_e2();
  2961. break;
  2962. #ifdef SDSUPPORT
  2963. case 20: // M20 - list SD card
  2964. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2965. card.ls();
  2966. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2967. break;
  2968. case 21: // M21 - init SD card
  2969. card.initsd();
  2970. break;
  2971. case 22: //M22 - release SD card
  2972. card.release();
  2973. break;
  2974. case 23: //M23 - Select file
  2975. starpos = (strchr(strchr_pointer + 4,'*'));
  2976. if(starpos!=NULL)
  2977. *(starpos)='\0';
  2978. card.openFile(strchr_pointer + 4,true);
  2979. break;
  2980. case 24: //M24 - Start SD print
  2981. card.startFileprint();
  2982. starttime=millis();
  2983. break;
  2984. case 25: //M25 - Pause SD print
  2985. card.pauseSDPrint();
  2986. break;
  2987. case 26: //M26 - Set SD index
  2988. if(card.cardOK && code_seen('S')) {
  2989. card.setIndex(code_value_long());
  2990. }
  2991. break;
  2992. case 27: //M27 - Get SD status
  2993. card.getStatus();
  2994. break;
  2995. case 28: //M28 - Start SD write
  2996. starpos = (strchr(strchr_pointer + 4,'*'));
  2997. if(starpos != NULL){
  2998. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2999. strchr_pointer = strchr(npos,' ') + 1;
  3000. *(starpos) = '\0';
  3001. }
  3002. card.openFile(strchr_pointer+4,false);
  3003. break;
  3004. case 29: //M29 - Stop SD write
  3005. //processed in write to file routine above
  3006. //card,saving = false;
  3007. break;
  3008. case 30: //M30 <filename> Delete File
  3009. if (card.cardOK){
  3010. card.closefile();
  3011. starpos = (strchr(strchr_pointer + 4,'*'));
  3012. if(starpos != NULL){
  3013. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3014. strchr_pointer = strchr(npos,' ') + 1;
  3015. *(starpos) = '\0';
  3016. }
  3017. card.removeFile(strchr_pointer + 4);
  3018. }
  3019. break;
  3020. case 32: //M32 - Select file and start SD print
  3021. {
  3022. if(card.sdprinting) {
  3023. st_synchronize();
  3024. }
  3025. starpos = (strchr(strchr_pointer + 4,'*'));
  3026. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3027. if(namestartpos==NULL)
  3028. {
  3029. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3030. }
  3031. else
  3032. namestartpos++; //to skip the '!'
  3033. if(starpos!=NULL)
  3034. *(starpos)='\0';
  3035. bool call_procedure=(code_seen('P'));
  3036. if(strchr_pointer>namestartpos)
  3037. call_procedure=false; //false alert, 'P' found within filename
  3038. if( card.cardOK )
  3039. {
  3040. card.openFile(namestartpos,true,!call_procedure);
  3041. if(code_seen('S'))
  3042. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3043. card.setIndex(code_value_long());
  3044. card.startFileprint();
  3045. if(!call_procedure)
  3046. starttime=millis(); //procedure calls count as normal print time.
  3047. }
  3048. } break;
  3049. case 928: //M928 - Start SD write
  3050. starpos = (strchr(strchr_pointer + 5,'*'));
  3051. if(starpos != NULL){
  3052. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3053. strchr_pointer = strchr(npos,' ') + 1;
  3054. *(starpos) = '\0';
  3055. }
  3056. card.openLogFile(strchr_pointer+5);
  3057. break;
  3058. #endif //SDSUPPORT
  3059. case 31: //M31 take time since the start of the SD print or an M109 command
  3060. {
  3061. stoptime=millis();
  3062. char time[30];
  3063. unsigned long t=(stoptime-starttime)/1000;
  3064. int sec,min;
  3065. min=t/60;
  3066. sec=t%60;
  3067. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3068. SERIAL_ECHO_START;
  3069. SERIAL_ECHOLN(time);
  3070. lcd_setstatus(time);
  3071. autotempShutdown();
  3072. }
  3073. break;
  3074. case 42: //M42 -Change pin status via gcode
  3075. if (code_seen('S'))
  3076. {
  3077. int pin_status = code_value();
  3078. int pin_number = LED_PIN;
  3079. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3080. pin_number = code_value();
  3081. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3082. {
  3083. if (sensitive_pins[i] == pin_number)
  3084. {
  3085. pin_number = -1;
  3086. break;
  3087. }
  3088. }
  3089. #if defined(FAN_PIN) && FAN_PIN > -1
  3090. if (pin_number == FAN_PIN)
  3091. fanSpeed = pin_status;
  3092. #endif
  3093. if (pin_number > -1)
  3094. {
  3095. pinMode(pin_number, OUTPUT);
  3096. digitalWrite(pin_number, pin_status);
  3097. analogWrite(pin_number, pin_status);
  3098. }
  3099. }
  3100. break;
  3101. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3102. // Reset the baby step value and the baby step applied flag.
  3103. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3104. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3105. // Reset the skew and offset in both RAM and EEPROM.
  3106. reset_bed_offset_and_skew();
  3107. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3108. // the planner will not perform any adjustments in the XY plane.
  3109. // Wait for the motors to stop and update the current position with the absolute values.
  3110. world2machine_revert_to_uncorrected();
  3111. break;
  3112. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3113. {
  3114. // Only Z calibration?
  3115. bool onlyZ = code_seen('Z');
  3116. if (!onlyZ) {
  3117. setTargetBed(0);
  3118. setTargetHotend(0, 0);
  3119. setTargetHotend(0, 1);
  3120. setTargetHotend(0, 2);
  3121. adjust_bed_reset(); //reset bed level correction
  3122. }
  3123. // Disable the default update procedure of the display. We will do a modal dialog.
  3124. lcd_update_enable(false);
  3125. // Let the planner use the uncorrected coordinates.
  3126. mbl.reset();
  3127. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3128. // the planner will not perform any adjustments in the XY plane.
  3129. // Wait for the motors to stop and update the current position with the absolute values.
  3130. world2machine_revert_to_uncorrected();
  3131. // Reset the baby step value applied without moving the axes.
  3132. babystep_reset();
  3133. // Mark all axes as in a need for homing.
  3134. memset(axis_known_position, 0, sizeof(axis_known_position));
  3135. // Home in the XY plane.
  3136. //set_destination_to_current();
  3137. setup_for_endstop_move();
  3138. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3139. home_xy();
  3140. // Let the user move the Z axes up to the end stoppers.
  3141. #ifdef TMC2130
  3142. if (calibrate_z_auto()) {
  3143. #else //TMC2130
  3144. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3145. #endif //TMC2130
  3146. refresh_cmd_timeout();
  3147. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3148. lcd_wait_for_cool_down();
  3149. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3150. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3151. lcd_implementation_print_at(0, 2, 1);
  3152. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3153. }
  3154. // Move the print head close to the bed.
  3155. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3157. st_synchronize();
  3158. //#ifdef TMC2130
  3159. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3160. //#endif
  3161. int8_t verbosity_level = 0;
  3162. if (code_seen('V')) {
  3163. // Just 'V' without a number counts as V1.
  3164. char c = strchr_pointer[1];
  3165. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3166. }
  3167. if (onlyZ) {
  3168. clean_up_after_endstop_move();
  3169. // Z only calibration.
  3170. // Load the machine correction matrix
  3171. world2machine_initialize();
  3172. // and correct the current_position to match the transformed coordinate system.
  3173. world2machine_update_current();
  3174. //FIXME
  3175. bool result = sample_mesh_and_store_reference();
  3176. if (result) {
  3177. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3178. // Shipped, the nozzle height has been set already. The user can start printing now.
  3179. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3180. // babystep_apply();
  3181. }
  3182. } else {
  3183. // Reset the baby step value and the baby step applied flag.
  3184. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3185. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3186. // Complete XYZ calibration.
  3187. uint8_t point_too_far_mask = 0;
  3188. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3189. clean_up_after_endstop_move();
  3190. // Print head up.
  3191. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3193. st_synchronize();
  3194. if (result >= 0) {
  3195. point_too_far_mask = 0;
  3196. // Second half: The fine adjustment.
  3197. // Let the planner use the uncorrected coordinates.
  3198. mbl.reset();
  3199. world2machine_reset();
  3200. // Home in the XY plane.
  3201. setup_for_endstop_move();
  3202. home_xy();
  3203. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3204. clean_up_after_endstop_move();
  3205. // Print head up.
  3206. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3208. st_synchronize();
  3209. // if (result >= 0) babystep_apply();
  3210. }
  3211. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3212. if (result >= 0) {
  3213. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3214. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3215. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3216. }
  3217. }
  3218. #ifdef TMC2130
  3219. tmc2130_home_exit();
  3220. #endif
  3221. } else {
  3222. // Timeouted.
  3223. }
  3224. lcd_update_enable(true);
  3225. break;
  3226. }
  3227. /*
  3228. case 46:
  3229. {
  3230. // M46: Prusa3D: Show the assigned IP address.
  3231. uint8_t ip[4];
  3232. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3233. if (hasIP) {
  3234. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3235. SERIAL_ECHO(int(ip[0]));
  3236. SERIAL_ECHOPGM(".");
  3237. SERIAL_ECHO(int(ip[1]));
  3238. SERIAL_ECHOPGM(".");
  3239. SERIAL_ECHO(int(ip[2]));
  3240. SERIAL_ECHOPGM(".");
  3241. SERIAL_ECHO(int(ip[3]));
  3242. SERIAL_ECHOLNPGM("");
  3243. } else {
  3244. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3245. }
  3246. break;
  3247. }
  3248. */
  3249. case 47:
  3250. // M47: Prusa3D: Show end stops dialog on the display.
  3251. lcd_diag_show_end_stops();
  3252. break;
  3253. #if 0
  3254. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3255. {
  3256. // Disable the default update procedure of the display. We will do a modal dialog.
  3257. lcd_update_enable(false);
  3258. // Let the planner use the uncorrected coordinates.
  3259. mbl.reset();
  3260. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3261. // the planner will not perform any adjustments in the XY plane.
  3262. // Wait for the motors to stop and update the current position with the absolute values.
  3263. world2machine_revert_to_uncorrected();
  3264. // Move the print head close to the bed.
  3265. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3267. st_synchronize();
  3268. // Home in the XY plane.
  3269. set_destination_to_current();
  3270. setup_for_endstop_move();
  3271. home_xy();
  3272. int8_t verbosity_level = 0;
  3273. if (code_seen('V')) {
  3274. // Just 'V' without a number counts as V1.
  3275. char c = strchr_pointer[1];
  3276. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3277. }
  3278. bool success = scan_bed_induction_points(verbosity_level);
  3279. clean_up_after_endstop_move();
  3280. // Print head up.
  3281. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3283. st_synchronize();
  3284. lcd_update_enable(true);
  3285. break;
  3286. }
  3287. #endif
  3288. // M48 Z-Probe repeatability measurement function.
  3289. //
  3290. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3291. //
  3292. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3293. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3294. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3295. // regenerated.
  3296. //
  3297. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3298. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3299. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3300. //
  3301. #ifdef ENABLE_AUTO_BED_LEVELING
  3302. #ifdef Z_PROBE_REPEATABILITY_TEST
  3303. case 48: // M48 Z-Probe repeatability
  3304. {
  3305. #if Z_MIN_PIN == -1
  3306. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3307. #endif
  3308. double sum=0.0;
  3309. double mean=0.0;
  3310. double sigma=0.0;
  3311. double sample_set[50];
  3312. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3313. double X_current, Y_current, Z_current;
  3314. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3315. if (code_seen('V') || code_seen('v')) {
  3316. verbose_level = code_value();
  3317. if (verbose_level<0 || verbose_level>4 ) {
  3318. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3319. goto Sigma_Exit;
  3320. }
  3321. }
  3322. if (verbose_level > 0) {
  3323. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3324. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3325. }
  3326. if (code_seen('n')) {
  3327. n_samples = code_value();
  3328. if (n_samples<4 || n_samples>50 ) {
  3329. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3330. goto Sigma_Exit;
  3331. }
  3332. }
  3333. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3334. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3335. Z_current = st_get_position_mm(Z_AXIS);
  3336. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3337. ext_position = st_get_position_mm(E_AXIS);
  3338. if (code_seen('X') || code_seen('x') ) {
  3339. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3340. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3341. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3342. goto Sigma_Exit;
  3343. }
  3344. }
  3345. if (code_seen('Y') || code_seen('y') ) {
  3346. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3347. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3348. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3349. goto Sigma_Exit;
  3350. }
  3351. }
  3352. if (code_seen('L') || code_seen('l') ) {
  3353. n_legs = code_value();
  3354. if ( n_legs==1 )
  3355. n_legs = 2;
  3356. if ( n_legs<0 || n_legs>15 ) {
  3357. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3358. goto Sigma_Exit;
  3359. }
  3360. }
  3361. //
  3362. // Do all the preliminary setup work. First raise the probe.
  3363. //
  3364. st_synchronize();
  3365. plan_bed_level_matrix.set_to_identity();
  3366. plan_buffer_line( X_current, Y_current, Z_start_location,
  3367. ext_position,
  3368. homing_feedrate[Z_AXIS]/60,
  3369. active_extruder);
  3370. st_synchronize();
  3371. //
  3372. // Now get everything to the specified probe point So we can safely do a probe to
  3373. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3374. // use that as a starting point for each probe.
  3375. //
  3376. if (verbose_level > 2)
  3377. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3378. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3379. ext_position,
  3380. homing_feedrate[X_AXIS]/60,
  3381. active_extruder);
  3382. st_synchronize();
  3383. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3384. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3385. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3386. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3387. //
  3388. // OK, do the inital probe to get us close to the bed.
  3389. // Then retrace the right amount and use that in subsequent probes
  3390. //
  3391. setup_for_endstop_move();
  3392. run_z_probe();
  3393. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3394. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3395. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3396. ext_position,
  3397. homing_feedrate[X_AXIS]/60,
  3398. active_extruder);
  3399. st_synchronize();
  3400. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3401. for( n=0; n<n_samples; n++) {
  3402. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3403. if ( n_legs) {
  3404. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3405. int rotational_direction, l;
  3406. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3407. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3408. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3409. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3410. //SERIAL_ECHOPAIR(" theta: ",theta);
  3411. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3412. //SERIAL_PROTOCOLLNPGM("");
  3413. for( l=0; l<n_legs-1; l++) {
  3414. if (rotational_direction==1)
  3415. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3416. else
  3417. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3418. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3419. if ( radius<0.0 )
  3420. radius = -radius;
  3421. X_current = X_probe_location + cos(theta) * radius;
  3422. Y_current = Y_probe_location + sin(theta) * radius;
  3423. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3424. X_current = X_MIN_POS;
  3425. if ( X_current>X_MAX_POS)
  3426. X_current = X_MAX_POS;
  3427. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3428. Y_current = Y_MIN_POS;
  3429. if ( Y_current>Y_MAX_POS)
  3430. Y_current = Y_MAX_POS;
  3431. if (verbose_level>3 ) {
  3432. SERIAL_ECHOPAIR("x: ", X_current);
  3433. SERIAL_ECHOPAIR("y: ", Y_current);
  3434. SERIAL_PROTOCOLLNPGM("");
  3435. }
  3436. do_blocking_move_to( X_current, Y_current, Z_current );
  3437. }
  3438. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3439. }
  3440. setup_for_endstop_move();
  3441. run_z_probe();
  3442. sample_set[n] = current_position[Z_AXIS];
  3443. //
  3444. // Get the current mean for the data points we have so far
  3445. //
  3446. sum=0.0;
  3447. for( j=0; j<=n; j++) {
  3448. sum = sum + sample_set[j];
  3449. }
  3450. mean = sum / (double (n+1));
  3451. //
  3452. // Now, use that mean to calculate the standard deviation for the
  3453. // data points we have so far
  3454. //
  3455. sum=0.0;
  3456. for( j=0; j<=n; j++) {
  3457. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3458. }
  3459. sigma = sqrt( sum / (double (n+1)) );
  3460. if (verbose_level > 1) {
  3461. SERIAL_PROTOCOL(n+1);
  3462. SERIAL_PROTOCOL(" of ");
  3463. SERIAL_PROTOCOL(n_samples);
  3464. SERIAL_PROTOCOLPGM(" z: ");
  3465. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3466. }
  3467. if (verbose_level > 2) {
  3468. SERIAL_PROTOCOL(" mean: ");
  3469. SERIAL_PROTOCOL_F(mean,6);
  3470. SERIAL_PROTOCOL(" sigma: ");
  3471. SERIAL_PROTOCOL_F(sigma,6);
  3472. }
  3473. if (verbose_level > 0)
  3474. SERIAL_PROTOCOLPGM("\n");
  3475. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3476. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3477. st_synchronize();
  3478. }
  3479. delay(1000);
  3480. clean_up_after_endstop_move();
  3481. // enable_endstops(true);
  3482. if (verbose_level > 0) {
  3483. SERIAL_PROTOCOLPGM("Mean: ");
  3484. SERIAL_PROTOCOL_F(mean, 6);
  3485. SERIAL_PROTOCOLPGM("\n");
  3486. }
  3487. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3488. SERIAL_PROTOCOL_F(sigma, 6);
  3489. SERIAL_PROTOCOLPGM("\n\n");
  3490. Sigma_Exit:
  3491. break;
  3492. }
  3493. #endif // Z_PROBE_REPEATABILITY_TEST
  3494. #endif // ENABLE_AUTO_BED_LEVELING
  3495. case 104: // M104
  3496. if(setTargetedHotend(104)){
  3497. break;
  3498. }
  3499. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3500. setWatch();
  3501. break;
  3502. case 112: // M112 -Emergency Stop
  3503. kill("", 3);
  3504. break;
  3505. case 140: // M140 set bed temp
  3506. if (code_seen('S')) setTargetBed(code_value());
  3507. break;
  3508. case 105 : // M105
  3509. if(setTargetedHotend(105)){
  3510. break;
  3511. }
  3512. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3513. SERIAL_PROTOCOLPGM("ok T:");
  3514. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3515. SERIAL_PROTOCOLPGM(" /");
  3516. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3517. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3518. SERIAL_PROTOCOLPGM(" B:");
  3519. SERIAL_PROTOCOL_F(degBed(),1);
  3520. SERIAL_PROTOCOLPGM(" /");
  3521. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3522. #endif //TEMP_BED_PIN
  3523. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3524. SERIAL_PROTOCOLPGM(" T");
  3525. SERIAL_PROTOCOL(cur_extruder);
  3526. SERIAL_PROTOCOLPGM(":");
  3527. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3528. SERIAL_PROTOCOLPGM(" /");
  3529. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3530. }
  3531. #else
  3532. SERIAL_ERROR_START;
  3533. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3534. #endif
  3535. SERIAL_PROTOCOLPGM(" @:");
  3536. #ifdef EXTRUDER_WATTS
  3537. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3538. SERIAL_PROTOCOLPGM("W");
  3539. #else
  3540. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3541. #endif
  3542. SERIAL_PROTOCOLPGM(" B@:");
  3543. #ifdef BED_WATTS
  3544. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3545. SERIAL_PROTOCOLPGM("W");
  3546. #else
  3547. SERIAL_PROTOCOL(getHeaterPower(-1));
  3548. #endif
  3549. #ifdef PINDA_THERMISTOR
  3550. SERIAL_PROTOCOLPGM(" P:");
  3551. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3552. #endif //PINDA_THERMISTOR
  3553. #ifdef AMBIENT_THERMISTOR
  3554. SERIAL_PROTOCOLPGM(" A:");
  3555. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3556. #endif //AMBIENT_THERMISTOR
  3557. #ifdef SHOW_TEMP_ADC_VALUES
  3558. {float raw = 0.0;
  3559. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3560. SERIAL_PROTOCOLPGM(" ADC B:");
  3561. SERIAL_PROTOCOL_F(degBed(),1);
  3562. SERIAL_PROTOCOLPGM("C->");
  3563. raw = rawBedTemp();
  3564. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3565. SERIAL_PROTOCOLPGM(" Rb->");
  3566. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3567. SERIAL_PROTOCOLPGM(" Rxb->");
  3568. SERIAL_PROTOCOL_F(raw, 5);
  3569. #endif
  3570. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3571. SERIAL_PROTOCOLPGM(" T");
  3572. SERIAL_PROTOCOL(cur_extruder);
  3573. SERIAL_PROTOCOLPGM(":");
  3574. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3575. SERIAL_PROTOCOLPGM("C->");
  3576. raw = rawHotendTemp(cur_extruder);
  3577. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3578. SERIAL_PROTOCOLPGM(" Rt");
  3579. SERIAL_PROTOCOL(cur_extruder);
  3580. SERIAL_PROTOCOLPGM("->");
  3581. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3582. SERIAL_PROTOCOLPGM(" Rx");
  3583. SERIAL_PROTOCOL(cur_extruder);
  3584. SERIAL_PROTOCOLPGM("->");
  3585. SERIAL_PROTOCOL_F(raw, 5);
  3586. }}
  3587. #endif
  3588. SERIAL_PROTOCOLLN("");
  3589. return;
  3590. break;
  3591. case 109:
  3592. {// M109 - Wait for extruder heater to reach target.
  3593. if(setTargetedHotend(109)){
  3594. break;
  3595. }
  3596. LCD_MESSAGERPGM(MSG_HEATING);
  3597. heating_status = 1;
  3598. if (farm_mode) { prusa_statistics(1); };
  3599. #ifdef AUTOTEMP
  3600. autotemp_enabled=false;
  3601. #endif
  3602. if (code_seen('S')) {
  3603. setTargetHotend(code_value(), tmp_extruder);
  3604. CooldownNoWait = true;
  3605. } else if (code_seen('R')) {
  3606. setTargetHotend(code_value(), tmp_extruder);
  3607. CooldownNoWait = false;
  3608. }
  3609. #ifdef AUTOTEMP
  3610. if (code_seen('S')) autotemp_min=code_value();
  3611. if (code_seen('B')) autotemp_max=code_value();
  3612. if (code_seen('F'))
  3613. {
  3614. autotemp_factor=code_value();
  3615. autotemp_enabled=true;
  3616. }
  3617. #endif
  3618. setWatch();
  3619. codenum = millis();
  3620. /* See if we are heating up or cooling down */
  3621. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3622. cancel_heatup = false;
  3623. wait_for_heater(codenum); //loops until target temperature is reached
  3624. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3625. heating_status = 2;
  3626. if (farm_mode) { prusa_statistics(2); };
  3627. //starttime=millis();
  3628. previous_millis_cmd = millis();
  3629. }
  3630. break;
  3631. case 190: // M190 - Wait for bed heater to reach target.
  3632. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3633. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3634. heating_status = 3;
  3635. if (farm_mode) { prusa_statistics(1); };
  3636. if (code_seen('S'))
  3637. {
  3638. setTargetBed(code_value());
  3639. CooldownNoWait = true;
  3640. }
  3641. else if (code_seen('R'))
  3642. {
  3643. setTargetBed(code_value());
  3644. CooldownNoWait = false;
  3645. }
  3646. codenum = millis();
  3647. cancel_heatup = false;
  3648. target_direction = isHeatingBed(); // true if heating, false if cooling
  3649. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3650. {
  3651. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3652. {
  3653. if (!farm_mode) {
  3654. float tt = degHotend(active_extruder);
  3655. SERIAL_PROTOCOLPGM("T:");
  3656. SERIAL_PROTOCOL(tt);
  3657. SERIAL_PROTOCOLPGM(" E:");
  3658. SERIAL_PROTOCOL((int)active_extruder);
  3659. SERIAL_PROTOCOLPGM(" B:");
  3660. SERIAL_PROTOCOL_F(degBed(), 1);
  3661. SERIAL_PROTOCOLLN("");
  3662. }
  3663. codenum = millis();
  3664. }
  3665. manage_heater();
  3666. manage_inactivity();
  3667. lcd_update();
  3668. }
  3669. LCD_MESSAGERPGM(MSG_BED_DONE);
  3670. heating_status = 4;
  3671. previous_millis_cmd = millis();
  3672. #endif
  3673. break;
  3674. #if defined(FAN_PIN) && FAN_PIN > -1
  3675. case 106: //M106 Fan On
  3676. if (code_seen('S')){
  3677. fanSpeed=constrain(code_value(),0,255);
  3678. }
  3679. else {
  3680. fanSpeed=255;
  3681. }
  3682. break;
  3683. case 107: //M107 Fan Off
  3684. fanSpeed = 0;
  3685. break;
  3686. #endif //FAN_PIN
  3687. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3688. case 80: // M80 - Turn on Power Supply
  3689. SET_OUTPUT(PS_ON_PIN); //GND
  3690. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3691. // If you have a switch on suicide pin, this is useful
  3692. // if you want to start another print with suicide feature after
  3693. // a print without suicide...
  3694. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3695. SET_OUTPUT(SUICIDE_PIN);
  3696. WRITE(SUICIDE_PIN, HIGH);
  3697. #endif
  3698. #ifdef ULTIPANEL
  3699. powersupply = true;
  3700. LCD_MESSAGERPGM(WELCOME_MSG);
  3701. lcd_update();
  3702. #endif
  3703. break;
  3704. #endif
  3705. case 81: // M81 - Turn off Power Supply
  3706. disable_heater();
  3707. st_synchronize();
  3708. disable_e0();
  3709. disable_e1();
  3710. disable_e2();
  3711. finishAndDisableSteppers();
  3712. fanSpeed = 0;
  3713. delay(1000); // Wait a little before to switch off
  3714. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3715. st_synchronize();
  3716. suicide();
  3717. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3718. SET_OUTPUT(PS_ON_PIN);
  3719. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3720. #endif
  3721. #ifdef ULTIPANEL
  3722. powersupply = false;
  3723. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3724. /*
  3725. MACHNAME = "Prusa i3"
  3726. MSGOFF = "Vypnuto"
  3727. "Prusai3"" ""vypnuto""."
  3728. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3729. */
  3730. lcd_update();
  3731. #endif
  3732. break;
  3733. case 82:
  3734. axis_relative_modes[3] = false;
  3735. break;
  3736. case 83:
  3737. axis_relative_modes[3] = true;
  3738. break;
  3739. case 18: //compatibility
  3740. case 84: // M84
  3741. if(code_seen('S')){
  3742. stepper_inactive_time = code_value() * 1000;
  3743. }
  3744. else
  3745. {
  3746. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3747. if(all_axis)
  3748. {
  3749. st_synchronize();
  3750. disable_e0();
  3751. disable_e1();
  3752. disable_e2();
  3753. finishAndDisableSteppers();
  3754. }
  3755. else
  3756. {
  3757. st_synchronize();
  3758. if (code_seen('X')) disable_x();
  3759. if (code_seen('Y')) disable_y();
  3760. if (code_seen('Z')) disable_z();
  3761. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3762. if (code_seen('E')) {
  3763. disable_e0();
  3764. disable_e1();
  3765. disable_e2();
  3766. }
  3767. #endif
  3768. }
  3769. }
  3770. snmm_filaments_used = 0;
  3771. break;
  3772. case 85: // M85
  3773. if(code_seen('S')) {
  3774. max_inactive_time = code_value() * 1000;
  3775. }
  3776. break;
  3777. case 92: // M92
  3778. for(int8_t i=0; i < NUM_AXIS; i++)
  3779. {
  3780. if(code_seen(axis_codes[i]))
  3781. {
  3782. if(i == 3) { // E
  3783. float value = code_value();
  3784. if(value < 20.0) {
  3785. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3786. max_jerk[E_AXIS] *= factor;
  3787. max_feedrate[i] *= factor;
  3788. axis_steps_per_sqr_second[i] *= factor;
  3789. }
  3790. axis_steps_per_unit[i] = value;
  3791. }
  3792. else {
  3793. axis_steps_per_unit[i] = code_value();
  3794. }
  3795. }
  3796. }
  3797. break;
  3798. case 115: // M115
  3799. if (code_seen('V')) {
  3800. // Report the Prusa version number.
  3801. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3802. } else if (code_seen('U')) {
  3803. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3804. // pause the print and ask the user to upgrade the firmware.
  3805. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3806. } else {
  3807. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3808. }
  3809. break;
  3810. /* case 117: // M117 display message
  3811. starpos = (strchr(strchr_pointer + 5,'*'));
  3812. if(starpos!=NULL)
  3813. *(starpos)='\0';
  3814. lcd_setstatus(strchr_pointer + 5);
  3815. break;*/
  3816. case 114: // M114
  3817. SERIAL_PROTOCOLPGM("X:");
  3818. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3819. SERIAL_PROTOCOLPGM(" Y:");
  3820. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3821. SERIAL_PROTOCOLPGM(" Z:");
  3822. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3823. SERIAL_PROTOCOLPGM(" E:");
  3824. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3825. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3826. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3827. SERIAL_PROTOCOLPGM(" Y:");
  3828. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3829. SERIAL_PROTOCOLPGM(" Z:");
  3830. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3831. SERIAL_PROTOCOLLN("");
  3832. break;
  3833. case 120: // M120
  3834. enable_endstops(false) ;
  3835. break;
  3836. case 121: // M121
  3837. enable_endstops(true) ;
  3838. break;
  3839. case 119: // M119
  3840. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3841. SERIAL_PROTOCOLLN("");
  3842. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3843. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3844. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3845. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3846. }else{
  3847. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3848. }
  3849. SERIAL_PROTOCOLLN("");
  3850. #endif
  3851. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3852. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3853. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3854. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3855. }else{
  3856. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3857. }
  3858. SERIAL_PROTOCOLLN("");
  3859. #endif
  3860. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3861. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3862. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3863. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3864. }else{
  3865. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3866. }
  3867. SERIAL_PROTOCOLLN("");
  3868. #endif
  3869. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3870. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3871. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3872. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3873. }else{
  3874. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3875. }
  3876. SERIAL_PROTOCOLLN("");
  3877. #endif
  3878. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3879. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3880. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3881. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3882. }else{
  3883. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3884. }
  3885. SERIAL_PROTOCOLLN("");
  3886. #endif
  3887. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3888. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3889. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3890. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3891. }else{
  3892. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3893. }
  3894. SERIAL_PROTOCOLLN("");
  3895. #endif
  3896. break;
  3897. //TODO: update for all axis, use for loop
  3898. #ifdef BLINKM
  3899. case 150: // M150
  3900. {
  3901. byte red;
  3902. byte grn;
  3903. byte blu;
  3904. if(code_seen('R')) red = code_value();
  3905. if(code_seen('U')) grn = code_value();
  3906. if(code_seen('B')) blu = code_value();
  3907. SendColors(red,grn,blu);
  3908. }
  3909. break;
  3910. #endif //BLINKM
  3911. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3912. {
  3913. tmp_extruder = active_extruder;
  3914. if(code_seen('T')) {
  3915. tmp_extruder = code_value();
  3916. if(tmp_extruder >= EXTRUDERS) {
  3917. SERIAL_ECHO_START;
  3918. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3919. break;
  3920. }
  3921. }
  3922. float area = .0;
  3923. if(code_seen('D')) {
  3924. float diameter = (float)code_value();
  3925. if (diameter == 0.0) {
  3926. // setting any extruder filament size disables volumetric on the assumption that
  3927. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3928. // for all extruders
  3929. volumetric_enabled = false;
  3930. } else {
  3931. filament_size[tmp_extruder] = (float)code_value();
  3932. // make sure all extruders have some sane value for the filament size
  3933. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3934. #if EXTRUDERS > 1
  3935. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3936. #if EXTRUDERS > 2
  3937. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3938. #endif
  3939. #endif
  3940. volumetric_enabled = true;
  3941. }
  3942. } else {
  3943. //reserved for setting filament diameter via UFID or filament measuring device
  3944. break;
  3945. }
  3946. calculate_volumetric_multipliers();
  3947. }
  3948. break;
  3949. case 201: // M201
  3950. for(int8_t i=0; i < NUM_AXIS; i++)
  3951. {
  3952. if(code_seen(axis_codes[i]))
  3953. {
  3954. max_acceleration_units_per_sq_second[i] = code_value();
  3955. }
  3956. }
  3957. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3958. reset_acceleration_rates();
  3959. break;
  3960. #if 0 // Not used for Sprinter/grbl gen6
  3961. case 202: // M202
  3962. for(int8_t i=0; i < NUM_AXIS; i++) {
  3963. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3964. }
  3965. break;
  3966. #endif
  3967. case 203: // M203 max feedrate mm/sec
  3968. for(int8_t i=0; i < NUM_AXIS; i++) {
  3969. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3970. }
  3971. break;
  3972. case 204: // M204 acclereration S normal moves T filmanent only moves
  3973. {
  3974. if(code_seen('S')) acceleration = code_value() ;
  3975. if(code_seen('T')) retract_acceleration = code_value() ;
  3976. }
  3977. break;
  3978. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3979. {
  3980. if(code_seen('S')) minimumfeedrate = code_value();
  3981. if(code_seen('T')) mintravelfeedrate = code_value();
  3982. if(code_seen('B')) minsegmenttime = code_value() ;
  3983. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3984. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3985. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3986. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3987. }
  3988. break;
  3989. case 206: // M206 additional homing offset
  3990. for(int8_t i=0; i < 3; i++)
  3991. {
  3992. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3993. }
  3994. break;
  3995. #ifdef FWRETRACT
  3996. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3997. {
  3998. if(code_seen('S'))
  3999. {
  4000. retract_length = code_value() ;
  4001. }
  4002. if(code_seen('F'))
  4003. {
  4004. retract_feedrate = code_value()/60 ;
  4005. }
  4006. if(code_seen('Z'))
  4007. {
  4008. retract_zlift = code_value() ;
  4009. }
  4010. }break;
  4011. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4012. {
  4013. if(code_seen('S'))
  4014. {
  4015. retract_recover_length = code_value() ;
  4016. }
  4017. if(code_seen('F'))
  4018. {
  4019. retract_recover_feedrate = code_value()/60 ;
  4020. }
  4021. }break;
  4022. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4023. {
  4024. if(code_seen('S'))
  4025. {
  4026. int t= code_value() ;
  4027. switch(t)
  4028. {
  4029. case 0:
  4030. {
  4031. autoretract_enabled=false;
  4032. retracted[0]=false;
  4033. #if EXTRUDERS > 1
  4034. retracted[1]=false;
  4035. #endif
  4036. #if EXTRUDERS > 2
  4037. retracted[2]=false;
  4038. #endif
  4039. }break;
  4040. case 1:
  4041. {
  4042. autoretract_enabled=true;
  4043. retracted[0]=false;
  4044. #if EXTRUDERS > 1
  4045. retracted[1]=false;
  4046. #endif
  4047. #if EXTRUDERS > 2
  4048. retracted[2]=false;
  4049. #endif
  4050. }break;
  4051. default:
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4054. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4055. SERIAL_ECHOLNPGM("\"(1)");
  4056. }
  4057. }
  4058. }break;
  4059. #endif // FWRETRACT
  4060. #if EXTRUDERS > 1
  4061. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4062. {
  4063. if(setTargetedHotend(218)){
  4064. break;
  4065. }
  4066. if(code_seen('X'))
  4067. {
  4068. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4069. }
  4070. if(code_seen('Y'))
  4071. {
  4072. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4073. }
  4074. SERIAL_ECHO_START;
  4075. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4076. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4077. {
  4078. SERIAL_ECHO(" ");
  4079. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4080. SERIAL_ECHO(",");
  4081. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4082. }
  4083. SERIAL_ECHOLN("");
  4084. }break;
  4085. #endif
  4086. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4087. {
  4088. if(code_seen('S'))
  4089. {
  4090. feedmultiply = code_value() ;
  4091. }
  4092. }
  4093. break;
  4094. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4095. {
  4096. if(code_seen('S'))
  4097. {
  4098. int tmp_code = code_value();
  4099. if (code_seen('T'))
  4100. {
  4101. if(setTargetedHotend(221)){
  4102. break;
  4103. }
  4104. extruder_multiply[tmp_extruder] = tmp_code;
  4105. }
  4106. else
  4107. {
  4108. extrudemultiply = tmp_code ;
  4109. }
  4110. }
  4111. }
  4112. break;
  4113. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4114. {
  4115. if(code_seen('P')){
  4116. int pin_number = code_value(); // pin number
  4117. int pin_state = -1; // required pin state - default is inverted
  4118. if(code_seen('S')) pin_state = code_value(); // required pin state
  4119. if(pin_state >= -1 && pin_state <= 1){
  4120. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4121. {
  4122. if (sensitive_pins[i] == pin_number)
  4123. {
  4124. pin_number = -1;
  4125. break;
  4126. }
  4127. }
  4128. if (pin_number > -1)
  4129. {
  4130. int target = LOW;
  4131. st_synchronize();
  4132. pinMode(pin_number, INPUT);
  4133. switch(pin_state){
  4134. case 1:
  4135. target = HIGH;
  4136. break;
  4137. case 0:
  4138. target = LOW;
  4139. break;
  4140. case -1:
  4141. target = !digitalRead(pin_number);
  4142. break;
  4143. }
  4144. while(digitalRead(pin_number) != target){
  4145. manage_heater();
  4146. manage_inactivity();
  4147. lcd_update();
  4148. }
  4149. }
  4150. }
  4151. }
  4152. }
  4153. break;
  4154. #if NUM_SERVOS > 0
  4155. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4156. {
  4157. int servo_index = -1;
  4158. int servo_position = 0;
  4159. if (code_seen('P'))
  4160. servo_index = code_value();
  4161. if (code_seen('S')) {
  4162. servo_position = code_value();
  4163. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4164. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4165. servos[servo_index].attach(0);
  4166. #endif
  4167. servos[servo_index].write(servo_position);
  4168. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4169. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4170. servos[servo_index].detach();
  4171. #endif
  4172. }
  4173. else {
  4174. SERIAL_ECHO_START;
  4175. SERIAL_ECHO("Servo ");
  4176. SERIAL_ECHO(servo_index);
  4177. SERIAL_ECHOLN(" out of range");
  4178. }
  4179. }
  4180. else if (servo_index >= 0) {
  4181. SERIAL_PROTOCOL(MSG_OK);
  4182. SERIAL_PROTOCOL(" Servo ");
  4183. SERIAL_PROTOCOL(servo_index);
  4184. SERIAL_PROTOCOL(": ");
  4185. SERIAL_PROTOCOL(servos[servo_index].read());
  4186. SERIAL_PROTOCOLLN("");
  4187. }
  4188. }
  4189. break;
  4190. #endif // NUM_SERVOS > 0
  4191. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4192. case 300: // M300
  4193. {
  4194. int beepS = code_seen('S') ? code_value() : 110;
  4195. int beepP = code_seen('P') ? code_value() : 1000;
  4196. if (beepS > 0)
  4197. {
  4198. #if BEEPER > 0
  4199. tone(BEEPER, beepS);
  4200. delay(beepP);
  4201. noTone(BEEPER);
  4202. #elif defined(ULTRALCD)
  4203. lcd_buzz(beepS, beepP);
  4204. #elif defined(LCD_USE_I2C_BUZZER)
  4205. lcd_buzz(beepP, beepS);
  4206. #endif
  4207. }
  4208. else
  4209. {
  4210. delay(beepP);
  4211. }
  4212. }
  4213. break;
  4214. #endif // M300
  4215. #ifdef PIDTEMP
  4216. case 301: // M301
  4217. {
  4218. if(code_seen('P')) Kp = code_value();
  4219. if(code_seen('I')) Ki = scalePID_i(code_value());
  4220. if(code_seen('D')) Kd = scalePID_d(code_value());
  4221. #ifdef PID_ADD_EXTRUSION_RATE
  4222. if(code_seen('C')) Kc = code_value();
  4223. #endif
  4224. updatePID();
  4225. SERIAL_PROTOCOLRPGM(MSG_OK);
  4226. SERIAL_PROTOCOL(" p:");
  4227. SERIAL_PROTOCOL(Kp);
  4228. SERIAL_PROTOCOL(" i:");
  4229. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4230. SERIAL_PROTOCOL(" d:");
  4231. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4232. #ifdef PID_ADD_EXTRUSION_RATE
  4233. SERIAL_PROTOCOL(" c:");
  4234. //Kc does not have scaling applied above, or in resetting defaults
  4235. SERIAL_PROTOCOL(Kc);
  4236. #endif
  4237. SERIAL_PROTOCOLLN("");
  4238. }
  4239. break;
  4240. #endif //PIDTEMP
  4241. #ifdef PIDTEMPBED
  4242. case 304: // M304
  4243. {
  4244. if(code_seen('P')) bedKp = code_value();
  4245. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4246. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4247. updatePID();
  4248. SERIAL_PROTOCOLRPGM(MSG_OK);
  4249. SERIAL_PROTOCOL(" p:");
  4250. SERIAL_PROTOCOL(bedKp);
  4251. SERIAL_PROTOCOL(" i:");
  4252. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4253. SERIAL_PROTOCOL(" d:");
  4254. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4255. SERIAL_PROTOCOLLN("");
  4256. }
  4257. break;
  4258. #endif //PIDTEMP
  4259. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4260. {
  4261. #ifdef CHDK
  4262. SET_OUTPUT(CHDK);
  4263. WRITE(CHDK, HIGH);
  4264. chdkHigh = millis();
  4265. chdkActive = true;
  4266. #else
  4267. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4268. const uint8_t NUM_PULSES=16;
  4269. const float PULSE_LENGTH=0.01524;
  4270. for(int i=0; i < NUM_PULSES; i++) {
  4271. WRITE(PHOTOGRAPH_PIN, HIGH);
  4272. _delay_ms(PULSE_LENGTH);
  4273. WRITE(PHOTOGRAPH_PIN, LOW);
  4274. _delay_ms(PULSE_LENGTH);
  4275. }
  4276. delay(7.33);
  4277. for(int i=0; i < NUM_PULSES; i++) {
  4278. WRITE(PHOTOGRAPH_PIN, HIGH);
  4279. _delay_ms(PULSE_LENGTH);
  4280. WRITE(PHOTOGRAPH_PIN, LOW);
  4281. _delay_ms(PULSE_LENGTH);
  4282. }
  4283. #endif
  4284. #endif //chdk end if
  4285. }
  4286. break;
  4287. #ifdef DOGLCD
  4288. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4289. {
  4290. if (code_seen('C')) {
  4291. lcd_setcontrast( ((int)code_value())&63 );
  4292. }
  4293. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4294. SERIAL_PROTOCOL(lcd_contrast);
  4295. SERIAL_PROTOCOLLN("");
  4296. }
  4297. break;
  4298. #endif
  4299. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4300. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4301. {
  4302. float temp = .0;
  4303. if (code_seen('S')) temp=code_value();
  4304. set_extrude_min_temp(temp);
  4305. }
  4306. break;
  4307. #endif
  4308. case 303: // M303 PID autotune
  4309. {
  4310. float temp = 150.0;
  4311. int e=0;
  4312. int c=5;
  4313. if (code_seen('E')) e=code_value();
  4314. if (e<0)
  4315. temp=70;
  4316. if (code_seen('S')) temp=code_value();
  4317. if (code_seen('C')) c=code_value();
  4318. PID_autotune(temp, e, c);
  4319. }
  4320. break;
  4321. case 400: // M400 finish all moves
  4322. {
  4323. st_synchronize();
  4324. }
  4325. break;
  4326. #ifdef FILAMENT_SENSOR
  4327. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4328. {
  4329. #if (FILWIDTH_PIN > -1)
  4330. if(code_seen('N')) filament_width_nominal=code_value();
  4331. else{
  4332. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4333. SERIAL_PROTOCOLLN(filament_width_nominal);
  4334. }
  4335. #endif
  4336. }
  4337. break;
  4338. case 405: //M405 Turn on filament sensor for control
  4339. {
  4340. if(code_seen('D')) meas_delay_cm=code_value();
  4341. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4342. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4343. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4344. {
  4345. int temp_ratio = widthFil_to_size_ratio();
  4346. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4347. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4348. }
  4349. delay_index1=0;
  4350. delay_index2=0;
  4351. }
  4352. filament_sensor = true ;
  4353. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4354. //SERIAL_PROTOCOL(filament_width_meas);
  4355. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4356. //SERIAL_PROTOCOL(extrudemultiply);
  4357. }
  4358. break;
  4359. case 406: //M406 Turn off filament sensor for control
  4360. {
  4361. filament_sensor = false ;
  4362. }
  4363. break;
  4364. case 407: //M407 Display measured filament diameter
  4365. {
  4366. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4367. SERIAL_PROTOCOLLN(filament_width_meas);
  4368. }
  4369. break;
  4370. #endif
  4371. case 500: // M500 Store settings in EEPROM
  4372. {
  4373. Config_StoreSettings(EEPROM_OFFSET);
  4374. }
  4375. break;
  4376. case 501: // M501 Read settings from EEPROM
  4377. {
  4378. Config_RetrieveSettings(EEPROM_OFFSET);
  4379. }
  4380. break;
  4381. case 502: // M502 Revert to default settings
  4382. {
  4383. Config_ResetDefault();
  4384. }
  4385. break;
  4386. case 503: // M503 print settings currently in memory
  4387. {
  4388. Config_PrintSettings();
  4389. }
  4390. break;
  4391. case 509: //M509 Force language selection
  4392. {
  4393. lcd_force_language_selection();
  4394. SERIAL_ECHO_START;
  4395. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4396. }
  4397. break;
  4398. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4399. case 540:
  4400. {
  4401. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4402. }
  4403. break;
  4404. #endif
  4405. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4406. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4407. {
  4408. float value;
  4409. if (code_seen('Z'))
  4410. {
  4411. value = code_value();
  4412. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4413. {
  4414. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4415. SERIAL_ECHO_START;
  4416. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4417. SERIAL_PROTOCOLLN("");
  4418. }
  4419. else
  4420. {
  4421. SERIAL_ECHO_START;
  4422. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4423. SERIAL_ECHORPGM(MSG_Z_MIN);
  4424. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4425. SERIAL_ECHORPGM(MSG_Z_MAX);
  4426. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4427. SERIAL_PROTOCOLLN("");
  4428. }
  4429. }
  4430. else
  4431. {
  4432. SERIAL_ECHO_START;
  4433. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4434. SERIAL_ECHO(-zprobe_zoffset);
  4435. SERIAL_PROTOCOLLN("");
  4436. }
  4437. break;
  4438. }
  4439. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4440. #ifdef FILAMENTCHANGEENABLE
  4441. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4442. {
  4443. MYSERIAL.println("!!!!M600!!!!");
  4444. st_synchronize();
  4445. float target[4];
  4446. float lastpos[4];
  4447. if (farm_mode)
  4448. {
  4449. prusa_statistics(22);
  4450. }
  4451. feedmultiplyBckp=feedmultiply;
  4452. int8_t TooLowZ = 0;
  4453. target[X_AXIS]=current_position[X_AXIS];
  4454. target[Y_AXIS]=current_position[Y_AXIS];
  4455. target[Z_AXIS]=current_position[Z_AXIS];
  4456. target[E_AXIS]=current_position[E_AXIS];
  4457. lastpos[X_AXIS]=current_position[X_AXIS];
  4458. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4459. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4460. lastpos[E_AXIS]=current_position[E_AXIS];
  4461. //Restract extruder
  4462. if(code_seen('E'))
  4463. {
  4464. target[E_AXIS]+= code_value();
  4465. }
  4466. else
  4467. {
  4468. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4469. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4470. #endif
  4471. }
  4472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4473. //Lift Z
  4474. if(code_seen('Z'))
  4475. {
  4476. target[Z_AXIS]+= code_value();
  4477. }
  4478. else
  4479. {
  4480. #ifdef FILAMENTCHANGE_ZADD
  4481. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4482. if(target[Z_AXIS] < 10){
  4483. target[Z_AXIS]+= 10 ;
  4484. TooLowZ = 1;
  4485. }else{
  4486. TooLowZ = 0;
  4487. }
  4488. #endif
  4489. }
  4490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4491. //Move XY to side
  4492. if(code_seen('X'))
  4493. {
  4494. target[X_AXIS]+= code_value();
  4495. }
  4496. else
  4497. {
  4498. #ifdef FILAMENTCHANGE_XPOS
  4499. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4500. #endif
  4501. }
  4502. if(code_seen('Y'))
  4503. {
  4504. target[Y_AXIS]= code_value();
  4505. }
  4506. else
  4507. {
  4508. #ifdef FILAMENTCHANGE_YPOS
  4509. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4510. #endif
  4511. }
  4512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4513. st_synchronize();
  4514. custom_message = true;
  4515. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4516. // Unload filament
  4517. if(code_seen('L'))
  4518. {
  4519. target[E_AXIS]+= code_value();
  4520. }
  4521. else
  4522. {
  4523. #ifdef SNMM
  4524. #else
  4525. #ifdef FILAMENTCHANGE_FINALRETRACT
  4526. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4527. #endif
  4528. #endif // SNMM
  4529. }
  4530. #ifdef SNMM
  4531. target[E_AXIS] += 12;
  4532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4533. target[E_AXIS] += 6;
  4534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4535. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4537. st_synchronize();
  4538. target[E_AXIS] += (FIL_COOLING);
  4539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4540. target[E_AXIS] += (FIL_COOLING*-1);
  4541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4542. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4544. st_synchronize();
  4545. #else
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4547. #endif // SNMM
  4548. //finish moves
  4549. st_synchronize();
  4550. //disable extruder steppers so filament can be removed
  4551. disable_e0();
  4552. disable_e1();
  4553. disable_e2();
  4554. delay(100);
  4555. //Wait for user to insert filament
  4556. uint8_t cnt=0;
  4557. int counterBeep = 0;
  4558. lcd_wait_interact();
  4559. load_filament_time = millis();
  4560. while(!lcd_clicked()){
  4561. cnt++;
  4562. manage_heater();
  4563. manage_inactivity(true);
  4564. /*#ifdef SNMM
  4565. target[E_AXIS] += 0.002;
  4566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4567. #endif // SNMM*/
  4568. if(cnt==0)
  4569. {
  4570. #if BEEPER > 0
  4571. if (counterBeep== 500){
  4572. counterBeep = 0;
  4573. }
  4574. SET_OUTPUT(BEEPER);
  4575. if (counterBeep== 0){
  4576. WRITE(BEEPER,HIGH);
  4577. }
  4578. if (counterBeep== 20){
  4579. WRITE(BEEPER,LOW);
  4580. }
  4581. counterBeep++;
  4582. #else
  4583. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4584. lcd_buzz(1000/6,100);
  4585. #else
  4586. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4587. #endif
  4588. #endif
  4589. }
  4590. }
  4591. #ifdef SNMM
  4592. display_loading();
  4593. do {
  4594. target[E_AXIS] += 0.002;
  4595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4596. delay_keep_alive(2);
  4597. } while (!lcd_clicked());
  4598. /*if (millis() - load_filament_time > 2) {
  4599. load_filament_time = millis();
  4600. target[E_AXIS] += 0.001;
  4601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4602. }*/
  4603. #endif
  4604. //Filament inserted
  4605. WRITE(BEEPER,LOW);
  4606. //Feed the filament to the end of nozzle quickly
  4607. #ifdef SNMM
  4608. st_synchronize();
  4609. target[E_AXIS] += bowden_length[snmm_extruder];
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4611. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4613. target[E_AXIS] += 40;
  4614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4615. target[E_AXIS] += 10;
  4616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4617. #else
  4618. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4620. #endif // SNMM
  4621. //Extrude some filament
  4622. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4624. //Wait for user to check the state
  4625. lcd_change_fil_state = 0;
  4626. lcd_loading_filament();
  4627. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4628. lcd_change_fil_state = 0;
  4629. lcd_alright();
  4630. switch(lcd_change_fil_state){
  4631. // Filament failed to load so load it again
  4632. case 2:
  4633. #ifdef SNMM
  4634. display_loading();
  4635. do {
  4636. target[E_AXIS] += 0.002;
  4637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4638. delay_keep_alive(2);
  4639. } while (!lcd_clicked());
  4640. st_synchronize();
  4641. target[E_AXIS] += bowden_length[snmm_extruder];
  4642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4643. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4645. target[E_AXIS] += 40;
  4646. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4647. target[E_AXIS] += 10;
  4648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4649. #else
  4650. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4652. #endif
  4653. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4655. lcd_loading_filament();
  4656. break;
  4657. // Filament loaded properly but color is not clear
  4658. case 3:
  4659. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4661. lcd_loading_color();
  4662. break;
  4663. // Everything good
  4664. default:
  4665. lcd_change_success();
  4666. lcd_update_enable(true);
  4667. break;
  4668. }
  4669. }
  4670. //Not let's go back to print
  4671. //Feed a little of filament to stabilize pressure
  4672. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4673. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4674. //Retract
  4675. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4677. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4678. //Move XY back
  4679. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4680. //Move Z back
  4681. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4682. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4683. //Unretract
  4684. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4685. //Set E position to original
  4686. plan_set_e_position(lastpos[E_AXIS]);
  4687. //Recover feed rate
  4688. feedmultiply=feedmultiplyBckp;
  4689. char cmd[9];
  4690. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4691. enquecommand(cmd);
  4692. lcd_setstatuspgm(WELCOME_MSG);
  4693. custom_message = false;
  4694. custom_message_type = 0;
  4695. #ifdef PAT9125
  4696. if (fsensor_M600)
  4697. {
  4698. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4699. st_synchronize();
  4700. while (!is_buffer_empty())
  4701. {
  4702. process_commands();
  4703. cmdqueue_pop_front();
  4704. }
  4705. fsensor_enable();
  4706. fsensor_restore_print_and_continue();
  4707. }
  4708. #endif //PAT9125
  4709. }
  4710. break;
  4711. #endif //FILAMENTCHANGEENABLE
  4712. case 601: {
  4713. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4714. }
  4715. break;
  4716. case 602: {
  4717. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4718. }
  4719. break;
  4720. #ifdef LIN_ADVANCE
  4721. case 900: // M900: Set LIN_ADVANCE options.
  4722. gcode_M900();
  4723. break;
  4724. #endif
  4725. case 907: // M907 Set digital trimpot motor current using axis codes.
  4726. {
  4727. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4728. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4729. if(code_seen('B')) digipot_current(4,code_value());
  4730. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4731. #endif
  4732. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4733. if(code_seen('X')) digipot_current(0, code_value());
  4734. #endif
  4735. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4736. if(code_seen('Z')) digipot_current(1, code_value());
  4737. #endif
  4738. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4739. if(code_seen('E')) digipot_current(2, code_value());
  4740. #endif
  4741. #ifdef DIGIPOT_I2C
  4742. // this one uses actual amps in floating point
  4743. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4744. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4745. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4746. #endif
  4747. }
  4748. break;
  4749. case 908: // M908 Control digital trimpot directly.
  4750. {
  4751. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4752. uint8_t channel,current;
  4753. if(code_seen('P')) channel=code_value();
  4754. if(code_seen('S')) current=code_value();
  4755. digitalPotWrite(channel, current);
  4756. #endif
  4757. }
  4758. break;
  4759. case 910: // M910 TMC2130 init
  4760. {
  4761. tmc2130_init();
  4762. }
  4763. break;
  4764. case 911: // M911 Set TMC2130 holding currents
  4765. {
  4766. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4767. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4768. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4769. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4770. }
  4771. break;
  4772. case 912: // M912 Set TMC2130 running currents
  4773. {
  4774. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4775. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4776. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4777. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4778. }
  4779. break;
  4780. case 913: // M913 Print TMC2130 currents
  4781. {
  4782. tmc2130_print_currents();
  4783. }
  4784. break;
  4785. case 914: // M914 Set normal mode
  4786. {
  4787. tmc2130_mode = TMC2130_MODE_NORMAL;
  4788. tmc2130_init();
  4789. }
  4790. break;
  4791. case 915: // M915 Set silent mode
  4792. {
  4793. tmc2130_mode = TMC2130_MODE_SILENT;
  4794. tmc2130_init();
  4795. }
  4796. break;
  4797. case 916: // M916 Set sg_thrs
  4798. {
  4799. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4800. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4801. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4802. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4803. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4804. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4805. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4806. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4807. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4808. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4809. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4810. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4811. }
  4812. break;
  4813. case 917: // M917 Set TMC2130 pwm_ampl
  4814. {
  4815. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4816. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4817. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4818. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4819. }
  4820. break;
  4821. case 918: // M918 Set TMC2130 pwm_grad
  4822. {
  4823. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4824. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4825. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4826. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4827. }
  4828. break;
  4829. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4830. {
  4831. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4832. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4833. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4834. if(code_seen('B')) microstep_mode(4,code_value());
  4835. microstep_readings();
  4836. #endif
  4837. }
  4838. break;
  4839. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4840. {
  4841. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4842. if(code_seen('S')) switch((int)code_value())
  4843. {
  4844. case 1:
  4845. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4846. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4847. break;
  4848. case 2:
  4849. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4850. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4851. break;
  4852. }
  4853. microstep_readings();
  4854. #endif
  4855. }
  4856. break;
  4857. case 701: //M701: load filament
  4858. {
  4859. enable_z();
  4860. custom_message = true;
  4861. custom_message_type = 2;
  4862. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4863. current_position[E_AXIS] += 70;
  4864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4865. current_position[E_AXIS] += 25;
  4866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4867. st_synchronize();
  4868. if (!farm_mode && loading_flag) {
  4869. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4870. while (!clean) {
  4871. lcd_update_enable(true);
  4872. lcd_update(2);
  4873. current_position[E_AXIS] += 25;
  4874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4875. st_synchronize();
  4876. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4877. }
  4878. }
  4879. lcd_update_enable(true);
  4880. lcd_update(2);
  4881. lcd_setstatuspgm(WELCOME_MSG);
  4882. disable_z();
  4883. loading_flag = false;
  4884. custom_message = false;
  4885. custom_message_type = 0;
  4886. }
  4887. break;
  4888. case 702:
  4889. {
  4890. #ifdef SNMM
  4891. if (code_seen('U')) {
  4892. extr_unload_used(); //unload all filaments which were used in current print
  4893. }
  4894. else if (code_seen('C')) {
  4895. extr_unload(); //unload just current filament
  4896. }
  4897. else {
  4898. extr_unload_all(); //unload all filaments
  4899. }
  4900. #else
  4901. custom_message = true;
  4902. custom_message_type = 2;
  4903. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4904. current_position[E_AXIS] -= 80;
  4905. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4906. st_synchronize();
  4907. lcd_setstatuspgm(WELCOME_MSG);
  4908. custom_message = false;
  4909. custom_message_type = 0;
  4910. #endif
  4911. }
  4912. break;
  4913. case 999: // M999: Restart after being stopped
  4914. Stopped = false;
  4915. lcd_reset_alert_level();
  4916. gcode_LastN = Stopped_gcode_LastN;
  4917. FlushSerialRequestResend();
  4918. break;
  4919. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4920. }
  4921. } // end if(code_seen('M')) (end of M codes)
  4922. else if(code_seen('T'))
  4923. {
  4924. int index;
  4925. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4926. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4927. SERIAL_ECHOLNPGM("Invalid T code.");
  4928. }
  4929. else {
  4930. if (*(strchr_pointer + index) == '?') {
  4931. tmp_extruder = choose_extruder_menu();
  4932. }
  4933. else {
  4934. tmp_extruder = code_value();
  4935. }
  4936. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4937. #ifdef SNMM
  4938. #ifdef LIN_ADVANCE
  4939. if (snmm_extruder != tmp_extruder)
  4940. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4941. #endif
  4942. snmm_extruder = tmp_extruder;
  4943. st_synchronize();
  4944. delay(100);
  4945. disable_e0();
  4946. disable_e1();
  4947. disable_e2();
  4948. pinMode(E_MUX0_PIN, OUTPUT);
  4949. pinMode(E_MUX1_PIN, OUTPUT);
  4950. pinMode(E_MUX2_PIN, OUTPUT);
  4951. delay(100);
  4952. SERIAL_ECHO_START;
  4953. SERIAL_ECHO("T:");
  4954. SERIAL_ECHOLN((int)tmp_extruder);
  4955. switch (tmp_extruder) {
  4956. case 1:
  4957. WRITE(E_MUX0_PIN, HIGH);
  4958. WRITE(E_MUX1_PIN, LOW);
  4959. WRITE(E_MUX2_PIN, LOW);
  4960. break;
  4961. case 2:
  4962. WRITE(E_MUX0_PIN, LOW);
  4963. WRITE(E_MUX1_PIN, HIGH);
  4964. WRITE(E_MUX2_PIN, LOW);
  4965. break;
  4966. case 3:
  4967. WRITE(E_MUX0_PIN, HIGH);
  4968. WRITE(E_MUX1_PIN, HIGH);
  4969. WRITE(E_MUX2_PIN, LOW);
  4970. break;
  4971. default:
  4972. WRITE(E_MUX0_PIN, LOW);
  4973. WRITE(E_MUX1_PIN, LOW);
  4974. WRITE(E_MUX2_PIN, LOW);
  4975. break;
  4976. }
  4977. delay(100);
  4978. #else
  4979. if (tmp_extruder >= EXTRUDERS) {
  4980. SERIAL_ECHO_START;
  4981. SERIAL_ECHOPGM("T");
  4982. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4983. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4984. }
  4985. else {
  4986. boolean make_move = false;
  4987. if (code_seen('F')) {
  4988. make_move = true;
  4989. next_feedrate = code_value();
  4990. if (next_feedrate > 0.0) {
  4991. feedrate = next_feedrate;
  4992. }
  4993. }
  4994. #if EXTRUDERS > 1
  4995. if (tmp_extruder != active_extruder) {
  4996. // Save current position to return to after applying extruder offset
  4997. memcpy(destination, current_position, sizeof(destination));
  4998. // Offset extruder (only by XY)
  4999. int i;
  5000. for (i = 0; i < 2; i++) {
  5001. current_position[i] = current_position[i] -
  5002. extruder_offset[i][active_extruder] +
  5003. extruder_offset[i][tmp_extruder];
  5004. }
  5005. // Set the new active extruder and position
  5006. active_extruder = tmp_extruder;
  5007. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5008. // Move to the old position if 'F' was in the parameters
  5009. if (make_move && Stopped == false) {
  5010. prepare_move();
  5011. }
  5012. }
  5013. #endif
  5014. SERIAL_ECHO_START;
  5015. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5016. SERIAL_PROTOCOLLN((int)active_extruder);
  5017. }
  5018. #endif
  5019. }
  5020. } // end if(code_seen('T')) (end of T codes)
  5021. #ifdef DEBUG_DCODES
  5022. else if (code_seen('D')) // D codes (debug)
  5023. {
  5024. switch((int)code_value())
  5025. {
  5026. case 0: // D0 - Reset
  5027. dcode_0(); break;
  5028. case 1: // D1 - Clear EEPROM
  5029. dcode_1(); break;
  5030. case 2: // D2 - Read/Write RAM
  5031. dcode_2(); break;
  5032. case 3: // D3 - Read/Write EEPROM
  5033. dcode_3(); break;
  5034. case 4: // D4 - Read/Write PIN
  5035. dcode_4(); break;
  5036. case 5:
  5037. MYSERIAL.println("D5 - Test");
  5038. if (code_seen('P'))
  5039. selectedSerialPort = (int)code_value();
  5040. MYSERIAL.print("selectedSerialPort = ");
  5041. MYSERIAL.println(selectedSerialPort, DEC);
  5042. break;
  5043. case 10: // D10 - Tell the printer that XYZ calibration went OK
  5044. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  5045. break;
  5046. case 999:
  5047. {
  5048. MYSERIAL.println("D999 - crash");
  5049. /* while (!is_buffer_empty())
  5050. {
  5051. process_commands();
  5052. cmdqueue_pop_front();
  5053. }*/
  5054. st_synchronize();
  5055. lcd_update_enable(true);
  5056. lcd_implementation_clear();
  5057. lcd_update(2);
  5058. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  5059. lcd_update_enable(true);
  5060. lcd_update(2);
  5061. lcd_setstatuspgm(WELCOME_MSG);
  5062. if (yesno)
  5063. {
  5064. enquecommand_P(PSTR("G28 X"));
  5065. enquecommand_P(PSTR("G28 Y"));
  5066. enquecommand_P(PSTR("D1000"));
  5067. }
  5068. else
  5069. {
  5070. enquecommand_P(PSTR("D1001"));
  5071. }
  5072. }
  5073. break;
  5074. case 1000:
  5075. crashdet_restore_print_and_continue();
  5076. tmc2130_sg_stop_on_crash = true;
  5077. break;
  5078. case 1001:
  5079. card.sdprinting = false;
  5080. card.closefile();
  5081. tmc2130_sg_stop_on_crash = true;
  5082. break;
  5083. /* case 4:
  5084. {
  5085. MYSERIAL.println("D4 - Test");
  5086. uint8_t data[16];
  5087. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5088. MYSERIAL.println(cnt, DEC);
  5089. for (int i = 0; i < cnt; i++)
  5090. {
  5091. serial_print_hex_byte(data[i]);
  5092. MYSERIAL.write(' ');
  5093. }
  5094. MYSERIAL.write('\n');
  5095. }
  5096. break;
  5097. /* case 3:
  5098. if (code_seen('L')) // lcd pwm (0-255)
  5099. {
  5100. lcdSoftPwm = (int)code_value();
  5101. }
  5102. if (code_seen('B')) // lcd blink delay (0-255)
  5103. {
  5104. lcdBlinkDelay = (int)code_value();
  5105. }
  5106. // calibrate_z_auto();
  5107. /* MYSERIAL.print("fsensor_enable()");
  5108. #ifdef PAT9125
  5109. fsensor_enable();
  5110. #endif*/
  5111. break;
  5112. // case 4:
  5113. // lcdBlinkDelay = 10;
  5114. /* MYSERIAL.print("fsensor_disable()");
  5115. #ifdef PAT9125
  5116. fsensor_disable();
  5117. #endif
  5118. break;*/
  5119. // break;
  5120. /* case 5:
  5121. {
  5122. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5123. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5124. MYSERIAL.println(val);
  5125. homeaxis(0);
  5126. }
  5127. break;*/
  5128. case 6:
  5129. {
  5130. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5131. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5132. MYSERIAL.println(val);*/
  5133. homeaxis(1);
  5134. }
  5135. break;
  5136. case 7:
  5137. {
  5138. MYSERIAL.print("pat9125_init=");
  5139. MYSERIAL.println(pat9125_init(200, 200));
  5140. }
  5141. break;
  5142. case 8:
  5143. {
  5144. MYSERIAL.print("swi2c_check=");
  5145. MYSERIAL.println(swi2c_check(0x75));
  5146. }
  5147. break;
  5148. }
  5149. }
  5150. #endif //DEBUG_DCODES
  5151. else
  5152. {
  5153. SERIAL_ECHO_START;
  5154. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5155. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5156. SERIAL_ECHOLNPGM("\"(2)");
  5157. }
  5158. ClearToSend();
  5159. }
  5160. void FlushSerialRequestResend()
  5161. {
  5162. //char cmdbuffer[bufindr][100]="Resend:";
  5163. MYSERIAL.flush();
  5164. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5165. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5166. ClearToSend();
  5167. }
  5168. // Confirm the execution of a command, if sent from a serial line.
  5169. // Execution of a command from a SD card will not be confirmed.
  5170. void ClearToSend()
  5171. {
  5172. previous_millis_cmd = millis();
  5173. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5174. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5175. }
  5176. void get_coordinates()
  5177. {
  5178. bool seen[4]={false,false,false,false};
  5179. for(int8_t i=0; i < NUM_AXIS; i++) {
  5180. if(code_seen(axis_codes[i]))
  5181. {
  5182. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5183. seen[i]=true;
  5184. }
  5185. else destination[i] = current_position[i]; //Are these else lines really needed?
  5186. }
  5187. if(code_seen('F')) {
  5188. next_feedrate = code_value();
  5189. #ifdef MAX_SILENT_FEEDRATE
  5190. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5191. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5192. #endif //MAX_SILENT_FEEDRATE
  5193. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5194. }
  5195. }
  5196. void get_arc_coordinates()
  5197. {
  5198. #ifdef SF_ARC_FIX
  5199. bool relative_mode_backup = relative_mode;
  5200. relative_mode = true;
  5201. #endif
  5202. get_coordinates();
  5203. #ifdef SF_ARC_FIX
  5204. relative_mode=relative_mode_backup;
  5205. #endif
  5206. if(code_seen('I')) {
  5207. offset[0] = code_value();
  5208. }
  5209. else {
  5210. offset[0] = 0.0;
  5211. }
  5212. if(code_seen('J')) {
  5213. offset[1] = code_value();
  5214. }
  5215. else {
  5216. offset[1] = 0.0;
  5217. }
  5218. }
  5219. void clamp_to_software_endstops(float target[3])
  5220. {
  5221. #ifdef DEBUG_DISABLE_SWLIMITS
  5222. return;
  5223. #endif //DEBUG_DISABLE_SWLIMITS
  5224. world2machine_clamp(target[0], target[1]);
  5225. // Clamp the Z coordinate.
  5226. if (min_software_endstops) {
  5227. float negative_z_offset = 0;
  5228. #ifdef ENABLE_AUTO_BED_LEVELING
  5229. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5230. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5231. #endif
  5232. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5233. }
  5234. if (max_software_endstops) {
  5235. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5236. }
  5237. }
  5238. #ifdef MESH_BED_LEVELING
  5239. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5240. float dx = x - current_position[X_AXIS];
  5241. float dy = y - current_position[Y_AXIS];
  5242. float dz = z - current_position[Z_AXIS];
  5243. int n_segments = 0;
  5244. if (mbl.active) {
  5245. float len = abs(dx) + abs(dy);
  5246. if (len > 0)
  5247. // Split to 3cm segments or shorter.
  5248. n_segments = int(ceil(len / 30.f));
  5249. }
  5250. if (n_segments > 1) {
  5251. float de = e - current_position[E_AXIS];
  5252. for (int i = 1; i < n_segments; ++ i) {
  5253. float t = float(i) / float(n_segments);
  5254. plan_buffer_line(
  5255. current_position[X_AXIS] + t * dx,
  5256. current_position[Y_AXIS] + t * dy,
  5257. current_position[Z_AXIS] + t * dz,
  5258. current_position[E_AXIS] + t * de,
  5259. feed_rate, extruder);
  5260. }
  5261. }
  5262. // The rest of the path.
  5263. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5264. current_position[X_AXIS] = x;
  5265. current_position[Y_AXIS] = y;
  5266. current_position[Z_AXIS] = z;
  5267. current_position[E_AXIS] = e;
  5268. }
  5269. #endif // MESH_BED_LEVELING
  5270. void prepare_move()
  5271. {
  5272. clamp_to_software_endstops(destination);
  5273. previous_millis_cmd = millis();
  5274. // Do not use feedmultiply for E or Z only moves
  5275. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5277. }
  5278. else {
  5279. #ifdef MESH_BED_LEVELING
  5280. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5281. #else
  5282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5283. #endif
  5284. }
  5285. for(int8_t i=0; i < NUM_AXIS; i++) {
  5286. current_position[i] = destination[i];
  5287. }
  5288. }
  5289. void prepare_arc_move(char isclockwise) {
  5290. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5291. // Trace the arc
  5292. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5293. // As far as the parser is concerned, the position is now == target. In reality the
  5294. // motion control system might still be processing the action and the real tool position
  5295. // in any intermediate location.
  5296. for(int8_t i=0; i < NUM_AXIS; i++) {
  5297. current_position[i] = destination[i];
  5298. }
  5299. previous_millis_cmd = millis();
  5300. }
  5301. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5302. #if defined(FAN_PIN)
  5303. #if CONTROLLERFAN_PIN == FAN_PIN
  5304. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5305. #endif
  5306. #endif
  5307. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5308. unsigned long lastMotorCheck = 0;
  5309. void controllerFan()
  5310. {
  5311. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5312. {
  5313. lastMotorCheck = millis();
  5314. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5315. #if EXTRUDERS > 2
  5316. || !READ(E2_ENABLE_PIN)
  5317. #endif
  5318. #if EXTRUDER > 1
  5319. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5320. || !READ(X2_ENABLE_PIN)
  5321. #endif
  5322. || !READ(E1_ENABLE_PIN)
  5323. #endif
  5324. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5325. {
  5326. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5327. }
  5328. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5329. {
  5330. digitalWrite(CONTROLLERFAN_PIN, 0);
  5331. analogWrite(CONTROLLERFAN_PIN, 0);
  5332. }
  5333. else
  5334. {
  5335. // allows digital or PWM fan output to be used (see M42 handling)
  5336. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5337. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5338. }
  5339. }
  5340. }
  5341. #endif
  5342. #ifdef TEMP_STAT_LEDS
  5343. static bool blue_led = false;
  5344. static bool red_led = false;
  5345. static uint32_t stat_update = 0;
  5346. void handle_status_leds(void) {
  5347. float max_temp = 0.0;
  5348. if(millis() > stat_update) {
  5349. stat_update += 500; // Update every 0.5s
  5350. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5351. max_temp = max(max_temp, degHotend(cur_extruder));
  5352. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5353. }
  5354. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5355. max_temp = max(max_temp, degTargetBed());
  5356. max_temp = max(max_temp, degBed());
  5357. #endif
  5358. if((max_temp > 55.0) && (red_led == false)) {
  5359. digitalWrite(STAT_LED_RED, 1);
  5360. digitalWrite(STAT_LED_BLUE, 0);
  5361. red_led = true;
  5362. blue_led = false;
  5363. }
  5364. if((max_temp < 54.0) && (blue_led == false)) {
  5365. digitalWrite(STAT_LED_RED, 0);
  5366. digitalWrite(STAT_LED_BLUE, 1);
  5367. red_led = false;
  5368. blue_led = true;
  5369. }
  5370. }
  5371. }
  5372. #endif
  5373. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5374. {
  5375. #if defined(KILL_PIN) && KILL_PIN > -1
  5376. static int killCount = 0; // make the inactivity button a bit less responsive
  5377. const int KILL_DELAY = 10000;
  5378. #endif
  5379. if(buflen < (BUFSIZE-1)){
  5380. get_command();
  5381. }
  5382. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5383. if(max_inactive_time)
  5384. kill("", 4);
  5385. if(stepper_inactive_time) {
  5386. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5387. {
  5388. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5389. disable_x();
  5390. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5391. disable_y();
  5392. disable_z();
  5393. disable_e0();
  5394. disable_e1();
  5395. disable_e2();
  5396. }
  5397. }
  5398. }
  5399. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5400. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5401. {
  5402. chdkActive = false;
  5403. WRITE(CHDK, LOW);
  5404. }
  5405. #endif
  5406. #if defined(KILL_PIN) && KILL_PIN > -1
  5407. // Check if the kill button was pressed and wait just in case it was an accidental
  5408. // key kill key press
  5409. // -------------------------------------------------------------------------------
  5410. if( 0 == READ(KILL_PIN) )
  5411. {
  5412. killCount++;
  5413. }
  5414. else if (killCount > 0)
  5415. {
  5416. killCount--;
  5417. }
  5418. // Exceeded threshold and we can confirm that it was not accidental
  5419. // KILL the machine
  5420. // ----------------------------------------------------------------
  5421. if ( killCount >= KILL_DELAY)
  5422. {
  5423. kill("", 5);
  5424. }
  5425. #endif
  5426. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5427. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5428. #endif
  5429. #ifdef EXTRUDER_RUNOUT_PREVENT
  5430. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5431. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5432. {
  5433. bool oldstatus=READ(E0_ENABLE_PIN);
  5434. enable_e0();
  5435. float oldepos=current_position[E_AXIS];
  5436. float oldedes=destination[E_AXIS];
  5437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5438. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5439. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5440. current_position[E_AXIS]=oldepos;
  5441. destination[E_AXIS]=oldedes;
  5442. plan_set_e_position(oldepos);
  5443. previous_millis_cmd=millis();
  5444. st_synchronize();
  5445. WRITE(E0_ENABLE_PIN,oldstatus);
  5446. }
  5447. #endif
  5448. #ifdef TEMP_STAT_LEDS
  5449. handle_status_leds();
  5450. #endif
  5451. check_axes_activity();
  5452. }
  5453. void kill(const char *full_screen_message, unsigned char id)
  5454. {
  5455. SERIAL_ECHOPGM("KILL: ");
  5456. MYSERIAL.println(int(id));
  5457. //return;
  5458. cli(); // Stop interrupts
  5459. disable_heater();
  5460. disable_x();
  5461. // SERIAL_ECHOLNPGM("kill - disable Y");
  5462. disable_y();
  5463. disable_z();
  5464. disable_e0();
  5465. disable_e1();
  5466. disable_e2();
  5467. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5468. pinMode(PS_ON_PIN,INPUT);
  5469. #endif
  5470. SERIAL_ERROR_START;
  5471. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5472. if (full_screen_message != NULL) {
  5473. SERIAL_ERRORLNRPGM(full_screen_message);
  5474. lcd_display_message_fullscreen_P(full_screen_message);
  5475. } else {
  5476. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5477. }
  5478. // FMC small patch to update the LCD before ending
  5479. sei(); // enable interrupts
  5480. for ( int i=5; i--; lcd_update())
  5481. {
  5482. delay(200);
  5483. }
  5484. cli(); // disable interrupts
  5485. suicide();
  5486. while(1) { /* Intentionally left empty */ } // Wait for reset
  5487. }
  5488. void Stop()
  5489. {
  5490. disable_heater();
  5491. if(Stopped == false) {
  5492. Stopped = true;
  5493. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5494. SERIAL_ERROR_START;
  5495. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5496. LCD_MESSAGERPGM(MSG_STOPPED);
  5497. }
  5498. }
  5499. bool IsStopped() { return Stopped; };
  5500. #ifdef FAST_PWM_FAN
  5501. void setPwmFrequency(uint8_t pin, int val)
  5502. {
  5503. val &= 0x07;
  5504. switch(digitalPinToTimer(pin))
  5505. {
  5506. #if defined(TCCR0A)
  5507. case TIMER0A:
  5508. case TIMER0B:
  5509. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5510. // TCCR0B |= val;
  5511. break;
  5512. #endif
  5513. #if defined(TCCR1A)
  5514. case TIMER1A:
  5515. case TIMER1B:
  5516. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5517. // TCCR1B |= val;
  5518. break;
  5519. #endif
  5520. #if defined(TCCR2)
  5521. case TIMER2:
  5522. case TIMER2:
  5523. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5524. TCCR2 |= val;
  5525. break;
  5526. #endif
  5527. #if defined(TCCR2A)
  5528. case TIMER2A:
  5529. case TIMER2B:
  5530. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5531. TCCR2B |= val;
  5532. break;
  5533. #endif
  5534. #if defined(TCCR3A)
  5535. case TIMER3A:
  5536. case TIMER3B:
  5537. case TIMER3C:
  5538. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5539. TCCR3B |= val;
  5540. break;
  5541. #endif
  5542. #if defined(TCCR4A)
  5543. case TIMER4A:
  5544. case TIMER4B:
  5545. case TIMER4C:
  5546. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5547. TCCR4B |= val;
  5548. break;
  5549. #endif
  5550. #if defined(TCCR5A)
  5551. case TIMER5A:
  5552. case TIMER5B:
  5553. case TIMER5C:
  5554. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5555. TCCR5B |= val;
  5556. break;
  5557. #endif
  5558. }
  5559. }
  5560. #endif //FAST_PWM_FAN
  5561. bool setTargetedHotend(int code){
  5562. tmp_extruder = active_extruder;
  5563. if(code_seen('T')) {
  5564. tmp_extruder = code_value();
  5565. if(tmp_extruder >= EXTRUDERS) {
  5566. SERIAL_ECHO_START;
  5567. switch(code){
  5568. case 104:
  5569. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5570. break;
  5571. case 105:
  5572. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5573. break;
  5574. case 109:
  5575. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5576. break;
  5577. case 218:
  5578. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5579. break;
  5580. case 221:
  5581. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5582. break;
  5583. }
  5584. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5585. return true;
  5586. }
  5587. }
  5588. return false;
  5589. }
  5590. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5591. {
  5592. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5593. {
  5594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5596. }
  5597. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5598. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5599. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5600. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5601. total_filament_used = 0;
  5602. }
  5603. float calculate_volumetric_multiplier(float diameter) {
  5604. float area = .0;
  5605. float radius = .0;
  5606. radius = diameter * .5;
  5607. if (! volumetric_enabled || radius == 0) {
  5608. area = 1;
  5609. }
  5610. else {
  5611. area = M_PI * pow(radius, 2);
  5612. }
  5613. return 1.0 / area;
  5614. }
  5615. void calculate_volumetric_multipliers() {
  5616. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5617. #if EXTRUDERS > 1
  5618. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5619. #if EXTRUDERS > 2
  5620. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5621. #endif
  5622. #endif
  5623. }
  5624. void delay_keep_alive(unsigned int ms)
  5625. {
  5626. for (;;) {
  5627. manage_heater();
  5628. // Manage inactivity, but don't disable steppers on timeout.
  5629. manage_inactivity(true);
  5630. lcd_update();
  5631. if (ms == 0)
  5632. break;
  5633. else if (ms >= 50) {
  5634. delay(50);
  5635. ms -= 50;
  5636. } else {
  5637. delay(ms);
  5638. ms = 0;
  5639. }
  5640. }
  5641. }
  5642. void wait_for_heater(long codenum) {
  5643. #ifdef TEMP_RESIDENCY_TIME
  5644. long residencyStart;
  5645. residencyStart = -1;
  5646. /* continue to loop until we have reached the target temp
  5647. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5648. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5649. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5650. #else
  5651. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5652. #endif //TEMP_RESIDENCY_TIME
  5653. if ((millis() - codenum) > 1000UL)
  5654. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5655. if (!farm_mode) {
  5656. SERIAL_PROTOCOLPGM("T:");
  5657. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5658. SERIAL_PROTOCOLPGM(" E:");
  5659. SERIAL_PROTOCOL((int)tmp_extruder);
  5660. #ifdef TEMP_RESIDENCY_TIME
  5661. SERIAL_PROTOCOLPGM(" W:");
  5662. if (residencyStart > -1)
  5663. {
  5664. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5665. SERIAL_PROTOCOLLN(codenum);
  5666. }
  5667. else
  5668. {
  5669. SERIAL_PROTOCOLLN("?");
  5670. }
  5671. }
  5672. #else
  5673. SERIAL_PROTOCOLLN("");
  5674. #endif
  5675. codenum = millis();
  5676. }
  5677. manage_heater();
  5678. manage_inactivity();
  5679. lcd_update();
  5680. #ifdef TEMP_RESIDENCY_TIME
  5681. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5682. or when current temp falls outside the hysteresis after target temp was reached */
  5683. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5684. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5685. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5686. {
  5687. residencyStart = millis();
  5688. }
  5689. #endif //TEMP_RESIDENCY_TIME
  5690. }
  5691. }
  5692. void check_babystep() {
  5693. int babystep_z;
  5694. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5695. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5696. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5697. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5698. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5699. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5700. lcd_update_enable(true);
  5701. }
  5702. }
  5703. #ifdef DIS
  5704. void d_setup()
  5705. {
  5706. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5707. pinMode(D_DATA, INPUT_PULLUP);
  5708. pinMode(D_REQUIRE, OUTPUT);
  5709. digitalWrite(D_REQUIRE, HIGH);
  5710. }
  5711. float d_ReadData()
  5712. {
  5713. int digit[13];
  5714. String mergeOutput;
  5715. float output;
  5716. digitalWrite(D_REQUIRE, HIGH);
  5717. for (int i = 0; i<13; i++)
  5718. {
  5719. for (int j = 0; j < 4; j++)
  5720. {
  5721. while (digitalRead(D_DATACLOCK) == LOW) {}
  5722. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5723. bitWrite(digit[i], j, digitalRead(D_DATA));
  5724. }
  5725. }
  5726. digitalWrite(D_REQUIRE, LOW);
  5727. mergeOutput = "";
  5728. output = 0;
  5729. for (int r = 5; r <= 10; r++) //Merge digits
  5730. {
  5731. mergeOutput += digit[r];
  5732. }
  5733. output = mergeOutput.toFloat();
  5734. if (digit[4] == 8) //Handle sign
  5735. {
  5736. output *= -1;
  5737. }
  5738. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5739. {
  5740. output /= 10;
  5741. }
  5742. return output;
  5743. }
  5744. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5745. int t1 = 0;
  5746. int t_delay = 0;
  5747. int digit[13];
  5748. int m;
  5749. char str[3];
  5750. //String mergeOutput;
  5751. char mergeOutput[15];
  5752. float output;
  5753. int mesh_point = 0; //index number of calibration point
  5754. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5755. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5756. float mesh_home_z_search = 4;
  5757. float row[x_points_num];
  5758. int ix = 0;
  5759. int iy = 0;
  5760. char* filename_wldsd = "wldsd.txt";
  5761. char data_wldsd[70];
  5762. char numb_wldsd[10];
  5763. d_setup();
  5764. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5765. // We don't know where we are! HOME!
  5766. // Push the commands to the front of the message queue in the reverse order!
  5767. // There shall be always enough space reserved for these commands.
  5768. repeatcommand_front(); // repeat G80 with all its parameters
  5769. enquecommand_front_P((PSTR("G28 W0")));
  5770. enquecommand_front_P((PSTR("G1 Z5")));
  5771. return;
  5772. }
  5773. bool custom_message_old = custom_message;
  5774. unsigned int custom_message_type_old = custom_message_type;
  5775. unsigned int custom_message_state_old = custom_message_state;
  5776. custom_message = true;
  5777. custom_message_type = 1;
  5778. custom_message_state = (x_points_num * y_points_num) + 10;
  5779. lcd_update(1);
  5780. mbl.reset();
  5781. babystep_undo();
  5782. card.openFile(filename_wldsd, false);
  5783. current_position[Z_AXIS] = mesh_home_z_search;
  5784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5785. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5786. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5787. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5788. setup_for_endstop_move(false);
  5789. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5790. SERIAL_PROTOCOL(x_points_num);
  5791. SERIAL_PROTOCOLPGM(",");
  5792. SERIAL_PROTOCOL(y_points_num);
  5793. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5794. SERIAL_PROTOCOL(mesh_home_z_search);
  5795. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5796. SERIAL_PROTOCOL(x_dimension);
  5797. SERIAL_PROTOCOLPGM(",");
  5798. SERIAL_PROTOCOL(y_dimension);
  5799. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5800. while (mesh_point != x_points_num * y_points_num) {
  5801. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5802. iy = mesh_point / x_points_num;
  5803. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5804. float z0 = 0.f;
  5805. current_position[Z_AXIS] = mesh_home_z_search;
  5806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5807. st_synchronize();
  5808. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5809. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5811. st_synchronize();
  5812. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5813. break;
  5814. card.closefile();
  5815. }
  5816. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5817. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5818. //strcat(data_wldsd, numb_wldsd);
  5819. //MYSERIAL.println(data_wldsd);
  5820. //delay(1000);
  5821. //delay(3000);
  5822. //t1 = millis();
  5823. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5824. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5825. memset(digit, 0, sizeof(digit));
  5826. //cli();
  5827. digitalWrite(D_REQUIRE, LOW);
  5828. for (int i = 0; i<13; i++)
  5829. {
  5830. //t1 = millis();
  5831. for (int j = 0; j < 4; j++)
  5832. {
  5833. while (digitalRead(D_DATACLOCK) == LOW) {}
  5834. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5835. bitWrite(digit[i], j, digitalRead(D_DATA));
  5836. }
  5837. //t_delay = (millis() - t1);
  5838. //SERIAL_PROTOCOLPGM(" ");
  5839. //SERIAL_PROTOCOL_F(t_delay, 5);
  5840. //SERIAL_PROTOCOLPGM(" ");
  5841. }
  5842. //sei();
  5843. digitalWrite(D_REQUIRE, HIGH);
  5844. mergeOutput[0] = '\0';
  5845. output = 0;
  5846. for (int r = 5; r <= 10; r++) //Merge digits
  5847. {
  5848. sprintf(str, "%d", digit[r]);
  5849. strcat(mergeOutput, str);
  5850. }
  5851. output = atof(mergeOutput);
  5852. if (digit[4] == 8) //Handle sign
  5853. {
  5854. output *= -1;
  5855. }
  5856. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5857. {
  5858. output *= 0.1;
  5859. }
  5860. //output = d_ReadData();
  5861. //row[ix] = current_position[Z_AXIS];
  5862. memset(data_wldsd, 0, sizeof(data_wldsd));
  5863. for (int i = 0; i <3; i++) {
  5864. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5865. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5866. strcat(data_wldsd, numb_wldsd);
  5867. strcat(data_wldsd, ";");
  5868. }
  5869. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5870. dtostrf(output, 8, 5, numb_wldsd);
  5871. strcat(data_wldsd, numb_wldsd);
  5872. //strcat(data_wldsd, ";");
  5873. card.write_command(data_wldsd);
  5874. //row[ix] = d_ReadData();
  5875. row[ix] = output; // current_position[Z_AXIS];
  5876. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5877. for (int i = 0; i < x_points_num; i++) {
  5878. SERIAL_PROTOCOLPGM(" ");
  5879. SERIAL_PROTOCOL_F(row[i], 5);
  5880. }
  5881. SERIAL_PROTOCOLPGM("\n");
  5882. }
  5883. custom_message_state--;
  5884. mesh_point++;
  5885. lcd_update(1);
  5886. }
  5887. card.closefile();
  5888. }
  5889. #endif
  5890. void temp_compensation_start() {
  5891. custom_message = true;
  5892. custom_message_type = 5;
  5893. custom_message_state = PINDA_HEAT_T + 1;
  5894. lcd_update(2);
  5895. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5896. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5897. }
  5898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5899. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5900. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5901. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5903. st_synchronize();
  5904. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5905. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5906. delay_keep_alive(1000);
  5907. custom_message_state = PINDA_HEAT_T - i;
  5908. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5909. else lcd_update(1);
  5910. }
  5911. custom_message_type = 0;
  5912. custom_message_state = 0;
  5913. custom_message = false;
  5914. }
  5915. void temp_compensation_apply() {
  5916. int i_add;
  5917. int compensation_value;
  5918. int z_shift = 0;
  5919. float z_shift_mm;
  5920. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5921. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5922. i_add = (target_temperature_bed - 60) / 10;
  5923. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5924. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5925. }else {
  5926. //interpolation
  5927. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5928. }
  5929. SERIAL_PROTOCOLPGM("\n");
  5930. SERIAL_PROTOCOLPGM("Z shift applied:");
  5931. MYSERIAL.print(z_shift_mm);
  5932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5933. st_synchronize();
  5934. plan_set_z_position(current_position[Z_AXIS]);
  5935. }
  5936. else {
  5937. //we have no temp compensation data
  5938. }
  5939. }
  5940. float temp_comp_interpolation(float inp_temperature) {
  5941. //cubic spline interpolation
  5942. int n, i, j, k;
  5943. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5944. int shift[10];
  5945. int temp_C[10];
  5946. n = 6; //number of measured points
  5947. shift[0] = 0;
  5948. for (i = 0; i < n; i++) {
  5949. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5950. temp_C[i] = 50 + i * 10; //temperature in C
  5951. #ifdef PINDA_THERMISTOR
  5952. temp_C[i] = 35 + i * 5; //temperature in C
  5953. #else
  5954. temp_C[i] = 50 + i * 10; //temperature in C
  5955. #endif
  5956. x[i] = (float)temp_C[i];
  5957. f[i] = (float)shift[i];
  5958. }
  5959. if (inp_temperature < x[0]) return 0;
  5960. for (i = n - 1; i>0; i--) {
  5961. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5962. h[i - 1] = x[i] - x[i - 1];
  5963. }
  5964. //*********** formation of h, s , f matrix **************
  5965. for (i = 1; i<n - 1; i++) {
  5966. m[i][i] = 2 * (h[i - 1] + h[i]);
  5967. if (i != 1) {
  5968. m[i][i - 1] = h[i - 1];
  5969. m[i - 1][i] = h[i - 1];
  5970. }
  5971. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5972. }
  5973. //*********** forward elimination **************
  5974. for (i = 1; i<n - 2; i++) {
  5975. temp = (m[i + 1][i] / m[i][i]);
  5976. for (j = 1; j <= n - 1; j++)
  5977. m[i + 1][j] -= temp*m[i][j];
  5978. }
  5979. //*********** backward substitution *********
  5980. for (i = n - 2; i>0; i--) {
  5981. sum = 0;
  5982. for (j = i; j <= n - 2; j++)
  5983. sum += m[i][j] * s[j];
  5984. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5985. }
  5986. for (i = 0; i<n - 1; i++)
  5987. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5988. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5989. b = s[i] / 2;
  5990. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5991. d = f[i];
  5992. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5993. }
  5994. return sum;
  5995. }
  5996. #ifdef PINDA_THERMISTOR
  5997. float temp_compensation_pinda_thermistor_offset()
  5998. {
  5999. if (!temp_cal_active) return 0;
  6000. if (!calibration_status_pinda()) return 0;
  6001. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6002. }
  6003. #endif //PINDA_THERMISTOR
  6004. void long_pause() //long pause print
  6005. {
  6006. st_synchronize();
  6007. //save currently set parameters to global variables
  6008. saved_feedmultiply = feedmultiply;
  6009. HotendTempBckp = degTargetHotend(active_extruder);
  6010. fanSpeedBckp = fanSpeed;
  6011. start_pause_print = millis();
  6012. //save position
  6013. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6014. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6015. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6016. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6017. //retract
  6018. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6020. //lift z
  6021. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6022. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6024. //set nozzle target temperature to 0
  6025. setTargetHotend(0, 0);
  6026. setTargetHotend(0, 1);
  6027. setTargetHotend(0, 2);
  6028. //Move XY to side
  6029. current_position[X_AXIS] = X_PAUSE_POS;
  6030. current_position[Y_AXIS] = Y_PAUSE_POS;
  6031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6032. // Turn off the print fan
  6033. fanSpeed = 0;
  6034. st_synchronize();
  6035. }
  6036. void serialecho_temperatures() {
  6037. float tt = degHotend(active_extruder);
  6038. SERIAL_PROTOCOLPGM("T:");
  6039. SERIAL_PROTOCOL(tt);
  6040. SERIAL_PROTOCOLPGM(" E:");
  6041. SERIAL_PROTOCOL((int)active_extruder);
  6042. SERIAL_PROTOCOLPGM(" B:");
  6043. SERIAL_PROTOCOL_F(degBed(), 1);
  6044. SERIAL_PROTOCOLLN("");
  6045. }
  6046. extern uint32_t sdpos_atomic;
  6047. void uvlo_()
  6048. {
  6049. // Conserve power as soon as possible.
  6050. disable_x();
  6051. disable_y();
  6052. // Indicate that the interrupt has been triggered.
  6053. SERIAL_ECHOLNPGM("UVLO");
  6054. // Read out the current Z motor microstep counter. This will be later used
  6055. // for reaching the zero full step before powering off.
  6056. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6057. // Calculate the file position, from which to resume this print.
  6058. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6059. {
  6060. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6061. sd_position -= sdlen_planner;
  6062. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6063. sd_position -= sdlen_cmdqueue;
  6064. if (sd_position < 0) sd_position = 0;
  6065. }
  6066. // Backup the feedrate in mm/min.
  6067. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6068. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6069. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6070. // are in action.
  6071. planner_abort_hard();
  6072. // Clean the input command queue.
  6073. cmdqueue_reset();
  6074. card.sdprinting = false;
  6075. // card.closefile();
  6076. // Enable stepper driver interrupt to move Z axis.
  6077. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6078. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6079. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6080. sei();
  6081. plan_buffer_line(
  6082. current_position[X_AXIS],
  6083. current_position[Y_AXIS],
  6084. current_position[Z_AXIS],
  6085. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6086. 400, active_extruder);
  6087. plan_buffer_line(
  6088. current_position[X_AXIS],
  6089. current_position[Y_AXIS],
  6090. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6091. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6092. 40, active_extruder);
  6093. // Move Z up to the next 0th full step.
  6094. // Write the file position.
  6095. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6096. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6097. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6098. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6099. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6100. // Scale the z value to 1u resolution.
  6101. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6102. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6103. }
  6104. // Read out the current Z motor microstep counter. This will be later used
  6105. // for reaching the zero full step before powering off.
  6106. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6107. // Store the current position.
  6108. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6109. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6110. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6111. // Store the current feed rate, temperatures and fan speed.
  6112. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6113. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6114. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6115. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6116. // Finaly store the "power outage" flag.
  6117. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6118. st_synchronize();
  6119. SERIAL_ECHOPGM("stps");
  6120. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6121. #if 0
  6122. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6123. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6125. st_synchronize();
  6126. #endif
  6127. disable_z();
  6128. SERIAL_ECHOLNPGM("UVLO - end");
  6129. cli();
  6130. while(1);
  6131. }
  6132. void setup_fan_interrupt() {
  6133. //INT7
  6134. DDRE &= ~(1 << 7); //input pin
  6135. PORTE &= ~(1 << 7); //no internal pull-up
  6136. //start with sensing rising edge
  6137. EICRB &= ~(1 << 6);
  6138. EICRB |= (1 << 7);
  6139. //enable INT7 interrupt
  6140. EIMSK |= (1 << 7);
  6141. }
  6142. ISR(INT7_vect) {
  6143. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6144. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6145. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6146. t_fan_rising_edge = millis();
  6147. }
  6148. else { //interrupt was triggered by falling edge
  6149. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6150. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6151. }
  6152. }
  6153. EICRB ^= (1 << 6); //change edge
  6154. }
  6155. void setup_uvlo_interrupt() {
  6156. DDRE &= ~(1 << 4); //input pin
  6157. PORTE &= ~(1 << 4); //no internal pull-up
  6158. //sensing falling edge
  6159. EICRB |= (1 << 0);
  6160. EICRB &= ~(1 << 1);
  6161. //enable INT4 interrupt
  6162. EIMSK |= (1 << 4);
  6163. }
  6164. ISR(INT4_vect) {
  6165. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6166. SERIAL_ECHOLNPGM("INT4");
  6167. if (IS_SD_PRINTING) uvlo_();
  6168. }
  6169. void recover_print(uint8_t automatic) {
  6170. char cmd[30];
  6171. lcd_update_enable(true);
  6172. lcd_update(2);
  6173. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6174. recover_machine_state_after_power_panic();
  6175. // Set the target bed and nozzle temperatures.
  6176. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6177. enquecommand(cmd);
  6178. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6179. enquecommand(cmd);
  6180. // Lift the print head, so one may remove the excess priming material.
  6181. if (current_position[Z_AXIS] < 25)
  6182. enquecommand_P(PSTR("G1 Z25 F800"));
  6183. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6184. enquecommand_P(PSTR("G28 X Y"));
  6185. // Set the target bed and nozzle temperatures and wait.
  6186. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6187. enquecommand(cmd);
  6188. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6189. enquecommand(cmd);
  6190. enquecommand_P(PSTR("M83")); //E axis relative mode
  6191. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6192. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6193. if(automatic == 0){
  6194. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6195. }
  6196. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6197. // Mark the power panic status as inactive.
  6198. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6199. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6200. delay_keep_alive(1000);
  6201. }*/
  6202. SERIAL_ECHOPGM("After waiting for temp:");
  6203. SERIAL_ECHOPGM("Current position X_AXIS:");
  6204. MYSERIAL.println(current_position[X_AXIS]);
  6205. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6206. MYSERIAL.println(current_position[Y_AXIS]);
  6207. // Restart the print.
  6208. restore_print_from_eeprom();
  6209. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6210. MYSERIAL.print(current_position[Z_AXIS]);
  6211. }
  6212. void recover_machine_state_after_power_panic()
  6213. {
  6214. // 1) Recover the logical cordinates at the time of the power panic.
  6215. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6216. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6217. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6218. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6219. // The current position after power panic is moved to the next closest 0th full step.
  6220. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6221. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6222. memcpy(destination, current_position, sizeof(destination));
  6223. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6224. print_world_coordinates();
  6225. // 2) Initialize the logical to physical coordinate system transformation.
  6226. world2machine_initialize();
  6227. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6228. mbl.active = false;
  6229. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6230. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6231. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6232. // Scale the z value to 10u resolution.
  6233. int16_t v;
  6234. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6235. if (v != 0)
  6236. mbl.active = true;
  6237. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6238. }
  6239. if (mbl.active)
  6240. mbl.upsample_3x3();
  6241. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6242. print_mesh_bed_leveling_table();
  6243. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6244. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6245. babystep_load();
  6246. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6248. // 6) Power up the motors, mark their positions as known.
  6249. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6250. axis_known_position[X_AXIS] = true; enable_x();
  6251. axis_known_position[Y_AXIS] = true; enable_y();
  6252. axis_known_position[Z_AXIS] = true; enable_z();
  6253. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6254. print_physical_coordinates();
  6255. // 7) Recover the target temperatures.
  6256. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6257. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6258. }
  6259. void restore_print_from_eeprom() {
  6260. float x_rec, y_rec, z_pos;
  6261. int feedrate_rec;
  6262. uint8_t fan_speed_rec;
  6263. char cmd[30];
  6264. char* c;
  6265. char filename[13];
  6266. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6267. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6268. SERIAL_ECHOPGM("Feedrate:");
  6269. MYSERIAL.println(feedrate_rec);
  6270. for (int i = 0; i < 8; i++) {
  6271. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6272. }
  6273. filename[8] = '\0';
  6274. MYSERIAL.print(filename);
  6275. strcat_P(filename, PSTR(".gco"));
  6276. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6277. for (c = &cmd[4]; *c; c++)
  6278. *c = tolower(*c);
  6279. enquecommand(cmd);
  6280. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6281. SERIAL_ECHOPGM("Position read from eeprom:");
  6282. MYSERIAL.println(position);
  6283. // E axis relative mode.
  6284. enquecommand_P(PSTR("M83"));
  6285. // Move to the XY print position in logical coordinates, where the print has been killed.
  6286. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6287. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6288. strcat_P(cmd, PSTR(" F2000"));
  6289. enquecommand(cmd);
  6290. // Move the Z axis down to the print, in logical coordinates.
  6291. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6292. enquecommand(cmd);
  6293. // Unretract.
  6294. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6295. // Set the feedrate saved at the power panic.
  6296. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6297. enquecommand(cmd);
  6298. // Set the fan speed saved at the power panic.
  6299. strcpy_P(cmd, PSTR("M106 S"));
  6300. strcat(cmd, itostr3(int(fan_speed_rec)));
  6301. enquecommand(cmd);
  6302. // Set a position in the file.
  6303. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6304. enquecommand(cmd);
  6305. // Start SD print.
  6306. enquecommand_P(PSTR("M24"));
  6307. }
  6308. ////////////////////////////////////////////////////////////////////////////////
  6309. // new save/restore printing
  6310. //extern uint32_t sdpos_atomic;
  6311. bool saved_printing = false;
  6312. uint32_t saved_sdpos = 0;
  6313. float saved_pos[4] = {0, 0, 0, 0};
  6314. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6315. float saved_feedrate2 = 0;
  6316. uint8_t saved_active_extruder = 0;
  6317. bool saved_extruder_under_pressure = false;
  6318. void stop_and_save_print_to_ram(float z_move, float e_move)
  6319. {
  6320. if (saved_printing) return;
  6321. cli();
  6322. unsigned char nplanner_blocks = number_of_blocks();
  6323. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6324. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6325. saved_sdpos -= sdlen_planner;
  6326. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6327. saved_sdpos -= sdlen_cmdqueue;
  6328. #if 0
  6329. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6330. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6331. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6332. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6333. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6334. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6335. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6336. {
  6337. card.setIndex(saved_sdpos);
  6338. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6339. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6340. MYSERIAL.print(char(card.get()));
  6341. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6342. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6343. MYSERIAL.print(char(card.get()));
  6344. SERIAL_ECHOLNPGM("End of command buffer");
  6345. }
  6346. {
  6347. // Print the content of the planner buffer, line by line:
  6348. card.setIndex(saved_sdpos);
  6349. int8_t iline = 0;
  6350. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6351. SERIAL_ECHOPGM("Planner line (from file): ");
  6352. MYSERIAL.print(int(iline), DEC);
  6353. SERIAL_ECHOPGM(", length: ");
  6354. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6355. SERIAL_ECHOPGM(", steps: (");
  6356. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6357. SERIAL_ECHOPGM(",");
  6358. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6359. SERIAL_ECHOPGM(",");
  6360. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6361. SERIAL_ECHOPGM(",");
  6362. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6363. SERIAL_ECHOPGM("), events: ");
  6364. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6365. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6366. MYSERIAL.print(char(card.get()));
  6367. }
  6368. }
  6369. {
  6370. // Print the content of the command buffer, line by line:
  6371. int8_t iline = 0;
  6372. union {
  6373. struct {
  6374. char lo;
  6375. char hi;
  6376. } lohi;
  6377. uint16_t value;
  6378. } sdlen_single;
  6379. int _bufindr = bufindr;
  6380. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6381. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6382. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6383. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6384. }
  6385. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6386. MYSERIAL.print(int(iline), DEC);
  6387. SERIAL_ECHOPGM(", type: ");
  6388. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6389. SERIAL_ECHOPGM(", len: ");
  6390. MYSERIAL.println(sdlen_single.value, DEC);
  6391. // Print the content of the buffer line.
  6392. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6393. SERIAL_ECHOPGM("Buffer line (from file): ");
  6394. MYSERIAL.print(int(iline), DEC);
  6395. MYSERIAL.println(int(iline), DEC);
  6396. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6397. MYSERIAL.print(char(card.get()));
  6398. if (-- _buflen == 0)
  6399. break;
  6400. // First skip the current command ID and iterate up to the end of the string.
  6401. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6402. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6403. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6404. // If the end of the buffer was empty,
  6405. if (_bufindr == sizeof(cmdbuffer)) {
  6406. // skip to the start and find the nonzero command.
  6407. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6408. }
  6409. }
  6410. }
  6411. #endif
  6412. #if 0
  6413. saved_feedrate2 = feedrate; //save feedrate
  6414. #else
  6415. // Try to deduce the feedrate from the first block of the planner.
  6416. // Speed is in mm/min.
  6417. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6418. #endif
  6419. planner_abort_hard(); //abort printing
  6420. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6421. saved_active_extruder = active_extruder; //save active_extruder
  6422. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6423. cmdqueue_reset(); //empty cmdqueue
  6424. card.sdprinting = false;
  6425. // card.closefile();
  6426. saved_printing = true;
  6427. sei();
  6428. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6429. #if 1
  6430. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6431. char buf[48];
  6432. strcpy_P(buf, PSTR("G1 Z"));
  6433. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6434. strcat_P(buf, PSTR(" E"));
  6435. // Relative extrusion
  6436. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6437. strcat_P(buf, PSTR(" F"));
  6438. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6439. // At this point the command queue is empty.
  6440. enquecommand(buf, false);
  6441. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6442. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6443. repeatcommand_front();
  6444. #else
  6445. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6446. st_synchronize(); //wait moving
  6447. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6448. memcpy(destination, current_position, sizeof(destination));
  6449. #endif
  6450. }
  6451. }
  6452. void restore_print_from_ram_and_continue(float e_move)
  6453. {
  6454. if (!saved_printing) return;
  6455. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6456. // current_position[axis] = st_get_position_mm(axis);
  6457. active_extruder = saved_active_extruder; //restore active_extruder
  6458. feedrate = saved_feedrate2; //restore feedrate
  6459. float e = saved_pos[E_AXIS] - e_move;
  6460. plan_set_e_position(e);
  6461. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6462. st_synchronize();
  6463. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6464. memcpy(destination, current_position, sizeof(destination));
  6465. card.setIndex(saved_sdpos);
  6466. sdpos_atomic = saved_sdpos;
  6467. card.sdprinting = true;
  6468. saved_printing = false;
  6469. }
  6470. void print_world_coordinates()
  6471. {
  6472. SERIAL_ECHOPGM("world coordinates: (");
  6473. MYSERIAL.print(current_position[X_AXIS], 3);
  6474. SERIAL_ECHOPGM(", ");
  6475. MYSERIAL.print(current_position[Y_AXIS], 3);
  6476. SERIAL_ECHOPGM(", ");
  6477. MYSERIAL.print(current_position[Z_AXIS], 3);
  6478. SERIAL_ECHOLNPGM(")");
  6479. }
  6480. void print_physical_coordinates()
  6481. {
  6482. SERIAL_ECHOPGM("physical coordinates: (");
  6483. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6484. SERIAL_ECHOPGM(", ");
  6485. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6486. SERIAL_ECHOPGM(", ");
  6487. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6488. SERIAL_ECHOLNPGM(")");
  6489. }
  6490. void print_mesh_bed_leveling_table()
  6491. {
  6492. SERIAL_ECHOPGM("mesh bed leveling: ");
  6493. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6494. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6495. MYSERIAL.print(mbl.z_values[y][x], 3);
  6496. SERIAL_ECHOPGM(" ");
  6497. }
  6498. SERIAL_ECHOLNPGM("");
  6499. }