Marlin_main.cpp 286 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef BLINKM
  89. #include "BlinkM.h"
  90. #include "Wire.h"
  91. #endif
  92. #ifdef ULTRALCD
  93. #include "ultralcd.h"
  94. #endif
  95. #if NUM_SERVOS > 0
  96. #include "Servo.h"
  97. #endif
  98. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  99. #include <SPI.h>
  100. #endif
  101. #define VERSION_STRING "1.0.2"
  102. #include "ultralcd.h"
  103. #include "cmdqueue.h"
  104. // Macros for bit masks
  105. #define BIT(b) (1<<(b))
  106. #define TEST(n,b) (((n)&BIT(b))!=0)
  107. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  108. //Macro for print fan speed
  109. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  110. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  111. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  112. //Implemented Codes
  113. //-------------------
  114. // PRUSA CODES
  115. // P F - Returns FW versions
  116. // P R - Returns revision of printer
  117. // G0 -> G1
  118. // G1 - Coordinated Movement X Y Z E
  119. // G2 - CW ARC
  120. // G3 - CCW ARC
  121. // G4 - Dwell S<seconds> or P<milliseconds>
  122. // G10 - retract filament according to settings of M207
  123. // G11 - retract recover filament according to settings of M208
  124. // G28 - Home all Axis
  125. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  126. // G30 - Single Z Probe, probes bed at current XY location.
  127. // G31 - Dock sled (Z_PROBE_SLED only)
  128. // G32 - Undock sled (Z_PROBE_SLED only)
  129. // G80 - Automatic mesh bed leveling
  130. // G81 - Print bed profile
  131. // G90 - Use Absolute Coordinates
  132. // G91 - Use Relative Coordinates
  133. // G92 - Set current position to coordinates given
  134. // M Codes
  135. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  136. // M1 - Same as M0
  137. // M17 - Enable/Power all stepper motors
  138. // M18 - Disable all stepper motors; same as M84
  139. // M20 - List SD card
  140. // M21 - Init SD card
  141. // M22 - Release SD card
  142. // M23 - Select SD file (M23 filename.g)
  143. // M24 - Start/resume SD print
  144. // M25 - Pause SD print
  145. // M26 - Set SD position in bytes (M26 S12345)
  146. // M27 - Report SD print status
  147. // M28 - Start SD write (M28 filename.g)
  148. // M29 - Stop SD write
  149. // M30 - Delete file from SD (M30 filename.g)
  150. // M31 - Output time since last M109 or SD card start to serial
  151. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  152. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  153. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  154. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  155. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  156. // M80 - Turn on Power Supply
  157. // M81 - Turn off Power Supply
  158. // M82 - Set E codes absolute (default)
  159. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  160. // M84 - Disable steppers until next move,
  161. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  162. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  163. // M92 - Set axis_steps_per_unit - same syntax as G92
  164. // M104 - Set extruder target temp
  165. // M105 - Read current temp
  166. // M106 - Fan on
  167. // M107 - Fan off
  168. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  169. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  170. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  171. // M112 - Emergency stop
  172. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  173. // M114 - Output current position to serial port
  174. // M115 - Capabilities string
  175. // M117 - display message
  176. // M119 - Output Endstop status to serial port
  177. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  178. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  179. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  180. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  181. // M140 - Set bed target temp
  182. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  183. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  184. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  185. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  186. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  187. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  188. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  189. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  190. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  191. // M206 - set additional homing offset
  192. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  193. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  194. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  195. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  196. // M220 S<factor in percent>- set speed factor override percentage
  197. // M221 S<factor in percent>- set extrude factor override percentage
  198. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  199. // M240 - Trigger a camera to take a photograph
  200. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  202. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. // M301 - Set PID parameters P I and D
  204. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. // M304 - Set bed PID parameters P I and D
  207. // M400 - Finish all moves
  208. // M401 - Lower z-probe if present
  209. // M402 - Raise z-probe if present
  210. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  211. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  212. // M406 - Turn off Filament Sensor extrusion control
  213. // M407 - Displays measured filament diameter
  214. // M500 - stores parameters in EEPROM
  215. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  216. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  217. // M503 - print the current settings (from memory not from EEPROM)
  218. // M509 - force language selection on next restart
  219. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  220. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  221. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. // M860 - Wait for PINDA thermistor to reach target temperature.
  223. // M861 - Set / Read PINDA temperature compensation offsets
  224. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  225. // M907 - Set digital trimpot motor current using axis codes.
  226. // M908 - Control digital trimpot directly.
  227. // M350 - Set microstepping mode.
  228. // M351 - Toggle MS1 MS2 pins directly.
  229. // M928 - Start SD logging (M928 filename.g) - ended by M29
  230. // M999 - Restart after being stopped by error
  231. //Stepper Movement Variables
  232. //===========================================================================
  233. //=============================imported variables============================
  234. //===========================================================================
  235. //===========================================================================
  236. //=============================public variables=============================
  237. //===========================================================================
  238. #ifdef SDSUPPORT
  239. CardReader card;
  240. #endif
  241. unsigned long PingTime = millis();
  242. unsigned long NcTime;
  243. union Data
  244. {
  245. byte b[2];
  246. int value;
  247. };
  248. float homing_feedrate[] = HOMING_FEEDRATE;
  249. // Currently only the extruder axis may be switched to a relative mode.
  250. // Other axes are always absolute or relative based on the common relative_mode flag.
  251. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  252. int feedmultiply=100; //100->1 200->2
  253. int saved_feedmultiply;
  254. int extrudemultiply=100; //100->1 200->2
  255. int extruder_multiply[EXTRUDERS] = {100
  256. #if EXTRUDERS > 1
  257. , 100
  258. #if EXTRUDERS > 2
  259. , 100
  260. #endif
  261. #endif
  262. };
  263. int bowden_length[4] = {385, 385, 385, 385};
  264. bool is_usb_printing = false;
  265. bool homing_flag = false;
  266. bool temp_cal_active = false;
  267. unsigned long kicktime = millis()+100000;
  268. unsigned int usb_printing_counter;
  269. int lcd_change_fil_state = 0;
  270. int feedmultiplyBckp = 100;
  271. float HotendTempBckp = 0;
  272. int fanSpeedBckp = 0;
  273. float pause_lastpos[4];
  274. unsigned long pause_time = 0;
  275. unsigned long start_pause_print = millis();
  276. unsigned long t_fan_rising_edge = millis();
  277. static LongTimer safetyTimer;
  278. //unsigned long load_filament_time;
  279. bool mesh_bed_leveling_flag = false;
  280. bool mesh_bed_run_from_menu = false;
  281. unsigned char lang_selected = 0;
  282. int8_t FarmMode = 0;
  283. bool prusa_sd_card_upload = false;
  284. unsigned int status_number = 0;
  285. unsigned long total_filament_used;
  286. unsigned int heating_status;
  287. unsigned int heating_status_counter;
  288. bool custom_message;
  289. bool loading_flag = false;
  290. unsigned int custom_message_type;
  291. unsigned int custom_message_state;
  292. char snmm_filaments_used = 0;
  293. float distance_from_min[2];
  294. bool fan_state[2];
  295. int fan_edge_counter[2];
  296. int fan_speed[2];
  297. char dir_names[3][9];
  298. bool sortAlpha = false;
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  301. #if EXTRUDERS > 1
  302. , DEFAULT_NOMINAL_FILAMENT_DIA
  303. #if EXTRUDERS > 2
  304. , DEFAULT_NOMINAL_FILAMENT_DIA
  305. #endif
  306. #endif
  307. };
  308. float extruder_multiplier[EXTRUDERS] = {1.0
  309. #if EXTRUDERS > 1
  310. , 1.0
  311. #if EXTRUDERS > 2
  312. , 1.0
  313. #endif
  314. #endif
  315. };
  316. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  317. float add_homing[3]={0,0,0};
  318. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  319. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  320. bool axis_known_position[3] = {false, false, false};
  321. float zprobe_zoffset;
  322. // Extruder offset
  323. #if EXTRUDERS > 1
  324. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  325. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  326. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  327. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  328. #endif
  329. };
  330. #endif
  331. uint8_t active_extruder = 0;
  332. int fanSpeed=0;
  333. #ifdef FWRETRACT
  334. bool autoretract_enabled=false;
  335. bool retracted[EXTRUDERS]={false
  336. #if EXTRUDERS > 1
  337. , false
  338. #if EXTRUDERS > 2
  339. , false
  340. #endif
  341. #endif
  342. };
  343. bool retracted_swap[EXTRUDERS]={false
  344. #if EXTRUDERS > 1
  345. , false
  346. #if EXTRUDERS > 2
  347. , false
  348. #endif
  349. #endif
  350. };
  351. float retract_length = RETRACT_LENGTH;
  352. float retract_length_swap = RETRACT_LENGTH_SWAP;
  353. float retract_feedrate = RETRACT_FEEDRATE;
  354. float retract_zlift = RETRACT_ZLIFT;
  355. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  356. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  357. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  358. #endif
  359. #ifdef ULTIPANEL
  360. #ifdef PS_DEFAULT_OFF
  361. bool powersupply = false;
  362. #else
  363. bool powersupply = true;
  364. #endif
  365. #endif
  366. bool cancel_heatup = false ;
  367. #ifdef HOST_KEEPALIVE_FEATURE
  368. int busy_state = NOT_BUSY;
  369. static long prev_busy_signal_ms = -1;
  370. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  371. #else
  372. #define host_keepalive();
  373. #define KEEPALIVE_STATE(n);
  374. #endif
  375. const char errormagic[] PROGMEM = "Error:";
  376. const char echomagic[] PROGMEM = "echo:";
  377. bool no_response = false;
  378. uint8_t important_status;
  379. uint8_t saved_filament_type;
  380. //===========================================================================
  381. //=============================Private Variables=============================
  382. //===========================================================================
  383. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  384. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  385. static float delta[3] = {0.0, 0.0, 0.0};
  386. // For tracing an arc
  387. static float offset[3] = {0.0, 0.0, 0.0};
  388. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  389. // Determines Absolute or Relative Coordinates.
  390. // Also there is bool axis_relative_modes[] per axis flag.
  391. static bool relative_mode = false;
  392. #ifndef _DISABLE_M42_M226
  393. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  394. #endif //_DISABLE_M42_M226
  395. //static float tt = 0;
  396. //static float bt = 0;
  397. //Inactivity shutdown variables
  398. static unsigned long previous_millis_cmd = 0;
  399. unsigned long max_inactive_time = 0;
  400. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  401. unsigned long starttime=0;
  402. unsigned long stoptime=0;
  403. unsigned long _usb_timer = 0;
  404. static uint8_t tmp_extruder;
  405. bool extruder_under_pressure = true;
  406. bool Stopped=false;
  407. #if NUM_SERVOS > 0
  408. Servo servos[NUM_SERVOS];
  409. #endif
  410. bool CooldownNoWait = true;
  411. bool target_direction;
  412. //Insert variables if CHDK is defined
  413. #ifdef CHDK
  414. unsigned long chdkHigh = 0;
  415. boolean chdkActive = false;
  416. #endif
  417. //===========================================================================
  418. //=============================Routines======================================
  419. //===========================================================================
  420. void get_arc_coordinates();
  421. bool setTargetedHotend(int code);
  422. void serial_echopair_P(const char *s_P, float v)
  423. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void serial_echopair_P(const char *s_P, double v)
  425. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char *s_P, unsigned long v)
  427. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. #ifdef SDSUPPORT
  429. #include "SdFatUtil.h"
  430. int freeMemory() { return SdFatUtil::FreeRam(); }
  431. #else
  432. extern "C" {
  433. extern unsigned int __bss_end;
  434. extern unsigned int __heap_start;
  435. extern void *__brkval;
  436. int freeMemory() {
  437. int free_memory;
  438. if ((int)__brkval == 0)
  439. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  440. else
  441. free_memory = ((int)&free_memory) - ((int)__brkval);
  442. return free_memory;
  443. }
  444. }
  445. #endif //!SDSUPPORT
  446. void setup_killpin()
  447. {
  448. #if defined(KILL_PIN) && KILL_PIN > -1
  449. SET_INPUT(KILL_PIN);
  450. WRITE(KILL_PIN,HIGH);
  451. #endif
  452. }
  453. // Set home pin
  454. void setup_homepin(void)
  455. {
  456. #if defined(HOME_PIN) && HOME_PIN > -1
  457. SET_INPUT(HOME_PIN);
  458. WRITE(HOME_PIN,HIGH);
  459. #endif
  460. }
  461. void setup_photpin()
  462. {
  463. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  464. SET_OUTPUT(PHOTOGRAPH_PIN);
  465. WRITE(PHOTOGRAPH_PIN, LOW);
  466. #endif
  467. }
  468. void setup_powerhold()
  469. {
  470. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  471. SET_OUTPUT(SUICIDE_PIN);
  472. WRITE(SUICIDE_PIN, HIGH);
  473. #endif
  474. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  475. SET_OUTPUT(PS_ON_PIN);
  476. #if defined(PS_DEFAULT_OFF)
  477. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  478. #else
  479. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  480. #endif
  481. #endif
  482. }
  483. void suicide()
  484. {
  485. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  486. SET_OUTPUT(SUICIDE_PIN);
  487. WRITE(SUICIDE_PIN, LOW);
  488. #endif
  489. }
  490. void servo_init()
  491. {
  492. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  493. servos[0].attach(SERVO0_PIN);
  494. #endif
  495. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  496. servos[1].attach(SERVO1_PIN);
  497. #endif
  498. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  499. servos[2].attach(SERVO2_PIN);
  500. #endif
  501. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  502. servos[3].attach(SERVO3_PIN);
  503. #endif
  504. #if (NUM_SERVOS >= 5)
  505. #error "TODO: enter initalisation code for more servos"
  506. #endif
  507. }
  508. static void lcd_language_menu();
  509. void stop_and_save_print_to_ram(float z_move, float e_move);
  510. void restore_print_from_ram_and_continue(float e_move);
  511. bool fans_check_enabled = true;
  512. bool filament_autoload_enabled = true;
  513. #ifdef TMC2130
  514. extern int8_t CrashDetectMenu;
  515. void crashdet_enable()
  516. {
  517. // MYSERIAL.println("crashdet_enable");
  518. tmc2130_sg_stop_on_crash = true;
  519. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  520. CrashDetectMenu = 1;
  521. }
  522. void crashdet_disable()
  523. {
  524. // MYSERIAL.println("crashdet_disable");
  525. tmc2130_sg_stop_on_crash = false;
  526. tmc2130_sg_crash = 0;
  527. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  528. CrashDetectMenu = 0;
  529. }
  530. void crashdet_stop_and_save_print()
  531. {
  532. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  533. }
  534. void crashdet_restore_print_and_continue()
  535. {
  536. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  537. // babystep_apply();
  538. }
  539. void crashdet_stop_and_save_print2()
  540. {
  541. cli();
  542. planner_abort_hard(); //abort printing
  543. cmdqueue_reset(); //empty cmdqueue
  544. card.sdprinting = false;
  545. card.closefile();
  546. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  547. st_reset_timer();
  548. sei();
  549. }
  550. void crashdet_detected(uint8_t mask)
  551. {
  552. // printf("CRASH_DETECTED");
  553. /* while (!is_buffer_empty())
  554. {
  555. process_commands();
  556. cmdqueue_pop_front();
  557. }*/
  558. st_synchronize();
  559. lcd_update_enable(true);
  560. lcd_implementation_clear();
  561. lcd_update(2);
  562. if (mask & X_AXIS_MASK)
  563. {
  564. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  565. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  566. }
  567. if (mask & Y_AXIS_MASK)
  568. {
  569. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  570. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  571. }
  572. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  573. bool yesno = true;
  574. #else
  575. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  576. #endif
  577. lcd_update_enable(true);
  578. lcd_update(2);
  579. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  580. if (yesno)
  581. {
  582. enquecommand_P(PSTR("G28 X Y"));
  583. enquecommand_P(PSTR("CRASH_RECOVER"));
  584. }
  585. else
  586. {
  587. enquecommand_P(PSTR("CRASH_CANCEL"));
  588. }
  589. }
  590. void crashdet_recover()
  591. {
  592. crashdet_restore_print_and_continue();
  593. tmc2130_sg_stop_on_crash = true;
  594. }
  595. void crashdet_cancel()
  596. {
  597. card.sdprinting = false;
  598. card.closefile();
  599. tmc2130_sg_stop_on_crash = true;
  600. }
  601. #endif //TMC2130
  602. void failstats_reset_print()
  603. {
  604. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  608. }
  609. #ifdef MESH_BED_LEVELING
  610. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  611. #endif
  612. // Factory reset function
  613. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  614. // Level input parameter sets depth of reset
  615. // Quiet parameter masks all waitings for user interact.
  616. int er_progress = 0;
  617. void factory_reset(char level, bool quiet)
  618. {
  619. lcd_implementation_clear();
  620. int cursor_pos = 0;
  621. switch (level) {
  622. // Level 0: Language reset
  623. case 0:
  624. WRITE(BEEPER, HIGH);
  625. _delay_ms(100);
  626. WRITE(BEEPER, LOW);
  627. lcd_force_language_selection();
  628. break;
  629. //Level 1: Reset statistics
  630. case 1:
  631. WRITE(BEEPER, HIGH);
  632. _delay_ms(100);
  633. WRITE(BEEPER, LOW);
  634. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  635. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  636. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  637. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  638. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  639. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  640. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  641. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  642. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  643. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  644. lcd_menu_statistics();
  645. break;
  646. // Level 2: Prepare for shipping
  647. case 2:
  648. //lcd_printPGM(PSTR("Factory RESET"));
  649. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  650. // Force language selection at the next boot up.
  651. lcd_force_language_selection();
  652. // Force the "Follow calibration flow" message at the next boot up.
  653. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  654. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  655. farm_no = 0;
  656. //*** MaR::180501_01
  657. farm_mode = false;
  658. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  659. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  660. WRITE(BEEPER, HIGH);
  661. _delay_ms(100);
  662. WRITE(BEEPER, LOW);
  663. //_delay_ms(2000);
  664. break;
  665. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  666. case 3:
  667. lcd_printPGM(PSTR("Factory RESET"));
  668. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. er_progress = 0;
  673. lcd_print_at_PGM(3, 3, PSTR(" "));
  674. lcd_implementation_print_at(3, 3, er_progress);
  675. // Erase EEPROM
  676. for (int i = 0; i < 4096; i++) {
  677. eeprom_write_byte((uint8_t*)i, 0xFF);
  678. if (i % 41 == 0) {
  679. er_progress++;
  680. lcd_print_at_PGM(3, 3, PSTR(" "));
  681. lcd_implementation_print_at(3, 3, er_progress);
  682. lcd_printPGM(PSTR("%"));
  683. }
  684. }
  685. break;
  686. case 4:
  687. bowden_menu();
  688. break;
  689. default:
  690. break;
  691. }
  692. }
  693. #include "LiquidCrystal_Prusa.h"
  694. extern LiquidCrystal_Prusa lcd;
  695. FILE _lcdout = {0};
  696. int lcd_putchar(char c, FILE *stream)
  697. {
  698. lcd.write(c);
  699. return 0;
  700. }
  701. FILE _uartout = {0};
  702. int uart_putchar(char c, FILE *stream)
  703. {
  704. MYSERIAL.write(c);
  705. return 0;
  706. }
  707. void lcd_splash()
  708. {
  709. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  710. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  711. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  712. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  713. }
  714. void factory_reset()
  715. {
  716. KEEPALIVE_STATE(PAUSED_FOR_USER);
  717. if (!READ(BTN_ENC))
  718. {
  719. _delay_ms(1000);
  720. if (!READ(BTN_ENC))
  721. {
  722. lcd_implementation_clear();
  723. lcd_printPGM(PSTR("Factory RESET"));
  724. SET_OUTPUT(BEEPER);
  725. WRITE(BEEPER, HIGH);
  726. while (!READ(BTN_ENC));
  727. WRITE(BEEPER, LOW);
  728. _delay_ms(2000);
  729. char level = reset_menu();
  730. factory_reset(level, false);
  731. switch (level) {
  732. case 0: _delay_ms(0); break;
  733. case 1: _delay_ms(0); break;
  734. case 2: _delay_ms(0); break;
  735. case 3: _delay_ms(0); break;
  736. }
  737. // _delay_ms(100);
  738. /*
  739. #ifdef MESH_BED_LEVELING
  740. _delay_ms(2000);
  741. if (!READ(BTN_ENC))
  742. {
  743. WRITE(BEEPER, HIGH);
  744. _delay_ms(100);
  745. WRITE(BEEPER, LOW);
  746. _delay_ms(200);
  747. WRITE(BEEPER, HIGH);
  748. _delay_ms(100);
  749. WRITE(BEEPER, LOW);
  750. int _z = 0;
  751. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  752. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  753. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  754. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  755. }
  756. else
  757. {
  758. WRITE(BEEPER, HIGH);
  759. _delay_ms(100);
  760. WRITE(BEEPER, LOW);
  761. }
  762. #endif // mesh */
  763. }
  764. }
  765. else
  766. {
  767. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  768. }
  769. KEEPALIVE_STATE(IN_HANDLER);
  770. }
  771. void show_fw_version_warnings() {
  772. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  773. switch (FW_DEV_VERSION) {
  774. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  775. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  776. case(FW_VERSION_DEVEL):
  777. case(FW_VERSION_DEBUG):
  778. lcd_update_enable(false);
  779. lcd_implementation_clear();
  780. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  781. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  782. #else
  783. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  784. #endif
  785. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  786. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  787. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  788. lcd_wait_for_click();
  789. break;
  790. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  791. }
  792. lcd_update_enable(true);
  793. }
  794. uint8_t check_printer_version()
  795. {
  796. uint8_t version_changed = 0;
  797. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  798. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  799. if (printer_type != PRINTER_TYPE) {
  800. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  801. else version_changed |= 0b10;
  802. }
  803. if (motherboard != MOTHERBOARD) {
  804. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  805. else version_changed |= 0b01;
  806. }
  807. return version_changed;
  808. }
  809. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  810. {
  811. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  812. }
  813. // "Setup" function is called by the Arduino framework on startup.
  814. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  815. // are initialized by the main() routine provided by the Arduino framework.
  816. void setup()
  817. {
  818. lcd_init();
  819. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  820. lcd_splash();
  821. setup_killpin();
  822. setup_powerhold();
  823. //*** MaR::180501_02b
  824. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  825. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  826. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  827. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  828. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  829. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  830. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  831. if (farm_mode)
  832. {
  833. no_response = true; //we need confirmation by recieving PRUSA thx
  834. important_status = 8;
  835. prusa_statistics(8);
  836. selectedSerialPort = 1;
  837. }
  838. MYSERIAL.begin(BAUDRATE);
  839. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  840. stdout = uartout;
  841. SERIAL_PROTOCOLLNPGM("start");
  842. SERIAL_ECHO_START;
  843. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  844. #if 0
  845. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  846. for (int i = 0; i < 4096; ++i) {
  847. int b = eeprom_read_byte((unsigned char*)i);
  848. if (b != 255) {
  849. SERIAL_ECHO(i);
  850. SERIAL_ECHO(":");
  851. SERIAL_ECHO(b);
  852. SERIAL_ECHOLN("");
  853. }
  854. }
  855. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  856. #endif
  857. // Check startup - does nothing if bootloader sets MCUSR to 0
  858. byte mcu = MCUSR;
  859. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  860. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  861. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  862. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  863. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  864. if (mcu & 1) puts_P(MSG_POWERUP);
  865. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  866. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  867. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  868. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  869. MCUSR = 0;
  870. //SERIAL_ECHORPGM(MSG_MARLIN);
  871. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  872. #ifdef STRING_VERSION_CONFIG_H
  873. #ifdef STRING_CONFIG_H_AUTHOR
  874. SERIAL_ECHO_START;
  875. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  876. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  877. SERIAL_ECHORPGM(MSG_AUTHOR);
  878. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  879. SERIAL_ECHOPGM("Compiled: ");
  880. SERIAL_ECHOLNPGM(__DATE__);
  881. #endif
  882. #endif
  883. SERIAL_ECHO_START;
  884. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  885. SERIAL_ECHO(freeMemory());
  886. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  887. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  888. //lcd_update_enable(false); // why do we need this?? - andre
  889. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  890. bool previous_settings_retrieved = false;
  891. uint8_t hw_changed = check_printer_version();
  892. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  893. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  894. }
  895. else { //printer version was changed so use default settings
  896. Config_ResetDefault();
  897. }
  898. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  899. tp_init(); // Initialize temperature loop
  900. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  901. plan_init(); // Initialize planner;
  902. factory_reset();
  903. #ifdef TMC2130
  904. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  905. if (silentMode == 0xff) silentMode = 0;
  906. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  907. tmc2130_mode = TMC2130_MODE_NORMAL;
  908. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  909. if (crashdet && !farm_mode)
  910. {
  911. crashdet_enable();
  912. MYSERIAL.println("CrashDetect ENABLED!");
  913. }
  914. else
  915. {
  916. crashdet_disable();
  917. MYSERIAL.println("CrashDetect DISABLED");
  918. }
  919. #ifdef TMC2130_LINEARITY_CORRECTION
  920. #ifdef EXPERIMENTAL_FEATURES
  921. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  922. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  923. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  924. #endif //EXPERIMENTAL_FEATURES
  925. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  926. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  927. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  928. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  929. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  930. #endif //TMC2130_LINEARITY_CORRECTION
  931. #ifdef TMC2130_VARIABLE_RESOLUTION
  932. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  933. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  934. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  935. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  936. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  937. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  938. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  939. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  940. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  941. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  942. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  943. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  944. #else //TMC2130_VARIABLE_RESOLUTION
  945. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  946. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  947. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  948. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  949. #endif //TMC2130_VARIABLE_RESOLUTION
  950. #endif //TMC2130
  951. #ifdef NEW_SPI
  952. spi_init();
  953. #endif //NEW_SPI
  954. st_init(); // Initialize stepper, this enables interrupts!
  955. #ifdef TMC2130
  956. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  957. tmc2130_init();
  958. #endif //TMC2130
  959. setup_photpin();
  960. servo_init();
  961. // Reset the machine correction matrix.
  962. // It does not make sense to load the correction matrix until the machine is homed.
  963. world2machine_reset();
  964. #ifdef PAT9125
  965. fsensor_init();
  966. #endif //PAT9125
  967. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  968. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  969. #endif
  970. setup_homepin();
  971. #ifdef TMC2130
  972. if (1) {
  973. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  974. // try to run to zero phase before powering the Z motor.
  975. // Move in negative direction
  976. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  977. // Round the current micro-micro steps to micro steps.
  978. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  979. // Until the phase counter is reset to zero.
  980. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  981. delay(2);
  982. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  983. delay(2);
  984. }
  985. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  986. }
  987. #endif //TMC2130
  988. #if defined(Z_AXIS_ALWAYS_ON)
  989. enable_z();
  990. #endif
  991. //*** MaR::180501_02
  992. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  993. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  994. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  995. if (farm_no == 0xFFFF) farm_no = 0;
  996. if (farm_mode)
  997. {
  998. prusa_statistics(8);
  999. }
  1000. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1001. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1002. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1003. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1004. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1005. // where all the EEPROM entries are set to 0x0ff.
  1006. // Once a firmware boots up, it forces at least a language selection, which changes
  1007. // EEPROM_LANG to number lower than 0x0ff.
  1008. // 1) Set a high power mode.
  1009. #ifdef TMC2130
  1010. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1011. tmc2130_mode = TMC2130_MODE_NORMAL;
  1012. #endif //TMC2130
  1013. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1014. }
  1015. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1016. // but this times out if a blocking dialog is shown in setup().
  1017. card.initsd();
  1018. #ifdef DEBUG_SD_SPEED_TEST
  1019. if (card.cardOK)
  1020. {
  1021. uint8_t* buff = (uint8_t*)block_buffer;
  1022. uint32_t block = 0;
  1023. uint32_t sumr = 0;
  1024. uint32_t sumw = 0;
  1025. for (int i = 0; i < 1024; i++)
  1026. {
  1027. uint32_t u = micros();
  1028. bool res = card.card.readBlock(i, buff);
  1029. u = micros() - u;
  1030. if (res)
  1031. {
  1032. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1033. sumr += u;
  1034. u = micros();
  1035. res = card.card.writeBlock(i, buff);
  1036. u = micros() - u;
  1037. if (res)
  1038. {
  1039. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1040. sumw += u;
  1041. }
  1042. else
  1043. {
  1044. printf_P(PSTR("writeBlock %4d error\n"), i);
  1045. break;
  1046. }
  1047. }
  1048. else
  1049. {
  1050. printf_P(PSTR("readBlock %4d error\n"), i);
  1051. break;
  1052. }
  1053. }
  1054. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1055. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1056. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1057. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1058. }
  1059. else
  1060. printf_P(PSTR("Card NG!\n"));
  1061. #endif DEBUG_SD_SPEED_TEST
  1062. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1063. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1064. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1065. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1066. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1067. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1068. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1069. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1070. #ifdef SNMM
  1071. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1072. int _z = BOWDEN_LENGTH;
  1073. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1074. }
  1075. #endif
  1076. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1077. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1078. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1079. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1080. if (lang_selected >= LANG_NUM){
  1081. lcd_mylang();
  1082. }
  1083. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1084. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1085. temp_cal_active = false;
  1086. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1087. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1088. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1089. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1090. int16_t z_shift = 0;
  1091. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1092. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1093. temp_cal_active = false;
  1094. }
  1095. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1096. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1097. }
  1098. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1099. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1100. }
  1101. check_babystep(); //checking if Z babystep is in allowed range
  1102. #ifdef UVLO_SUPPORT
  1103. setup_uvlo_interrupt();
  1104. #endif //UVLO_SUPPORT
  1105. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1106. setup_fan_interrupt();
  1107. #endif //DEBUG_DISABLE_FANCHECK
  1108. #ifdef PAT9125
  1109. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1110. fsensor_setup_interrupt();
  1111. #endif //DEBUG_DISABLE_FSENSORCHECK
  1112. #endif //PAT9125
  1113. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1114. #ifndef DEBUG_DISABLE_STARTMSGS
  1115. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1116. show_fw_version_warnings();
  1117. switch (hw_changed) {
  1118. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1119. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1120. case(0b01):
  1121. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1122. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1123. break;
  1124. case(0b10):
  1125. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1126. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1127. break;
  1128. case(0b11):
  1129. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1130. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1131. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1132. break;
  1133. default: break; //no change, show no message
  1134. }
  1135. if (!previous_settings_retrieved) {
  1136. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1137. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1138. }
  1139. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1140. lcd_wizard(0);
  1141. }
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1143. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1144. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1145. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1146. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1147. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1148. // Show the message.
  1149. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1150. }
  1151. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1152. // Show the message.
  1153. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1154. lcd_update_enable(true);
  1155. }
  1156. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1157. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1158. lcd_update_enable(true);
  1159. }
  1160. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1161. // Show the message.
  1162. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1163. }
  1164. }
  1165. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1166. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1167. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1168. update_current_firmware_version_to_eeprom();
  1169. lcd_selftest();
  1170. }
  1171. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1172. KEEPALIVE_STATE(IN_PROCESS);
  1173. #endif //DEBUG_DISABLE_STARTMSGS
  1174. lcd_update_enable(true);
  1175. lcd_implementation_clear();
  1176. lcd_update(2);
  1177. // Store the currently running firmware into an eeprom,
  1178. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1179. update_current_firmware_version_to_eeprom();
  1180. #ifdef TMC2130
  1181. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1182. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1183. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1184. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1185. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1186. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1187. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1188. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1189. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1190. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1191. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1192. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1193. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1194. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1195. #endif //TMC2130
  1196. #ifdef UVLO_SUPPORT
  1197. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1198. /*
  1199. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1200. else {
  1201. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1202. lcd_update_enable(true);
  1203. lcd_update(2);
  1204. lcd_setstatuspgm(WELCOME_MSG);
  1205. }
  1206. */
  1207. manage_heater(); // Update temperatures
  1208. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1209. MYSERIAL.println("Power panic detected!");
  1210. MYSERIAL.print("Current bed temp:");
  1211. MYSERIAL.println(degBed());
  1212. MYSERIAL.print("Saved bed temp:");
  1213. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1214. #endif
  1215. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1216. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1217. MYSERIAL.println("Automatic recovery!");
  1218. #endif
  1219. recover_print(1);
  1220. }
  1221. else{
  1222. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1223. MYSERIAL.println("Normal recovery!");
  1224. #endif
  1225. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1226. else {
  1227. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1228. lcd_update_enable(true);
  1229. lcd_update(2);
  1230. lcd_setstatuspgm(WELCOME_MSG);
  1231. }
  1232. }
  1233. }
  1234. #endif //UVLO_SUPPORT
  1235. KEEPALIVE_STATE(NOT_BUSY);
  1236. #ifdef WATCHDOG
  1237. wdt_enable(WDTO_4S);
  1238. #endif //WATCHDOG
  1239. }
  1240. #ifdef PAT9125
  1241. void fsensor_init() {
  1242. int pat9125 = pat9125_init();
  1243. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1244. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1245. if (!pat9125)
  1246. {
  1247. fsensor = 0; //disable sensor
  1248. fsensor_not_responding = true;
  1249. }
  1250. else {
  1251. fsensor_not_responding = false;
  1252. }
  1253. puts_P(PSTR("FSensor "));
  1254. if (fsensor)
  1255. {
  1256. puts_P(PSTR("ENABLED\n"));
  1257. fsensor_enable();
  1258. }
  1259. else
  1260. {
  1261. puts_P(PSTR("DISABLED\n"));
  1262. fsensor_disable();
  1263. }
  1264. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1265. filament_autoload_enabled = false;
  1266. fsensor_disable();
  1267. #endif //DEBUG_DISABLE_FSENSORCHECK
  1268. }
  1269. #endif //PAT9125
  1270. void trace();
  1271. #define CHUNK_SIZE 64 // bytes
  1272. #define SAFETY_MARGIN 1
  1273. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1274. int chunkHead = 0;
  1275. int serial_read_stream() {
  1276. setTargetHotend(0, 0);
  1277. setTargetBed(0);
  1278. lcd_implementation_clear();
  1279. lcd_printPGM(PSTR(" Upload in progress"));
  1280. // first wait for how many bytes we will receive
  1281. uint32_t bytesToReceive;
  1282. // receive the four bytes
  1283. char bytesToReceiveBuffer[4];
  1284. for (int i=0; i<4; i++) {
  1285. int data;
  1286. while ((data = MYSERIAL.read()) == -1) {};
  1287. bytesToReceiveBuffer[i] = data;
  1288. }
  1289. // make it a uint32
  1290. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1291. // we're ready, notify the sender
  1292. MYSERIAL.write('+');
  1293. // lock in the routine
  1294. uint32_t receivedBytes = 0;
  1295. while (prusa_sd_card_upload) {
  1296. int i;
  1297. for (i=0; i<CHUNK_SIZE; i++) {
  1298. int data;
  1299. // check if we're not done
  1300. if (receivedBytes == bytesToReceive) {
  1301. break;
  1302. }
  1303. // read the next byte
  1304. while ((data = MYSERIAL.read()) == -1) {};
  1305. receivedBytes++;
  1306. // save it to the chunk
  1307. chunk[i] = data;
  1308. }
  1309. // write the chunk to SD
  1310. card.write_command_no_newline(&chunk[0]);
  1311. // notify the sender we're ready for more data
  1312. MYSERIAL.write('+');
  1313. // for safety
  1314. manage_heater();
  1315. // check if we're done
  1316. if(receivedBytes == bytesToReceive) {
  1317. trace(); // beep
  1318. card.closefile();
  1319. prusa_sd_card_upload = false;
  1320. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1321. return 0;
  1322. }
  1323. }
  1324. }
  1325. #ifdef HOST_KEEPALIVE_FEATURE
  1326. /**
  1327. * Output a "busy" message at regular intervals
  1328. * while the machine is not accepting commands.
  1329. */
  1330. void host_keepalive() {
  1331. if (farm_mode) return;
  1332. long ms = millis();
  1333. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1334. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1335. switch (busy_state) {
  1336. case IN_HANDLER:
  1337. case IN_PROCESS:
  1338. SERIAL_ECHO_START;
  1339. SERIAL_ECHOLNPGM("busy: processing");
  1340. break;
  1341. case PAUSED_FOR_USER:
  1342. SERIAL_ECHO_START;
  1343. SERIAL_ECHOLNPGM("busy: paused for user");
  1344. break;
  1345. case PAUSED_FOR_INPUT:
  1346. SERIAL_ECHO_START;
  1347. SERIAL_ECHOLNPGM("busy: paused for input");
  1348. break;
  1349. default:
  1350. break;
  1351. }
  1352. }
  1353. prev_busy_signal_ms = ms;
  1354. }
  1355. #endif
  1356. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1357. // Before loop(), the setup() function is called by the main() routine.
  1358. void loop()
  1359. {
  1360. KEEPALIVE_STATE(NOT_BUSY);
  1361. bool stack_integrity = true;
  1362. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1363. {
  1364. is_usb_printing = true;
  1365. usb_printing_counter--;
  1366. _usb_timer = millis();
  1367. }
  1368. if (usb_printing_counter == 0)
  1369. {
  1370. is_usb_printing = false;
  1371. }
  1372. if (prusa_sd_card_upload)
  1373. {
  1374. //we read byte-by byte
  1375. serial_read_stream();
  1376. } else
  1377. {
  1378. get_command();
  1379. #ifdef SDSUPPORT
  1380. card.checkautostart(false);
  1381. #endif
  1382. if(buflen)
  1383. {
  1384. cmdbuffer_front_already_processed = false;
  1385. #ifdef SDSUPPORT
  1386. if(card.saving)
  1387. {
  1388. // Saving a G-code file onto an SD-card is in progress.
  1389. // Saving starts with M28, saving until M29 is seen.
  1390. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1391. card.write_command(CMDBUFFER_CURRENT_STRING);
  1392. if(card.logging)
  1393. process_commands();
  1394. else
  1395. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1396. } else {
  1397. card.closefile();
  1398. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1399. }
  1400. } else {
  1401. process_commands();
  1402. }
  1403. #else
  1404. process_commands();
  1405. #endif //SDSUPPORT
  1406. if (! cmdbuffer_front_already_processed && buflen)
  1407. {
  1408. // ptr points to the start of the block currently being processed.
  1409. // The first character in the block is the block type.
  1410. char *ptr = cmdbuffer + bufindr;
  1411. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1412. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1413. union {
  1414. struct {
  1415. char lo;
  1416. char hi;
  1417. } lohi;
  1418. uint16_t value;
  1419. } sdlen;
  1420. sdlen.value = 0;
  1421. {
  1422. // This block locks the interrupts globally for 3.25 us,
  1423. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1424. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1425. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1426. cli();
  1427. // Reset the command to something, which will be ignored by the power panic routine,
  1428. // so this buffer length will not be counted twice.
  1429. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1430. // Extract the current buffer length.
  1431. sdlen.lohi.lo = *ptr ++;
  1432. sdlen.lohi.hi = *ptr;
  1433. // and pass it to the planner queue.
  1434. planner_add_sd_length(sdlen.value);
  1435. sei();
  1436. }
  1437. }
  1438. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1439. // this block's SD card length will not be counted twice as its command type has been replaced
  1440. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1441. cmdqueue_pop_front();
  1442. }
  1443. host_keepalive();
  1444. }
  1445. }
  1446. //check heater every n milliseconds
  1447. manage_heater();
  1448. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1449. checkHitEndstops();
  1450. lcd_update();
  1451. #ifdef PAT9125
  1452. fsensor_update();
  1453. #endif //PAT9125
  1454. #ifdef TMC2130
  1455. tmc2130_check_overtemp();
  1456. if (tmc2130_sg_crash)
  1457. {
  1458. uint8_t crash = tmc2130_sg_crash;
  1459. tmc2130_sg_crash = 0;
  1460. // crashdet_stop_and_save_print();
  1461. switch (crash)
  1462. {
  1463. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1464. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1465. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1466. }
  1467. }
  1468. #endif //TMC2130
  1469. }
  1470. #define DEFINE_PGM_READ_ANY(type, reader) \
  1471. static inline type pgm_read_any(const type *p) \
  1472. { return pgm_read_##reader##_near(p); }
  1473. DEFINE_PGM_READ_ANY(float, float);
  1474. DEFINE_PGM_READ_ANY(signed char, byte);
  1475. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1476. static const PROGMEM type array##_P[3] = \
  1477. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1478. static inline type array(int axis) \
  1479. { return pgm_read_any(&array##_P[axis]); } \
  1480. type array##_ext(int axis) \
  1481. { return pgm_read_any(&array##_P[axis]); }
  1482. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1483. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1484. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1485. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1486. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1487. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1488. static void axis_is_at_home(int axis) {
  1489. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1490. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1491. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1492. }
  1493. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1494. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1495. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1496. saved_feedrate = feedrate;
  1497. saved_feedmultiply = feedmultiply;
  1498. feedmultiply = 100;
  1499. previous_millis_cmd = millis();
  1500. enable_endstops(enable_endstops_now);
  1501. }
  1502. static void clean_up_after_endstop_move() {
  1503. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1504. enable_endstops(false);
  1505. #endif
  1506. feedrate = saved_feedrate;
  1507. feedmultiply = saved_feedmultiply;
  1508. previous_millis_cmd = millis();
  1509. }
  1510. #ifdef ENABLE_AUTO_BED_LEVELING
  1511. #ifdef AUTO_BED_LEVELING_GRID
  1512. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1513. {
  1514. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1515. planeNormal.debug("planeNormal");
  1516. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1517. //bedLevel.debug("bedLevel");
  1518. //plan_bed_level_matrix.debug("bed level before");
  1519. //vector_3 uncorrected_position = plan_get_position_mm();
  1520. //uncorrected_position.debug("position before");
  1521. vector_3 corrected_position = plan_get_position();
  1522. // corrected_position.debug("position after");
  1523. current_position[X_AXIS] = corrected_position.x;
  1524. current_position[Y_AXIS] = corrected_position.y;
  1525. current_position[Z_AXIS] = corrected_position.z;
  1526. // put the bed at 0 so we don't go below it.
  1527. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. }
  1530. #else // not AUTO_BED_LEVELING_GRID
  1531. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1532. plan_bed_level_matrix.set_to_identity();
  1533. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1534. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1535. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1536. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1537. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1538. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1539. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1540. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1541. vector_3 corrected_position = plan_get_position();
  1542. current_position[X_AXIS] = corrected_position.x;
  1543. current_position[Y_AXIS] = corrected_position.y;
  1544. current_position[Z_AXIS] = corrected_position.z;
  1545. // put the bed at 0 so we don't go below it.
  1546. current_position[Z_AXIS] = zprobe_zoffset;
  1547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1548. }
  1549. #endif // AUTO_BED_LEVELING_GRID
  1550. static void run_z_probe() {
  1551. plan_bed_level_matrix.set_to_identity();
  1552. feedrate = homing_feedrate[Z_AXIS];
  1553. // move down until you find the bed
  1554. float zPosition = -10;
  1555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1556. st_synchronize();
  1557. // we have to let the planner know where we are right now as it is not where we said to go.
  1558. zPosition = st_get_position_mm(Z_AXIS);
  1559. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1560. // move up the retract distance
  1561. zPosition += home_retract_mm(Z_AXIS);
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1563. st_synchronize();
  1564. // move back down slowly to find bed
  1565. feedrate = homing_feedrate[Z_AXIS]/4;
  1566. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1570. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. }
  1573. static void do_blocking_move_to(float x, float y, float z) {
  1574. float oldFeedRate = feedrate;
  1575. feedrate = homing_feedrate[Z_AXIS];
  1576. current_position[Z_AXIS] = z;
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1578. st_synchronize();
  1579. feedrate = XY_TRAVEL_SPEED;
  1580. current_position[X_AXIS] = x;
  1581. current_position[Y_AXIS] = y;
  1582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1583. st_synchronize();
  1584. feedrate = oldFeedRate;
  1585. }
  1586. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1587. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1588. }
  1589. /// Probe bed height at position (x,y), returns the measured z value
  1590. static float probe_pt(float x, float y, float z_before) {
  1591. // move to right place
  1592. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1593. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1594. run_z_probe();
  1595. float measured_z = current_position[Z_AXIS];
  1596. SERIAL_PROTOCOLRPGM(MSG_BED);
  1597. SERIAL_PROTOCOLPGM(" x: ");
  1598. SERIAL_PROTOCOL(x);
  1599. SERIAL_PROTOCOLPGM(" y: ");
  1600. SERIAL_PROTOCOL(y);
  1601. SERIAL_PROTOCOLPGM(" z: ");
  1602. SERIAL_PROTOCOL(measured_z);
  1603. SERIAL_PROTOCOLPGM("\n");
  1604. return measured_z;
  1605. }
  1606. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1607. #ifdef LIN_ADVANCE
  1608. /**
  1609. * M900: Set and/or Get advance K factor and WH/D ratio
  1610. *
  1611. * K<factor> Set advance K factor
  1612. * R<ratio> Set ratio directly (overrides WH/D)
  1613. * W<width> H<height> D<diam> Set ratio from WH/D
  1614. */
  1615. inline void gcode_M900() {
  1616. st_synchronize();
  1617. const float newK = code_seen('K') ? code_value_float() : -1;
  1618. if (newK >= 0) extruder_advance_k = newK;
  1619. float newR = code_seen('R') ? code_value_float() : -1;
  1620. if (newR < 0) {
  1621. const float newD = code_seen('D') ? code_value_float() : -1,
  1622. newW = code_seen('W') ? code_value_float() : -1,
  1623. newH = code_seen('H') ? code_value_float() : -1;
  1624. if (newD >= 0 && newW >= 0 && newH >= 0)
  1625. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1626. }
  1627. if (newR >= 0) advance_ed_ratio = newR;
  1628. SERIAL_ECHO_START;
  1629. SERIAL_ECHOPGM("Advance K=");
  1630. SERIAL_ECHOLN(extruder_advance_k);
  1631. SERIAL_ECHOPGM(" E/D=");
  1632. const float ratio = advance_ed_ratio;
  1633. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1634. }
  1635. #endif // LIN_ADVANCE
  1636. bool check_commands() {
  1637. bool end_command_found = false;
  1638. while (buflen)
  1639. {
  1640. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1641. if (!cmdbuffer_front_already_processed)
  1642. cmdqueue_pop_front();
  1643. cmdbuffer_front_already_processed = false;
  1644. }
  1645. return end_command_found;
  1646. }
  1647. #ifdef TMC2130
  1648. bool calibrate_z_auto()
  1649. {
  1650. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1651. lcd_implementation_clear();
  1652. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1653. bool endstops_enabled = enable_endstops(true);
  1654. int axis_up_dir = -home_dir(Z_AXIS);
  1655. tmc2130_home_enter(Z_AXIS_MASK);
  1656. current_position[Z_AXIS] = 0;
  1657. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1658. set_destination_to_current();
  1659. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1660. feedrate = homing_feedrate[Z_AXIS];
  1661. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1662. st_synchronize();
  1663. // current_position[axis] = 0;
  1664. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1665. tmc2130_home_exit();
  1666. enable_endstops(false);
  1667. current_position[Z_AXIS] = 0;
  1668. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1669. set_destination_to_current();
  1670. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1671. feedrate = homing_feedrate[Z_AXIS] / 2;
  1672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. enable_endstops(endstops_enabled);
  1675. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1677. return true;
  1678. }
  1679. #endif //TMC2130
  1680. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1681. {
  1682. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1683. #define HOMEAXIS_DO(LETTER) \
  1684. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1685. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1686. {
  1687. int axis_home_dir = home_dir(axis);
  1688. feedrate = homing_feedrate[axis];
  1689. #ifdef TMC2130
  1690. tmc2130_home_enter(X_AXIS_MASK << axis);
  1691. #endif //TMC2130
  1692. // Move right a bit, so that the print head does not touch the left end position,
  1693. // and the following left movement has a chance to achieve the required velocity
  1694. // for the stall guard to work.
  1695. current_position[axis] = 0;
  1696. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1697. set_destination_to_current();
  1698. // destination[axis] = 11.f;
  1699. destination[axis] = 3.f;
  1700. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1701. st_synchronize();
  1702. // Move left away from the possible collision with the collision detection disabled.
  1703. endstops_hit_on_purpose();
  1704. enable_endstops(false);
  1705. current_position[axis] = 0;
  1706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1707. destination[axis] = - 1.;
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. // Now continue to move up to the left end stop with the collision detection enabled.
  1711. enable_endstops(true);
  1712. destination[axis] = - 1.1 * max_length(axis);
  1713. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1714. st_synchronize();
  1715. for (uint8_t i = 0; i < cnt; i++)
  1716. {
  1717. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1718. endstops_hit_on_purpose();
  1719. enable_endstops(false);
  1720. current_position[axis] = 0;
  1721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1722. destination[axis] = 10.f;
  1723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1724. st_synchronize();
  1725. endstops_hit_on_purpose();
  1726. // Now move left up to the collision, this time with a repeatable velocity.
  1727. enable_endstops(true);
  1728. destination[axis] = - 11.f;
  1729. #ifdef TMC2130
  1730. feedrate = homing_feedrate[axis];
  1731. #else //TMC2130
  1732. feedrate = homing_feedrate[axis] / 2;
  1733. #endif //TMC2130
  1734. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1735. st_synchronize();
  1736. #ifdef TMC2130
  1737. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1738. if (pstep) pstep[i] = mscnt >> 4;
  1739. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1740. #endif //TMC2130
  1741. }
  1742. endstops_hit_on_purpose();
  1743. enable_endstops(false);
  1744. #ifdef TMC2130
  1745. uint8_t orig = tmc2130_home_origin[axis];
  1746. uint8_t back = tmc2130_home_bsteps[axis];
  1747. if (tmc2130_home_enabled && (orig <= 63))
  1748. {
  1749. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1750. if (back > 0)
  1751. tmc2130_do_steps(axis, back, 1, 1000);
  1752. }
  1753. else
  1754. tmc2130_do_steps(axis, 8, 2, 1000);
  1755. tmc2130_home_exit();
  1756. #endif //TMC2130
  1757. axis_is_at_home(axis);
  1758. axis_known_position[axis] = true;
  1759. // Move from minimum
  1760. #ifdef TMC2130
  1761. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1762. #else //TMC2130
  1763. float dist = 0.01f * 64;
  1764. #endif //TMC2130
  1765. current_position[axis] -= dist;
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. current_position[axis] += dist;
  1768. destination[axis] = current_position[axis];
  1769. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1770. st_synchronize();
  1771. feedrate = 0.0;
  1772. }
  1773. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1774. {
  1775. int axis_home_dir = home_dir(axis);
  1776. current_position[axis] = 0;
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1779. feedrate = homing_feedrate[axis];
  1780. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1781. st_synchronize();
  1782. #ifdef TMC2130
  1783. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1784. #endif //TMC2130
  1785. current_position[axis] = 0;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1791. feedrate = homing_feedrate[axis]/2 ;
  1792. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1793. st_synchronize();
  1794. #ifdef TMC2130
  1795. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1796. #endif //TMC2130
  1797. axis_is_at_home(axis);
  1798. destination[axis] = current_position[axis];
  1799. feedrate = 0.0;
  1800. endstops_hit_on_purpose();
  1801. axis_known_position[axis] = true;
  1802. }
  1803. enable_endstops(endstops_enabled);
  1804. }
  1805. /**/
  1806. void home_xy()
  1807. {
  1808. set_destination_to_current();
  1809. homeaxis(X_AXIS);
  1810. homeaxis(Y_AXIS);
  1811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1812. endstops_hit_on_purpose();
  1813. }
  1814. void refresh_cmd_timeout(void)
  1815. {
  1816. previous_millis_cmd = millis();
  1817. }
  1818. #ifdef FWRETRACT
  1819. void retract(bool retracting, bool swapretract = false) {
  1820. if(retracting && !retracted[active_extruder]) {
  1821. destination[X_AXIS]=current_position[X_AXIS];
  1822. destination[Y_AXIS]=current_position[Y_AXIS];
  1823. destination[Z_AXIS]=current_position[Z_AXIS];
  1824. destination[E_AXIS]=current_position[E_AXIS];
  1825. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1826. plan_set_e_position(current_position[E_AXIS]);
  1827. float oldFeedrate = feedrate;
  1828. feedrate=retract_feedrate*60;
  1829. retracted[active_extruder]=true;
  1830. prepare_move();
  1831. current_position[Z_AXIS]-=retract_zlift;
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. prepare_move();
  1834. feedrate = oldFeedrate;
  1835. } else if(!retracting && retracted[active_extruder]) {
  1836. destination[X_AXIS]=current_position[X_AXIS];
  1837. destination[Y_AXIS]=current_position[Y_AXIS];
  1838. destination[Z_AXIS]=current_position[Z_AXIS];
  1839. destination[E_AXIS]=current_position[E_AXIS];
  1840. current_position[Z_AXIS]+=retract_zlift;
  1841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1842. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1843. plan_set_e_position(current_position[E_AXIS]);
  1844. float oldFeedrate = feedrate;
  1845. feedrate=retract_recover_feedrate*60;
  1846. retracted[active_extruder]=false;
  1847. prepare_move();
  1848. feedrate = oldFeedrate;
  1849. }
  1850. } //retract
  1851. #endif //FWRETRACT
  1852. void trace() {
  1853. tone(BEEPER, 440);
  1854. delay(25);
  1855. noTone(BEEPER);
  1856. delay(20);
  1857. }
  1858. /*
  1859. void ramming() {
  1860. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1861. if (current_temperature[0] < 230) {
  1862. //PLA
  1863. max_feedrate[E_AXIS] = 50;
  1864. //current_position[E_AXIS] -= 8;
  1865. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1866. //current_position[E_AXIS] += 8;
  1867. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1868. current_position[E_AXIS] += 5.4;
  1869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1870. current_position[E_AXIS] += 3.2;
  1871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1872. current_position[E_AXIS] += 3;
  1873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1874. st_synchronize();
  1875. max_feedrate[E_AXIS] = 80;
  1876. current_position[E_AXIS] -= 82;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1878. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1879. current_position[E_AXIS] -= 20;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1881. current_position[E_AXIS] += 5;
  1882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1883. current_position[E_AXIS] += 5;
  1884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1885. current_position[E_AXIS] -= 10;
  1886. st_synchronize();
  1887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1888. current_position[E_AXIS] += 10;
  1889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1890. current_position[E_AXIS] -= 10;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1892. current_position[E_AXIS] += 10;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1894. current_position[E_AXIS] -= 10;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1896. st_synchronize();
  1897. }
  1898. else {
  1899. //ABS
  1900. max_feedrate[E_AXIS] = 50;
  1901. //current_position[E_AXIS] -= 8;
  1902. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1903. //current_position[E_AXIS] += 8;
  1904. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1905. current_position[E_AXIS] += 3.1;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1907. current_position[E_AXIS] += 3.1;
  1908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1909. current_position[E_AXIS] += 4;
  1910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1911. st_synchronize();
  1912. //current_position[X_AXIS] += 23; //delay
  1913. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1914. //current_position[X_AXIS] -= 23; //delay
  1915. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1916. delay(4700);
  1917. max_feedrate[E_AXIS] = 80;
  1918. current_position[E_AXIS] -= 92;
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1920. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1921. current_position[E_AXIS] -= 5;
  1922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1923. current_position[E_AXIS] += 5;
  1924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1925. current_position[E_AXIS] -= 5;
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1927. st_synchronize();
  1928. current_position[E_AXIS] += 5;
  1929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1930. current_position[E_AXIS] -= 5;
  1931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1932. current_position[E_AXIS] += 5;
  1933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1934. current_position[E_AXIS] -= 5;
  1935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1936. st_synchronize();
  1937. }
  1938. }
  1939. */
  1940. #ifdef TMC2130
  1941. void force_high_power_mode(bool start_high_power_section) {
  1942. uint8_t silent;
  1943. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1944. if (silent == 1) {
  1945. //we are in silent mode, set to normal mode to enable crash detection
  1946. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1947. st_synchronize();
  1948. cli();
  1949. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1950. tmc2130_init();
  1951. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1952. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1953. st_reset_timer();
  1954. sei();
  1955. }
  1956. }
  1957. #endif //TMC2130
  1958. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1959. {
  1960. bool final_result = false;
  1961. #ifdef TMC2130
  1962. FORCE_HIGH_POWER_START;
  1963. #endif // TMC2130
  1964. // Only Z calibration?
  1965. if (!onlyZ)
  1966. {
  1967. setTargetBed(0);
  1968. setTargetHotend(0, 0);
  1969. setTargetHotend(0, 1);
  1970. setTargetHotend(0, 2);
  1971. adjust_bed_reset(); //reset bed level correction
  1972. }
  1973. // Disable the default update procedure of the display. We will do a modal dialog.
  1974. lcd_update_enable(false);
  1975. // Let the planner use the uncorrected coordinates.
  1976. mbl.reset();
  1977. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1978. // the planner will not perform any adjustments in the XY plane.
  1979. // Wait for the motors to stop and update the current position with the absolute values.
  1980. world2machine_revert_to_uncorrected();
  1981. // Reset the baby step value applied without moving the axes.
  1982. babystep_reset();
  1983. // Mark all axes as in a need for homing.
  1984. memset(axis_known_position, 0, sizeof(axis_known_position));
  1985. // Home in the XY plane.
  1986. //set_destination_to_current();
  1987. setup_for_endstop_move();
  1988. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1989. home_xy();
  1990. enable_endstops(false);
  1991. current_position[X_AXIS] += 5;
  1992. current_position[Y_AXIS] += 5;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1994. st_synchronize();
  1995. // Let the user move the Z axes up to the end stoppers.
  1996. #ifdef TMC2130
  1997. if (calibrate_z_auto())
  1998. {
  1999. #else //TMC2130
  2000. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2001. {
  2002. #endif //TMC2130
  2003. refresh_cmd_timeout();
  2004. #ifndef STEEL_SHEET
  2005. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2006. {
  2007. lcd_wait_for_cool_down();
  2008. }
  2009. #endif //STEEL_SHEET
  2010. if(!onlyZ)
  2011. {
  2012. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2013. #ifdef STEEL_SHEET
  2014. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2015. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2016. #endif //STEEL_SHEET
  2017. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  2018. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2019. KEEPALIVE_STATE(IN_HANDLER);
  2020. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2021. lcd_implementation_print_at(0, 2, 1);
  2022. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2023. }
  2024. // Move the print head close to the bed.
  2025. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2026. bool endstops_enabled = enable_endstops(true);
  2027. #ifdef TMC2130
  2028. tmc2130_home_enter(Z_AXIS_MASK);
  2029. #endif //TMC2130
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2031. st_synchronize();
  2032. #ifdef TMC2130
  2033. tmc2130_home_exit();
  2034. #endif //TMC2130
  2035. enable_endstops(endstops_enabled);
  2036. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2037. {
  2038. int8_t verbosity_level = 0;
  2039. if (code_seen('V'))
  2040. {
  2041. // Just 'V' without a number counts as V1.
  2042. char c = strchr_pointer[1];
  2043. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2044. }
  2045. if (onlyZ)
  2046. {
  2047. clean_up_after_endstop_move();
  2048. // Z only calibration.
  2049. // Load the machine correction matrix
  2050. world2machine_initialize();
  2051. // and correct the current_position to match the transformed coordinate system.
  2052. world2machine_update_current();
  2053. //FIXME
  2054. bool result = sample_mesh_and_store_reference();
  2055. if (result)
  2056. {
  2057. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2058. // Shipped, the nozzle height has been set already. The user can start printing now.
  2059. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2060. final_result = true;
  2061. // babystep_apply();
  2062. }
  2063. }
  2064. else
  2065. {
  2066. // Reset the baby step value and the baby step applied flag.
  2067. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2068. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2069. // Complete XYZ calibration.
  2070. uint8_t point_too_far_mask = 0;
  2071. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2072. clean_up_after_endstop_move();
  2073. // Print head up.
  2074. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2076. st_synchronize();
  2077. //#ifndef NEW_XYZCAL
  2078. if (result >= 0)
  2079. {
  2080. #ifdef HEATBED_V2
  2081. sample_z();
  2082. #else //HEATBED_V2
  2083. point_too_far_mask = 0;
  2084. // Second half: The fine adjustment.
  2085. // Let the planner use the uncorrected coordinates.
  2086. mbl.reset();
  2087. world2machine_reset();
  2088. // Home in the XY plane.
  2089. setup_for_endstop_move();
  2090. home_xy();
  2091. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2092. clean_up_after_endstop_move();
  2093. // Print head up.
  2094. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2096. st_synchronize();
  2097. // if (result >= 0) babystep_apply();
  2098. #endif //HEATBED_V2
  2099. }
  2100. //#endif //NEW_XYZCAL
  2101. lcd_update_enable(true);
  2102. lcd_update(2);
  2103. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2104. if (result >= 0)
  2105. {
  2106. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2107. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2108. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2109. final_result = true;
  2110. }
  2111. }
  2112. #ifdef TMC2130
  2113. tmc2130_home_exit();
  2114. #endif
  2115. }
  2116. else
  2117. {
  2118. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2119. final_result = false;
  2120. }
  2121. }
  2122. else
  2123. {
  2124. // Timeouted.
  2125. }
  2126. lcd_update_enable(true);
  2127. #ifdef TMC2130
  2128. FORCE_HIGH_POWER_END;
  2129. #endif // TMC2130
  2130. return final_result;
  2131. }
  2132. void gcode_M114()
  2133. {
  2134. SERIAL_PROTOCOLPGM("X:");
  2135. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2136. SERIAL_PROTOCOLPGM(" Y:");
  2137. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2138. SERIAL_PROTOCOLPGM(" Z:");
  2139. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2140. SERIAL_PROTOCOLPGM(" E:");
  2141. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2142. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2143. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2144. SERIAL_PROTOCOLPGM(" Y:");
  2145. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2146. SERIAL_PROTOCOLPGM(" Z:");
  2147. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2148. SERIAL_PROTOCOLPGM(" E:");
  2149. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2150. SERIAL_PROTOCOLLN("");
  2151. }
  2152. void gcode_M701()
  2153. {
  2154. #ifdef SNMM
  2155. extr_adj(snmm_extruder);//loads current extruder
  2156. #else
  2157. enable_z();
  2158. custom_message = true;
  2159. custom_message_type = 2;
  2160. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2161. current_position[E_AXIS] += 70;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2163. current_position[E_AXIS] += 25;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2165. st_synchronize();
  2166. tone(BEEPER, 500);
  2167. delay_keep_alive(50);
  2168. noTone(BEEPER);
  2169. if (!farm_mode && loading_flag) {
  2170. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2171. while (!clean) {
  2172. lcd_update_enable(true);
  2173. lcd_update(2);
  2174. current_position[E_AXIS] += 25;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2176. st_synchronize();
  2177. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2178. }
  2179. }
  2180. lcd_update_enable(true);
  2181. lcd_update(2);
  2182. lcd_setstatuspgm(WELCOME_MSG);
  2183. disable_z();
  2184. loading_flag = false;
  2185. custom_message = false;
  2186. custom_message_type = 0;
  2187. #endif
  2188. }
  2189. /**
  2190. * @brief Get serial number from 32U2 processor
  2191. *
  2192. * Typical format of S/N is:CZPX0917X003XC13518
  2193. *
  2194. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2195. *
  2196. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2197. * reply is transmitted to serial port 1 character by character.
  2198. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2199. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2200. * in any case.
  2201. */
  2202. static void gcode_PRUSA_SN()
  2203. {
  2204. if (farm_mode) {
  2205. selectedSerialPort = 0;
  2206. MSerial.write(";S");
  2207. int numbersRead = 0;
  2208. ShortTimer timeout;
  2209. timeout.start();
  2210. while (numbersRead < 19) {
  2211. while (MSerial.available() > 0) {
  2212. uint8_t serial_char = MSerial.read();
  2213. selectedSerialPort = 1;
  2214. MSerial.write(serial_char);
  2215. numbersRead++;
  2216. selectedSerialPort = 0;
  2217. }
  2218. if (timeout.expired(100u)) break;
  2219. }
  2220. selectedSerialPort = 1;
  2221. MSerial.write('\n');
  2222. #if 0
  2223. for (int b = 0; b < 3; b++) {
  2224. tone(BEEPER, 110);
  2225. delay(50);
  2226. noTone(BEEPER);
  2227. delay(50);
  2228. }
  2229. #endif
  2230. } else {
  2231. MYSERIAL.println("Not in farm mode.");
  2232. }
  2233. }
  2234. void process_commands()
  2235. {
  2236. if (!buflen) return; //empty command
  2237. #ifdef FILAMENT_RUNOUT_SUPPORT
  2238. SET_INPUT(FR_SENS);
  2239. #endif
  2240. #ifdef CMDBUFFER_DEBUG
  2241. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2242. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2243. SERIAL_ECHOLNPGM("");
  2244. SERIAL_ECHOPGM("In cmdqueue: ");
  2245. SERIAL_ECHO(buflen);
  2246. SERIAL_ECHOLNPGM("");
  2247. #endif /* CMDBUFFER_DEBUG */
  2248. unsigned long codenum; //throw away variable
  2249. char *starpos = NULL;
  2250. #ifdef ENABLE_AUTO_BED_LEVELING
  2251. float x_tmp, y_tmp, z_tmp, real_z;
  2252. #endif
  2253. // PRUSA GCODES
  2254. KEEPALIVE_STATE(IN_HANDLER);
  2255. #ifdef SNMM
  2256. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2257. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2258. int8_t SilentMode;
  2259. #endif
  2260. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2261. starpos = (strchr(strchr_pointer + 5, '*'));
  2262. if (starpos != NULL)
  2263. *(starpos) = '\0';
  2264. lcd_setstatus(strchr_pointer + 5);
  2265. }
  2266. #ifdef TMC2130
  2267. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2268. {
  2269. if(code_seen("CRASH_DETECTED"))
  2270. {
  2271. uint8_t mask = 0;
  2272. if (code_seen("X")) mask |= X_AXIS_MASK;
  2273. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2274. crashdet_detected(mask);
  2275. }
  2276. else if(code_seen("CRASH_RECOVER"))
  2277. crashdet_recover();
  2278. else if(code_seen("CRASH_CANCEL"))
  2279. crashdet_cancel();
  2280. }
  2281. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2282. {
  2283. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2284. {
  2285. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2286. tmc2130_set_wave(E_AXIS, 247, fac);
  2287. }
  2288. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2289. {
  2290. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2291. uint16_t res = tmc2130_get_res(E_AXIS);
  2292. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2293. }
  2294. }
  2295. #endif //TMC2130
  2296. else if(code_seen("PRUSA")){
  2297. if (code_seen("Ping")) { //PRUSA Ping
  2298. if (farm_mode) {
  2299. PingTime = millis();
  2300. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2301. }
  2302. }
  2303. else if (code_seen("PRN")) {
  2304. MYSERIAL.println(status_number);
  2305. }else if (code_seen("FAN")) {
  2306. MYSERIAL.print("E0:");
  2307. MYSERIAL.print(60*fan_speed[0]);
  2308. MYSERIAL.println(" RPM");
  2309. MYSERIAL.print("PRN0:");
  2310. MYSERIAL.print(60*fan_speed[1]);
  2311. MYSERIAL.println(" RPM");
  2312. }else if (code_seen("fn")) {
  2313. if (farm_mode) {
  2314. MYSERIAL.println(farm_no);
  2315. }
  2316. else {
  2317. MYSERIAL.println("Not in farm mode.");
  2318. }
  2319. }
  2320. else if (code_seen("thx")) {
  2321. no_response = false;
  2322. }else if (code_seen("fv")) {
  2323. // get file version
  2324. #ifdef SDSUPPORT
  2325. card.openFile(strchr_pointer + 3,true);
  2326. while (true) {
  2327. uint16_t readByte = card.get();
  2328. MYSERIAL.write(readByte);
  2329. if (readByte=='\n') {
  2330. break;
  2331. }
  2332. }
  2333. card.closefile();
  2334. #endif // SDSUPPORT
  2335. } else if (code_seen("M28")) {
  2336. trace();
  2337. prusa_sd_card_upload = true;
  2338. card.openFile(strchr_pointer+4,false);
  2339. } else if (code_seen("SN")) {
  2340. gcode_PRUSA_SN();
  2341. } else if(code_seen("Fir")){
  2342. SERIAL_PROTOCOLLN(FW_VERSION);
  2343. } else if(code_seen("Rev")){
  2344. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2345. } else if(code_seen("Lang")) {
  2346. lcd_force_language_selection();
  2347. } else if(code_seen("Lz")) {
  2348. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2349. } else if (code_seen("SERIAL LOW")) {
  2350. MYSERIAL.println("SERIAL LOW");
  2351. MYSERIAL.begin(BAUDRATE);
  2352. return;
  2353. } else if (code_seen("SERIAL HIGH")) {
  2354. MYSERIAL.println("SERIAL HIGH");
  2355. MYSERIAL.begin(1152000);
  2356. return;
  2357. } else if(code_seen("Beat")) {
  2358. // Kick farm link timer
  2359. kicktime = millis();
  2360. } else if(code_seen("FR")) {
  2361. // Factory full reset
  2362. factory_reset(0,true);
  2363. }
  2364. //else if (code_seen('Cal')) {
  2365. // lcd_calibration();
  2366. // }
  2367. }
  2368. else if (code_seen('^')) {
  2369. // nothing, this is a version line
  2370. } else if(code_seen('G'))
  2371. {
  2372. switch((int)code_value())
  2373. {
  2374. case 0: // G0 -> G1
  2375. case 1: // G1
  2376. if(Stopped == false) {
  2377. #ifdef FILAMENT_RUNOUT_SUPPORT
  2378. if(READ(FR_SENS)){
  2379. feedmultiplyBckp=feedmultiply;
  2380. float target[4];
  2381. float lastpos[4];
  2382. target[X_AXIS]=current_position[X_AXIS];
  2383. target[Y_AXIS]=current_position[Y_AXIS];
  2384. target[Z_AXIS]=current_position[Z_AXIS];
  2385. target[E_AXIS]=current_position[E_AXIS];
  2386. lastpos[X_AXIS]=current_position[X_AXIS];
  2387. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2388. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2389. lastpos[E_AXIS]=current_position[E_AXIS];
  2390. //retract by E
  2391. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2393. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2395. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2396. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2397. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2398. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2400. //finish moves
  2401. st_synchronize();
  2402. //disable extruder steppers so filament can be removed
  2403. disable_e0();
  2404. disable_e1();
  2405. disable_e2();
  2406. delay(100);
  2407. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2408. uint8_t cnt=0;
  2409. int counterBeep = 0;
  2410. lcd_wait_interact();
  2411. while(!lcd_clicked()){
  2412. cnt++;
  2413. manage_heater();
  2414. manage_inactivity(true);
  2415. //lcd_update();
  2416. if(cnt==0)
  2417. {
  2418. #if BEEPER > 0
  2419. if (counterBeep== 500){
  2420. counterBeep = 0;
  2421. }
  2422. SET_OUTPUT(BEEPER);
  2423. if (counterBeep== 0){
  2424. WRITE(BEEPER,HIGH);
  2425. }
  2426. if (counterBeep== 20){
  2427. WRITE(BEEPER,LOW);
  2428. }
  2429. counterBeep++;
  2430. #else
  2431. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2432. lcd_buzz(1000/6,100);
  2433. #else
  2434. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2435. #endif
  2436. #endif
  2437. }
  2438. }
  2439. WRITE(BEEPER,LOW);
  2440. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2442. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2444. lcd_change_fil_state = 0;
  2445. lcd_loading_filament();
  2446. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2447. lcd_change_fil_state = 0;
  2448. lcd_alright();
  2449. switch(lcd_change_fil_state){
  2450. case 2:
  2451. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2453. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2454. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2455. lcd_loading_filament();
  2456. break;
  2457. case 3:
  2458. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2460. lcd_loading_color();
  2461. break;
  2462. default:
  2463. lcd_change_success();
  2464. break;
  2465. }
  2466. }
  2467. target[E_AXIS]+= 5;
  2468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2469. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2471. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2472. //plan_set_e_position(current_position[E_AXIS]);
  2473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2474. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2475. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2476. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2477. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2478. plan_set_e_position(lastpos[E_AXIS]);
  2479. feedmultiply=feedmultiplyBckp;
  2480. char cmd[9];
  2481. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2482. enquecommand(cmd);
  2483. }
  2484. #endif
  2485. get_coordinates(); // For X Y Z E F
  2486. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2487. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2488. }
  2489. #ifdef FWRETRACT
  2490. if(autoretract_enabled)
  2491. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2492. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2493. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2494. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2495. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2496. retract(!retracted);
  2497. return;
  2498. }
  2499. }
  2500. #endif //FWRETRACT
  2501. prepare_move();
  2502. //ClearToSend();
  2503. }
  2504. break;
  2505. case 2: // G2 - CW ARC
  2506. if(Stopped == false) {
  2507. get_arc_coordinates();
  2508. prepare_arc_move(true);
  2509. }
  2510. break;
  2511. case 3: // G3 - CCW ARC
  2512. if(Stopped == false) {
  2513. get_arc_coordinates();
  2514. prepare_arc_move(false);
  2515. }
  2516. break;
  2517. case 4: // G4 dwell
  2518. codenum = 0;
  2519. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2520. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2521. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2522. st_synchronize();
  2523. codenum += millis(); // keep track of when we started waiting
  2524. previous_millis_cmd = millis();
  2525. while(millis() < codenum) {
  2526. manage_heater();
  2527. manage_inactivity();
  2528. lcd_update();
  2529. }
  2530. break;
  2531. #ifdef FWRETRACT
  2532. case 10: // G10 retract
  2533. #if EXTRUDERS > 1
  2534. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2535. retract(true,retracted_swap[active_extruder]);
  2536. #else
  2537. retract(true);
  2538. #endif
  2539. break;
  2540. case 11: // G11 retract_recover
  2541. #if EXTRUDERS > 1
  2542. retract(false,retracted_swap[active_extruder]);
  2543. #else
  2544. retract(false);
  2545. #endif
  2546. break;
  2547. #endif //FWRETRACT
  2548. case 28: //G28 Home all Axis one at a time
  2549. {
  2550. st_synchronize();
  2551. #if 0
  2552. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2553. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2554. #endif
  2555. // Flag for the display update routine and to disable the print cancelation during homing.
  2556. homing_flag = true;
  2557. // Which axes should be homed?
  2558. bool home_x = code_seen(axis_codes[X_AXIS]);
  2559. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2560. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2561. // calibrate?
  2562. bool calib = code_seen('C');
  2563. // Either all X,Y,Z codes are present, or none of them.
  2564. bool home_all_axes = home_x == home_y && home_x == home_z;
  2565. if (home_all_axes)
  2566. // No X/Y/Z code provided means to home all axes.
  2567. home_x = home_y = home_z = true;
  2568. #ifdef ENABLE_AUTO_BED_LEVELING
  2569. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2570. #endif //ENABLE_AUTO_BED_LEVELING
  2571. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2572. // the planner will not perform any adjustments in the XY plane.
  2573. // Wait for the motors to stop and update the current position with the absolute values.
  2574. world2machine_revert_to_uncorrected();
  2575. // For mesh bed leveling deactivate the matrix temporarily.
  2576. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2577. // in a single axis only.
  2578. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2579. #ifdef MESH_BED_LEVELING
  2580. uint8_t mbl_was_active = mbl.active;
  2581. mbl.active = 0;
  2582. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2583. #endif
  2584. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2585. // consumed during the first movements following this statement.
  2586. if (home_z)
  2587. babystep_undo();
  2588. saved_feedrate = feedrate;
  2589. saved_feedmultiply = feedmultiply;
  2590. feedmultiply = 100;
  2591. previous_millis_cmd = millis();
  2592. enable_endstops(true);
  2593. memcpy(destination, current_position, sizeof(destination));
  2594. feedrate = 0.0;
  2595. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2596. if(home_z)
  2597. homeaxis(Z_AXIS);
  2598. #endif
  2599. #ifdef QUICK_HOME
  2600. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2601. if(home_x && home_y) //first diagonal move
  2602. {
  2603. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2604. int x_axis_home_dir = home_dir(X_AXIS);
  2605. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2606. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2607. feedrate = homing_feedrate[X_AXIS];
  2608. if(homing_feedrate[Y_AXIS]<feedrate)
  2609. feedrate = homing_feedrate[Y_AXIS];
  2610. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2611. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2612. } else {
  2613. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2614. }
  2615. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2616. st_synchronize();
  2617. axis_is_at_home(X_AXIS);
  2618. axis_is_at_home(Y_AXIS);
  2619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2620. destination[X_AXIS] = current_position[X_AXIS];
  2621. destination[Y_AXIS] = current_position[Y_AXIS];
  2622. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2623. feedrate = 0.0;
  2624. st_synchronize();
  2625. endstops_hit_on_purpose();
  2626. current_position[X_AXIS] = destination[X_AXIS];
  2627. current_position[Y_AXIS] = destination[Y_AXIS];
  2628. current_position[Z_AXIS] = destination[Z_AXIS];
  2629. }
  2630. #endif /* QUICK_HOME */
  2631. #ifdef TMC2130
  2632. if(home_x)
  2633. {
  2634. if (!calib)
  2635. homeaxis(X_AXIS);
  2636. else
  2637. tmc2130_home_calibrate(X_AXIS);
  2638. }
  2639. if(home_y)
  2640. {
  2641. if (!calib)
  2642. homeaxis(Y_AXIS);
  2643. else
  2644. tmc2130_home_calibrate(Y_AXIS);
  2645. }
  2646. #endif //TMC2130
  2647. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2648. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2649. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2650. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2651. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2652. #ifndef Z_SAFE_HOMING
  2653. if(home_z) {
  2654. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2655. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2656. feedrate = max_feedrate[Z_AXIS];
  2657. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2658. st_synchronize();
  2659. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2660. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2661. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2662. {
  2663. homeaxis(X_AXIS);
  2664. homeaxis(Y_AXIS);
  2665. }
  2666. // 1st mesh bed leveling measurement point, corrected.
  2667. world2machine_initialize();
  2668. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2669. world2machine_reset();
  2670. if (destination[Y_AXIS] < Y_MIN_POS)
  2671. destination[Y_AXIS] = Y_MIN_POS;
  2672. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2673. feedrate = homing_feedrate[Z_AXIS]/10;
  2674. current_position[Z_AXIS] = 0;
  2675. enable_endstops(false);
  2676. #ifdef DEBUG_BUILD
  2677. SERIAL_ECHOLNPGM("plan_set_position()");
  2678. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2679. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2680. #endif
  2681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2682. #ifdef DEBUG_BUILD
  2683. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2684. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2685. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2686. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2687. #endif
  2688. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2689. st_synchronize();
  2690. current_position[X_AXIS] = destination[X_AXIS];
  2691. current_position[Y_AXIS] = destination[Y_AXIS];
  2692. enable_endstops(true);
  2693. endstops_hit_on_purpose();
  2694. homeaxis(Z_AXIS);
  2695. #else // MESH_BED_LEVELING
  2696. homeaxis(Z_AXIS);
  2697. #endif // MESH_BED_LEVELING
  2698. }
  2699. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2700. if(home_all_axes) {
  2701. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2702. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2703. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2704. feedrate = XY_TRAVEL_SPEED/60;
  2705. current_position[Z_AXIS] = 0;
  2706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2707. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2708. st_synchronize();
  2709. current_position[X_AXIS] = destination[X_AXIS];
  2710. current_position[Y_AXIS] = destination[Y_AXIS];
  2711. homeaxis(Z_AXIS);
  2712. }
  2713. // Let's see if X and Y are homed and probe is inside bed area.
  2714. if(home_z) {
  2715. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2716. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2717. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2718. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2719. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2720. current_position[Z_AXIS] = 0;
  2721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2722. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2723. feedrate = max_feedrate[Z_AXIS];
  2724. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2725. st_synchronize();
  2726. homeaxis(Z_AXIS);
  2727. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2728. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2729. SERIAL_ECHO_START;
  2730. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2731. } else {
  2732. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2733. SERIAL_ECHO_START;
  2734. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2735. }
  2736. }
  2737. #endif // Z_SAFE_HOMING
  2738. #endif // Z_HOME_DIR < 0
  2739. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2740. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2741. #ifdef ENABLE_AUTO_BED_LEVELING
  2742. if(home_z)
  2743. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2744. #endif
  2745. // Set the planner and stepper routine positions.
  2746. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2747. // contains the machine coordinates.
  2748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2749. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2750. enable_endstops(false);
  2751. #endif
  2752. feedrate = saved_feedrate;
  2753. feedmultiply = saved_feedmultiply;
  2754. previous_millis_cmd = millis();
  2755. endstops_hit_on_purpose();
  2756. #ifndef MESH_BED_LEVELING
  2757. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2758. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2759. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2760. lcd_adjust_z();
  2761. #endif
  2762. // Load the machine correction matrix
  2763. world2machine_initialize();
  2764. // and correct the current_position XY axes to match the transformed coordinate system.
  2765. world2machine_update_current();
  2766. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2767. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2768. {
  2769. if (! home_z && mbl_was_active) {
  2770. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2771. mbl.active = true;
  2772. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2773. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2774. }
  2775. }
  2776. else
  2777. {
  2778. st_synchronize();
  2779. homing_flag = false;
  2780. // Push the commands to the front of the message queue in the reverse order!
  2781. // There shall be always enough space reserved for these commands.
  2782. // enquecommand_front_P((PSTR("G80")));
  2783. goto case_G80;
  2784. }
  2785. #endif
  2786. if (farm_mode) { prusa_statistics(20); };
  2787. homing_flag = false;
  2788. #if 0
  2789. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2790. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2791. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2792. #endif
  2793. break;
  2794. }
  2795. #ifdef ENABLE_AUTO_BED_LEVELING
  2796. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2797. {
  2798. #if Z_MIN_PIN == -1
  2799. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2800. #endif
  2801. // Prevent user from running a G29 without first homing in X and Y
  2802. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2803. {
  2804. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2805. SERIAL_ECHO_START;
  2806. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2807. break; // abort G29, since we don't know where we are
  2808. }
  2809. st_synchronize();
  2810. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2811. //vector_3 corrected_position = plan_get_position_mm();
  2812. //corrected_position.debug("position before G29");
  2813. plan_bed_level_matrix.set_to_identity();
  2814. vector_3 uncorrected_position = plan_get_position();
  2815. //uncorrected_position.debug("position durring G29");
  2816. current_position[X_AXIS] = uncorrected_position.x;
  2817. current_position[Y_AXIS] = uncorrected_position.y;
  2818. current_position[Z_AXIS] = uncorrected_position.z;
  2819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2820. setup_for_endstop_move();
  2821. feedrate = homing_feedrate[Z_AXIS];
  2822. #ifdef AUTO_BED_LEVELING_GRID
  2823. // probe at the points of a lattice grid
  2824. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2825. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2826. // solve the plane equation ax + by + d = z
  2827. // A is the matrix with rows [x y 1] for all the probed points
  2828. // B is the vector of the Z positions
  2829. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2830. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2831. // "A" matrix of the linear system of equations
  2832. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2833. // "B" vector of Z points
  2834. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2835. int probePointCounter = 0;
  2836. bool zig = true;
  2837. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2838. {
  2839. int xProbe, xInc;
  2840. if (zig)
  2841. {
  2842. xProbe = LEFT_PROBE_BED_POSITION;
  2843. //xEnd = RIGHT_PROBE_BED_POSITION;
  2844. xInc = xGridSpacing;
  2845. zig = false;
  2846. } else // zag
  2847. {
  2848. xProbe = RIGHT_PROBE_BED_POSITION;
  2849. //xEnd = LEFT_PROBE_BED_POSITION;
  2850. xInc = -xGridSpacing;
  2851. zig = true;
  2852. }
  2853. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2854. {
  2855. float z_before;
  2856. if (probePointCounter == 0)
  2857. {
  2858. // raise before probing
  2859. z_before = Z_RAISE_BEFORE_PROBING;
  2860. } else
  2861. {
  2862. // raise extruder
  2863. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2864. }
  2865. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2866. eqnBVector[probePointCounter] = measured_z;
  2867. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2868. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2869. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2870. probePointCounter++;
  2871. xProbe += xInc;
  2872. }
  2873. }
  2874. clean_up_after_endstop_move();
  2875. // solve lsq problem
  2876. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2877. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2878. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2879. SERIAL_PROTOCOLPGM(" b: ");
  2880. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2881. SERIAL_PROTOCOLPGM(" d: ");
  2882. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2883. set_bed_level_equation_lsq(plane_equation_coefficients);
  2884. free(plane_equation_coefficients);
  2885. #else // AUTO_BED_LEVELING_GRID not defined
  2886. // Probe at 3 arbitrary points
  2887. // probe 1
  2888. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2889. // probe 2
  2890. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2891. // probe 3
  2892. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2893. clean_up_after_endstop_move();
  2894. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2895. #endif // AUTO_BED_LEVELING_GRID
  2896. st_synchronize();
  2897. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2898. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2899. // When the bed is uneven, this height must be corrected.
  2900. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2901. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2902. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2903. z_tmp = current_position[Z_AXIS];
  2904. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2905. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2907. }
  2908. break;
  2909. #ifndef Z_PROBE_SLED
  2910. case 30: // G30 Single Z Probe
  2911. {
  2912. st_synchronize();
  2913. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2914. setup_for_endstop_move();
  2915. feedrate = homing_feedrate[Z_AXIS];
  2916. run_z_probe();
  2917. SERIAL_PROTOCOLPGM(MSG_BED);
  2918. SERIAL_PROTOCOLPGM(" X: ");
  2919. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2920. SERIAL_PROTOCOLPGM(" Y: ");
  2921. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2922. SERIAL_PROTOCOLPGM(" Z: ");
  2923. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2924. SERIAL_PROTOCOLPGM("\n");
  2925. clean_up_after_endstop_move();
  2926. }
  2927. break;
  2928. #else
  2929. case 31: // dock the sled
  2930. dock_sled(true);
  2931. break;
  2932. case 32: // undock the sled
  2933. dock_sled(false);
  2934. break;
  2935. #endif // Z_PROBE_SLED
  2936. #endif // ENABLE_AUTO_BED_LEVELING
  2937. #ifdef MESH_BED_LEVELING
  2938. case 30: // G30 Single Z Probe
  2939. {
  2940. st_synchronize();
  2941. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2942. setup_for_endstop_move();
  2943. feedrate = homing_feedrate[Z_AXIS];
  2944. find_bed_induction_sensor_point_z(-10.f, 3);
  2945. SERIAL_PROTOCOLRPGM(MSG_BED);
  2946. SERIAL_PROTOCOLPGM(" X: ");
  2947. MYSERIAL.print(current_position[X_AXIS], 5);
  2948. SERIAL_PROTOCOLPGM(" Y: ");
  2949. MYSERIAL.print(current_position[Y_AXIS], 5);
  2950. SERIAL_PROTOCOLPGM(" Z: ");
  2951. MYSERIAL.print(current_position[Z_AXIS], 5);
  2952. SERIAL_PROTOCOLPGM("\n");
  2953. clean_up_after_endstop_move();
  2954. }
  2955. break;
  2956. case 75:
  2957. {
  2958. for (int i = 40; i <= 110; i++) {
  2959. MYSERIAL.print(i);
  2960. MYSERIAL.print(" ");
  2961. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2962. }
  2963. }
  2964. break;
  2965. case 76: //PINDA probe temperature calibration
  2966. {
  2967. #ifdef PINDA_THERMISTOR
  2968. if (true)
  2969. {
  2970. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2971. {
  2972. // We don't know where we are! HOME!
  2973. // Push the commands to the front of the message queue in the reverse order!
  2974. // There shall be always enough space reserved for these commands.
  2975. repeatcommand_front(); // repeat G76 with all its parameters
  2976. enquecommand_front_P((PSTR("G28 W0")));
  2977. break;
  2978. }
  2979. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2980. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2981. if (result)
  2982. {
  2983. current_position[Z_AXIS] = 50;
  2984. current_position[Y_AXIS] += 180;
  2985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2986. st_synchronize();
  2987. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2988. current_position[Y_AXIS] -= 180;
  2989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2990. st_synchronize();
  2991. feedrate = homing_feedrate[Z_AXIS] / 10;
  2992. enable_endstops(true);
  2993. endstops_hit_on_purpose();
  2994. homeaxis(Z_AXIS);
  2995. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2996. enable_endstops(false);
  2997. }
  2998. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  2999. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3000. current_position[Z_AXIS] = 100;
  3001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3002. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3003. lcd_temp_cal_show_result(false);
  3004. break;
  3005. }
  3006. }
  3007. lcd_update_enable(true);
  3008. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3009. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3010. float zero_z;
  3011. int z_shift = 0; //unit: steps
  3012. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3013. if (start_temp < 35) start_temp = 35;
  3014. if (start_temp < current_temperature_pinda) start_temp += 5;
  3015. SERIAL_ECHOPGM("start temperature: ");
  3016. MYSERIAL.println(start_temp);
  3017. // setTargetHotend(200, 0);
  3018. setTargetBed(70 + (start_temp - 30));
  3019. custom_message = true;
  3020. custom_message_type = 4;
  3021. custom_message_state = 1;
  3022. custom_message = MSG_TEMP_CALIBRATION;
  3023. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3024. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3025. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3027. st_synchronize();
  3028. while (current_temperature_pinda < start_temp)
  3029. {
  3030. delay_keep_alive(1000);
  3031. serialecho_temperatures();
  3032. }
  3033. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3034. current_position[Z_AXIS] = 5;
  3035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3036. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3037. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3039. st_synchronize();
  3040. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3041. if (find_z_result == false) {
  3042. lcd_temp_cal_show_result(find_z_result);
  3043. break;
  3044. }
  3045. zero_z = current_position[Z_AXIS];
  3046. //current_position[Z_AXIS]
  3047. SERIAL_ECHOLNPGM("");
  3048. SERIAL_ECHOPGM("ZERO: ");
  3049. MYSERIAL.print(current_position[Z_AXIS]);
  3050. SERIAL_ECHOLNPGM("");
  3051. int i = -1; for (; i < 5; i++)
  3052. {
  3053. float temp = (40 + i * 5);
  3054. SERIAL_ECHOPGM("Step: ");
  3055. MYSERIAL.print(i + 2);
  3056. SERIAL_ECHOLNPGM("/6 (skipped)");
  3057. SERIAL_ECHOPGM("PINDA temperature: ");
  3058. MYSERIAL.print((40 + i*5));
  3059. SERIAL_ECHOPGM(" Z shift (mm):");
  3060. MYSERIAL.print(0);
  3061. SERIAL_ECHOLNPGM("");
  3062. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3063. if (start_temp <= temp) break;
  3064. }
  3065. for (i++; i < 5; i++)
  3066. {
  3067. float temp = (40 + i * 5);
  3068. SERIAL_ECHOPGM("Step: ");
  3069. MYSERIAL.print(i + 2);
  3070. SERIAL_ECHOLNPGM("/6");
  3071. custom_message_state = i + 2;
  3072. setTargetBed(50 + 10 * (temp - 30) / 5);
  3073. // setTargetHotend(255, 0);
  3074. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3075. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3076. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3078. st_synchronize();
  3079. while (current_temperature_pinda < temp)
  3080. {
  3081. delay_keep_alive(1000);
  3082. serialecho_temperatures();
  3083. }
  3084. current_position[Z_AXIS] = 5;
  3085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3086. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3087. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3089. st_synchronize();
  3090. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3091. if (find_z_result == false) {
  3092. lcd_temp_cal_show_result(find_z_result);
  3093. break;
  3094. }
  3095. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3096. SERIAL_ECHOLNPGM("");
  3097. SERIAL_ECHOPGM("PINDA temperature: ");
  3098. MYSERIAL.print(current_temperature_pinda);
  3099. SERIAL_ECHOPGM(" Z shift (mm):");
  3100. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3101. SERIAL_ECHOLNPGM("");
  3102. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3103. }
  3104. lcd_temp_cal_show_result(true);
  3105. break;
  3106. }
  3107. #endif //PINDA_THERMISTOR
  3108. setTargetBed(PINDA_MIN_T);
  3109. float zero_z;
  3110. int z_shift = 0; //unit: steps
  3111. int t_c; // temperature
  3112. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3113. // We don't know where we are! HOME!
  3114. // Push the commands to the front of the message queue in the reverse order!
  3115. // There shall be always enough space reserved for these commands.
  3116. repeatcommand_front(); // repeat G76 with all its parameters
  3117. enquecommand_front_P((PSTR("G28 W0")));
  3118. break;
  3119. }
  3120. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3121. custom_message = true;
  3122. custom_message_type = 4;
  3123. custom_message_state = 1;
  3124. custom_message = MSG_TEMP_CALIBRATION;
  3125. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3126. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3127. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3129. st_synchronize();
  3130. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3131. delay_keep_alive(1000);
  3132. serialecho_temperatures();
  3133. }
  3134. //enquecommand_P(PSTR("M190 S50"));
  3135. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3136. delay_keep_alive(1000);
  3137. serialecho_temperatures();
  3138. }
  3139. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3140. current_position[Z_AXIS] = 5;
  3141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3142. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3143. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3145. st_synchronize();
  3146. find_bed_induction_sensor_point_z(-1.f);
  3147. zero_z = current_position[Z_AXIS];
  3148. //current_position[Z_AXIS]
  3149. SERIAL_ECHOLNPGM("");
  3150. SERIAL_ECHOPGM("ZERO: ");
  3151. MYSERIAL.print(current_position[Z_AXIS]);
  3152. SERIAL_ECHOLNPGM("");
  3153. for (int i = 0; i<5; i++) {
  3154. SERIAL_ECHOPGM("Step: ");
  3155. MYSERIAL.print(i+2);
  3156. SERIAL_ECHOLNPGM("/6");
  3157. custom_message_state = i + 2;
  3158. t_c = 60 + i * 10;
  3159. setTargetBed(t_c);
  3160. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3161. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3162. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3164. st_synchronize();
  3165. while (degBed() < t_c) {
  3166. delay_keep_alive(1000);
  3167. serialecho_temperatures();
  3168. }
  3169. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3170. delay_keep_alive(1000);
  3171. serialecho_temperatures();
  3172. }
  3173. current_position[Z_AXIS] = 5;
  3174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3175. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3176. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3178. st_synchronize();
  3179. find_bed_induction_sensor_point_z(-1.f);
  3180. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3181. SERIAL_ECHOLNPGM("");
  3182. SERIAL_ECHOPGM("Temperature: ");
  3183. MYSERIAL.print(t_c);
  3184. SERIAL_ECHOPGM(" Z shift (mm):");
  3185. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3186. SERIAL_ECHOLNPGM("");
  3187. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3188. }
  3189. custom_message_type = 0;
  3190. custom_message = false;
  3191. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3192. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3193. disable_x();
  3194. disable_y();
  3195. disable_z();
  3196. disable_e0();
  3197. disable_e1();
  3198. disable_e2();
  3199. setTargetBed(0); //set bed target temperature back to 0
  3200. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3201. temp_cal_active = true;
  3202. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3203. lcd_update_enable(true);
  3204. lcd_update(2);
  3205. }
  3206. break;
  3207. #ifdef DIS
  3208. case 77:
  3209. {
  3210. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3211. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3212. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3213. float dimension_x = 40;
  3214. float dimension_y = 40;
  3215. int points_x = 40;
  3216. int points_y = 40;
  3217. float offset_x = 74;
  3218. float offset_y = 33;
  3219. if (code_seen('X')) dimension_x = code_value();
  3220. if (code_seen('Y')) dimension_y = code_value();
  3221. if (code_seen('XP')) points_x = code_value();
  3222. if (code_seen('YP')) points_y = code_value();
  3223. if (code_seen('XO')) offset_x = code_value();
  3224. if (code_seen('YO')) offset_y = code_value();
  3225. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3226. } break;
  3227. #endif
  3228. case 79: {
  3229. for (int i = 255; i > 0; i = i - 5) {
  3230. fanSpeed = i;
  3231. //delay_keep_alive(2000);
  3232. for (int j = 0; j < 100; j++) {
  3233. delay_keep_alive(100);
  3234. }
  3235. fan_speed[1];
  3236. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3237. }
  3238. }break;
  3239. /**
  3240. * G80: Mesh-based Z probe, probes a grid and produces a
  3241. * mesh to compensate for variable bed height
  3242. *
  3243. * The S0 report the points as below
  3244. *
  3245. * +----> X-axis
  3246. * |
  3247. * |
  3248. * v Y-axis
  3249. *
  3250. */
  3251. case 80:
  3252. #ifdef MK1BP
  3253. break;
  3254. #endif //MK1BP
  3255. case_G80:
  3256. {
  3257. #ifdef TMC2130
  3258. //previously enqueued "G28 W0" failed (crash Z)
  3259. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
  3260. {
  3261. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3262. break;
  3263. }
  3264. #endif //TMC2130
  3265. mesh_bed_leveling_flag = true;
  3266. int8_t verbosity_level = 0;
  3267. static bool run = false;
  3268. if (code_seen('V')) {
  3269. // Just 'V' without a number counts as V1.
  3270. char c = strchr_pointer[1];
  3271. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3272. }
  3273. // Firstly check if we know where we are
  3274. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3275. // We don't know where we are! HOME!
  3276. // Push the commands to the front of the message queue in the reverse order!
  3277. // There shall be always enough space reserved for these commands.
  3278. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3279. repeatcommand_front(); // repeat G80 with all its parameters
  3280. enquecommand_front_P((PSTR("G28 W0")));
  3281. }
  3282. else {
  3283. mesh_bed_leveling_flag = false;
  3284. }
  3285. break;
  3286. }
  3287. bool temp_comp_start = true;
  3288. #ifdef PINDA_THERMISTOR
  3289. temp_comp_start = false;
  3290. #endif //PINDA_THERMISTOR
  3291. if (temp_comp_start)
  3292. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3293. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3294. temp_compensation_start();
  3295. run = true;
  3296. repeatcommand_front(); // repeat G80 with all its parameters
  3297. enquecommand_front_P((PSTR("G28 W0")));
  3298. }
  3299. else {
  3300. mesh_bed_leveling_flag = false;
  3301. }
  3302. break;
  3303. }
  3304. run = false;
  3305. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3306. mesh_bed_leveling_flag = false;
  3307. break;
  3308. }
  3309. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3310. bool custom_message_old = custom_message;
  3311. unsigned int custom_message_type_old = custom_message_type;
  3312. unsigned int custom_message_state_old = custom_message_state;
  3313. custom_message = true;
  3314. custom_message_type = 1;
  3315. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3316. lcd_update(1);
  3317. mbl.reset(); //reset mesh bed leveling
  3318. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3319. // consumed during the first movements following this statement.
  3320. babystep_undo();
  3321. // Cycle through all points and probe them
  3322. // First move up. During this first movement, the babystepping will be reverted.
  3323. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3325. // The move to the first calibration point.
  3326. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3327. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3328. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3329. #ifdef SUPPORT_VERBOSITY
  3330. if (verbosity_level >= 1) {
  3331. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3332. }
  3333. #endif //SUPPORT_VERBOSITY
  3334. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3336. // Wait until the move is finished.
  3337. st_synchronize();
  3338. int mesh_point = 0; //index number of calibration point
  3339. int ix = 0;
  3340. int iy = 0;
  3341. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3342. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3343. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3344. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3345. #ifdef SUPPORT_VERBOSITY
  3346. if (verbosity_level >= 1) {
  3347. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3348. }
  3349. #endif // SUPPORT_VERBOSITY
  3350. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3351. const char *kill_message = NULL;
  3352. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3353. // Get coords of a measuring point.
  3354. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3355. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3356. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3357. float z0 = 0.f;
  3358. if (has_z && mesh_point > 0) {
  3359. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3360. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3361. //#if 0
  3362. #ifdef SUPPORT_VERBOSITY
  3363. if (verbosity_level >= 1) {
  3364. SERIAL_ECHOLNPGM("");
  3365. SERIAL_ECHOPGM("Bed leveling, point: ");
  3366. MYSERIAL.print(mesh_point);
  3367. SERIAL_ECHOPGM(", calibration z: ");
  3368. MYSERIAL.print(z0, 5);
  3369. SERIAL_ECHOLNPGM("");
  3370. }
  3371. #endif // SUPPORT_VERBOSITY
  3372. //#endif
  3373. }
  3374. // Move Z up to MESH_HOME_Z_SEARCH.
  3375. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3377. st_synchronize();
  3378. // Move to XY position of the sensor point.
  3379. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3380. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3381. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3382. #ifdef SUPPORT_VERBOSITY
  3383. if (verbosity_level >= 1) {
  3384. SERIAL_PROTOCOL(mesh_point);
  3385. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3386. }
  3387. #endif // SUPPORT_VERBOSITY
  3388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3389. st_synchronize();
  3390. // Go down until endstop is hit
  3391. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3392. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3393. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3394. break;
  3395. }
  3396. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3397. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3398. break;
  3399. }
  3400. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3401. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3402. break;
  3403. }
  3404. #ifdef SUPPORT_VERBOSITY
  3405. if (verbosity_level >= 10) {
  3406. SERIAL_ECHOPGM("X: ");
  3407. MYSERIAL.print(current_position[X_AXIS], 5);
  3408. SERIAL_ECHOLNPGM("");
  3409. SERIAL_ECHOPGM("Y: ");
  3410. MYSERIAL.print(current_position[Y_AXIS], 5);
  3411. SERIAL_PROTOCOLPGM("\n");
  3412. }
  3413. #endif // SUPPORT_VERBOSITY
  3414. float offset_z = 0;
  3415. #ifdef PINDA_THERMISTOR
  3416. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3417. #endif //PINDA_THERMISTOR
  3418. // #ifdef SUPPORT_VERBOSITY
  3419. /* if (verbosity_level >= 1)
  3420. {
  3421. SERIAL_ECHOPGM("mesh bed leveling: ");
  3422. MYSERIAL.print(current_position[Z_AXIS], 5);
  3423. SERIAL_ECHOPGM(" offset: ");
  3424. MYSERIAL.print(offset_z, 5);
  3425. SERIAL_ECHOLNPGM("");
  3426. }*/
  3427. // #endif // SUPPORT_VERBOSITY
  3428. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3429. custom_message_state--;
  3430. mesh_point++;
  3431. lcd_update(1);
  3432. }
  3433. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3434. #ifdef SUPPORT_VERBOSITY
  3435. if (verbosity_level >= 20) {
  3436. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3437. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3438. MYSERIAL.print(current_position[Z_AXIS], 5);
  3439. }
  3440. #endif // SUPPORT_VERBOSITY
  3441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3442. st_synchronize();
  3443. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3444. kill(kill_message);
  3445. SERIAL_ECHOLNPGM("killed");
  3446. }
  3447. clean_up_after_endstop_move();
  3448. // SERIAL_ECHOLNPGM("clean up finished ");
  3449. bool apply_temp_comp = true;
  3450. #ifdef PINDA_THERMISTOR
  3451. apply_temp_comp = false;
  3452. #endif
  3453. if (apply_temp_comp)
  3454. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3455. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3456. // SERIAL_ECHOLNPGM("babystep applied");
  3457. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3458. #ifdef SUPPORT_VERBOSITY
  3459. if (verbosity_level >= 1) {
  3460. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3461. }
  3462. #endif // SUPPORT_VERBOSITY
  3463. for (uint8_t i = 0; i < 4; ++i) {
  3464. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3465. long correction = 0;
  3466. if (code_seen(codes[i]))
  3467. correction = code_value_long();
  3468. else if (eeprom_bed_correction_valid) {
  3469. unsigned char *addr = (i < 2) ?
  3470. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3471. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3472. correction = eeprom_read_int8(addr);
  3473. }
  3474. if (correction == 0)
  3475. continue;
  3476. float offset = float(correction) * 0.001f;
  3477. if (fabs(offset) > 0.101f) {
  3478. SERIAL_ERROR_START;
  3479. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3480. SERIAL_ECHO(offset);
  3481. SERIAL_ECHOLNPGM(" microns");
  3482. }
  3483. else {
  3484. switch (i) {
  3485. case 0:
  3486. for (uint8_t row = 0; row < 3; ++row) {
  3487. mbl.z_values[row][1] += 0.5f * offset;
  3488. mbl.z_values[row][0] += offset;
  3489. }
  3490. break;
  3491. case 1:
  3492. for (uint8_t row = 0; row < 3; ++row) {
  3493. mbl.z_values[row][1] += 0.5f * offset;
  3494. mbl.z_values[row][2] += offset;
  3495. }
  3496. break;
  3497. case 2:
  3498. for (uint8_t col = 0; col < 3; ++col) {
  3499. mbl.z_values[1][col] += 0.5f * offset;
  3500. mbl.z_values[0][col] += offset;
  3501. }
  3502. break;
  3503. case 3:
  3504. for (uint8_t col = 0; col < 3; ++col) {
  3505. mbl.z_values[1][col] += 0.5f * offset;
  3506. mbl.z_values[2][col] += offset;
  3507. }
  3508. break;
  3509. }
  3510. }
  3511. }
  3512. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3513. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3514. // SERIAL_ECHOLNPGM("Upsample finished");
  3515. mbl.active = 1; //activate mesh bed leveling
  3516. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3517. go_home_with_z_lift();
  3518. // SERIAL_ECHOLNPGM("Go home finished");
  3519. //unretract (after PINDA preheat retraction)
  3520. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3521. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3523. }
  3524. KEEPALIVE_STATE(NOT_BUSY);
  3525. // Restore custom message state
  3526. custom_message = custom_message_old;
  3527. custom_message_type = custom_message_type_old;
  3528. custom_message_state = custom_message_state_old;
  3529. mesh_bed_leveling_flag = false;
  3530. mesh_bed_run_from_menu = false;
  3531. lcd_update(2);
  3532. }
  3533. break;
  3534. /**
  3535. * G81: Print mesh bed leveling status and bed profile if activated
  3536. */
  3537. case 81:
  3538. if (mbl.active) {
  3539. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3540. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3541. SERIAL_PROTOCOLPGM(",");
  3542. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3543. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3544. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3545. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3546. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3547. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3548. SERIAL_PROTOCOLPGM(" ");
  3549. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3550. }
  3551. SERIAL_PROTOCOLPGM("\n");
  3552. }
  3553. }
  3554. else
  3555. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3556. break;
  3557. #if 0
  3558. /**
  3559. * G82: Single Z probe at current location
  3560. *
  3561. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3562. *
  3563. */
  3564. case 82:
  3565. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3566. setup_for_endstop_move();
  3567. find_bed_induction_sensor_point_z();
  3568. clean_up_after_endstop_move();
  3569. SERIAL_PROTOCOLPGM("Bed found at: ");
  3570. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3571. SERIAL_PROTOCOLPGM("\n");
  3572. break;
  3573. /**
  3574. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3575. */
  3576. case 83:
  3577. {
  3578. int babystepz = code_seen('S') ? code_value() : 0;
  3579. int BabyPosition = code_seen('P') ? code_value() : 0;
  3580. if (babystepz != 0) {
  3581. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3582. // Is the axis indexed starting with zero or one?
  3583. if (BabyPosition > 4) {
  3584. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3585. }else{
  3586. // Save it to the eeprom
  3587. babystepLoadZ = babystepz;
  3588. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3589. // adjust the Z
  3590. babystepsTodoZadd(babystepLoadZ);
  3591. }
  3592. }
  3593. }
  3594. break;
  3595. /**
  3596. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3597. */
  3598. case 84:
  3599. babystepsTodoZsubtract(babystepLoadZ);
  3600. // babystepLoadZ = 0;
  3601. break;
  3602. /**
  3603. * G85: Prusa3D specific: Pick best babystep
  3604. */
  3605. case 85:
  3606. lcd_pick_babystep();
  3607. break;
  3608. #endif
  3609. /**
  3610. * G86: Prusa3D specific: Disable babystep correction after home.
  3611. * This G-code will be performed at the start of a calibration script.
  3612. */
  3613. case 86:
  3614. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3615. break;
  3616. /**
  3617. * G87: Prusa3D specific: Enable babystep correction after home
  3618. * This G-code will be performed at the end of a calibration script.
  3619. */
  3620. case 87:
  3621. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3622. break;
  3623. /**
  3624. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3625. */
  3626. case 88:
  3627. break;
  3628. #endif // ENABLE_MESH_BED_LEVELING
  3629. case 90: // G90
  3630. relative_mode = false;
  3631. break;
  3632. case 91: // G91
  3633. relative_mode = true;
  3634. break;
  3635. case 92: // G92
  3636. if(!code_seen(axis_codes[E_AXIS]))
  3637. st_synchronize();
  3638. for(int8_t i=0; i < NUM_AXIS; i++) {
  3639. if(code_seen(axis_codes[i])) {
  3640. if(i == E_AXIS) {
  3641. current_position[i] = code_value();
  3642. plan_set_e_position(current_position[E_AXIS]);
  3643. }
  3644. else {
  3645. current_position[i] = code_value()+add_homing[i];
  3646. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3647. }
  3648. }
  3649. }
  3650. break;
  3651. case 98: // G98 (activate farm mode)
  3652. farm_mode = 1;
  3653. PingTime = millis();
  3654. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3655. SilentModeMenu = SILENT_MODE_OFF;
  3656. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3657. break;
  3658. case 99: // G99 (deactivate farm mode)
  3659. farm_mode = 0;
  3660. lcd_printer_connected();
  3661. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3662. lcd_update(2);
  3663. break;
  3664. default:
  3665. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3666. }
  3667. } // end if(code_seen('G'))
  3668. else if(code_seen('M'))
  3669. {
  3670. int index;
  3671. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3672. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3673. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3674. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3675. } else
  3676. switch((int)code_value())
  3677. {
  3678. #ifdef ULTIPANEL
  3679. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3680. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3681. {
  3682. char *src = strchr_pointer + 2;
  3683. codenum = 0;
  3684. bool hasP = false, hasS = false;
  3685. if (code_seen('P')) {
  3686. codenum = code_value(); // milliseconds to wait
  3687. hasP = codenum > 0;
  3688. }
  3689. if (code_seen('S')) {
  3690. codenum = code_value() * 1000; // seconds to wait
  3691. hasS = codenum > 0;
  3692. }
  3693. starpos = strchr(src, '*');
  3694. if (starpos != NULL) *(starpos) = '\0';
  3695. while (*src == ' ') ++src;
  3696. if (!hasP && !hasS && *src != '\0') {
  3697. lcd_setstatus(src);
  3698. } else {
  3699. LCD_MESSAGERPGM(MSG_USERWAIT);
  3700. }
  3701. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3702. st_synchronize();
  3703. previous_millis_cmd = millis();
  3704. if (codenum > 0){
  3705. codenum += millis(); // keep track of when we started waiting
  3706. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3707. while(millis() < codenum && !lcd_clicked()){
  3708. manage_heater();
  3709. manage_inactivity(true);
  3710. lcd_update();
  3711. }
  3712. KEEPALIVE_STATE(IN_HANDLER);
  3713. lcd_ignore_click(false);
  3714. }else{
  3715. if (!lcd_detected())
  3716. break;
  3717. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3718. while(!lcd_clicked()){
  3719. manage_heater();
  3720. manage_inactivity(true);
  3721. lcd_update();
  3722. }
  3723. KEEPALIVE_STATE(IN_HANDLER);
  3724. }
  3725. if (IS_SD_PRINTING)
  3726. LCD_MESSAGERPGM(MSG_RESUMING);
  3727. else
  3728. LCD_MESSAGERPGM(WELCOME_MSG);
  3729. }
  3730. break;
  3731. #endif
  3732. case 17:
  3733. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3734. enable_x();
  3735. enable_y();
  3736. enable_z();
  3737. enable_e0();
  3738. enable_e1();
  3739. enable_e2();
  3740. break;
  3741. #ifdef SDSUPPORT
  3742. case 20: // M20 - list SD card
  3743. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3744. card.ls();
  3745. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3746. break;
  3747. case 21: // M21 - init SD card
  3748. card.initsd();
  3749. break;
  3750. case 22: //M22 - release SD card
  3751. card.release();
  3752. break;
  3753. case 23: //M23 - Select file
  3754. starpos = (strchr(strchr_pointer + 4,'*'));
  3755. if(starpos!=NULL)
  3756. *(starpos)='\0';
  3757. card.openFile(strchr_pointer + 4,true);
  3758. break;
  3759. case 24: //M24 - Start SD print
  3760. if (!card.paused)
  3761. failstats_reset_print();
  3762. card.startFileprint();
  3763. starttime=millis();
  3764. break;
  3765. case 25: //M25 - Pause SD print
  3766. card.pauseSDPrint();
  3767. break;
  3768. case 26: //M26 - Set SD index
  3769. if(card.cardOK && code_seen('S')) {
  3770. card.setIndex(code_value_long());
  3771. }
  3772. break;
  3773. case 27: //M27 - Get SD status
  3774. card.getStatus();
  3775. break;
  3776. case 28: //M28 - Start SD write
  3777. starpos = (strchr(strchr_pointer + 4,'*'));
  3778. if(starpos != NULL){
  3779. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3780. strchr_pointer = strchr(npos,' ') + 1;
  3781. *(starpos) = '\0';
  3782. }
  3783. card.openFile(strchr_pointer+4,false);
  3784. break;
  3785. case 29: //M29 - Stop SD write
  3786. //processed in write to file routine above
  3787. //card,saving = false;
  3788. break;
  3789. case 30: //M30 <filename> Delete File
  3790. if (card.cardOK){
  3791. card.closefile();
  3792. starpos = (strchr(strchr_pointer + 4,'*'));
  3793. if(starpos != NULL){
  3794. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3795. strchr_pointer = strchr(npos,' ') + 1;
  3796. *(starpos) = '\0';
  3797. }
  3798. card.removeFile(strchr_pointer + 4);
  3799. }
  3800. break;
  3801. case 32: //M32 - Select file and start SD print
  3802. {
  3803. if(card.sdprinting) {
  3804. st_synchronize();
  3805. }
  3806. starpos = (strchr(strchr_pointer + 4,'*'));
  3807. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3808. if(namestartpos==NULL)
  3809. {
  3810. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3811. }
  3812. else
  3813. namestartpos++; //to skip the '!'
  3814. if(starpos!=NULL)
  3815. *(starpos)='\0';
  3816. bool call_procedure=(code_seen('P'));
  3817. if(strchr_pointer>namestartpos)
  3818. call_procedure=false; //false alert, 'P' found within filename
  3819. if( card.cardOK )
  3820. {
  3821. card.openFile(namestartpos,true,!call_procedure);
  3822. if(code_seen('S'))
  3823. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3824. card.setIndex(code_value_long());
  3825. card.startFileprint();
  3826. if(!call_procedure)
  3827. starttime=millis(); //procedure calls count as normal print time.
  3828. }
  3829. } break;
  3830. case 928: //M928 - Start SD write
  3831. starpos = (strchr(strchr_pointer + 5,'*'));
  3832. if(starpos != NULL){
  3833. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3834. strchr_pointer = strchr(npos,' ') + 1;
  3835. *(starpos) = '\0';
  3836. }
  3837. card.openLogFile(strchr_pointer+5);
  3838. break;
  3839. #endif //SDSUPPORT
  3840. case 31: //M31 take time since the start of the SD print or an M109 command
  3841. {
  3842. stoptime=millis();
  3843. char time[30];
  3844. unsigned long t=(stoptime-starttime)/1000;
  3845. int sec,min;
  3846. min=t/60;
  3847. sec=t%60;
  3848. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3849. SERIAL_ECHO_START;
  3850. SERIAL_ECHOLN(time);
  3851. lcd_setstatus(time);
  3852. autotempShutdown();
  3853. }
  3854. break;
  3855. #ifndef _DISABLE_M42_M226
  3856. case 42: //M42 -Change pin status via gcode
  3857. if (code_seen('S'))
  3858. {
  3859. int pin_status = code_value();
  3860. int pin_number = LED_PIN;
  3861. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3862. pin_number = code_value();
  3863. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3864. {
  3865. if (sensitive_pins[i] == pin_number)
  3866. {
  3867. pin_number = -1;
  3868. break;
  3869. }
  3870. }
  3871. #if defined(FAN_PIN) && FAN_PIN > -1
  3872. if (pin_number == FAN_PIN)
  3873. fanSpeed = pin_status;
  3874. #endif
  3875. if (pin_number > -1)
  3876. {
  3877. pinMode(pin_number, OUTPUT);
  3878. digitalWrite(pin_number, pin_status);
  3879. analogWrite(pin_number, pin_status);
  3880. }
  3881. }
  3882. break;
  3883. #endif //_DISABLE_M42_M226
  3884. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3885. // Reset the baby step value and the baby step applied flag.
  3886. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3887. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3888. // Reset the skew and offset in both RAM and EEPROM.
  3889. reset_bed_offset_and_skew();
  3890. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3891. // the planner will not perform any adjustments in the XY plane.
  3892. // Wait for the motors to stop and update the current position with the absolute values.
  3893. world2machine_revert_to_uncorrected();
  3894. break;
  3895. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3896. {
  3897. int8_t verbosity_level = 0;
  3898. bool only_Z = code_seen('Z');
  3899. #ifdef SUPPORT_VERBOSITY
  3900. if (code_seen('V'))
  3901. {
  3902. // Just 'V' without a number counts as V1.
  3903. char c = strchr_pointer[1];
  3904. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3905. }
  3906. #endif //SUPPORT_VERBOSITY
  3907. gcode_M45(only_Z, verbosity_level);
  3908. }
  3909. break;
  3910. /*
  3911. case 46:
  3912. {
  3913. // M46: Prusa3D: Show the assigned IP address.
  3914. uint8_t ip[4];
  3915. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3916. if (hasIP) {
  3917. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3918. SERIAL_ECHO(int(ip[0]));
  3919. SERIAL_ECHOPGM(".");
  3920. SERIAL_ECHO(int(ip[1]));
  3921. SERIAL_ECHOPGM(".");
  3922. SERIAL_ECHO(int(ip[2]));
  3923. SERIAL_ECHOPGM(".");
  3924. SERIAL_ECHO(int(ip[3]));
  3925. SERIAL_ECHOLNPGM("");
  3926. } else {
  3927. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3928. }
  3929. break;
  3930. }
  3931. */
  3932. case 47:
  3933. // M47: Prusa3D: Show end stops dialog on the display.
  3934. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3935. lcd_diag_show_end_stops();
  3936. KEEPALIVE_STATE(IN_HANDLER);
  3937. break;
  3938. #if 0
  3939. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3940. {
  3941. // Disable the default update procedure of the display. We will do a modal dialog.
  3942. lcd_update_enable(false);
  3943. // Let the planner use the uncorrected coordinates.
  3944. mbl.reset();
  3945. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3946. // the planner will not perform any adjustments in the XY plane.
  3947. // Wait for the motors to stop and update the current position with the absolute values.
  3948. world2machine_revert_to_uncorrected();
  3949. // Move the print head close to the bed.
  3950. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3952. st_synchronize();
  3953. // Home in the XY plane.
  3954. set_destination_to_current();
  3955. setup_for_endstop_move();
  3956. home_xy();
  3957. int8_t verbosity_level = 0;
  3958. if (code_seen('V')) {
  3959. // Just 'V' without a number counts as V1.
  3960. char c = strchr_pointer[1];
  3961. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3962. }
  3963. bool success = scan_bed_induction_points(verbosity_level);
  3964. clean_up_after_endstop_move();
  3965. // Print head up.
  3966. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3968. st_synchronize();
  3969. lcd_update_enable(true);
  3970. break;
  3971. }
  3972. #endif
  3973. // M48 Z-Probe repeatability measurement function.
  3974. //
  3975. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3976. //
  3977. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3978. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3979. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3980. // regenerated.
  3981. //
  3982. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3983. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3984. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3985. //
  3986. #ifdef ENABLE_AUTO_BED_LEVELING
  3987. #ifdef Z_PROBE_REPEATABILITY_TEST
  3988. case 48: // M48 Z-Probe repeatability
  3989. {
  3990. #if Z_MIN_PIN == -1
  3991. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3992. #endif
  3993. double sum=0.0;
  3994. double mean=0.0;
  3995. double sigma=0.0;
  3996. double sample_set[50];
  3997. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3998. double X_current, Y_current, Z_current;
  3999. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4000. if (code_seen('V') || code_seen('v')) {
  4001. verbose_level = code_value();
  4002. if (verbose_level<0 || verbose_level>4 ) {
  4003. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4004. goto Sigma_Exit;
  4005. }
  4006. }
  4007. if (verbose_level > 0) {
  4008. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4009. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4010. }
  4011. if (code_seen('n')) {
  4012. n_samples = code_value();
  4013. if (n_samples<4 || n_samples>50 ) {
  4014. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4015. goto Sigma_Exit;
  4016. }
  4017. }
  4018. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4019. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4020. Z_current = st_get_position_mm(Z_AXIS);
  4021. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4022. ext_position = st_get_position_mm(E_AXIS);
  4023. if (code_seen('X') || code_seen('x') ) {
  4024. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4025. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4026. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4027. goto Sigma_Exit;
  4028. }
  4029. }
  4030. if (code_seen('Y') || code_seen('y') ) {
  4031. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4032. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4033. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4034. goto Sigma_Exit;
  4035. }
  4036. }
  4037. if (code_seen('L') || code_seen('l') ) {
  4038. n_legs = code_value();
  4039. if ( n_legs==1 )
  4040. n_legs = 2;
  4041. if ( n_legs<0 || n_legs>15 ) {
  4042. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4043. goto Sigma_Exit;
  4044. }
  4045. }
  4046. //
  4047. // Do all the preliminary setup work. First raise the probe.
  4048. //
  4049. st_synchronize();
  4050. plan_bed_level_matrix.set_to_identity();
  4051. plan_buffer_line( X_current, Y_current, Z_start_location,
  4052. ext_position,
  4053. homing_feedrate[Z_AXIS]/60,
  4054. active_extruder);
  4055. st_synchronize();
  4056. //
  4057. // Now get everything to the specified probe point So we can safely do a probe to
  4058. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4059. // use that as a starting point for each probe.
  4060. //
  4061. if (verbose_level > 2)
  4062. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4063. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4064. ext_position,
  4065. homing_feedrate[X_AXIS]/60,
  4066. active_extruder);
  4067. st_synchronize();
  4068. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4069. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4070. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4071. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4072. //
  4073. // OK, do the inital probe to get us close to the bed.
  4074. // Then retrace the right amount and use that in subsequent probes
  4075. //
  4076. setup_for_endstop_move();
  4077. run_z_probe();
  4078. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4079. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4080. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4081. ext_position,
  4082. homing_feedrate[X_AXIS]/60,
  4083. active_extruder);
  4084. st_synchronize();
  4085. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4086. for( n=0; n<n_samples; n++) {
  4087. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4088. if ( n_legs) {
  4089. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4090. int rotational_direction, l;
  4091. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4092. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4093. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4094. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4095. //SERIAL_ECHOPAIR(" theta: ",theta);
  4096. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4097. //SERIAL_PROTOCOLLNPGM("");
  4098. for( l=0; l<n_legs-1; l++) {
  4099. if (rotational_direction==1)
  4100. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4101. else
  4102. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4103. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4104. if ( radius<0.0 )
  4105. radius = -radius;
  4106. X_current = X_probe_location + cos(theta) * radius;
  4107. Y_current = Y_probe_location + sin(theta) * radius;
  4108. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4109. X_current = X_MIN_POS;
  4110. if ( X_current>X_MAX_POS)
  4111. X_current = X_MAX_POS;
  4112. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4113. Y_current = Y_MIN_POS;
  4114. if ( Y_current>Y_MAX_POS)
  4115. Y_current = Y_MAX_POS;
  4116. if (verbose_level>3 ) {
  4117. SERIAL_ECHOPAIR("x: ", X_current);
  4118. SERIAL_ECHOPAIR("y: ", Y_current);
  4119. SERIAL_PROTOCOLLNPGM("");
  4120. }
  4121. do_blocking_move_to( X_current, Y_current, Z_current );
  4122. }
  4123. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4124. }
  4125. setup_for_endstop_move();
  4126. run_z_probe();
  4127. sample_set[n] = current_position[Z_AXIS];
  4128. //
  4129. // Get the current mean for the data points we have so far
  4130. //
  4131. sum=0.0;
  4132. for( j=0; j<=n; j++) {
  4133. sum = sum + sample_set[j];
  4134. }
  4135. mean = sum / (double (n+1));
  4136. //
  4137. // Now, use that mean to calculate the standard deviation for the
  4138. // data points we have so far
  4139. //
  4140. sum=0.0;
  4141. for( j=0; j<=n; j++) {
  4142. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4143. }
  4144. sigma = sqrt( sum / (double (n+1)) );
  4145. if (verbose_level > 1) {
  4146. SERIAL_PROTOCOL(n+1);
  4147. SERIAL_PROTOCOL(" of ");
  4148. SERIAL_PROTOCOL(n_samples);
  4149. SERIAL_PROTOCOLPGM(" z: ");
  4150. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4151. }
  4152. if (verbose_level > 2) {
  4153. SERIAL_PROTOCOL(" mean: ");
  4154. SERIAL_PROTOCOL_F(mean,6);
  4155. SERIAL_PROTOCOL(" sigma: ");
  4156. SERIAL_PROTOCOL_F(sigma,6);
  4157. }
  4158. if (verbose_level > 0)
  4159. SERIAL_PROTOCOLPGM("\n");
  4160. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4161. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4162. st_synchronize();
  4163. }
  4164. delay(1000);
  4165. clean_up_after_endstop_move();
  4166. // enable_endstops(true);
  4167. if (verbose_level > 0) {
  4168. SERIAL_PROTOCOLPGM("Mean: ");
  4169. SERIAL_PROTOCOL_F(mean, 6);
  4170. SERIAL_PROTOCOLPGM("\n");
  4171. }
  4172. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4173. SERIAL_PROTOCOL_F(sigma, 6);
  4174. SERIAL_PROTOCOLPGM("\n\n");
  4175. Sigma_Exit:
  4176. break;
  4177. }
  4178. #endif // Z_PROBE_REPEATABILITY_TEST
  4179. #endif // ENABLE_AUTO_BED_LEVELING
  4180. case 104: // M104
  4181. if(setTargetedHotend(104)){
  4182. break;
  4183. }
  4184. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4185. setWatch();
  4186. break;
  4187. case 112: // M112 -Emergency Stop
  4188. kill("", 3);
  4189. break;
  4190. case 140: // M140 set bed temp
  4191. if (code_seen('S')) setTargetBed(code_value());
  4192. break;
  4193. case 105 : // M105
  4194. if(setTargetedHotend(105)){
  4195. break;
  4196. }
  4197. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4198. SERIAL_PROTOCOLPGM("ok T:");
  4199. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4200. SERIAL_PROTOCOLPGM(" /");
  4201. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4202. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4203. SERIAL_PROTOCOLPGM(" B:");
  4204. SERIAL_PROTOCOL_F(degBed(),1);
  4205. SERIAL_PROTOCOLPGM(" /");
  4206. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4207. #endif //TEMP_BED_PIN
  4208. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4209. SERIAL_PROTOCOLPGM(" T");
  4210. SERIAL_PROTOCOL(cur_extruder);
  4211. SERIAL_PROTOCOLPGM(":");
  4212. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4213. SERIAL_PROTOCOLPGM(" /");
  4214. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4215. }
  4216. #else
  4217. SERIAL_ERROR_START;
  4218. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4219. #endif
  4220. SERIAL_PROTOCOLPGM(" @:");
  4221. #ifdef EXTRUDER_WATTS
  4222. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4223. SERIAL_PROTOCOLPGM("W");
  4224. #else
  4225. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4226. #endif
  4227. SERIAL_PROTOCOLPGM(" B@:");
  4228. #ifdef BED_WATTS
  4229. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4230. SERIAL_PROTOCOLPGM("W");
  4231. #else
  4232. SERIAL_PROTOCOL(getHeaterPower(-1));
  4233. #endif
  4234. #ifdef PINDA_THERMISTOR
  4235. SERIAL_PROTOCOLPGM(" P:");
  4236. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4237. #endif //PINDA_THERMISTOR
  4238. #ifdef AMBIENT_THERMISTOR
  4239. SERIAL_PROTOCOLPGM(" A:");
  4240. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4241. #endif //AMBIENT_THERMISTOR
  4242. #ifdef SHOW_TEMP_ADC_VALUES
  4243. {float raw = 0.0;
  4244. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4245. SERIAL_PROTOCOLPGM(" ADC B:");
  4246. SERIAL_PROTOCOL_F(degBed(),1);
  4247. SERIAL_PROTOCOLPGM("C->");
  4248. raw = rawBedTemp();
  4249. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4250. SERIAL_PROTOCOLPGM(" Rb->");
  4251. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4252. SERIAL_PROTOCOLPGM(" Rxb->");
  4253. SERIAL_PROTOCOL_F(raw, 5);
  4254. #endif
  4255. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4256. SERIAL_PROTOCOLPGM(" T");
  4257. SERIAL_PROTOCOL(cur_extruder);
  4258. SERIAL_PROTOCOLPGM(":");
  4259. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4260. SERIAL_PROTOCOLPGM("C->");
  4261. raw = rawHotendTemp(cur_extruder);
  4262. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4263. SERIAL_PROTOCOLPGM(" Rt");
  4264. SERIAL_PROTOCOL(cur_extruder);
  4265. SERIAL_PROTOCOLPGM("->");
  4266. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4267. SERIAL_PROTOCOLPGM(" Rx");
  4268. SERIAL_PROTOCOL(cur_extruder);
  4269. SERIAL_PROTOCOLPGM("->");
  4270. SERIAL_PROTOCOL_F(raw, 5);
  4271. }}
  4272. #endif
  4273. SERIAL_PROTOCOLLN("");
  4274. KEEPALIVE_STATE(NOT_BUSY);
  4275. return;
  4276. break;
  4277. case 109:
  4278. {// M109 - Wait for extruder heater to reach target.
  4279. if(setTargetedHotend(109)){
  4280. break;
  4281. }
  4282. LCD_MESSAGERPGM(MSG_HEATING);
  4283. heating_status = 1;
  4284. if (farm_mode) { prusa_statistics(1); };
  4285. #ifdef AUTOTEMP
  4286. autotemp_enabled=false;
  4287. #endif
  4288. if (code_seen('S')) {
  4289. setTargetHotend(code_value(), tmp_extruder);
  4290. CooldownNoWait = true;
  4291. } else if (code_seen('R')) {
  4292. setTargetHotend(code_value(), tmp_extruder);
  4293. CooldownNoWait = false;
  4294. }
  4295. #ifdef AUTOTEMP
  4296. if (code_seen('S')) autotemp_min=code_value();
  4297. if (code_seen('B')) autotemp_max=code_value();
  4298. if (code_seen('F'))
  4299. {
  4300. autotemp_factor=code_value();
  4301. autotemp_enabled=true;
  4302. }
  4303. #endif
  4304. setWatch();
  4305. codenum = millis();
  4306. /* See if we are heating up or cooling down */
  4307. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4308. KEEPALIVE_STATE(NOT_BUSY);
  4309. cancel_heatup = false;
  4310. wait_for_heater(codenum); //loops until target temperature is reached
  4311. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4312. KEEPALIVE_STATE(IN_HANDLER);
  4313. heating_status = 2;
  4314. if (farm_mode) { prusa_statistics(2); };
  4315. //starttime=millis();
  4316. previous_millis_cmd = millis();
  4317. }
  4318. break;
  4319. case 190: // M190 - Wait for bed heater to reach target.
  4320. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4321. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4322. heating_status = 3;
  4323. if (farm_mode) { prusa_statistics(1); };
  4324. if (code_seen('S'))
  4325. {
  4326. setTargetBed(code_value());
  4327. CooldownNoWait = true;
  4328. }
  4329. else if (code_seen('R'))
  4330. {
  4331. setTargetBed(code_value());
  4332. CooldownNoWait = false;
  4333. }
  4334. codenum = millis();
  4335. cancel_heatup = false;
  4336. target_direction = isHeatingBed(); // true if heating, false if cooling
  4337. KEEPALIVE_STATE(NOT_BUSY);
  4338. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4339. {
  4340. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4341. {
  4342. if (!farm_mode) {
  4343. float tt = degHotend(active_extruder);
  4344. SERIAL_PROTOCOLPGM("T:");
  4345. SERIAL_PROTOCOL(tt);
  4346. SERIAL_PROTOCOLPGM(" E:");
  4347. SERIAL_PROTOCOL((int)active_extruder);
  4348. SERIAL_PROTOCOLPGM(" B:");
  4349. SERIAL_PROTOCOL_F(degBed(), 1);
  4350. SERIAL_PROTOCOLLN("");
  4351. }
  4352. codenum = millis();
  4353. }
  4354. manage_heater();
  4355. manage_inactivity();
  4356. lcd_update();
  4357. }
  4358. LCD_MESSAGERPGM(MSG_BED_DONE);
  4359. KEEPALIVE_STATE(IN_HANDLER);
  4360. heating_status = 4;
  4361. previous_millis_cmd = millis();
  4362. #endif
  4363. break;
  4364. #if defined(FAN_PIN) && FAN_PIN > -1
  4365. case 106: //M106 Fan On
  4366. if (code_seen('S')){
  4367. fanSpeed=constrain(code_value(),0,255);
  4368. }
  4369. else {
  4370. fanSpeed=255;
  4371. }
  4372. break;
  4373. case 107: //M107 Fan Off
  4374. fanSpeed = 0;
  4375. break;
  4376. #endif //FAN_PIN
  4377. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4378. case 80: // M80 - Turn on Power Supply
  4379. SET_OUTPUT(PS_ON_PIN); //GND
  4380. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4381. // If you have a switch on suicide pin, this is useful
  4382. // if you want to start another print with suicide feature after
  4383. // a print without suicide...
  4384. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4385. SET_OUTPUT(SUICIDE_PIN);
  4386. WRITE(SUICIDE_PIN, HIGH);
  4387. #endif
  4388. #ifdef ULTIPANEL
  4389. powersupply = true;
  4390. LCD_MESSAGERPGM(WELCOME_MSG);
  4391. lcd_update();
  4392. #endif
  4393. break;
  4394. #endif
  4395. case 81: // M81 - Turn off Power Supply
  4396. disable_heater();
  4397. st_synchronize();
  4398. disable_e0();
  4399. disable_e1();
  4400. disable_e2();
  4401. finishAndDisableSteppers();
  4402. fanSpeed = 0;
  4403. delay(1000); // Wait a little before to switch off
  4404. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4405. st_synchronize();
  4406. suicide();
  4407. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4408. SET_OUTPUT(PS_ON_PIN);
  4409. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4410. #endif
  4411. #ifdef ULTIPANEL
  4412. powersupply = false;
  4413. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4414. /*
  4415. MACHNAME = "Prusa i3"
  4416. MSGOFF = "Vypnuto"
  4417. "Prusai3"" ""vypnuto""."
  4418. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4419. */
  4420. lcd_update();
  4421. #endif
  4422. break;
  4423. case 82:
  4424. axis_relative_modes[3] = false;
  4425. break;
  4426. case 83:
  4427. axis_relative_modes[3] = true;
  4428. break;
  4429. case 18: //compatibility
  4430. case 84: // M84
  4431. if(code_seen('S')){
  4432. stepper_inactive_time = code_value() * 1000;
  4433. }
  4434. else
  4435. {
  4436. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4437. if(all_axis)
  4438. {
  4439. st_synchronize();
  4440. disable_e0();
  4441. disable_e1();
  4442. disable_e2();
  4443. finishAndDisableSteppers();
  4444. }
  4445. else
  4446. {
  4447. st_synchronize();
  4448. if (code_seen('X')) disable_x();
  4449. if (code_seen('Y')) disable_y();
  4450. if (code_seen('Z')) disable_z();
  4451. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4452. if (code_seen('E')) {
  4453. disable_e0();
  4454. disable_e1();
  4455. disable_e2();
  4456. }
  4457. #endif
  4458. }
  4459. }
  4460. snmm_filaments_used = 0;
  4461. break;
  4462. case 85: // M85
  4463. if(code_seen('S')) {
  4464. max_inactive_time = code_value() * 1000;
  4465. }
  4466. break;
  4467. case 92: // M92
  4468. for(int8_t i=0; i < NUM_AXIS; i++)
  4469. {
  4470. if(code_seen(axis_codes[i]))
  4471. {
  4472. if(i == 3) { // E
  4473. float value = code_value();
  4474. if(value < 20.0) {
  4475. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4476. max_jerk[E_AXIS] *= factor;
  4477. max_feedrate[i] *= factor;
  4478. axis_steps_per_sqr_second[i] *= factor;
  4479. }
  4480. axis_steps_per_unit[i] = value;
  4481. }
  4482. else {
  4483. axis_steps_per_unit[i] = code_value();
  4484. }
  4485. }
  4486. }
  4487. break;
  4488. case 110: // M110 - reset line pos
  4489. if (code_seen('N'))
  4490. gcode_LastN = code_value_long();
  4491. break;
  4492. #ifdef HOST_KEEPALIVE_FEATURE
  4493. case 113: // M113 - Get or set Host Keepalive interval
  4494. if (code_seen('S')) {
  4495. host_keepalive_interval = (uint8_t)code_value_short();
  4496. // NOMORE(host_keepalive_interval, 60);
  4497. }
  4498. else {
  4499. SERIAL_ECHO_START;
  4500. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4501. SERIAL_PROTOCOLLN("");
  4502. }
  4503. break;
  4504. #endif
  4505. case 115: // M115
  4506. if (code_seen('V')) {
  4507. // Report the Prusa version number.
  4508. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4509. } else if (code_seen('U')) {
  4510. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4511. // pause the print and ask the user to upgrade the firmware.
  4512. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4513. } else {
  4514. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4515. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4516. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4517. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4518. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4519. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4520. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4521. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4522. SERIAL_ECHOPGM(" UUID:");
  4523. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4524. }
  4525. break;
  4526. /* case 117: // M117 display message
  4527. starpos = (strchr(strchr_pointer + 5,'*'));
  4528. if(starpos!=NULL)
  4529. *(starpos)='\0';
  4530. lcd_setstatus(strchr_pointer + 5);
  4531. break;*/
  4532. case 114: // M114
  4533. gcode_M114();
  4534. break;
  4535. case 120: // M120
  4536. enable_endstops(false) ;
  4537. break;
  4538. case 121: // M121
  4539. enable_endstops(true) ;
  4540. break;
  4541. case 119: // M119
  4542. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4543. SERIAL_PROTOCOLLN("");
  4544. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4545. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4546. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4547. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4548. }else{
  4549. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4550. }
  4551. SERIAL_PROTOCOLLN("");
  4552. #endif
  4553. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4554. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4555. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4556. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4557. }else{
  4558. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4559. }
  4560. SERIAL_PROTOCOLLN("");
  4561. #endif
  4562. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4563. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4564. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4565. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4566. }else{
  4567. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4568. }
  4569. SERIAL_PROTOCOLLN("");
  4570. #endif
  4571. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4572. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4573. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4574. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4575. }else{
  4576. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4577. }
  4578. SERIAL_PROTOCOLLN("");
  4579. #endif
  4580. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4581. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4582. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4583. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4584. }else{
  4585. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4586. }
  4587. SERIAL_PROTOCOLLN("");
  4588. #endif
  4589. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4590. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4591. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4592. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4593. }else{
  4594. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4595. }
  4596. SERIAL_PROTOCOLLN("");
  4597. #endif
  4598. break;
  4599. //TODO: update for all axis, use for loop
  4600. #ifdef BLINKM
  4601. case 150: // M150
  4602. {
  4603. byte red;
  4604. byte grn;
  4605. byte blu;
  4606. if(code_seen('R')) red = code_value();
  4607. if(code_seen('U')) grn = code_value();
  4608. if(code_seen('B')) blu = code_value();
  4609. SendColors(red,grn,blu);
  4610. }
  4611. break;
  4612. #endif //BLINKM
  4613. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4614. {
  4615. tmp_extruder = active_extruder;
  4616. if(code_seen('T')) {
  4617. tmp_extruder = code_value();
  4618. if(tmp_extruder >= EXTRUDERS) {
  4619. SERIAL_ECHO_START;
  4620. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4621. break;
  4622. }
  4623. }
  4624. float area = .0;
  4625. if(code_seen('D')) {
  4626. float diameter = (float)code_value();
  4627. if (diameter == 0.0) {
  4628. // setting any extruder filament size disables volumetric on the assumption that
  4629. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4630. // for all extruders
  4631. volumetric_enabled = false;
  4632. } else {
  4633. filament_size[tmp_extruder] = (float)code_value();
  4634. // make sure all extruders have some sane value for the filament size
  4635. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4636. #if EXTRUDERS > 1
  4637. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4638. #if EXTRUDERS > 2
  4639. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4640. #endif
  4641. #endif
  4642. volumetric_enabled = true;
  4643. }
  4644. } else {
  4645. //reserved for setting filament diameter via UFID or filament measuring device
  4646. break;
  4647. }
  4648. calculate_extruder_multipliers();
  4649. }
  4650. break;
  4651. case 201: // M201
  4652. for(int8_t i=0; i < NUM_AXIS; i++)
  4653. {
  4654. if(code_seen(axis_codes[i]))
  4655. {
  4656. max_acceleration_units_per_sq_second[i] = code_value();
  4657. }
  4658. }
  4659. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4660. reset_acceleration_rates();
  4661. break;
  4662. #if 0 // Not used for Sprinter/grbl gen6
  4663. case 202: // M202
  4664. for(int8_t i=0; i < NUM_AXIS; i++) {
  4665. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4666. }
  4667. break;
  4668. #endif
  4669. case 203: // M203 max feedrate mm/sec
  4670. for(int8_t i=0; i < NUM_AXIS; i++) {
  4671. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4672. }
  4673. break;
  4674. case 204: // M204 acclereration S normal moves T filmanent only moves
  4675. {
  4676. if(code_seen('S')) acceleration = code_value() ;
  4677. if(code_seen('T')) retract_acceleration = code_value() ;
  4678. }
  4679. break;
  4680. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4681. {
  4682. if(code_seen('S')) minimumfeedrate = code_value();
  4683. if(code_seen('T')) mintravelfeedrate = code_value();
  4684. if(code_seen('B')) minsegmenttime = code_value() ;
  4685. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4686. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4687. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4688. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4689. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4690. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4691. }
  4692. break;
  4693. case 206: // M206 additional homing offset
  4694. for(int8_t i=0; i < 3; i++)
  4695. {
  4696. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4697. }
  4698. break;
  4699. #ifdef FWRETRACT
  4700. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4701. {
  4702. if(code_seen('S'))
  4703. {
  4704. retract_length = code_value() ;
  4705. }
  4706. if(code_seen('F'))
  4707. {
  4708. retract_feedrate = code_value()/60 ;
  4709. }
  4710. if(code_seen('Z'))
  4711. {
  4712. retract_zlift = code_value() ;
  4713. }
  4714. }break;
  4715. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4716. {
  4717. if(code_seen('S'))
  4718. {
  4719. retract_recover_length = code_value() ;
  4720. }
  4721. if(code_seen('F'))
  4722. {
  4723. retract_recover_feedrate = code_value()/60 ;
  4724. }
  4725. }break;
  4726. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4727. {
  4728. if(code_seen('S'))
  4729. {
  4730. int t= code_value() ;
  4731. switch(t)
  4732. {
  4733. case 0:
  4734. {
  4735. autoretract_enabled=false;
  4736. retracted[0]=false;
  4737. #if EXTRUDERS > 1
  4738. retracted[1]=false;
  4739. #endif
  4740. #if EXTRUDERS > 2
  4741. retracted[2]=false;
  4742. #endif
  4743. }break;
  4744. case 1:
  4745. {
  4746. autoretract_enabled=true;
  4747. retracted[0]=false;
  4748. #if EXTRUDERS > 1
  4749. retracted[1]=false;
  4750. #endif
  4751. #if EXTRUDERS > 2
  4752. retracted[2]=false;
  4753. #endif
  4754. }break;
  4755. default:
  4756. SERIAL_ECHO_START;
  4757. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4758. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4759. SERIAL_ECHOLNPGM("\"(1)");
  4760. }
  4761. }
  4762. }break;
  4763. #endif // FWRETRACT
  4764. #if EXTRUDERS > 1
  4765. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4766. {
  4767. if(setTargetedHotend(218)){
  4768. break;
  4769. }
  4770. if(code_seen('X'))
  4771. {
  4772. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4773. }
  4774. if(code_seen('Y'))
  4775. {
  4776. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4777. }
  4778. SERIAL_ECHO_START;
  4779. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4780. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4781. {
  4782. SERIAL_ECHO(" ");
  4783. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4784. SERIAL_ECHO(",");
  4785. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4786. }
  4787. SERIAL_ECHOLN("");
  4788. }break;
  4789. #endif
  4790. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4791. {
  4792. if(code_seen('S'))
  4793. {
  4794. feedmultiply = code_value() ;
  4795. }
  4796. }
  4797. break;
  4798. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4799. {
  4800. if(code_seen('S'))
  4801. {
  4802. int tmp_code = code_value();
  4803. if (code_seen('T'))
  4804. {
  4805. if(setTargetedHotend(221)){
  4806. break;
  4807. }
  4808. extruder_multiply[tmp_extruder] = tmp_code;
  4809. }
  4810. else
  4811. {
  4812. extrudemultiply = tmp_code ;
  4813. }
  4814. }
  4815. calculate_extruder_multipliers();
  4816. }
  4817. break;
  4818. #ifndef _DISABLE_M42_M226
  4819. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4820. {
  4821. if(code_seen('P')){
  4822. int pin_number = code_value(); // pin number
  4823. int pin_state = -1; // required pin state - default is inverted
  4824. if(code_seen('S')) pin_state = code_value(); // required pin state
  4825. if(pin_state >= -1 && pin_state <= 1){
  4826. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4827. {
  4828. if (sensitive_pins[i] == pin_number)
  4829. {
  4830. pin_number = -1;
  4831. break;
  4832. }
  4833. }
  4834. if (pin_number > -1)
  4835. {
  4836. int target = LOW;
  4837. st_synchronize();
  4838. pinMode(pin_number, INPUT);
  4839. switch(pin_state){
  4840. case 1:
  4841. target = HIGH;
  4842. break;
  4843. case 0:
  4844. target = LOW;
  4845. break;
  4846. case -1:
  4847. target = !digitalRead(pin_number);
  4848. break;
  4849. }
  4850. while(digitalRead(pin_number) != target){
  4851. manage_heater();
  4852. manage_inactivity();
  4853. lcd_update();
  4854. }
  4855. }
  4856. }
  4857. }
  4858. }
  4859. break;
  4860. #endif //_DISABLE_M42_M226
  4861. #if NUM_SERVOS > 0
  4862. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4863. {
  4864. int servo_index = -1;
  4865. int servo_position = 0;
  4866. if (code_seen('P'))
  4867. servo_index = code_value();
  4868. if (code_seen('S')) {
  4869. servo_position = code_value();
  4870. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4871. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4872. servos[servo_index].attach(0);
  4873. #endif
  4874. servos[servo_index].write(servo_position);
  4875. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4876. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4877. servos[servo_index].detach();
  4878. #endif
  4879. }
  4880. else {
  4881. SERIAL_ECHO_START;
  4882. SERIAL_ECHO("Servo ");
  4883. SERIAL_ECHO(servo_index);
  4884. SERIAL_ECHOLN(" out of range");
  4885. }
  4886. }
  4887. else if (servo_index >= 0) {
  4888. SERIAL_PROTOCOL(MSG_OK);
  4889. SERIAL_PROTOCOL(" Servo ");
  4890. SERIAL_PROTOCOL(servo_index);
  4891. SERIAL_PROTOCOL(": ");
  4892. SERIAL_PROTOCOL(servos[servo_index].read());
  4893. SERIAL_PROTOCOLLN("");
  4894. }
  4895. }
  4896. break;
  4897. #endif // NUM_SERVOS > 0
  4898. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4899. case 300: // M300
  4900. {
  4901. int beepS = code_seen('S') ? code_value() : 110;
  4902. int beepP = code_seen('P') ? code_value() : 1000;
  4903. if (beepS > 0)
  4904. {
  4905. #if BEEPER > 0
  4906. tone(BEEPER, beepS);
  4907. delay(beepP);
  4908. noTone(BEEPER);
  4909. #elif defined(ULTRALCD)
  4910. lcd_buzz(beepS, beepP);
  4911. #elif defined(LCD_USE_I2C_BUZZER)
  4912. lcd_buzz(beepP, beepS);
  4913. #endif
  4914. }
  4915. else
  4916. {
  4917. delay(beepP);
  4918. }
  4919. }
  4920. break;
  4921. #endif // M300
  4922. #ifdef PIDTEMP
  4923. case 301: // M301
  4924. {
  4925. if(code_seen('P')) Kp = code_value();
  4926. if(code_seen('I')) Ki = scalePID_i(code_value());
  4927. if(code_seen('D')) Kd = scalePID_d(code_value());
  4928. #ifdef PID_ADD_EXTRUSION_RATE
  4929. if(code_seen('C')) Kc = code_value();
  4930. #endif
  4931. updatePID();
  4932. SERIAL_PROTOCOLRPGM(MSG_OK);
  4933. SERIAL_PROTOCOL(" p:");
  4934. SERIAL_PROTOCOL(Kp);
  4935. SERIAL_PROTOCOL(" i:");
  4936. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4937. SERIAL_PROTOCOL(" d:");
  4938. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4939. #ifdef PID_ADD_EXTRUSION_RATE
  4940. SERIAL_PROTOCOL(" c:");
  4941. //Kc does not have scaling applied above, or in resetting defaults
  4942. SERIAL_PROTOCOL(Kc);
  4943. #endif
  4944. SERIAL_PROTOCOLLN("");
  4945. }
  4946. break;
  4947. #endif //PIDTEMP
  4948. #ifdef PIDTEMPBED
  4949. case 304: // M304
  4950. {
  4951. if(code_seen('P')) bedKp = code_value();
  4952. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4953. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4954. updatePID();
  4955. SERIAL_PROTOCOLRPGM(MSG_OK);
  4956. SERIAL_PROTOCOL(" p:");
  4957. SERIAL_PROTOCOL(bedKp);
  4958. SERIAL_PROTOCOL(" i:");
  4959. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4960. SERIAL_PROTOCOL(" d:");
  4961. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4962. SERIAL_PROTOCOLLN("");
  4963. }
  4964. break;
  4965. #endif //PIDTEMP
  4966. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4967. {
  4968. #ifdef CHDK
  4969. SET_OUTPUT(CHDK);
  4970. WRITE(CHDK, HIGH);
  4971. chdkHigh = millis();
  4972. chdkActive = true;
  4973. #else
  4974. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4975. const uint8_t NUM_PULSES=16;
  4976. const float PULSE_LENGTH=0.01524;
  4977. for(int i=0; i < NUM_PULSES; i++) {
  4978. WRITE(PHOTOGRAPH_PIN, HIGH);
  4979. _delay_ms(PULSE_LENGTH);
  4980. WRITE(PHOTOGRAPH_PIN, LOW);
  4981. _delay_ms(PULSE_LENGTH);
  4982. }
  4983. delay(7.33);
  4984. for(int i=0; i < NUM_PULSES; i++) {
  4985. WRITE(PHOTOGRAPH_PIN, HIGH);
  4986. _delay_ms(PULSE_LENGTH);
  4987. WRITE(PHOTOGRAPH_PIN, LOW);
  4988. _delay_ms(PULSE_LENGTH);
  4989. }
  4990. #endif
  4991. #endif //chdk end if
  4992. }
  4993. break;
  4994. #ifdef DOGLCD
  4995. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4996. {
  4997. if (code_seen('C')) {
  4998. lcd_setcontrast( ((int)code_value())&63 );
  4999. }
  5000. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5001. SERIAL_PROTOCOL(lcd_contrast);
  5002. SERIAL_PROTOCOLLN("");
  5003. }
  5004. break;
  5005. #endif
  5006. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5007. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5008. {
  5009. float temp = .0;
  5010. if (code_seen('S')) temp=code_value();
  5011. set_extrude_min_temp(temp);
  5012. }
  5013. break;
  5014. #endif
  5015. case 303: // M303 PID autotune
  5016. {
  5017. float temp = 150.0;
  5018. int e=0;
  5019. int c=5;
  5020. if (code_seen('E')) e=code_value();
  5021. if (e<0)
  5022. temp=70;
  5023. if (code_seen('S')) temp=code_value();
  5024. if (code_seen('C')) c=code_value();
  5025. PID_autotune(temp, e, c);
  5026. }
  5027. break;
  5028. case 400: // M400 finish all moves
  5029. {
  5030. st_synchronize();
  5031. }
  5032. break;
  5033. case 500: // M500 Store settings in EEPROM
  5034. {
  5035. Config_StoreSettings(EEPROM_OFFSET);
  5036. }
  5037. break;
  5038. case 501: // M501 Read settings from EEPROM
  5039. {
  5040. Config_RetrieveSettings(EEPROM_OFFSET);
  5041. }
  5042. break;
  5043. case 502: // M502 Revert to default settings
  5044. {
  5045. Config_ResetDefault();
  5046. }
  5047. break;
  5048. case 503: // M503 print settings currently in memory
  5049. {
  5050. Config_PrintSettings();
  5051. }
  5052. break;
  5053. case 509: //M509 Force language selection
  5054. {
  5055. lcd_force_language_selection();
  5056. SERIAL_ECHO_START;
  5057. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5058. }
  5059. break;
  5060. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5061. case 540:
  5062. {
  5063. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5064. }
  5065. break;
  5066. #endif
  5067. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5068. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5069. {
  5070. float value;
  5071. if (code_seen('Z'))
  5072. {
  5073. value = code_value();
  5074. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5075. {
  5076. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5077. SERIAL_ECHO_START;
  5078. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5079. SERIAL_PROTOCOLLN("");
  5080. }
  5081. else
  5082. {
  5083. SERIAL_ECHO_START;
  5084. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5085. SERIAL_ECHORPGM(MSG_Z_MIN);
  5086. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5087. SERIAL_ECHORPGM(MSG_Z_MAX);
  5088. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5089. SERIAL_PROTOCOLLN("");
  5090. }
  5091. }
  5092. else
  5093. {
  5094. SERIAL_ECHO_START;
  5095. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5096. SERIAL_ECHO(-zprobe_zoffset);
  5097. SERIAL_PROTOCOLLN("");
  5098. }
  5099. break;
  5100. }
  5101. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5102. #ifdef FILAMENTCHANGEENABLE
  5103. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5104. {
  5105. #ifdef PAT9125
  5106. bool old_fsensor_enabled = fsensor_enabled;
  5107. fsensor_enabled = false; //temporary solution for unexpected restarting
  5108. #endif //PAT9125
  5109. st_synchronize();
  5110. float target[4];
  5111. float lastpos[4];
  5112. if (farm_mode)
  5113. {
  5114. prusa_statistics(22);
  5115. }
  5116. feedmultiplyBckp=feedmultiply;
  5117. int8_t TooLowZ = 0;
  5118. float HotendTempBckp = degTargetHotend(active_extruder);
  5119. int fanSpeedBckp = fanSpeed;
  5120. target[X_AXIS]=current_position[X_AXIS];
  5121. target[Y_AXIS]=current_position[Y_AXIS];
  5122. target[Z_AXIS]=current_position[Z_AXIS];
  5123. target[E_AXIS]=current_position[E_AXIS];
  5124. lastpos[X_AXIS]=current_position[X_AXIS];
  5125. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5126. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5127. lastpos[E_AXIS]=current_position[E_AXIS];
  5128. //Restract extruder
  5129. if(code_seen('E'))
  5130. {
  5131. target[E_AXIS]+= code_value();
  5132. }
  5133. else
  5134. {
  5135. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5136. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5137. #endif
  5138. }
  5139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5140. //Lift Z
  5141. if(code_seen('Z'))
  5142. {
  5143. target[Z_AXIS]+= code_value();
  5144. }
  5145. else
  5146. {
  5147. #ifdef FILAMENTCHANGE_ZADD
  5148. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5149. if(target[Z_AXIS] < 10){
  5150. target[Z_AXIS]+= 10 ;
  5151. TooLowZ = 1;
  5152. }else{
  5153. TooLowZ = 0;
  5154. }
  5155. #endif
  5156. }
  5157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5158. //Move XY to side
  5159. if(code_seen('X'))
  5160. {
  5161. target[X_AXIS]+= code_value();
  5162. }
  5163. else
  5164. {
  5165. #ifdef FILAMENTCHANGE_XPOS
  5166. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5167. #endif
  5168. }
  5169. if(code_seen('Y'))
  5170. {
  5171. target[Y_AXIS]= code_value();
  5172. }
  5173. else
  5174. {
  5175. #ifdef FILAMENTCHANGE_YPOS
  5176. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5177. #endif
  5178. }
  5179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5180. st_synchronize();
  5181. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5182. uint8_t cnt = 0;
  5183. int counterBeep = 0;
  5184. fanSpeed = 0;
  5185. unsigned long waiting_start_time = millis();
  5186. uint8_t wait_for_user_state = 0;
  5187. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5188. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5189. //cnt++;
  5190. manage_heater();
  5191. manage_inactivity(true);
  5192. /*#ifdef SNMM
  5193. target[E_AXIS] += 0.002;
  5194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5195. #endif // SNMM*/
  5196. //if (cnt == 0)
  5197. {
  5198. #if BEEPER > 0
  5199. if (counterBeep == 500) {
  5200. counterBeep = 0;
  5201. }
  5202. SET_OUTPUT(BEEPER);
  5203. if (counterBeep == 0) {
  5204. WRITE(BEEPER, HIGH);
  5205. }
  5206. if (counterBeep == 20) {
  5207. WRITE(BEEPER, LOW);
  5208. }
  5209. counterBeep++;
  5210. #else
  5211. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5212. lcd_buzz(1000 / 6, 100);
  5213. #else
  5214. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5215. #endif
  5216. #endif
  5217. }
  5218. switch (wait_for_user_state) {
  5219. case 0:
  5220. delay_keep_alive(4);
  5221. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5222. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5223. wait_for_user_state = 1;
  5224. setTargetHotend(0, 0);
  5225. setTargetHotend(0, 1);
  5226. setTargetHotend(0, 2);
  5227. st_synchronize();
  5228. disable_e0();
  5229. disable_e1();
  5230. disable_e2();
  5231. }
  5232. break;
  5233. case 1:
  5234. delay_keep_alive(4);
  5235. if (lcd_clicked()) {
  5236. setTargetHotend(HotendTempBckp, active_extruder);
  5237. lcd_wait_for_heater();
  5238. wait_for_user_state = 2;
  5239. }
  5240. break;
  5241. case 2:
  5242. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5243. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5244. waiting_start_time = millis();
  5245. wait_for_user_state = 0;
  5246. }
  5247. else {
  5248. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5249. lcd.setCursor(1, 4);
  5250. lcd.print(ftostr3(degHotend(active_extruder)));
  5251. }
  5252. break;
  5253. }
  5254. }
  5255. WRITE(BEEPER, LOW);
  5256. lcd_change_fil_state = 0;
  5257. // Unload filament
  5258. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5259. KEEPALIVE_STATE(IN_HANDLER);
  5260. custom_message = true;
  5261. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5262. if (code_seen('L'))
  5263. {
  5264. target[E_AXIS] += code_value();
  5265. }
  5266. else
  5267. {
  5268. #ifdef SNMM
  5269. #else
  5270. #ifdef FILAMENTCHANGE_FINALRETRACT
  5271. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5272. #endif
  5273. #endif // SNMM
  5274. }
  5275. #ifdef SNMM
  5276. target[E_AXIS] += 12;
  5277. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5278. target[E_AXIS] += 6;
  5279. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5280. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5281. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5282. st_synchronize();
  5283. target[E_AXIS] += (FIL_COOLING);
  5284. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5285. target[E_AXIS] += (FIL_COOLING*-1);
  5286. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5287. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5289. st_synchronize();
  5290. #else
  5291. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5292. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5293. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5294. st_synchronize();
  5295. #ifdef TMC2130
  5296. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5297. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5298. #else
  5299. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5300. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5301. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5302. #endif //TMC2130
  5303. target[E_AXIS] -= 45;
  5304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5305. st_synchronize();
  5306. target[E_AXIS] -= 15;
  5307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5308. st_synchronize();
  5309. target[E_AXIS] -= 20;
  5310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5311. st_synchronize();
  5312. #ifdef TMC2130
  5313. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5314. #else
  5315. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5316. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5317. else st_current_set(2, tmp_motor_loud[2]);
  5318. #endif //TMC2130
  5319. #endif // SNMM
  5320. //finish moves
  5321. st_synchronize();
  5322. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5323. //disable extruder steppers so filament can be removed
  5324. disable_e0();
  5325. disable_e1();
  5326. disable_e2();
  5327. delay(100);
  5328. WRITE(BEEPER, HIGH);
  5329. counterBeep = 0;
  5330. while(!lcd_clicked() && (counterBeep < 50)) {
  5331. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5332. delay_keep_alive(100);
  5333. counterBeep++;
  5334. }
  5335. WRITE(BEEPER, LOW);
  5336. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5337. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5338. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5339. //lcd_return_to_status();
  5340. lcd_update_enable(true);
  5341. //Wait for user to insert filament
  5342. lcd_wait_interact();
  5343. //load_filament_time = millis();
  5344. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5345. #ifdef PAT9125
  5346. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5347. #endif //PAT9125
  5348. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5349. while(!lcd_clicked())
  5350. {
  5351. manage_heater();
  5352. manage_inactivity(true);
  5353. #ifdef PAT9125
  5354. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5355. {
  5356. tone(BEEPER, 1000);
  5357. delay_keep_alive(50);
  5358. noTone(BEEPER);
  5359. break;
  5360. }
  5361. #endif //PAT9125
  5362. /*#ifdef SNMM
  5363. target[E_AXIS] += 0.002;
  5364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5365. #endif // SNMM*/
  5366. }
  5367. #ifdef PAT9125
  5368. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5369. #endif //PAT9125
  5370. //WRITE(BEEPER, LOW);
  5371. KEEPALIVE_STATE(IN_HANDLER);
  5372. #ifdef SNMM
  5373. display_loading();
  5374. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5375. do {
  5376. target[E_AXIS] += 0.002;
  5377. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5378. delay_keep_alive(2);
  5379. } while (!lcd_clicked());
  5380. KEEPALIVE_STATE(IN_HANDLER);
  5381. /*if (millis() - load_filament_time > 2) {
  5382. load_filament_time = millis();
  5383. target[E_AXIS] += 0.001;
  5384. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5385. }*/
  5386. //Filament inserted
  5387. //Feed the filament to the end of nozzle quickly
  5388. st_synchronize();
  5389. target[E_AXIS] += bowden_length[snmm_extruder];
  5390. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5391. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5393. target[E_AXIS] += 40;
  5394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5395. target[E_AXIS] += 10;
  5396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5397. #else
  5398. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5400. #endif // SNMM
  5401. //Extrude some filament
  5402. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5404. //Wait for user to check the state
  5405. lcd_change_fil_state = 0;
  5406. lcd_loading_filament();
  5407. tone(BEEPER, 500);
  5408. delay_keep_alive(50);
  5409. noTone(BEEPER);
  5410. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5411. lcd_change_fil_state = 0;
  5412. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5413. lcd_alright();
  5414. KEEPALIVE_STATE(IN_HANDLER);
  5415. switch(lcd_change_fil_state){
  5416. // Filament failed to load so load it again
  5417. case 2:
  5418. #ifdef SNMM
  5419. display_loading();
  5420. do {
  5421. target[E_AXIS] += 0.002;
  5422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5423. delay_keep_alive(2);
  5424. } while (!lcd_clicked());
  5425. st_synchronize();
  5426. target[E_AXIS] += bowden_length[snmm_extruder];
  5427. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5428. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5430. target[E_AXIS] += 40;
  5431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5432. target[E_AXIS] += 10;
  5433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5434. #else
  5435. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5437. #endif
  5438. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5440. lcd_loading_filament();
  5441. break;
  5442. // Filament loaded properly but color is not clear
  5443. case 3:
  5444. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5446. lcd_loading_color();
  5447. break;
  5448. // Everything good
  5449. default:
  5450. lcd_change_success();
  5451. lcd_update_enable(true);
  5452. break;
  5453. }
  5454. }
  5455. //Not let's go back to print
  5456. fanSpeed = fanSpeedBckp;
  5457. //Feed a little of filament to stabilize pressure
  5458. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5460. //Retract
  5461. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5463. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5464. //Move XY back
  5465. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5466. //Move Z back
  5467. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5468. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5469. //Unretract
  5470. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5471. //Set E position to original
  5472. plan_set_e_position(lastpos[E_AXIS]);
  5473. //Recover feed rate
  5474. feedmultiply=feedmultiplyBckp;
  5475. char cmd[9];
  5476. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5477. enquecommand(cmd);
  5478. lcd_setstatuspgm(WELCOME_MSG);
  5479. custom_message = false;
  5480. custom_message_type = 0;
  5481. #ifdef PAT9125
  5482. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5483. if (fsensor_M600)
  5484. {
  5485. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5486. st_synchronize();
  5487. while (!is_buffer_empty())
  5488. {
  5489. process_commands();
  5490. cmdqueue_pop_front();
  5491. }
  5492. fsensor_enable();
  5493. fsensor_restore_print_and_continue();
  5494. }
  5495. #endif //PAT9125
  5496. }
  5497. break;
  5498. #endif //FILAMENTCHANGEENABLE
  5499. case 601: {
  5500. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5501. }
  5502. break;
  5503. case 602: {
  5504. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5505. }
  5506. break;
  5507. #ifdef PINDA_THERMISTOR
  5508. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5509. {
  5510. int setTargetPinda = 0;
  5511. if (code_seen('S')) {
  5512. setTargetPinda = code_value();
  5513. }
  5514. else {
  5515. break;
  5516. }
  5517. LCD_MESSAGERPGM(MSG_PLEASE_WAIT);
  5518. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5519. SERIAL_PROTOCOL(setTargetPinda);
  5520. SERIAL_PROTOCOLLN("");
  5521. codenum = millis();
  5522. cancel_heatup = false;
  5523. KEEPALIVE_STATE(NOT_BUSY);
  5524. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5525. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5526. {
  5527. SERIAL_PROTOCOLPGM("P:");
  5528. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5529. SERIAL_PROTOCOLPGM("/");
  5530. SERIAL_PROTOCOL(setTargetPinda);
  5531. SERIAL_PROTOCOLLN("");
  5532. codenum = millis();
  5533. }
  5534. manage_heater();
  5535. manage_inactivity();
  5536. lcd_update();
  5537. }
  5538. LCD_MESSAGERPGM(MSG_OK);
  5539. break;
  5540. }
  5541. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5542. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5543. uint8_t cal_status = calibration_status_pinda();
  5544. int16_t usteps = 0;
  5545. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5546. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5547. for (uint8_t i = 0; i < 6; i++)
  5548. {
  5549. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5550. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5551. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5552. SERIAL_PROTOCOLPGM(", ");
  5553. SERIAL_PROTOCOL(35 + (i * 5));
  5554. SERIAL_PROTOCOLPGM(", ");
  5555. SERIAL_PROTOCOL(usteps);
  5556. SERIAL_PROTOCOLPGM(", ");
  5557. SERIAL_PROTOCOL(mm * 1000);
  5558. SERIAL_PROTOCOLLN("");
  5559. }
  5560. }
  5561. else if (code_seen('!')) { // ! - Set factory default values
  5562. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5563. int16_t z_shift = 8; //40C - 20um - 8usteps
  5564. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5565. z_shift = 24; //45C - 60um - 24usteps
  5566. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5567. z_shift = 48; //50C - 120um - 48usteps
  5568. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5569. z_shift = 80; //55C - 200um - 80usteps
  5570. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5571. z_shift = 120; //60C - 300um - 120usteps
  5572. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5573. SERIAL_PROTOCOLLN("factory restored");
  5574. }
  5575. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5576. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5577. int16_t z_shift = 0;
  5578. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5579. SERIAL_PROTOCOLLN("zerorized");
  5580. }
  5581. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5582. int16_t usteps = code_value();
  5583. if (code_seen('I')) {
  5584. byte index = code_value();
  5585. if ((index >= 0) && (index < 5)) {
  5586. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5587. SERIAL_PROTOCOLLN("OK");
  5588. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5589. for (uint8_t i = 0; i < 6; i++)
  5590. {
  5591. usteps = 0;
  5592. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5593. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5594. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5595. SERIAL_PROTOCOLPGM(", ");
  5596. SERIAL_PROTOCOL(35 + (i * 5));
  5597. SERIAL_PROTOCOLPGM(", ");
  5598. SERIAL_PROTOCOL(usteps);
  5599. SERIAL_PROTOCOLPGM(", ");
  5600. SERIAL_PROTOCOL(mm * 1000);
  5601. SERIAL_PROTOCOLLN("");
  5602. }
  5603. }
  5604. }
  5605. }
  5606. else {
  5607. SERIAL_PROTOCOLPGM("no valid command");
  5608. }
  5609. break;
  5610. #endif //PINDA_THERMISTOR
  5611. #ifdef LIN_ADVANCE
  5612. case 900: // M900: Set LIN_ADVANCE options.
  5613. gcode_M900();
  5614. break;
  5615. #endif
  5616. case 907: // M907 Set digital trimpot motor current using axis codes.
  5617. {
  5618. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5619. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5620. if(code_seen('B')) st_current_set(4,code_value());
  5621. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5622. #endif
  5623. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5624. if(code_seen('X')) st_current_set(0, code_value());
  5625. #endif
  5626. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5627. if(code_seen('Z')) st_current_set(1, code_value());
  5628. #endif
  5629. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5630. if(code_seen('E')) st_current_set(2, code_value());
  5631. #endif
  5632. }
  5633. break;
  5634. case 908: // M908 Control digital trimpot directly.
  5635. {
  5636. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5637. uint8_t channel,current;
  5638. if(code_seen('P')) channel=code_value();
  5639. if(code_seen('S')) current=code_value();
  5640. digitalPotWrite(channel, current);
  5641. #endif
  5642. }
  5643. break;
  5644. #ifdef TMC2130
  5645. case 910: // M910 TMC2130 init
  5646. {
  5647. tmc2130_init();
  5648. }
  5649. break;
  5650. case 911: // M911 Set TMC2130 holding currents
  5651. {
  5652. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5653. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5654. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5655. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5656. }
  5657. break;
  5658. case 912: // M912 Set TMC2130 running currents
  5659. {
  5660. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5661. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5662. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5663. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5664. }
  5665. break;
  5666. case 913: // M913 Print TMC2130 currents
  5667. {
  5668. tmc2130_print_currents();
  5669. }
  5670. break;
  5671. case 914: // M914 Set normal mode
  5672. {
  5673. tmc2130_mode = TMC2130_MODE_NORMAL;
  5674. tmc2130_init();
  5675. }
  5676. break;
  5677. case 915: // M915 Set silent mode
  5678. {
  5679. tmc2130_mode = TMC2130_MODE_SILENT;
  5680. tmc2130_init();
  5681. }
  5682. break;
  5683. case 916: // M916 Set sg_thrs
  5684. {
  5685. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5686. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5687. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5688. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5689. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5690. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5691. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5692. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5693. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5694. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5695. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5696. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5697. }
  5698. break;
  5699. case 917: // M917 Set TMC2130 pwm_ampl
  5700. {
  5701. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5702. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5703. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5704. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5705. }
  5706. break;
  5707. case 918: // M918 Set TMC2130 pwm_grad
  5708. {
  5709. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5710. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5711. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5712. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5713. }
  5714. break;
  5715. #endif //TMC2130
  5716. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5717. {
  5718. #ifdef TMC2130
  5719. if(code_seen('E'))
  5720. {
  5721. uint16_t res_new = code_value();
  5722. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5723. {
  5724. st_synchronize();
  5725. uint8_t axis = E_AXIS;
  5726. uint16_t res = tmc2130_get_res(axis);
  5727. tmc2130_set_res(axis, res_new);
  5728. if (res_new > res)
  5729. {
  5730. uint16_t fac = (res_new / res);
  5731. axis_steps_per_unit[axis] *= fac;
  5732. position[E_AXIS] *= fac;
  5733. }
  5734. else
  5735. {
  5736. uint16_t fac = (res / res_new);
  5737. axis_steps_per_unit[axis] /= fac;
  5738. position[E_AXIS] /= fac;
  5739. }
  5740. }
  5741. }
  5742. #else //TMC2130
  5743. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5744. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5745. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5746. if(code_seen('B')) microstep_mode(4,code_value());
  5747. microstep_readings();
  5748. #endif
  5749. #endif //TMC2130
  5750. }
  5751. break;
  5752. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5753. {
  5754. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5755. if(code_seen('S')) switch((int)code_value())
  5756. {
  5757. case 1:
  5758. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5759. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5760. break;
  5761. case 2:
  5762. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5763. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5764. break;
  5765. }
  5766. microstep_readings();
  5767. #endif
  5768. }
  5769. break;
  5770. case 701: //M701: load filament
  5771. {
  5772. gcode_M701();
  5773. }
  5774. break;
  5775. case 702:
  5776. {
  5777. #ifdef SNMM
  5778. if (code_seen('U')) {
  5779. extr_unload_used(); //unload all filaments which were used in current print
  5780. }
  5781. else if (code_seen('C')) {
  5782. extr_unload(); //unload just current filament
  5783. }
  5784. else {
  5785. extr_unload_all(); //unload all filaments
  5786. }
  5787. #else
  5788. #ifdef PAT9125
  5789. bool old_fsensor_enabled = fsensor_enabled;
  5790. fsensor_enabled = false;
  5791. #endif //PAT9125
  5792. custom_message = true;
  5793. custom_message_type = 2;
  5794. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5795. // extr_unload2();
  5796. current_position[E_AXIS] -= 45;
  5797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5798. st_synchronize();
  5799. current_position[E_AXIS] -= 15;
  5800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5801. st_synchronize();
  5802. current_position[E_AXIS] -= 20;
  5803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5804. st_synchronize();
  5805. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5806. //disable extruder steppers so filament can be removed
  5807. disable_e0();
  5808. disable_e1();
  5809. disable_e2();
  5810. delay(100);
  5811. WRITE(BEEPER, HIGH);
  5812. uint8_t counterBeep = 0;
  5813. while (!lcd_clicked() && (counterBeep < 50)) {
  5814. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5815. delay_keep_alive(100);
  5816. counterBeep++;
  5817. }
  5818. WRITE(BEEPER, LOW);
  5819. st_synchronize();
  5820. while (lcd_clicked()) delay_keep_alive(100);
  5821. lcd_update_enable(true);
  5822. lcd_setstatuspgm(WELCOME_MSG);
  5823. custom_message = false;
  5824. custom_message_type = 0;
  5825. #ifdef PAT9125
  5826. fsensor_enabled = old_fsensor_enabled;
  5827. #endif //PAT9125
  5828. #endif
  5829. }
  5830. break;
  5831. case 999: // M999: Restart after being stopped
  5832. Stopped = false;
  5833. lcd_reset_alert_level();
  5834. gcode_LastN = Stopped_gcode_LastN;
  5835. FlushSerialRequestResend();
  5836. break;
  5837. default:
  5838. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5839. }
  5840. } // end if(code_seen('M')) (end of M codes)
  5841. else if(code_seen('T'))
  5842. {
  5843. int index;
  5844. st_synchronize();
  5845. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5846. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5847. SERIAL_ECHOLNPGM("Invalid T code.");
  5848. }
  5849. else {
  5850. if (*(strchr_pointer + index) == '?') {
  5851. tmp_extruder = choose_extruder_menu();
  5852. }
  5853. else {
  5854. tmp_extruder = code_value();
  5855. }
  5856. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5857. #ifdef SNMM
  5858. #ifdef LIN_ADVANCE
  5859. if (snmm_extruder != tmp_extruder)
  5860. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5861. #endif
  5862. snmm_extruder = tmp_extruder;
  5863. delay(100);
  5864. disable_e0();
  5865. disable_e1();
  5866. disable_e2();
  5867. pinMode(E_MUX0_PIN, OUTPUT);
  5868. pinMode(E_MUX1_PIN, OUTPUT);
  5869. delay(100);
  5870. SERIAL_ECHO_START;
  5871. SERIAL_ECHO("T:");
  5872. SERIAL_ECHOLN((int)tmp_extruder);
  5873. switch (tmp_extruder) {
  5874. case 1:
  5875. WRITE(E_MUX0_PIN, HIGH);
  5876. WRITE(E_MUX1_PIN, LOW);
  5877. break;
  5878. case 2:
  5879. WRITE(E_MUX0_PIN, LOW);
  5880. WRITE(E_MUX1_PIN, HIGH);
  5881. break;
  5882. case 3:
  5883. WRITE(E_MUX0_PIN, HIGH);
  5884. WRITE(E_MUX1_PIN, HIGH);
  5885. break;
  5886. default:
  5887. WRITE(E_MUX0_PIN, LOW);
  5888. WRITE(E_MUX1_PIN, LOW);
  5889. break;
  5890. }
  5891. delay(100);
  5892. #else
  5893. if (tmp_extruder >= EXTRUDERS) {
  5894. SERIAL_ECHO_START;
  5895. SERIAL_ECHOPGM("T");
  5896. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5897. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5898. }
  5899. else {
  5900. boolean make_move = false;
  5901. if (code_seen('F')) {
  5902. make_move = true;
  5903. next_feedrate = code_value();
  5904. if (next_feedrate > 0.0) {
  5905. feedrate = next_feedrate;
  5906. }
  5907. }
  5908. #if EXTRUDERS > 1
  5909. if (tmp_extruder != active_extruder) {
  5910. // Save current position to return to after applying extruder offset
  5911. memcpy(destination, current_position, sizeof(destination));
  5912. // Offset extruder (only by XY)
  5913. int i;
  5914. for (i = 0; i < 2; i++) {
  5915. current_position[i] = current_position[i] -
  5916. extruder_offset[i][active_extruder] +
  5917. extruder_offset[i][tmp_extruder];
  5918. }
  5919. // Set the new active extruder and position
  5920. active_extruder = tmp_extruder;
  5921. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5922. // Move to the old position if 'F' was in the parameters
  5923. if (make_move && Stopped == false) {
  5924. prepare_move();
  5925. }
  5926. }
  5927. #endif
  5928. SERIAL_ECHO_START;
  5929. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5930. SERIAL_PROTOCOLLN((int)active_extruder);
  5931. }
  5932. #endif
  5933. }
  5934. } // end if(code_seen('T')) (end of T codes)
  5935. #ifdef DEBUG_DCODES
  5936. else if (code_seen('D')) // D codes (debug)
  5937. {
  5938. switch((int)code_value())
  5939. {
  5940. case -1: // D-1 - Endless loop
  5941. dcode__1(); break;
  5942. case 0: // D0 - Reset
  5943. dcode_0(); break;
  5944. case 1: // D1 - Clear EEPROM
  5945. dcode_1(); break;
  5946. case 2: // D2 - Read/Write RAM
  5947. dcode_2(); break;
  5948. case 3: // D3 - Read/Write EEPROM
  5949. dcode_3(); break;
  5950. case 4: // D4 - Read/Write PIN
  5951. dcode_4(); break;
  5952. case 5: // D5 - Read/Write FLASH
  5953. // dcode_5(); break;
  5954. break;
  5955. case 6: // D6 - Read/Write external FLASH
  5956. dcode_6(); break;
  5957. case 7: // D7 - Read/Write Bootloader
  5958. dcode_7(); break;
  5959. case 8: // D8 - Read/Write PINDA
  5960. dcode_8(); break;
  5961. case 9: // D9 - Read/Write ADC
  5962. dcode_9(); break;
  5963. case 10: // D10 - XYZ calibration = OK
  5964. dcode_10(); break;
  5965. #ifdef TMC2130
  5966. case 2130: // D9125 - TMC2130
  5967. dcode_2130(); break;
  5968. #endif //TMC2130
  5969. #ifdef PAT9125
  5970. case 9125: // D9125 - PAT9125
  5971. dcode_9125(); break;
  5972. #endif //PAT9125
  5973. }
  5974. }
  5975. #endif //DEBUG_DCODES
  5976. else
  5977. {
  5978. SERIAL_ECHO_START;
  5979. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5980. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5981. SERIAL_ECHOLNPGM("\"(2)");
  5982. }
  5983. KEEPALIVE_STATE(NOT_BUSY);
  5984. ClearToSend();
  5985. }
  5986. void FlushSerialRequestResend()
  5987. {
  5988. //char cmdbuffer[bufindr][100]="Resend:";
  5989. MYSERIAL.flush();
  5990. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5991. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5992. previous_millis_cmd = millis();
  5993. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5994. }
  5995. // Confirm the execution of a command, if sent from a serial line.
  5996. // Execution of a command from a SD card will not be confirmed.
  5997. void ClearToSend()
  5998. {
  5999. previous_millis_cmd = millis();
  6000. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  6001. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6002. }
  6003. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6004. void update_currents() {
  6005. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6006. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6007. float tmp_motor[3];
  6008. //SERIAL_ECHOLNPGM("Currents updated: ");
  6009. if (destination[Z_AXIS] < Z_SILENT) {
  6010. //SERIAL_ECHOLNPGM("LOW");
  6011. for (uint8_t i = 0; i < 3; i++) {
  6012. st_current_set(i, current_low[i]);
  6013. /*MYSERIAL.print(int(i));
  6014. SERIAL_ECHOPGM(": ");
  6015. MYSERIAL.println(current_low[i]);*/
  6016. }
  6017. }
  6018. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6019. //SERIAL_ECHOLNPGM("HIGH");
  6020. for (uint8_t i = 0; i < 3; i++) {
  6021. st_current_set(i, current_high[i]);
  6022. /*MYSERIAL.print(int(i));
  6023. SERIAL_ECHOPGM(": ");
  6024. MYSERIAL.println(current_high[i]);*/
  6025. }
  6026. }
  6027. else {
  6028. for (uint8_t i = 0; i < 3; i++) {
  6029. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6030. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6031. st_current_set(i, tmp_motor[i]);
  6032. /*MYSERIAL.print(int(i));
  6033. SERIAL_ECHOPGM(": ");
  6034. MYSERIAL.println(tmp_motor[i]);*/
  6035. }
  6036. }
  6037. }
  6038. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6039. void get_coordinates()
  6040. {
  6041. bool seen[4]={false,false,false,false};
  6042. for(int8_t i=0; i < NUM_AXIS; i++) {
  6043. if(code_seen(axis_codes[i]))
  6044. {
  6045. bool relative = axis_relative_modes[i] || relative_mode;
  6046. destination[i] = (float)code_value();
  6047. if (i == E_AXIS) {
  6048. float emult = extruder_multiplier[active_extruder];
  6049. if (emult != 1.) {
  6050. if (! relative) {
  6051. destination[i] -= current_position[i];
  6052. relative = true;
  6053. }
  6054. destination[i] *= emult;
  6055. }
  6056. }
  6057. if (relative)
  6058. destination[i] += current_position[i];
  6059. seen[i]=true;
  6060. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6061. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6062. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6063. }
  6064. else destination[i] = current_position[i]; //Are these else lines really needed?
  6065. }
  6066. if(code_seen('F')) {
  6067. next_feedrate = code_value();
  6068. #ifdef MAX_SILENT_FEEDRATE
  6069. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6070. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6071. #endif //MAX_SILENT_FEEDRATE
  6072. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6073. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6074. {
  6075. // float e_max_speed =
  6076. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6077. }
  6078. }
  6079. }
  6080. void get_arc_coordinates()
  6081. {
  6082. #ifdef SF_ARC_FIX
  6083. bool relative_mode_backup = relative_mode;
  6084. relative_mode = true;
  6085. #endif
  6086. get_coordinates();
  6087. #ifdef SF_ARC_FIX
  6088. relative_mode=relative_mode_backup;
  6089. #endif
  6090. if(code_seen('I')) {
  6091. offset[0] = code_value();
  6092. }
  6093. else {
  6094. offset[0] = 0.0;
  6095. }
  6096. if(code_seen('J')) {
  6097. offset[1] = code_value();
  6098. }
  6099. else {
  6100. offset[1] = 0.0;
  6101. }
  6102. }
  6103. void clamp_to_software_endstops(float target[3])
  6104. {
  6105. #ifdef DEBUG_DISABLE_SWLIMITS
  6106. return;
  6107. #endif //DEBUG_DISABLE_SWLIMITS
  6108. world2machine_clamp(target[0], target[1]);
  6109. // Clamp the Z coordinate.
  6110. if (min_software_endstops) {
  6111. float negative_z_offset = 0;
  6112. #ifdef ENABLE_AUTO_BED_LEVELING
  6113. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6114. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6115. #endif
  6116. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6117. }
  6118. if (max_software_endstops) {
  6119. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6120. }
  6121. }
  6122. #ifdef MESH_BED_LEVELING
  6123. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6124. float dx = x - current_position[X_AXIS];
  6125. float dy = y - current_position[Y_AXIS];
  6126. float dz = z - current_position[Z_AXIS];
  6127. int n_segments = 0;
  6128. if (mbl.active) {
  6129. float len = abs(dx) + abs(dy);
  6130. if (len > 0)
  6131. // Split to 3cm segments or shorter.
  6132. n_segments = int(ceil(len / 30.f));
  6133. }
  6134. if (n_segments > 1) {
  6135. float de = e - current_position[E_AXIS];
  6136. for (int i = 1; i < n_segments; ++ i) {
  6137. float t = float(i) / float(n_segments);
  6138. plan_buffer_line(
  6139. current_position[X_AXIS] + t * dx,
  6140. current_position[Y_AXIS] + t * dy,
  6141. current_position[Z_AXIS] + t * dz,
  6142. current_position[E_AXIS] + t * de,
  6143. feed_rate, extruder);
  6144. }
  6145. }
  6146. // The rest of the path.
  6147. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6148. current_position[X_AXIS] = x;
  6149. current_position[Y_AXIS] = y;
  6150. current_position[Z_AXIS] = z;
  6151. current_position[E_AXIS] = e;
  6152. }
  6153. #endif // MESH_BED_LEVELING
  6154. void prepare_move()
  6155. {
  6156. clamp_to_software_endstops(destination);
  6157. previous_millis_cmd = millis();
  6158. // Do not use feedmultiply for E or Z only moves
  6159. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6161. }
  6162. else {
  6163. #ifdef MESH_BED_LEVELING
  6164. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6165. #else
  6166. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6167. #endif
  6168. }
  6169. for(int8_t i=0; i < NUM_AXIS; i++) {
  6170. current_position[i] = destination[i];
  6171. }
  6172. }
  6173. void prepare_arc_move(char isclockwise) {
  6174. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6175. // Trace the arc
  6176. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6177. // As far as the parser is concerned, the position is now == target. In reality the
  6178. // motion control system might still be processing the action and the real tool position
  6179. // in any intermediate location.
  6180. for(int8_t i=0; i < NUM_AXIS; i++) {
  6181. current_position[i] = destination[i];
  6182. }
  6183. previous_millis_cmd = millis();
  6184. }
  6185. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6186. #if defined(FAN_PIN)
  6187. #if CONTROLLERFAN_PIN == FAN_PIN
  6188. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6189. #endif
  6190. #endif
  6191. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6192. unsigned long lastMotorCheck = 0;
  6193. void controllerFan()
  6194. {
  6195. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6196. {
  6197. lastMotorCheck = millis();
  6198. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6199. #if EXTRUDERS > 2
  6200. || !READ(E2_ENABLE_PIN)
  6201. #endif
  6202. #if EXTRUDER > 1
  6203. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6204. || !READ(X2_ENABLE_PIN)
  6205. #endif
  6206. || !READ(E1_ENABLE_PIN)
  6207. #endif
  6208. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6209. {
  6210. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6211. }
  6212. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6213. {
  6214. digitalWrite(CONTROLLERFAN_PIN, 0);
  6215. analogWrite(CONTROLLERFAN_PIN, 0);
  6216. }
  6217. else
  6218. {
  6219. // allows digital or PWM fan output to be used (see M42 handling)
  6220. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6221. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6222. }
  6223. }
  6224. }
  6225. #endif
  6226. #ifdef TEMP_STAT_LEDS
  6227. static bool blue_led = false;
  6228. static bool red_led = false;
  6229. static uint32_t stat_update = 0;
  6230. void handle_status_leds(void) {
  6231. float max_temp = 0.0;
  6232. if(millis() > stat_update) {
  6233. stat_update += 500; // Update every 0.5s
  6234. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6235. max_temp = max(max_temp, degHotend(cur_extruder));
  6236. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6237. }
  6238. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6239. max_temp = max(max_temp, degTargetBed());
  6240. max_temp = max(max_temp, degBed());
  6241. #endif
  6242. if((max_temp > 55.0) && (red_led == false)) {
  6243. digitalWrite(STAT_LED_RED, 1);
  6244. digitalWrite(STAT_LED_BLUE, 0);
  6245. red_led = true;
  6246. blue_led = false;
  6247. }
  6248. if((max_temp < 54.0) && (blue_led == false)) {
  6249. digitalWrite(STAT_LED_RED, 0);
  6250. digitalWrite(STAT_LED_BLUE, 1);
  6251. red_led = false;
  6252. blue_led = true;
  6253. }
  6254. }
  6255. }
  6256. #endif
  6257. #ifdef SAFETYTIMER
  6258. /**
  6259. * @brief Turn off heating after 30 minutes of inactivity
  6260. *
  6261. * Full screen blocking notification message is shown after heater turning off.
  6262. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6263. * damage print.
  6264. */
  6265. static void handleSafetyTimer()
  6266. {
  6267. #if (EXTRUDERS > 1)
  6268. #error Implemented only for one extruder.
  6269. #endif //(EXTRUDERS > 1)
  6270. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4)
  6271. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6272. {
  6273. safetyTimer.stop();
  6274. }
  6275. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6276. {
  6277. safetyTimer.start();
  6278. }
  6279. else if (safetyTimer.expired(1800000ul))
  6280. {
  6281. setTargetBed(0);
  6282. setTargetHotend(0, 0);
  6283. lcd_show_fullscreen_message_and_wait_P(MSG_BED_HEATING_SAFETY_DISABLED);
  6284. }
  6285. }
  6286. #endif //SAFETYTIMER
  6287. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6288. {
  6289. #ifdef PAT9125
  6290. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6291. {
  6292. if (fsensor_autoload_enabled)
  6293. {
  6294. if (fsensor_check_autoload())
  6295. {
  6296. if (degHotend0() > EXTRUDE_MINTEMP)
  6297. {
  6298. fsensor_autoload_check_stop();
  6299. tone(BEEPER, 1000);
  6300. delay_keep_alive(50);
  6301. noTone(BEEPER);
  6302. loading_flag = true;
  6303. enquecommand_front_P((PSTR("M701")));
  6304. }
  6305. else
  6306. {
  6307. lcd_update_enable(false);
  6308. lcd_implementation_clear();
  6309. lcd.setCursor(0, 0);
  6310. lcd_printPGM(MSG_ERROR);
  6311. lcd.setCursor(0, 2);
  6312. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6313. delay(2000);
  6314. lcd_implementation_clear();
  6315. lcd_update_enable(true);
  6316. }
  6317. }
  6318. }
  6319. else
  6320. fsensor_autoload_check_start();
  6321. }
  6322. else
  6323. if (fsensor_autoload_enabled)
  6324. fsensor_autoload_check_stop();
  6325. #endif //PAT9125
  6326. #ifdef SAFETYTIMER
  6327. handleSafetyTimer();
  6328. #endif //SAFETYTIMER
  6329. #if defined(KILL_PIN) && KILL_PIN > -1
  6330. static int killCount = 0; // make the inactivity button a bit less responsive
  6331. const int KILL_DELAY = 10000;
  6332. #endif
  6333. if(buflen < (BUFSIZE-1)){
  6334. get_command();
  6335. }
  6336. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6337. if(max_inactive_time)
  6338. kill("", 4);
  6339. if(stepper_inactive_time) {
  6340. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6341. {
  6342. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6343. disable_x();
  6344. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6345. disable_y();
  6346. disable_z();
  6347. disable_e0();
  6348. disable_e1();
  6349. disable_e2();
  6350. }
  6351. }
  6352. }
  6353. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6354. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6355. {
  6356. chdkActive = false;
  6357. WRITE(CHDK, LOW);
  6358. }
  6359. #endif
  6360. #if defined(KILL_PIN) && KILL_PIN > -1
  6361. // Check if the kill button was pressed and wait just in case it was an accidental
  6362. // key kill key press
  6363. // -------------------------------------------------------------------------------
  6364. if( 0 == READ(KILL_PIN) )
  6365. {
  6366. killCount++;
  6367. }
  6368. else if (killCount > 0)
  6369. {
  6370. killCount--;
  6371. }
  6372. // Exceeded threshold and we can confirm that it was not accidental
  6373. // KILL the machine
  6374. // ----------------------------------------------------------------
  6375. if ( killCount >= KILL_DELAY)
  6376. {
  6377. kill("", 5);
  6378. }
  6379. #endif
  6380. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6381. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6382. #endif
  6383. #ifdef EXTRUDER_RUNOUT_PREVENT
  6384. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6385. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6386. {
  6387. bool oldstatus=READ(E0_ENABLE_PIN);
  6388. enable_e0();
  6389. float oldepos=current_position[E_AXIS];
  6390. float oldedes=destination[E_AXIS];
  6391. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6392. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6393. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6394. current_position[E_AXIS]=oldepos;
  6395. destination[E_AXIS]=oldedes;
  6396. plan_set_e_position(oldepos);
  6397. previous_millis_cmd=millis();
  6398. st_synchronize();
  6399. WRITE(E0_ENABLE_PIN,oldstatus);
  6400. }
  6401. #endif
  6402. #ifdef TEMP_STAT_LEDS
  6403. handle_status_leds();
  6404. #endif
  6405. check_axes_activity();
  6406. }
  6407. void kill(const char *full_screen_message, unsigned char id)
  6408. {
  6409. SERIAL_ECHOPGM("KILL: ");
  6410. MYSERIAL.println(int(id));
  6411. //return;
  6412. cli(); // Stop interrupts
  6413. disable_heater();
  6414. disable_x();
  6415. // SERIAL_ECHOLNPGM("kill - disable Y");
  6416. disable_y();
  6417. disable_z();
  6418. disable_e0();
  6419. disable_e1();
  6420. disable_e2();
  6421. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6422. pinMode(PS_ON_PIN,INPUT);
  6423. #endif
  6424. SERIAL_ERROR_START;
  6425. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6426. if (full_screen_message != NULL) {
  6427. SERIAL_ERRORLNRPGM(full_screen_message);
  6428. lcd_display_message_fullscreen_P(full_screen_message);
  6429. } else {
  6430. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6431. }
  6432. // FMC small patch to update the LCD before ending
  6433. sei(); // enable interrupts
  6434. for ( int i=5; i--; lcd_update())
  6435. {
  6436. delay(200);
  6437. }
  6438. cli(); // disable interrupts
  6439. suicide();
  6440. while(1)
  6441. {
  6442. #ifdef WATCHDOG
  6443. wdt_reset();
  6444. #endif //WATCHDOG
  6445. /* Intentionally left empty */
  6446. } // Wait for reset
  6447. }
  6448. void Stop()
  6449. {
  6450. disable_heater();
  6451. if(Stopped == false) {
  6452. Stopped = true;
  6453. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6454. SERIAL_ERROR_START;
  6455. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6456. LCD_MESSAGERPGM(MSG_STOPPED);
  6457. }
  6458. }
  6459. bool IsStopped() { return Stopped; };
  6460. #ifdef FAST_PWM_FAN
  6461. void setPwmFrequency(uint8_t pin, int val)
  6462. {
  6463. val &= 0x07;
  6464. switch(digitalPinToTimer(pin))
  6465. {
  6466. #if defined(TCCR0A)
  6467. case TIMER0A:
  6468. case TIMER0B:
  6469. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6470. // TCCR0B |= val;
  6471. break;
  6472. #endif
  6473. #if defined(TCCR1A)
  6474. case TIMER1A:
  6475. case TIMER1B:
  6476. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6477. // TCCR1B |= val;
  6478. break;
  6479. #endif
  6480. #if defined(TCCR2)
  6481. case TIMER2:
  6482. case TIMER2:
  6483. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6484. TCCR2 |= val;
  6485. break;
  6486. #endif
  6487. #if defined(TCCR2A)
  6488. case TIMER2A:
  6489. case TIMER2B:
  6490. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6491. TCCR2B |= val;
  6492. break;
  6493. #endif
  6494. #if defined(TCCR3A)
  6495. case TIMER3A:
  6496. case TIMER3B:
  6497. case TIMER3C:
  6498. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6499. TCCR3B |= val;
  6500. break;
  6501. #endif
  6502. #if defined(TCCR4A)
  6503. case TIMER4A:
  6504. case TIMER4B:
  6505. case TIMER4C:
  6506. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6507. TCCR4B |= val;
  6508. break;
  6509. #endif
  6510. #if defined(TCCR5A)
  6511. case TIMER5A:
  6512. case TIMER5B:
  6513. case TIMER5C:
  6514. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6515. TCCR5B |= val;
  6516. break;
  6517. #endif
  6518. }
  6519. }
  6520. #endif //FAST_PWM_FAN
  6521. bool setTargetedHotend(int code){
  6522. tmp_extruder = active_extruder;
  6523. if(code_seen('T')) {
  6524. tmp_extruder = code_value();
  6525. if(tmp_extruder >= EXTRUDERS) {
  6526. SERIAL_ECHO_START;
  6527. switch(code){
  6528. case 104:
  6529. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6530. break;
  6531. case 105:
  6532. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6533. break;
  6534. case 109:
  6535. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6536. break;
  6537. case 218:
  6538. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6539. break;
  6540. case 221:
  6541. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6542. break;
  6543. }
  6544. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6545. return true;
  6546. }
  6547. }
  6548. return false;
  6549. }
  6550. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6551. {
  6552. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6553. {
  6554. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6555. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6556. }
  6557. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6558. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6559. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6560. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6561. total_filament_used = 0;
  6562. }
  6563. float calculate_extruder_multiplier(float diameter) {
  6564. float out = 1.f;
  6565. if (volumetric_enabled && diameter > 0.f) {
  6566. float area = M_PI * diameter * diameter * 0.25;
  6567. out = 1.f / area;
  6568. }
  6569. if (extrudemultiply != 100)
  6570. out *= float(extrudemultiply) * 0.01f;
  6571. return out;
  6572. }
  6573. void calculate_extruder_multipliers() {
  6574. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6575. #if EXTRUDERS > 1
  6576. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6577. #if EXTRUDERS > 2
  6578. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6579. #endif
  6580. #endif
  6581. }
  6582. void delay_keep_alive(unsigned int ms)
  6583. {
  6584. for (;;) {
  6585. manage_heater();
  6586. // Manage inactivity, but don't disable steppers on timeout.
  6587. manage_inactivity(true);
  6588. lcd_update();
  6589. if (ms == 0)
  6590. break;
  6591. else if (ms >= 50) {
  6592. delay(50);
  6593. ms -= 50;
  6594. } else {
  6595. delay(ms);
  6596. ms = 0;
  6597. }
  6598. }
  6599. }
  6600. void wait_for_heater(long codenum) {
  6601. #ifdef TEMP_RESIDENCY_TIME
  6602. long residencyStart;
  6603. residencyStart = -1;
  6604. /* continue to loop until we have reached the target temp
  6605. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6606. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6607. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6608. #else
  6609. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6610. #endif //TEMP_RESIDENCY_TIME
  6611. if ((millis() - codenum) > 1000UL)
  6612. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6613. if (!farm_mode) {
  6614. SERIAL_PROTOCOLPGM("T:");
  6615. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6616. SERIAL_PROTOCOLPGM(" E:");
  6617. SERIAL_PROTOCOL((int)tmp_extruder);
  6618. #ifdef TEMP_RESIDENCY_TIME
  6619. SERIAL_PROTOCOLPGM(" W:");
  6620. if (residencyStart > -1)
  6621. {
  6622. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6623. SERIAL_PROTOCOLLN(codenum);
  6624. }
  6625. else
  6626. {
  6627. SERIAL_PROTOCOLLN("?");
  6628. }
  6629. }
  6630. #else
  6631. SERIAL_PROTOCOLLN("");
  6632. #endif
  6633. codenum = millis();
  6634. }
  6635. manage_heater();
  6636. manage_inactivity();
  6637. lcd_update();
  6638. #ifdef TEMP_RESIDENCY_TIME
  6639. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6640. or when current temp falls outside the hysteresis after target temp was reached */
  6641. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6642. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6643. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6644. {
  6645. residencyStart = millis();
  6646. }
  6647. #endif //TEMP_RESIDENCY_TIME
  6648. }
  6649. }
  6650. void check_babystep() {
  6651. int babystep_z;
  6652. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6653. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6654. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6655. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6656. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6657. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6658. lcd_update_enable(true);
  6659. }
  6660. }
  6661. #ifdef DIS
  6662. void d_setup()
  6663. {
  6664. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6665. pinMode(D_DATA, INPUT_PULLUP);
  6666. pinMode(D_REQUIRE, OUTPUT);
  6667. digitalWrite(D_REQUIRE, HIGH);
  6668. }
  6669. float d_ReadData()
  6670. {
  6671. int digit[13];
  6672. String mergeOutput;
  6673. float output;
  6674. digitalWrite(D_REQUIRE, HIGH);
  6675. for (int i = 0; i<13; i++)
  6676. {
  6677. for (int j = 0; j < 4; j++)
  6678. {
  6679. while (digitalRead(D_DATACLOCK) == LOW) {}
  6680. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6681. bitWrite(digit[i], j, digitalRead(D_DATA));
  6682. }
  6683. }
  6684. digitalWrite(D_REQUIRE, LOW);
  6685. mergeOutput = "";
  6686. output = 0;
  6687. for (int r = 5; r <= 10; r++) //Merge digits
  6688. {
  6689. mergeOutput += digit[r];
  6690. }
  6691. output = mergeOutput.toFloat();
  6692. if (digit[4] == 8) //Handle sign
  6693. {
  6694. output *= -1;
  6695. }
  6696. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6697. {
  6698. output /= 10;
  6699. }
  6700. return output;
  6701. }
  6702. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6703. int t1 = 0;
  6704. int t_delay = 0;
  6705. int digit[13];
  6706. int m;
  6707. char str[3];
  6708. //String mergeOutput;
  6709. char mergeOutput[15];
  6710. float output;
  6711. int mesh_point = 0; //index number of calibration point
  6712. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6713. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6714. float mesh_home_z_search = 4;
  6715. float row[x_points_num];
  6716. int ix = 0;
  6717. int iy = 0;
  6718. char* filename_wldsd = "wldsd.txt";
  6719. char data_wldsd[70];
  6720. char numb_wldsd[10];
  6721. d_setup();
  6722. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6723. // We don't know where we are! HOME!
  6724. // Push the commands to the front of the message queue in the reverse order!
  6725. // There shall be always enough space reserved for these commands.
  6726. repeatcommand_front(); // repeat G80 with all its parameters
  6727. enquecommand_front_P((PSTR("G28 W0")));
  6728. enquecommand_front_P((PSTR("G1 Z5")));
  6729. return;
  6730. }
  6731. bool custom_message_old = custom_message;
  6732. unsigned int custom_message_type_old = custom_message_type;
  6733. unsigned int custom_message_state_old = custom_message_state;
  6734. custom_message = true;
  6735. custom_message_type = 1;
  6736. custom_message_state = (x_points_num * y_points_num) + 10;
  6737. lcd_update(1);
  6738. mbl.reset();
  6739. babystep_undo();
  6740. card.openFile(filename_wldsd, false);
  6741. current_position[Z_AXIS] = mesh_home_z_search;
  6742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6743. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6744. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6745. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6746. setup_for_endstop_move(false);
  6747. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6748. SERIAL_PROTOCOL(x_points_num);
  6749. SERIAL_PROTOCOLPGM(",");
  6750. SERIAL_PROTOCOL(y_points_num);
  6751. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6752. SERIAL_PROTOCOL(mesh_home_z_search);
  6753. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6754. SERIAL_PROTOCOL(x_dimension);
  6755. SERIAL_PROTOCOLPGM(",");
  6756. SERIAL_PROTOCOL(y_dimension);
  6757. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6758. while (mesh_point != x_points_num * y_points_num) {
  6759. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6760. iy = mesh_point / x_points_num;
  6761. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6762. float z0 = 0.f;
  6763. current_position[Z_AXIS] = mesh_home_z_search;
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6765. st_synchronize();
  6766. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6767. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6769. st_synchronize();
  6770. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6771. break;
  6772. card.closefile();
  6773. }
  6774. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6775. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6776. //strcat(data_wldsd, numb_wldsd);
  6777. //MYSERIAL.println(data_wldsd);
  6778. //delay(1000);
  6779. //delay(3000);
  6780. //t1 = millis();
  6781. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6782. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6783. memset(digit, 0, sizeof(digit));
  6784. //cli();
  6785. digitalWrite(D_REQUIRE, LOW);
  6786. for (int i = 0; i<13; i++)
  6787. {
  6788. //t1 = millis();
  6789. for (int j = 0; j < 4; j++)
  6790. {
  6791. while (digitalRead(D_DATACLOCK) == LOW) {}
  6792. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6793. bitWrite(digit[i], j, digitalRead(D_DATA));
  6794. }
  6795. //t_delay = (millis() - t1);
  6796. //SERIAL_PROTOCOLPGM(" ");
  6797. //SERIAL_PROTOCOL_F(t_delay, 5);
  6798. //SERIAL_PROTOCOLPGM(" ");
  6799. }
  6800. //sei();
  6801. digitalWrite(D_REQUIRE, HIGH);
  6802. mergeOutput[0] = '\0';
  6803. output = 0;
  6804. for (int r = 5; r <= 10; r++) //Merge digits
  6805. {
  6806. sprintf(str, "%d", digit[r]);
  6807. strcat(mergeOutput, str);
  6808. }
  6809. output = atof(mergeOutput);
  6810. if (digit[4] == 8) //Handle sign
  6811. {
  6812. output *= -1;
  6813. }
  6814. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6815. {
  6816. output *= 0.1;
  6817. }
  6818. //output = d_ReadData();
  6819. //row[ix] = current_position[Z_AXIS];
  6820. memset(data_wldsd, 0, sizeof(data_wldsd));
  6821. for (int i = 0; i <3; i++) {
  6822. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6823. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6824. strcat(data_wldsd, numb_wldsd);
  6825. strcat(data_wldsd, ";");
  6826. }
  6827. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6828. dtostrf(output, 8, 5, numb_wldsd);
  6829. strcat(data_wldsd, numb_wldsd);
  6830. //strcat(data_wldsd, ";");
  6831. card.write_command(data_wldsd);
  6832. //row[ix] = d_ReadData();
  6833. row[ix] = output; // current_position[Z_AXIS];
  6834. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6835. for (int i = 0; i < x_points_num; i++) {
  6836. SERIAL_PROTOCOLPGM(" ");
  6837. SERIAL_PROTOCOL_F(row[i], 5);
  6838. }
  6839. SERIAL_PROTOCOLPGM("\n");
  6840. }
  6841. custom_message_state--;
  6842. mesh_point++;
  6843. lcd_update(1);
  6844. }
  6845. card.closefile();
  6846. }
  6847. #endif
  6848. void temp_compensation_start() {
  6849. custom_message = true;
  6850. custom_message_type = 5;
  6851. custom_message_state = PINDA_HEAT_T + 1;
  6852. lcd_update(2);
  6853. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6854. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6855. }
  6856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6857. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6858. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6859. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6861. st_synchronize();
  6862. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6863. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6864. delay_keep_alive(1000);
  6865. custom_message_state = PINDA_HEAT_T - i;
  6866. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6867. else lcd_update(1);
  6868. }
  6869. custom_message_type = 0;
  6870. custom_message_state = 0;
  6871. custom_message = false;
  6872. }
  6873. void temp_compensation_apply() {
  6874. int i_add;
  6875. int compensation_value;
  6876. int z_shift = 0;
  6877. float z_shift_mm;
  6878. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6879. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6880. i_add = (target_temperature_bed - 60) / 10;
  6881. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6882. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6883. }else {
  6884. //interpolation
  6885. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6886. }
  6887. SERIAL_PROTOCOLPGM("\n");
  6888. SERIAL_PROTOCOLPGM("Z shift applied:");
  6889. MYSERIAL.print(z_shift_mm);
  6890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6891. st_synchronize();
  6892. plan_set_z_position(current_position[Z_AXIS]);
  6893. }
  6894. else {
  6895. //we have no temp compensation data
  6896. }
  6897. }
  6898. float temp_comp_interpolation(float inp_temperature) {
  6899. //cubic spline interpolation
  6900. int n, i, j, k;
  6901. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6902. int shift[10];
  6903. int temp_C[10];
  6904. n = 6; //number of measured points
  6905. shift[0] = 0;
  6906. for (i = 0; i < n; i++) {
  6907. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6908. temp_C[i] = 50 + i * 10; //temperature in C
  6909. #ifdef PINDA_THERMISTOR
  6910. temp_C[i] = 35 + i * 5; //temperature in C
  6911. #else
  6912. temp_C[i] = 50 + i * 10; //temperature in C
  6913. #endif
  6914. x[i] = (float)temp_C[i];
  6915. f[i] = (float)shift[i];
  6916. }
  6917. if (inp_temperature < x[0]) return 0;
  6918. for (i = n - 1; i>0; i--) {
  6919. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6920. h[i - 1] = x[i] - x[i - 1];
  6921. }
  6922. //*********** formation of h, s , f matrix **************
  6923. for (i = 1; i<n - 1; i++) {
  6924. m[i][i] = 2 * (h[i - 1] + h[i]);
  6925. if (i != 1) {
  6926. m[i][i - 1] = h[i - 1];
  6927. m[i - 1][i] = h[i - 1];
  6928. }
  6929. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6930. }
  6931. //*********** forward elimination **************
  6932. for (i = 1; i<n - 2; i++) {
  6933. temp = (m[i + 1][i] / m[i][i]);
  6934. for (j = 1; j <= n - 1; j++)
  6935. m[i + 1][j] -= temp*m[i][j];
  6936. }
  6937. //*********** backward substitution *********
  6938. for (i = n - 2; i>0; i--) {
  6939. sum = 0;
  6940. for (j = i; j <= n - 2; j++)
  6941. sum += m[i][j] * s[j];
  6942. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6943. }
  6944. for (i = 0; i<n - 1; i++)
  6945. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6946. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6947. b = s[i] / 2;
  6948. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6949. d = f[i];
  6950. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6951. }
  6952. return sum;
  6953. }
  6954. #ifdef PINDA_THERMISTOR
  6955. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6956. {
  6957. if (!temp_cal_active) return 0;
  6958. if (!calibration_status_pinda()) return 0;
  6959. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6960. }
  6961. #endif //PINDA_THERMISTOR
  6962. void long_pause() //long pause print
  6963. {
  6964. st_synchronize();
  6965. //save currently set parameters to global variables
  6966. saved_feedmultiply = feedmultiply;
  6967. HotendTempBckp = degTargetHotend(active_extruder);
  6968. fanSpeedBckp = fanSpeed;
  6969. start_pause_print = millis();
  6970. //save position
  6971. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6972. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6973. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6974. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6975. //retract
  6976. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6978. //lift z
  6979. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6980. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6982. //set nozzle target temperature to 0
  6983. setTargetHotend(0, 0);
  6984. setTargetHotend(0, 1);
  6985. setTargetHotend(0, 2);
  6986. //Move XY to side
  6987. current_position[X_AXIS] = X_PAUSE_POS;
  6988. current_position[Y_AXIS] = Y_PAUSE_POS;
  6989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6990. // Turn off the print fan
  6991. fanSpeed = 0;
  6992. st_synchronize();
  6993. }
  6994. void serialecho_temperatures() {
  6995. float tt = degHotend(active_extruder);
  6996. SERIAL_PROTOCOLPGM("T:");
  6997. SERIAL_PROTOCOL(tt);
  6998. SERIAL_PROTOCOLPGM(" E:");
  6999. SERIAL_PROTOCOL((int)active_extruder);
  7000. SERIAL_PROTOCOLPGM(" B:");
  7001. SERIAL_PROTOCOL_F(degBed(), 1);
  7002. SERIAL_PROTOCOLLN("");
  7003. }
  7004. extern uint32_t sdpos_atomic;
  7005. #ifdef UVLO_SUPPORT
  7006. void uvlo_()
  7007. {
  7008. unsigned long time_start = millis();
  7009. bool sd_print = card.sdprinting;
  7010. // Conserve power as soon as possible.
  7011. disable_x();
  7012. disable_y();
  7013. disable_e0();
  7014. #ifdef TMC2130
  7015. tmc2130_set_current_h(Z_AXIS, 20);
  7016. tmc2130_set_current_r(Z_AXIS, 20);
  7017. tmc2130_set_current_h(E_AXIS, 20);
  7018. tmc2130_set_current_r(E_AXIS, 20);
  7019. #endif //TMC2130
  7020. // Indicate that the interrupt has been triggered.
  7021. // SERIAL_ECHOLNPGM("UVLO");
  7022. // Read out the current Z motor microstep counter. This will be later used
  7023. // for reaching the zero full step before powering off.
  7024. uint16_t z_microsteps = 0;
  7025. #ifdef TMC2130
  7026. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7027. #endif //TMC2130
  7028. // Calculate the file position, from which to resume this print.
  7029. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7030. {
  7031. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7032. sd_position -= sdlen_planner;
  7033. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7034. sd_position -= sdlen_cmdqueue;
  7035. if (sd_position < 0) sd_position = 0;
  7036. }
  7037. // Backup the feedrate in mm/min.
  7038. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7039. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7040. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7041. // are in action.
  7042. planner_abort_hard();
  7043. // Store the current extruder position.
  7044. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7045. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7046. // Clean the input command queue.
  7047. cmdqueue_reset();
  7048. card.sdprinting = false;
  7049. // card.closefile();
  7050. // Enable stepper driver interrupt to move Z axis.
  7051. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7052. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7053. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7054. sei();
  7055. plan_buffer_line(
  7056. current_position[X_AXIS],
  7057. current_position[Y_AXIS],
  7058. current_position[Z_AXIS],
  7059. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7060. 95, active_extruder);
  7061. st_synchronize();
  7062. disable_e0();
  7063. plan_buffer_line(
  7064. current_position[X_AXIS],
  7065. current_position[Y_AXIS],
  7066. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7067. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7068. 40, active_extruder);
  7069. st_synchronize();
  7070. disable_e0();
  7071. plan_buffer_line(
  7072. current_position[X_AXIS],
  7073. current_position[Y_AXIS],
  7074. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7075. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7076. 40, active_extruder);
  7077. st_synchronize();
  7078. disable_e0();
  7079. disable_z();
  7080. // Move Z up to the next 0th full step.
  7081. // Write the file position.
  7082. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7083. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7084. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7085. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7086. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7087. // Scale the z value to 1u resolution.
  7088. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7089. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7090. }
  7091. // Read out the current Z motor microstep counter. This will be later used
  7092. // for reaching the zero full step before powering off.
  7093. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7094. // Store the current position.
  7095. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7096. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7097. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7098. // Store the current feed rate, temperatures and fan speed.
  7099. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7100. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7101. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7102. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7103. // Finaly store the "power outage" flag.
  7104. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7105. st_synchronize();
  7106. SERIAL_ECHOPGM("stps");
  7107. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7108. disable_z();
  7109. // Increment power failure counter
  7110. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7111. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7112. SERIAL_ECHOLNPGM("UVLO - end");
  7113. MYSERIAL.println(millis() - time_start);
  7114. #if 0
  7115. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7116. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7118. st_synchronize();
  7119. #endif
  7120. cli();
  7121. volatile unsigned int ppcount = 0;
  7122. SET_OUTPUT(BEEPER);
  7123. WRITE(BEEPER, HIGH);
  7124. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7125. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7126. }
  7127. WRITE(BEEPER, LOW);
  7128. while(1){
  7129. #if 1
  7130. WRITE(BEEPER, LOW);
  7131. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7132. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7133. }
  7134. #endif
  7135. };
  7136. }
  7137. #endif //UVLO_SUPPORT
  7138. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7139. void setup_fan_interrupt() {
  7140. //INT7
  7141. DDRE &= ~(1 << 7); //input pin
  7142. PORTE &= ~(1 << 7); //no internal pull-up
  7143. //start with sensing rising edge
  7144. EICRB &= ~(1 << 6);
  7145. EICRB |= (1 << 7);
  7146. //enable INT7 interrupt
  7147. EIMSK |= (1 << 7);
  7148. }
  7149. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7150. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7151. ISR(INT7_vect) {
  7152. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7153. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7154. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7155. t_fan_rising_edge = millis_nc();
  7156. }
  7157. else { //interrupt was triggered by falling edge
  7158. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7159. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7160. }
  7161. }
  7162. EICRB ^= (1 << 6); //change edge
  7163. }
  7164. #endif
  7165. #ifdef UVLO_SUPPORT
  7166. void setup_uvlo_interrupt() {
  7167. DDRE &= ~(1 << 4); //input pin
  7168. PORTE &= ~(1 << 4); //no internal pull-up
  7169. //sensing falling edge
  7170. EICRB |= (1 << 0);
  7171. EICRB &= ~(1 << 1);
  7172. //enable INT4 interrupt
  7173. EIMSK |= (1 << 4);
  7174. }
  7175. ISR(INT4_vect) {
  7176. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7177. SERIAL_ECHOLNPGM("INT4");
  7178. if (IS_SD_PRINTING) uvlo_();
  7179. }
  7180. void recover_print(uint8_t automatic) {
  7181. char cmd[30];
  7182. lcd_update_enable(true);
  7183. lcd_update(2);
  7184. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  7185. recover_machine_state_after_power_panic();
  7186. // Set the target bed and nozzle temperatures.
  7187. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7188. enquecommand(cmd);
  7189. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7190. enquecommand(cmd);
  7191. // Lift the print head, so one may remove the excess priming material.
  7192. if (current_position[Z_AXIS] < 25)
  7193. enquecommand_P(PSTR("G1 Z25 F800"));
  7194. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7195. enquecommand_P(PSTR("G28 X Y"));
  7196. // Set the target bed and nozzle temperatures and wait.
  7197. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7198. enquecommand(cmd);
  7199. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7200. enquecommand(cmd);
  7201. enquecommand_P(PSTR("M83")); //E axis relative mode
  7202. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7203. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7204. if(automatic == 0){
  7205. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7206. }
  7207. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7208. // Mark the power panic status as inactive.
  7209. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7210. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7211. delay_keep_alive(1000);
  7212. }*/
  7213. SERIAL_ECHOPGM("After waiting for temp:");
  7214. SERIAL_ECHOPGM("Current position X_AXIS:");
  7215. MYSERIAL.println(current_position[X_AXIS]);
  7216. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7217. MYSERIAL.println(current_position[Y_AXIS]);
  7218. // Restart the print.
  7219. restore_print_from_eeprom();
  7220. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7221. MYSERIAL.print(current_position[Z_AXIS]);
  7222. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7223. MYSERIAL.print(current_position[E_AXIS]);
  7224. }
  7225. void recover_machine_state_after_power_panic()
  7226. {
  7227. char cmd[30];
  7228. // 1) Recover the logical cordinates at the time of the power panic.
  7229. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7230. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7231. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7232. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7233. // The current position after power panic is moved to the next closest 0th full step.
  7234. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7235. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7236. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7237. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7238. sprintf_P(cmd, PSTR("G92 E"));
  7239. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7240. enquecommand(cmd);
  7241. }
  7242. memcpy(destination, current_position, sizeof(destination));
  7243. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7244. print_world_coordinates();
  7245. // 2) Initialize the logical to physical coordinate system transformation.
  7246. world2machine_initialize();
  7247. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7248. mbl.active = false;
  7249. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7250. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7251. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7252. // Scale the z value to 10u resolution.
  7253. int16_t v;
  7254. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7255. if (v != 0)
  7256. mbl.active = true;
  7257. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7258. }
  7259. if (mbl.active)
  7260. mbl.upsample_3x3();
  7261. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7262. // print_mesh_bed_leveling_table();
  7263. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7264. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7265. babystep_load();
  7266. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7268. // 6) Power up the motors, mark their positions as known.
  7269. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7270. axis_known_position[X_AXIS] = true; enable_x();
  7271. axis_known_position[Y_AXIS] = true; enable_y();
  7272. axis_known_position[Z_AXIS] = true; enable_z();
  7273. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7274. print_physical_coordinates();
  7275. // 7) Recover the target temperatures.
  7276. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7277. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7278. }
  7279. void restore_print_from_eeprom() {
  7280. float x_rec, y_rec, z_pos;
  7281. int feedrate_rec;
  7282. uint8_t fan_speed_rec;
  7283. char cmd[30];
  7284. char* c;
  7285. char filename[13];
  7286. uint8_t depth = 0;
  7287. char dir_name[9];
  7288. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7289. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7290. SERIAL_ECHOPGM("Feedrate:");
  7291. MYSERIAL.println(feedrate_rec);
  7292. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7293. MYSERIAL.println(int(depth));
  7294. for (int i = 0; i < depth; i++) {
  7295. for (int j = 0; j < 8; j++) {
  7296. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7297. }
  7298. dir_name[8] = '\0';
  7299. MYSERIAL.println(dir_name);
  7300. card.chdir(dir_name);
  7301. }
  7302. for (int i = 0; i < 8; i++) {
  7303. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7304. }
  7305. filename[8] = '\0';
  7306. MYSERIAL.print(filename);
  7307. strcat_P(filename, PSTR(".gco"));
  7308. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7309. for (c = &cmd[4]; *c; c++)
  7310. *c = tolower(*c);
  7311. enquecommand(cmd);
  7312. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7313. SERIAL_ECHOPGM("Position read from eeprom:");
  7314. MYSERIAL.println(position);
  7315. // E axis relative mode.
  7316. enquecommand_P(PSTR("M83"));
  7317. // Move to the XY print position in logical coordinates, where the print has been killed.
  7318. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7319. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7320. strcat_P(cmd, PSTR(" F2000"));
  7321. enquecommand(cmd);
  7322. // Move the Z axis down to the print, in logical coordinates.
  7323. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7324. enquecommand(cmd);
  7325. // Unretract.
  7326. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7327. // Set the feedrate saved at the power panic.
  7328. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7329. enquecommand(cmd);
  7330. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7331. {
  7332. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7333. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7334. }
  7335. // Set the fan speed saved at the power panic.
  7336. strcpy_P(cmd, PSTR("M106 S"));
  7337. strcat(cmd, itostr3(int(fan_speed_rec)));
  7338. enquecommand(cmd);
  7339. // Set a position in the file.
  7340. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7341. enquecommand(cmd);
  7342. // Start SD print.
  7343. enquecommand_P(PSTR("M24"));
  7344. }
  7345. #endif //UVLO_SUPPORT
  7346. ////////////////////////////////////////////////////////////////////////////////
  7347. // new save/restore printing
  7348. //extern uint32_t sdpos_atomic;
  7349. bool saved_printing = false;
  7350. uint32_t saved_sdpos = 0;
  7351. float saved_pos[4] = {0, 0, 0, 0};
  7352. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7353. float saved_feedrate2 = 0;
  7354. uint8_t saved_active_extruder = 0;
  7355. bool saved_extruder_under_pressure = false;
  7356. void stop_and_save_print_to_ram(float z_move, float e_move)
  7357. {
  7358. if (saved_printing) return;
  7359. cli();
  7360. unsigned char nplanner_blocks = number_of_blocks();
  7361. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7362. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7363. saved_sdpos -= sdlen_planner;
  7364. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7365. saved_sdpos -= sdlen_cmdqueue;
  7366. #if 0
  7367. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7368. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7369. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7370. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7371. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7372. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7373. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7374. {
  7375. card.setIndex(saved_sdpos);
  7376. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7377. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7378. MYSERIAL.print(char(card.get()));
  7379. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7380. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7381. MYSERIAL.print(char(card.get()));
  7382. SERIAL_ECHOLNPGM("End of command buffer");
  7383. }
  7384. {
  7385. // Print the content of the planner buffer, line by line:
  7386. card.setIndex(saved_sdpos);
  7387. int8_t iline = 0;
  7388. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7389. SERIAL_ECHOPGM("Planner line (from file): ");
  7390. MYSERIAL.print(int(iline), DEC);
  7391. SERIAL_ECHOPGM(", length: ");
  7392. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7393. SERIAL_ECHOPGM(", steps: (");
  7394. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7395. SERIAL_ECHOPGM(",");
  7396. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7397. SERIAL_ECHOPGM(",");
  7398. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7399. SERIAL_ECHOPGM(",");
  7400. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7401. SERIAL_ECHOPGM("), events: ");
  7402. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7403. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7404. MYSERIAL.print(char(card.get()));
  7405. }
  7406. }
  7407. {
  7408. // Print the content of the command buffer, line by line:
  7409. int8_t iline = 0;
  7410. union {
  7411. struct {
  7412. char lo;
  7413. char hi;
  7414. } lohi;
  7415. uint16_t value;
  7416. } sdlen_single;
  7417. int _bufindr = bufindr;
  7418. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7419. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7420. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7421. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7422. }
  7423. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7424. MYSERIAL.print(int(iline), DEC);
  7425. SERIAL_ECHOPGM(", type: ");
  7426. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7427. SERIAL_ECHOPGM(", len: ");
  7428. MYSERIAL.println(sdlen_single.value, DEC);
  7429. // Print the content of the buffer line.
  7430. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7431. SERIAL_ECHOPGM("Buffer line (from file): ");
  7432. MYSERIAL.print(int(iline), DEC);
  7433. MYSERIAL.println(int(iline), DEC);
  7434. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7435. MYSERIAL.print(char(card.get()));
  7436. if (-- _buflen == 0)
  7437. break;
  7438. // First skip the current command ID and iterate up to the end of the string.
  7439. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7440. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7441. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7442. // If the end of the buffer was empty,
  7443. if (_bufindr == sizeof(cmdbuffer)) {
  7444. // skip to the start and find the nonzero command.
  7445. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7446. }
  7447. }
  7448. }
  7449. #endif
  7450. #if 0
  7451. saved_feedrate2 = feedrate; //save feedrate
  7452. #else
  7453. // Try to deduce the feedrate from the first block of the planner.
  7454. // Speed is in mm/min.
  7455. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7456. #endif
  7457. planner_abort_hard(); //abort printing
  7458. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7459. saved_active_extruder = active_extruder; //save active_extruder
  7460. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7461. cmdqueue_reset(); //empty cmdqueue
  7462. card.sdprinting = false;
  7463. // card.closefile();
  7464. saved_printing = true;
  7465. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7466. st_reset_timer();
  7467. sei();
  7468. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7469. #if 1
  7470. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7471. char buf[48];
  7472. strcpy_P(buf, PSTR("G1 Z"));
  7473. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7474. strcat_P(buf, PSTR(" E"));
  7475. // Relative extrusion
  7476. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7477. strcat_P(buf, PSTR(" F"));
  7478. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7479. // At this point the command queue is empty.
  7480. enquecommand(buf, false);
  7481. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7482. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7483. repeatcommand_front();
  7484. #else
  7485. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7486. st_synchronize(); //wait moving
  7487. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7488. memcpy(destination, current_position, sizeof(destination));
  7489. #endif
  7490. }
  7491. }
  7492. void restore_print_from_ram_and_continue(float e_move)
  7493. {
  7494. if (!saved_printing) return;
  7495. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7496. // current_position[axis] = st_get_position_mm(axis);
  7497. active_extruder = saved_active_extruder; //restore active_extruder
  7498. feedrate = saved_feedrate2; //restore feedrate
  7499. float e = saved_pos[E_AXIS] - e_move;
  7500. plan_set_e_position(e);
  7501. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7502. st_synchronize();
  7503. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7504. memcpy(destination, current_position, sizeof(destination));
  7505. card.setIndex(saved_sdpos);
  7506. sdpos_atomic = saved_sdpos;
  7507. card.sdprinting = true;
  7508. saved_printing = false;
  7509. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7510. }
  7511. void print_world_coordinates()
  7512. {
  7513. SERIAL_ECHOPGM("world coordinates: (");
  7514. MYSERIAL.print(current_position[X_AXIS], 3);
  7515. SERIAL_ECHOPGM(", ");
  7516. MYSERIAL.print(current_position[Y_AXIS], 3);
  7517. SERIAL_ECHOPGM(", ");
  7518. MYSERIAL.print(current_position[Z_AXIS], 3);
  7519. SERIAL_ECHOLNPGM(")");
  7520. }
  7521. void print_physical_coordinates()
  7522. {
  7523. SERIAL_ECHOPGM("physical coordinates: (");
  7524. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7525. SERIAL_ECHOPGM(", ");
  7526. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7527. SERIAL_ECHOPGM(", ");
  7528. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7529. SERIAL_ECHOLNPGM(")");
  7530. }
  7531. void print_mesh_bed_leveling_table()
  7532. {
  7533. SERIAL_ECHOPGM("mesh bed leveling: ");
  7534. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7535. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7536. MYSERIAL.print(mbl.z_values[y][x], 3);
  7537. SERIAL_ECHOPGM(" ");
  7538. }
  7539. SERIAL_ECHOLNPGM("");
  7540. }
  7541. #define FIL_LOAD_LENGTH 60