Marlin_main.cpp 166 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "Configuration_prusa.h"
  32. #include "planner.h"
  33. #include "stepper.h"
  34. #include "temperature.h"
  35. #include "motion_control.h"
  36. #include "cardreader.h"
  37. #include "watchdog.h"
  38. #include "ConfigurationStore.h"
  39. #include "language.h"
  40. #include "pins_arduino.h"
  41. #include "math.h"
  42. #ifdef BLINKM
  43. #include "BlinkM.h"
  44. #include "Wire.h"
  45. #endif
  46. #ifdef ULTRALCD
  47. #include "ultralcd.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. #define VERSION_STRING "1.0.2"
  56. #include "ultralcd.h"
  57. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  58. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. //Implemented Codes
  60. //-------------------
  61. // PRUSA CODES
  62. // P F - Returns FW versions
  63. // P R - Returns revision of printer
  64. // G0 -> G1
  65. // G1 - Coordinated Movement X Y Z E
  66. // G2 - CW ARC
  67. // G3 - CCW ARC
  68. // G4 - Dwell S<seconds> or P<milliseconds>
  69. // G10 - retract filament according to settings of M207
  70. // G11 - retract recover filament according to settings of M208
  71. // G28 - Home all Axis
  72. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  73. // G30 - Single Z Probe, probes bed at current XY location.
  74. // G31 - Dock sled (Z_PROBE_SLED only)
  75. // G32 - Undock sled (Z_PROBE_SLED only)
  76. // G90 - Use Absolute Coordinates
  77. // G91 - Use Relative Coordinates
  78. // G92 - Set current position to coordinates given
  79. // M Codes
  80. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  81. // M1 - Same as M0
  82. // M17 - Enable/Power all stepper motors
  83. // M18 - Disable all stepper motors; same as M84
  84. // M20 - List SD card
  85. // M21 - Init SD card
  86. // M22 - Release SD card
  87. // M23 - Select SD file (M23 filename.g)
  88. // M24 - Start/resume SD print
  89. // M25 - Pause SD print
  90. // M26 - Set SD position in bytes (M26 S12345)
  91. // M27 - Report SD print status
  92. // M28 - Start SD write (M28 filename.g)
  93. // M29 - Stop SD write
  94. // M30 - Delete file from SD (M30 filename.g)
  95. // M31 - Output time since last M109 or SD card start to serial
  96. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  97. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  98. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  99. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  100. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  101. // M80 - Turn on Power Supply
  102. // M81 - Turn off Power Supply
  103. // M82 - Set E codes absolute (default)
  104. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  105. // M84 - Disable steppers until next move,
  106. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  107. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  108. // M92 - Set axis_steps_per_unit - same syntax as G92
  109. // M104 - Set extruder target temp
  110. // M105 - Read current temp
  111. // M106 - Fan on
  112. // M107 - Fan off
  113. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  114. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  115. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  116. // M112 - Emergency stop
  117. // M114 - Output current position to serial port
  118. // M115 - Capabilities string
  119. // M117 - display message
  120. // M119 - Output Endstop status to serial port
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - set additional homing offset
  136. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Displays measured filament diameter
  158. // M500 - stores parameters in EEPROM
  159. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - print the current settings (from memory not from EEPROM)
  162. // M509 - force language selection on next restart
  163. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  164. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  165. // M665 - set delta configurations
  166. // M666 - set delta endstop adjustment
  167. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  168. // M907 - Set digital trimpot motor current using axis codes.
  169. // M908 - Control digital trimpot directly.
  170. // M350 - Set microstepping mode.
  171. // M351 - Toggle MS1 MS2 pins directly.
  172. // ************ SCARA Specific - This can change to suit future G-code regulations
  173. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  174. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  175. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  176. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  177. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  178. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  179. //************* SCARA End ***************
  180. // M928 - Start SD logging (M928 filename.g) - ended by M29
  181. // M999 - Restart after being stopped by error
  182. //Stepper Movement Variables
  183. //===========================================================================
  184. //=============================imported variables============================
  185. //===========================================================================
  186. //===========================================================================
  187. //=============================public variables=============================
  188. //===========================================================================
  189. #ifdef SDSUPPORT
  190. CardReader card;
  191. #endif
  192. union Data
  193. {
  194. byte b[2];
  195. int value;
  196. };
  197. int babystepLoad[3];
  198. float homing_feedrate[] = HOMING_FEEDRATE;
  199. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  200. int feedmultiply=100; //100->1 200->2
  201. int saved_feedmultiply;
  202. int extrudemultiply=100; //100->1 200->2
  203. int extruder_multiply[EXTRUDERS] = {100
  204. #if EXTRUDERS > 1
  205. , 100
  206. #if EXTRUDERS > 2
  207. , 100
  208. #endif
  209. #endif
  210. };
  211. int lcd_change_fil_state = 0;
  212. int feedmultiplyBckp = 100;
  213. unsigned char lang_selected = 0;
  214. bool volumetric_enabled = false;
  215. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  216. #if EXTRUDERS > 1
  217. , DEFAULT_NOMINAL_FILAMENT_DIA
  218. #if EXTRUDERS > 2
  219. , DEFAULT_NOMINAL_FILAMENT_DIA
  220. #endif
  221. #endif
  222. };
  223. float volumetric_multiplier[EXTRUDERS] = {1.0
  224. #if EXTRUDERS > 1
  225. , 1.0
  226. #if EXTRUDERS > 2
  227. , 1.0
  228. #endif
  229. #endif
  230. };
  231. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  232. float add_homing[3]={0,0,0};
  233. #ifdef DELTA
  234. float endstop_adj[3]={0,0,0};
  235. #endif
  236. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  237. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  238. bool axis_known_position[3] = {false, false, false};
  239. float zprobe_zoffset;
  240. // Extruder offset
  241. #if EXTRUDERS > 1
  242. #ifndef DUAL_X_CARRIAGE
  243. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  244. #else
  245. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  246. #endif
  247. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  248. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  249. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  250. #endif
  251. };
  252. #endif
  253. uint8_t active_extruder = 0;
  254. int fanSpeed=0;
  255. #ifdef SERVO_ENDSTOPS
  256. int servo_endstops[] = SERVO_ENDSTOPS;
  257. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  258. #endif
  259. #ifdef BARICUDA
  260. int ValvePressure=0;
  261. int EtoPPressure=0;
  262. #endif
  263. #ifdef FWRETRACT
  264. bool autoretract_enabled=false;
  265. bool retracted[EXTRUDERS]={false
  266. #if EXTRUDERS > 1
  267. , false
  268. #if EXTRUDERS > 2
  269. , false
  270. #endif
  271. #endif
  272. };
  273. bool retracted_swap[EXTRUDERS]={false
  274. #if EXTRUDERS > 1
  275. , false
  276. #if EXTRUDERS > 2
  277. , false
  278. #endif
  279. #endif
  280. };
  281. float retract_length = RETRACT_LENGTH;
  282. float retract_length_swap = RETRACT_LENGTH_SWAP;
  283. float retract_feedrate = RETRACT_FEEDRATE;
  284. float retract_zlift = RETRACT_ZLIFT;
  285. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  286. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  287. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  288. #endif
  289. #ifdef ULTIPANEL
  290. #ifdef PS_DEFAULT_OFF
  291. bool powersupply = false;
  292. #else
  293. bool powersupply = true;
  294. #endif
  295. #endif
  296. #ifdef DELTA
  297. float delta[3] = {0.0, 0.0, 0.0};
  298. #define SIN_60 0.8660254037844386
  299. #define COS_60 0.5
  300. // these are the default values, can be overriden with M665
  301. float delta_radius= DELTA_RADIUS;
  302. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  303. float delta_tower1_y= -COS_60*delta_radius;
  304. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  305. float delta_tower2_y= -COS_60*delta_radius;
  306. float delta_tower3_x= 0.0; // back middle tower
  307. float delta_tower3_y= delta_radius;
  308. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  309. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  310. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  311. #endif
  312. #ifdef SCARA // Build size scaling
  313. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  314. #endif
  315. bool cancel_heatup = false ;
  316. #ifdef FILAMENT_SENSOR
  317. //Variables for Filament Sensor input
  318. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  319. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  320. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  321. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  322. int delay_index1=0; //index into ring buffer
  323. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  324. float delay_dist=0; //delay distance counter
  325. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  326. #endif
  327. const char errormagic[] PROGMEM = "Error:";
  328. const char echomagic[] PROGMEM = "echo:";
  329. //===========================================================================
  330. //=============================Private Variables=============================
  331. //===========================================================================
  332. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  333. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  334. #ifndef DELTA
  335. static float delta[3] = {0.0, 0.0, 0.0};
  336. #endif
  337. static float offset[3] = {0.0, 0.0, 0.0};
  338. static bool home_all_axis = true;
  339. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  340. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  341. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  342. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  343. static bool fromsd[BUFSIZE];
  344. static int bufindr = 0;
  345. static int bufindw = 0;
  346. static int buflen = 0;
  347. //static int i = 0;
  348. static char serial_char;
  349. static int serial_count = 0;
  350. static boolean comment_mode = false;
  351. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  352. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  353. //static float tt = 0;
  354. //static float bt = 0;
  355. //Inactivity shutdown variables
  356. static unsigned long previous_millis_cmd = 0;
  357. static unsigned long max_inactive_time = 0;
  358. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  359. unsigned long starttime=0;
  360. unsigned long stoptime=0;
  361. static uint8_t tmp_extruder;
  362. bool Stopped=false;
  363. #if NUM_SERVOS > 0
  364. Servo servos[NUM_SERVOS];
  365. #endif
  366. bool CooldownNoWait = true;
  367. bool target_direction;
  368. //Insert variables if CHDK is defined
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //=============================Routines======================================
  375. //===========================================================================
  376. void get_arc_coordinates();
  377. bool setTargetedHotend(int code);
  378. void serial_echopair_P(const char *s_P, float v)
  379. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, double v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, unsigned long v)
  383. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. //adds an command to the main command buffer
  403. //thats really done in a non-safe way.
  404. //needs overworking someday
  405. void enquecommand(const char *cmd)
  406. {
  407. if(buflen < BUFSIZE)
  408. {
  409. //this is dangerous if a mixing of serial and this happens
  410. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  411. SERIAL_ECHO_START;
  412. SERIAL_ECHORPGM(MSG_Enqueing);
  413. SERIAL_ECHO(cmdbuffer[bufindw]);
  414. SERIAL_ECHOLNPGM("\"");
  415. bufindw= (bufindw + 1)%BUFSIZE;
  416. buflen += 1;
  417. }
  418. }
  419. void enquecommand_P(const char *cmd)
  420. {
  421. if(buflen < BUFSIZE)
  422. {
  423. //this is dangerous if a mixing of serial and this happens
  424. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  425. SERIAL_ECHO_START;
  426. SERIAL_ECHORPGM(MSG_Enqueing);
  427. SERIAL_ECHO(cmdbuffer[bufindw]);
  428. SERIAL_ECHOLNPGM("\"");
  429. bufindw= (bufindw + 1)%BUFSIZE;
  430. buflen += 1;
  431. }
  432. }
  433. void setup_killpin()
  434. {
  435. #if defined(KILL_PIN) && KILL_PIN > -1
  436. SET_INPUT(KILL_PIN);
  437. WRITE(KILL_PIN,HIGH);
  438. #endif
  439. }
  440. // Set home pin
  441. void setup_homepin(void)
  442. {
  443. #if defined(HOME_PIN) && HOME_PIN > -1
  444. SET_INPUT(HOME_PIN);
  445. WRITE(HOME_PIN,HIGH);
  446. #endif
  447. }
  448. void setup_photpin()
  449. {
  450. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  451. SET_OUTPUT(PHOTOGRAPH_PIN);
  452. WRITE(PHOTOGRAPH_PIN, LOW);
  453. #endif
  454. }
  455. void setup_powerhold()
  456. {
  457. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  458. SET_OUTPUT(SUICIDE_PIN);
  459. WRITE(SUICIDE_PIN, HIGH);
  460. #endif
  461. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  462. SET_OUTPUT(PS_ON_PIN);
  463. #if defined(PS_DEFAULT_OFF)
  464. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  465. #else
  466. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  467. #endif
  468. #endif
  469. }
  470. void suicide()
  471. {
  472. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  473. SET_OUTPUT(SUICIDE_PIN);
  474. WRITE(SUICIDE_PIN, LOW);
  475. #endif
  476. }
  477. void servo_init()
  478. {
  479. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  480. servos[0].attach(SERVO0_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  483. servos[1].attach(SERVO1_PIN);
  484. #endif
  485. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  486. servos[2].attach(SERVO2_PIN);
  487. #endif
  488. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  489. servos[3].attach(SERVO3_PIN);
  490. #endif
  491. #if (NUM_SERVOS >= 5)
  492. #error "TODO: enter initalisation code for more servos"
  493. #endif
  494. // Set position of Servo Endstops that are defined
  495. #ifdef SERVO_ENDSTOPS
  496. for(int8_t i = 0; i < 3; i++)
  497. {
  498. if(servo_endstops[i] > -1) {
  499. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  500. }
  501. }
  502. #endif
  503. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  504. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  505. servos[servo_endstops[Z_AXIS]].detach();
  506. #endif
  507. }
  508. static void lcd_language_menu();
  509. void setup()
  510. {
  511. setup_killpin();
  512. setup_powerhold();
  513. MYSERIAL.begin(BAUDRATE);
  514. SERIAL_PROTOCOLLNPGM("start");
  515. SERIAL_ECHO_START;
  516. // Check startup - does nothing if bootloader sets MCUSR to 0
  517. byte mcu = MCUSR;
  518. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  519. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  520. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  521. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  522. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  523. MCUSR=0;
  524. SERIAL_ECHORPGM(MSG_MARLIN);
  525. SERIAL_ECHOLNRPGM(VERSION_STRING);
  526. #ifdef STRING_VERSION_CONFIG_H
  527. #ifdef STRING_CONFIG_H_AUTHOR
  528. SERIAL_ECHO_START;
  529. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  530. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  531. SERIAL_ECHORPGM(MSG_AUTHOR);
  532. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  533. SERIAL_ECHOPGM("Compiled: ");
  534. SERIAL_ECHOLNPGM(__DATE__);
  535. #endif
  536. #endif
  537. SERIAL_ECHO_START;
  538. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  539. SERIAL_ECHO(freeMemory());
  540. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  541. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  542. for(int8_t i = 0; i < BUFSIZE; i++)
  543. {
  544. fromsd[i] = false;
  545. }
  546. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  547. Config_RetrieveSettings();
  548. tp_init(); // Initialize temperature loop
  549. plan_init(); // Initialize planner;
  550. watchdog_init();
  551. st_init(); // Initialize stepper, this enables interrupts!
  552. setup_photpin();
  553. servo_init();
  554. lcd_init();
  555. if(!READ(BTN_ENC) ){
  556. _delay_ms(1000);
  557. if(!READ(BTN_ENC) ){
  558. SET_OUTPUT(BEEPER);
  559. WRITE(BEEPER,HIGH);
  560. lcd_force_language_selection();
  561. while(!READ(BTN_ENC));
  562. WRITE(BEEPER,LOW);
  563. }
  564. }else{
  565. _delay_ms(1000); // wait 1sec to display the splash screen
  566. }
  567. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  568. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  569. #endif
  570. #ifdef DIGIPOT_I2C
  571. digipot_i2c_init();
  572. #endif
  573. #ifdef Z_PROBE_SLED
  574. pinMode(SERVO0_PIN, OUTPUT);
  575. digitalWrite(SERVO0_PIN, LOW); // turn it off
  576. #endif // Z_PROBE_SLED
  577. setup_homepin();
  578. }
  579. //unsigned char first_run_ever=1;
  580. //void first_time_menu();
  581. void loop()
  582. {
  583. if(buflen < (BUFSIZE-1))
  584. get_command();
  585. #ifdef SDSUPPORT
  586. card.checkautostart(false);
  587. #endif
  588. if(buflen)
  589. {
  590. #ifdef SDSUPPORT
  591. if(card.saving)
  592. {
  593. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  594. {
  595. card.write_command(cmdbuffer[bufindr]);
  596. if(card.logging)
  597. {
  598. process_commands();
  599. }
  600. else
  601. {
  602. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  603. }
  604. }
  605. else
  606. {
  607. card.closefile();
  608. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  609. }
  610. }
  611. else
  612. {
  613. process_commands();
  614. }
  615. #else
  616. process_commands();
  617. #endif //SDSUPPORT
  618. buflen = (buflen-1);
  619. bufindr = (bufindr + 1)%BUFSIZE;
  620. }
  621. //check heater every n milliseconds
  622. manage_heater();
  623. manage_inactivity();
  624. checkHitEndstops();
  625. lcd_update();
  626. }
  627. void get_command()
  628. {
  629. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  630. serial_char = MYSERIAL.read();
  631. if(serial_char == '\n' ||
  632. serial_char == '\r' ||
  633. (serial_char == ':' && comment_mode == false) ||
  634. serial_count >= (MAX_CMD_SIZE - 1) )
  635. {
  636. if(!serial_count) { //if empty line
  637. comment_mode = false; //for new command
  638. return;
  639. }
  640. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  641. if(!comment_mode){
  642. comment_mode = false; //for new command
  643. fromsd[bufindw] = false;
  644. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  645. {
  646. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  647. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  648. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  649. SERIAL_ERROR_START;
  650. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  651. SERIAL_ERRORLN(gcode_LastN);
  652. //Serial.println(gcode_N);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  658. {
  659. byte checksum = 0;
  660. byte count = 0;
  661. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  662. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  663. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  664. SERIAL_ERROR_START;
  665. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  666. SERIAL_ERRORLN(gcode_LastN);
  667. FlushSerialRequestResend();
  668. serial_count = 0;
  669. return;
  670. }
  671. //if no errors, continue parsing
  672. }
  673. else
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. gcode_LastN = gcode_N;
  683. //if no errors, continue parsing
  684. }
  685. else // if we don't receive 'N' but still see '*'
  686. {
  687. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  688. {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. serial_count = 0;
  693. return;
  694. }
  695. }
  696. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  697. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  698. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  699. case 0:
  700. case 1:
  701. case 2:
  702. case 3:
  703. if (Stopped == true) {
  704. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  705. LCD_MESSAGERPGM(MSG_STOPPED);
  706. }
  707. break;
  708. default:
  709. break;
  710. }
  711. }
  712. //If command was e-stop process now
  713. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  714. kill();
  715. bufindw = (bufindw + 1)%BUFSIZE;
  716. buflen += 1;
  717. }
  718. serial_count = 0; //clear buffer
  719. }
  720. else
  721. {
  722. if(serial_char == ';') comment_mode = true;
  723. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  724. }
  725. }
  726. #ifdef SDSUPPORT
  727. if(!card.sdprinting || serial_count!=0){
  728. return;
  729. }
  730. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  731. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  732. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  733. static bool stop_buffering=false;
  734. if(buflen==0) stop_buffering=false;
  735. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  736. int16_t n=card.get();
  737. serial_char = (char)n;
  738. if(serial_char == '\n' ||
  739. serial_char == '\r' ||
  740. (serial_char == '#' && comment_mode == false) ||
  741. (serial_char == ':' && comment_mode == false) ||
  742. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  743. {
  744. if(card.eof()){
  745. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  746. stoptime=millis();
  747. char time[30];
  748. unsigned long t=(stoptime-starttime)/1000;
  749. int hours, minutes;
  750. minutes=(t/60)%60;
  751. hours=t/60/60;
  752. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOLN(time);
  755. lcd_setstatus(time);
  756. card.printingHasFinished();
  757. card.checkautostart(true);
  758. }
  759. if(serial_char=='#')
  760. stop_buffering=true;
  761. if(!serial_count)
  762. {
  763. comment_mode = false; //for new command
  764. return; //if empty line
  765. }
  766. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  767. // if(!comment_mode){
  768. fromsd[bufindw] = true;
  769. buflen += 1;
  770. bufindw = (bufindw + 1)%BUFSIZE;
  771. // }
  772. comment_mode = false; //for new command
  773. serial_count = 0; //clear buffer
  774. }
  775. else
  776. {
  777. if(serial_char == ';') comment_mode = true;
  778. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  779. }
  780. }
  781. #endif //SDSUPPORT
  782. }
  783. float code_value()
  784. {
  785. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  786. }
  787. long code_value_long()
  788. {
  789. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  790. }
  791. bool code_seen(char code)
  792. {
  793. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  794. return (strchr_pointer != NULL); //Return True if a character was found
  795. }
  796. #define DEFINE_PGM_READ_ANY(type, reader) \
  797. static inline type pgm_read_any(const type *p) \
  798. { return pgm_read_##reader##_near(p); }
  799. DEFINE_PGM_READ_ANY(float, float);
  800. DEFINE_PGM_READ_ANY(signed char, byte);
  801. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  802. static const PROGMEM type array##_P[3] = \
  803. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  804. static inline type array(int axis) \
  805. { return pgm_read_any(&array##_P[axis]); }
  806. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  807. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  808. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  809. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  810. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  811. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  812. #ifdef DUAL_X_CARRIAGE
  813. #if EXTRUDERS == 1 || defined(COREXY) \
  814. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  815. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  816. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  817. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  818. #endif
  819. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  820. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  821. #endif
  822. #define DXC_FULL_CONTROL_MODE 0
  823. #define DXC_AUTO_PARK_MODE 1
  824. #define DXC_DUPLICATION_MODE 2
  825. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  826. static float x_home_pos(int extruder) {
  827. if (extruder == 0)
  828. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  829. else
  830. // In dual carriage mode the extruder offset provides an override of the
  831. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  832. // This allow soft recalibration of the second extruder offset position without firmware reflash
  833. // (through the M218 command).
  834. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  835. }
  836. static int x_home_dir(int extruder) {
  837. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  838. }
  839. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  840. static bool active_extruder_parked = false; // used in mode 1 & 2
  841. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  842. static unsigned long delayed_move_time = 0; // used in mode 1
  843. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  844. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  845. bool extruder_duplication_enabled = false; // used in mode 2
  846. #endif //DUAL_X_CARRIAGE
  847. static void axis_is_at_home(int axis) {
  848. #ifdef DUAL_X_CARRIAGE
  849. if (axis == X_AXIS) {
  850. if (active_extruder != 0) {
  851. current_position[X_AXIS] = x_home_pos(active_extruder);
  852. min_pos[X_AXIS] = X2_MIN_POS;
  853. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  854. return;
  855. }
  856. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  857. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  858. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  859. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  860. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  861. return;
  862. }
  863. }
  864. #endif
  865. #ifdef SCARA
  866. float homeposition[3];
  867. char i;
  868. if (axis < 2)
  869. {
  870. for (i=0; i<3; i++)
  871. {
  872. homeposition[i] = base_home_pos(i);
  873. }
  874. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  875. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  876. // Works out real Homeposition angles using inverse kinematics,
  877. // and calculates homing offset using forward kinematics
  878. calculate_delta(homeposition);
  879. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  880. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  881. for (i=0; i<2; i++)
  882. {
  883. delta[i] -= add_homing[i];
  884. }
  885. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  886. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  887. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  888. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  889. calculate_SCARA_forward_Transform(delta);
  890. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. current_position[axis] = delta[axis];
  893. // SCARA home positions are based on configuration since the actual limits are determined by the
  894. // inverse kinematic transform.
  895. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  896. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  897. }
  898. else
  899. {
  900. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  901. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  902. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  903. }
  904. #else
  905. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  906. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  907. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  908. #endif
  909. }
  910. #ifdef ENABLE_AUTO_BED_LEVELING
  911. #ifdef AUTO_BED_LEVELING_GRID
  912. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  913. {
  914. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  915. planeNormal.debug("planeNormal");
  916. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  917. //bedLevel.debug("bedLevel");
  918. //plan_bed_level_matrix.debug("bed level before");
  919. //vector_3 uncorrected_position = plan_get_position_mm();
  920. //uncorrected_position.debug("position before");
  921. vector_3 corrected_position = plan_get_position();
  922. // corrected_position.debug("position after");
  923. current_position[X_AXIS] = corrected_position.x;
  924. current_position[Y_AXIS] = corrected_position.y;
  925. current_position[Z_AXIS] = corrected_position.z;
  926. // put the bed at 0 so we don't go below it.
  927. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  929. }
  930. #else // not AUTO_BED_LEVELING_GRID
  931. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  932. plan_bed_level_matrix.set_to_identity();
  933. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  934. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  935. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  936. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  937. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  938. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  939. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  940. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  941. vector_3 corrected_position = plan_get_position();
  942. current_position[X_AXIS] = corrected_position.x;
  943. current_position[Y_AXIS] = corrected_position.y;
  944. current_position[Z_AXIS] = corrected_position.z;
  945. // put the bed at 0 so we don't go below it.
  946. current_position[Z_AXIS] = zprobe_zoffset;
  947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  948. }
  949. #endif // AUTO_BED_LEVELING_GRID
  950. static void run_z_probe() {
  951. plan_bed_level_matrix.set_to_identity();
  952. feedrate = homing_feedrate[Z_AXIS];
  953. // move down until you find the bed
  954. float zPosition = -10;
  955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  956. st_synchronize();
  957. // we have to let the planner know where we are right now as it is not where we said to go.
  958. zPosition = st_get_position_mm(Z_AXIS);
  959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  960. // move up the retract distance
  961. zPosition += home_retract_mm(Z_AXIS);
  962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  963. st_synchronize();
  964. // move back down slowly to find bed
  965. feedrate = homing_feedrate[Z_AXIS]/4;
  966. zPosition -= home_retract_mm(Z_AXIS) * 2;
  967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  968. st_synchronize();
  969. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  970. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  972. }
  973. static void do_blocking_move_to(float x, float y, float z) {
  974. float oldFeedRate = feedrate;
  975. feedrate = homing_feedrate[Z_AXIS];
  976. current_position[Z_AXIS] = z;
  977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  978. st_synchronize();
  979. feedrate = XY_TRAVEL_SPEED;
  980. current_position[X_AXIS] = x;
  981. current_position[Y_AXIS] = y;
  982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  983. st_synchronize();
  984. feedrate = oldFeedRate;
  985. }
  986. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  987. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  988. }
  989. static void setup_for_endstop_move() {
  990. saved_feedrate = feedrate;
  991. saved_feedmultiply = feedmultiply;
  992. feedmultiply = 100;
  993. previous_millis_cmd = millis();
  994. enable_endstops(true);
  995. }
  996. static void clean_up_after_endstop_move() {
  997. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  998. enable_endstops(false);
  999. #endif
  1000. feedrate = saved_feedrate;
  1001. feedmultiply = saved_feedmultiply;
  1002. previous_millis_cmd = millis();
  1003. }
  1004. static void engage_z_probe() {
  1005. // Engage Z Servo endstop if enabled
  1006. #ifdef SERVO_ENDSTOPS
  1007. if (servo_endstops[Z_AXIS] > -1) {
  1008. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1009. servos[servo_endstops[Z_AXIS]].attach(0);
  1010. #endif
  1011. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1012. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1013. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1014. servos[servo_endstops[Z_AXIS]].detach();
  1015. #endif
  1016. }
  1017. #endif
  1018. }
  1019. static void retract_z_probe() {
  1020. // Retract Z Servo endstop if enabled
  1021. #ifdef SERVO_ENDSTOPS
  1022. if (servo_endstops[Z_AXIS] > -1) {
  1023. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1024. servos[servo_endstops[Z_AXIS]].attach(0);
  1025. #endif
  1026. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1027. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1028. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1029. servos[servo_endstops[Z_AXIS]].detach();
  1030. #endif
  1031. }
  1032. #endif
  1033. }
  1034. /// Probe bed height at position (x,y), returns the measured z value
  1035. static float probe_pt(float x, float y, float z_before) {
  1036. // move to right place
  1037. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1038. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1039. #ifndef Z_PROBE_SLED
  1040. engage_z_probe(); // Engage Z Servo endstop if available
  1041. #endif // Z_PROBE_SLED
  1042. run_z_probe();
  1043. float measured_z = current_position[Z_AXIS];
  1044. #ifndef Z_PROBE_SLED
  1045. retract_z_probe();
  1046. #endif // Z_PROBE_SLED
  1047. SERIAL_PROTOCOLRPGM(MSG_BED);
  1048. SERIAL_PROTOCOLPGM(" x: ");
  1049. SERIAL_PROTOCOL(x);
  1050. SERIAL_PROTOCOLPGM(" y: ");
  1051. SERIAL_PROTOCOL(y);
  1052. SERIAL_PROTOCOLPGM(" z: ");
  1053. SERIAL_PROTOCOL(measured_z);
  1054. SERIAL_PROTOCOLPGM("\n");
  1055. return measured_z;
  1056. }
  1057. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1058. static void homeaxis(int axis) {
  1059. #define HOMEAXIS_DO(LETTER) \
  1060. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1061. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1062. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1063. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1064. 0) {
  1065. int axis_home_dir = home_dir(axis);
  1066. #ifdef DUAL_X_CARRIAGE
  1067. if (axis == X_AXIS)
  1068. axis_home_dir = x_home_dir(active_extruder);
  1069. #endif
  1070. current_position[axis] = 0;
  1071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1072. #ifndef Z_PROBE_SLED
  1073. // Engage Servo endstop if enabled
  1074. #ifdef SERVO_ENDSTOPS
  1075. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1076. if (axis==Z_AXIS) {
  1077. engage_z_probe();
  1078. }
  1079. else
  1080. #endif
  1081. if (servo_endstops[axis] > -1) {
  1082. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1083. }
  1084. #endif
  1085. #endif // Z_PROBE_SLED
  1086. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1087. feedrate = homing_feedrate[axis];
  1088. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1089. st_synchronize();
  1090. current_position[axis] = 0;
  1091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1092. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1093. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1094. st_synchronize();
  1095. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1096. #ifdef DELTA
  1097. feedrate = homing_feedrate[axis]/10;
  1098. #else
  1099. feedrate = homing_feedrate[axis]/2 ;
  1100. #endif
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1102. st_synchronize();
  1103. #ifdef DELTA
  1104. // retrace by the amount specified in endstop_adj
  1105. if (endstop_adj[axis] * axis_home_dir < 0) {
  1106. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1107. destination[axis] = endstop_adj[axis];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. }
  1111. #endif
  1112. axis_is_at_home(axis);
  1113. destination[axis] = current_position[axis];
  1114. feedrate = 0.0;
  1115. endstops_hit_on_purpose();
  1116. axis_known_position[axis] = true;
  1117. // Retract Servo endstop if enabled
  1118. #ifdef SERVO_ENDSTOPS
  1119. if (servo_endstops[axis] > -1) {
  1120. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1121. }
  1122. #endif
  1123. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1124. #ifndef Z_PROBE_SLED
  1125. if (axis==Z_AXIS) retract_z_probe();
  1126. #endif
  1127. #endif
  1128. }
  1129. }
  1130. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1131. void refresh_cmd_timeout(void)
  1132. {
  1133. previous_millis_cmd = millis();
  1134. }
  1135. #ifdef FWRETRACT
  1136. void retract(bool retracting, bool swapretract = false) {
  1137. if(retracting && !retracted[active_extruder]) {
  1138. destination[X_AXIS]=current_position[X_AXIS];
  1139. destination[Y_AXIS]=current_position[Y_AXIS];
  1140. destination[Z_AXIS]=current_position[Z_AXIS];
  1141. destination[E_AXIS]=current_position[E_AXIS];
  1142. if (swapretract) {
  1143. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1144. } else {
  1145. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1146. }
  1147. plan_set_e_position(current_position[E_AXIS]);
  1148. float oldFeedrate = feedrate;
  1149. feedrate=retract_feedrate*60;
  1150. retracted[active_extruder]=true;
  1151. prepare_move();
  1152. current_position[Z_AXIS]-=retract_zlift;
  1153. #ifdef DELTA
  1154. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1155. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1156. #else
  1157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1158. #endif
  1159. prepare_move();
  1160. feedrate = oldFeedrate;
  1161. } else if(!retracting && retracted[active_extruder]) {
  1162. destination[X_AXIS]=current_position[X_AXIS];
  1163. destination[Y_AXIS]=current_position[Y_AXIS];
  1164. destination[Z_AXIS]=current_position[Z_AXIS];
  1165. destination[E_AXIS]=current_position[E_AXIS];
  1166. current_position[Z_AXIS]+=retract_zlift;
  1167. #ifdef DELTA
  1168. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1169. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1170. #else
  1171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1172. #endif
  1173. //prepare_move();
  1174. if (swapretract) {
  1175. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1176. } else {
  1177. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1178. }
  1179. plan_set_e_position(current_position[E_AXIS]);
  1180. float oldFeedrate = feedrate;
  1181. feedrate=retract_recover_feedrate*60;
  1182. retracted[active_extruder]=false;
  1183. prepare_move();
  1184. feedrate = oldFeedrate;
  1185. }
  1186. } //retract
  1187. #endif //FWRETRACT
  1188. #ifdef Z_PROBE_SLED
  1189. //
  1190. // Method to dock/undock a sled designed by Charles Bell.
  1191. //
  1192. // dock[in] If true, move to MAX_X and engage the electromagnet
  1193. // offset[in] The additional distance to move to adjust docking location
  1194. //
  1195. static void dock_sled(bool dock, int offset=0) {
  1196. int z_loc;
  1197. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1198. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1199. SERIAL_ECHO_START;
  1200. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1201. return;
  1202. }
  1203. if (dock) {
  1204. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1205. current_position[Y_AXIS],
  1206. current_position[Z_AXIS]);
  1207. // turn off magnet
  1208. digitalWrite(SERVO0_PIN, LOW);
  1209. } else {
  1210. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1211. z_loc = Z_RAISE_BEFORE_PROBING;
  1212. else
  1213. z_loc = current_position[Z_AXIS];
  1214. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1215. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1216. // turn on magnet
  1217. digitalWrite(SERVO0_PIN, HIGH);
  1218. }
  1219. }
  1220. #endif
  1221. void process_commands()
  1222. {
  1223. #ifdef FILAMENT_RUNOUT_SUPPORT
  1224. SET_INPUT(FR_SENS);
  1225. #endif
  1226. unsigned long codenum; //throw away variable
  1227. char *starpos = NULL;
  1228. #ifdef ENABLE_AUTO_BED_LEVELING
  1229. float x_tmp, y_tmp, z_tmp, real_z;
  1230. #endif
  1231. // PRUSA GCODES
  1232. if(code_seen('PRUSA')){
  1233. if(code_seen('Fir')){
  1234. SERIAL_PROTOCOLLN(FW_version);
  1235. } else if(code_seen('Rev')){
  1236. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1237. } else if(code_seen('Lang')) {
  1238. lcd_force_language_selection();
  1239. }
  1240. }
  1241. else if(code_seen('G'))
  1242. {
  1243. switch((int)code_value())
  1244. {
  1245. case 0: // G0 -> G1
  1246. case 1: // G1
  1247. if(Stopped == false) {
  1248. #ifdef FILAMENT_RUNOUT_SUPPORT
  1249. if(READ(FR_SENS)){
  1250. feedmultiplyBckp=feedmultiply;
  1251. float target[4];
  1252. float lastpos[4];
  1253. target[X_AXIS]=current_position[X_AXIS];
  1254. target[Y_AXIS]=current_position[Y_AXIS];
  1255. target[Z_AXIS]=current_position[Z_AXIS];
  1256. target[E_AXIS]=current_position[E_AXIS];
  1257. lastpos[X_AXIS]=current_position[X_AXIS];
  1258. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1259. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1260. lastpos[E_AXIS]=current_position[E_AXIS];
  1261. //retract by E
  1262. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1264. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1266. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1267. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1269. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1270. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1271. //finish moves
  1272. st_synchronize();
  1273. //disable extruder steppers so filament can be removed
  1274. disable_e0();
  1275. disable_e1();
  1276. disable_e2();
  1277. delay(100);
  1278. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1279. uint8_t cnt=0;
  1280. int counterBeep = 0;
  1281. lcd_wait_interact();
  1282. while(!lcd_clicked()){
  1283. cnt++;
  1284. manage_heater();
  1285. manage_inactivity(true);
  1286. //lcd_update();
  1287. if(cnt==0)
  1288. {
  1289. #if BEEPER > 0
  1290. if (counterBeep== 500){
  1291. counterBeep = 0;
  1292. }
  1293. SET_OUTPUT(BEEPER);
  1294. if (counterBeep== 0){
  1295. WRITE(BEEPER,HIGH);
  1296. }
  1297. if (counterBeep== 20){
  1298. WRITE(BEEPER,LOW);
  1299. }
  1300. counterBeep++;
  1301. #else
  1302. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1303. lcd_buzz(1000/6,100);
  1304. #else
  1305. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1306. #endif
  1307. #endif
  1308. }
  1309. }
  1310. WRITE(BEEPER,LOW);
  1311. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1313. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1315. lcd_change_fil_state = 0;
  1316. lcd_loading_filament();
  1317. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1318. lcd_change_fil_state = 0;
  1319. lcd_alright();
  1320. switch(lcd_change_fil_state){
  1321. case 2:
  1322. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1324. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1325. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1326. lcd_loading_filament();
  1327. break;
  1328. case 3:
  1329. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1330. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1331. lcd_loading_color();
  1332. break;
  1333. default:
  1334. lcd_change_success();
  1335. break;
  1336. }
  1337. }
  1338. target[E_AXIS]+= 5;
  1339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1340. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1341. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1342. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1343. //plan_set_e_position(current_position[E_AXIS]);
  1344. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1345. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1346. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1347. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1348. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1349. plan_set_e_position(lastpos[E_AXIS]);
  1350. feedmultiply=feedmultiplyBckp;
  1351. char cmd[9];
  1352. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1353. enquecommand(cmd);
  1354. }
  1355. #endif
  1356. get_coordinates(); // For X Y Z E F
  1357. #ifdef FWRETRACT
  1358. if(autoretract_enabled)
  1359. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1360. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1361. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1362. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1363. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1364. retract(!retracted);
  1365. return;
  1366. }
  1367. }
  1368. #endif //FWRETRACT
  1369. prepare_move();
  1370. //ClearToSend();
  1371. }
  1372. break;
  1373. #ifndef SCARA //disable arc support
  1374. case 2: // G2 - CW ARC
  1375. if(Stopped == false) {
  1376. get_arc_coordinates();
  1377. prepare_arc_move(true);
  1378. }
  1379. break;
  1380. case 3: // G3 - CCW ARC
  1381. if(Stopped == false) {
  1382. get_arc_coordinates();
  1383. prepare_arc_move(false);
  1384. }
  1385. break;
  1386. #endif
  1387. case 4: // G4 dwell
  1388. LCD_MESSAGERPGM(MSG_DWELL);
  1389. codenum = 0;
  1390. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1391. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1392. st_synchronize();
  1393. codenum += millis(); // keep track of when we started waiting
  1394. previous_millis_cmd = millis();
  1395. while(millis() < codenum) {
  1396. manage_heater();
  1397. manage_inactivity();
  1398. lcd_update();
  1399. }
  1400. break;
  1401. #ifdef FWRETRACT
  1402. case 10: // G10 retract
  1403. #if EXTRUDERS > 1
  1404. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1405. retract(true,retracted_swap[active_extruder]);
  1406. #else
  1407. retract(true);
  1408. #endif
  1409. break;
  1410. case 11: // G11 retract_recover
  1411. #if EXTRUDERS > 1
  1412. retract(false,retracted_swap[active_extruder]);
  1413. #else
  1414. retract(false);
  1415. #endif
  1416. break;
  1417. #endif //FWRETRACT
  1418. case 28: //G28 Home all Axis one at a time
  1419. #ifdef ENABLE_AUTO_BED_LEVELING
  1420. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1421. #endif //ENABLE_AUTO_BED_LEVELING
  1422. saved_feedrate = feedrate;
  1423. saved_feedmultiply = feedmultiply;
  1424. feedmultiply = 100;
  1425. previous_millis_cmd = millis();
  1426. enable_endstops(true);
  1427. for(int8_t i=0; i < NUM_AXIS; i++) {
  1428. destination[i] = current_position[i];
  1429. }
  1430. feedrate = 0.0;
  1431. #ifdef DELTA
  1432. // A delta can only safely home all axis at the same time
  1433. // all axis have to home at the same time
  1434. // Move all carriages up together until the first endstop is hit.
  1435. current_position[X_AXIS] = 0;
  1436. current_position[Y_AXIS] = 0;
  1437. current_position[Z_AXIS] = 0;
  1438. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1439. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1440. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1441. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1442. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1444. st_synchronize();
  1445. endstops_hit_on_purpose();
  1446. current_position[X_AXIS] = destination[X_AXIS];
  1447. current_position[Y_AXIS] = destination[Y_AXIS];
  1448. current_position[Z_AXIS] = destination[Z_AXIS];
  1449. // take care of back off and rehome now we are all at the top
  1450. HOMEAXIS(X);
  1451. HOMEAXIS(Y);
  1452. HOMEAXIS(Z);
  1453. calculate_delta(current_position);
  1454. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1455. #else // NOT DELTA
  1456. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1457. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1458. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1459. HOMEAXIS(Z);
  1460. }
  1461. #endif
  1462. #ifdef QUICK_HOME
  1463. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1464. {
  1465. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1466. #ifndef DUAL_X_CARRIAGE
  1467. int x_axis_home_dir = home_dir(X_AXIS);
  1468. #else
  1469. int x_axis_home_dir = x_home_dir(active_extruder);
  1470. extruder_duplication_enabled = false;
  1471. #endif
  1472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1473. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1474. feedrate = homing_feedrate[X_AXIS];
  1475. if(homing_feedrate[Y_AXIS]<feedrate)
  1476. feedrate = homing_feedrate[Y_AXIS];
  1477. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1478. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1479. } else {
  1480. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1481. }
  1482. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. axis_is_at_home(X_AXIS);
  1485. axis_is_at_home(Y_AXIS);
  1486. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1487. destination[X_AXIS] = current_position[X_AXIS];
  1488. destination[Y_AXIS] = current_position[Y_AXIS];
  1489. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1490. feedrate = 0.0;
  1491. st_synchronize();
  1492. endstops_hit_on_purpose();
  1493. current_position[X_AXIS] = destination[X_AXIS];
  1494. current_position[Y_AXIS] = destination[Y_AXIS];
  1495. #ifndef SCARA
  1496. current_position[Z_AXIS] = destination[Z_AXIS];
  1497. #endif
  1498. }
  1499. #endif
  1500. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1501. {
  1502. #ifdef DUAL_X_CARRIAGE
  1503. int tmp_extruder = active_extruder;
  1504. extruder_duplication_enabled = false;
  1505. active_extruder = !active_extruder;
  1506. HOMEAXIS(X);
  1507. inactive_extruder_x_pos = current_position[X_AXIS];
  1508. active_extruder = tmp_extruder;
  1509. HOMEAXIS(X);
  1510. // reset state used by the different modes
  1511. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1512. delayed_move_time = 0;
  1513. active_extruder_parked = true;
  1514. #else
  1515. HOMEAXIS(X);
  1516. #endif
  1517. }
  1518. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1519. HOMEAXIS(Y);
  1520. }
  1521. if(code_seen(axis_codes[X_AXIS]))
  1522. {
  1523. if(code_value_long() != 0) {
  1524. #ifdef SCARA
  1525. current_position[X_AXIS]=code_value();
  1526. #else
  1527. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1528. #endif
  1529. }
  1530. }
  1531. if(code_seen(axis_codes[Y_AXIS])) {
  1532. if(code_value_long() != 0) {
  1533. #ifdef SCARA
  1534. current_position[Y_AXIS]=code_value();
  1535. #else
  1536. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1537. #endif
  1538. }
  1539. }
  1540. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1541. #ifndef Z_SAFE_HOMING
  1542. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1543. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1544. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1545. feedrate = max_feedrate[Z_AXIS];
  1546. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1547. st_synchronize();
  1548. #endif
  1549. HOMEAXIS(Z);
  1550. }
  1551. #else // Z Safe mode activated.
  1552. if(home_all_axis) {
  1553. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1554. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1555. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1556. feedrate = XY_TRAVEL_SPEED/60;
  1557. current_position[Z_AXIS] = 0;
  1558. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1560. st_synchronize();
  1561. current_position[X_AXIS] = destination[X_AXIS];
  1562. current_position[Y_AXIS] = destination[Y_AXIS];
  1563. HOMEAXIS(Z);
  1564. }
  1565. // Let's see if X and Y are homed and probe is inside bed area.
  1566. if(code_seen(axis_codes[Z_AXIS])) {
  1567. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1568. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1569. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1570. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1571. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1572. current_position[Z_AXIS] = 0;
  1573. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1574. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1575. feedrate = max_feedrate[Z_AXIS];
  1576. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1577. st_synchronize();
  1578. HOMEAXIS(Z);
  1579. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1580. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1581. SERIAL_ECHO_START;
  1582. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1583. } else {
  1584. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1585. SERIAL_ECHO_START;
  1586. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1587. }
  1588. }
  1589. #endif
  1590. #endif
  1591. if(code_seen(axis_codes[Z_AXIS])) {
  1592. if(code_value_long() != 0) {
  1593. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1594. }
  1595. }
  1596. #ifdef ENABLE_AUTO_BED_LEVELING
  1597. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1598. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1599. }
  1600. #endif
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. #endif // else DELTA
  1603. #ifdef SCARA
  1604. calculate_delta(current_position);
  1605. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1606. #endif // SCARA
  1607. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1608. enable_endstops(false);
  1609. #endif
  1610. feedrate = saved_feedrate;
  1611. feedmultiply = saved_feedmultiply;
  1612. previous_millis_cmd = millis();
  1613. endstops_hit_on_purpose();
  1614. if(card.sdprinting) {
  1615. EEPROM_read_B(4089,&babystepLoad[2]);
  1616. if(babystepLoad[2] != 0){
  1617. lcd_adjust_z();
  1618. }
  1619. }
  1620. break;
  1621. #ifdef ENABLE_AUTO_BED_LEVELING
  1622. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1623. {
  1624. #if Z_MIN_PIN == -1
  1625. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1626. #endif
  1627. // Prevent user from running a G29 without first homing in X and Y
  1628. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1629. {
  1630. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1631. SERIAL_ECHO_START;
  1632. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1633. break; // abort G29, since we don't know where we are
  1634. }
  1635. #ifdef Z_PROBE_SLED
  1636. dock_sled(false);
  1637. #endif // Z_PROBE_SLED
  1638. st_synchronize();
  1639. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1640. //vector_3 corrected_position = plan_get_position_mm();
  1641. //corrected_position.debug("position before G29");
  1642. plan_bed_level_matrix.set_to_identity();
  1643. vector_3 uncorrected_position = plan_get_position();
  1644. //uncorrected_position.debug("position durring G29");
  1645. current_position[X_AXIS] = uncorrected_position.x;
  1646. current_position[Y_AXIS] = uncorrected_position.y;
  1647. current_position[Z_AXIS] = uncorrected_position.z;
  1648. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1649. setup_for_endstop_move();
  1650. feedrate = homing_feedrate[Z_AXIS];
  1651. #ifdef AUTO_BED_LEVELING_GRID
  1652. // probe at the points of a lattice grid
  1653. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1654. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1655. // solve the plane equation ax + by + d = z
  1656. // A is the matrix with rows [x y 1] for all the probed points
  1657. // B is the vector of the Z positions
  1658. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1659. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1660. // "A" matrix of the linear system of equations
  1661. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1662. // "B" vector of Z points
  1663. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1664. int probePointCounter = 0;
  1665. bool zig = true;
  1666. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1667. {
  1668. int xProbe, xInc;
  1669. if (zig)
  1670. {
  1671. xProbe = LEFT_PROBE_BED_POSITION;
  1672. //xEnd = RIGHT_PROBE_BED_POSITION;
  1673. xInc = xGridSpacing;
  1674. zig = false;
  1675. } else // zag
  1676. {
  1677. xProbe = RIGHT_PROBE_BED_POSITION;
  1678. //xEnd = LEFT_PROBE_BED_POSITION;
  1679. xInc = -xGridSpacing;
  1680. zig = true;
  1681. }
  1682. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1683. {
  1684. float z_before;
  1685. if (probePointCounter == 0)
  1686. {
  1687. // raise before probing
  1688. z_before = Z_RAISE_BEFORE_PROBING;
  1689. } else
  1690. {
  1691. // raise extruder
  1692. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1693. }
  1694. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1695. eqnBVector[probePointCounter] = measured_z;
  1696. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1697. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1698. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1699. probePointCounter++;
  1700. xProbe += xInc;
  1701. }
  1702. }
  1703. clean_up_after_endstop_move();
  1704. // solve lsq problem
  1705. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1706. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1707. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1708. SERIAL_PROTOCOLPGM(" b: ");
  1709. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1710. SERIAL_PROTOCOLPGM(" d: ");
  1711. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1712. set_bed_level_equation_lsq(plane_equation_coefficients);
  1713. free(plane_equation_coefficients);
  1714. #else // AUTO_BED_LEVELING_GRID not defined
  1715. // Probe at 3 arbitrary points
  1716. // probe 1
  1717. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1718. // probe 2
  1719. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1720. // probe 3
  1721. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1722. clean_up_after_endstop_move();
  1723. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1724. #endif // AUTO_BED_LEVELING_GRID
  1725. st_synchronize();
  1726. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1727. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1728. // When the bed is uneven, this height must be corrected.
  1729. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1730. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1731. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1732. z_tmp = current_position[Z_AXIS];
  1733. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1734. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. #ifdef Z_PROBE_SLED
  1737. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1738. #endif // Z_PROBE_SLED
  1739. }
  1740. break;
  1741. #ifndef Z_PROBE_SLED
  1742. case 30: // G30 Single Z Probe
  1743. {
  1744. engage_z_probe(); // Engage Z Servo endstop if available
  1745. st_synchronize();
  1746. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1747. setup_for_endstop_move();
  1748. feedrate = homing_feedrate[Z_AXIS];
  1749. run_z_probe();
  1750. SERIAL_PROTOCOLPGM(MSG_BED);
  1751. SERIAL_PROTOCOLPGM(" X: ");
  1752. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1753. SERIAL_PROTOCOLPGM(" Y: ");
  1754. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1755. SERIAL_PROTOCOLPGM(" Z: ");
  1756. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1757. SERIAL_PROTOCOLPGM("\n");
  1758. clean_up_after_endstop_move();
  1759. retract_z_probe(); // Retract Z Servo endstop if available
  1760. }
  1761. break;
  1762. #else
  1763. case 31: // dock the sled
  1764. dock_sled(true);
  1765. break;
  1766. case 32: // undock the sled
  1767. dock_sled(false);
  1768. break;
  1769. #endif // Z_PROBE_SLED
  1770. #endif // ENABLE_AUTO_BED_LEVELING
  1771. case 90: // G90
  1772. relative_mode = false;
  1773. break;
  1774. case 91: // G91
  1775. relative_mode = true;
  1776. break;
  1777. case 92: // G92
  1778. if(!code_seen(axis_codes[E_AXIS]))
  1779. st_synchronize();
  1780. for(int8_t i=0; i < NUM_AXIS; i++) {
  1781. if(code_seen(axis_codes[i])) {
  1782. if(i == E_AXIS) {
  1783. current_position[i] = code_value();
  1784. plan_set_e_position(current_position[E_AXIS]);
  1785. }
  1786. else {
  1787. #ifdef SCARA
  1788. if (i == X_AXIS || i == Y_AXIS) {
  1789. current_position[i] = code_value();
  1790. }
  1791. else {
  1792. current_position[i] = code_value()+add_homing[i];
  1793. }
  1794. #else
  1795. current_position[i] = code_value()+add_homing[i];
  1796. #endif
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. }
  1799. }
  1800. }
  1801. break;
  1802. }
  1803. }
  1804. else if(code_seen('M'))
  1805. {
  1806. switch( (int)code_value() )
  1807. {
  1808. #ifdef ULTIPANEL
  1809. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1810. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1811. {
  1812. char *src = strchr_pointer + 2;
  1813. codenum = 0;
  1814. bool hasP = false, hasS = false;
  1815. if (code_seen('P')) {
  1816. codenum = code_value(); // milliseconds to wait
  1817. hasP = codenum > 0;
  1818. }
  1819. if (code_seen('S')) {
  1820. codenum = code_value() * 1000; // seconds to wait
  1821. hasS = codenum > 0;
  1822. }
  1823. starpos = strchr(src, '*');
  1824. if (starpos != NULL) *(starpos) = '\0';
  1825. while (*src == ' ') ++src;
  1826. if (!hasP && !hasS && *src != '\0') {
  1827. lcd_setstatus(src);
  1828. } else {
  1829. LCD_MESSAGERPGM(MSG_USERWAIT);
  1830. }
  1831. lcd_ignore_click();
  1832. st_synchronize();
  1833. previous_millis_cmd = millis();
  1834. if (codenum > 0){
  1835. codenum += millis(); // keep track of when we started waiting
  1836. while(millis() < codenum && !lcd_clicked()){
  1837. manage_heater();
  1838. manage_inactivity();
  1839. lcd_update();
  1840. }
  1841. lcd_ignore_click(false);
  1842. }else{
  1843. if (!lcd_detected())
  1844. break;
  1845. while(!lcd_clicked()){
  1846. manage_heater();
  1847. manage_inactivity();
  1848. lcd_update();
  1849. }
  1850. }
  1851. if (IS_SD_PRINTING)
  1852. LCD_MESSAGERPGM(MSG_RESUMING);
  1853. else
  1854. LCD_MESSAGERPGM(WELCOME_MSG);
  1855. }
  1856. break;
  1857. #endif
  1858. case 17:
  1859. LCD_MESSAGERPGM(MSG_NO_MOVE);
  1860. enable_x();
  1861. enable_y();
  1862. enable_z();
  1863. enable_e0();
  1864. enable_e1();
  1865. enable_e2();
  1866. break;
  1867. #ifdef SDSUPPORT
  1868. case 20: // M20 - list SD card
  1869. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  1870. card.ls();
  1871. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  1872. break;
  1873. case 21: // M21 - init SD card
  1874. card.initsd();
  1875. break;
  1876. case 22: //M22 - release SD card
  1877. card.release();
  1878. break;
  1879. case 23: //M23 - Select file
  1880. starpos = (strchr(strchr_pointer + 4,'*'));
  1881. if(starpos!=NULL)
  1882. *(starpos)='\0';
  1883. card.openFile(strchr_pointer + 4,true);
  1884. break;
  1885. case 24: //M24 - Start SD print
  1886. card.startFileprint();
  1887. starttime=millis();
  1888. break;
  1889. case 25: //M25 - Pause SD print
  1890. card.pauseSDPrint();
  1891. break;
  1892. case 26: //M26 - Set SD index
  1893. if(card.cardOK && code_seen('S')) {
  1894. card.setIndex(code_value_long());
  1895. }
  1896. break;
  1897. case 27: //M27 - Get SD status
  1898. card.getStatus();
  1899. break;
  1900. case 28: //M28 - Start SD write
  1901. starpos = (strchr(strchr_pointer + 4,'*'));
  1902. if(starpos != NULL){
  1903. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1904. strchr_pointer = strchr(npos,' ') + 1;
  1905. *(starpos) = '\0';
  1906. }
  1907. card.openFile(strchr_pointer+4,false);
  1908. break;
  1909. case 29: //M29 - Stop SD write
  1910. //processed in write to file routine above
  1911. //card,saving = false;
  1912. break;
  1913. case 30: //M30 <filename> Delete File
  1914. if (card.cardOK){
  1915. card.closefile();
  1916. starpos = (strchr(strchr_pointer + 4,'*'));
  1917. if(starpos != NULL){
  1918. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1919. strchr_pointer = strchr(npos,' ') + 1;
  1920. *(starpos) = '\0';
  1921. }
  1922. card.removeFile(strchr_pointer + 4);
  1923. }
  1924. break;
  1925. case 32: //M32 - Select file and start SD print
  1926. {
  1927. if(card.sdprinting) {
  1928. st_synchronize();
  1929. }
  1930. starpos = (strchr(strchr_pointer + 4,'*'));
  1931. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1932. if(namestartpos==NULL)
  1933. {
  1934. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1935. }
  1936. else
  1937. namestartpos++; //to skip the '!'
  1938. if(starpos!=NULL)
  1939. *(starpos)='\0';
  1940. bool call_procedure=(code_seen('P'));
  1941. if(strchr_pointer>namestartpos)
  1942. call_procedure=false; //false alert, 'P' found within filename
  1943. if( card.cardOK )
  1944. {
  1945. card.openFile(namestartpos,true,!call_procedure);
  1946. if(code_seen('S'))
  1947. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1948. card.setIndex(code_value_long());
  1949. card.startFileprint();
  1950. if(!call_procedure)
  1951. starttime=millis(); //procedure calls count as normal print time.
  1952. }
  1953. } break;
  1954. case 928: //M928 - Start SD write
  1955. starpos = (strchr(strchr_pointer + 5,'*'));
  1956. if(starpos != NULL){
  1957. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1958. strchr_pointer = strchr(npos,' ') + 1;
  1959. *(starpos) = '\0';
  1960. }
  1961. card.openLogFile(strchr_pointer+5);
  1962. break;
  1963. #endif //SDSUPPORT
  1964. case 31: //M31 take time since the start of the SD print or an M109 command
  1965. {
  1966. stoptime=millis();
  1967. char time[30];
  1968. unsigned long t=(stoptime-starttime)/1000;
  1969. int sec,min;
  1970. min=t/60;
  1971. sec=t%60;
  1972. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1973. SERIAL_ECHO_START;
  1974. SERIAL_ECHOLN(time);
  1975. lcd_setstatus(time);
  1976. autotempShutdown();
  1977. }
  1978. break;
  1979. case 42: //M42 -Change pin status via gcode
  1980. if (code_seen('S'))
  1981. {
  1982. int pin_status = code_value();
  1983. int pin_number = LED_PIN;
  1984. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1985. pin_number = code_value();
  1986. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1987. {
  1988. if (sensitive_pins[i] == pin_number)
  1989. {
  1990. pin_number = -1;
  1991. break;
  1992. }
  1993. }
  1994. #if defined(FAN_PIN) && FAN_PIN > -1
  1995. if (pin_number == FAN_PIN)
  1996. fanSpeed = pin_status;
  1997. #endif
  1998. if (pin_number > -1)
  1999. {
  2000. pinMode(pin_number, OUTPUT);
  2001. digitalWrite(pin_number, pin_status);
  2002. analogWrite(pin_number, pin_status);
  2003. }
  2004. }
  2005. break;
  2006. // M48 Z-Probe repeatability measurement function.
  2007. //
  2008. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2009. //
  2010. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2011. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2012. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2013. // regenerated.
  2014. //
  2015. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2016. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2017. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2018. //
  2019. #ifdef ENABLE_AUTO_BED_LEVELING
  2020. #ifdef Z_PROBE_REPEATABILITY_TEST
  2021. case 48: // M48 Z-Probe repeatability
  2022. {
  2023. #if Z_MIN_PIN == -1
  2024. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2025. #endif
  2026. double sum=0.0;
  2027. double mean=0.0;
  2028. double sigma=0.0;
  2029. double sample_set[50];
  2030. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2031. double X_current, Y_current, Z_current;
  2032. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2033. if (code_seen('V') || code_seen('v')) {
  2034. verbose_level = code_value();
  2035. if (verbose_level<0 || verbose_level>4 ) {
  2036. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2037. goto Sigma_Exit;
  2038. }
  2039. }
  2040. if (verbose_level > 0) {
  2041. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2042. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2043. }
  2044. if (code_seen('n')) {
  2045. n_samples = code_value();
  2046. if (n_samples<4 || n_samples>50 ) {
  2047. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2048. goto Sigma_Exit;
  2049. }
  2050. }
  2051. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2052. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2053. Z_current = st_get_position_mm(Z_AXIS);
  2054. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2055. ext_position = st_get_position_mm(E_AXIS);
  2056. if (code_seen('E') || code_seen('e') )
  2057. engage_probe_for_each_reading++;
  2058. if (code_seen('X') || code_seen('x') ) {
  2059. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2060. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2061. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2062. goto Sigma_Exit;
  2063. }
  2064. }
  2065. if (code_seen('Y') || code_seen('y') ) {
  2066. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2067. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2068. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2069. goto Sigma_Exit;
  2070. }
  2071. }
  2072. if (code_seen('L') || code_seen('l') ) {
  2073. n_legs = code_value();
  2074. if ( n_legs==1 )
  2075. n_legs = 2;
  2076. if ( n_legs<0 || n_legs>15 ) {
  2077. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2078. goto Sigma_Exit;
  2079. }
  2080. }
  2081. //
  2082. // Do all the preliminary setup work. First raise the probe.
  2083. //
  2084. st_synchronize();
  2085. plan_bed_level_matrix.set_to_identity();
  2086. plan_buffer_line( X_current, Y_current, Z_start_location,
  2087. ext_position,
  2088. homing_feedrate[Z_AXIS]/60,
  2089. active_extruder);
  2090. st_synchronize();
  2091. //
  2092. // Now get everything to the specified probe point So we can safely do a probe to
  2093. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2094. // use that as a starting point for each probe.
  2095. //
  2096. if (verbose_level > 2)
  2097. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2098. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2099. ext_position,
  2100. homing_feedrate[X_AXIS]/60,
  2101. active_extruder);
  2102. st_synchronize();
  2103. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2104. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2105. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2106. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2107. //
  2108. // OK, do the inital probe to get us close to the bed.
  2109. // Then retrace the right amount and use that in subsequent probes
  2110. //
  2111. engage_z_probe();
  2112. setup_for_endstop_move();
  2113. run_z_probe();
  2114. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2115. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2116. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2117. ext_position,
  2118. homing_feedrate[X_AXIS]/60,
  2119. active_extruder);
  2120. st_synchronize();
  2121. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2122. if (engage_probe_for_each_reading)
  2123. retract_z_probe();
  2124. for( n=0; n<n_samples; n++) {
  2125. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2126. if ( n_legs) {
  2127. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2128. int rotational_direction, l;
  2129. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2130. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2131. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2132. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2133. //SERIAL_ECHOPAIR(" theta: ",theta);
  2134. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2135. //SERIAL_PROTOCOLLNPGM("");
  2136. for( l=0; l<n_legs-1; l++) {
  2137. if (rotational_direction==1)
  2138. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2139. else
  2140. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2141. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2142. if ( radius<0.0 )
  2143. radius = -radius;
  2144. X_current = X_probe_location + cos(theta) * radius;
  2145. Y_current = Y_probe_location + sin(theta) * radius;
  2146. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2147. X_current = X_MIN_POS;
  2148. if ( X_current>X_MAX_POS)
  2149. X_current = X_MAX_POS;
  2150. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2151. Y_current = Y_MIN_POS;
  2152. if ( Y_current>Y_MAX_POS)
  2153. Y_current = Y_MAX_POS;
  2154. if (verbose_level>3 ) {
  2155. SERIAL_ECHOPAIR("x: ", X_current);
  2156. SERIAL_ECHOPAIR("y: ", Y_current);
  2157. SERIAL_PROTOCOLLNPGM("");
  2158. }
  2159. do_blocking_move_to( X_current, Y_current, Z_current );
  2160. }
  2161. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2162. }
  2163. if (engage_probe_for_each_reading) {
  2164. engage_z_probe();
  2165. delay(1000);
  2166. }
  2167. setup_for_endstop_move();
  2168. run_z_probe();
  2169. sample_set[n] = current_position[Z_AXIS];
  2170. //
  2171. // Get the current mean for the data points we have so far
  2172. //
  2173. sum=0.0;
  2174. for( j=0; j<=n; j++) {
  2175. sum = sum + sample_set[j];
  2176. }
  2177. mean = sum / (double (n+1));
  2178. //
  2179. // Now, use that mean to calculate the standard deviation for the
  2180. // data points we have so far
  2181. //
  2182. sum=0.0;
  2183. for( j=0; j<=n; j++) {
  2184. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2185. }
  2186. sigma = sqrt( sum / (double (n+1)) );
  2187. if (verbose_level > 1) {
  2188. SERIAL_PROTOCOL(n+1);
  2189. SERIAL_PROTOCOL(" of ");
  2190. SERIAL_PROTOCOL(n_samples);
  2191. SERIAL_PROTOCOLPGM(" z: ");
  2192. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2193. }
  2194. if (verbose_level > 2) {
  2195. SERIAL_PROTOCOL(" mean: ");
  2196. SERIAL_PROTOCOL_F(mean,6);
  2197. SERIAL_PROTOCOL(" sigma: ");
  2198. SERIAL_PROTOCOL_F(sigma,6);
  2199. }
  2200. if (verbose_level > 0)
  2201. SERIAL_PROTOCOLPGM("\n");
  2202. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2203. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2204. st_synchronize();
  2205. if (engage_probe_for_each_reading) {
  2206. retract_z_probe();
  2207. delay(1000);
  2208. }
  2209. }
  2210. retract_z_probe();
  2211. delay(1000);
  2212. clean_up_after_endstop_move();
  2213. // enable_endstops(true);
  2214. if (verbose_level > 0) {
  2215. SERIAL_PROTOCOLPGM("Mean: ");
  2216. SERIAL_PROTOCOL_F(mean, 6);
  2217. SERIAL_PROTOCOLPGM("\n");
  2218. }
  2219. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2220. SERIAL_PROTOCOL_F(sigma, 6);
  2221. SERIAL_PROTOCOLPGM("\n\n");
  2222. Sigma_Exit:
  2223. break;
  2224. }
  2225. #endif // Z_PROBE_REPEATABILITY_TEST
  2226. #endif // ENABLE_AUTO_BED_LEVELING
  2227. case 104: // M104
  2228. if(setTargetedHotend(104)){
  2229. break;
  2230. }
  2231. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2232. #ifdef DUAL_X_CARRIAGE
  2233. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2234. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2235. #endif
  2236. setWatch();
  2237. break;
  2238. case 112: // M112 -Emergency Stop
  2239. kill();
  2240. break;
  2241. case 140: // M140 set bed temp
  2242. if (code_seen('S')) setTargetBed(code_value());
  2243. break;
  2244. case 105 : // M105
  2245. if(setTargetedHotend(105)){
  2246. break;
  2247. }
  2248. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2249. SERIAL_PROTOCOLPGM("ok T:");
  2250. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2251. SERIAL_PROTOCOLPGM(" /");
  2252. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2253. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2254. SERIAL_PROTOCOLPGM(" B:");
  2255. SERIAL_PROTOCOL_F(degBed(),1);
  2256. SERIAL_PROTOCOLPGM(" /");
  2257. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2258. #endif //TEMP_BED_PIN
  2259. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2260. SERIAL_PROTOCOLPGM(" T");
  2261. SERIAL_PROTOCOL(cur_extruder);
  2262. SERIAL_PROTOCOLPGM(":");
  2263. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2264. SERIAL_PROTOCOLPGM(" /");
  2265. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2266. }
  2267. #else
  2268. SERIAL_ERROR_START;
  2269. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2270. #endif
  2271. SERIAL_PROTOCOLPGM(" @:");
  2272. #ifdef EXTRUDER_WATTS
  2273. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2274. SERIAL_PROTOCOLPGM("W");
  2275. #else
  2276. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2277. #endif
  2278. SERIAL_PROTOCOLPGM(" B@:");
  2279. #ifdef BED_WATTS
  2280. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2281. SERIAL_PROTOCOLPGM("W");
  2282. #else
  2283. SERIAL_PROTOCOL(getHeaterPower(-1));
  2284. #endif
  2285. #ifdef SHOW_TEMP_ADC_VALUES
  2286. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2287. SERIAL_PROTOCOLPGM(" ADC B:");
  2288. SERIAL_PROTOCOL_F(degBed(),1);
  2289. SERIAL_PROTOCOLPGM("C->");
  2290. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2291. #endif
  2292. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2293. SERIAL_PROTOCOLPGM(" T");
  2294. SERIAL_PROTOCOL(cur_extruder);
  2295. SERIAL_PROTOCOLPGM(":");
  2296. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2297. SERIAL_PROTOCOLPGM("C->");
  2298. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2299. }
  2300. #endif
  2301. SERIAL_PROTOCOLLN("");
  2302. return;
  2303. break;
  2304. case 109:
  2305. {// M109 - Wait for extruder heater to reach target.
  2306. if(setTargetedHotend(109)){
  2307. break;
  2308. }
  2309. LCD_MESSAGERPGM(MSG_HEATING);
  2310. #ifdef AUTOTEMP
  2311. autotemp_enabled=false;
  2312. #endif
  2313. if (code_seen('S')) {
  2314. setTargetHotend(code_value(), tmp_extruder);
  2315. #ifdef DUAL_X_CARRIAGE
  2316. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2317. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2318. #endif
  2319. CooldownNoWait = true;
  2320. } else if (code_seen('R')) {
  2321. setTargetHotend(code_value(), tmp_extruder);
  2322. #ifdef DUAL_X_CARRIAGE
  2323. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2324. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2325. #endif
  2326. CooldownNoWait = false;
  2327. }
  2328. #ifdef AUTOTEMP
  2329. if (code_seen('S')) autotemp_min=code_value();
  2330. if (code_seen('B')) autotemp_max=code_value();
  2331. if (code_seen('F'))
  2332. {
  2333. autotemp_factor=code_value();
  2334. autotemp_enabled=true;
  2335. }
  2336. #endif
  2337. setWatch();
  2338. codenum = millis();
  2339. /* See if we are heating up or cooling down */
  2340. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2341. cancel_heatup = false;
  2342. #ifdef TEMP_RESIDENCY_TIME
  2343. long residencyStart;
  2344. residencyStart = -1;
  2345. /* continue to loop until we have reached the target temp
  2346. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2347. while((!cancel_heatup)&&((residencyStart == -1) ||
  2348. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2349. #else
  2350. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2351. #endif //TEMP_RESIDENCY_TIME
  2352. if( (millis() - codenum) > 1000UL )
  2353. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2354. SERIAL_PROTOCOLPGM("T:");
  2355. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2356. SERIAL_PROTOCOLPGM(" E:");
  2357. SERIAL_PROTOCOL((int)tmp_extruder);
  2358. #ifdef TEMP_RESIDENCY_TIME
  2359. SERIAL_PROTOCOLPGM(" W:");
  2360. if(residencyStart > -1)
  2361. {
  2362. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2363. SERIAL_PROTOCOLLN( codenum );
  2364. }
  2365. else
  2366. {
  2367. SERIAL_PROTOCOLLN( "?" );
  2368. }
  2369. #else
  2370. SERIAL_PROTOCOLLN("");
  2371. #endif
  2372. codenum = millis();
  2373. }
  2374. manage_heater();
  2375. manage_inactivity();
  2376. lcd_update();
  2377. #ifdef TEMP_RESIDENCY_TIME
  2378. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2379. or when current temp falls outside the hysteresis after target temp was reached */
  2380. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2381. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2382. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2383. {
  2384. residencyStart = millis();
  2385. }
  2386. #endif //TEMP_RESIDENCY_TIME
  2387. }
  2388. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2389. if(IS_SD_PRINTING){
  2390. lcd_setstatus("SD-PRINTING ");
  2391. }
  2392. starttime=millis();
  2393. previous_millis_cmd = millis();
  2394. }
  2395. break;
  2396. case 190: // M190 - Wait for bed heater to reach target.
  2397. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2398. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2399. if (code_seen('S')) {
  2400. setTargetBed(code_value());
  2401. CooldownNoWait = true;
  2402. } else if (code_seen('R')) {
  2403. setTargetBed(code_value());
  2404. CooldownNoWait = false;
  2405. }
  2406. codenum = millis();
  2407. cancel_heatup = false;
  2408. target_direction = isHeatingBed(); // true if heating, false if cooling
  2409. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2410. {
  2411. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2412. {
  2413. float tt=degHotend(active_extruder);
  2414. SERIAL_PROTOCOLPGM("T:");
  2415. SERIAL_PROTOCOL(tt);
  2416. SERIAL_PROTOCOLPGM(" E:");
  2417. SERIAL_PROTOCOL((int)active_extruder);
  2418. SERIAL_PROTOCOLPGM(" B:");
  2419. SERIAL_PROTOCOL_F(degBed(),1);
  2420. SERIAL_PROTOCOLLN("");
  2421. codenum = millis();
  2422. }
  2423. manage_heater();
  2424. manage_inactivity();
  2425. lcd_update();
  2426. }
  2427. LCD_MESSAGERPGM(MSG_BED_DONE);
  2428. if(IS_SD_PRINTING){
  2429. lcd_setstatus("SD-PRINTING ");
  2430. }
  2431. previous_millis_cmd = millis();
  2432. #endif
  2433. break;
  2434. #if defined(FAN_PIN) && FAN_PIN > -1
  2435. case 106: //M106 Fan On
  2436. if (code_seen('S')){
  2437. fanSpeed=constrain(code_value(),0,255);
  2438. }
  2439. else {
  2440. fanSpeed=255;
  2441. }
  2442. break;
  2443. case 107: //M107 Fan Off
  2444. fanSpeed = 0;
  2445. break;
  2446. #endif //FAN_PIN
  2447. #ifdef BARICUDA
  2448. // PWM for HEATER_1_PIN
  2449. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2450. case 126: //M126 valve open
  2451. if (code_seen('S')){
  2452. ValvePressure=constrain(code_value(),0,255);
  2453. }
  2454. else {
  2455. ValvePressure=255;
  2456. }
  2457. break;
  2458. case 127: //M127 valve closed
  2459. ValvePressure = 0;
  2460. break;
  2461. #endif //HEATER_1_PIN
  2462. // PWM for HEATER_2_PIN
  2463. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2464. case 128: //M128 valve open
  2465. if (code_seen('S')){
  2466. EtoPPressure=constrain(code_value(),0,255);
  2467. }
  2468. else {
  2469. EtoPPressure=255;
  2470. }
  2471. break;
  2472. case 129: //M129 valve closed
  2473. EtoPPressure = 0;
  2474. break;
  2475. #endif //HEATER_2_PIN
  2476. #endif
  2477. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2478. case 80: // M80 - Turn on Power Supply
  2479. SET_OUTPUT(PS_ON_PIN); //GND
  2480. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2481. // If you have a switch on suicide pin, this is useful
  2482. // if you want to start another print with suicide feature after
  2483. // a print without suicide...
  2484. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2485. SET_OUTPUT(SUICIDE_PIN);
  2486. WRITE(SUICIDE_PIN, HIGH);
  2487. #endif
  2488. #ifdef ULTIPANEL
  2489. powersupply = true;
  2490. LCD_MESSAGERPGM(WELCOME_MSG);
  2491. lcd_update();
  2492. #endif
  2493. break;
  2494. #endif
  2495. case 81: // M81 - Turn off Power Supply
  2496. disable_heater();
  2497. st_synchronize();
  2498. disable_e0();
  2499. disable_e1();
  2500. disable_e2();
  2501. finishAndDisableSteppers();
  2502. fanSpeed = 0;
  2503. delay(1000); // Wait a little before to switch off
  2504. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2505. st_synchronize();
  2506. suicide();
  2507. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2508. SET_OUTPUT(PS_ON_PIN);
  2509. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2510. #endif
  2511. #ifdef ULTIPANEL
  2512. powersupply = false;
  2513. LCD_MESSAGERPGM(CAT4(MACHINE_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!!!!!!!!!!!!!
  2514. /*
  2515. MACHNAME = "Prusa i3"
  2516. MSGOFF = "Vypnuto"
  2517. "Prusai3"" ""vypnuto""."
  2518. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2519. */
  2520. lcd_update();
  2521. #endif
  2522. break;
  2523. case 82:
  2524. axis_relative_modes[3] = false;
  2525. break;
  2526. case 83:
  2527. axis_relative_modes[3] = true;
  2528. break;
  2529. case 18: //compatibility
  2530. case 84: // M84
  2531. if(code_seen('S')){
  2532. stepper_inactive_time = code_value() * 1000;
  2533. }
  2534. else
  2535. {
  2536. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2537. if(all_axis)
  2538. {
  2539. st_synchronize();
  2540. disable_e0();
  2541. disable_e1();
  2542. disable_e2();
  2543. finishAndDisableSteppers();
  2544. }
  2545. else
  2546. {
  2547. st_synchronize();
  2548. if(code_seen('X')) disable_x();
  2549. if(code_seen('Y')) disable_y();
  2550. if(code_seen('Z')) disable_z();
  2551. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2552. if(code_seen('E')) {
  2553. disable_e0();
  2554. disable_e1();
  2555. disable_e2();
  2556. }
  2557. #endif
  2558. }
  2559. }
  2560. break;
  2561. case 85: // M85
  2562. if(code_seen('S')) {
  2563. max_inactive_time = code_value() * 1000;
  2564. }
  2565. break;
  2566. case 92: // M92
  2567. for(int8_t i=0; i < NUM_AXIS; i++)
  2568. {
  2569. if(code_seen(axis_codes[i]))
  2570. {
  2571. if(i == 3) { // E
  2572. float value = code_value();
  2573. if(value < 20.0) {
  2574. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2575. max_e_jerk *= factor;
  2576. max_feedrate[i] *= factor;
  2577. axis_steps_per_sqr_second[i] *= factor;
  2578. }
  2579. axis_steps_per_unit[i] = value;
  2580. }
  2581. else {
  2582. axis_steps_per_unit[i] = code_value();
  2583. }
  2584. }
  2585. }
  2586. break;
  2587. case 115: // M115
  2588. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  2589. break;
  2590. case 117: // M117 display message
  2591. starpos = (strchr(strchr_pointer + 5,'*'));
  2592. if(starpos!=NULL)
  2593. *(starpos)='\0';
  2594. lcd_setstatus(strchr_pointer + 5);
  2595. break;
  2596. case 114: // M114
  2597. SERIAL_PROTOCOLPGM("X:");
  2598. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2599. SERIAL_PROTOCOLPGM(" Y:");
  2600. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2601. SERIAL_PROTOCOLPGM(" Z:");
  2602. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2603. SERIAL_PROTOCOLPGM(" E:");
  2604. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2605. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2606. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2607. SERIAL_PROTOCOLPGM(" Y:");
  2608. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" Z:");
  2610. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2611. SERIAL_PROTOCOLLN("");
  2612. #ifdef SCARA
  2613. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2614. SERIAL_PROTOCOL(delta[X_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2616. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2617. SERIAL_PROTOCOLLN("");
  2618. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2619. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2620. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2621. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2622. SERIAL_PROTOCOLLN("");
  2623. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2624. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2626. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2627. SERIAL_PROTOCOLLN("");
  2628. SERIAL_PROTOCOLLN("");
  2629. #endif
  2630. break;
  2631. case 120: // M120
  2632. enable_endstops(false) ;
  2633. break;
  2634. case 121: // M121
  2635. enable_endstops(true) ;
  2636. break;
  2637. case 119: // M119
  2638. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2639. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2640. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  2641. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2642. #endif
  2643. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2644. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  2645. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2646. #endif
  2647. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2648. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  2649. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2650. #endif
  2651. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2652. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  2653. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2654. #endif
  2655. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2656. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  2657. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2658. #endif
  2659. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2660. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  2661. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2662. #endif
  2663. break;
  2664. //TODO: update for all axis, use for loop
  2665. #ifdef BLINKM
  2666. case 150: // M150
  2667. {
  2668. byte red;
  2669. byte grn;
  2670. byte blu;
  2671. if(code_seen('R')) red = code_value();
  2672. if(code_seen('U')) grn = code_value();
  2673. if(code_seen('B')) blu = code_value();
  2674. SendColors(red,grn,blu);
  2675. }
  2676. break;
  2677. #endif //BLINKM
  2678. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2679. {
  2680. tmp_extruder = active_extruder;
  2681. if(code_seen('T')) {
  2682. tmp_extruder = code_value();
  2683. if(tmp_extruder >= EXTRUDERS) {
  2684. SERIAL_ECHO_START;
  2685. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2686. break;
  2687. }
  2688. }
  2689. float area = .0;
  2690. if(code_seen('D')) {
  2691. float diameter = (float)code_value();
  2692. if (diameter == 0.0) {
  2693. // setting any extruder filament size disables volumetric on the assumption that
  2694. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2695. // for all extruders
  2696. volumetric_enabled = false;
  2697. } else {
  2698. filament_size[tmp_extruder] = (float)code_value();
  2699. // make sure all extruders have some sane value for the filament size
  2700. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2701. #if EXTRUDERS > 1
  2702. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2703. #if EXTRUDERS > 2
  2704. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2705. #endif
  2706. #endif
  2707. volumetric_enabled = true;
  2708. }
  2709. } else {
  2710. //reserved for setting filament diameter via UFID or filament measuring device
  2711. break;
  2712. }
  2713. calculate_volumetric_multipliers();
  2714. }
  2715. break;
  2716. case 201: // M201
  2717. for(int8_t i=0; i < NUM_AXIS; i++)
  2718. {
  2719. if(code_seen(axis_codes[i]))
  2720. {
  2721. max_acceleration_units_per_sq_second[i] = code_value();
  2722. }
  2723. }
  2724. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2725. reset_acceleration_rates();
  2726. break;
  2727. #if 0 // Not used for Sprinter/grbl gen6
  2728. case 202: // M202
  2729. for(int8_t i=0; i < NUM_AXIS; i++) {
  2730. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2731. }
  2732. break;
  2733. #endif
  2734. case 203: // M203 max feedrate mm/sec
  2735. for(int8_t i=0; i < NUM_AXIS; i++) {
  2736. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2737. }
  2738. break;
  2739. case 204: // M204 acclereration S normal moves T filmanent only moves
  2740. {
  2741. if(code_seen('S')) acceleration = code_value() ;
  2742. if(code_seen('T')) retract_acceleration = code_value() ;
  2743. }
  2744. break;
  2745. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2746. {
  2747. if(code_seen('S')) minimumfeedrate = code_value();
  2748. if(code_seen('T')) mintravelfeedrate = code_value();
  2749. if(code_seen('B')) minsegmenttime = code_value() ;
  2750. if(code_seen('X')) max_xy_jerk = code_value() ;
  2751. if(code_seen('Z')) max_z_jerk = code_value() ;
  2752. if(code_seen('E')) max_e_jerk = code_value() ;
  2753. }
  2754. break;
  2755. case 206: // M206 additional homing offset
  2756. for(int8_t i=0; i < 3; i++)
  2757. {
  2758. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2759. }
  2760. #ifdef SCARA
  2761. if(code_seen('T')) // Theta
  2762. {
  2763. add_homing[X_AXIS] = code_value() ;
  2764. }
  2765. if(code_seen('P')) // Psi
  2766. {
  2767. add_homing[Y_AXIS] = code_value() ;
  2768. }
  2769. #endif
  2770. break;
  2771. #ifdef DELTA
  2772. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2773. if(code_seen('L')) {
  2774. delta_diagonal_rod= code_value();
  2775. }
  2776. if(code_seen('R')) {
  2777. delta_radius= code_value();
  2778. }
  2779. if(code_seen('S')) {
  2780. delta_segments_per_second= code_value();
  2781. }
  2782. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2783. break;
  2784. case 666: // M666 set delta endstop adjustemnt
  2785. for(int8_t i=0; i < 3; i++)
  2786. {
  2787. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2788. }
  2789. break;
  2790. #endif
  2791. #ifdef FWRETRACT
  2792. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2793. {
  2794. if(code_seen('S'))
  2795. {
  2796. retract_length = code_value() ;
  2797. }
  2798. if(code_seen('F'))
  2799. {
  2800. retract_feedrate = code_value()/60 ;
  2801. }
  2802. if(code_seen('Z'))
  2803. {
  2804. retract_zlift = code_value() ;
  2805. }
  2806. }break;
  2807. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2808. {
  2809. if(code_seen('S'))
  2810. {
  2811. retract_recover_length = code_value() ;
  2812. }
  2813. if(code_seen('F'))
  2814. {
  2815. retract_recover_feedrate = code_value()/60 ;
  2816. }
  2817. }break;
  2818. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2819. {
  2820. if(code_seen('S'))
  2821. {
  2822. int t= code_value() ;
  2823. switch(t)
  2824. {
  2825. case 0:
  2826. {
  2827. autoretract_enabled=false;
  2828. retracted[0]=false;
  2829. #if EXTRUDERS > 1
  2830. retracted[1]=false;
  2831. #endif
  2832. #if EXTRUDERS > 2
  2833. retracted[2]=false;
  2834. #endif
  2835. }break;
  2836. case 1:
  2837. {
  2838. autoretract_enabled=true;
  2839. retracted[0]=false;
  2840. #if EXTRUDERS > 1
  2841. retracted[1]=false;
  2842. #endif
  2843. #if EXTRUDERS > 2
  2844. retracted[2]=false;
  2845. #endif
  2846. }break;
  2847. default:
  2848. SERIAL_ECHO_START;
  2849. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  2850. SERIAL_ECHO(cmdbuffer[bufindr]);
  2851. SERIAL_ECHOLNPGM("\"");
  2852. }
  2853. }
  2854. }break;
  2855. #endif // FWRETRACT
  2856. #if EXTRUDERS > 1
  2857. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2858. {
  2859. if(setTargetedHotend(218)){
  2860. break;
  2861. }
  2862. if(code_seen('X'))
  2863. {
  2864. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2865. }
  2866. if(code_seen('Y'))
  2867. {
  2868. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2869. }
  2870. #ifdef DUAL_X_CARRIAGE
  2871. if(code_seen('Z'))
  2872. {
  2873. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2874. }
  2875. #endif
  2876. SERIAL_ECHO_START;
  2877. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  2878. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2879. {
  2880. SERIAL_ECHO(" ");
  2881. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2882. SERIAL_ECHO(",");
  2883. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2884. #ifdef DUAL_X_CARRIAGE
  2885. SERIAL_ECHO(",");
  2886. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2887. #endif
  2888. }
  2889. SERIAL_ECHOLN("");
  2890. }break;
  2891. #endif
  2892. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2893. {
  2894. if(code_seen('S'))
  2895. {
  2896. feedmultiply = code_value() ;
  2897. }
  2898. }
  2899. break;
  2900. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2901. {
  2902. if(code_seen('S'))
  2903. {
  2904. int tmp_code = code_value();
  2905. if (code_seen('T'))
  2906. {
  2907. if(setTargetedHotend(221)){
  2908. break;
  2909. }
  2910. extruder_multiply[tmp_extruder] = tmp_code;
  2911. }
  2912. else
  2913. {
  2914. extrudemultiply = tmp_code ;
  2915. }
  2916. }
  2917. }
  2918. break;
  2919. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2920. {
  2921. if(code_seen('P')){
  2922. int pin_number = code_value(); // pin number
  2923. int pin_state = -1; // required pin state - default is inverted
  2924. if(code_seen('S')) pin_state = code_value(); // required pin state
  2925. if(pin_state >= -1 && pin_state <= 1){
  2926. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2927. {
  2928. if (sensitive_pins[i] == pin_number)
  2929. {
  2930. pin_number = -1;
  2931. break;
  2932. }
  2933. }
  2934. if (pin_number > -1)
  2935. {
  2936. int target = LOW;
  2937. st_synchronize();
  2938. pinMode(pin_number, INPUT);
  2939. switch(pin_state){
  2940. case 1:
  2941. target = HIGH;
  2942. break;
  2943. case 0:
  2944. target = LOW;
  2945. break;
  2946. case -1:
  2947. target = !digitalRead(pin_number);
  2948. break;
  2949. }
  2950. while(digitalRead(pin_number) != target){
  2951. manage_heater();
  2952. manage_inactivity();
  2953. lcd_update();
  2954. }
  2955. }
  2956. }
  2957. }
  2958. }
  2959. break;
  2960. #if NUM_SERVOS > 0
  2961. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2962. {
  2963. int servo_index = -1;
  2964. int servo_position = 0;
  2965. if (code_seen('P'))
  2966. servo_index = code_value();
  2967. if (code_seen('S')) {
  2968. servo_position = code_value();
  2969. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2970. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2971. servos[servo_index].attach(0);
  2972. #endif
  2973. servos[servo_index].write(servo_position);
  2974. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2975. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2976. servos[servo_index].detach();
  2977. #endif
  2978. }
  2979. else {
  2980. SERIAL_ECHO_START;
  2981. SERIAL_ECHO("Servo ");
  2982. SERIAL_ECHO(servo_index);
  2983. SERIAL_ECHOLN(" out of range");
  2984. }
  2985. }
  2986. else if (servo_index >= 0) {
  2987. SERIAL_PROTOCOL(MSG_OK);
  2988. SERIAL_PROTOCOL(" Servo ");
  2989. SERIAL_PROTOCOL(servo_index);
  2990. SERIAL_PROTOCOL(": ");
  2991. SERIAL_PROTOCOL(servos[servo_index].read());
  2992. SERIAL_PROTOCOLLN("");
  2993. }
  2994. }
  2995. break;
  2996. #endif // NUM_SERVOS > 0
  2997. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2998. case 300: // M300
  2999. {
  3000. int beepS = code_seen('S') ? code_value() : 110;
  3001. int beepP = code_seen('P') ? code_value() : 1000;
  3002. if (beepS > 0)
  3003. {
  3004. #if BEEPER > 0
  3005. tone(BEEPER, beepS);
  3006. delay(beepP);
  3007. noTone(BEEPER);
  3008. #elif defined(ULTRALCD)
  3009. lcd_buzz(beepS, beepP);
  3010. #elif defined(LCD_USE_I2C_BUZZER)
  3011. lcd_buzz(beepP, beepS);
  3012. #endif
  3013. }
  3014. else
  3015. {
  3016. delay(beepP);
  3017. }
  3018. }
  3019. break;
  3020. #endif // M300
  3021. #ifdef PIDTEMP
  3022. case 301: // M301
  3023. {
  3024. if(code_seen('P')) Kp = code_value();
  3025. if(code_seen('I')) Ki = scalePID_i(code_value());
  3026. if(code_seen('D')) Kd = scalePID_d(code_value());
  3027. #ifdef PID_ADD_EXTRUSION_RATE
  3028. if(code_seen('C')) Kc = code_value();
  3029. #endif
  3030. updatePID();
  3031. SERIAL_PROTOCOL(MSG_OK);
  3032. SERIAL_PROTOCOL(" p:");
  3033. SERIAL_PROTOCOL(Kp);
  3034. SERIAL_PROTOCOL(" i:");
  3035. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3036. SERIAL_PROTOCOL(" d:");
  3037. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3038. #ifdef PID_ADD_EXTRUSION_RATE
  3039. SERIAL_PROTOCOL(" c:");
  3040. //Kc does not have scaling applied above, or in resetting defaults
  3041. SERIAL_PROTOCOL(Kc);
  3042. #endif
  3043. SERIAL_PROTOCOLLN("");
  3044. }
  3045. break;
  3046. #endif //PIDTEMP
  3047. #ifdef PIDTEMPBED
  3048. case 304: // M304
  3049. {
  3050. if(code_seen('P')) bedKp = code_value();
  3051. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3052. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3053. updatePID();
  3054. SERIAL_PROTOCOL(MSG_OK);
  3055. SERIAL_PROTOCOL(" p:");
  3056. SERIAL_PROTOCOL(bedKp);
  3057. SERIAL_PROTOCOL(" i:");
  3058. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3059. SERIAL_PROTOCOL(" d:");
  3060. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3061. SERIAL_PROTOCOLLN("");
  3062. }
  3063. break;
  3064. #endif //PIDTEMP
  3065. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3066. {
  3067. #ifdef CHDK
  3068. SET_OUTPUT(CHDK);
  3069. WRITE(CHDK, HIGH);
  3070. chdkHigh = millis();
  3071. chdkActive = true;
  3072. #else
  3073. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3074. const uint8_t NUM_PULSES=16;
  3075. const float PULSE_LENGTH=0.01524;
  3076. for(int i=0; i < NUM_PULSES; i++) {
  3077. WRITE(PHOTOGRAPH_PIN, HIGH);
  3078. _delay_ms(PULSE_LENGTH);
  3079. WRITE(PHOTOGRAPH_PIN, LOW);
  3080. _delay_ms(PULSE_LENGTH);
  3081. }
  3082. delay(7.33);
  3083. for(int i=0; i < NUM_PULSES; i++) {
  3084. WRITE(PHOTOGRAPH_PIN, HIGH);
  3085. _delay_ms(PULSE_LENGTH);
  3086. WRITE(PHOTOGRAPH_PIN, LOW);
  3087. _delay_ms(PULSE_LENGTH);
  3088. }
  3089. #endif
  3090. #endif //chdk end if
  3091. }
  3092. break;
  3093. #ifdef DOGLCD
  3094. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3095. {
  3096. if (code_seen('C')) {
  3097. lcd_setcontrast( ((int)code_value())&63 );
  3098. }
  3099. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3100. SERIAL_PROTOCOL(lcd_contrast);
  3101. SERIAL_PROTOCOLLN("");
  3102. }
  3103. break;
  3104. #endif
  3105. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3106. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3107. {
  3108. float temp = .0;
  3109. if (code_seen('S')) temp=code_value();
  3110. set_extrude_min_temp(temp);
  3111. }
  3112. break;
  3113. #endif
  3114. case 303: // M303 PID autotune
  3115. {
  3116. float temp = 150.0;
  3117. int e=0;
  3118. int c=5;
  3119. if (code_seen('E')) e=code_value();
  3120. if (e<0)
  3121. temp=70;
  3122. if (code_seen('S')) temp=code_value();
  3123. if (code_seen('C')) c=code_value();
  3124. PID_autotune(temp, e, c);
  3125. }
  3126. break;
  3127. #ifdef SCARA
  3128. case 360: // M360 SCARA Theta pos1
  3129. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3130. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3131. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3132. if(Stopped == false) {
  3133. //get_coordinates(); // For X Y Z E F
  3134. delta[X_AXIS] = 0;
  3135. delta[Y_AXIS] = 120;
  3136. calculate_SCARA_forward_Transform(delta);
  3137. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3138. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3139. prepare_move();
  3140. //ClearToSend();
  3141. return;
  3142. }
  3143. break;
  3144. case 361: // SCARA Theta pos2
  3145. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3146. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3147. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3148. if(Stopped == false) {
  3149. //get_coordinates(); // For X Y Z E F
  3150. delta[X_AXIS] = 90;
  3151. delta[Y_AXIS] = 130;
  3152. calculate_SCARA_forward_Transform(delta);
  3153. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3154. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3155. prepare_move();
  3156. //ClearToSend();
  3157. return;
  3158. }
  3159. break;
  3160. case 362: // SCARA Psi pos1
  3161. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3162. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3163. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3164. if(Stopped == false) {
  3165. //get_coordinates(); // For X Y Z E F
  3166. delta[X_AXIS] = 60;
  3167. delta[Y_AXIS] = 180;
  3168. calculate_SCARA_forward_Transform(delta);
  3169. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3170. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3171. prepare_move();
  3172. //ClearToSend();
  3173. return;
  3174. }
  3175. break;
  3176. case 363: // SCARA Psi pos2
  3177. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3178. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3179. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3180. if(Stopped == false) {
  3181. //get_coordinates(); // For X Y Z E F
  3182. delta[X_AXIS] = 50;
  3183. delta[Y_AXIS] = 90;
  3184. calculate_SCARA_forward_Transform(delta);
  3185. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3186. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3187. prepare_move();
  3188. //ClearToSend();
  3189. return;
  3190. }
  3191. break;
  3192. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3193. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3194. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3195. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3196. if(Stopped == false) {
  3197. //get_coordinates(); // For X Y Z E F
  3198. delta[X_AXIS] = 45;
  3199. delta[Y_AXIS] = 135;
  3200. calculate_SCARA_forward_Transform(delta);
  3201. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3202. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3203. prepare_move();
  3204. //ClearToSend();
  3205. return;
  3206. }
  3207. break;
  3208. case 365: // M364 Set SCARA scaling for X Y Z
  3209. for(int8_t i=0; i < 3; i++)
  3210. {
  3211. if(code_seen(axis_codes[i]))
  3212. {
  3213. axis_scaling[i] = code_value();
  3214. }
  3215. }
  3216. break;
  3217. #endif
  3218. case 400: // M400 finish all moves
  3219. {
  3220. st_synchronize();
  3221. }
  3222. break;
  3223. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3224. case 401:
  3225. {
  3226. engage_z_probe(); // Engage Z Servo endstop if available
  3227. }
  3228. break;
  3229. case 402:
  3230. {
  3231. retract_z_probe(); // Retract Z Servo endstop if enabled
  3232. }
  3233. break;
  3234. #endif
  3235. #ifdef FILAMENT_SENSOR
  3236. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3237. {
  3238. #if (FILWIDTH_PIN > -1)
  3239. if(code_seen('N')) filament_width_nominal=code_value();
  3240. else{
  3241. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3242. SERIAL_PROTOCOLLN(filament_width_nominal);
  3243. }
  3244. #endif
  3245. }
  3246. break;
  3247. case 405: //M405 Turn on filament sensor for control
  3248. {
  3249. if(code_seen('D')) meas_delay_cm=code_value();
  3250. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3251. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3252. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3253. {
  3254. int temp_ratio = widthFil_to_size_ratio();
  3255. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3256. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3257. }
  3258. delay_index1=0;
  3259. delay_index2=0;
  3260. }
  3261. filament_sensor = true ;
  3262. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3263. //SERIAL_PROTOCOL(filament_width_meas);
  3264. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3265. //SERIAL_PROTOCOL(extrudemultiply);
  3266. }
  3267. break;
  3268. case 406: //M406 Turn off filament sensor for control
  3269. {
  3270. filament_sensor = false ;
  3271. }
  3272. break;
  3273. case 407: //M407 Display measured filament diameter
  3274. {
  3275. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3276. SERIAL_PROTOCOLLN(filament_width_meas);
  3277. }
  3278. break;
  3279. #endif
  3280. case 500: // M500 Store settings in EEPROM
  3281. {
  3282. Config_StoreSettings();
  3283. }
  3284. break;
  3285. case 501: // M501 Read settings from EEPROM
  3286. {
  3287. Config_RetrieveSettings();
  3288. }
  3289. break;
  3290. case 502: // M502 Revert to default settings
  3291. {
  3292. Config_ResetDefault();
  3293. }
  3294. break;
  3295. case 503: // M503 print settings currently in memory
  3296. {
  3297. Config_PrintSettings();
  3298. }
  3299. break;
  3300. case 509: //M509 Force language selection
  3301. {
  3302. lcd_force_language_selection();
  3303. SERIAL_ECHO_START;
  3304. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3305. }
  3306. break;
  3307. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3308. case 540:
  3309. {
  3310. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3311. }
  3312. break;
  3313. #endif
  3314. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3315. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3316. {
  3317. float value;
  3318. if (code_seen('Z'))
  3319. {
  3320. value = code_value();
  3321. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3322. {
  3323. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3324. SERIAL_ECHO_START;
  3325. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3326. SERIAL_PROTOCOLLN("");
  3327. }
  3328. else
  3329. {
  3330. SERIAL_ECHO_START;
  3331. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3332. SERIAL_ECHORPGM(MSG_Z_MIN);
  3333. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3334. SERIAL_ECHORPGM(MSG_Z_MAX);
  3335. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3336. SERIAL_PROTOCOLLN("");
  3337. }
  3338. }
  3339. else
  3340. {
  3341. SERIAL_ECHO_START;
  3342. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3343. SERIAL_ECHO(-zprobe_zoffset);
  3344. SERIAL_PROTOCOLLN("");
  3345. }
  3346. break;
  3347. }
  3348. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3349. #ifdef FILAMENTCHANGEENABLE
  3350. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3351. {
  3352. feedmultiplyBckp=feedmultiply;
  3353. int8_t TooLowZ = 0;
  3354. float target[4];
  3355. float lastpos[4];
  3356. target[X_AXIS]=current_position[X_AXIS];
  3357. target[Y_AXIS]=current_position[Y_AXIS];
  3358. target[Z_AXIS]=current_position[Z_AXIS];
  3359. target[E_AXIS]=current_position[E_AXIS];
  3360. lastpos[X_AXIS]=current_position[X_AXIS];
  3361. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3362. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3363. lastpos[E_AXIS]=current_position[E_AXIS];
  3364. //Restract extruder
  3365. if(code_seen('E'))
  3366. {
  3367. target[E_AXIS]+= code_value();
  3368. }
  3369. else
  3370. {
  3371. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3372. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3373. #endif
  3374. }
  3375. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3376. //Lift Z
  3377. if(code_seen('Z'))
  3378. {
  3379. target[Z_AXIS]+= code_value();
  3380. }
  3381. else
  3382. {
  3383. #ifdef FILAMENTCHANGE_ZADD
  3384. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3385. if(target[Z_AXIS] < 10){
  3386. target[Z_AXIS]+= 10 ;
  3387. TooLowZ = 1;
  3388. }else{
  3389. TooLowZ = 0;
  3390. }
  3391. #endif
  3392. }
  3393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3394. //Move XY to side
  3395. if(code_seen('X'))
  3396. {
  3397. target[X_AXIS]+= code_value();
  3398. }
  3399. else
  3400. {
  3401. #ifdef FILAMENTCHANGE_XPOS
  3402. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3403. #endif
  3404. }
  3405. if(code_seen('Y'))
  3406. {
  3407. target[Y_AXIS]= code_value();
  3408. }
  3409. else
  3410. {
  3411. #ifdef FILAMENTCHANGE_YPOS
  3412. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3413. #endif
  3414. }
  3415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3416. // Unload filament
  3417. if(code_seen('L'))
  3418. {
  3419. target[E_AXIS]+= code_value();
  3420. }
  3421. else
  3422. {
  3423. #ifdef FILAMENTCHANGE_FINALRETRACT
  3424. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3425. #endif
  3426. }
  3427. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3428. //finish moves
  3429. st_synchronize();
  3430. //disable extruder steppers so filament can be removed
  3431. disable_e0();
  3432. disable_e1();
  3433. disable_e2();
  3434. delay(100);
  3435. //Wait for user to insert filament
  3436. uint8_t cnt=0;
  3437. int counterBeep = 0;
  3438. lcd_wait_interact();
  3439. while(!lcd_clicked()){
  3440. cnt++;
  3441. manage_heater();
  3442. manage_inactivity(true);
  3443. if(cnt==0)
  3444. {
  3445. #if BEEPER > 0
  3446. if (counterBeep== 500){
  3447. counterBeep = 0;
  3448. }
  3449. SET_OUTPUT(BEEPER);
  3450. if (counterBeep== 0){
  3451. WRITE(BEEPER,HIGH);
  3452. }
  3453. if (counterBeep== 20){
  3454. WRITE(BEEPER,LOW);
  3455. }
  3456. counterBeep++;
  3457. #else
  3458. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3459. lcd_buzz(1000/6,100);
  3460. #else
  3461. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3462. #endif
  3463. #endif
  3464. }
  3465. }
  3466. //Filament inserted
  3467. WRITE(BEEPER,LOW);
  3468. //Feed the filament to the end of nozzle quickly
  3469. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3471. //Extrude some filament
  3472. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3474. //Wait for user to check the state
  3475. lcd_change_fil_state = 0;
  3476. lcd_loading_filament();
  3477. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3478. lcd_change_fil_state = 0;
  3479. lcd_alright();
  3480. switch(lcd_change_fil_state){
  3481. // Filament failed to load so load it again
  3482. case 2:
  3483. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3485. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3487. lcd_loading_filament();
  3488. break;
  3489. // Filament loaded properly but color is not clear
  3490. case 3:
  3491. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3493. lcd_loading_color();
  3494. break;
  3495. // Everything good
  3496. default:
  3497. lcd_change_success();
  3498. break;
  3499. }
  3500. }
  3501. //Not let's go back to print
  3502. //Feed a little of filament to stabilize pressure
  3503. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3504. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3505. //Retract
  3506. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3508. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3509. //Move XY back
  3510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3511. //Move Z back
  3512. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3513. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3514. //Unretract
  3515. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3516. //Set E position to original
  3517. plan_set_e_position(lastpos[E_AXIS]);
  3518. //Recover feed rate
  3519. feedmultiply=feedmultiplyBckp;
  3520. char cmd[9];
  3521. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3522. enquecommand(cmd);
  3523. }
  3524. break;
  3525. #endif //FILAMENTCHANGEENABLE
  3526. #ifdef DUAL_X_CARRIAGE
  3527. case 605: // Set dual x-carriage movement mode:
  3528. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3529. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3530. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3531. // millimeters x-offset and an optional differential hotend temperature of
  3532. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3533. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3534. //
  3535. // Note: the X axis should be homed after changing dual x-carriage mode.
  3536. {
  3537. st_synchronize();
  3538. if (code_seen('S'))
  3539. dual_x_carriage_mode = code_value();
  3540. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3541. {
  3542. if (code_seen('X'))
  3543. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3544. if (code_seen('R'))
  3545. duplicate_extruder_temp_offset = code_value();
  3546. SERIAL_ECHO_START;
  3547. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3548. SERIAL_ECHO(" ");
  3549. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3550. SERIAL_ECHO(",");
  3551. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3552. SERIAL_ECHO(" ");
  3553. SERIAL_ECHO(duplicate_extruder_x_offset);
  3554. SERIAL_ECHO(",");
  3555. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3556. }
  3557. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3558. {
  3559. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3560. }
  3561. active_extruder_parked = false;
  3562. extruder_duplication_enabled = false;
  3563. delayed_move_time = 0;
  3564. }
  3565. break;
  3566. #endif //DUAL_X_CARRIAGE
  3567. case 907: // M907 Set digital trimpot motor current using axis codes.
  3568. {
  3569. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3570. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3571. if(code_seen('B')) digipot_current(4,code_value());
  3572. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3573. #endif
  3574. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3575. if(code_seen('X')) digipot_current(0, code_value());
  3576. #endif
  3577. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3578. if(code_seen('Z')) digipot_current(1, code_value());
  3579. #endif
  3580. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3581. if(code_seen('E')) digipot_current(2, code_value());
  3582. #endif
  3583. #ifdef DIGIPOT_I2C
  3584. // this one uses actual amps in floating point
  3585. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3586. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3587. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3588. #endif
  3589. }
  3590. break;
  3591. case 908: // M908 Control digital trimpot directly.
  3592. {
  3593. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3594. uint8_t channel,current;
  3595. if(code_seen('P')) channel=code_value();
  3596. if(code_seen('S')) current=code_value();
  3597. digitalPotWrite(channel, current);
  3598. #endif
  3599. }
  3600. break;
  3601. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3602. {
  3603. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3604. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3605. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3606. if(code_seen('B')) microstep_mode(4,code_value());
  3607. microstep_readings();
  3608. #endif
  3609. }
  3610. break;
  3611. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3612. {
  3613. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3614. if(code_seen('S')) switch((int)code_value())
  3615. {
  3616. case 1:
  3617. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3618. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3619. break;
  3620. case 2:
  3621. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3622. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3623. break;
  3624. }
  3625. microstep_readings();
  3626. #endif
  3627. }
  3628. break;
  3629. case 999: // M999: Restart after being stopped
  3630. Stopped = false;
  3631. lcd_reset_alert_level();
  3632. gcode_LastN = Stopped_gcode_LastN;
  3633. FlushSerialRequestResend();
  3634. break;
  3635. }
  3636. }
  3637. else if(code_seen('T'))
  3638. {
  3639. tmp_extruder = code_value();
  3640. if(tmp_extruder >= EXTRUDERS) {
  3641. SERIAL_ECHO_START;
  3642. SERIAL_ECHO("T");
  3643. SERIAL_ECHO(tmp_extruder);
  3644. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3645. }
  3646. else {
  3647. boolean make_move = false;
  3648. if(code_seen('F')) {
  3649. make_move = true;
  3650. next_feedrate = code_value();
  3651. if(next_feedrate > 0.0) {
  3652. feedrate = next_feedrate;
  3653. }
  3654. }
  3655. #if EXTRUDERS > 1
  3656. if(tmp_extruder != active_extruder) {
  3657. // Save current position to return to after applying extruder offset
  3658. memcpy(destination, current_position, sizeof(destination));
  3659. #ifdef DUAL_X_CARRIAGE
  3660. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3661. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3662. {
  3663. // Park old head: 1) raise 2) move to park position 3) lower
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3665. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3666. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3667. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3668. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3669. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3670. st_synchronize();
  3671. }
  3672. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3673. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3674. extruder_offset[Y_AXIS][active_extruder] +
  3675. extruder_offset[Y_AXIS][tmp_extruder];
  3676. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3677. extruder_offset[Z_AXIS][active_extruder] +
  3678. extruder_offset[Z_AXIS][tmp_extruder];
  3679. active_extruder = tmp_extruder;
  3680. // This function resets the max/min values - the current position may be overwritten below.
  3681. axis_is_at_home(X_AXIS);
  3682. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3683. {
  3684. current_position[X_AXIS] = inactive_extruder_x_pos;
  3685. inactive_extruder_x_pos = destination[X_AXIS];
  3686. }
  3687. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3688. {
  3689. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3690. if (active_extruder == 0 || active_extruder_parked)
  3691. current_position[X_AXIS] = inactive_extruder_x_pos;
  3692. else
  3693. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3694. inactive_extruder_x_pos = destination[X_AXIS];
  3695. extruder_duplication_enabled = false;
  3696. }
  3697. else
  3698. {
  3699. // record raised toolhead position for use by unpark
  3700. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3701. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3702. active_extruder_parked = true;
  3703. delayed_move_time = 0;
  3704. }
  3705. #else
  3706. // Offset extruder (only by XY)
  3707. int i;
  3708. for(i = 0; i < 2; i++) {
  3709. current_position[i] = current_position[i] -
  3710. extruder_offset[i][active_extruder] +
  3711. extruder_offset[i][tmp_extruder];
  3712. }
  3713. // Set the new active extruder and position
  3714. active_extruder = tmp_extruder;
  3715. #endif //else DUAL_X_CARRIAGE
  3716. #ifdef DELTA
  3717. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3718. //sent position to plan_set_position();
  3719. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3720. #else
  3721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3722. #endif
  3723. // Move to the old position if 'F' was in the parameters
  3724. if(make_move && Stopped == false) {
  3725. prepare_move();
  3726. }
  3727. }
  3728. #endif
  3729. SERIAL_ECHO_START;
  3730. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3731. SERIAL_PROTOCOLLN((int)active_extruder);
  3732. }
  3733. }
  3734. else
  3735. {
  3736. SERIAL_ECHO_START;
  3737. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3738. SERIAL_ECHO(cmdbuffer[bufindr]);
  3739. SERIAL_ECHOLNPGM("\"");
  3740. }
  3741. ClearToSend();
  3742. }
  3743. void FlushSerialRequestResend()
  3744. {
  3745. //char cmdbuffer[bufindr][100]="Resend:";
  3746. MYSERIAL.flush();
  3747. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3748. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3749. ClearToSend();
  3750. }
  3751. void ClearToSend()
  3752. {
  3753. previous_millis_cmd = millis();
  3754. #ifdef SDSUPPORT
  3755. if(fromsd[bufindr])
  3756. return;
  3757. #endif //SDSUPPORT
  3758. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  3759. }
  3760. void get_coordinates()
  3761. {
  3762. bool seen[4]={false,false,false,false};
  3763. for(int8_t i=0; i < NUM_AXIS; i++) {
  3764. if(code_seen(axis_codes[i]))
  3765. {
  3766. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3767. seen[i]=true;
  3768. }
  3769. else destination[i] = current_position[i]; //Are these else lines really needed?
  3770. }
  3771. if(code_seen('F')) {
  3772. next_feedrate = code_value();
  3773. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3774. }
  3775. }
  3776. void get_arc_coordinates()
  3777. {
  3778. #ifdef SF_ARC_FIX
  3779. bool relative_mode_backup = relative_mode;
  3780. relative_mode = true;
  3781. #endif
  3782. get_coordinates();
  3783. #ifdef SF_ARC_FIX
  3784. relative_mode=relative_mode_backup;
  3785. #endif
  3786. if(code_seen('I')) {
  3787. offset[0] = code_value();
  3788. }
  3789. else {
  3790. offset[0] = 0.0;
  3791. }
  3792. if(code_seen('J')) {
  3793. offset[1] = code_value();
  3794. }
  3795. else {
  3796. offset[1] = 0.0;
  3797. }
  3798. }
  3799. void clamp_to_software_endstops(float target[3])
  3800. {
  3801. if (min_software_endstops) {
  3802. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3803. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3804. float negative_z_offset = 0;
  3805. #ifdef ENABLE_AUTO_BED_LEVELING
  3806. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3807. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3808. #endif
  3809. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3810. }
  3811. if (max_software_endstops) {
  3812. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3813. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3814. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3815. }
  3816. }
  3817. #ifdef DELTA
  3818. void recalc_delta_settings(float radius, float diagonal_rod)
  3819. {
  3820. delta_tower1_x= -SIN_60*radius; // front left tower
  3821. delta_tower1_y= -COS_60*radius;
  3822. delta_tower2_x= SIN_60*radius; // front right tower
  3823. delta_tower2_y= -COS_60*radius;
  3824. delta_tower3_x= 0.0; // back middle tower
  3825. delta_tower3_y= radius;
  3826. delta_diagonal_rod_2= sq(diagonal_rod);
  3827. }
  3828. void calculate_delta(float cartesian[3])
  3829. {
  3830. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3831. - sq(delta_tower1_x-cartesian[X_AXIS])
  3832. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3833. ) + cartesian[Z_AXIS];
  3834. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3835. - sq(delta_tower2_x-cartesian[X_AXIS])
  3836. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3837. ) + cartesian[Z_AXIS];
  3838. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3839. - sq(delta_tower3_x-cartesian[X_AXIS])
  3840. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3841. ) + cartesian[Z_AXIS];
  3842. /*
  3843. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3844. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3845. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3846. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3847. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3848. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3849. */
  3850. }
  3851. #endif
  3852. void prepare_move()
  3853. {
  3854. clamp_to_software_endstops(destination);
  3855. previous_millis_cmd = millis();
  3856. #ifdef SCARA //for now same as delta-code
  3857. float difference[NUM_AXIS];
  3858. for (int8_t i=0; i < NUM_AXIS; i++) {
  3859. difference[i] = destination[i] - current_position[i];
  3860. }
  3861. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3862. sq(difference[Y_AXIS]) +
  3863. sq(difference[Z_AXIS]));
  3864. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3865. if (cartesian_mm < 0.000001) { return; }
  3866. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3867. int steps = max(1, int(scara_segments_per_second * seconds));
  3868. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3869. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3870. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3871. for (int s = 1; s <= steps; s++) {
  3872. float fraction = float(s) / float(steps);
  3873. for(int8_t i=0; i < NUM_AXIS; i++) {
  3874. destination[i] = current_position[i] + difference[i] * fraction;
  3875. }
  3876. calculate_delta(destination);
  3877. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3878. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3879. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3880. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3881. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3882. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3883. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3884. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3885. active_extruder);
  3886. }
  3887. #endif // SCARA
  3888. #ifdef DELTA
  3889. float difference[NUM_AXIS];
  3890. for (int8_t i=0; i < NUM_AXIS; i++) {
  3891. difference[i] = destination[i] - current_position[i];
  3892. }
  3893. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3894. sq(difference[Y_AXIS]) +
  3895. sq(difference[Z_AXIS]));
  3896. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3897. if (cartesian_mm < 0.000001) { return; }
  3898. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3899. int steps = max(1, int(delta_segments_per_second * seconds));
  3900. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3901. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3902. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3903. for (int s = 1; s <= steps; s++) {
  3904. float fraction = float(s) / float(steps);
  3905. for(int8_t i=0; i < NUM_AXIS; i++) {
  3906. destination[i] = current_position[i] + difference[i] * fraction;
  3907. }
  3908. calculate_delta(destination);
  3909. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3910. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3911. active_extruder);
  3912. }
  3913. #endif // DELTA
  3914. #ifdef DUAL_X_CARRIAGE
  3915. if (active_extruder_parked)
  3916. {
  3917. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3918. {
  3919. // move duplicate extruder into correct duplication position.
  3920. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3921. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3922. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3923. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3924. st_synchronize();
  3925. extruder_duplication_enabled = true;
  3926. active_extruder_parked = false;
  3927. }
  3928. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3929. {
  3930. if (current_position[E_AXIS] == destination[E_AXIS])
  3931. {
  3932. // this is a travel move - skit it but keep track of current position (so that it can later
  3933. // be used as start of first non-travel move)
  3934. if (delayed_move_time != 0xFFFFFFFFUL)
  3935. {
  3936. memcpy(current_position, destination, sizeof(current_position));
  3937. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3938. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3939. delayed_move_time = millis();
  3940. return;
  3941. }
  3942. }
  3943. delayed_move_time = 0;
  3944. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3945. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3947. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3949. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3950. active_extruder_parked = false;
  3951. }
  3952. }
  3953. #endif //DUAL_X_CARRIAGE
  3954. #if ! (defined DELTA || defined SCARA)
  3955. // Do not use feedmultiply for E or Z only moves
  3956. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3957. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3958. }
  3959. else {
  3960. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3961. }
  3962. #endif // !(DELTA || SCARA)
  3963. for(int8_t i=0; i < NUM_AXIS; i++) {
  3964. current_position[i] = destination[i];
  3965. }
  3966. }
  3967. void prepare_arc_move(char isclockwise) {
  3968. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3969. // Trace the arc
  3970. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3971. // As far as the parser is concerned, the position is now == target. In reality the
  3972. // motion control system might still be processing the action and the real tool position
  3973. // in any intermediate location.
  3974. for(int8_t i=0; i < NUM_AXIS; i++) {
  3975. current_position[i] = destination[i];
  3976. }
  3977. previous_millis_cmd = millis();
  3978. }
  3979. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3980. #if defined(FAN_PIN)
  3981. #if CONTROLLERFAN_PIN == FAN_PIN
  3982. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3983. #endif
  3984. #endif
  3985. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3986. unsigned long lastMotorCheck = 0;
  3987. void controllerFan()
  3988. {
  3989. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3990. {
  3991. lastMotorCheck = millis();
  3992. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3993. #if EXTRUDERS > 2
  3994. || !READ(E2_ENABLE_PIN)
  3995. #endif
  3996. #if EXTRUDER > 1
  3997. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3998. || !READ(X2_ENABLE_PIN)
  3999. #endif
  4000. || !READ(E1_ENABLE_PIN)
  4001. #endif
  4002. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4003. {
  4004. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4005. }
  4006. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4007. {
  4008. digitalWrite(CONTROLLERFAN_PIN, 0);
  4009. analogWrite(CONTROLLERFAN_PIN, 0);
  4010. }
  4011. else
  4012. {
  4013. // allows digital or PWM fan output to be used (see M42 handling)
  4014. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4015. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4016. }
  4017. }
  4018. }
  4019. #endif
  4020. #ifdef SCARA
  4021. void calculate_SCARA_forward_Transform(float f_scara[3])
  4022. {
  4023. // Perform forward kinematics, and place results in delta[3]
  4024. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4025. float x_sin, x_cos, y_sin, y_cos;
  4026. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4027. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4028. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4029. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4030. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4031. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4032. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4033. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4034. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4035. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4036. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4037. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4038. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4039. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4040. }
  4041. void calculate_delta(float cartesian[3]){
  4042. //reverse kinematics.
  4043. // Perform reversed kinematics, and place results in delta[3]
  4044. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4045. float SCARA_pos[2];
  4046. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4047. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4048. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4049. #if (Linkage_1 == Linkage_2)
  4050. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4051. #else
  4052. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4053. #endif
  4054. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4055. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4056. SCARA_K2 = Linkage_2 * SCARA_S2;
  4057. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4058. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4059. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4060. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4061. delta[Z_AXIS] = cartesian[Z_AXIS];
  4062. /*
  4063. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4064. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4065. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4066. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4067. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4068. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4069. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4070. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4071. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4072. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4073. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4074. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4075. SERIAL_ECHOLN(" ");*/
  4076. }
  4077. #endif
  4078. #ifdef TEMP_STAT_LEDS
  4079. static bool blue_led = false;
  4080. static bool red_led = false;
  4081. static uint32_t stat_update = 0;
  4082. void handle_status_leds(void) {
  4083. float max_temp = 0.0;
  4084. if(millis() > stat_update) {
  4085. stat_update += 500; // Update every 0.5s
  4086. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4087. max_temp = max(max_temp, degHotend(cur_extruder));
  4088. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4089. }
  4090. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4091. max_temp = max(max_temp, degTargetBed());
  4092. max_temp = max(max_temp, degBed());
  4093. #endif
  4094. if((max_temp > 55.0) && (red_led == false)) {
  4095. digitalWrite(STAT_LED_RED, 1);
  4096. digitalWrite(STAT_LED_BLUE, 0);
  4097. red_led = true;
  4098. blue_led = false;
  4099. }
  4100. if((max_temp < 54.0) && (blue_led == false)) {
  4101. digitalWrite(STAT_LED_RED, 0);
  4102. digitalWrite(STAT_LED_BLUE, 1);
  4103. red_led = false;
  4104. blue_led = true;
  4105. }
  4106. }
  4107. }
  4108. #endif
  4109. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4110. {
  4111. #if defined(KILL_PIN) && KILL_PIN > -1
  4112. static int killCount = 0; // make the inactivity button a bit less responsive
  4113. const int KILL_DELAY = 10000;
  4114. #endif
  4115. #if defined(HOME_PIN) && HOME_PIN > -1
  4116. static int homeDebounceCount = 0; // poor man's debouncing count
  4117. const int HOME_DEBOUNCE_DELAY = 10000;
  4118. #endif
  4119. if(buflen < (BUFSIZE-1))
  4120. get_command();
  4121. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4122. if(max_inactive_time)
  4123. kill();
  4124. if(stepper_inactive_time) {
  4125. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4126. {
  4127. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4128. disable_x();
  4129. disable_y();
  4130. disable_z();
  4131. disable_e0();
  4132. disable_e1();
  4133. disable_e2();
  4134. }
  4135. }
  4136. }
  4137. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4138. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4139. {
  4140. chdkActive = false;
  4141. WRITE(CHDK, LOW);
  4142. }
  4143. #endif
  4144. #if defined(KILL_PIN) && KILL_PIN > -1
  4145. // Check if the kill button was pressed and wait just in case it was an accidental
  4146. // key kill key press
  4147. // -------------------------------------------------------------------------------
  4148. if( 0 == READ(KILL_PIN) )
  4149. {
  4150. killCount++;
  4151. }
  4152. else if (killCount > 0)
  4153. {
  4154. killCount--;
  4155. }
  4156. // Exceeded threshold and we can confirm that it was not accidental
  4157. // KILL the machine
  4158. // ----------------------------------------------------------------
  4159. if ( killCount >= KILL_DELAY)
  4160. {
  4161. kill();
  4162. }
  4163. #endif
  4164. #if defined(HOME_PIN) && HOME_PIN > -1
  4165. // Check to see if we have to home, use poor man's debouncer
  4166. // ---------------------------------------------------------
  4167. if ( 0 == READ(HOME_PIN) )
  4168. {
  4169. if (homeDebounceCount == 0)
  4170. {
  4171. enquecommand_P((PSTR("G28")));
  4172. homeDebounceCount++;
  4173. LCD_ALERTMESSAGERPGM(MSG_AUTO_HOME);
  4174. }
  4175. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4176. {
  4177. homeDebounceCount++;
  4178. }
  4179. else
  4180. {
  4181. homeDebounceCount = 0;
  4182. }
  4183. }
  4184. #endif
  4185. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4186. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4187. #endif
  4188. #ifdef EXTRUDER_RUNOUT_PREVENT
  4189. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4190. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4191. {
  4192. bool oldstatus=READ(E0_ENABLE_PIN);
  4193. enable_e0();
  4194. float oldepos=current_position[E_AXIS];
  4195. float oldedes=destination[E_AXIS];
  4196. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4197. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4198. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4199. current_position[E_AXIS]=oldepos;
  4200. destination[E_AXIS]=oldedes;
  4201. plan_set_e_position(oldepos);
  4202. previous_millis_cmd=millis();
  4203. st_synchronize();
  4204. WRITE(E0_ENABLE_PIN,oldstatus);
  4205. }
  4206. #endif
  4207. #if defined(DUAL_X_CARRIAGE)
  4208. // handle delayed move timeout
  4209. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4210. {
  4211. // travel moves have been received so enact them
  4212. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4213. memcpy(destination,current_position,sizeof(destination));
  4214. prepare_move();
  4215. }
  4216. #endif
  4217. #ifdef TEMP_STAT_LEDS
  4218. handle_status_leds();
  4219. #endif
  4220. check_axes_activity();
  4221. }
  4222. void kill()
  4223. {
  4224. cli(); // Stop interrupts
  4225. disable_heater();
  4226. disable_x();
  4227. disable_y();
  4228. disable_z();
  4229. disable_e0();
  4230. disable_e1();
  4231. disable_e2();
  4232. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4233. pinMode(PS_ON_PIN,INPUT);
  4234. #endif
  4235. SERIAL_ERROR_START;
  4236. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4237. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4238. // FMC small patch to update the LCD before ending
  4239. sei(); // enable interrupts
  4240. for ( int i=5; i--; lcd_update())
  4241. {
  4242. delay(200);
  4243. }
  4244. cli(); // disable interrupts
  4245. suicide();
  4246. while(1) { /* Intentionally left empty */ } // Wait for reset
  4247. }
  4248. void Stop()
  4249. {
  4250. disable_heater();
  4251. if(Stopped == false) {
  4252. Stopped = true;
  4253. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4254. SERIAL_ERROR_START;
  4255. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4256. LCD_MESSAGERPGM(MSG_STOPPED);
  4257. }
  4258. }
  4259. bool IsStopped() { return Stopped; };
  4260. #ifdef FAST_PWM_FAN
  4261. void setPwmFrequency(uint8_t pin, int val)
  4262. {
  4263. val &= 0x07;
  4264. switch(digitalPinToTimer(pin))
  4265. {
  4266. #if defined(TCCR0A)
  4267. case TIMER0A:
  4268. case TIMER0B:
  4269. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4270. // TCCR0B |= val;
  4271. break;
  4272. #endif
  4273. #if defined(TCCR1A)
  4274. case TIMER1A:
  4275. case TIMER1B:
  4276. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4277. // TCCR1B |= val;
  4278. break;
  4279. #endif
  4280. #if defined(TCCR2)
  4281. case TIMER2:
  4282. case TIMER2:
  4283. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4284. TCCR2 |= val;
  4285. break;
  4286. #endif
  4287. #if defined(TCCR2A)
  4288. case TIMER2A:
  4289. case TIMER2B:
  4290. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4291. TCCR2B |= val;
  4292. break;
  4293. #endif
  4294. #if defined(TCCR3A)
  4295. case TIMER3A:
  4296. case TIMER3B:
  4297. case TIMER3C:
  4298. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4299. TCCR3B |= val;
  4300. break;
  4301. #endif
  4302. #if defined(TCCR4A)
  4303. case TIMER4A:
  4304. case TIMER4B:
  4305. case TIMER4C:
  4306. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4307. TCCR4B |= val;
  4308. break;
  4309. #endif
  4310. #if defined(TCCR5A)
  4311. case TIMER5A:
  4312. case TIMER5B:
  4313. case TIMER5C:
  4314. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4315. TCCR5B |= val;
  4316. break;
  4317. #endif
  4318. }
  4319. }
  4320. #endif //FAST_PWM_FAN
  4321. bool setTargetedHotend(int code){
  4322. tmp_extruder = active_extruder;
  4323. if(code_seen('T')) {
  4324. tmp_extruder = code_value();
  4325. if(tmp_extruder >= EXTRUDERS) {
  4326. SERIAL_ECHO_START;
  4327. switch(code){
  4328. case 104:
  4329. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4330. break;
  4331. case 105:
  4332. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4333. break;
  4334. case 109:
  4335. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4336. break;
  4337. case 218:
  4338. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4339. break;
  4340. case 221:
  4341. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4342. break;
  4343. }
  4344. SERIAL_ECHOLN(tmp_extruder);
  4345. return true;
  4346. }
  4347. }
  4348. return false;
  4349. }
  4350. float calculate_volumetric_multiplier(float diameter) {
  4351. float area = .0;
  4352. float radius = .0;
  4353. radius = diameter * .5;
  4354. if (! volumetric_enabled || radius == 0) {
  4355. area = 1;
  4356. }
  4357. else {
  4358. area = M_PI * pow(radius, 2);
  4359. }
  4360. return 1.0 / area;
  4361. }
  4362. void calculate_volumetric_multipliers() {
  4363. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4364. #if EXTRUDERS > 1
  4365. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4366. #if EXTRUDERS > 2
  4367. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4368. #endif
  4369. #endif
  4370. }