Marlin_main.cpp 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. #define BABYSTEP_LOADZ_BY_PLANNER
  199. // Number of baby steps applied
  200. int babystepLoadZ = 0;
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. bool is_usb_printing = false;
  217. unsigned int usb_printing_counter;
  218. int lcd_change_fil_state = 0;
  219. int feedmultiplyBckp = 100;
  220. unsigned char lang_selected = 0;
  221. unsigned long total_filament_used;
  222. unsigned int heating_status;
  223. unsigned int heating_status_counter;
  224. bool custom_message;
  225. unsigned int custom_message_type;
  226. unsigned int custom_message_state;
  227. bool volumetric_enabled = false;
  228. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  229. #if EXTRUDERS > 1
  230. , DEFAULT_NOMINAL_FILAMENT_DIA
  231. #if EXTRUDERS > 2
  232. , DEFAULT_NOMINAL_FILAMENT_DIA
  233. #endif
  234. #endif
  235. };
  236. float volumetric_multiplier[EXTRUDERS] = {1.0
  237. #if EXTRUDERS > 1
  238. , 1.0
  239. #if EXTRUDERS > 2
  240. , 1.0
  241. #endif
  242. #endif
  243. };
  244. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  245. float add_homing[3]={0,0,0};
  246. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  247. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  248. bool axis_known_position[3] = {false, false, false};
  249. float zprobe_zoffset;
  250. // Extruder offset
  251. #if EXTRUDERS > 1
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  254. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  255. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed=0;
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled=false;
  263. bool retracted[EXTRUDERS]={false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #endif
  269. #endif
  270. };
  271. bool retracted_swap[EXTRUDERS]={false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #endif
  277. #endif
  278. };
  279. float retract_length = RETRACT_LENGTH;
  280. float retract_length_swap = RETRACT_LENGTH_SWAP;
  281. float retract_feedrate = RETRACT_FEEDRATE;
  282. float retract_zlift = RETRACT_ZLIFT;
  283. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  284. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  285. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  286. #endif
  287. #ifdef ULTIPANEL
  288. #ifdef PS_DEFAULT_OFF
  289. bool powersupply = false;
  290. #else
  291. bool powersupply = true;
  292. #endif
  293. #endif
  294. bool cancel_heatup = false ;
  295. #ifdef FILAMENT_SENSOR
  296. //Variables for Filament Sensor input
  297. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  298. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  299. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  300. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  301. int delay_index1=0; //index into ring buffer
  302. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  303. float delay_dist=0; //delay distance counter
  304. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  305. #endif
  306. const char errormagic[] PROGMEM = "Error:";
  307. const char echomagic[] PROGMEM = "echo:";
  308. //===========================================================================
  309. //=============================Private Variables=============================
  310. //===========================================================================
  311. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  312. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  313. static float delta[3] = {0.0, 0.0, 0.0};
  314. // For tracing an arc
  315. static float offset[3] = {0.0, 0.0, 0.0};
  316. static bool home_all_axis = true;
  317. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  318. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  319. // Determines Absolute or Relative Coordinates.
  320. // Also there is bool axis_relative_modes[] per axis flag.
  321. static bool relative_mode = false;
  322. // String circular buffer. Commands may be pushed to the buffer from both sides:
  323. // Chained commands will be pushed to the front, interactive (from LCD menu)
  324. // and printing commands (from serial line or from SD card) are pushed to the tail.
  325. // First character of each entry indicates the type of the entry:
  326. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  327. // Command in cmdbuffer was sent over USB.
  328. #define CMDBUFFER_CURRENT_TYPE_USB 1
  329. // Command in cmdbuffer was read from SDCARD.
  330. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  331. // Command in cmdbuffer was generated by the UI.
  332. #define CMDBUFFER_CURRENT_TYPE_UI 3
  333. // Command in cmdbuffer was generated by another G-code.
  334. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  335. // How much space to reserve for the chained commands
  336. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  337. // which are pushed to the front of the queue?
  338. // Maximum 5 commands of max length 20 + null terminator.
  339. #define CMDBUFFER_RESERVE_FRONT (5*21)
  340. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  341. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  342. // Head of the circular buffer, where to read.
  343. static int bufindr = 0;
  344. // Tail of the buffer, where to write.
  345. static int bufindw = 0;
  346. // Number of lines in cmdbuffer.
  347. static int buflen = 0;
  348. // Flag for processing the current command inside the main Arduino loop().
  349. // If a new command was pushed to the front of a command buffer while
  350. // processing another command, this replaces the command on the top.
  351. // Therefore don't remove the command from the queue in the loop() function.
  352. static bool cmdbuffer_front_already_processed = false;
  353. // Type of a command, which is to be executed right now.
  354. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  355. // String of a command, which is to be executed right now.
  356. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  357. // Enable debugging of the command buffer.
  358. // Debugging information will be sent to serial line.
  359. // #define CMDBUFFER_DEBUG
  360. static int serial_count = 0;
  361. static boolean comment_mode = false;
  362. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  363. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  364. //static float tt = 0;
  365. //static float bt = 0;
  366. //Inactivity shutdown variables
  367. static unsigned long previous_millis_cmd = 0;
  368. unsigned long max_inactive_time = 0;
  369. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  370. unsigned long starttime=0;
  371. unsigned long stoptime=0;
  372. unsigned long _usb_timer = 0;
  373. static uint8_t tmp_extruder;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. // Pop the currently processed command from the queue.
  415. // It is expected, that there is at least one command in the queue.
  416. bool cmdqueue_pop_front()
  417. {
  418. if (buflen > 0) {
  419. #ifdef CMDBUFFER_DEBUG
  420. SERIAL_ECHOPGM("Dequeing ");
  421. SERIAL_ECHO(cmdbuffer+bufindr+1);
  422. SERIAL_ECHOLNPGM("");
  423. SERIAL_ECHOPGM("Old indices: buflen ");
  424. SERIAL_ECHO(buflen);
  425. SERIAL_ECHOPGM(", bufindr ");
  426. SERIAL_ECHO(bufindr);
  427. SERIAL_ECHOPGM(", bufindw ");
  428. SERIAL_ECHO(bufindw);
  429. SERIAL_ECHOPGM(", serial_count ");
  430. SERIAL_ECHO(serial_count);
  431. SERIAL_ECHOPGM(", bufsize ");
  432. SERIAL_ECHO(sizeof(cmdbuffer));
  433. SERIAL_ECHOLNPGM("");
  434. #endif /* CMDBUFFER_DEBUG */
  435. if (-- buflen == 0) {
  436. // Empty buffer.
  437. if (serial_count == 0)
  438. // No serial communication is pending. Reset both pointers to zero.
  439. bufindw = 0;
  440. bufindr = bufindw;
  441. } else {
  442. // There is at least one ready line in the buffer.
  443. // First skip the current command ID and iterate up to the end of the string.
  444. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  445. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  446. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  447. // If the end of the buffer was empty,
  448. if (bufindr == sizeof(cmdbuffer)) {
  449. // skip to the start and find the nonzero command.
  450. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  451. }
  452. #ifdef CMDBUFFER_DEBUG
  453. SERIAL_ECHOPGM("New indices: buflen ");
  454. SERIAL_ECHO(buflen);
  455. SERIAL_ECHOPGM(", bufindr ");
  456. SERIAL_ECHO(bufindr);
  457. SERIAL_ECHOPGM(", bufindw ");
  458. SERIAL_ECHO(bufindw);
  459. SERIAL_ECHOPGM(", serial_count ");
  460. SERIAL_ECHO(serial_count);
  461. SERIAL_ECHOPGM(" new command on the top: ");
  462. SERIAL_ECHO(cmdbuffer+bufindr+1);
  463. SERIAL_ECHOLNPGM("");
  464. #endif /* CMDBUFFER_DEBUG */
  465. }
  466. return true;
  467. }
  468. return false;
  469. }
  470. void cmdqueue_reset()
  471. {
  472. while (cmdqueue_pop_front()) ;
  473. }
  474. // How long a string could be pushed to the front of the command queue?
  475. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  476. // len_asked does not contain the zero terminator size.
  477. bool cmdqueue_could_enqueue_front(int len_asked)
  478. {
  479. // MAX_CMD_SIZE has to accommodate the zero terminator.
  480. if (len_asked >= MAX_CMD_SIZE)
  481. return false;
  482. // Remove the currently processed command from the queue.
  483. if (! cmdbuffer_front_already_processed) {
  484. cmdqueue_pop_front();
  485. cmdbuffer_front_already_processed = true;
  486. }
  487. if (bufindr == bufindw && buflen > 0)
  488. // Full buffer.
  489. return false;
  490. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  491. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  492. if (bufindw < bufindr) {
  493. int bufindr_new = bufindr - len_asked - 2;
  494. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  495. if (endw <= bufindr_new) {
  496. bufindr = bufindr_new;
  497. return true;
  498. }
  499. } else {
  500. // Otherwise the free space is split between the start and end.
  501. if (len_asked + 2 <= bufindr) {
  502. // Could fit at the start.
  503. bufindr -= len_asked + 2;
  504. return true;
  505. }
  506. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  507. if (endw <= bufindr_new) {
  508. memset(cmdbuffer, 0, bufindr);
  509. bufindr = bufindr_new;
  510. return true;
  511. }
  512. }
  513. return false;
  514. }
  515. // Could one enqueue a command of lenthg len_asked into the buffer,
  516. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  517. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  518. // len_asked does not contain the zero terminator size.
  519. bool cmdqueue_could_enqueue_back(int len_asked)
  520. {
  521. // MAX_CMD_SIZE has to accommodate the zero terminator.
  522. if (len_asked >= MAX_CMD_SIZE)
  523. return false;
  524. if (bufindr == bufindw && buflen > 0)
  525. // Full buffer.
  526. return false;
  527. if (serial_count > 0) {
  528. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  529. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  530. // serial data.
  531. // How much memory to reserve for the commands pushed to the front?
  532. // End of the queue, when pushing to the end.
  533. int endw = bufindw + len_asked + 2;
  534. if (bufindw < bufindr)
  535. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  536. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  537. // Otherwise the free space is split between the start and end.
  538. if (// Could one fit to the end, including the reserve?
  539. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  540. // Could one fit to the end, and the reserve to the start?
  541. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  542. return true;
  543. // Could one fit both to the start?
  544. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  545. // Mark the rest of the buffer as used.
  546. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  547. // and point to the start.
  548. bufindw = 0;
  549. return true;
  550. }
  551. } else {
  552. // How much memory to reserve for the commands pushed to the front?
  553. // End of the queue, when pushing to the end.
  554. int endw = bufindw + len_asked + 2;
  555. if (bufindw < bufindr)
  556. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  557. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  558. // Otherwise the free space is split between the start and end.
  559. if (// Could one fit to the end, including the reserve?
  560. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  561. // Could one fit to the end, and the reserve to the start?
  562. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  563. return true;
  564. // Could one fit both to the start?
  565. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  566. // Mark the rest of the buffer as used.
  567. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  568. // and point to the start.
  569. bufindw = 0;
  570. return true;
  571. }
  572. }
  573. return false;
  574. }
  575. #ifdef CMDBUFFER_DEBUG
  576. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  577. {
  578. SERIAL_ECHOPGM("Entry nr: ");
  579. SERIAL_ECHO(nr);
  580. SERIAL_ECHOPGM(", type: ");
  581. SERIAL_ECHO(int(*p));
  582. SERIAL_ECHOPGM(", cmd: ");
  583. SERIAL_ECHO(p+1);
  584. SERIAL_ECHOLNPGM("");
  585. }
  586. static void cmdqueue_dump_to_serial()
  587. {
  588. if (buflen == 0) {
  589. SERIAL_ECHOLNPGM("The command buffer is empty.");
  590. } else {
  591. SERIAL_ECHOPGM("Content of the buffer: entries ");
  592. SERIAL_ECHO(buflen);
  593. SERIAL_ECHOPGM(", indr ");
  594. SERIAL_ECHO(bufindr);
  595. SERIAL_ECHOPGM(", indw ");
  596. SERIAL_ECHO(bufindw);
  597. SERIAL_ECHOLNPGM("");
  598. int nr = 0;
  599. if (bufindr < bufindw) {
  600. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  601. cmdqueue_dump_to_serial_single_line(nr, p);
  602. // Skip the command.
  603. for (++p; *p != 0; ++ p);
  604. // Skip the gaps.
  605. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  606. }
  607. } else {
  608. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  614. }
  615. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  616. cmdqueue_dump_to_serial_single_line(nr, p);
  617. // Skip the command.
  618. for (++p; *p != 0; ++ p);
  619. // Skip the gaps.
  620. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  621. }
  622. }
  623. SERIAL_ECHOLNPGM("End of the buffer.");
  624. }
  625. }
  626. #endif /* CMDBUFFER_DEBUG */
  627. //adds an command to the main command buffer
  628. //thats really done in a non-safe way.
  629. //needs overworking someday
  630. // Currently the maximum length of a command piped through this function is around 20 characters
  631. void enquecommand(const char *cmd, bool from_progmem)
  632. {
  633. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  634. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  635. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  636. if (cmdqueue_could_enqueue_back(len)) {
  637. // This is dangerous if a mixing of serial and this happens
  638. // This may easily be tested: If serial_count > 0, we have a problem.
  639. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  640. if (from_progmem)
  641. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  642. else
  643. strcpy(cmdbuffer + bufindw + 1, cmd);
  644. SERIAL_ECHO_START;
  645. SERIAL_ECHORPGM(MSG_Enqueing);
  646. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  647. SERIAL_ECHOLNPGM("\"");
  648. bufindw += len + 2;
  649. if (bufindw == sizeof(cmdbuffer))
  650. bufindw = 0;
  651. ++ buflen;
  652. #ifdef CMDBUFFER_DEBUG
  653. cmdqueue_dump_to_serial();
  654. #endif /* CMDBUFFER_DEBUG */
  655. } else {
  656. SERIAL_ERROR_START;
  657. SERIAL_ECHORPGM(MSG_Enqueing);
  658. if (from_progmem)
  659. SERIAL_PROTOCOLRPGM(cmd);
  660. else
  661. SERIAL_ECHO(cmd);
  662. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  663. #ifdef CMDBUFFER_DEBUG
  664. cmdqueue_dump_to_serial();
  665. #endif /* CMDBUFFER_DEBUG */
  666. }
  667. }
  668. void enquecommand_front(const char *cmd, bool from_progmem)
  669. {
  670. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  671. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  672. if (cmdqueue_could_enqueue_front(len)) {
  673. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  674. if (from_progmem)
  675. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  676. else
  677. strcpy(cmdbuffer + bufindr + 1, cmd);
  678. ++ buflen;
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHOPGM("Enqueing to the front: \"");
  681. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  682. SERIAL_ECHOLNPGM("\"");
  683. #ifdef CMDBUFFER_DEBUG
  684. cmdqueue_dump_to_serial();
  685. #endif /* CMDBUFFER_DEBUG */
  686. } else {
  687. SERIAL_ERROR_START;
  688. SERIAL_ECHOPGM("Enqueing to the front: \"");
  689. if (from_progmem)
  690. SERIAL_PROTOCOLRPGM(cmd);
  691. else
  692. SERIAL_ECHO(cmd);
  693. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  694. #ifdef CMDBUFFER_DEBUG
  695. cmdqueue_dump_to_serial();
  696. #endif /* CMDBUFFER_DEBUG */
  697. }
  698. }
  699. // Mark the command at the top of the command queue as new.
  700. // Therefore it will not be removed from the queue.
  701. void repeatcommand_front()
  702. {
  703. cmdbuffer_front_already_processed = true;
  704. }
  705. void setup_killpin()
  706. {
  707. #if defined(KILL_PIN) && KILL_PIN > -1
  708. SET_INPUT(KILL_PIN);
  709. WRITE(KILL_PIN,HIGH);
  710. #endif
  711. }
  712. // Set home pin
  713. void setup_homepin(void)
  714. {
  715. #if defined(HOME_PIN) && HOME_PIN > -1
  716. SET_INPUT(HOME_PIN);
  717. WRITE(HOME_PIN,HIGH);
  718. #endif
  719. }
  720. void setup_photpin()
  721. {
  722. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  723. SET_OUTPUT(PHOTOGRAPH_PIN);
  724. WRITE(PHOTOGRAPH_PIN, LOW);
  725. #endif
  726. }
  727. void setup_powerhold()
  728. {
  729. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  730. SET_OUTPUT(SUICIDE_PIN);
  731. WRITE(SUICIDE_PIN, HIGH);
  732. #endif
  733. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  734. SET_OUTPUT(PS_ON_PIN);
  735. #if defined(PS_DEFAULT_OFF)
  736. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  737. #else
  738. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  739. #endif
  740. #endif
  741. }
  742. void suicide()
  743. {
  744. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  745. SET_OUTPUT(SUICIDE_PIN);
  746. WRITE(SUICIDE_PIN, LOW);
  747. #endif
  748. }
  749. void servo_init()
  750. {
  751. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  752. servos[0].attach(SERVO0_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  755. servos[1].attach(SERVO1_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  758. servos[2].attach(SERVO2_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  761. servos[3].attach(SERVO3_PIN);
  762. #endif
  763. #if (NUM_SERVOS >= 5)
  764. #error "TODO: enter initalisation code for more servos"
  765. #endif
  766. }
  767. static void lcd_language_menu();
  768. #ifdef MESH_BED_LEVELING
  769. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  770. #endif
  771. // "Setup" function is called by the Arduino framework on startup.
  772. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  773. // are initialized by the main() routine provided by the Arduino framework.
  774. void setup()
  775. {
  776. setup_killpin();
  777. setup_powerhold();
  778. MYSERIAL.begin(BAUDRATE);
  779. SERIAL_PROTOCOLLNPGM("start");
  780. SERIAL_ECHO_START;
  781. #if 0
  782. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  783. for (int i = 0; i < 4096; ++ i) {
  784. int b = eeprom_read_byte((unsigned char*)i);
  785. if (b != 255) {
  786. SERIAL_ECHO(i);
  787. SERIAL_ECHO(":");
  788. SERIAL_ECHO(b);
  789. SERIAL_ECHOLN("");
  790. }
  791. }
  792. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  793. #endif
  794. // Check startup - does nothing if bootloader sets MCUSR to 0
  795. byte mcu = MCUSR;
  796. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  797. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  798. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  799. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  800. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  801. MCUSR=0;
  802. //SERIAL_ECHORPGM(MSG_MARLIN);
  803. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  804. #ifdef STRING_VERSION_CONFIG_H
  805. #ifdef STRING_CONFIG_H_AUTHOR
  806. SERIAL_ECHO_START;
  807. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  808. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  809. SERIAL_ECHORPGM(MSG_AUTHOR);
  810. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  811. SERIAL_ECHOPGM("Compiled: ");
  812. SERIAL_ECHOLNPGM(__DATE__);
  813. #endif
  814. #endif
  815. SERIAL_ECHO_START;
  816. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  817. SERIAL_ECHO(freeMemory());
  818. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  819. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  820. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  821. Config_RetrieveSettings();
  822. tp_init(); // Initialize temperature loop
  823. plan_init(); // Initialize planner;
  824. watchdog_init();
  825. st_init(); // Initialize stepper, this enables interrupts!
  826. setup_photpin();
  827. servo_init();
  828. // Reset the machine correction matrix.
  829. // It does not make sense to load the correction matrix until the machine is homed.
  830. world2machine_reset();
  831. lcd_init();
  832. if (!READ(BTN_ENC))
  833. {
  834. _delay_ms(1000);
  835. if (!READ(BTN_ENC))
  836. {
  837. SET_OUTPUT(BEEPER);
  838. WRITE(BEEPER, HIGH);
  839. lcd_force_language_selection();
  840. farm_no = 0;
  841. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  842. farm_mode = false;
  843. while (!READ(BTN_ENC));
  844. WRITE(BEEPER, LOW);
  845. #ifdef MESH_BED_LEVELING
  846. _delay_ms(2000);
  847. if (!READ(BTN_ENC))
  848. {
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. _delay_ms(200);
  853. WRITE(BEEPER, HIGH);
  854. _delay_ms(100);
  855. WRITE(BEEPER, LOW);
  856. int _z = 0;
  857. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  858. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  859. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  860. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  861. }
  862. else
  863. {
  864. WRITE(BEEPER, HIGH);
  865. _delay_ms(100);
  866. WRITE(BEEPER, LOW);
  867. }
  868. #endif // mesh
  869. }
  870. }
  871. else
  872. {
  873. _delay_ms(1000); // wait 1sec to display the splash screen
  874. }
  875. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  876. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  877. #endif
  878. #ifdef DIGIPOT_I2C
  879. digipot_i2c_init();
  880. #endif
  881. setup_homepin();
  882. #if defined(Z_AXIS_ALWAYS_ON)
  883. enable_z();
  884. #endif
  885. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  886. if (farm_no > 0)
  887. {
  888. farm_mode = true;
  889. farm_no = farm_no;
  890. prusa_statistics(8);
  891. }
  892. else
  893. {
  894. farm_mode = false;
  895. farm_no = 0;
  896. }
  897. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  898. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  899. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  900. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  901. // where all the EEPROM entries are set to 0x0ff.
  902. // Once a firmware boots up, it forces at least a language selection, which changes
  903. // EEPROM_LANG to number lower than 0x0ff.
  904. // 1) Set a high power mode.
  905. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  906. }
  907. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  908. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  909. // is being written into the EEPROM, so the update procedure will be triggered only once.
  910. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  911. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  912. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  913. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  914. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  915. // Get the selected laugnage index before display update.
  916. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  917. if (lang_selected >= LANG_NUM)
  918. lang_selected = LANG_ID_DEFAULT; // Czech language
  919. // Show the message.
  920. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  921. lcd_update_enable(true);
  922. lcd_implementation_clear();
  923. }
  924. // Store the currently running firmware into an eeprom,
  925. // so the next time the firmware gets updated, it will know from which version it has been updated.
  926. update_current_firmware_version_to_eeprom();
  927. }
  928. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  929. // Before loop(), the setup() function is called by the main() routine.
  930. void loop()
  931. {
  932. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  933. {
  934. is_usb_printing = true;
  935. usb_printing_counter--;
  936. _usb_timer = millis();
  937. }
  938. if (usb_printing_counter == 0)
  939. {
  940. is_usb_printing = false;
  941. }
  942. get_command();
  943. #ifdef SDSUPPORT
  944. card.checkautostart(false);
  945. #endif
  946. if(buflen)
  947. {
  948. #ifdef SDSUPPORT
  949. if(card.saving)
  950. {
  951. // Saving a G-code file onto an SD-card is in progress.
  952. // Saving starts with M28, saving until M29 is seen.
  953. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  954. card.write_command(CMDBUFFER_CURRENT_STRING);
  955. if(card.logging)
  956. process_commands();
  957. else
  958. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  959. } else {
  960. card.closefile();
  961. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  962. }
  963. } else {
  964. process_commands();
  965. }
  966. #else
  967. process_commands();
  968. #endif //SDSUPPORT
  969. if (! cmdbuffer_front_already_processed)
  970. cmdqueue_pop_front();
  971. cmdbuffer_front_already_processed = false;
  972. }
  973. //check heater every n milliseconds
  974. manage_heater();
  975. manage_inactivity();
  976. checkHitEndstops();
  977. lcd_update();
  978. }
  979. void get_command()
  980. {
  981. // Test and reserve space for the new command string.
  982. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  983. return;
  984. while (MYSERIAL.available() > 0) {
  985. char serial_char = MYSERIAL.read();
  986. if (serial_char < 0)
  987. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  988. // and Marlin does not support such file names anyway.
  989. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  990. // to a hang-up of the print process from an SD card.
  991. continue;
  992. if(serial_char == '\n' ||
  993. serial_char == '\r' ||
  994. (serial_char == ':' && comment_mode == false) ||
  995. serial_count >= (MAX_CMD_SIZE - 1) )
  996. {
  997. if(!serial_count) { //if empty line
  998. comment_mode = false; //for new command
  999. return;
  1000. }
  1001. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1002. if(!comment_mode){
  1003. comment_mode = false; //for new command
  1004. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1005. {
  1006. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1007. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1008. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1009. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1010. // M110 - set current line number.
  1011. // Line numbers not sent in succession.
  1012. SERIAL_ERROR_START;
  1013. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1014. SERIAL_ERRORLN(gcode_LastN);
  1015. //Serial.println(gcode_N);
  1016. FlushSerialRequestResend();
  1017. serial_count = 0;
  1018. return;
  1019. }
  1020. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1021. {
  1022. byte checksum = 0;
  1023. char *p = cmdbuffer+bufindw+1;
  1024. while (p != strchr_pointer)
  1025. checksum = checksum^(*p++);
  1026. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1027. SERIAL_ERROR_START;
  1028. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1029. SERIAL_ERRORLN(gcode_LastN);
  1030. FlushSerialRequestResend();
  1031. serial_count = 0;
  1032. return;
  1033. }
  1034. // If no errors, remove the checksum and continue parsing.
  1035. *strchr_pointer = 0;
  1036. }
  1037. else
  1038. {
  1039. SERIAL_ERROR_START;
  1040. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1041. SERIAL_ERRORLN(gcode_LastN);
  1042. FlushSerialRequestResend();
  1043. serial_count = 0;
  1044. return;
  1045. }
  1046. gcode_LastN = gcode_N;
  1047. //if no errors, continue parsing
  1048. } // end of 'N' command
  1049. else // if we don't receive 'N' but still see '*'
  1050. {
  1051. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1052. {
  1053. SERIAL_ERROR_START;
  1054. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1055. SERIAL_ERRORLN(gcode_LastN);
  1056. serial_count = 0;
  1057. return;
  1058. }
  1059. } // end of '*' command
  1060. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1061. if (! IS_SD_PRINTING) {
  1062. usb_printing_counter = 10;
  1063. is_usb_printing = true;
  1064. }
  1065. if (Stopped == true) {
  1066. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1067. if (gcode >= 0 && gcode <= 3) {
  1068. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1069. LCD_MESSAGERPGM(MSG_STOPPED);
  1070. }
  1071. }
  1072. } // end of 'G' command
  1073. //If command was e-stop process now
  1074. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1075. kill();
  1076. // Store the current line into buffer, move to the next line.
  1077. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1078. #ifdef CMDBUFFER_DEBUG
  1079. SERIAL_ECHO_START;
  1080. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1081. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1082. SERIAL_ECHOLNPGM("");
  1083. #endif /* CMDBUFFER_DEBUG */
  1084. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1085. if (bufindw == sizeof(cmdbuffer))
  1086. bufindw = 0;
  1087. ++ buflen;
  1088. #ifdef CMDBUFFER_DEBUG
  1089. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1090. SERIAL_ECHO(buflen);
  1091. SERIAL_ECHOLNPGM("");
  1092. #endif /* CMDBUFFER_DEBUG */
  1093. } // end of 'not comment mode'
  1094. serial_count = 0; //clear buffer
  1095. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1096. // in the queue, as this function will reserve the memory.
  1097. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1098. return;
  1099. } // end of "end of line" processing
  1100. else {
  1101. // Not an "end of line" symbol. Store the new character into a buffer.
  1102. if(serial_char == ';') comment_mode = true;
  1103. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1104. }
  1105. } // end of serial line processing loop
  1106. #ifdef SDSUPPORT
  1107. if(!card.sdprinting || serial_count!=0){
  1108. // If there is a half filled buffer from serial line, wait until return before
  1109. // continuing with the serial line.
  1110. return;
  1111. }
  1112. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1113. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1114. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1115. static bool stop_buffering=false;
  1116. if(buflen==0) stop_buffering=false;
  1117. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1118. while( !card.eof() && !stop_buffering) {
  1119. int16_t n=card.get();
  1120. char serial_char = (char)n;
  1121. if(serial_char == '\n' ||
  1122. serial_char == '\r' ||
  1123. (serial_char == '#' && comment_mode == false) ||
  1124. (serial_char == ':' && comment_mode == false) ||
  1125. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1126. {
  1127. if(card.eof()){
  1128. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1129. stoptime=millis();
  1130. char time[30];
  1131. unsigned long t=(stoptime-starttime)/1000;
  1132. int hours, minutes;
  1133. minutes=(t/60)%60;
  1134. hours=t/60/60;
  1135. save_statistics(total_filament_used, t);
  1136. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1137. SERIAL_ECHO_START;
  1138. SERIAL_ECHOLN(time);
  1139. lcd_setstatus(time);
  1140. card.printingHasFinished();
  1141. card.checkautostart(true);
  1142. if (farm_mode)
  1143. {
  1144. prusa_statistics(6);
  1145. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1146. }
  1147. }
  1148. if(serial_char=='#')
  1149. stop_buffering=true;
  1150. if(!serial_count)
  1151. {
  1152. comment_mode = false; //for new command
  1153. return; //if empty line
  1154. }
  1155. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1156. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1157. ++ buflen;
  1158. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1159. if (bufindw == sizeof(cmdbuffer))
  1160. bufindw = 0;
  1161. comment_mode = false; //for new command
  1162. serial_count = 0; //clear buffer
  1163. // The following line will reserve buffer space if available.
  1164. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1165. return;
  1166. }
  1167. else
  1168. {
  1169. if(serial_char == ';') comment_mode = true;
  1170. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1171. }
  1172. }
  1173. #endif //SDSUPPORT
  1174. }
  1175. // Return True if a character was found
  1176. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1177. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1178. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1179. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1180. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1181. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1182. #define DEFINE_PGM_READ_ANY(type, reader) \
  1183. static inline type pgm_read_any(const type *p) \
  1184. { return pgm_read_##reader##_near(p); }
  1185. DEFINE_PGM_READ_ANY(float, float);
  1186. DEFINE_PGM_READ_ANY(signed char, byte);
  1187. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1188. static const PROGMEM type array##_P[3] = \
  1189. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1190. static inline type array(int axis) \
  1191. { return pgm_read_any(&array##_P[axis]); } \
  1192. type array##_ext(int axis) \
  1193. { return pgm_read_any(&array##_P[axis]); }
  1194. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1195. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1196. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1197. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1198. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1199. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1200. static void axis_is_at_home(int axis) {
  1201. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1202. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1203. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1204. }
  1205. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1206. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1207. static void setup_for_endstop_move() {
  1208. saved_feedrate = feedrate;
  1209. saved_feedmultiply = feedmultiply;
  1210. feedmultiply = 100;
  1211. previous_millis_cmd = millis();
  1212. enable_endstops(true);
  1213. }
  1214. static void clean_up_after_endstop_move() {
  1215. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1216. enable_endstops(false);
  1217. #endif
  1218. feedrate = saved_feedrate;
  1219. feedmultiply = saved_feedmultiply;
  1220. previous_millis_cmd = millis();
  1221. }
  1222. #ifdef ENABLE_AUTO_BED_LEVELING
  1223. #ifdef AUTO_BED_LEVELING_GRID
  1224. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1225. {
  1226. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1227. planeNormal.debug("planeNormal");
  1228. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1229. //bedLevel.debug("bedLevel");
  1230. //plan_bed_level_matrix.debug("bed level before");
  1231. //vector_3 uncorrected_position = plan_get_position_mm();
  1232. //uncorrected_position.debug("position before");
  1233. vector_3 corrected_position = plan_get_position();
  1234. // corrected_position.debug("position after");
  1235. current_position[X_AXIS] = corrected_position.x;
  1236. current_position[Y_AXIS] = corrected_position.y;
  1237. current_position[Z_AXIS] = corrected_position.z;
  1238. // put the bed at 0 so we don't go below it.
  1239. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1240. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1241. }
  1242. #else // not AUTO_BED_LEVELING_GRID
  1243. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1244. plan_bed_level_matrix.set_to_identity();
  1245. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1246. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1247. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1248. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1249. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1250. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1251. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1252. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1253. vector_3 corrected_position = plan_get_position();
  1254. current_position[X_AXIS] = corrected_position.x;
  1255. current_position[Y_AXIS] = corrected_position.y;
  1256. current_position[Z_AXIS] = corrected_position.z;
  1257. // put the bed at 0 so we don't go below it.
  1258. current_position[Z_AXIS] = zprobe_zoffset;
  1259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1260. }
  1261. #endif // AUTO_BED_LEVELING_GRID
  1262. static void run_z_probe() {
  1263. plan_bed_level_matrix.set_to_identity();
  1264. feedrate = homing_feedrate[Z_AXIS];
  1265. // move down until you find the bed
  1266. float zPosition = -10;
  1267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1268. st_synchronize();
  1269. // we have to let the planner know where we are right now as it is not where we said to go.
  1270. zPosition = st_get_position_mm(Z_AXIS);
  1271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1272. // move up the retract distance
  1273. zPosition += home_retract_mm(Z_AXIS);
  1274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1275. st_synchronize();
  1276. // move back down slowly to find bed
  1277. feedrate = homing_feedrate[Z_AXIS]/4;
  1278. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1280. st_synchronize();
  1281. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1282. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1284. }
  1285. static void do_blocking_move_to(float x, float y, float z) {
  1286. float oldFeedRate = feedrate;
  1287. feedrate = homing_feedrate[Z_AXIS];
  1288. current_position[Z_AXIS] = z;
  1289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1290. st_synchronize();
  1291. feedrate = XY_TRAVEL_SPEED;
  1292. current_position[X_AXIS] = x;
  1293. current_position[Y_AXIS] = y;
  1294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. feedrate = oldFeedRate;
  1297. }
  1298. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1299. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1300. }
  1301. /// Probe bed height at position (x,y), returns the measured z value
  1302. static float probe_pt(float x, float y, float z_before) {
  1303. // move to right place
  1304. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1305. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1306. run_z_probe();
  1307. float measured_z = current_position[Z_AXIS];
  1308. SERIAL_PROTOCOLRPGM(MSG_BED);
  1309. SERIAL_PROTOCOLPGM(" x: ");
  1310. SERIAL_PROTOCOL(x);
  1311. SERIAL_PROTOCOLPGM(" y: ");
  1312. SERIAL_PROTOCOL(y);
  1313. SERIAL_PROTOCOLPGM(" z: ");
  1314. SERIAL_PROTOCOL(measured_z);
  1315. SERIAL_PROTOCOLPGM("\n");
  1316. return measured_z;
  1317. }
  1318. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1319. void homeaxis(int axis) {
  1320. #define HOMEAXIS_DO(LETTER) \
  1321. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1322. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1323. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1324. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1325. 0) {
  1326. int axis_home_dir = home_dir(axis);
  1327. current_position[axis] = 0;
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1330. feedrate = homing_feedrate[axis];
  1331. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1332. st_synchronize();
  1333. current_position[axis] = 0;
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1339. feedrate = homing_feedrate[axis]/2 ;
  1340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1341. st_synchronize();
  1342. axis_is_at_home(axis);
  1343. destination[axis] = current_position[axis];
  1344. feedrate = 0.0;
  1345. endstops_hit_on_purpose();
  1346. axis_known_position[axis] = true;
  1347. }
  1348. }
  1349. void home_xy()
  1350. {
  1351. set_destination_to_current();
  1352. homeaxis(X_AXIS);
  1353. homeaxis(Y_AXIS);
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. endstops_hit_on_purpose();
  1356. }
  1357. void refresh_cmd_timeout(void)
  1358. {
  1359. previous_millis_cmd = millis();
  1360. }
  1361. #ifdef FWRETRACT
  1362. void retract(bool retracting, bool swapretract = false) {
  1363. if(retracting && !retracted[active_extruder]) {
  1364. destination[X_AXIS]=current_position[X_AXIS];
  1365. destination[Y_AXIS]=current_position[Y_AXIS];
  1366. destination[Z_AXIS]=current_position[Z_AXIS];
  1367. destination[E_AXIS]=current_position[E_AXIS];
  1368. if (swapretract) {
  1369. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1370. } else {
  1371. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1372. }
  1373. plan_set_e_position(current_position[E_AXIS]);
  1374. float oldFeedrate = feedrate;
  1375. feedrate=retract_feedrate*60;
  1376. retracted[active_extruder]=true;
  1377. prepare_move();
  1378. current_position[Z_AXIS]-=retract_zlift;
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. prepare_move();
  1381. feedrate = oldFeedrate;
  1382. } else if(!retracting && retracted[active_extruder]) {
  1383. destination[X_AXIS]=current_position[X_AXIS];
  1384. destination[Y_AXIS]=current_position[Y_AXIS];
  1385. destination[Z_AXIS]=current_position[Z_AXIS];
  1386. destination[E_AXIS]=current_position[E_AXIS];
  1387. current_position[Z_AXIS]+=retract_zlift;
  1388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1389. //prepare_move();
  1390. if (swapretract) {
  1391. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1392. } else {
  1393. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1394. }
  1395. plan_set_e_position(current_position[E_AXIS]);
  1396. float oldFeedrate = feedrate;
  1397. feedrate=retract_recover_feedrate*60;
  1398. retracted[active_extruder]=false;
  1399. prepare_move();
  1400. feedrate = oldFeedrate;
  1401. }
  1402. } //retract
  1403. #endif //FWRETRACT
  1404. void process_commands()
  1405. {
  1406. #ifdef FILAMENT_RUNOUT_SUPPORT
  1407. SET_INPUT(FR_SENS);
  1408. #endif
  1409. #ifdef CMDBUFFER_DEBUG
  1410. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1411. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1412. SERIAL_ECHOLNPGM("");
  1413. SERIAL_ECHOPGM("In cmdqueue: ");
  1414. SERIAL_ECHO(buflen);
  1415. SERIAL_ECHOLNPGM("");
  1416. #endif /* CMDBUFFER_DEBUG */
  1417. unsigned long codenum; //throw away variable
  1418. char *starpos = NULL;
  1419. #ifdef ENABLE_AUTO_BED_LEVELING
  1420. float x_tmp, y_tmp, z_tmp, real_z;
  1421. #endif
  1422. // PRUSA GCODES
  1423. if(code_seen("PRUSA")){
  1424. if(code_seen("Fir")){
  1425. SERIAL_PROTOCOLLN(FW_version);
  1426. } else if(code_seen("Rev")){
  1427. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1428. } else if(code_seen("Lang")) {
  1429. lcd_force_language_selection();
  1430. } else if(code_seen("Lz")) {
  1431. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1432. }
  1433. //else if (code_seen('Cal')) {
  1434. // lcd_calibration();
  1435. // }
  1436. }
  1437. else
  1438. if(code_seen('G'))
  1439. {
  1440. switch((int)code_value())
  1441. {
  1442. case 0: // G0 -> G1
  1443. case 1: // G1
  1444. if(Stopped == false) {
  1445. #ifdef FILAMENT_RUNOUT_SUPPORT
  1446. if(READ(FR_SENS)){
  1447. feedmultiplyBckp=feedmultiply;
  1448. float target[4];
  1449. float lastpos[4];
  1450. target[X_AXIS]=current_position[X_AXIS];
  1451. target[Y_AXIS]=current_position[Y_AXIS];
  1452. target[Z_AXIS]=current_position[Z_AXIS];
  1453. target[E_AXIS]=current_position[E_AXIS];
  1454. lastpos[X_AXIS]=current_position[X_AXIS];
  1455. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1456. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1457. lastpos[E_AXIS]=current_position[E_AXIS];
  1458. //retract by E
  1459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1461. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1463. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1464. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1466. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1468. //finish moves
  1469. st_synchronize();
  1470. //disable extruder steppers so filament can be removed
  1471. disable_e0();
  1472. disable_e1();
  1473. disable_e2();
  1474. delay(100);
  1475. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1476. uint8_t cnt=0;
  1477. int counterBeep = 0;
  1478. lcd_wait_interact();
  1479. while(!lcd_clicked()){
  1480. cnt++;
  1481. manage_heater();
  1482. manage_inactivity(true);
  1483. //lcd_update();
  1484. if(cnt==0)
  1485. {
  1486. #if BEEPER > 0
  1487. if (counterBeep== 500){
  1488. counterBeep = 0;
  1489. }
  1490. SET_OUTPUT(BEEPER);
  1491. if (counterBeep== 0){
  1492. WRITE(BEEPER,HIGH);
  1493. }
  1494. if (counterBeep== 20){
  1495. WRITE(BEEPER,LOW);
  1496. }
  1497. counterBeep++;
  1498. #else
  1499. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1500. lcd_buzz(1000/6,100);
  1501. #else
  1502. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1503. #endif
  1504. #endif
  1505. }
  1506. }
  1507. WRITE(BEEPER,LOW);
  1508. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1509. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1510. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1512. lcd_change_fil_state = 0;
  1513. lcd_loading_filament();
  1514. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1515. lcd_change_fil_state = 0;
  1516. lcd_alright();
  1517. switch(lcd_change_fil_state){
  1518. case 2:
  1519. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1520. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1521. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1522. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1523. lcd_loading_filament();
  1524. break;
  1525. case 3:
  1526. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1527. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1528. lcd_loading_color();
  1529. break;
  1530. default:
  1531. lcd_change_success();
  1532. break;
  1533. }
  1534. }
  1535. target[E_AXIS]+= 5;
  1536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1537. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1538. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1539. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1540. //plan_set_e_position(current_position[E_AXIS]);
  1541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1542. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1543. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1544. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1545. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1546. plan_set_e_position(lastpos[E_AXIS]);
  1547. feedmultiply=feedmultiplyBckp;
  1548. char cmd[9];
  1549. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1550. enquecommand(cmd);
  1551. }
  1552. #endif
  1553. get_coordinates(); // For X Y Z E F
  1554. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1555. #ifdef FWRETRACT
  1556. if(autoretract_enabled)
  1557. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1558. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1559. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1560. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1561. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1562. retract(!retracted);
  1563. return;
  1564. }
  1565. }
  1566. #endif //FWRETRACT
  1567. prepare_move();
  1568. //ClearToSend();
  1569. }
  1570. break;
  1571. case 2: // G2 - CW ARC
  1572. if(Stopped == false) {
  1573. get_arc_coordinates();
  1574. prepare_arc_move(true);
  1575. }
  1576. break;
  1577. case 3: // G3 - CCW ARC
  1578. if(Stopped == false) {
  1579. get_arc_coordinates();
  1580. prepare_arc_move(false);
  1581. }
  1582. break;
  1583. case 4: // G4 dwell
  1584. LCD_MESSAGERPGM(MSG_DWELL);
  1585. codenum = 0;
  1586. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1587. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1588. st_synchronize();
  1589. codenum += millis(); // keep track of when we started waiting
  1590. previous_millis_cmd = millis();
  1591. while(millis() < codenum) {
  1592. manage_heater();
  1593. manage_inactivity();
  1594. lcd_update();
  1595. }
  1596. break;
  1597. #ifdef FWRETRACT
  1598. case 10: // G10 retract
  1599. #if EXTRUDERS > 1
  1600. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1601. retract(true,retracted_swap[active_extruder]);
  1602. #else
  1603. retract(true);
  1604. #endif
  1605. break;
  1606. case 11: // G11 retract_recover
  1607. #if EXTRUDERS > 1
  1608. retract(false,retracted_swap[active_extruder]);
  1609. #else
  1610. retract(false);
  1611. #endif
  1612. break;
  1613. #endif //FWRETRACT
  1614. case 28: //G28 Home all Axis one at a time
  1615. #ifdef ENABLE_AUTO_BED_LEVELING
  1616. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1617. #endif //ENABLE_AUTO_BED_LEVELING
  1618. // For mesh bed leveling deactivate the matrix temporarily
  1619. #ifdef MESH_BED_LEVELING
  1620. mbl.active = 0;
  1621. #endif
  1622. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1623. // the planner will not perform any adjustments in the XY plane.
  1624. // Wait for the motors to stop and update the current position with the absolute values.
  1625. world2machine_revert_to_uncorrected();
  1626. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1627. // consumed during the first movements following this statement.
  1628. #ifdef BABYSTEP_LOADZ_BY_PLANNER
  1629. shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  1630. #else
  1631. babystepsTodoZsubtract(babystepLoadZ);
  1632. #endif /* BABYSTEP_LOADZ_BY_PLANNER */
  1633. babystepLoadZ = 0;
  1634. saved_feedrate = feedrate;
  1635. saved_feedmultiply = feedmultiply;
  1636. feedmultiply = 100;
  1637. previous_millis_cmd = millis();
  1638. enable_endstops(true);
  1639. for(int8_t i=0; i < NUM_AXIS; i++)
  1640. destination[i] = current_position[i];
  1641. feedrate = 0.0;
  1642. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1643. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1644. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1645. homeaxis(Z_AXIS);
  1646. }
  1647. #endif
  1648. #ifdef QUICK_HOME
  1649. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1650. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1651. {
  1652. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1653. int x_axis_home_dir = home_dir(X_AXIS);
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1656. feedrate = homing_feedrate[X_AXIS];
  1657. if(homing_feedrate[Y_AXIS]<feedrate)
  1658. feedrate = homing_feedrate[Y_AXIS];
  1659. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1660. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1661. } else {
  1662. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1663. }
  1664. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1665. st_synchronize();
  1666. axis_is_at_home(X_AXIS);
  1667. axis_is_at_home(Y_AXIS);
  1668. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1669. destination[X_AXIS] = current_position[X_AXIS];
  1670. destination[Y_AXIS] = current_position[Y_AXIS];
  1671. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1672. feedrate = 0.0;
  1673. st_synchronize();
  1674. endstops_hit_on_purpose();
  1675. current_position[X_AXIS] = destination[X_AXIS];
  1676. current_position[Y_AXIS] = destination[Y_AXIS];
  1677. current_position[Z_AXIS] = destination[Z_AXIS];
  1678. }
  1679. #endif /* QUICK_HOME */
  1680. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1681. homeaxis(X_AXIS);
  1682. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1683. homeaxis(Y_AXIS);
  1684. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1685. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1686. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1687. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1688. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1689. #ifndef Z_SAFE_HOMING
  1690. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1691. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1692. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1693. feedrate = max_feedrate[Z_AXIS];
  1694. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1695. st_synchronize();
  1696. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1697. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1698. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1699. {
  1700. homeaxis(X_AXIS);
  1701. homeaxis(Y_AXIS);
  1702. }
  1703. // 1st mesh bed leveling measurement point, corrected.
  1704. world2machine_initialize();
  1705. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1706. world2machine_reset();
  1707. if (destination[Y_AXIS] < Y_MIN_POS)
  1708. destination[Y_AXIS] = Y_MIN_POS;
  1709. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1710. feedrate = homing_feedrate[Z_AXIS]/10;
  1711. current_position[Z_AXIS] = 0;
  1712. enable_endstops(false);
  1713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1714. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1715. st_synchronize();
  1716. current_position[X_AXIS] = destination[X_AXIS];
  1717. current_position[Y_AXIS] = destination[Y_AXIS];
  1718. enable_endstops(true);
  1719. endstops_hit_on_purpose();
  1720. homeaxis(Z_AXIS);
  1721. #else // MESH_BED_LEVELING
  1722. homeaxis(Z_AXIS);
  1723. #endif // MESH_BED_LEVELING
  1724. }
  1725. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1726. if(home_all_axis) {
  1727. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1728. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1729. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1730. feedrate = XY_TRAVEL_SPEED/60;
  1731. current_position[Z_AXIS] = 0;
  1732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1733. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1734. st_synchronize();
  1735. current_position[X_AXIS] = destination[X_AXIS];
  1736. current_position[Y_AXIS] = destination[Y_AXIS];
  1737. homeaxis(Z_AXIS);
  1738. }
  1739. // Let's see if X and Y are homed and probe is inside bed area.
  1740. if(code_seen(axis_codes[Z_AXIS])) {
  1741. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1742. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1743. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1744. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1745. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1746. current_position[Z_AXIS] = 0;
  1747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1749. feedrate = max_feedrate[Z_AXIS];
  1750. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1751. st_synchronize();
  1752. homeaxis(Z_AXIS);
  1753. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1754. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1755. SERIAL_ECHO_START;
  1756. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1757. } else {
  1758. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1759. SERIAL_ECHO_START;
  1760. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1761. }
  1762. }
  1763. #endif // Z_SAFE_HOMING
  1764. #endif // Z_HOME_DIR < 0
  1765. if(code_seen(axis_codes[Z_AXIS])) {
  1766. if(code_value_long() != 0) {
  1767. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1768. }
  1769. }
  1770. #ifdef ENABLE_AUTO_BED_LEVELING
  1771. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1772. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1773. }
  1774. #endif
  1775. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1776. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1777. enable_endstops(false);
  1778. #endif
  1779. feedrate = saved_feedrate;
  1780. feedmultiply = saved_feedmultiply;
  1781. previous_millis_cmd = millis();
  1782. endstops_hit_on_purpose();
  1783. #ifndef MESH_BED_LEVELING
  1784. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1785. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1786. if(card.sdprinting) {
  1787. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1788. if(babystepLoadZ != 0)
  1789. lcd_adjust_z();
  1790. }
  1791. #endif
  1792. // Load the machine correction matrix
  1793. world2machine_initialize();
  1794. // and correct the current_position to match the transformed coordinate system.
  1795. world2machine_update_current();
  1796. #ifdef MESH_BED_LEVELING
  1797. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1798. {
  1799. }
  1800. else
  1801. {
  1802. st_synchronize();
  1803. // Push the commands to the front of the message queue in the reverse order!
  1804. // There shall be always enough space reserved for these commands.
  1805. // enquecommand_front_P((PSTR("G80")));
  1806. goto case_G80;
  1807. }
  1808. #endif
  1809. if (farm_mode) { prusa_statistics(20); };
  1810. break;
  1811. #ifdef ENABLE_AUTO_BED_LEVELING
  1812. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1813. {
  1814. #if Z_MIN_PIN == -1
  1815. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1816. #endif
  1817. // Prevent user from running a G29 without first homing in X and Y
  1818. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1819. {
  1820. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1821. SERIAL_ECHO_START;
  1822. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1823. break; // abort G29, since we don't know where we are
  1824. }
  1825. st_synchronize();
  1826. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1827. //vector_3 corrected_position = plan_get_position_mm();
  1828. //corrected_position.debug("position before G29");
  1829. plan_bed_level_matrix.set_to_identity();
  1830. vector_3 uncorrected_position = plan_get_position();
  1831. //uncorrected_position.debug("position durring G29");
  1832. current_position[X_AXIS] = uncorrected_position.x;
  1833. current_position[Y_AXIS] = uncorrected_position.y;
  1834. current_position[Z_AXIS] = uncorrected_position.z;
  1835. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1836. setup_for_endstop_move();
  1837. feedrate = homing_feedrate[Z_AXIS];
  1838. #ifdef AUTO_BED_LEVELING_GRID
  1839. // probe at the points of a lattice grid
  1840. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1841. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1842. // solve the plane equation ax + by + d = z
  1843. // A is the matrix with rows [x y 1] for all the probed points
  1844. // B is the vector of the Z positions
  1845. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1846. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1847. // "A" matrix of the linear system of equations
  1848. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1849. // "B" vector of Z points
  1850. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1851. int probePointCounter = 0;
  1852. bool zig = true;
  1853. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1854. {
  1855. int xProbe, xInc;
  1856. if (zig)
  1857. {
  1858. xProbe = LEFT_PROBE_BED_POSITION;
  1859. //xEnd = RIGHT_PROBE_BED_POSITION;
  1860. xInc = xGridSpacing;
  1861. zig = false;
  1862. } else // zag
  1863. {
  1864. xProbe = RIGHT_PROBE_BED_POSITION;
  1865. //xEnd = LEFT_PROBE_BED_POSITION;
  1866. xInc = -xGridSpacing;
  1867. zig = true;
  1868. }
  1869. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1870. {
  1871. float z_before;
  1872. if (probePointCounter == 0)
  1873. {
  1874. // raise before probing
  1875. z_before = Z_RAISE_BEFORE_PROBING;
  1876. } else
  1877. {
  1878. // raise extruder
  1879. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1880. }
  1881. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1882. eqnBVector[probePointCounter] = measured_z;
  1883. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1884. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1885. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1886. probePointCounter++;
  1887. xProbe += xInc;
  1888. }
  1889. }
  1890. clean_up_after_endstop_move();
  1891. // solve lsq problem
  1892. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1893. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1894. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1895. SERIAL_PROTOCOLPGM(" b: ");
  1896. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1897. SERIAL_PROTOCOLPGM(" d: ");
  1898. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1899. set_bed_level_equation_lsq(plane_equation_coefficients);
  1900. free(plane_equation_coefficients);
  1901. #else // AUTO_BED_LEVELING_GRID not defined
  1902. // Probe at 3 arbitrary points
  1903. // probe 1
  1904. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1905. // probe 2
  1906. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1907. // probe 3
  1908. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1909. clean_up_after_endstop_move();
  1910. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1911. #endif // AUTO_BED_LEVELING_GRID
  1912. st_synchronize();
  1913. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1914. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1915. // When the bed is uneven, this height must be corrected.
  1916. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1917. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1918. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1919. z_tmp = current_position[Z_AXIS];
  1920. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1921. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. }
  1924. break;
  1925. #ifndef Z_PROBE_SLED
  1926. case 30: // G30 Single Z Probe
  1927. {
  1928. st_synchronize();
  1929. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1930. setup_for_endstop_move();
  1931. feedrate = homing_feedrate[Z_AXIS];
  1932. run_z_probe();
  1933. SERIAL_PROTOCOLPGM(MSG_BED);
  1934. SERIAL_PROTOCOLPGM(" X: ");
  1935. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1936. SERIAL_PROTOCOLPGM(" Y: ");
  1937. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1938. SERIAL_PROTOCOLPGM(" Z: ");
  1939. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1940. SERIAL_PROTOCOLPGM("\n");
  1941. clean_up_after_endstop_move();
  1942. }
  1943. break;
  1944. #else
  1945. case 31: // dock the sled
  1946. dock_sled(true);
  1947. break;
  1948. case 32: // undock the sled
  1949. dock_sled(false);
  1950. break;
  1951. #endif // Z_PROBE_SLED
  1952. #endif // ENABLE_AUTO_BED_LEVELING
  1953. #ifdef MESH_BED_LEVELING
  1954. case 30: // G30 Single Z Probe
  1955. {
  1956. st_synchronize();
  1957. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1958. setup_for_endstop_move();
  1959. feedrate = homing_feedrate[Z_AXIS];
  1960. find_bed_induction_sensor_point_z(-10.f, 3);
  1961. SERIAL_PROTOCOLRPGM(MSG_BED);
  1962. SERIAL_PROTOCOLPGM(" X: ");
  1963. MYSERIAL.print(current_position[X_AXIS], 5);
  1964. SERIAL_PROTOCOLPGM(" Y: ");
  1965. MYSERIAL.print(current_position[Y_AXIS], 5);
  1966. SERIAL_PROTOCOLPGM(" Z: ");
  1967. MYSERIAL.print(current_position[Z_AXIS], 5);
  1968. SERIAL_PROTOCOLPGM("\n");
  1969. clean_up_after_endstop_move();
  1970. }
  1971. break;
  1972. /**
  1973. * G80: Mesh-based Z probe, probes a grid and produces a
  1974. * mesh to compensate for variable bed height
  1975. *
  1976. * The S0 report the points as below
  1977. *
  1978. * +----> X-axis
  1979. * |
  1980. * |
  1981. * v Y-axis
  1982. *
  1983. */
  1984. case 80:
  1985. case_G80:
  1986. {
  1987. // Firstly check if we know where we are
  1988. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1989. // We don't know where we are! HOME!
  1990. // Push the commands to the front of the message queue in the reverse order!
  1991. // There shall be always enough space reserved for these commands.
  1992. repeatcommand_front(); // repeat G80 with all its parameters
  1993. enquecommand_front_P((PSTR("G28 W0")));
  1994. break;
  1995. }
  1996. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  1997. bool custom_message_old = custom_message;
  1998. unsigned int custom_message_type_old = custom_message_type;
  1999. unsigned int custom_message_state_old = custom_message_state;
  2000. custom_message = true;
  2001. custom_message_type = 1;
  2002. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2003. lcd_update(1);
  2004. mbl.reset();
  2005. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2006. // consumed during the first movements following this statement.
  2007. #ifdef BABYSTEP_LOADZ_BY_PLANNER
  2008. shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  2009. #else
  2010. babystepsTodoZsubtract(babystepLoadZ);
  2011. #endif /* BABYSTEP_LOADZ_BY_PLANNER */
  2012. babystepLoadZ = 0;
  2013. // Cycle through all points and probe them
  2014. // First move up. During this first movement, the babystepping will be reverted.
  2015. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2017. // The move to the first calibration point.
  2018. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2019. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2020. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2021. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2023. // Wait until the move is finished.
  2024. st_synchronize();
  2025. int mesh_point = 0;
  2026. int ix = 0;
  2027. int iy = 0;
  2028. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2029. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2030. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2031. bool has_z = is_bed_z_jitter_data_valid();
  2032. setup_for_endstop_move();
  2033. const char *kill_message = NULL;
  2034. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2035. // Get coords of a measuring point.
  2036. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2037. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2038. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2039. float z0 = 0.f;
  2040. if (has_z && mesh_point > 0) {
  2041. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2042. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2043. #if 0
  2044. SERIAL_ECHOPGM("Bed leveling, point: ");
  2045. MYSERIAL.print(mesh_point);
  2046. SERIAL_ECHOPGM(", calibration z: ");
  2047. MYSERIAL.print(z0, 5);
  2048. SERIAL_ECHOLNPGM("");
  2049. #endif
  2050. }
  2051. // Move Z to proper distance
  2052. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2054. st_synchronize();
  2055. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2056. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2057. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2058. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2059. enable_endstops(false);
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2061. st_synchronize();
  2062. // Go down until endstop is hit
  2063. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2064. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2065. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2066. break;
  2067. }
  2068. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2069. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2070. break;
  2071. }
  2072. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2073. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2074. break;
  2075. }
  2076. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2077. custom_message_state--;
  2078. mesh_point++;
  2079. lcd_update(1);
  2080. }
  2081. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2083. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2084. st_synchronize();
  2085. kill(kill_message);
  2086. }
  2087. clean_up_after_endstop_move();
  2088. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2089. if(card.sdprinting || is_usb_printing )
  2090. {
  2091. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2092. {
  2093. // End of G80: Apply the baby stepping value.
  2094. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  2095. #if 0
  2096. SERIAL_ECHO("Z baby step: ");
  2097. SERIAL_ECHO(babystepLoadZ);
  2098. SERIAL_ECHO(", current Z: ");
  2099. SERIAL_ECHO(current_position[Z_AXIS]);
  2100. SERIAL_ECHO("correction: ");
  2101. SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  2102. SERIAL_ECHOLN("");
  2103. #endif
  2104. #ifdef BABYSTEP_LOADZ_BY_PLANNER
  2105. shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  2106. #else
  2107. babystepsTodoZadd(babystepLoadZ);
  2108. #endif /* BABYSTEP_LOADZ_BY_PLANNER */
  2109. }
  2110. }
  2111. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2112. for (uint8_t i = 0; i < 4; ++ i) {
  2113. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2114. long correction = 0;
  2115. if (code_seen(codes[i]))
  2116. correction = code_value_long();
  2117. else if (eeprom_bed_correction_valid) {
  2118. unsigned char *addr = (i < 2) ?
  2119. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2120. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2121. correction = eeprom_read_int8(addr);
  2122. }
  2123. if (correction == 0)
  2124. continue;
  2125. float offset = float(correction) * 0.001f;
  2126. if (fabs(offset) > 0.101f) {
  2127. SERIAL_ERROR_START;
  2128. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2129. SERIAL_ECHO(offset);
  2130. SERIAL_ECHOLNPGM(" microns");
  2131. } else {
  2132. switch (i) {
  2133. case 0:
  2134. for (uint8_t row = 0; row < 3; ++ row) {
  2135. mbl.z_values[row][1] += 0.5f * offset;
  2136. mbl.z_values[row][0] += offset;
  2137. }
  2138. break;
  2139. case 1:
  2140. for (uint8_t row = 0; row < 3; ++ row) {
  2141. mbl.z_values[row][1] += 0.5f * offset;
  2142. mbl.z_values[row][2] += offset;
  2143. }
  2144. break;
  2145. case 2:
  2146. for (uint8_t col = 0; col < 3; ++ col) {
  2147. mbl.z_values[1][col] += 0.5f * offset;
  2148. mbl.z_values[0][col] += offset;
  2149. }
  2150. break;
  2151. case 3:
  2152. for (uint8_t col = 0; col < 3; ++ col) {
  2153. mbl.z_values[1][col] += 0.5f * offset;
  2154. mbl.z_values[2][col] += offset;
  2155. }
  2156. break;
  2157. }
  2158. }
  2159. }
  2160. mbl.upsample_3x3();
  2161. mbl.active = 1;
  2162. current_position[X_AXIS] = X_MIN_POS+0.2;
  2163. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2164. current_position[Z_AXIS] = Z_MIN_POS;
  2165. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2166. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2167. st_synchronize();
  2168. // Restore custom message state
  2169. custom_message = custom_message_old;
  2170. custom_message_type = custom_message_type_old;
  2171. custom_message_state = custom_message_state_old;
  2172. lcd_update(1);
  2173. }
  2174. break;
  2175. /**
  2176. * G81: Print mesh bed leveling status and bed profile if activated
  2177. */
  2178. case 81:
  2179. if (mbl.active) {
  2180. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2181. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2182. SERIAL_PROTOCOLPGM(",");
  2183. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2184. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2185. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2186. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2187. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2188. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2189. SERIAL_PROTOCOLPGM(" ");
  2190. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2191. }
  2192. SERIAL_PROTOCOLPGM("\n");
  2193. }
  2194. }
  2195. else
  2196. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2197. break;
  2198. #if 0
  2199. /**
  2200. * G82: Single Z probe at current location
  2201. *
  2202. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2203. *
  2204. */
  2205. case 82:
  2206. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2207. setup_for_endstop_move();
  2208. find_bed_induction_sensor_point_z();
  2209. clean_up_after_endstop_move();
  2210. SERIAL_PROTOCOLPGM("Bed found at: ");
  2211. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2212. SERIAL_PROTOCOLPGM("\n");
  2213. break;
  2214. /**
  2215. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2216. */
  2217. case 83:
  2218. {
  2219. int babystepz = code_seen('S') ? code_value() : 0;
  2220. int BabyPosition = code_seen('P') ? code_value() : 0;
  2221. if (babystepz != 0) {
  2222. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2223. // Is the axis indexed starting with zero or one?
  2224. if (BabyPosition > 4) {
  2225. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2226. }else{
  2227. // Save it to the eeprom
  2228. babystepLoadZ = babystepz;
  2229. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2230. // adjust the Z
  2231. babystepsTodoZadd(babystepLoadZ);
  2232. }
  2233. }
  2234. }
  2235. break;
  2236. /**
  2237. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2238. */
  2239. case 84:
  2240. babystepsTodoZsubtract(babystepLoadZ);
  2241. // babystepLoadZ = 0;
  2242. break;
  2243. /**
  2244. * G85: Prusa3D specific: Pick best babystep
  2245. */
  2246. case 85:
  2247. lcd_pick_babystep();
  2248. break;
  2249. #endif
  2250. /**
  2251. * G86: Prusa3D specific: Disable babystep correction after home.
  2252. * This G-code will be performed at the start of a calibration script.
  2253. */
  2254. case 86:
  2255. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2256. break;
  2257. /**
  2258. * G87: Prusa3D specific: Enable babystep correction after home
  2259. * This G-code will be performed at the end of a calibration script.
  2260. */
  2261. case 87:
  2262. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2263. break;
  2264. /**
  2265. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2266. */
  2267. case 88:
  2268. break;
  2269. #endif // ENABLE_MESH_BED_LEVELING
  2270. case 90: // G90
  2271. relative_mode = false;
  2272. break;
  2273. case 91: // G91
  2274. relative_mode = true;
  2275. break;
  2276. case 92: // G92
  2277. if(!code_seen(axis_codes[E_AXIS]))
  2278. st_synchronize();
  2279. for(int8_t i=0; i < NUM_AXIS; i++) {
  2280. if(code_seen(axis_codes[i])) {
  2281. if(i == E_AXIS) {
  2282. current_position[i] = code_value();
  2283. plan_set_e_position(current_position[E_AXIS]);
  2284. }
  2285. else {
  2286. current_position[i] = code_value()+add_homing[i];
  2287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2288. }
  2289. }
  2290. }
  2291. break;
  2292. case 98:
  2293. farm_no = 21;
  2294. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2295. farm_mode = true;
  2296. break;
  2297. case 99:
  2298. farm_no = 0;
  2299. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2300. farm_mode = false;
  2301. break;
  2302. }
  2303. } // end if(code_seen('G'))
  2304. else if(code_seen('M'))
  2305. {
  2306. switch( (int)code_value() )
  2307. {
  2308. #ifdef ULTIPANEL
  2309. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2310. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2311. {
  2312. char *src = strchr_pointer + 2;
  2313. codenum = 0;
  2314. bool hasP = false, hasS = false;
  2315. if (code_seen('P')) {
  2316. codenum = code_value(); // milliseconds to wait
  2317. hasP = codenum > 0;
  2318. }
  2319. if (code_seen('S')) {
  2320. codenum = code_value() * 1000; // seconds to wait
  2321. hasS = codenum > 0;
  2322. }
  2323. starpos = strchr(src, '*');
  2324. if (starpos != NULL) *(starpos) = '\0';
  2325. while (*src == ' ') ++src;
  2326. if (!hasP && !hasS && *src != '\0') {
  2327. lcd_setstatus(src);
  2328. } else {
  2329. LCD_MESSAGERPGM(MSG_USERWAIT);
  2330. }
  2331. lcd_ignore_click();
  2332. st_synchronize();
  2333. previous_millis_cmd = millis();
  2334. if (codenum > 0){
  2335. codenum += millis(); // keep track of when we started waiting
  2336. while(millis() < codenum && !lcd_clicked()){
  2337. manage_heater();
  2338. manage_inactivity();
  2339. lcd_update();
  2340. }
  2341. lcd_ignore_click(false);
  2342. }else{
  2343. if (!lcd_detected())
  2344. break;
  2345. while(!lcd_clicked()){
  2346. manage_heater();
  2347. manage_inactivity();
  2348. lcd_update();
  2349. }
  2350. }
  2351. if (IS_SD_PRINTING)
  2352. LCD_MESSAGERPGM(MSG_RESUMING);
  2353. else
  2354. LCD_MESSAGERPGM(WELCOME_MSG);
  2355. }
  2356. break;
  2357. #endif
  2358. case 17:
  2359. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2360. enable_x();
  2361. enable_y();
  2362. enable_z();
  2363. enable_e0();
  2364. enable_e1();
  2365. enable_e2();
  2366. break;
  2367. #ifdef SDSUPPORT
  2368. case 20: // M20 - list SD card
  2369. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2370. card.ls();
  2371. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2372. break;
  2373. case 21: // M21 - init SD card
  2374. card.initsd();
  2375. break;
  2376. case 22: //M22 - release SD card
  2377. card.release();
  2378. break;
  2379. case 23: //M23 - Select file
  2380. starpos = (strchr(strchr_pointer + 4,'*'));
  2381. if(starpos!=NULL)
  2382. *(starpos)='\0';
  2383. card.openFile(strchr_pointer + 4,true);
  2384. break;
  2385. case 24: //M24 - Start SD print
  2386. card.startFileprint();
  2387. starttime=millis();
  2388. break;
  2389. case 25: //M25 - Pause SD print
  2390. card.pauseSDPrint();
  2391. break;
  2392. case 26: //M26 - Set SD index
  2393. if(card.cardOK && code_seen('S')) {
  2394. card.setIndex(code_value_long());
  2395. }
  2396. break;
  2397. case 27: //M27 - Get SD status
  2398. card.getStatus();
  2399. break;
  2400. case 28: //M28 - Start SD write
  2401. starpos = (strchr(strchr_pointer + 4,'*'));
  2402. if(starpos != NULL){
  2403. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2404. strchr_pointer = strchr(npos,' ') + 1;
  2405. *(starpos) = '\0';
  2406. }
  2407. card.openFile(strchr_pointer+4,false);
  2408. break;
  2409. case 29: //M29 - Stop SD write
  2410. //processed in write to file routine above
  2411. //card,saving = false;
  2412. break;
  2413. case 30: //M30 <filename> Delete File
  2414. if (card.cardOK){
  2415. card.closefile();
  2416. starpos = (strchr(strchr_pointer + 4,'*'));
  2417. if(starpos != NULL){
  2418. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2419. strchr_pointer = strchr(npos,' ') + 1;
  2420. *(starpos) = '\0';
  2421. }
  2422. card.removeFile(strchr_pointer + 4);
  2423. }
  2424. break;
  2425. case 32: //M32 - Select file and start SD print
  2426. {
  2427. if(card.sdprinting) {
  2428. st_synchronize();
  2429. }
  2430. starpos = (strchr(strchr_pointer + 4,'*'));
  2431. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2432. if(namestartpos==NULL)
  2433. {
  2434. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2435. }
  2436. else
  2437. namestartpos++; //to skip the '!'
  2438. if(starpos!=NULL)
  2439. *(starpos)='\0';
  2440. bool call_procedure=(code_seen('P'));
  2441. if(strchr_pointer>namestartpos)
  2442. call_procedure=false; //false alert, 'P' found within filename
  2443. if( card.cardOK )
  2444. {
  2445. card.openFile(namestartpos,true,!call_procedure);
  2446. if(code_seen('S'))
  2447. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2448. card.setIndex(code_value_long());
  2449. card.startFileprint();
  2450. if(!call_procedure)
  2451. starttime=millis(); //procedure calls count as normal print time.
  2452. }
  2453. } break;
  2454. case 928: //M928 - Start SD write
  2455. starpos = (strchr(strchr_pointer + 5,'*'));
  2456. if(starpos != NULL){
  2457. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2458. strchr_pointer = strchr(npos,' ') + 1;
  2459. *(starpos) = '\0';
  2460. }
  2461. card.openLogFile(strchr_pointer+5);
  2462. break;
  2463. #endif //SDSUPPORT
  2464. case 31: //M31 take time since the start of the SD print or an M109 command
  2465. {
  2466. stoptime=millis();
  2467. char time[30];
  2468. unsigned long t=(stoptime-starttime)/1000;
  2469. int sec,min;
  2470. min=t/60;
  2471. sec=t%60;
  2472. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2473. SERIAL_ECHO_START;
  2474. SERIAL_ECHOLN(time);
  2475. lcd_setstatus(time);
  2476. autotempShutdown();
  2477. }
  2478. break;
  2479. case 42: //M42 -Change pin status via gcode
  2480. if (code_seen('S'))
  2481. {
  2482. int pin_status = code_value();
  2483. int pin_number = LED_PIN;
  2484. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2485. pin_number = code_value();
  2486. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2487. {
  2488. if (sensitive_pins[i] == pin_number)
  2489. {
  2490. pin_number = -1;
  2491. break;
  2492. }
  2493. }
  2494. #if defined(FAN_PIN) && FAN_PIN > -1
  2495. if (pin_number == FAN_PIN)
  2496. fanSpeed = pin_status;
  2497. #endif
  2498. if (pin_number > -1)
  2499. {
  2500. pinMode(pin_number, OUTPUT);
  2501. digitalWrite(pin_number, pin_status);
  2502. analogWrite(pin_number, pin_status);
  2503. }
  2504. }
  2505. break;
  2506. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2507. // Reset the skew and offset in both RAM and EEPROM.
  2508. reset_bed_offset_and_skew();
  2509. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2510. // the planner will not perform any adjustments in the XY plane.
  2511. // Wait for the motors to stop and update the current position with the absolute values.
  2512. world2machine_revert_to_uncorrected();
  2513. break;
  2514. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2515. {
  2516. // Disable the default update procedure of the display. We will do a modal dialog.
  2517. lcd_update_enable(false);
  2518. // Let the planner use the uncorrected coordinates.
  2519. mbl.reset();
  2520. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2521. // the planner will not perform any adjustments in the XY plane.
  2522. // Wait for the motors to stop and update the current position with the absolute values.
  2523. world2machine_revert_to_uncorrected();
  2524. // Let the user move the Z axes up to the end stoppers.
  2525. if (lcd_calibrate_z_end_stop_manual()) {
  2526. refresh_cmd_timeout();
  2527. // Move the print head close to the bed.
  2528. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2530. st_synchronize();
  2531. // Home in the XY plane.
  2532. set_destination_to_current();
  2533. setup_for_endstop_move();
  2534. home_xy();
  2535. int8_t verbosity_level = 0;
  2536. if (code_seen('V')) {
  2537. // Just 'V' without a number counts as V1.
  2538. char c = strchr_pointer[1];
  2539. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2540. }
  2541. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2542. uint8_t point_too_far_mask = 0;
  2543. clean_up_after_endstop_move();
  2544. // Print head up.
  2545. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2547. st_synchronize();
  2548. if (result >= 0) {
  2549. // Second half: The fine adjustment.
  2550. // Let the planner use the uncorrected coordinates.
  2551. mbl.reset();
  2552. world2machine_reset();
  2553. // Home in the XY plane.
  2554. setup_for_endstop_move();
  2555. home_xy();
  2556. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2557. clean_up_after_endstop_move();
  2558. // Print head up.
  2559. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2561. st_synchronize();
  2562. }
  2563. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2564. } else {
  2565. // Timeouted.
  2566. }
  2567. lcd_update_enable(true);
  2568. lcd_implementation_clear();
  2569. // lcd_return_to_status();
  2570. lcd_update();
  2571. break;
  2572. }
  2573. /*
  2574. case 46:
  2575. {
  2576. // M46: Prusa3D: Show the assigned IP address.
  2577. uint8_t ip[4];
  2578. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2579. if (hasIP) {
  2580. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2581. SERIAL_ECHO(int(ip[0]));
  2582. SERIAL_ECHOPGM(".");
  2583. SERIAL_ECHO(int(ip[1]));
  2584. SERIAL_ECHOPGM(".");
  2585. SERIAL_ECHO(int(ip[2]));
  2586. SERIAL_ECHOPGM(".");
  2587. SERIAL_ECHO(int(ip[3]));
  2588. SERIAL_ECHOLNPGM("");
  2589. } else {
  2590. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2591. }
  2592. break;
  2593. }
  2594. */
  2595. case 47:
  2596. // M47: Prusa3D: Show end stops dialog on the display.
  2597. lcd_diag_show_end_stops();
  2598. break;
  2599. #if 0
  2600. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2601. {
  2602. // Disable the default update procedure of the display. We will do a modal dialog.
  2603. lcd_update_enable(false);
  2604. // Let the planner use the uncorrected coordinates.
  2605. mbl.reset();
  2606. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2607. // the planner will not perform any adjustments in the XY plane.
  2608. // Wait for the motors to stop and update the current position with the absolute values.
  2609. world2machine_revert_to_uncorrected();
  2610. // Move the print head close to the bed.
  2611. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2613. st_synchronize();
  2614. // Home in the XY plane.
  2615. set_destination_to_current();
  2616. setup_for_endstop_move();
  2617. home_xy();
  2618. int8_t verbosity_level = 0;
  2619. if (code_seen('V')) {
  2620. // Just 'V' without a number counts as V1.
  2621. char c = strchr_pointer[1];
  2622. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2623. }
  2624. bool success = scan_bed_induction_points(verbosity_level);
  2625. clean_up_after_endstop_move();
  2626. // Print head up.
  2627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2629. st_synchronize();
  2630. lcd_update_enable(true);
  2631. lcd_implementation_clear();
  2632. // lcd_return_to_status();
  2633. lcd_update();
  2634. break;
  2635. }
  2636. #endif
  2637. // M48 Z-Probe repeatability measurement function.
  2638. //
  2639. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2640. //
  2641. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2642. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2643. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2644. // regenerated.
  2645. //
  2646. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2647. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2648. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2649. //
  2650. #ifdef ENABLE_AUTO_BED_LEVELING
  2651. #ifdef Z_PROBE_REPEATABILITY_TEST
  2652. case 48: // M48 Z-Probe repeatability
  2653. {
  2654. #if Z_MIN_PIN == -1
  2655. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2656. #endif
  2657. double sum=0.0;
  2658. double mean=0.0;
  2659. double sigma=0.0;
  2660. double sample_set[50];
  2661. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2662. double X_current, Y_current, Z_current;
  2663. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2664. if (code_seen('V') || code_seen('v')) {
  2665. verbose_level = code_value();
  2666. if (verbose_level<0 || verbose_level>4 ) {
  2667. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2668. goto Sigma_Exit;
  2669. }
  2670. }
  2671. if (verbose_level > 0) {
  2672. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2673. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2674. }
  2675. if (code_seen('n')) {
  2676. n_samples = code_value();
  2677. if (n_samples<4 || n_samples>50 ) {
  2678. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2679. goto Sigma_Exit;
  2680. }
  2681. }
  2682. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2683. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2684. Z_current = st_get_position_mm(Z_AXIS);
  2685. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2686. ext_position = st_get_position_mm(E_AXIS);
  2687. if (code_seen('X') || code_seen('x') ) {
  2688. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2689. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2690. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2691. goto Sigma_Exit;
  2692. }
  2693. }
  2694. if (code_seen('Y') || code_seen('y') ) {
  2695. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2696. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2697. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2698. goto Sigma_Exit;
  2699. }
  2700. }
  2701. if (code_seen('L') || code_seen('l') ) {
  2702. n_legs = code_value();
  2703. if ( n_legs==1 )
  2704. n_legs = 2;
  2705. if ( n_legs<0 || n_legs>15 ) {
  2706. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2707. goto Sigma_Exit;
  2708. }
  2709. }
  2710. //
  2711. // Do all the preliminary setup work. First raise the probe.
  2712. //
  2713. st_synchronize();
  2714. plan_bed_level_matrix.set_to_identity();
  2715. plan_buffer_line( X_current, Y_current, Z_start_location,
  2716. ext_position,
  2717. homing_feedrate[Z_AXIS]/60,
  2718. active_extruder);
  2719. st_synchronize();
  2720. //
  2721. // Now get everything to the specified probe point So we can safely do a probe to
  2722. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2723. // use that as a starting point for each probe.
  2724. //
  2725. if (verbose_level > 2)
  2726. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2727. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2728. ext_position,
  2729. homing_feedrate[X_AXIS]/60,
  2730. active_extruder);
  2731. st_synchronize();
  2732. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2733. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2734. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2735. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2736. //
  2737. // OK, do the inital probe to get us close to the bed.
  2738. // Then retrace the right amount and use that in subsequent probes
  2739. //
  2740. setup_for_endstop_move();
  2741. run_z_probe();
  2742. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2743. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2744. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2745. ext_position,
  2746. homing_feedrate[X_AXIS]/60,
  2747. active_extruder);
  2748. st_synchronize();
  2749. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2750. for( n=0; n<n_samples; n++) {
  2751. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2752. if ( n_legs) {
  2753. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2754. int rotational_direction, l;
  2755. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2756. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2757. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2758. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2759. //SERIAL_ECHOPAIR(" theta: ",theta);
  2760. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2761. //SERIAL_PROTOCOLLNPGM("");
  2762. for( l=0; l<n_legs-1; l++) {
  2763. if (rotational_direction==1)
  2764. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2765. else
  2766. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2767. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2768. if ( radius<0.0 )
  2769. radius = -radius;
  2770. X_current = X_probe_location + cos(theta) * radius;
  2771. Y_current = Y_probe_location + sin(theta) * radius;
  2772. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2773. X_current = X_MIN_POS;
  2774. if ( X_current>X_MAX_POS)
  2775. X_current = X_MAX_POS;
  2776. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2777. Y_current = Y_MIN_POS;
  2778. if ( Y_current>Y_MAX_POS)
  2779. Y_current = Y_MAX_POS;
  2780. if (verbose_level>3 ) {
  2781. SERIAL_ECHOPAIR("x: ", X_current);
  2782. SERIAL_ECHOPAIR("y: ", Y_current);
  2783. SERIAL_PROTOCOLLNPGM("");
  2784. }
  2785. do_blocking_move_to( X_current, Y_current, Z_current );
  2786. }
  2787. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2788. }
  2789. setup_for_endstop_move();
  2790. run_z_probe();
  2791. sample_set[n] = current_position[Z_AXIS];
  2792. //
  2793. // Get the current mean for the data points we have so far
  2794. //
  2795. sum=0.0;
  2796. for( j=0; j<=n; j++) {
  2797. sum = sum + sample_set[j];
  2798. }
  2799. mean = sum / (double (n+1));
  2800. //
  2801. // Now, use that mean to calculate the standard deviation for the
  2802. // data points we have so far
  2803. //
  2804. sum=0.0;
  2805. for( j=0; j<=n; j++) {
  2806. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2807. }
  2808. sigma = sqrt( sum / (double (n+1)) );
  2809. if (verbose_level > 1) {
  2810. SERIAL_PROTOCOL(n+1);
  2811. SERIAL_PROTOCOL(" of ");
  2812. SERIAL_PROTOCOL(n_samples);
  2813. SERIAL_PROTOCOLPGM(" z: ");
  2814. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2815. }
  2816. if (verbose_level > 2) {
  2817. SERIAL_PROTOCOL(" mean: ");
  2818. SERIAL_PROTOCOL_F(mean,6);
  2819. SERIAL_PROTOCOL(" sigma: ");
  2820. SERIAL_PROTOCOL_F(sigma,6);
  2821. }
  2822. if (verbose_level > 0)
  2823. SERIAL_PROTOCOLPGM("\n");
  2824. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2825. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2826. st_synchronize();
  2827. }
  2828. delay(1000);
  2829. clean_up_after_endstop_move();
  2830. // enable_endstops(true);
  2831. if (verbose_level > 0) {
  2832. SERIAL_PROTOCOLPGM("Mean: ");
  2833. SERIAL_PROTOCOL_F(mean, 6);
  2834. SERIAL_PROTOCOLPGM("\n");
  2835. }
  2836. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2837. SERIAL_PROTOCOL_F(sigma, 6);
  2838. SERIAL_PROTOCOLPGM("\n\n");
  2839. Sigma_Exit:
  2840. break;
  2841. }
  2842. #endif // Z_PROBE_REPEATABILITY_TEST
  2843. #endif // ENABLE_AUTO_BED_LEVELING
  2844. case 104: // M104
  2845. if(setTargetedHotend(104)){
  2846. break;
  2847. }
  2848. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2849. setWatch();
  2850. break;
  2851. case 112: // M112 -Emergency Stop
  2852. kill();
  2853. break;
  2854. case 140: // M140 set bed temp
  2855. if (code_seen('S')) setTargetBed(code_value());
  2856. break;
  2857. case 105 : // M105
  2858. if(setTargetedHotend(105)){
  2859. break;
  2860. }
  2861. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2862. SERIAL_PROTOCOLPGM("ok T:");
  2863. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2864. SERIAL_PROTOCOLPGM(" /");
  2865. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2866. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2867. SERIAL_PROTOCOLPGM(" B:");
  2868. SERIAL_PROTOCOL_F(degBed(),1);
  2869. SERIAL_PROTOCOLPGM(" /");
  2870. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2871. #endif //TEMP_BED_PIN
  2872. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2873. SERIAL_PROTOCOLPGM(" T");
  2874. SERIAL_PROTOCOL(cur_extruder);
  2875. SERIAL_PROTOCOLPGM(":");
  2876. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2877. SERIAL_PROTOCOLPGM(" /");
  2878. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2879. }
  2880. #else
  2881. SERIAL_ERROR_START;
  2882. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2883. #endif
  2884. SERIAL_PROTOCOLPGM(" @:");
  2885. #ifdef EXTRUDER_WATTS
  2886. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2887. SERIAL_PROTOCOLPGM("W");
  2888. #else
  2889. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2890. #endif
  2891. SERIAL_PROTOCOLPGM(" B@:");
  2892. #ifdef BED_WATTS
  2893. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2894. SERIAL_PROTOCOLPGM("W");
  2895. #else
  2896. SERIAL_PROTOCOL(getHeaterPower(-1));
  2897. #endif
  2898. #ifdef SHOW_TEMP_ADC_VALUES
  2899. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2900. SERIAL_PROTOCOLPGM(" ADC B:");
  2901. SERIAL_PROTOCOL_F(degBed(),1);
  2902. SERIAL_PROTOCOLPGM("C->");
  2903. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2904. #endif
  2905. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2906. SERIAL_PROTOCOLPGM(" T");
  2907. SERIAL_PROTOCOL(cur_extruder);
  2908. SERIAL_PROTOCOLPGM(":");
  2909. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2910. SERIAL_PROTOCOLPGM("C->");
  2911. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2912. }
  2913. #endif
  2914. SERIAL_PROTOCOLLN("");
  2915. return;
  2916. break;
  2917. case 109:
  2918. {// M109 - Wait for extruder heater to reach target.
  2919. if(setTargetedHotend(109)){
  2920. break;
  2921. }
  2922. LCD_MESSAGERPGM(MSG_HEATING);
  2923. heating_status = 1;
  2924. if (farm_mode) { prusa_statistics(1); };
  2925. #ifdef AUTOTEMP
  2926. autotemp_enabled=false;
  2927. #endif
  2928. if (code_seen('S')) {
  2929. setTargetHotend(code_value(), tmp_extruder);
  2930. CooldownNoWait = true;
  2931. } else if (code_seen('R')) {
  2932. setTargetHotend(code_value(), tmp_extruder);
  2933. CooldownNoWait = false;
  2934. }
  2935. #ifdef AUTOTEMP
  2936. if (code_seen('S')) autotemp_min=code_value();
  2937. if (code_seen('B')) autotemp_max=code_value();
  2938. if (code_seen('F'))
  2939. {
  2940. autotemp_factor=code_value();
  2941. autotemp_enabled=true;
  2942. }
  2943. #endif
  2944. setWatch();
  2945. codenum = millis();
  2946. /* See if we are heating up or cooling down */
  2947. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2948. cancel_heatup = false;
  2949. #ifdef TEMP_RESIDENCY_TIME
  2950. long residencyStart;
  2951. residencyStart = -1;
  2952. /* continue to loop until we have reached the target temp
  2953. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2954. while((!cancel_heatup)&&((residencyStart == -1) ||
  2955. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2956. #else
  2957. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2958. #endif //TEMP_RESIDENCY_TIME
  2959. if( (millis() - codenum) > 1000UL )
  2960. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2961. SERIAL_PROTOCOLPGM("T:");
  2962. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2963. SERIAL_PROTOCOLPGM(" E:");
  2964. SERIAL_PROTOCOL((int)tmp_extruder);
  2965. #ifdef TEMP_RESIDENCY_TIME
  2966. SERIAL_PROTOCOLPGM(" W:");
  2967. if(residencyStart > -1)
  2968. {
  2969. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2970. SERIAL_PROTOCOLLN( codenum );
  2971. }
  2972. else
  2973. {
  2974. SERIAL_PROTOCOLLN( "?" );
  2975. }
  2976. #else
  2977. SERIAL_PROTOCOLLN("");
  2978. #endif
  2979. codenum = millis();
  2980. }
  2981. manage_heater();
  2982. manage_inactivity();
  2983. lcd_update();
  2984. #ifdef TEMP_RESIDENCY_TIME
  2985. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2986. or when current temp falls outside the hysteresis after target temp was reached */
  2987. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2988. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2989. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2990. {
  2991. residencyStart = millis();
  2992. }
  2993. #endif //TEMP_RESIDENCY_TIME
  2994. }
  2995. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2996. heating_status = 2;
  2997. if (farm_mode) { prusa_statistics(2); };
  2998. starttime=millis();
  2999. previous_millis_cmd = millis();
  3000. }
  3001. break;
  3002. case 190: // M190 - Wait for bed heater to reach target.
  3003. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3004. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3005. heating_status = 3;
  3006. if (farm_mode) { prusa_statistics(1); };
  3007. if (code_seen('S'))
  3008. {
  3009. setTargetBed(code_value());
  3010. CooldownNoWait = true;
  3011. }
  3012. else if (code_seen('R'))
  3013. {
  3014. setTargetBed(code_value());
  3015. CooldownNoWait = false;
  3016. }
  3017. codenum = millis();
  3018. cancel_heatup = false;
  3019. target_direction = isHeatingBed(); // true if heating, false if cooling
  3020. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3021. {
  3022. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3023. {
  3024. float tt=degHotend(active_extruder);
  3025. SERIAL_PROTOCOLPGM("T:");
  3026. SERIAL_PROTOCOL(tt);
  3027. SERIAL_PROTOCOLPGM(" E:");
  3028. SERIAL_PROTOCOL((int)active_extruder);
  3029. SERIAL_PROTOCOLPGM(" B:");
  3030. SERIAL_PROTOCOL_F(degBed(),1);
  3031. SERIAL_PROTOCOLLN("");
  3032. codenum = millis();
  3033. }
  3034. manage_heater();
  3035. manage_inactivity();
  3036. lcd_update();
  3037. }
  3038. LCD_MESSAGERPGM(MSG_BED_DONE);
  3039. heating_status = 4;
  3040. previous_millis_cmd = millis();
  3041. #endif
  3042. break;
  3043. #if defined(FAN_PIN) && FAN_PIN > -1
  3044. case 106: //M106 Fan On
  3045. if (code_seen('S')){
  3046. fanSpeed=constrain(code_value(),0,255);
  3047. }
  3048. else {
  3049. fanSpeed=255;
  3050. }
  3051. break;
  3052. case 107: //M107 Fan Off
  3053. fanSpeed = 0;
  3054. break;
  3055. #endif //FAN_PIN
  3056. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3057. case 80: // M80 - Turn on Power Supply
  3058. SET_OUTPUT(PS_ON_PIN); //GND
  3059. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3060. // If you have a switch on suicide pin, this is useful
  3061. // if you want to start another print with suicide feature after
  3062. // a print without suicide...
  3063. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3064. SET_OUTPUT(SUICIDE_PIN);
  3065. WRITE(SUICIDE_PIN, HIGH);
  3066. #endif
  3067. #ifdef ULTIPANEL
  3068. powersupply = true;
  3069. LCD_MESSAGERPGM(WELCOME_MSG);
  3070. lcd_update();
  3071. #endif
  3072. break;
  3073. #endif
  3074. case 81: // M81 - Turn off Power Supply
  3075. disable_heater();
  3076. st_synchronize();
  3077. disable_e0();
  3078. disable_e1();
  3079. disable_e2();
  3080. finishAndDisableSteppers();
  3081. fanSpeed = 0;
  3082. delay(1000); // Wait a little before to switch off
  3083. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3084. st_synchronize();
  3085. suicide();
  3086. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3087. SET_OUTPUT(PS_ON_PIN);
  3088. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3089. #endif
  3090. #ifdef ULTIPANEL
  3091. powersupply = false;
  3092. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3093. /*
  3094. MACHNAME = "Prusa i3"
  3095. MSGOFF = "Vypnuto"
  3096. "Prusai3"" ""vypnuto""."
  3097. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3098. */
  3099. lcd_update();
  3100. #endif
  3101. break;
  3102. case 82:
  3103. axis_relative_modes[3] = false;
  3104. break;
  3105. case 83:
  3106. axis_relative_modes[3] = true;
  3107. break;
  3108. case 18: //compatibility
  3109. case 84: // M84
  3110. if(code_seen('S')){
  3111. stepper_inactive_time = code_value() * 1000;
  3112. }
  3113. else
  3114. {
  3115. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3116. if(all_axis)
  3117. {
  3118. st_synchronize();
  3119. disable_e0();
  3120. disable_e1();
  3121. disable_e2();
  3122. finishAndDisableSteppers();
  3123. }
  3124. else
  3125. {
  3126. st_synchronize();
  3127. if(code_seen('X')) disable_x();
  3128. if(code_seen('Y')) disable_y();
  3129. if(code_seen('Z')) disable_z();
  3130. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3131. if(code_seen('E')) {
  3132. disable_e0();
  3133. disable_e1();
  3134. disable_e2();
  3135. }
  3136. #endif
  3137. }
  3138. }
  3139. break;
  3140. case 85: // M85
  3141. if(code_seen('S')) {
  3142. max_inactive_time = code_value() * 1000;
  3143. }
  3144. break;
  3145. case 92: // M92
  3146. for(int8_t i=0; i < NUM_AXIS; i++)
  3147. {
  3148. if(code_seen(axis_codes[i]))
  3149. {
  3150. if(i == 3) { // E
  3151. float value = code_value();
  3152. if(value < 20.0) {
  3153. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3154. max_jerk[E_AXIS] *= factor;
  3155. max_feedrate[i] *= factor;
  3156. axis_steps_per_sqr_second[i] *= factor;
  3157. }
  3158. axis_steps_per_unit[i] = value;
  3159. }
  3160. else {
  3161. axis_steps_per_unit[i] = code_value();
  3162. }
  3163. }
  3164. }
  3165. break;
  3166. case 115: // M115
  3167. if (code_seen('V')) {
  3168. // Report the Prusa version number.
  3169. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3170. } else if (code_seen('U')) {
  3171. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3172. // pause the print and ask the user to upgrade the firmware.
  3173. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3174. } else {
  3175. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3176. }
  3177. break;
  3178. case 117: // M117 display message
  3179. starpos = (strchr(strchr_pointer + 5,'*'));
  3180. if(starpos!=NULL)
  3181. *(starpos)='\0';
  3182. lcd_setstatus(strchr_pointer + 5);
  3183. break;
  3184. case 114: // M114
  3185. SERIAL_PROTOCOLPGM("X:");
  3186. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3187. SERIAL_PROTOCOLPGM(" Y:");
  3188. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3189. SERIAL_PROTOCOLPGM(" Z:");
  3190. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3191. SERIAL_PROTOCOLPGM(" E:");
  3192. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3193. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3194. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3195. SERIAL_PROTOCOLPGM(" Y:");
  3196. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3197. SERIAL_PROTOCOLPGM(" Z:");
  3198. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3199. SERIAL_PROTOCOLLN("");
  3200. break;
  3201. case 120: // M120
  3202. enable_endstops(false) ;
  3203. break;
  3204. case 121: // M121
  3205. enable_endstops(true) ;
  3206. break;
  3207. case 119: // M119
  3208. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3209. SERIAL_PROTOCOLLN("");
  3210. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3211. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3212. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3213. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3214. }else{
  3215. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3216. }
  3217. SERIAL_PROTOCOLLN("");
  3218. #endif
  3219. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3220. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3221. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3222. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3223. }else{
  3224. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3225. }
  3226. SERIAL_PROTOCOLLN("");
  3227. #endif
  3228. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3229. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3230. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3231. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3232. }else{
  3233. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3234. }
  3235. SERIAL_PROTOCOLLN("");
  3236. #endif
  3237. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3238. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3239. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3241. }else{
  3242. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3243. }
  3244. SERIAL_PROTOCOLLN("");
  3245. #endif
  3246. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3247. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3248. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3250. }else{
  3251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3252. }
  3253. SERIAL_PROTOCOLLN("");
  3254. #endif
  3255. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3256. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3257. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3258. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3259. }else{
  3260. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3261. }
  3262. SERIAL_PROTOCOLLN("");
  3263. #endif
  3264. break;
  3265. //TODO: update for all axis, use for loop
  3266. #ifdef BLINKM
  3267. case 150: // M150
  3268. {
  3269. byte red;
  3270. byte grn;
  3271. byte blu;
  3272. if(code_seen('R')) red = code_value();
  3273. if(code_seen('U')) grn = code_value();
  3274. if(code_seen('B')) blu = code_value();
  3275. SendColors(red,grn,blu);
  3276. }
  3277. break;
  3278. #endif //BLINKM
  3279. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3280. {
  3281. tmp_extruder = active_extruder;
  3282. if(code_seen('T')) {
  3283. tmp_extruder = code_value();
  3284. if(tmp_extruder >= EXTRUDERS) {
  3285. SERIAL_ECHO_START;
  3286. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3287. break;
  3288. }
  3289. }
  3290. float area = .0;
  3291. if(code_seen('D')) {
  3292. float diameter = (float)code_value();
  3293. if (diameter == 0.0) {
  3294. // setting any extruder filament size disables volumetric on the assumption that
  3295. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3296. // for all extruders
  3297. volumetric_enabled = false;
  3298. } else {
  3299. filament_size[tmp_extruder] = (float)code_value();
  3300. // make sure all extruders have some sane value for the filament size
  3301. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3302. #if EXTRUDERS > 1
  3303. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3304. #if EXTRUDERS > 2
  3305. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3306. #endif
  3307. #endif
  3308. volumetric_enabled = true;
  3309. }
  3310. } else {
  3311. //reserved for setting filament diameter via UFID or filament measuring device
  3312. break;
  3313. }
  3314. calculate_volumetric_multipliers();
  3315. }
  3316. break;
  3317. case 201: // M201
  3318. for(int8_t i=0; i < NUM_AXIS; i++)
  3319. {
  3320. if(code_seen(axis_codes[i]))
  3321. {
  3322. max_acceleration_units_per_sq_second[i] = code_value();
  3323. }
  3324. }
  3325. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3326. reset_acceleration_rates();
  3327. break;
  3328. #if 0 // Not used for Sprinter/grbl gen6
  3329. case 202: // M202
  3330. for(int8_t i=0; i < NUM_AXIS; i++) {
  3331. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3332. }
  3333. break;
  3334. #endif
  3335. case 203: // M203 max feedrate mm/sec
  3336. for(int8_t i=0; i < NUM_AXIS; i++) {
  3337. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3338. }
  3339. break;
  3340. case 204: // M204 acclereration S normal moves T filmanent only moves
  3341. {
  3342. if(code_seen('S')) acceleration = code_value() ;
  3343. if(code_seen('T')) retract_acceleration = code_value() ;
  3344. }
  3345. break;
  3346. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3347. {
  3348. if(code_seen('S')) minimumfeedrate = code_value();
  3349. if(code_seen('T')) mintravelfeedrate = code_value();
  3350. if(code_seen('B')) minsegmenttime = code_value() ;
  3351. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3352. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3353. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3354. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3355. }
  3356. break;
  3357. case 206: // M206 additional homing offset
  3358. for(int8_t i=0; i < 3; i++)
  3359. {
  3360. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3361. }
  3362. break;
  3363. #ifdef FWRETRACT
  3364. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3365. {
  3366. if(code_seen('S'))
  3367. {
  3368. retract_length = code_value() ;
  3369. }
  3370. if(code_seen('F'))
  3371. {
  3372. retract_feedrate = code_value()/60 ;
  3373. }
  3374. if(code_seen('Z'))
  3375. {
  3376. retract_zlift = code_value() ;
  3377. }
  3378. }break;
  3379. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3380. {
  3381. if(code_seen('S'))
  3382. {
  3383. retract_recover_length = code_value() ;
  3384. }
  3385. if(code_seen('F'))
  3386. {
  3387. retract_recover_feedrate = code_value()/60 ;
  3388. }
  3389. }break;
  3390. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3391. {
  3392. if(code_seen('S'))
  3393. {
  3394. int t= code_value() ;
  3395. switch(t)
  3396. {
  3397. case 0:
  3398. {
  3399. autoretract_enabled=false;
  3400. retracted[0]=false;
  3401. #if EXTRUDERS > 1
  3402. retracted[1]=false;
  3403. #endif
  3404. #if EXTRUDERS > 2
  3405. retracted[2]=false;
  3406. #endif
  3407. }break;
  3408. case 1:
  3409. {
  3410. autoretract_enabled=true;
  3411. retracted[0]=false;
  3412. #if EXTRUDERS > 1
  3413. retracted[1]=false;
  3414. #endif
  3415. #if EXTRUDERS > 2
  3416. retracted[2]=false;
  3417. #endif
  3418. }break;
  3419. default:
  3420. SERIAL_ECHO_START;
  3421. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3422. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3423. SERIAL_ECHOLNPGM("\"");
  3424. }
  3425. }
  3426. }break;
  3427. #endif // FWRETRACT
  3428. #if EXTRUDERS > 1
  3429. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3430. {
  3431. if(setTargetedHotend(218)){
  3432. break;
  3433. }
  3434. if(code_seen('X'))
  3435. {
  3436. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3437. }
  3438. if(code_seen('Y'))
  3439. {
  3440. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3441. }
  3442. SERIAL_ECHO_START;
  3443. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3444. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3445. {
  3446. SERIAL_ECHO(" ");
  3447. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3448. SERIAL_ECHO(",");
  3449. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3450. }
  3451. SERIAL_ECHOLN("");
  3452. }break;
  3453. #endif
  3454. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3455. {
  3456. if(code_seen('S'))
  3457. {
  3458. feedmultiply = code_value() ;
  3459. }
  3460. }
  3461. break;
  3462. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3463. {
  3464. if(code_seen('S'))
  3465. {
  3466. int tmp_code = code_value();
  3467. if (code_seen('T'))
  3468. {
  3469. if(setTargetedHotend(221)){
  3470. break;
  3471. }
  3472. extruder_multiply[tmp_extruder] = tmp_code;
  3473. }
  3474. else
  3475. {
  3476. extrudemultiply = tmp_code ;
  3477. }
  3478. }
  3479. }
  3480. break;
  3481. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3482. {
  3483. if(code_seen('P')){
  3484. int pin_number = code_value(); // pin number
  3485. int pin_state = -1; // required pin state - default is inverted
  3486. if(code_seen('S')) pin_state = code_value(); // required pin state
  3487. if(pin_state >= -1 && pin_state <= 1){
  3488. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3489. {
  3490. if (sensitive_pins[i] == pin_number)
  3491. {
  3492. pin_number = -1;
  3493. break;
  3494. }
  3495. }
  3496. if (pin_number > -1)
  3497. {
  3498. int target = LOW;
  3499. st_synchronize();
  3500. pinMode(pin_number, INPUT);
  3501. switch(pin_state){
  3502. case 1:
  3503. target = HIGH;
  3504. break;
  3505. case 0:
  3506. target = LOW;
  3507. break;
  3508. case -1:
  3509. target = !digitalRead(pin_number);
  3510. break;
  3511. }
  3512. while(digitalRead(pin_number) != target){
  3513. manage_heater();
  3514. manage_inactivity();
  3515. lcd_update();
  3516. }
  3517. }
  3518. }
  3519. }
  3520. }
  3521. break;
  3522. #if NUM_SERVOS > 0
  3523. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3524. {
  3525. int servo_index = -1;
  3526. int servo_position = 0;
  3527. if (code_seen('P'))
  3528. servo_index = code_value();
  3529. if (code_seen('S')) {
  3530. servo_position = code_value();
  3531. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3532. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3533. servos[servo_index].attach(0);
  3534. #endif
  3535. servos[servo_index].write(servo_position);
  3536. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3537. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3538. servos[servo_index].detach();
  3539. #endif
  3540. }
  3541. else {
  3542. SERIAL_ECHO_START;
  3543. SERIAL_ECHO("Servo ");
  3544. SERIAL_ECHO(servo_index);
  3545. SERIAL_ECHOLN(" out of range");
  3546. }
  3547. }
  3548. else if (servo_index >= 0) {
  3549. SERIAL_PROTOCOL(MSG_OK);
  3550. SERIAL_PROTOCOL(" Servo ");
  3551. SERIAL_PROTOCOL(servo_index);
  3552. SERIAL_PROTOCOL(": ");
  3553. SERIAL_PROTOCOL(servos[servo_index].read());
  3554. SERIAL_PROTOCOLLN("");
  3555. }
  3556. }
  3557. break;
  3558. #endif // NUM_SERVOS > 0
  3559. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3560. case 300: // M300
  3561. {
  3562. int beepS = code_seen('S') ? code_value() : 110;
  3563. int beepP = code_seen('P') ? code_value() : 1000;
  3564. if (beepS > 0)
  3565. {
  3566. #if BEEPER > 0
  3567. tone(BEEPER, beepS);
  3568. delay(beepP);
  3569. noTone(BEEPER);
  3570. #elif defined(ULTRALCD)
  3571. lcd_buzz(beepS, beepP);
  3572. #elif defined(LCD_USE_I2C_BUZZER)
  3573. lcd_buzz(beepP, beepS);
  3574. #endif
  3575. }
  3576. else
  3577. {
  3578. delay(beepP);
  3579. }
  3580. }
  3581. break;
  3582. #endif // M300
  3583. #ifdef PIDTEMP
  3584. case 301: // M301
  3585. {
  3586. if(code_seen('P')) Kp = code_value();
  3587. if(code_seen('I')) Ki = scalePID_i(code_value());
  3588. if(code_seen('D')) Kd = scalePID_d(code_value());
  3589. #ifdef PID_ADD_EXTRUSION_RATE
  3590. if(code_seen('C')) Kc = code_value();
  3591. #endif
  3592. updatePID();
  3593. SERIAL_PROTOCOL(MSG_OK);
  3594. SERIAL_PROTOCOL(" p:");
  3595. SERIAL_PROTOCOL(Kp);
  3596. SERIAL_PROTOCOL(" i:");
  3597. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3598. SERIAL_PROTOCOL(" d:");
  3599. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3600. #ifdef PID_ADD_EXTRUSION_RATE
  3601. SERIAL_PROTOCOL(" c:");
  3602. //Kc does not have scaling applied above, or in resetting defaults
  3603. SERIAL_PROTOCOL(Kc);
  3604. #endif
  3605. SERIAL_PROTOCOLLN("");
  3606. }
  3607. break;
  3608. #endif //PIDTEMP
  3609. #ifdef PIDTEMPBED
  3610. case 304: // M304
  3611. {
  3612. if(code_seen('P')) bedKp = code_value();
  3613. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3614. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3615. updatePID();
  3616. SERIAL_PROTOCOL(MSG_OK);
  3617. SERIAL_PROTOCOL(" p:");
  3618. SERIAL_PROTOCOL(bedKp);
  3619. SERIAL_PROTOCOL(" i:");
  3620. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3621. SERIAL_PROTOCOL(" d:");
  3622. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3623. SERIAL_PROTOCOLLN("");
  3624. }
  3625. break;
  3626. #endif //PIDTEMP
  3627. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3628. {
  3629. #ifdef CHDK
  3630. SET_OUTPUT(CHDK);
  3631. WRITE(CHDK, HIGH);
  3632. chdkHigh = millis();
  3633. chdkActive = true;
  3634. #else
  3635. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3636. const uint8_t NUM_PULSES=16;
  3637. const float PULSE_LENGTH=0.01524;
  3638. for(int i=0; i < NUM_PULSES; i++) {
  3639. WRITE(PHOTOGRAPH_PIN, HIGH);
  3640. _delay_ms(PULSE_LENGTH);
  3641. WRITE(PHOTOGRAPH_PIN, LOW);
  3642. _delay_ms(PULSE_LENGTH);
  3643. }
  3644. delay(7.33);
  3645. for(int i=0; i < NUM_PULSES; i++) {
  3646. WRITE(PHOTOGRAPH_PIN, HIGH);
  3647. _delay_ms(PULSE_LENGTH);
  3648. WRITE(PHOTOGRAPH_PIN, LOW);
  3649. _delay_ms(PULSE_LENGTH);
  3650. }
  3651. #endif
  3652. #endif //chdk end if
  3653. }
  3654. break;
  3655. #ifdef DOGLCD
  3656. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3657. {
  3658. if (code_seen('C')) {
  3659. lcd_setcontrast( ((int)code_value())&63 );
  3660. }
  3661. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3662. SERIAL_PROTOCOL(lcd_contrast);
  3663. SERIAL_PROTOCOLLN("");
  3664. }
  3665. break;
  3666. #endif
  3667. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3668. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3669. {
  3670. float temp = .0;
  3671. if (code_seen('S')) temp=code_value();
  3672. set_extrude_min_temp(temp);
  3673. }
  3674. break;
  3675. #endif
  3676. case 303: // M303 PID autotune
  3677. {
  3678. float temp = 150.0;
  3679. int e=0;
  3680. int c=5;
  3681. if (code_seen('E')) e=code_value();
  3682. if (e<0)
  3683. temp=70;
  3684. if (code_seen('S')) temp=code_value();
  3685. if (code_seen('C')) c=code_value();
  3686. PID_autotune(temp, e, c);
  3687. }
  3688. break;
  3689. case 400: // M400 finish all moves
  3690. {
  3691. st_synchronize();
  3692. }
  3693. break;
  3694. #ifdef FILAMENT_SENSOR
  3695. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3696. {
  3697. #if (FILWIDTH_PIN > -1)
  3698. if(code_seen('N')) filament_width_nominal=code_value();
  3699. else{
  3700. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3701. SERIAL_PROTOCOLLN(filament_width_nominal);
  3702. }
  3703. #endif
  3704. }
  3705. break;
  3706. case 405: //M405 Turn on filament sensor for control
  3707. {
  3708. if(code_seen('D')) meas_delay_cm=code_value();
  3709. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3710. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3711. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3712. {
  3713. int temp_ratio = widthFil_to_size_ratio();
  3714. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3715. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3716. }
  3717. delay_index1=0;
  3718. delay_index2=0;
  3719. }
  3720. filament_sensor = true ;
  3721. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3722. //SERIAL_PROTOCOL(filament_width_meas);
  3723. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3724. //SERIAL_PROTOCOL(extrudemultiply);
  3725. }
  3726. break;
  3727. case 406: //M406 Turn off filament sensor for control
  3728. {
  3729. filament_sensor = false ;
  3730. }
  3731. break;
  3732. case 407: //M407 Display measured filament diameter
  3733. {
  3734. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3735. SERIAL_PROTOCOLLN(filament_width_meas);
  3736. }
  3737. break;
  3738. #endif
  3739. case 500: // M500 Store settings in EEPROM
  3740. {
  3741. Config_StoreSettings();
  3742. }
  3743. break;
  3744. case 501: // M501 Read settings from EEPROM
  3745. {
  3746. Config_RetrieveSettings();
  3747. }
  3748. break;
  3749. case 502: // M502 Revert to default settings
  3750. {
  3751. Config_ResetDefault();
  3752. }
  3753. break;
  3754. case 503: // M503 print settings currently in memory
  3755. {
  3756. Config_PrintSettings();
  3757. }
  3758. break;
  3759. case 509: //M509 Force language selection
  3760. {
  3761. lcd_force_language_selection();
  3762. SERIAL_ECHO_START;
  3763. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3764. }
  3765. break;
  3766. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3767. case 540:
  3768. {
  3769. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3770. }
  3771. break;
  3772. #endif
  3773. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3774. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3775. {
  3776. float value;
  3777. if (code_seen('Z'))
  3778. {
  3779. value = code_value();
  3780. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3781. {
  3782. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3783. SERIAL_ECHO_START;
  3784. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3785. SERIAL_PROTOCOLLN("");
  3786. }
  3787. else
  3788. {
  3789. SERIAL_ECHO_START;
  3790. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3791. SERIAL_ECHORPGM(MSG_Z_MIN);
  3792. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3793. SERIAL_ECHORPGM(MSG_Z_MAX);
  3794. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3795. SERIAL_PROTOCOLLN("");
  3796. }
  3797. }
  3798. else
  3799. {
  3800. SERIAL_ECHO_START;
  3801. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3802. SERIAL_ECHO(-zprobe_zoffset);
  3803. SERIAL_PROTOCOLLN("");
  3804. }
  3805. break;
  3806. }
  3807. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3808. #ifdef FILAMENTCHANGEENABLE
  3809. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3810. {
  3811. st_synchronize();
  3812. feedmultiplyBckp=feedmultiply;
  3813. int8_t TooLowZ = 0;
  3814. float target[4];
  3815. float lastpos[4];
  3816. target[X_AXIS]=current_position[X_AXIS];
  3817. target[Y_AXIS]=current_position[Y_AXIS];
  3818. target[Z_AXIS]=current_position[Z_AXIS];
  3819. target[E_AXIS]=current_position[E_AXIS];
  3820. lastpos[X_AXIS]=current_position[X_AXIS];
  3821. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3822. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3823. lastpos[E_AXIS]=current_position[E_AXIS];
  3824. //Restract extruder
  3825. if(code_seen('E'))
  3826. {
  3827. target[E_AXIS]+= code_value();
  3828. }
  3829. else
  3830. {
  3831. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3832. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3833. #endif
  3834. }
  3835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3836. //Lift Z
  3837. if(code_seen('Z'))
  3838. {
  3839. target[Z_AXIS]+= code_value();
  3840. }
  3841. else
  3842. {
  3843. #ifdef FILAMENTCHANGE_ZADD
  3844. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3845. if(target[Z_AXIS] < 10){
  3846. target[Z_AXIS]+= 10 ;
  3847. TooLowZ = 1;
  3848. }else{
  3849. TooLowZ = 0;
  3850. }
  3851. #endif
  3852. }
  3853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3854. //Move XY to side
  3855. if(code_seen('X'))
  3856. {
  3857. target[X_AXIS]+= code_value();
  3858. }
  3859. else
  3860. {
  3861. #ifdef FILAMENTCHANGE_XPOS
  3862. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3863. #endif
  3864. }
  3865. if(code_seen('Y'))
  3866. {
  3867. target[Y_AXIS]= code_value();
  3868. }
  3869. else
  3870. {
  3871. #ifdef FILAMENTCHANGE_YPOS
  3872. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3873. #endif
  3874. }
  3875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3876. // Unload filament
  3877. if(code_seen('L'))
  3878. {
  3879. target[E_AXIS]+= code_value();
  3880. }
  3881. else
  3882. {
  3883. #ifdef FILAMENTCHANGE_FINALRETRACT
  3884. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3885. #endif
  3886. }
  3887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3888. //finish moves
  3889. st_synchronize();
  3890. //disable extruder steppers so filament can be removed
  3891. disable_e0();
  3892. disable_e1();
  3893. disable_e2();
  3894. delay(100);
  3895. //Wait for user to insert filament
  3896. uint8_t cnt=0;
  3897. int counterBeep = 0;
  3898. lcd_wait_interact();
  3899. while(!lcd_clicked()){
  3900. cnt++;
  3901. manage_heater();
  3902. manage_inactivity(true);
  3903. if(cnt==0)
  3904. {
  3905. #if BEEPER > 0
  3906. if (counterBeep== 500){
  3907. counterBeep = 0;
  3908. }
  3909. SET_OUTPUT(BEEPER);
  3910. if (counterBeep== 0){
  3911. WRITE(BEEPER,HIGH);
  3912. }
  3913. if (counterBeep== 20){
  3914. WRITE(BEEPER,LOW);
  3915. }
  3916. counterBeep++;
  3917. #else
  3918. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3919. lcd_buzz(1000/6,100);
  3920. #else
  3921. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3922. #endif
  3923. #endif
  3924. }
  3925. }
  3926. //Filament inserted
  3927. WRITE(BEEPER,LOW);
  3928. //Feed the filament to the end of nozzle quickly
  3929. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3930. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3931. //Extrude some filament
  3932. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3934. //Wait for user to check the state
  3935. lcd_change_fil_state = 0;
  3936. lcd_loading_filament();
  3937. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3938. lcd_change_fil_state = 0;
  3939. lcd_alright();
  3940. switch(lcd_change_fil_state){
  3941. // Filament failed to load so load it again
  3942. case 2:
  3943. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3945. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3947. lcd_loading_filament();
  3948. break;
  3949. // Filament loaded properly but color is not clear
  3950. case 3:
  3951. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3952. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3953. lcd_loading_color();
  3954. break;
  3955. // Everything good
  3956. default:
  3957. lcd_change_success();
  3958. break;
  3959. }
  3960. }
  3961. //Not let's go back to print
  3962. //Feed a little of filament to stabilize pressure
  3963. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3965. //Retract
  3966. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3968. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3969. //Move XY back
  3970. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3971. //Move Z back
  3972. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3973. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3974. //Unretract
  3975. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3976. //Set E position to original
  3977. plan_set_e_position(lastpos[E_AXIS]);
  3978. //Recover feed rate
  3979. feedmultiply=feedmultiplyBckp;
  3980. char cmd[9];
  3981. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3982. enquecommand(cmd);
  3983. }
  3984. break;
  3985. #endif //FILAMENTCHANGEENABLE
  3986. case 907: // M907 Set digital trimpot motor current using axis codes.
  3987. {
  3988. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3989. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3990. if(code_seen('B')) digipot_current(4,code_value());
  3991. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3992. #endif
  3993. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3994. if(code_seen('X')) digipot_current(0, code_value());
  3995. #endif
  3996. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3997. if(code_seen('Z')) digipot_current(1, code_value());
  3998. #endif
  3999. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4000. if(code_seen('E')) digipot_current(2, code_value());
  4001. #endif
  4002. #ifdef DIGIPOT_I2C
  4003. // this one uses actual amps in floating point
  4004. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4005. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4006. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4007. #endif
  4008. }
  4009. break;
  4010. case 908: // M908 Control digital trimpot directly.
  4011. {
  4012. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4013. uint8_t channel,current;
  4014. if(code_seen('P')) channel=code_value();
  4015. if(code_seen('S')) current=code_value();
  4016. digitalPotWrite(channel, current);
  4017. #endif
  4018. }
  4019. break;
  4020. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4021. {
  4022. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4023. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4024. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4025. if(code_seen('B')) microstep_mode(4,code_value());
  4026. microstep_readings();
  4027. #endif
  4028. }
  4029. break;
  4030. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4031. {
  4032. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4033. if(code_seen('S')) switch((int)code_value())
  4034. {
  4035. case 1:
  4036. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4037. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4038. break;
  4039. case 2:
  4040. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4041. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4042. break;
  4043. }
  4044. microstep_readings();
  4045. #endif
  4046. }
  4047. break;
  4048. case 999: // M999: Restart after being stopped
  4049. Stopped = false;
  4050. lcd_reset_alert_level();
  4051. gcode_LastN = Stopped_gcode_LastN;
  4052. FlushSerialRequestResend();
  4053. break;
  4054. }
  4055. } // end if(code_seen('M')) (end of M codes)
  4056. else if(code_seen('T'))
  4057. {
  4058. tmp_extruder = code_value();
  4059. if(tmp_extruder >= EXTRUDERS) {
  4060. SERIAL_ECHO_START;
  4061. SERIAL_ECHO("T");
  4062. SERIAL_ECHO(tmp_extruder);
  4063. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4064. }
  4065. else {
  4066. boolean make_move = false;
  4067. if(code_seen('F')) {
  4068. make_move = true;
  4069. next_feedrate = code_value();
  4070. if(next_feedrate > 0.0) {
  4071. feedrate = next_feedrate;
  4072. }
  4073. }
  4074. #if EXTRUDERS > 1
  4075. if(tmp_extruder != active_extruder) {
  4076. // Save current position to return to after applying extruder offset
  4077. memcpy(destination, current_position, sizeof(destination));
  4078. // Offset extruder (only by XY)
  4079. int i;
  4080. for(i = 0; i < 2; i++) {
  4081. current_position[i] = current_position[i] -
  4082. extruder_offset[i][active_extruder] +
  4083. extruder_offset[i][tmp_extruder];
  4084. }
  4085. // Set the new active extruder and position
  4086. active_extruder = tmp_extruder;
  4087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4088. // Move to the old position if 'F' was in the parameters
  4089. if(make_move && Stopped == false) {
  4090. prepare_move();
  4091. }
  4092. }
  4093. #endif
  4094. SERIAL_ECHO_START;
  4095. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4096. SERIAL_PROTOCOLLN((int)active_extruder);
  4097. }
  4098. } // end if(code_seen('T')) (end of T codes)
  4099. else
  4100. {
  4101. SERIAL_ECHO_START;
  4102. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4103. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4104. SERIAL_ECHOLNPGM("\"");
  4105. }
  4106. ClearToSend();
  4107. }
  4108. void FlushSerialRequestResend()
  4109. {
  4110. //char cmdbuffer[bufindr][100]="Resend:";
  4111. MYSERIAL.flush();
  4112. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4113. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4114. ClearToSend();
  4115. }
  4116. // Confirm the execution of a command, if sent from a serial line.
  4117. // Execution of a command from a SD card will not be confirmed.
  4118. void ClearToSend()
  4119. {
  4120. previous_millis_cmd = millis();
  4121. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4122. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4123. }
  4124. void get_coordinates()
  4125. {
  4126. bool seen[4]={false,false,false,false};
  4127. for(int8_t i=0; i < NUM_AXIS; i++) {
  4128. if(code_seen(axis_codes[i]))
  4129. {
  4130. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4131. seen[i]=true;
  4132. }
  4133. else destination[i] = current_position[i]; //Are these else lines really needed?
  4134. }
  4135. if(code_seen('F')) {
  4136. next_feedrate = code_value();
  4137. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4138. }
  4139. }
  4140. void get_arc_coordinates()
  4141. {
  4142. #ifdef SF_ARC_FIX
  4143. bool relative_mode_backup = relative_mode;
  4144. relative_mode = true;
  4145. #endif
  4146. get_coordinates();
  4147. #ifdef SF_ARC_FIX
  4148. relative_mode=relative_mode_backup;
  4149. #endif
  4150. if(code_seen('I')) {
  4151. offset[0] = code_value();
  4152. }
  4153. else {
  4154. offset[0] = 0.0;
  4155. }
  4156. if(code_seen('J')) {
  4157. offset[1] = code_value();
  4158. }
  4159. else {
  4160. offset[1] = 0.0;
  4161. }
  4162. }
  4163. void clamp_to_software_endstops(float target[3])
  4164. {
  4165. world2machine_clamp(target[0], target[1]);
  4166. // Clamp the Z coordinate.
  4167. if (min_software_endstops) {
  4168. float negative_z_offset = 0;
  4169. #ifdef ENABLE_AUTO_BED_LEVELING
  4170. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4171. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4172. #endif
  4173. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4174. }
  4175. if (max_software_endstops) {
  4176. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4177. }
  4178. }
  4179. #ifdef MESH_BED_LEVELING
  4180. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4181. float dx = x - current_position[X_AXIS];
  4182. float dy = y - current_position[Y_AXIS];
  4183. float dz = z - current_position[Z_AXIS];
  4184. int n_segments = 0;
  4185. if (mbl.active) {
  4186. float len = abs(dx) + abs(dy);
  4187. if (len > 0)
  4188. // Split to 3cm segments or shorter.
  4189. n_segments = int(ceil(len / 30.f));
  4190. }
  4191. if (n_segments > 1) {
  4192. float de = e - current_position[E_AXIS];
  4193. for (int i = 1; i < n_segments; ++ i) {
  4194. float t = float(i) / float(n_segments);
  4195. plan_buffer_line(
  4196. current_position[X_AXIS] + t * dx,
  4197. current_position[Y_AXIS] + t * dy,
  4198. current_position[Z_AXIS] + t * dz,
  4199. current_position[E_AXIS] + t * de,
  4200. feed_rate, extruder);
  4201. }
  4202. }
  4203. // The rest of the path.
  4204. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4205. current_position[X_AXIS] = x;
  4206. current_position[Y_AXIS] = y;
  4207. current_position[Z_AXIS] = z;
  4208. current_position[E_AXIS] = e;
  4209. }
  4210. #endif // MESH_BED_LEVELING
  4211. void prepare_move()
  4212. {
  4213. clamp_to_software_endstops(destination);
  4214. previous_millis_cmd = millis();
  4215. // Do not use feedmultiply for E or Z only moves
  4216. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4217. #ifdef MESH_BED_LEVELING
  4218. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4219. #else
  4220. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4221. #endif
  4222. }
  4223. else {
  4224. #ifdef MESH_BED_LEVELING
  4225. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4226. #else
  4227. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4228. #endif
  4229. }
  4230. for(int8_t i=0; i < NUM_AXIS; i++) {
  4231. current_position[i] = destination[i];
  4232. }
  4233. }
  4234. void prepare_arc_move(char isclockwise) {
  4235. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4236. // Trace the arc
  4237. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4238. // As far as the parser is concerned, the position is now == target. In reality the
  4239. // motion control system might still be processing the action and the real tool position
  4240. // in any intermediate location.
  4241. for(int8_t i=0; i < NUM_AXIS; i++) {
  4242. current_position[i] = destination[i];
  4243. }
  4244. previous_millis_cmd = millis();
  4245. }
  4246. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4247. #if defined(FAN_PIN)
  4248. #if CONTROLLERFAN_PIN == FAN_PIN
  4249. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4250. #endif
  4251. #endif
  4252. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4253. unsigned long lastMotorCheck = 0;
  4254. void controllerFan()
  4255. {
  4256. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4257. {
  4258. lastMotorCheck = millis();
  4259. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4260. #if EXTRUDERS > 2
  4261. || !READ(E2_ENABLE_PIN)
  4262. #endif
  4263. #if EXTRUDER > 1
  4264. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4265. || !READ(X2_ENABLE_PIN)
  4266. #endif
  4267. || !READ(E1_ENABLE_PIN)
  4268. #endif
  4269. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4270. {
  4271. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4272. }
  4273. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4274. {
  4275. digitalWrite(CONTROLLERFAN_PIN, 0);
  4276. analogWrite(CONTROLLERFAN_PIN, 0);
  4277. }
  4278. else
  4279. {
  4280. // allows digital or PWM fan output to be used (see M42 handling)
  4281. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4282. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4283. }
  4284. }
  4285. }
  4286. #endif
  4287. #ifdef TEMP_STAT_LEDS
  4288. static bool blue_led = false;
  4289. static bool red_led = false;
  4290. static uint32_t stat_update = 0;
  4291. void handle_status_leds(void) {
  4292. float max_temp = 0.0;
  4293. if(millis() > stat_update) {
  4294. stat_update += 500; // Update every 0.5s
  4295. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4296. max_temp = max(max_temp, degHotend(cur_extruder));
  4297. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4298. }
  4299. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4300. max_temp = max(max_temp, degTargetBed());
  4301. max_temp = max(max_temp, degBed());
  4302. #endif
  4303. if((max_temp > 55.0) && (red_led == false)) {
  4304. digitalWrite(STAT_LED_RED, 1);
  4305. digitalWrite(STAT_LED_BLUE, 0);
  4306. red_led = true;
  4307. blue_led = false;
  4308. }
  4309. if((max_temp < 54.0) && (blue_led == false)) {
  4310. digitalWrite(STAT_LED_RED, 0);
  4311. digitalWrite(STAT_LED_BLUE, 1);
  4312. red_led = false;
  4313. blue_led = true;
  4314. }
  4315. }
  4316. }
  4317. #endif
  4318. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4319. {
  4320. #if defined(KILL_PIN) && KILL_PIN > -1
  4321. static int killCount = 0; // make the inactivity button a bit less responsive
  4322. const int KILL_DELAY = 10000;
  4323. #endif
  4324. if(buflen < (BUFSIZE-1))
  4325. get_command();
  4326. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4327. if(max_inactive_time)
  4328. kill();
  4329. if(stepper_inactive_time) {
  4330. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4331. {
  4332. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4333. disable_x();
  4334. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4335. disable_y();
  4336. disable_z();
  4337. disable_e0();
  4338. disable_e1();
  4339. disable_e2();
  4340. }
  4341. }
  4342. }
  4343. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4344. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4345. {
  4346. chdkActive = false;
  4347. WRITE(CHDK, LOW);
  4348. }
  4349. #endif
  4350. #if defined(KILL_PIN) && KILL_PIN > -1
  4351. // Check if the kill button was pressed and wait just in case it was an accidental
  4352. // key kill key press
  4353. // -------------------------------------------------------------------------------
  4354. if( 0 == READ(KILL_PIN) )
  4355. {
  4356. killCount++;
  4357. }
  4358. else if (killCount > 0)
  4359. {
  4360. killCount--;
  4361. }
  4362. // Exceeded threshold and we can confirm that it was not accidental
  4363. // KILL the machine
  4364. // ----------------------------------------------------------------
  4365. if ( killCount >= KILL_DELAY)
  4366. {
  4367. kill();
  4368. }
  4369. #endif
  4370. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4371. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4372. #endif
  4373. #ifdef EXTRUDER_RUNOUT_PREVENT
  4374. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4375. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4376. {
  4377. bool oldstatus=READ(E0_ENABLE_PIN);
  4378. enable_e0();
  4379. float oldepos=current_position[E_AXIS];
  4380. float oldedes=destination[E_AXIS];
  4381. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4382. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4383. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4384. current_position[E_AXIS]=oldepos;
  4385. destination[E_AXIS]=oldedes;
  4386. plan_set_e_position(oldepos);
  4387. previous_millis_cmd=millis();
  4388. st_synchronize();
  4389. WRITE(E0_ENABLE_PIN,oldstatus);
  4390. }
  4391. #endif
  4392. #ifdef TEMP_STAT_LEDS
  4393. handle_status_leds();
  4394. #endif
  4395. check_axes_activity();
  4396. }
  4397. void kill(const char *full_screen_message)
  4398. {
  4399. cli(); // Stop interrupts
  4400. disable_heater();
  4401. disable_x();
  4402. // SERIAL_ECHOLNPGM("kill - disable Y");
  4403. disable_y();
  4404. disable_z();
  4405. disable_e0();
  4406. disable_e1();
  4407. disable_e2();
  4408. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4409. pinMode(PS_ON_PIN,INPUT);
  4410. #endif
  4411. SERIAL_ERROR_START;
  4412. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4413. if (full_screen_message != NULL) {
  4414. SERIAL_ERRORLNRPGM(full_screen_message);
  4415. lcd_display_message_fullscreen_P(full_screen_message);
  4416. } else {
  4417. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4418. }
  4419. // FMC small patch to update the LCD before ending
  4420. sei(); // enable interrupts
  4421. for ( int i=5; i--; lcd_update())
  4422. {
  4423. delay(200);
  4424. }
  4425. cli(); // disable interrupts
  4426. suicide();
  4427. while(1) { /* Intentionally left empty */ } // Wait for reset
  4428. }
  4429. void Stop()
  4430. {
  4431. disable_heater();
  4432. if(Stopped == false) {
  4433. Stopped = true;
  4434. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4435. SERIAL_ERROR_START;
  4436. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4437. LCD_MESSAGERPGM(MSG_STOPPED);
  4438. }
  4439. }
  4440. bool IsStopped() { return Stopped; };
  4441. #ifdef FAST_PWM_FAN
  4442. void setPwmFrequency(uint8_t pin, int val)
  4443. {
  4444. val &= 0x07;
  4445. switch(digitalPinToTimer(pin))
  4446. {
  4447. #if defined(TCCR0A)
  4448. case TIMER0A:
  4449. case TIMER0B:
  4450. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4451. // TCCR0B |= val;
  4452. break;
  4453. #endif
  4454. #if defined(TCCR1A)
  4455. case TIMER1A:
  4456. case TIMER1B:
  4457. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4458. // TCCR1B |= val;
  4459. break;
  4460. #endif
  4461. #if defined(TCCR2)
  4462. case TIMER2:
  4463. case TIMER2:
  4464. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4465. TCCR2 |= val;
  4466. break;
  4467. #endif
  4468. #if defined(TCCR2A)
  4469. case TIMER2A:
  4470. case TIMER2B:
  4471. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4472. TCCR2B |= val;
  4473. break;
  4474. #endif
  4475. #if defined(TCCR3A)
  4476. case TIMER3A:
  4477. case TIMER3B:
  4478. case TIMER3C:
  4479. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4480. TCCR3B |= val;
  4481. break;
  4482. #endif
  4483. #if defined(TCCR4A)
  4484. case TIMER4A:
  4485. case TIMER4B:
  4486. case TIMER4C:
  4487. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4488. TCCR4B |= val;
  4489. break;
  4490. #endif
  4491. #if defined(TCCR5A)
  4492. case TIMER5A:
  4493. case TIMER5B:
  4494. case TIMER5C:
  4495. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4496. TCCR5B |= val;
  4497. break;
  4498. #endif
  4499. }
  4500. }
  4501. #endif //FAST_PWM_FAN
  4502. bool setTargetedHotend(int code){
  4503. tmp_extruder = active_extruder;
  4504. if(code_seen('T')) {
  4505. tmp_extruder = code_value();
  4506. if(tmp_extruder >= EXTRUDERS) {
  4507. SERIAL_ECHO_START;
  4508. switch(code){
  4509. case 104:
  4510. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4511. break;
  4512. case 105:
  4513. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4514. break;
  4515. case 109:
  4516. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4517. break;
  4518. case 218:
  4519. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4520. break;
  4521. case 221:
  4522. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4523. break;
  4524. }
  4525. SERIAL_ECHOLN(tmp_extruder);
  4526. return true;
  4527. }
  4528. }
  4529. return false;
  4530. }
  4531. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4532. {
  4533. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4534. {
  4535. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4536. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4537. }
  4538. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4539. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4542. total_filament_used = 0;
  4543. }
  4544. float calculate_volumetric_multiplier(float diameter) {
  4545. float area = .0;
  4546. float radius = .0;
  4547. radius = diameter * .5;
  4548. if (! volumetric_enabled || radius == 0) {
  4549. area = 1;
  4550. }
  4551. else {
  4552. area = M_PI * pow(radius, 2);
  4553. }
  4554. return 1.0 / area;
  4555. }
  4556. void calculate_volumetric_multipliers() {
  4557. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4558. #if EXTRUDERS > 1
  4559. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4560. #if EXTRUDERS > 2
  4561. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4562. #endif
  4563. #endif
  4564. }
  4565. void delay_keep_alive(int ms)
  4566. {
  4567. for (;;) {
  4568. manage_heater();
  4569. // Manage inactivity, but don't disable steppers on timeout.
  4570. manage_inactivity(true);
  4571. lcd_update();
  4572. if (ms == 0)
  4573. break;
  4574. else if (ms >= 50) {
  4575. delay(50);
  4576. ms -= 50;
  4577. } else {
  4578. delay(ms);
  4579. ms = 0;
  4580. }
  4581. }
  4582. }