Marlin_main.cpp 207 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // P Y - Starts filament allignment process for multicolor
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. unsigned long PingTime = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. int8_t FarmMode = 0;
  225. bool prusa_sd_card_upload = false;
  226. unsigned int status_number = 0;
  227. unsigned long total_filament_used;
  228. unsigned int heating_status;
  229. unsigned int heating_status_counter;
  230. bool custom_message;
  231. bool loading_flag = false;
  232. unsigned int custom_message_type;
  233. unsigned int custom_message_state;
  234. bool volumetric_enabled = false;
  235. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 1
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #if EXTRUDERS > 2
  239. , DEFAULT_NOMINAL_FILAMENT_DIA
  240. #endif
  241. #endif
  242. };
  243. float volumetric_multiplier[EXTRUDERS] = {1.0
  244. #if EXTRUDERS > 1
  245. , 1.0
  246. #if EXTRUDERS > 2
  247. , 1.0
  248. #endif
  249. #endif
  250. };
  251. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  252. float add_homing[3]={0,0,0};
  253. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  254. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  255. bool axis_known_position[3] = {false, false, false};
  256. float zprobe_zoffset;
  257. // Extruder offset
  258. #if EXTRUDERS > 1
  259. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  260. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  261. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  262. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  263. #endif
  264. };
  265. #endif
  266. uint8_t active_extruder = 0;
  267. int fanSpeed=0;
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled=false;
  270. bool retracted[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. bool retracted_swap[EXTRUDERS]={false
  279. #if EXTRUDERS > 1
  280. , false
  281. #if EXTRUDERS > 2
  282. , false
  283. #endif
  284. #endif
  285. };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif
  294. #ifdef ULTIPANEL
  295. #ifdef PS_DEFAULT_OFF
  296. bool powersupply = false;
  297. #else
  298. bool powersupply = true;
  299. #endif
  300. #endif
  301. bool cancel_heatup = false ;
  302. #ifdef FILAMENT_SENSOR
  303. //Variables for Filament Sensor input
  304. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  305. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  306. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  307. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  308. int delay_index1=0; //index into ring buffer
  309. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  310. float delay_dist=0; //delay distance counter
  311. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  312. #endif
  313. const char errormagic[] PROGMEM = "Error:";
  314. const char echomagic[] PROGMEM = "echo:";
  315. //===========================================================================
  316. //=============================Private Variables=============================
  317. //===========================================================================
  318. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  319. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  320. static float delta[3] = {0.0, 0.0, 0.0};
  321. // For tracing an arc
  322. static float offset[3] = {0.0, 0.0, 0.0};
  323. static bool home_all_axis = true;
  324. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  325. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  326. // Determines Absolute or Relative Coordinates.
  327. // Also there is bool axis_relative_modes[] per axis flag.
  328. static bool relative_mode = false;
  329. // String circular buffer. Commands may be pushed to the buffer from both sides:
  330. // Chained commands will be pushed to the front, interactive (from LCD menu)
  331. // and printing commands (from serial line or from SD card) are pushed to the tail.
  332. // First character of each entry indicates the type of the entry:
  333. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  334. // Command in cmdbuffer was sent over USB.
  335. #define CMDBUFFER_CURRENT_TYPE_USB 1
  336. // Command in cmdbuffer was read from SDCARD.
  337. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  338. // Command in cmdbuffer was generated by the UI.
  339. #define CMDBUFFER_CURRENT_TYPE_UI 3
  340. // Command in cmdbuffer was generated by another G-code.
  341. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  342. // How much space to reserve for the chained commands
  343. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  344. // which are pushed to the front of the queue?
  345. // Maximum 5 commands of max length 20 + null terminator.
  346. #define CMDBUFFER_RESERVE_FRONT (5*21)
  347. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  348. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  349. // Head of the circular buffer, where to read.
  350. static int bufindr = 0;
  351. // Tail of the buffer, where to write.
  352. static int bufindw = 0;
  353. // Number of lines in cmdbuffer.
  354. static int buflen = 0;
  355. // Flag for processing the current command inside the main Arduino loop().
  356. // If a new command was pushed to the front of a command buffer while
  357. // processing another command, this replaces the command on the top.
  358. // Therefore don't remove the command from the queue in the loop() function.
  359. static bool cmdbuffer_front_already_processed = false;
  360. // Type of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  362. // String of a command, which is to be executed right now.
  363. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  364. // Enable debugging of the command buffer.
  365. // Debugging information will be sent to serial line.
  366. // #define CMDBUFFER_DEBUG
  367. static int serial_count = 0;
  368. static boolean comment_mode = false;
  369. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  370. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  371. //static float tt = 0;
  372. //static float bt = 0;
  373. //Inactivity shutdown variables
  374. static unsigned long previous_millis_cmd = 0;
  375. unsigned long max_inactive_time = 0;
  376. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  377. unsigned long starttime=0;
  378. unsigned long stoptime=0;
  379. unsigned long _usb_timer = 0;
  380. static uint8_t tmp_extruder;
  381. bool Stopped=false;
  382. #if NUM_SERVOS > 0
  383. Servo servos[NUM_SERVOS];
  384. #endif
  385. bool CooldownNoWait = true;
  386. bool target_direction;
  387. //Insert variables if CHDK is defined
  388. #ifdef CHDK
  389. unsigned long chdkHigh = 0;
  390. boolean chdkActive = false;
  391. #endif
  392. //===========================================================================
  393. //=============================Routines======================================
  394. //===========================================================================
  395. void get_arc_coordinates();
  396. bool setTargetedHotend(int code);
  397. void serial_echopair_P(const char *s_P, float v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, double v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, unsigned long v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. #ifdef SDSUPPORT
  404. #include "SdFatUtil.h"
  405. int freeMemory() { return SdFatUtil::FreeRam(); }
  406. #else
  407. extern "C" {
  408. extern unsigned int __bss_end;
  409. extern unsigned int __heap_start;
  410. extern void *__brkval;
  411. int freeMemory() {
  412. int free_memory;
  413. if ((int)__brkval == 0)
  414. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  415. else
  416. free_memory = ((int)&free_memory) - ((int)__brkval);
  417. return free_memory;
  418. }
  419. }
  420. #endif //!SDSUPPORT
  421. // Pop the currently processed command from the queue.
  422. // It is expected, that there is at least one command in the queue.
  423. bool cmdqueue_pop_front()
  424. {
  425. if (buflen > 0) {
  426. #ifdef CMDBUFFER_DEBUG
  427. SERIAL_ECHOPGM("Dequeing ");
  428. SERIAL_ECHO(cmdbuffer+bufindr+1);
  429. SERIAL_ECHOLNPGM("");
  430. SERIAL_ECHOPGM("Old indices: buflen ");
  431. SERIAL_ECHO(buflen);
  432. SERIAL_ECHOPGM(", bufindr ");
  433. SERIAL_ECHO(bufindr);
  434. SERIAL_ECHOPGM(", bufindw ");
  435. SERIAL_ECHO(bufindw);
  436. SERIAL_ECHOPGM(", serial_count ");
  437. SERIAL_ECHO(serial_count);
  438. SERIAL_ECHOPGM(", bufsize ");
  439. SERIAL_ECHO(sizeof(cmdbuffer));
  440. SERIAL_ECHOLNPGM("");
  441. #endif /* CMDBUFFER_DEBUG */
  442. if (-- buflen == 0) {
  443. // Empty buffer.
  444. if (serial_count == 0)
  445. // No serial communication is pending. Reset both pointers to zero.
  446. bufindw = 0;
  447. bufindr = bufindw;
  448. } else {
  449. // There is at least one ready line in the buffer.
  450. // First skip the current command ID and iterate up to the end of the string.
  451. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  452. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  453. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. // If the end of the buffer was empty,
  455. if (bufindr == sizeof(cmdbuffer)) {
  456. // skip to the start and find the nonzero command.
  457. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  458. }
  459. #ifdef CMDBUFFER_DEBUG
  460. SERIAL_ECHOPGM("New indices: buflen ");
  461. SERIAL_ECHO(buflen);
  462. SERIAL_ECHOPGM(", bufindr ");
  463. SERIAL_ECHO(bufindr);
  464. SERIAL_ECHOPGM(", bufindw ");
  465. SERIAL_ECHO(bufindw);
  466. SERIAL_ECHOPGM(", serial_count ");
  467. SERIAL_ECHO(serial_count);
  468. SERIAL_ECHOPGM(" new command on the top: ");
  469. SERIAL_ECHO(cmdbuffer+bufindr+1);
  470. SERIAL_ECHOLNPGM("");
  471. #endif /* CMDBUFFER_DEBUG */
  472. }
  473. return true;
  474. }
  475. return false;
  476. }
  477. void cmdqueue_reset()
  478. {
  479. while (cmdqueue_pop_front()) ;
  480. }
  481. // How long a string could be pushed to the front of the command queue?
  482. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  483. // len_asked does not contain the zero terminator size.
  484. bool cmdqueue_could_enqueue_front(int len_asked)
  485. {
  486. // MAX_CMD_SIZE has to accommodate the zero terminator.
  487. if (len_asked >= MAX_CMD_SIZE)
  488. return false;
  489. // Remove the currently processed command from the queue.
  490. if (! cmdbuffer_front_already_processed) {
  491. cmdqueue_pop_front();
  492. cmdbuffer_front_already_processed = true;
  493. }
  494. if (bufindr == bufindw && buflen > 0)
  495. // Full buffer.
  496. return false;
  497. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  498. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  499. if (bufindw < bufindr) {
  500. int bufindr_new = bufindr - len_asked - 2;
  501. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  502. if (endw <= bufindr_new) {
  503. bufindr = bufindr_new;
  504. return true;
  505. }
  506. } else {
  507. // Otherwise the free space is split between the start and end.
  508. if (len_asked + 2 <= bufindr) {
  509. // Could fit at the start.
  510. bufindr -= len_asked + 2;
  511. return true;
  512. }
  513. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  514. if (endw <= bufindr_new) {
  515. memset(cmdbuffer, 0, bufindr);
  516. bufindr = bufindr_new;
  517. return true;
  518. }
  519. }
  520. return false;
  521. }
  522. // Could one enqueue a command of lenthg len_asked into the buffer,
  523. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  524. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  525. // len_asked does not contain the zero terminator size.
  526. bool cmdqueue_could_enqueue_back(int len_asked)
  527. {
  528. // MAX_CMD_SIZE has to accommodate the zero terminator.
  529. if (len_asked >= MAX_CMD_SIZE)
  530. return false;
  531. if (bufindr == bufindw && buflen > 0)
  532. // Full buffer.
  533. return false;
  534. if (serial_count > 0) {
  535. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  536. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  537. // serial data.
  538. // How much memory to reserve for the commands pushed to the front?
  539. // End of the queue, when pushing to the end.
  540. int endw = bufindw + len_asked + 2;
  541. if (bufindw < bufindr)
  542. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  543. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  544. // Otherwise the free space is split between the start and end.
  545. if (// Could one fit to the end, including the reserve?
  546. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  547. // Could one fit to the end, and the reserve to the start?
  548. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  549. return true;
  550. // Could one fit both to the start?
  551. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  552. // Mark the rest of the buffer as used.
  553. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  554. // and point to the start.
  555. bufindw = 0;
  556. return true;
  557. }
  558. } else {
  559. // How much memory to reserve for the commands pushed to the front?
  560. // End of the queue, when pushing to the end.
  561. int endw = bufindw + len_asked + 2;
  562. if (bufindw < bufindr)
  563. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  564. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  565. // Otherwise the free space is split between the start and end.
  566. if (// Could one fit to the end, including the reserve?
  567. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  568. // Could one fit to the end, and the reserve to the start?
  569. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  570. return true;
  571. // Could one fit both to the start?
  572. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  573. // Mark the rest of the buffer as used.
  574. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  575. // and point to the start.
  576. bufindw = 0;
  577. return true;
  578. }
  579. }
  580. return false;
  581. }
  582. #ifdef CMDBUFFER_DEBUG
  583. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  584. {
  585. SERIAL_ECHOPGM("Entry nr: ");
  586. SERIAL_ECHO(nr);
  587. SERIAL_ECHOPGM(", type: ");
  588. SERIAL_ECHO(int(*p));
  589. SERIAL_ECHOPGM(", cmd: ");
  590. SERIAL_ECHO(p+1);
  591. SERIAL_ECHOLNPGM("");
  592. }
  593. static void cmdqueue_dump_to_serial()
  594. {
  595. if (buflen == 0) {
  596. SERIAL_ECHOLNPGM("The command buffer is empty.");
  597. } else {
  598. SERIAL_ECHOPGM("Content of the buffer: entries ");
  599. SERIAL_ECHO(buflen);
  600. SERIAL_ECHOPGM(", indr ");
  601. SERIAL_ECHO(bufindr);
  602. SERIAL_ECHOPGM(", indw ");
  603. SERIAL_ECHO(bufindw);
  604. SERIAL_ECHOLNPGM("");
  605. int nr = 0;
  606. if (bufindr < bufindw) {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  613. }
  614. } else {
  615. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  616. cmdqueue_dump_to_serial_single_line(nr, p);
  617. // Skip the command.
  618. for (++p; *p != 0; ++ p);
  619. // Skip the gaps.
  620. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  621. }
  622. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  623. cmdqueue_dump_to_serial_single_line(nr, p);
  624. // Skip the command.
  625. for (++p; *p != 0; ++ p);
  626. // Skip the gaps.
  627. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  628. }
  629. }
  630. SERIAL_ECHOLNPGM("End of the buffer.");
  631. }
  632. }
  633. #endif /* CMDBUFFER_DEBUG */
  634. //adds an command to the main command buffer
  635. //thats really done in a non-safe way.
  636. //needs overworking someday
  637. // Currently the maximum length of a command piped through this function is around 20 characters
  638. void enquecommand(const char *cmd, bool from_progmem)
  639. {
  640. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  641. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  642. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  643. if (cmdqueue_could_enqueue_back(len)) {
  644. // This is dangerous if a mixing of serial and this happens
  645. // This may easily be tested: If serial_count > 0, we have a problem.
  646. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  647. if (from_progmem)
  648. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  649. else
  650. strcpy(cmdbuffer + bufindw + 1, cmd);
  651. SERIAL_ECHO_START;
  652. SERIAL_ECHORPGM(MSG_Enqueing);
  653. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  654. SERIAL_ECHOLNPGM("\"");
  655. bufindw += len + 2;
  656. if (bufindw == sizeof(cmdbuffer))
  657. bufindw = 0;
  658. ++ buflen;
  659. #ifdef CMDBUFFER_DEBUG
  660. cmdqueue_dump_to_serial();
  661. #endif /* CMDBUFFER_DEBUG */
  662. } else {
  663. SERIAL_ERROR_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. if (from_progmem)
  666. SERIAL_PROTOCOLRPGM(cmd);
  667. else
  668. SERIAL_ECHO(cmd);
  669. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  670. #ifdef CMDBUFFER_DEBUG
  671. cmdqueue_dump_to_serial();
  672. #endif /* CMDBUFFER_DEBUG */
  673. }
  674. }
  675. void enquecommand_front(const char *cmd, bool from_progmem)
  676. {
  677. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  678. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  679. if (cmdqueue_could_enqueue_front(len)) {
  680. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  681. if (from_progmem)
  682. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  683. else
  684. strcpy(cmdbuffer + bufindr + 1, cmd);
  685. ++ buflen;
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  689. SERIAL_ECHOLNPGM("\"");
  690. #ifdef CMDBUFFER_DEBUG
  691. cmdqueue_dump_to_serial();
  692. #endif /* CMDBUFFER_DEBUG */
  693. } else {
  694. SERIAL_ERROR_START;
  695. SERIAL_ECHOPGM("Enqueing to the front: \"");
  696. if (from_progmem)
  697. SERIAL_PROTOCOLRPGM(cmd);
  698. else
  699. SERIAL_ECHO(cmd);
  700. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  701. #ifdef CMDBUFFER_DEBUG
  702. cmdqueue_dump_to_serial();
  703. #endif /* CMDBUFFER_DEBUG */
  704. }
  705. }
  706. // Mark the command at the top of the command queue as new.
  707. // Therefore it will not be removed from the queue.
  708. void repeatcommand_front()
  709. {
  710. cmdbuffer_front_already_processed = true;
  711. }
  712. bool is_buffer_empty()
  713. {
  714. if (buflen == 0) return true;
  715. else return false;
  716. }
  717. void setup_killpin()
  718. {
  719. #if defined(KILL_PIN) && KILL_PIN > -1
  720. SET_INPUT(KILL_PIN);
  721. WRITE(KILL_PIN,HIGH);
  722. #endif
  723. }
  724. // Set home pin
  725. void setup_homepin(void)
  726. {
  727. #if defined(HOME_PIN) && HOME_PIN > -1
  728. SET_INPUT(HOME_PIN);
  729. WRITE(HOME_PIN,HIGH);
  730. #endif
  731. }
  732. void setup_photpin()
  733. {
  734. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  735. SET_OUTPUT(PHOTOGRAPH_PIN);
  736. WRITE(PHOTOGRAPH_PIN, LOW);
  737. #endif
  738. }
  739. void setup_powerhold()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, HIGH);
  744. #endif
  745. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  746. SET_OUTPUT(PS_ON_PIN);
  747. #if defined(PS_DEFAULT_OFF)
  748. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  749. #else
  750. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  751. #endif
  752. #endif
  753. }
  754. void suicide()
  755. {
  756. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  757. SET_OUTPUT(SUICIDE_PIN);
  758. WRITE(SUICIDE_PIN, LOW);
  759. #endif
  760. }
  761. void servo_init()
  762. {
  763. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  764. servos[0].attach(SERVO0_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  767. servos[1].attach(SERVO1_PIN);
  768. #endif
  769. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  770. servos[2].attach(SERVO2_PIN);
  771. #endif
  772. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  773. servos[3].attach(SERVO3_PIN);
  774. #endif
  775. #if (NUM_SERVOS >= 5)
  776. #error "TODO: enter initalisation code for more servos"
  777. #endif
  778. }
  779. static void lcd_language_menu();
  780. #ifdef MESH_BED_LEVELING
  781. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  782. #endif
  783. // Factory reset function
  784. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  785. // Level input parameter sets depth of reset
  786. // Quiet parameter masks all waitings for user interact.
  787. int er_progress = 0;
  788. void factory_reset(char level, bool quiet)
  789. {
  790. lcd_implementation_clear();
  791. switch (level) {
  792. // Level 0: Language reset
  793. case 0:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. lcd_force_language_selection();
  798. break;
  799. //Level 1: Reset statistics
  800. case 1:
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  805. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  806. lcd_menu_statistics();
  807. break;
  808. // Level 2: Prepare for shipping
  809. case 2:
  810. //lcd_printPGM(PSTR("Factory RESET"));
  811. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  812. // Force language selection at the next boot up.
  813. lcd_force_language_selection();
  814. // Force the "Follow calibration flow" message at the next boot up.
  815. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  816. farm_no = 0;
  817. farm_mode == false;
  818. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  819. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. //_delay_ms(2000);
  824. break;
  825. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  826. case 3:
  827. lcd_printPGM(PSTR("Factory RESET"));
  828. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  829. WRITE(BEEPER, HIGH);
  830. _delay_ms(100);
  831. WRITE(BEEPER, LOW);
  832. er_progress = 0;
  833. lcd_print_at_PGM(3, 3, PSTR(" "));
  834. lcd_implementation_print_at(3, 3, er_progress);
  835. // Erase EEPROM
  836. for (int i = 0; i < 4096; i++) {
  837. eeprom_write_byte((uint8_t*)i, 0xFF);
  838. if (i % 41 == 0) {
  839. er_progress++;
  840. lcd_print_at_PGM(3, 3, PSTR(" "));
  841. lcd_implementation_print_at(3, 3, er_progress);
  842. lcd_printPGM(PSTR("%"));
  843. }
  844. }
  845. break;
  846. default:
  847. break;
  848. }
  849. }
  850. // "Setup" function is called by the Arduino framework on startup.
  851. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  852. // are initialized by the main() routine provided by the Arduino framework.
  853. void setup()
  854. {
  855. setup_killpin();
  856. setup_powerhold();
  857. MYSERIAL.begin(BAUDRATE);
  858. SERIAL_PROTOCOLLNPGM("start");
  859. SERIAL_ECHO_START;
  860. #if 0
  861. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  862. for (int i = 0; i < 4096; ++ i) {
  863. int b = eeprom_read_byte((unsigned char*)i);
  864. if (b != 255) {
  865. SERIAL_ECHO(i);
  866. SERIAL_ECHO(":");
  867. SERIAL_ECHO(b);
  868. SERIAL_ECHOLN("");
  869. }
  870. }
  871. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  872. #endif
  873. // Check startup - does nothing if bootloader sets MCUSR to 0
  874. byte mcu = MCUSR;
  875. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  876. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  877. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  878. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  879. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  880. MCUSR=0;
  881. //SERIAL_ECHORPGM(MSG_MARLIN);
  882. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  883. #ifdef STRING_VERSION_CONFIG_H
  884. #ifdef STRING_CONFIG_H_AUTHOR
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  887. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  888. SERIAL_ECHORPGM(MSG_AUTHOR);
  889. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  890. SERIAL_ECHOPGM("Compiled: ");
  891. SERIAL_ECHOLNPGM(__DATE__);
  892. #endif
  893. #endif
  894. SERIAL_ECHO_START;
  895. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  896. SERIAL_ECHO(freeMemory());
  897. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  898. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  899. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  900. Config_RetrieveSettings();
  901. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  902. tp_init(); // Initialize temperature loop
  903. plan_init(); // Initialize planner;
  904. watchdog_init();
  905. st_init(); // Initialize stepper, this enables interrupts!
  906. setup_photpin();
  907. servo_init();
  908. // Reset the machine correction matrix.
  909. // It does not make sense to load the correction matrix until the machine is homed.
  910. world2machine_reset();
  911. lcd_init();
  912. if (!READ(BTN_ENC))
  913. {
  914. _delay_ms(1000);
  915. if (!READ(BTN_ENC))
  916. {
  917. lcd_implementation_clear();
  918. lcd_printPGM(PSTR("Factory RESET"));
  919. SET_OUTPUT(BEEPER);
  920. WRITE(BEEPER, HIGH);
  921. while (!READ(BTN_ENC));
  922. WRITE(BEEPER, LOW);
  923. _delay_ms(2000);
  924. char level = reset_menu();
  925. factory_reset(level, false);
  926. switch (level) {
  927. case 0: _delay_ms(0); break;
  928. case 1: _delay_ms(0); break;
  929. case 2: _delay_ms(0); break;
  930. case 3: _delay_ms(0); break;
  931. }
  932. // _delay_ms(100);
  933. /*
  934. #ifdef MESH_BED_LEVELING
  935. _delay_ms(2000);
  936. if (!READ(BTN_ENC))
  937. {
  938. WRITE(BEEPER, HIGH);
  939. _delay_ms(100);
  940. WRITE(BEEPER, LOW);
  941. _delay_ms(200);
  942. WRITE(BEEPER, HIGH);
  943. _delay_ms(100);
  944. WRITE(BEEPER, LOW);
  945. int _z = 0;
  946. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  947. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  948. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  949. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  950. }
  951. else
  952. {
  953. WRITE(BEEPER, HIGH);
  954. _delay_ms(100);
  955. WRITE(BEEPER, LOW);
  956. }
  957. #endif // mesh */
  958. }
  959. }
  960. else
  961. {
  962. _delay_ms(1000); // wait 1sec to display the splash screen
  963. }
  964. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  965. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  966. #endif
  967. #ifdef DIGIPOT_I2C
  968. digipot_i2c_init();
  969. #endif
  970. setup_homepin();
  971. #if defined(Z_AXIS_ALWAYS_ON)
  972. enable_z();
  973. #endif
  974. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  975. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  976. if (farm_mode == 0xFF && farm_no == 0) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero, deactivate farm mode
  977. if (farm_mode)
  978. {
  979. prusa_statistics(8);
  980. }
  981. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  982. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  983. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  984. // but this times out if a blocking dialog is shown in setup().
  985. card.initsd();
  986. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  987. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  988. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  989. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  990. // where all the EEPROM entries are set to 0x0ff.
  991. // Once a firmware boots up, it forces at least a language selection, which changes
  992. // EEPROM_LANG to number lower than 0x0ff.
  993. // 1) Set a high power mode.
  994. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  995. }
  996. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  997. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  998. // is being written into the EEPROM, so the update procedure will be triggered only once.
  999. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1000. if (lang_selected >= LANG_NUM){
  1001. lcd_mylang();
  1002. }
  1003. check_babystep(); //checking if Z babystep is in allowed range
  1004. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1005. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1006. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1007. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1008. // Show the message.
  1009. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1010. lcd_update_enable(true);
  1011. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1012. // Show the message.
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1014. lcd_update_enable(true);
  1015. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1016. // Show the message.
  1017. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1018. lcd_update_enable(true);
  1019. }
  1020. // Store the currently running firmware into an eeprom,
  1021. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1022. update_current_firmware_version_to_eeprom();
  1023. }
  1024. void trace();
  1025. #define CHUNK_SIZE 64 // bytes
  1026. #define SAFETY_MARGIN 1
  1027. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1028. int chunkHead = 0;
  1029. int serial_read_stream() {
  1030. setTargetHotend(0, 0);
  1031. setTargetBed(0);
  1032. lcd_implementation_clear();
  1033. lcd_printPGM(PSTR(" Upload in progress"));
  1034. // first wait for how many bytes we will receive
  1035. uint32_t bytesToReceive;
  1036. // receive the four bytes
  1037. char bytesToReceiveBuffer[4];
  1038. for (int i=0; i<4; i++) {
  1039. int data;
  1040. while ((data = MYSERIAL.read()) == -1) {};
  1041. bytesToReceiveBuffer[i] = data;
  1042. }
  1043. // make it a uint32
  1044. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1045. // we're ready, notify the sender
  1046. MYSERIAL.write('+');
  1047. // lock in the routine
  1048. uint32_t receivedBytes = 0;
  1049. while (prusa_sd_card_upload) {
  1050. int i;
  1051. for (i=0; i<CHUNK_SIZE; i++) {
  1052. int data;
  1053. // check if we're not done
  1054. if (receivedBytes == bytesToReceive) {
  1055. break;
  1056. }
  1057. // read the next byte
  1058. while ((data = MYSERIAL.read()) == -1) {};
  1059. receivedBytes++;
  1060. // save it to the chunk
  1061. chunk[i] = data;
  1062. }
  1063. // write the chunk to SD
  1064. card.write_command_no_newline(&chunk[0]);
  1065. // notify the sender we're ready for more data
  1066. MYSERIAL.write('+');
  1067. // for safety
  1068. manage_heater();
  1069. // check if we're done
  1070. if(receivedBytes == bytesToReceive) {
  1071. trace(); // beep
  1072. card.closefile();
  1073. prusa_sd_card_upload = false;
  1074. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1075. return 0;
  1076. }
  1077. }
  1078. }
  1079. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1080. // Before loop(), the setup() function is called by the main() routine.
  1081. void loop()
  1082. {
  1083. bool stack_integrity = true;
  1084. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1085. {
  1086. is_usb_printing = true;
  1087. usb_printing_counter--;
  1088. _usb_timer = millis();
  1089. }
  1090. if (usb_printing_counter == 0)
  1091. {
  1092. is_usb_printing = false;
  1093. }
  1094. if (prusa_sd_card_upload)
  1095. {
  1096. //we read byte-by byte
  1097. serial_read_stream();
  1098. } else
  1099. {
  1100. get_command();
  1101. #ifdef SDSUPPORT
  1102. card.checkautostart(false);
  1103. #endif
  1104. if(buflen)
  1105. {
  1106. #ifdef SDSUPPORT
  1107. if(card.saving)
  1108. {
  1109. // Saving a G-code file onto an SD-card is in progress.
  1110. // Saving starts with M28, saving until M29 is seen.
  1111. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1112. card.write_command(CMDBUFFER_CURRENT_STRING);
  1113. if(card.logging)
  1114. process_commands();
  1115. else
  1116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1117. } else {
  1118. card.closefile();
  1119. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1120. }
  1121. } else {
  1122. process_commands();
  1123. }
  1124. #else
  1125. process_commands();
  1126. #endif //SDSUPPORT
  1127. if (! cmdbuffer_front_already_processed)
  1128. cmdqueue_pop_front();
  1129. cmdbuffer_front_already_processed = false;
  1130. }
  1131. }
  1132. //check heater every n milliseconds
  1133. manage_heater();
  1134. manage_inactivity();
  1135. checkHitEndstops();
  1136. lcd_update();
  1137. }
  1138. void get_command()
  1139. {
  1140. // Test and reserve space for the new command string.
  1141. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1142. return;
  1143. while (MYSERIAL.available() > 0) {
  1144. char serial_char = MYSERIAL.read();
  1145. TimeSent = millis();
  1146. TimeNow = millis();
  1147. if (serial_char < 0)
  1148. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1149. // and Marlin does not support such file names anyway.
  1150. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1151. // to a hang-up of the print process from an SD card.
  1152. continue;
  1153. if(serial_char == '\n' ||
  1154. serial_char == '\r' ||
  1155. (serial_char == ':' && comment_mode == false) ||
  1156. serial_count >= (MAX_CMD_SIZE - 1) )
  1157. {
  1158. if(!serial_count) { //if empty line
  1159. comment_mode = false; //for new command
  1160. return;
  1161. }
  1162. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1163. if(!comment_mode){
  1164. comment_mode = false; //for new command
  1165. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1166. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1167. {
  1168. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1169. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1170. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1171. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1172. // M110 - set current line number.
  1173. // Line numbers not sent in succession.
  1174. SERIAL_ERROR_START;
  1175. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1176. SERIAL_ERRORLN(gcode_LastN);
  1177. //Serial.println(gcode_N);
  1178. FlushSerialRequestResend();
  1179. serial_count = 0;
  1180. return;
  1181. }
  1182. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1183. {
  1184. byte checksum = 0;
  1185. char *p = cmdbuffer+bufindw+1;
  1186. while (p != strchr_pointer)
  1187. checksum = checksum^(*p++);
  1188. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1191. SERIAL_ERRORLN(gcode_LastN);
  1192. FlushSerialRequestResend();
  1193. serial_count = 0;
  1194. return;
  1195. }
  1196. // If no errors, remove the checksum and continue parsing.
  1197. *strchr_pointer = 0;
  1198. }
  1199. else
  1200. {
  1201. SERIAL_ERROR_START;
  1202. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1203. SERIAL_ERRORLN(gcode_LastN);
  1204. FlushSerialRequestResend();
  1205. serial_count = 0;
  1206. return;
  1207. }
  1208. gcode_LastN = gcode_N;
  1209. //if no errors, continue parsing
  1210. } // end of 'N' command
  1211. }
  1212. else // if we don't receive 'N' but still see '*'
  1213. {
  1214. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1215. {
  1216. SERIAL_ERROR_START;
  1217. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1218. SERIAL_ERRORLN(gcode_LastN);
  1219. serial_count = 0;
  1220. return;
  1221. }
  1222. } // end of '*' command
  1223. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1224. if (! IS_SD_PRINTING) {
  1225. usb_printing_counter = 10;
  1226. is_usb_printing = true;
  1227. }
  1228. if (Stopped == true) {
  1229. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1230. if (gcode >= 0 && gcode <= 3) {
  1231. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1232. LCD_MESSAGERPGM(MSG_STOPPED);
  1233. }
  1234. }
  1235. } // end of 'G' command
  1236. //If command was e-stop process now
  1237. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1238. kill();
  1239. // Store the current line into buffer, move to the next line.
  1240. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1241. #ifdef CMDBUFFER_DEBUG
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1244. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1245. SERIAL_ECHOLNPGM("");
  1246. #endif /* CMDBUFFER_DEBUG */
  1247. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1248. if (bufindw == sizeof(cmdbuffer))
  1249. bufindw = 0;
  1250. ++ buflen;
  1251. #ifdef CMDBUFFER_DEBUG
  1252. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1253. SERIAL_ECHO(buflen);
  1254. SERIAL_ECHOLNPGM("");
  1255. #endif /* CMDBUFFER_DEBUG */
  1256. } // end of 'not comment mode'
  1257. serial_count = 0; //clear buffer
  1258. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1259. // in the queue, as this function will reserve the memory.
  1260. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1261. return;
  1262. } // end of "end of line" processing
  1263. else {
  1264. // Not an "end of line" symbol. Store the new character into a buffer.
  1265. if(serial_char == ';') comment_mode = true;
  1266. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1267. }
  1268. } // end of serial line processing loop
  1269. if(farm_mode){
  1270. TimeNow = millis();
  1271. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1272. cmdbuffer[bufindw+serial_count+1] = 0;
  1273. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1274. if (bufindw == sizeof(cmdbuffer))
  1275. bufindw = 0;
  1276. ++ buflen;
  1277. serial_count = 0;
  1278. SERIAL_ECHOPGM("TIMEOUT:");
  1279. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1280. return;
  1281. }
  1282. }
  1283. #ifdef SDSUPPORT
  1284. if(!card.sdprinting || serial_count!=0){
  1285. // If there is a half filled buffer from serial line, wait until return before
  1286. // continuing with the serial line.
  1287. return;
  1288. }
  1289. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1290. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1291. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1292. static bool stop_buffering=false;
  1293. if(buflen==0) stop_buffering=false;
  1294. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1295. while( !card.eof() && !stop_buffering) {
  1296. int16_t n=card.get();
  1297. char serial_char = (char)n;
  1298. if(serial_char == '\n' ||
  1299. serial_char == '\r' ||
  1300. (serial_char == '#' && comment_mode == false) ||
  1301. (serial_char == ':' && comment_mode == false) ||
  1302. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1303. {
  1304. if(card.eof()){
  1305. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1306. stoptime=millis();
  1307. char time[30];
  1308. unsigned long t=(stoptime-starttime)/1000;
  1309. int hours, minutes;
  1310. minutes=(t/60)%60;
  1311. hours=t/60/60;
  1312. save_statistics(total_filament_used, t);
  1313. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOLN(time);
  1316. lcd_setstatus(time);
  1317. card.printingHasFinished();
  1318. card.checkautostart(true);
  1319. if (farm_mode)
  1320. {
  1321. prusa_statistics(6);
  1322. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1323. }
  1324. }
  1325. if(serial_char=='#')
  1326. stop_buffering=true;
  1327. if(!serial_count)
  1328. {
  1329. comment_mode = false; //for new command
  1330. return; //if empty line
  1331. }
  1332. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1333. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1334. ++ buflen;
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. comment_mode = false; //for new command
  1339. serial_count = 0; //clear buffer
  1340. // The following line will reserve buffer space if available.
  1341. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1342. return;
  1343. }
  1344. else
  1345. {
  1346. if(serial_char == ';') comment_mode = true;
  1347. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1348. }
  1349. }
  1350. #endif //SDSUPPORT
  1351. }
  1352. // Return True if a character was found
  1353. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1354. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1355. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1356. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1357. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1358. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1359. #define DEFINE_PGM_READ_ANY(type, reader) \
  1360. static inline type pgm_read_any(const type *p) \
  1361. { return pgm_read_##reader##_near(p); }
  1362. DEFINE_PGM_READ_ANY(float, float);
  1363. DEFINE_PGM_READ_ANY(signed char, byte);
  1364. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1365. static const PROGMEM type array##_P[3] = \
  1366. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1367. static inline type array(int axis) \
  1368. { return pgm_read_any(&array##_P[axis]); } \
  1369. type array##_ext(int axis) \
  1370. { return pgm_read_any(&array##_P[axis]); }
  1371. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1372. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1373. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1374. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1375. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1376. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1377. static void axis_is_at_home(int axis) {
  1378. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1379. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1380. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1381. }
  1382. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1383. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1384. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1385. saved_feedrate = feedrate;
  1386. saved_feedmultiply = feedmultiply;
  1387. feedmultiply = 100;
  1388. previous_millis_cmd = millis();
  1389. enable_endstops(enable_endstops_now);
  1390. }
  1391. static void clean_up_after_endstop_move() {
  1392. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1393. enable_endstops(false);
  1394. #endif
  1395. feedrate = saved_feedrate;
  1396. feedmultiply = saved_feedmultiply;
  1397. previous_millis_cmd = millis();
  1398. }
  1399. #ifdef ENABLE_AUTO_BED_LEVELING
  1400. #ifdef AUTO_BED_LEVELING_GRID
  1401. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1402. {
  1403. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1404. planeNormal.debug("planeNormal");
  1405. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1406. //bedLevel.debug("bedLevel");
  1407. //plan_bed_level_matrix.debug("bed level before");
  1408. //vector_3 uncorrected_position = plan_get_position_mm();
  1409. //uncorrected_position.debug("position before");
  1410. vector_3 corrected_position = plan_get_position();
  1411. // corrected_position.debug("position after");
  1412. current_position[X_AXIS] = corrected_position.x;
  1413. current_position[Y_AXIS] = corrected_position.y;
  1414. current_position[Z_AXIS] = corrected_position.z;
  1415. // put the bed at 0 so we don't go below it.
  1416. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. }
  1419. #else // not AUTO_BED_LEVELING_GRID
  1420. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1421. plan_bed_level_matrix.set_to_identity();
  1422. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1423. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1424. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1425. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1426. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1427. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1428. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1429. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1430. vector_3 corrected_position = plan_get_position();
  1431. current_position[X_AXIS] = corrected_position.x;
  1432. current_position[Y_AXIS] = corrected_position.y;
  1433. current_position[Z_AXIS] = corrected_position.z;
  1434. // put the bed at 0 so we don't go below it.
  1435. current_position[Z_AXIS] = zprobe_zoffset;
  1436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1437. }
  1438. #endif // AUTO_BED_LEVELING_GRID
  1439. static void run_z_probe() {
  1440. plan_bed_level_matrix.set_to_identity();
  1441. feedrate = homing_feedrate[Z_AXIS];
  1442. // move down until you find the bed
  1443. float zPosition = -10;
  1444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. // we have to let the planner know where we are right now as it is not where we said to go.
  1447. zPosition = st_get_position_mm(Z_AXIS);
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1449. // move up the retract distance
  1450. zPosition += home_retract_mm(Z_AXIS);
  1451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1452. st_synchronize();
  1453. // move back down slowly to find bed
  1454. feedrate = homing_feedrate[Z_AXIS]/4;
  1455. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1457. st_synchronize();
  1458. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1459. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. }
  1462. static void do_blocking_move_to(float x, float y, float z) {
  1463. float oldFeedRate = feedrate;
  1464. feedrate = homing_feedrate[Z_AXIS];
  1465. current_position[Z_AXIS] = z;
  1466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. feedrate = XY_TRAVEL_SPEED;
  1469. current_position[X_AXIS] = x;
  1470. current_position[Y_AXIS] = y;
  1471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1472. st_synchronize();
  1473. feedrate = oldFeedRate;
  1474. }
  1475. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1476. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1477. }
  1478. /// Probe bed height at position (x,y), returns the measured z value
  1479. static float probe_pt(float x, float y, float z_before) {
  1480. // move to right place
  1481. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1482. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1483. run_z_probe();
  1484. float measured_z = current_position[Z_AXIS];
  1485. SERIAL_PROTOCOLRPGM(MSG_BED);
  1486. SERIAL_PROTOCOLPGM(" x: ");
  1487. SERIAL_PROTOCOL(x);
  1488. SERIAL_PROTOCOLPGM(" y: ");
  1489. SERIAL_PROTOCOL(y);
  1490. SERIAL_PROTOCOLPGM(" z: ");
  1491. SERIAL_PROTOCOL(measured_z);
  1492. SERIAL_PROTOCOLPGM("\n");
  1493. return measured_z;
  1494. }
  1495. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1496. void homeaxis(int axis) {
  1497. #define HOMEAXIS_DO(LETTER) \
  1498. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1499. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1500. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1501. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1502. 0) {
  1503. int axis_home_dir = home_dir(axis);
  1504. current_position[axis] = 0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1507. feedrate = homing_feedrate[axis];
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. current_position[axis] = 0;
  1511. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1512. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1513. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1514. st_synchronize();
  1515. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1516. feedrate = homing_feedrate[axis]/2 ;
  1517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. axis_is_at_home(axis);
  1520. destination[axis] = current_position[axis];
  1521. feedrate = 0.0;
  1522. endstops_hit_on_purpose();
  1523. axis_known_position[axis] = true;
  1524. }
  1525. }
  1526. void home_xy()
  1527. {
  1528. set_destination_to_current();
  1529. homeaxis(X_AXIS);
  1530. homeaxis(Y_AXIS);
  1531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1532. endstops_hit_on_purpose();
  1533. }
  1534. void refresh_cmd_timeout(void)
  1535. {
  1536. previous_millis_cmd = millis();
  1537. }
  1538. #ifdef FWRETRACT
  1539. void retract(bool retracting, bool swapretract = false) {
  1540. if(retracting && !retracted[active_extruder]) {
  1541. destination[X_AXIS]=current_position[X_AXIS];
  1542. destination[Y_AXIS]=current_position[Y_AXIS];
  1543. destination[Z_AXIS]=current_position[Z_AXIS];
  1544. destination[E_AXIS]=current_position[E_AXIS];
  1545. if (swapretract) {
  1546. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1547. } else {
  1548. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1549. }
  1550. plan_set_e_position(current_position[E_AXIS]);
  1551. float oldFeedrate = feedrate;
  1552. feedrate=retract_feedrate*60;
  1553. retracted[active_extruder]=true;
  1554. prepare_move();
  1555. current_position[Z_AXIS]-=retract_zlift;
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. prepare_move();
  1558. feedrate = oldFeedrate;
  1559. } else if(!retracting && retracted[active_extruder]) {
  1560. destination[X_AXIS]=current_position[X_AXIS];
  1561. destination[Y_AXIS]=current_position[Y_AXIS];
  1562. destination[Z_AXIS]=current_position[Z_AXIS];
  1563. destination[E_AXIS]=current_position[E_AXIS];
  1564. current_position[Z_AXIS]+=retract_zlift;
  1565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1566. //prepare_move();
  1567. if (swapretract) {
  1568. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1569. } else {
  1570. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1571. }
  1572. plan_set_e_position(current_position[E_AXIS]);
  1573. float oldFeedrate = feedrate;
  1574. feedrate=retract_recover_feedrate*60;
  1575. retracted[active_extruder]=false;
  1576. prepare_move();
  1577. feedrate = oldFeedrate;
  1578. }
  1579. } //retract
  1580. #endif //FWRETRACT
  1581. void trace() {
  1582. tone(BEEPER, 440);
  1583. delay(25);
  1584. noTone(BEEPER);
  1585. delay(20);
  1586. }
  1587. void ramming() {
  1588. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1589. if (current_temperature[0] < 230) {
  1590. //PLA
  1591. max_feedrate[E_AXIS] = 50;
  1592. //current_position[E_AXIS] -= 8;
  1593. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1594. //current_position[E_AXIS] += 8;
  1595. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1596. current_position[E_AXIS] += 5.4;
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1598. current_position[E_AXIS] += 3.2;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1600. current_position[E_AXIS] += 3;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1602. st_synchronize();
  1603. max_feedrate[E_AXIS] = 80;
  1604. current_position[E_AXIS] -= 82;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1606. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1607. current_position[E_AXIS] -= 20;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1609. current_position[E_AXIS] += 5;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1611. current_position[E_AXIS] += 5;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1613. current_position[E_AXIS] -= 10;
  1614. st_synchronize();
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1616. current_position[E_AXIS] += 10;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1618. current_position[E_AXIS] -= 10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1620. current_position[E_AXIS] += 10;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1622. current_position[E_AXIS] -= 10;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1624. st_synchronize();
  1625. }
  1626. else {
  1627. //ABS
  1628. max_feedrate[E_AXIS] = 50;
  1629. //current_position[E_AXIS] -= 8;
  1630. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1631. //current_position[E_AXIS] += 8;
  1632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1633. current_position[E_AXIS] += 3.1;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1635. current_position[E_AXIS] += 3.1;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1637. current_position[E_AXIS] += 4;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1639. st_synchronize();
  1640. /*current_position[X_AXIS] += 23; //delay
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1642. current_position[X_AXIS] -= 23; //delay
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1644. delay(4700);
  1645. max_feedrate[E_AXIS] = 80;
  1646. current_position[E_AXIS] -= 92;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1648. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1649. current_position[E_AXIS] -= 5;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1651. current_position[E_AXIS] += 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1653. current_position[E_AXIS] -= 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. st_synchronize();
  1656. current_position[E_AXIS] += 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1658. current_position[E_AXIS] -= 5;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] += 5;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] -= 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1664. st_synchronize();
  1665. }
  1666. }
  1667. void process_commands()
  1668. {
  1669. #ifdef FILAMENT_RUNOUT_SUPPORT
  1670. SET_INPUT(FR_SENS);
  1671. #endif
  1672. #ifdef CMDBUFFER_DEBUG
  1673. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1674. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1675. SERIAL_ECHOLNPGM("");
  1676. SERIAL_ECHOPGM("In cmdqueue: ");
  1677. SERIAL_ECHO(buflen);
  1678. SERIAL_ECHOLNPGM("");
  1679. #endif /* CMDBUFFER_DEBUG */
  1680. unsigned long codenum; //throw away variable
  1681. char *starpos = NULL;
  1682. #ifdef ENABLE_AUTO_BED_LEVELING
  1683. float x_tmp, y_tmp, z_tmp, real_z;
  1684. #endif
  1685. // PRUSA GCODES
  1686. #ifdef SNMM
  1687. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1688. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1689. int8_t SilentMode;
  1690. #endif
  1691. if(code_seen("PRUSA")){
  1692. if (code_seen("Ping")) { //PRUSA Ping
  1693. if (farm_mode) {
  1694. PingTime = millis();
  1695. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1696. }
  1697. }
  1698. else if (code_seen("PRN")) {
  1699. MYSERIAL.println(status_number);
  1700. }else if (code_seen("fn")) {
  1701. if (farm_mode) {
  1702. MYSERIAL.println(farm_no);
  1703. }
  1704. else {
  1705. MYSERIAL.println("Not in farm mode.");
  1706. }
  1707. }else if (code_seen("fv")) {
  1708. // get file version
  1709. #ifdef SDSUPPORT
  1710. card.openFile(strchr_pointer + 3,true);
  1711. while (true) {
  1712. uint16_t readByte = card.get();
  1713. MYSERIAL.write(readByte);
  1714. if (readByte=='\n') {
  1715. break;
  1716. }
  1717. }
  1718. card.closefile();
  1719. #endif // SDSUPPORT
  1720. } else if (code_seen("M28")) {
  1721. trace();
  1722. prusa_sd_card_upload = true;
  1723. card.openFile(strchr_pointer+4,false);
  1724. } else if(code_seen("Fir")){
  1725. SERIAL_PROTOCOLLN(FW_version);
  1726. } else if(code_seen("Rev")){
  1727. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1728. } else if(code_seen("Lang")) {
  1729. lcd_force_language_selection();
  1730. } else if(code_seen("Lz")) {
  1731. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1732. } else if (code_seen("SERIAL LOW")) {
  1733. MYSERIAL.println("SERIAL LOW");
  1734. MYSERIAL.begin(BAUDRATE);
  1735. return;
  1736. } else if (code_seen("SERIAL HIGH")) {
  1737. MYSERIAL.println("SERIAL HIGH");
  1738. MYSERIAL.begin(1152000);
  1739. return;
  1740. } else if(code_seen("Beat")) {
  1741. // Kick farm link timer
  1742. kicktime = millis();
  1743. } else if(code_seen("FR")) {
  1744. // Factory full reset
  1745. factory_reset(0,true);
  1746. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1747. #ifdef SNMM
  1748. int extr;
  1749. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1750. lcd_implementation_clear();
  1751. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1752. current_position[Z_AXIS] = 100;
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1754. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1755. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1756. change_extr(extr);
  1757. ramming();
  1758. }
  1759. change_extr(0);
  1760. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1762. st_synchronize();
  1763. for (extr = 1; extr < 4; extr++) {
  1764. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1765. change_extr(extr);
  1766. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1768. st_synchronize();
  1769. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1770. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1772. st_synchronize();
  1773. }
  1774. change_extr(0);
  1775. current_position[E_AXIS] += 25;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1777. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1778. ramming();
  1779. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1780. else digipot_current(2, tmp_motor_loud[2]);
  1781. st_synchronize();
  1782. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1783. lcd_implementation_clear();
  1784. lcd_printPGM(MSG_PLEASE_WAIT);
  1785. current_position[Z_AXIS] = 0;
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1787. st_synchronize();
  1788. lcd_update_enable(true);
  1789. #endif
  1790. }
  1791. else if (code_seen("SetF")) {
  1792. #ifdef SNMM
  1793. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1794. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1795. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1796. #endif
  1797. }
  1798. else if (code_seen("ResF")) {
  1799. #ifdef SNMM
  1800. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1801. #endif
  1802. }
  1803. //else if (code_seen('Cal')) {
  1804. // lcd_calibration();
  1805. // }
  1806. }
  1807. else if (code_seen('^')) {
  1808. // nothing, this is a version line
  1809. } else if(code_seen('G'))
  1810. {
  1811. switch((int)code_value())
  1812. {
  1813. case 0: // G0 -> G1
  1814. case 1: // G1
  1815. if(Stopped == false) {
  1816. #ifdef FILAMENT_RUNOUT_SUPPORT
  1817. if(READ(FR_SENS)){
  1818. feedmultiplyBckp=feedmultiply;
  1819. float target[4];
  1820. float lastpos[4];
  1821. target[X_AXIS]=current_position[X_AXIS];
  1822. target[Y_AXIS]=current_position[Y_AXIS];
  1823. target[Z_AXIS]=current_position[Z_AXIS];
  1824. target[E_AXIS]=current_position[E_AXIS];
  1825. lastpos[X_AXIS]=current_position[X_AXIS];
  1826. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1827. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1828. lastpos[E_AXIS]=current_position[E_AXIS];
  1829. //retract by E
  1830. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1832. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1834. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1835. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1837. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1839. //finish moves
  1840. st_synchronize();
  1841. //disable extruder steppers so filament can be removed
  1842. disable_e0();
  1843. disable_e1();
  1844. disable_e2();
  1845. delay(100);
  1846. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1847. uint8_t cnt=0;
  1848. int counterBeep = 0;
  1849. lcd_wait_interact();
  1850. while(!lcd_clicked()){
  1851. cnt++;
  1852. manage_heater();
  1853. manage_inactivity(true);
  1854. //lcd_update();
  1855. if(cnt==0)
  1856. {
  1857. #if BEEPER > 0
  1858. if (counterBeep== 500){
  1859. counterBeep = 0;
  1860. }
  1861. SET_OUTPUT(BEEPER);
  1862. if (counterBeep== 0){
  1863. WRITE(BEEPER,HIGH);
  1864. }
  1865. if (counterBeep== 20){
  1866. WRITE(BEEPER,LOW);
  1867. }
  1868. counterBeep++;
  1869. #else
  1870. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1871. lcd_buzz(1000/6,100);
  1872. #else
  1873. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1874. #endif
  1875. #endif
  1876. }
  1877. }
  1878. WRITE(BEEPER,LOW);
  1879. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1881. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1883. lcd_change_fil_state = 0;
  1884. lcd_loading_filament();
  1885. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1886. lcd_change_fil_state = 0;
  1887. lcd_alright();
  1888. switch(lcd_change_fil_state){
  1889. case 2:
  1890. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1892. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1893. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1894. lcd_loading_filament();
  1895. break;
  1896. case 3:
  1897. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1899. lcd_loading_color();
  1900. break;
  1901. default:
  1902. lcd_change_success();
  1903. break;
  1904. }
  1905. }
  1906. target[E_AXIS]+= 5;
  1907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1908. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1909. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1910. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1911. //plan_set_e_position(current_position[E_AXIS]);
  1912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1913. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1914. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1915. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1916. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1917. plan_set_e_position(lastpos[E_AXIS]);
  1918. feedmultiply=feedmultiplyBckp;
  1919. char cmd[9];
  1920. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1921. enquecommand(cmd);
  1922. }
  1923. #endif
  1924. get_coordinates(); // For X Y Z E F
  1925. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1926. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1927. }
  1928. #ifdef FWRETRACT
  1929. if(autoretract_enabled)
  1930. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1931. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1932. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1933. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1934. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1935. retract(!retracted);
  1936. return;
  1937. }
  1938. }
  1939. #endif //FWRETRACT
  1940. prepare_move();
  1941. //ClearToSend();
  1942. }
  1943. break;
  1944. case 2: // G2 - CW ARC
  1945. if(Stopped == false) {
  1946. get_arc_coordinates();
  1947. prepare_arc_move(true);
  1948. }
  1949. break;
  1950. case 3: // G3 - CCW ARC
  1951. if(Stopped == false) {
  1952. get_arc_coordinates();
  1953. prepare_arc_move(false);
  1954. }
  1955. break;
  1956. case 4: // G4 dwell
  1957. LCD_MESSAGERPGM(MSG_DWELL);
  1958. codenum = 0;
  1959. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1960. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1961. st_synchronize();
  1962. codenum += millis(); // keep track of when we started waiting
  1963. previous_millis_cmd = millis();
  1964. while(millis() < codenum) {
  1965. manage_heater();
  1966. manage_inactivity();
  1967. lcd_update();
  1968. }
  1969. break;
  1970. #ifdef FWRETRACT
  1971. case 10: // G10 retract
  1972. #if EXTRUDERS > 1
  1973. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1974. retract(true,retracted_swap[active_extruder]);
  1975. #else
  1976. retract(true);
  1977. #endif
  1978. break;
  1979. case 11: // G11 retract_recover
  1980. #if EXTRUDERS > 1
  1981. retract(false,retracted_swap[active_extruder]);
  1982. #else
  1983. retract(false);
  1984. #endif
  1985. break;
  1986. #endif //FWRETRACT
  1987. case 28: //G28 Home all Axis one at a time
  1988. homing_flag = true;
  1989. #ifdef ENABLE_AUTO_BED_LEVELING
  1990. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1991. #endif //ENABLE_AUTO_BED_LEVELING
  1992. // For mesh bed leveling deactivate the matrix temporarily
  1993. #ifdef MESH_BED_LEVELING
  1994. mbl.active = 0;
  1995. #endif
  1996. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1997. // the planner will not perform any adjustments in the XY plane.
  1998. // Wait for the motors to stop and update the current position with the absolute values.
  1999. world2machine_revert_to_uncorrected();
  2000. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2001. // consumed during the first movements following this statement.
  2002. babystep_undo();
  2003. saved_feedrate = feedrate;
  2004. saved_feedmultiply = feedmultiply;
  2005. feedmultiply = 100;
  2006. previous_millis_cmd = millis();
  2007. enable_endstops(true);
  2008. for(int8_t i=0; i < NUM_AXIS; i++)
  2009. destination[i] = current_position[i];
  2010. feedrate = 0.0;
  2011. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2012. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2013. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2014. homeaxis(Z_AXIS);
  2015. }
  2016. #endif
  2017. #ifdef QUICK_HOME
  2018. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2019. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2020. {
  2021. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2022. int x_axis_home_dir = home_dir(X_AXIS);
  2023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2024. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2025. feedrate = homing_feedrate[X_AXIS];
  2026. if(homing_feedrate[Y_AXIS]<feedrate)
  2027. feedrate = homing_feedrate[Y_AXIS];
  2028. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2029. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2030. } else {
  2031. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2032. }
  2033. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2034. st_synchronize();
  2035. axis_is_at_home(X_AXIS);
  2036. axis_is_at_home(Y_AXIS);
  2037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2038. destination[X_AXIS] = current_position[X_AXIS];
  2039. destination[Y_AXIS] = current_position[Y_AXIS];
  2040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2041. feedrate = 0.0;
  2042. st_synchronize();
  2043. endstops_hit_on_purpose();
  2044. current_position[X_AXIS] = destination[X_AXIS];
  2045. current_position[Y_AXIS] = destination[Y_AXIS];
  2046. current_position[Z_AXIS] = destination[Z_AXIS];
  2047. }
  2048. #endif /* QUICK_HOME */
  2049. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2050. homeaxis(X_AXIS);
  2051. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2052. homeaxis(Y_AXIS);
  2053. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2054. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2055. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2056. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2057. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2058. #ifndef Z_SAFE_HOMING
  2059. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2060. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2061. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2062. feedrate = max_feedrate[Z_AXIS];
  2063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2064. st_synchronize();
  2065. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2066. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2067. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2068. {
  2069. homeaxis(X_AXIS);
  2070. homeaxis(Y_AXIS);
  2071. }
  2072. // 1st mesh bed leveling measurement point, corrected.
  2073. world2machine_initialize();
  2074. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2075. world2machine_reset();
  2076. if (destination[Y_AXIS] < Y_MIN_POS)
  2077. destination[Y_AXIS] = Y_MIN_POS;
  2078. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2079. feedrate = homing_feedrate[Z_AXIS]/10;
  2080. current_position[Z_AXIS] = 0;
  2081. enable_endstops(false);
  2082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2083. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2084. st_synchronize();
  2085. current_position[X_AXIS] = destination[X_AXIS];
  2086. current_position[Y_AXIS] = destination[Y_AXIS];
  2087. enable_endstops(true);
  2088. endstops_hit_on_purpose();
  2089. homeaxis(Z_AXIS);
  2090. #else // MESH_BED_LEVELING
  2091. homeaxis(Z_AXIS);
  2092. #endif // MESH_BED_LEVELING
  2093. }
  2094. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2095. if(home_all_axis) {
  2096. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2097. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2098. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2099. feedrate = XY_TRAVEL_SPEED/60;
  2100. current_position[Z_AXIS] = 0;
  2101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2102. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2103. st_synchronize();
  2104. current_position[X_AXIS] = destination[X_AXIS];
  2105. current_position[Y_AXIS] = destination[Y_AXIS];
  2106. homeaxis(Z_AXIS);
  2107. }
  2108. // Let's see if X and Y are homed and probe is inside bed area.
  2109. if(code_seen(axis_codes[Z_AXIS])) {
  2110. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2111. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2112. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2113. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2114. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2115. current_position[Z_AXIS] = 0;
  2116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2117. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2118. feedrate = max_feedrate[Z_AXIS];
  2119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2120. st_synchronize();
  2121. homeaxis(Z_AXIS);
  2122. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2123. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2124. SERIAL_ECHO_START;
  2125. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2126. } else {
  2127. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2128. SERIAL_ECHO_START;
  2129. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2130. }
  2131. }
  2132. #endif // Z_SAFE_HOMING
  2133. #endif // Z_HOME_DIR < 0
  2134. if(code_seen(axis_codes[Z_AXIS])) {
  2135. if(code_value_long() != 0) {
  2136. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2137. }
  2138. }
  2139. #ifdef ENABLE_AUTO_BED_LEVELING
  2140. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2141. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2142. }
  2143. #endif
  2144. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2145. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2146. enable_endstops(false);
  2147. #endif
  2148. feedrate = saved_feedrate;
  2149. feedmultiply = saved_feedmultiply;
  2150. previous_millis_cmd = millis();
  2151. endstops_hit_on_purpose();
  2152. #ifndef MESH_BED_LEVELING
  2153. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2154. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2155. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2156. lcd_adjust_z();
  2157. #endif
  2158. // Load the machine correction matrix
  2159. world2machine_initialize();
  2160. // and correct the current_position to match the transformed coordinate system.
  2161. world2machine_update_current();
  2162. #ifdef MESH_BED_LEVELING
  2163. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2164. {
  2165. }
  2166. else
  2167. {
  2168. st_synchronize();
  2169. homing_flag = false;
  2170. // Push the commands to the front of the message queue in the reverse order!
  2171. // There shall be always enough space reserved for these commands.
  2172. // enquecommand_front_P((PSTR("G80")));
  2173. goto case_G80;
  2174. }
  2175. #endif
  2176. if (farm_mode) { prusa_statistics(20); };
  2177. homing_flag = false;
  2178. break;
  2179. #ifdef ENABLE_AUTO_BED_LEVELING
  2180. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2181. {
  2182. #if Z_MIN_PIN == -1
  2183. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2184. #endif
  2185. // Prevent user from running a G29 without first homing in X and Y
  2186. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2187. {
  2188. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2189. SERIAL_ECHO_START;
  2190. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2191. break; // abort G29, since we don't know where we are
  2192. }
  2193. st_synchronize();
  2194. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2195. //vector_3 corrected_position = plan_get_position_mm();
  2196. //corrected_position.debug("position before G29");
  2197. plan_bed_level_matrix.set_to_identity();
  2198. vector_3 uncorrected_position = plan_get_position();
  2199. //uncorrected_position.debug("position durring G29");
  2200. current_position[X_AXIS] = uncorrected_position.x;
  2201. current_position[Y_AXIS] = uncorrected_position.y;
  2202. current_position[Z_AXIS] = uncorrected_position.z;
  2203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2204. setup_for_endstop_move();
  2205. feedrate = homing_feedrate[Z_AXIS];
  2206. #ifdef AUTO_BED_LEVELING_GRID
  2207. // probe at the points of a lattice grid
  2208. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2209. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2210. // solve the plane equation ax + by + d = z
  2211. // A is the matrix with rows [x y 1] for all the probed points
  2212. // B is the vector of the Z positions
  2213. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2214. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2215. // "A" matrix of the linear system of equations
  2216. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2217. // "B" vector of Z points
  2218. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2219. int probePointCounter = 0;
  2220. bool zig = true;
  2221. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2222. {
  2223. int xProbe, xInc;
  2224. if (zig)
  2225. {
  2226. xProbe = LEFT_PROBE_BED_POSITION;
  2227. //xEnd = RIGHT_PROBE_BED_POSITION;
  2228. xInc = xGridSpacing;
  2229. zig = false;
  2230. } else // zag
  2231. {
  2232. xProbe = RIGHT_PROBE_BED_POSITION;
  2233. //xEnd = LEFT_PROBE_BED_POSITION;
  2234. xInc = -xGridSpacing;
  2235. zig = true;
  2236. }
  2237. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2238. {
  2239. float z_before;
  2240. if (probePointCounter == 0)
  2241. {
  2242. // raise before probing
  2243. z_before = Z_RAISE_BEFORE_PROBING;
  2244. } else
  2245. {
  2246. // raise extruder
  2247. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2248. }
  2249. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2250. eqnBVector[probePointCounter] = measured_z;
  2251. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2252. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2253. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2254. probePointCounter++;
  2255. xProbe += xInc;
  2256. }
  2257. }
  2258. clean_up_after_endstop_move();
  2259. // solve lsq problem
  2260. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2261. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2262. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2263. SERIAL_PROTOCOLPGM(" b: ");
  2264. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2265. SERIAL_PROTOCOLPGM(" d: ");
  2266. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2267. set_bed_level_equation_lsq(plane_equation_coefficients);
  2268. free(plane_equation_coefficients);
  2269. #else // AUTO_BED_LEVELING_GRID not defined
  2270. // Probe at 3 arbitrary points
  2271. // probe 1
  2272. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2273. // probe 2
  2274. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2275. // probe 3
  2276. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2277. clean_up_after_endstop_move();
  2278. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2279. #endif // AUTO_BED_LEVELING_GRID
  2280. st_synchronize();
  2281. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2282. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2283. // When the bed is uneven, this height must be corrected.
  2284. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2285. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2286. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2287. z_tmp = current_position[Z_AXIS];
  2288. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2289. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. }
  2292. break;
  2293. #ifndef Z_PROBE_SLED
  2294. case 30: // G30 Single Z Probe
  2295. {
  2296. st_synchronize();
  2297. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2298. setup_for_endstop_move();
  2299. feedrate = homing_feedrate[Z_AXIS];
  2300. run_z_probe();
  2301. SERIAL_PROTOCOLPGM(MSG_BED);
  2302. SERIAL_PROTOCOLPGM(" X: ");
  2303. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2304. SERIAL_PROTOCOLPGM(" Y: ");
  2305. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2306. SERIAL_PROTOCOLPGM(" Z: ");
  2307. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2308. SERIAL_PROTOCOLPGM("\n");
  2309. clean_up_after_endstop_move();
  2310. }
  2311. break;
  2312. #else
  2313. case 31: // dock the sled
  2314. dock_sled(true);
  2315. break;
  2316. case 32: // undock the sled
  2317. dock_sled(false);
  2318. break;
  2319. #endif // Z_PROBE_SLED
  2320. #endif // ENABLE_AUTO_BED_LEVELING
  2321. #ifdef MESH_BED_LEVELING
  2322. case 30: // G30 Single Z Probe
  2323. {
  2324. st_synchronize();
  2325. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2326. setup_for_endstop_move();
  2327. feedrate = homing_feedrate[Z_AXIS];
  2328. find_bed_induction_sensor_point_z(-10.f, 3);
  2329. SERIAL_PROTOCOLRPGM(MSG_BED);
  2330. SERIAL_PROTOCOLPGM(" X: ");
  2331. MYSERIAL.print(current_position[X_AXIS], 5);
  2332. SERIAL_PROTOCOLPGM(" Y: ");
  2333. MYSERIAL.print(current_position[Y_AXIS], 5);
  2334. SERIAL_PROTOCOLPGM(" Z: ");
  2335. MYSERIAL.print(current_position[Z_AXIS], 5);
  2336. SERIAL_PROTOCOLPGM("\n");
  2337. clean_up_after_endstop_move();
  2338. }
  2339. break;
  2340. #ifdef DIS
  2341. case 77:
  2342. {
  2343. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2344. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2345. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2346. float dimension_x = 40;
  2347. float dimension_y = 40;
  2348. int points_x = 40;
  2349. int points_y = 40;
  2350. float offset_x = 74;
  2351. float offset_y = 33;
  2352. if (code_seen('X')) dimension_x = code_value();
  2353. if (code_seen('Y')) dimension_y = code_value();
  2354. if (code_seen('XP')) points_x = code_value();
  2355. if (code_seen('YP')) points_y = code_value();
  2356. if (code_seen('XO')) offset_x = code_value();
  2357. if (code_seen('YO')) offset_y = code_value();
  2358. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2359. } break;
  2360. #endif
  2361. /**
  2362. * G80: Mesh-based Z probe, probes a grid and produces a
  2363. * mesh to compensate for variable bed height
  2364. *
  2365. * The S0 report the points as below
  2366. *
  2367. * +----> X-axis
  2368. * |
  2369. * |
  2370. * v Y-axis
  2371. *
  2372. */
  2373. case 80:
  2374. case_G80:
  2375. {
  2376. // Firstly check if we know where we are
  2377. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2378. // We don't know where we are! HOME!
  2379. // Push the commands to the front of the message queue in the reverse order!
  2380. // There shall be always enough space reserved for these commands.
  2381. repeatcommand_front(); // repeat G80 with all its parameters
  2382. enquecommand_front_P((PSTR("G28 W0")));
  2383. break;
  2384. }
  2385. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2386. bool custom_message_old = custom_message;
  2387. unsigned int custom_message_type_old = custom_message_type;
  2388. unsigned int custom_message_state_old = custom_message_state;
  2389. custom_message = true;
  2390. custom_message_type = 1;
  2391. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2392. lcd_update(1);
  2393. mbl.reset();
  2394. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2395. // consumed during the first movements following this statement.
  2396. babystep_undo();
  2397. // Cycle through all points and probe them
  2398. // First move up. During this first movement, the babystepping will be reverted.
  2399. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2401. // The move to the first calibration point.
  2402. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2403. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2404. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2405. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2407. // Wait until the move is finished.
  2408. st_synchronize();
  2409. int mesh_point = 0;
  2410. int ix = 0;
  2411. int iy = 0;
  2412. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2413. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2414. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2415. bool has_z = is_bed_z_jitter_data_valid();
  2416. setup_for_endstop_move(false);
  2417. const char *kill_message = NULL;
  2418. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2419. // Get coords of a measuring point.
  2420. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2421. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2422. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2423. float z0 = 0.f;
  2424. if (has_z && mesh_point > 0) {
  2425. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2426. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2427. #if 0
  2428. SERIAL_ECHOPGM("Bed leveling, point: ");
  2429. MYSERIAL.print(mesh_point);
  2430. SERIAL_ECHOPGM(", calibration z: ");
  2431. MYSERIAL.print(z0, 5);
  2432. SERIAL_ECHOLNPGM("");
  2433. #endif
  2434. }
  2435. // Move Z up to MESH_HOME_Z_SEARCH.
  2436. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2438. st_synchronize();
  2439. // Move to XY position of the sensor point.
  2440. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2441. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2442. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2444. st_synchronize();
  2445. // Go down until endstop is hit
  2446. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2447. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2448. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2449. break;
  2450. }
  2451. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2452. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2453. break;
  2454. }
  2455. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2456. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2457. break;
  2458. }
  2459. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2460. custom_message_state--;
  2461. mesh_point++;
  2462. lcd_update(1);
  2463. }
  2464. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2466. st_synchronize();
  2467. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2468. kill(kill_message);
  2469. }
  2470. clean_up_after_endstop_move();
  2471. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2472. babystep_apply();
  2473. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2474. for (uint8_t i = 0; i < 4; ++ i) {
  2475. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2476. long correction = 0;
  2477. if (code_seen(codes[i]))
  2478. correction = code_value_long();
  2479. else if (eeprom_bed_correction_valid) {
  2480. unsigned char *addr = (i < 2) ?
  2481. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2482. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2483. correction = eeprom_read_int8(addr);
  2484. }
  2485. if (correction == 0)
  2486. continue;
  2487. float offset = float(correction) * 0.001f;
  2488. if (fabs(offset) > 0.101f) {
  2489. SERIAL_ERROR_START;
  2490. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2491. SERIAL_ECHO(offset);
  2492. SERIAL_ECHOLNPGM(" microns");
  2493. } else {
  2494. switch (i) {
  2495. case 0:
  2496. for (uint8_t row = 0; row < 3; ++ row) {
  2497. mbl.z_values[row][1] += 0.5f * offset;
  2498. mbl.z_values[row][0] += offset;
  2499. }
  2500. break;
  2501. case 1:
  2502. for (uint8_t row = 0; row < 3; ++ row) {
  2503. mbl.z_values[row][1] += 0.5f * offset;
  2504. mbl.z_values[row][2] += offset;
  2505. }
  2506. break;
  2507. case 2:
  2508. for (uint8_t col = 0; col < 3; ++ col) {
  2509. mbl.z_values[1][col] += 0.5f * offset;
  2510. mbl.z_values[0][col] += offset;
  2511. }
  2512. break;
  2513. case 3:
  2514. for (uint8_t col = 0; col < 3; ++ col) {
  2515. mbl.z_values[1][col] += 0.5f * offset;
  2516. mbl.z_values[2][col] += offset;
  2517. }
  2518. break;
  2519. }
  2520. }
  2521. }
  2522. mbl.upsample_3x3();
  2523. mbl.active = 1;
  2524. go_home_with_z_lift();
  2525. // Restore custom message state
  2526. custom_message = custom_message_old;
  2527. custom_message_type = custom_message_type_old;
  2528. custom_message_state = custom_message_state_old;
  2529. lcd_update(1);
  2530. }
  2531. break;
  2532. /**
  2533. * G81: Print mesh bed leveling status and bed profile if activated
  2534. */
  2535. case 81:
  2536. if (mbl.active) {
  2537. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2538. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2539. SERIAL_PROTOCOLPGM(",");
  2540. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2541. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2542. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2543. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2544. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2545. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2546. SERIAL_PROTOCOLPGM(" ");
  2547. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2548. }
  2549. SERIAL_PROTOCOLPGM("\n");
  2550. }
  2551. }
  2552. else
  2553. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2554. break;
  2555. #if 0
  2556. /**
  2557. * G82: Single Z probe at current location
  2558. *
  2559. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2560. *
  2561. */
  2562. case 82:
  2563. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2564. setup_for_endstop_move();
  2565. find_bed_induction_sensor_point_z();
  2566. clean_up_after_endstop_move();
  2567. SERIAL_PROTOCOLPGM("Bed found at: ");
  2568. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2569. SERIAL_PROTOCOLPGM("\n");
  2570. break;
  2571. /**
  2572. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2573. */
  2574. case 83:
  2575. {
  2576. int babystepz = code_seen('S') ? code_value() : 0;
  2577. int BabyPosition = code_seen('P') ? code_value() : 0;
  2578. if (babystepz != 0) {
  2579. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2580. // Is the axis indexed starting with zero or one?
  2581. if (BabyPosition > 4) {
  2582. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2583. }else{
  2584. // Save it to the eeprom
  2585. babystepLoadZ = babystepz;
  2586. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2587. // adjust the Z
  2588. babystepsTodoZadd(babystepLoadZ);
  2589. }
  2590. }
  2591. }
  2592. break;
  2593. /**
  2594. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2595. */
  2596. case 84:
  2597. babystepsTodoZsubtract(babystepLoadZ);
  2598. // babystepLoadZ = 0;
  2599. break;
  2600. /**
  2601. * G85: Prusa3D specific: Pick best babystep
  2602. */
  2603. case 85:
  2604. lcd_pick_babystep();
  2605. break;
  2606. #endif
  2607. /**
  2608. * G86: Prusa3D specific: Disable babystep correction after home.
  2609. * This G-code will be performed at the start of a calibration script.
  2610. */
  2611. case 86:
  2612. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2613. break;
  2614. /**
  2615. * G87: Prusa3D specific: Enable babystep correction after home
  2616. * This G-code will be performed at the end of a calibration script.
  2617. */
  2618. case 87:
  2619. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2620. break;
  2621. /**
  2622. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2623. */
  2624. case 88:
  2625. break;
  2626. #endif // ENABLE_MESH_BED_LEVELING
  2627. case 90: // G90
  2628. relative_mode = false;
  2629. break;
  2630. case 91: // G91
  2631. relative_mode = true;
  2632. break;
  2633. case 92: // G92
  2634. if(!code_seen(axis_codes[E_AXIS]))
  2635. st_synchronize();
  2636. for(int8_t i=0; i < NUM_AXIS; i++) {
  2637. if(code_seen(axis_codes[i])) {
  2638. if(i == E_AXIS) {
  2639. current_position[i] = code_value();
  2640. plan_set_e_position(current_position[E_AXIS]);
  2641. }
  2642. else {
  2643. current_position[i] = code_value()+add_homing[i];
  2644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2645. }
  2646. }
  2647. }
  2648. break;
  2649. case 98: //activate farm mode
  2650. farm_mode = 1;
  2651. PingTime = millis();
  2652. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2653. break;
  2654. case 99: //deactivate farm mode
  2655. farm_mode = 0;
  2656. lcd_printer_connected();
  2657. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2658. lcd_update(2);
  2659. break;
  2660. }
  2661. } // end if(code_seen('G'))
  2662. else if(code_seen('M'))
  2663. {
  2664. int index;
  2665. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2666. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2667. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2668. SERIAL_ECHOLNPGM("Invalid M code");
  2669. } else
  2670. switch((int)code_value())
  2671. {
  2672. #ifdef ULTIPANEL
  2673. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2674. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2675. {
  2676. char *src = strchr_pointer + 2;
  2677. codenum = 0;
  2678. bool hasP = false, hasS = false;
  2679. if (code_seen('P')) {
  2680. codenum = code_value(); // milliseconds to wait
  2681. hasP = codenum > 0;
  2682. }
  2683. if (code_seen('S')) {
  2684. codenum = code_value() * 1000; // seconds to wait
  2685. hasS = codenum > 0;
  2686. }
  2687. starpos = strchr(src, '*');
  2688. if (starpos != NULL) *(starpos) = '\0';
  2689. while (*src == ' ') ++src;
  2690. if (!hasP && !hasS && *src != '\0') {
  2691. lcd_setstatus(src);
  2692. } else {
  2693. LCD_MESSAGERPGM(MSG_USERWAIT);
  2694. }
  2695. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2696. st_synchronize();
  2697. previous_millis_cmd = millis();
  2698. if (codenum > 0){
  2699. codenum += millis(); // keep track of when we started waiting
  2700. while(millis() < codenum && !lcd_clicked()){
  2701. manage_heater();
  2702. manage_inactivity(true);
  2703. lcd_update();
  2704. }
  2705. lcd_ignore_click(false);
  2706. }else{
  2707. if (!lcd_detected())
  2708. break;
  2709. while(!lcd_clicked()){
  2710. manage_heater();
  2711. manage_inactivity(true);
  2712. lcd_update();
  2713. }
  2714. }
  2715. if (IS_SD_PRINTING)
  2716. LCD_MESSAGERPGM(MSG_RESUMING);
  2717. else
  2718. LCD_MESSAGERPGM(WELCOME_MSG);
  2719. }
  2720. break;
  2721. #endif
  2722. case 17:
  2723. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2724. enable_x();
  2725. enable_y();
  2726. enable_z();
  2727. enable_e0();
  2728. enable_e1();
  2729. enable_e2();
  2730. break;
  2731. #ifdef SDSUPPORT
  2732. case 20: // M20 - list SD card
  2733. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2734. card.ls();
  2735. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2736. break;
  2737. case 21: // M21 - init SD card
  2738. card.initsd();
  2739. break;
  2740. case 22: //M22 - release SD card
  2741. card.release();
  2742. break;
  2743. case 23: //M23 - Select file
  2744. starpos = (strchr(strchr_pointer + 4,'*'));
  2745. if(starpos!=NULL)
  2746. *(starpos)='\0';
  2747. card.openFile(strchr_pointer + 4,true);
  2748. break;
  2749. case 24: //M24 - Start SD print
  2750. card.startFileprint();
  2751. starttime=millis();
  2752. break;
  2753. case 25: //M25 - Pause SD print
  2754. card.pauseSDPrint();
  2755. break;
  2756. case 26: //M26 - Set SD index
  2757. if(card.cardOK && code_seen('S')) {
  2758. card.setIndex(code_value_long());
  2759. }
  2760. break;
  2761. case 27: //M27 - Get SD status
  2762. card.getStatus();
  2763. break;
  2764. case 28: //M28 - Start SD write
  2765. starpos = (strchr(strchr_pointer + 4,'*'));
  2766. if(starpos != NULL){
  2767. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2768. strchr_pointer = strchr(npos,' ') + 1;
  2769. *(starpos) = '\0';
  2770. }
  2771. card.openFile(strchr_pointer+4,false);
  2772. break;
  2773. case 29: //M29 - Stop SD write
  2774. //processed in write to file routine above
  2775. //card,saving = false;
  2776. break;
  2777. case 30: //M30 <filename> Delete File
  2778. if (card.cardOK){
  2779. card.closefile();
  2780. starpos = (strchr(strchr_pointer + 4,'*'));
  2781. if(starpos != NULL){
  2782. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2783. strchr_pointer = strchr(npos,' ') + 1;
  2784. *(starpos) = '\0';
  2785. }
  2786. card.removeFile(strchr_pointer + 4);
  2787. }
  2788. break;
  2789. case 32: //M32 - Select file and start SD print
  2790. {
  2791. if(card.sdprinting) {
  2792. st_synchronize();
  2793. }
  2794. starpos = (strchr(strchr_pointer + 4,'*'));
  2795. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2796. if(namestartpos==NULL)
  2797. {
  2798. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2799. }
  2800. else
  2801. namestartpos++; //to skip the '!'
  2802. if(starpos!=NULL)
  2803. *(starpos)='\0';
  2804. bool call_procedure=(code_seen('P'));
  2805. if(strchr_pointer>namestartpos)
  2806. call_procedure=false; //false alert, 'P' found within filename
  2807. if( card.cardOK )
  2808. {
  2809. card.openFile(namestartpos,true,!call_procedure);
  2810. if(code_seen('S'))
  2811. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2812. card.setIndex(code_value_long());
  2813. card.startFileprint();
  2814. if(!call_procedure)
  2815. starttime=millis(); //procedure calls count as normal print time.
  2816. }
  2817. } break;
  2818. case 928: //M928 - Start SD write
  2819. starpos = (strchr(strchr_pointer + 5,'*'));
  2820. if(starpos != NULL){
  2821. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2822. strchr_pointer = strchr(npos,' ') + 1;
  2823. *(starpos) = '\0';
  2824. }
  2825. card.openLogFile(strchr_pointer+5);
  2826. break;
  2827. #endif //SDSUPPORT
  2828. case 31: //M31 take time since the start of the SD print or an M109 command
  2829. {
  2830. stoptime=millis();
  2831. char time[30];
  2832. unsigned long t=(stoptime-starttime)/1000;
  2833. int sec,min;
  2834. min=t/60;
  2835. sec=t%60;
  2836. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2837. SERIAL_ECHO_START;
  2838. SERIAL_ECHOLN(time);
  2839. lcd_setstatus(time);
  2840. autotempShutdown();
  2841. }
  2842. break;
  2843. case 42: //M42 -Change pin status via gcode
  2844. if (code_seen('S'))
  2845. {
  2846. int pin_status = code_value();
  2847. int pin_number = LED_PIN;
  2848. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2849. pin_number = code_value();
  2850. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2851. {
  2852. if (sensitive_pins[i] == pin_number)
  2853. {
  2854. pin_number = -1;
  2855. break;
  2856. }
  2857. }
  2858. #if defined(FAN_PIN) && FAN_PIN > -1
  2859. if (pin_number == FAN_PIN)
  2860. fanSpeed = pin_status;
  2861. #endif
  2862. if (pin_number > -1)
  2863. {
  2864. pinMode(pin_number, OUTPUT);
  2865. digitalWrite(pin_number, pin_status);
  2866. analogWrite(pin_number, pin_status);
  2867. }
  2868. }
  2869. break;
  2870. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2871. // Reset the baby step value and the baby step applied flag.
  2872. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2873. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2874. // Reset the skew and offset in both RAM and EEPROM.
  2875. reset_bed_offset_and_skew();
  2876. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2877. // the planner will not perform any adjustments in the XY plane.
  2878. // Wait for the motors to stop and update the current position with the absolute values.
  2879. world2machine_revert_to_uncorrected();
  2880. break;
  2881. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2882. {
  2883. // Only Z calibration?
  2884. bool onlyZ = code_seen('Z');
  2885. if (!onlyZ) {
  2886. setTargetBed(0);
  2887. setTargetHotend(0, 0);
  2888. setTargetHotend(0, 1);
  2889. setTargetHotend(0, 2);
  2890. adjust_bed_reset(); //reset bed level correction
  2891. }
  2892. // Disable the default update procedure of the display. We will do a modal dialog.
  2893. lcd_update_enable(false);
  2894. // Let the planner use the uncorrected coordinates.
  2895. mbl.reset();
  2896. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2897. // the planner will not perform any adjustments in the XY plane.
  2898. // Wait for the motors to stop and update the current position with the absolute values.
  2899. world2machine_revert_to_uncorrected();
  2900. // Reset the baby step value applied without moving the axes.
  2901. babystep_reset();
  2902. // Mark all axes as in a need for homing.
  2903. memset(axis_known_position, 0, sizeof(axis_known_position));
  2904. // Let the user move the Z axes up to the end stoppers.
  2905. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2906. refresh_cmd_timeout();
  2907. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  2908. lcd_wait_for_cool_down();
  2909. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2910. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2911. lcd_implementation_print_at(0, 2, 1);
  2912. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2913. }
  2914. // Move the print head close to the bed.
  2915. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2917. st_synchronize();
  2918. // Home in the XY plane.
  2919. set_destination_to_current();
  2920. setup_for_endstop_move();
  2921. home_xy();
  2922. int8_t verbosity_level = 0;
  2923. if (code_seen('V')) {
  2924. // Just 'V' without a number counts as V1.
  2925. char c = strchr_pointer[1];
  2926. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2927. }
  2928. if (onlyZ) {
  2929. clean_up_after_endstop_move();
  2930. // Z only calibration.
  2931. // Load the machine correction matrix
  2932. world2machine_initialize();
  2933. // and correct the current_position to match the transformed coordinate system.
  2934. world2machine_update_current();
  2935. //FIXME
  2936. bool result = sample_mesh_and_store_reference();
  2937. if (result) {
  2938. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2939. // Shipped, the nozzle height has been set already. The user can start printing now.
  2940. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2941. // babystep_apply();
  2942. }
  2943. } else {
  2944. // Reset the baby step value and the baby step applied flag.
  2945. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2946. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2947. // Complete XYZ calibration.
  2948. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2949. uint8_t point_too_far_mask = 0;
  2950. clean_up_after_endstop_move();
  2951. // Print head up.
  2952. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2954. st_synchronize();
  2955. if (result >= 0) {
  2956. // Second half: The fine adjustment.
  2957. // Let the planner use the uncorrected coordinates.
  2958. mbl.reset();
  2959. world2machine_reset();
  2960. // Home in the XY plane.
  2961. setup_for_endstop_move();
  2962. home_xy();
  2963. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2964. clean_up_after_endstop_move();
  2965. // Print head up.
  2966. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2968. st_synchronize();
  2969. // if (result >= 0) babystep_apply();
  2970. }
  2971. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2972. if (result >= 0) {
  2973. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2974. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2975. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2976. }
  2977. }
  2978. } else {
  2979. // Timeouted.
  2980. }
  2981. lcd_update_enable(true);
  2982. break;
  2983. }
  2984. /*
  2985. case 46:
  2986. {
  2987. // M46: Prusa3D: Show the assigned IP address.
  2988. uint8_t ip[4];
  2989. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2990. if (hasIP) {
  2991. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2992. SERIAL_ECHO(int(ip[0]));
  2993. SERIAL_ECHOPGM(".");
  2994. SERIAL_ECHO(int(ip[1]));
  2995. SERIAL_ECHOPGM(".");
  2996. SERIAL_ECHO(int(ip[2]));
  2997. SERIAL_ECHOPGM(".");
  2998. SERIAL_ECHO(int(ip[3]));
  2999. SERIAL_ECHOLNPGM("");
  3000. } else {
  3001. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3002. }
  3003. break;
  3004. }
  3005. */
  3006. case 47:
  3007. // M47: Prusa3D: Show end stops dialog on the display.
  3008. lcd_diag_show_end_stops();
  3009. break;
  3010. #if 0
  3011. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3012. {
  3013. // Disable the default update procedure of the display. We will do a modal dialog.
  3014. lcd_update_enable(false);
  3015. // Let the planner use the uncorrected coordinates.
  3016. mbl.reset();
  3017. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3018. // the planner will not perform any adjustments in the XY plane.
  3019. // Wait for the motors to stop and update the current position with the absolute values.
  3020. world2machine_revert_to_uncorrected();
  3021. // Move the print head close to the bed.
  3022. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3024. st_synchronize();
  3025. // Home in the XY plane.
  3026. set_destination_to_current();
  3027. setup_for_endstop_move();
  3028. home_xy();
  3029. int8_t verbosity_level = 0;
  3030. if (code_seen('V')) {
  3031. // Just 'V' without a number counts as V1.
  3032. char c = strchr_pointer[1];
  3033. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3034. }
  3035. bool success = scan_bed_induction_points(verbosity_level);
  3036. clean_up_after_endstop_move();
  3037. // Print head up.
  3038. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3040. st_synchronize();
  3041. lcd_update_enable(true);
  3042. break;
  3043. }
  3044. #endif
  3045. // M48 Z-Probe repeatability measurement function.
  3046. //
  3047. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3048. //
  3049. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3050. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3051. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3052. // regenerated.
  3053. //
  3054. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3055. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3056. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3057. //
  3058. #ifdef ENABLE_AUTO_BED_LEVELING
  3059. #ifdef Z_PROBE_REPEATABILITY_TEST
  3060. case 48: // M48 Z-Probe repeatability
  3061. {
  3062. #if Z_MIN_PIN == -1
  3063. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3064. #endif
  3065. double sum=0.0;
  3066. double mean=0.0;
  3067. double sigma=0.0;
  3068. double sample_set[50];
  3069. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3070. double X_current, Y_current, Z_current;
  3071. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3072. if (code_seen('V') || code_seen('v')) {
  3073. verbose_level = code_value();
  3074. if (verbose_level<0 || verbose_level>4 ) {
  3075. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3076. goto Sigma_Exit;
  3077. }
  3078. }
  3079. if (verbose_level > 0) {
  3080. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3081. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3082. }
  3083. if (code_seen('n')) {
  3084. n_samples = code_value();
  3085. if (n_samples<4 || n_samples>50 ) {
  3086. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3087. goto Sigma_Exit;
  3088. }
  3089. }
  3090. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3091. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3092. Z_current = st_get_position_mm(Z_AXIS);
  3093. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3094. ext_position = st_get_position_mm(E_AXIS);
  3095. if (code_seen('X') || code_seen('x') ) {
  3096. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3097. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3098. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3099. goto Sigma_Exit;
  3100. }
  3101. }
  3102. if (code_seen('Y') || code_seen('y') ) {
  3103. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3104. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3105. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3106. goto Sigma_Exit;
  3107. }
  3108. }
  3109. if (code_seen('L') || code_seen('l') ) {
  3110. n_legs = code_value();
  3111. if ( n_legs==1 )
  3112. n_legs = 2;
  3113. if ( n_legs<0 || n_legs>15 ) {
  3114. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3115. goto Sigma_Exit;
  3116. }
  3117. }
  3118. //
  3119. // Do all the preliminary setup work. First raise the probe.
  3120. //
  3121. st_synchronize();
  3122. plan_bed_level_matrix.set_to_identity();
  3123. plan_buffer_line( X_current, Y_current, Z_start_location,
  3124. ext_position,
  3125. homing_feedrate[Z_AXIS]/60,
  3126. active_extruder);
  3127. st_synchronize();
  3128. //
  3129. // Now get everything to the specified probe point So we can safely do a probe to
  3130. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3131. // use that as a starting point for each probe.
  3132. //
  3133. if (verbose_level > 2)
  3134. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3135. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3136. ext_position,
  3137. homing_feedrate[X_AXIS]/60,
  3138. active_extruder);
  3139. st_synchronize();
  3140. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3141. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3142. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3143. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3144. //
  3145. // OK, do the inital probe to get us close to the bed.
  3146. // Then retrace the right amount and use that in subsequent probes
  3147. //
  3148. setup_for_endstop_move();
  3149. run_z_probe();
  3150. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3151. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3152. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3153. ext_position,
  3154. homing_feedrate[X_AXIS]/60,
  3155. active_extruder);
  3156. st_synchronize();
  3157. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3158. for( n=0; n<n_samples; n++) {
  3159. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3160. if ( n_legs) {
  3161. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3162. int rotational_direction, l;
  3163. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3164. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3165. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3166. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3167. //SERIAL_ECHOPAIR(" theta: ",theta);
  3168. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3169. //SERIAL_PROTOCOLLNPGM("");
  3170. for( l=0; l<n_legs-1; l++) {
  3171. if (rotational_direction==1)
  3172. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3173. else
  3174. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3175. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3176. if ( radius<0.0 )
  3177. radius = -radius;
  3178. X_current = X_probe_location + cos(theta) * radius;
  3179. Y_current = Y_probe_location + sin(theta) * radius;
  3180. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3181. X_current = X_MIN_POS;
  3182. if ( X_current>X_MAX_POS)
  3183. X_current = X_MAX_POS;
  3184. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3185. Y_current = Y_MIN_POS;
  3186. if ( Y_current>Y_MAX_POS)
  3187. Y_current = Y_MAX_POS;
  3188. if (verbose_level>3 ) {
  3189. SERIAL_ECHOPAIR("x: ", X_current);
  3190. SERIAL_ECHOPAIR("y: ", Y_current);
  3191. SERIAL_PROTOCOLLNPGM("");
  3192. }
  3193. do_blocking_move_to( X_current, Y_current, Z_current );
  3194. }
  3195. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3196. }
  3197. setup_for_endstop_move();
  3198. run_z_probe();
  3199. sample_set[n] = current_position[Z_AXIS];
  3200. //
  3201. // Get the current mean for the data points we have so far
  3202. //
  3203. sum=0.0;
  3204. for( j=0; j<=n; j++) {
  3205. sum = sum + sample_set[j];
  3206. }
  3207. mean = sum / (double (n+1));
  3208. //
  3209. // Now, use that mean to calculate the standard deviation for the
  3210. // data points we have so far
  3211. //
  3212. sum=0.0;
  3213. for( j=0; j<=n; j++) {
  3214. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3215. }
  3216. sigma = sqrt( sum / (double (n+1)) );
  3217. if (verbose_level > 1) {
  3218. SERIAL_PROTOCOL(n+1);
  3219. SERIAL_PROTOCOL(" of ");
  3220. SERIAL_PROTOCOL(n_samples);
  3221. SERIAL_PROTOCOLPGM(" z: ");
  3222. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3223. }
  3224. if (verbose_level > 2) {
  3225. SERIAL_PROTOCOL(" mean: ");
  3226. SERIAL_PROTOCOL_F(mean,6);
  3227. SERIAL_PROTOCOL(" sigma: ");
  3228. SERIAL_PROTOCOL_F(sigma,6);
  3229. }
  3230. if (verbose_level > 0)
  3231. SERIAL_PROTOCOLPGM("\n");
  3232. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3233. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3234. st_synchronize();
  3235. }
  3236. delay(1000);
  3237. clean_up_after_endstop_move();
  3238. // enable_endstops(true);
  3239. if (verbose_level > 0) {
  3240. SERIAL_PROTOCOLPGM("Mean: ");
  3241. SERIAL_PROTOCOL_F(mean, 6);
  3242. SERIAL_PROTOCOLPGM("\n");
  3243. }
  3244. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3245. SERIAL_PROTOCOL_F(sigma, 6);
  3246. SERIAL_PROTOCOLPGM("\n\n");
  3247. Sigma_Exit:
  3248. break;
  3249. }
  3250. #endif // Z_PROBE_REPEATABILITY_TEST
  3251. #endif // ENABLE_AUTO_BED_LEVELING
  3252. case 104: // M104
  3253. if(setTargetedHotend(104)){
  3254. break;
  3255. }
  3256. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3257. setWatch();
  3258. break;
  3259. case 112: // M112 -Emergency Stop
  3260. kill();
  3261. break;
  3262. case 140: // M140 set bed temp
  3263. if (code_seen('S')) setTargetBed(code_value());
  3264. break;
  3265. case 105 : // M105
  3266. if(setTargetedHotend(105)){
  3267. break;
  3268. }
  3269. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3270. SERIAL_PROTOCOLPGM("ok T:");
  3271. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3272. SERIAL_PROTOCOLPGM(" /");
  3273. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3274. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3275. SERIAL_PROTOCOLPGM(" B:");
  3276. SERIAL_PROTOCOL_F(degBed(),1);
  3277. SERIAL_PROTOCOLPGM(" /");
  3278. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3279. #endif //TEMP_BED_PIN
  3280. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3281. SERIAL_PROTOCOLPGM(" T");
  3282. SERIAL_PROTOCOL(cur_extruder);
  3283. SERIAL_PROTOCOLPGM(":");
  3284. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3285. SERIAL_PROTOCOLPGM(" /");
  3286. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3287. }
  3288. #else
  3289. SERIAL_ERROR_START;
  3290. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3291. #endif
  3292. SERIAL_PROTOCOLPGM(" @:");
  3293. #ifdef EXTRUDER_WATTS
  3294. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3295. SERIAL_PROTOCOLPGM("W");
  3296. #else
  3297. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3298. #endif
  3299. SERIAL_PROTOCOLPGM(" B@:");
  3300. #ifdef BED_WATTS
  3301. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3302. SERIAL_PROTOCOLPGM("W");
  3303. #else
  3304. SERIAL_PROTOCOL(getHeaterPower(-1));
  3305. #endif
  3306. #ifdef SHOW_TEMP_ADC_VALUES
  3307. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3308. SERIAL_PROTOCOLPGM(" ADC B:");
  3309. SERIAL_PROTOCOL_F(degBed(),1);
  3310. SERIAL_PROTOCOLPGM("C->");
  3311. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3312. #endif
  3313. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3314. SERIAL_PROTOCOLPGM(" T");
  3315. SERIAL_PROTOCOL(cur_extruder);
  3316. SERIAL_PROTOCOLPGM(":");
  3317. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3318. SERIAL_PROTOCOLPGM("C->");
  3319. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3320. }
  3321. #endif
  3322. SERIAL_PROTOCOLLN("");
  3323. return;
  3324. break;
  3325. case 109:
  3326. {// M109 - Wait for extruder heater to reach target.
  3327. if(setTargetedHotend(109)){
  3328. break;
  3329. }
  3330. LCD_MESSAGERPGM(MSG_HEATING);
  3331. heating_status = 1;
  3332. if (farm_mode) { prusa_statistics(1); };
  3333. #ifdef AUTOTEMP
  3334. autotemp_enabled=false;
  3335. #endif
  3336. if (code_seen('S')) {
  3337. setTargetHotend(code_value(), tmp_extruder);
  3338. CooldownNoWait = true;
  3339. } else if (code_seen('R')) {
  3340. setTargetHotend(code_value(), tmp_extruder);
  3341. CooldownNoWait = false;
  3342. }
  3343. #ifdef AUTOTEMP
  3344. if (code_seen('S')) autotemp_min=code_value();
  3345. if (code_seen('B')) autotemp_max=code_value();
  3346. if (code_seen('F'))
  3347. {
  3348. autotemp_factor=code_value();
  3349. autotemp_enabled=true;
  3350. }
  3351. #endif
  3352. setWatch();
  3353. codenum = millis();
  3354. /* See if we are heating up or cooling down */
  3355. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3356. cancel_heatup = false;
  3357. #ifdef TEMP_RESIDENCY_TIME
  3358. long residencyStart;
  3359. residencyStart = -1;
  3360. /* continue to loop until we have reached the target temp
  3361. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3362. while((!cancel_heatup)&&((residencyStart == -1) ||
  3363. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3364. #else
  3365. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3366. #endif //TEMP_RESIDENCY_TIME
  3367. if( (millis() - codenum) > 1000UL )
  3368. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3369. if (!farm_mode) {
  3370. SERIAL_PROTOCOLPGM("T:");
  3371. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  3372. SERIAL_PROTOCOLPGM(" E:");
  3373. SERIAL_PROTOCOL((int)tmp_extruder);
  3374. #ifdef TEMP_RESIDENCY_TIME
  3375. SERIAL_PROTOCOLPGM(" W:");
  3376. if (residencyStart > -1)
  3377. {
  3378. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3379. SERIAL_PROTOCOLLN(codenum);
  3380. }
  3381. else
  3382. {
  3383. SERIAL_PROTOCOLLN("?");
  3384. }
  3385. }
  3386. #else
  3387. SERIAL_PROTOCOLLN("");
  3388. #endif
  3389. codenum = millis();
  3390. }
  3391. manage_heater();
  3392. manage_inactivity();
  3393. lcd_update();
  3394. #ifdef TEMP_RESIDENCY_TIME
  3395. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3396. or when current temp falls outside the hysteresis after target temp was reached */
  3397. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3398. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3399. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3400. {
  3401. residencyStart = millis();
  3402. }
  3403. #endif //TEMP_RESIDENCY_TIME
  3404. }
  3405. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3406. heating_status = 2;
  3407. if (farm_mode) { prusa_statistics(2); };
  3408. starttime=millis();
  3409. previous_millis_cmd = millis();
  3410. }
  3411. break;
  3412. case 190: // M190 - Wait for bed heater to reach target.
  3413. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3414. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3415. heating_status = 3;
  3416. if (farm_mode) { prusa_statistics(1); };
  3417. if (code_seen('S'))
  3418. {
  3419. setTargetBed(code_value());
  3420. CooldownNoWait = true;
  3421. }
  3422. else if (code_seen('R'))
  3423. {
  3424. setTargetBed(code_value());
  3425. CooldownNoWait = false;
  3426. }
  3427. codenum = millis();
  3428. cancel_heatup = false;
  3429. target_direction = isHeatingBed(); // true if heating, false if cooling
  3430. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3431. {
  3432. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3433. {
  3434. if (!farm_mode) {
  3435. float tt = degHotend(active_extruder);
  3436. SERIAL_PROTOCOLPGM("T:");
  3437. SERIAL_PROTOCOL(tt);
  3438. SERIAL_PROTOCOLPGM(" E:");
  3439. SERIAL_PROTOCOL((int)active_extruder);
  3440. SERIAL_PROTOCOLPGM(" B:");
  3441. SERIAL_PROTOCOL_F(degBed(), 1);
  3442. SERIAL_PROTOCOLLN("");
  3443. }
  3444. codenum = millis();
  3445. }
  3446. manage_heater();
  3447. manage_inactivity();
  3448. lcd_update();
  3449. }
  3450. LCD_MESSAGERPGM(MSG_BED_DONE);
  3451. heating_status = 4;
  3452. previous_millis_cmd = millis();
  3453. #endif
  3454. break;
  3455. #if defined(FAN_PIN) && FAN_PIN > -1
  3456. case 106: //M106 Fan On
  3457. if (code_seen('S')){
  3458. fanSpeed=constrain(code_value(),0,255);
  3459. }
  3460. else {
  3461. fanSpeed=255;
  3462. }
  3463. break;
  3464. case 107: //M107 Fan Off
  3465. fanSpeed = 0;
  3466. break;
  3467. #endif //FAN_PIN
  3468. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3469. case 80: // M80 - Turn on Power Supply
  3470. SET_OUTPUT(PS_ON_PIN); //GND
  3471. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3472. // If you have a switch on suicide pin, this is useful
  3473. // if you want to start another print with suicide feature after
  3474. // a print without suicide...
  3475. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3476. SET_OUTPUT(SUICIDE_PIN);
  3477. WRITE(SUICIDE_PIN, HIGH);
  3478. #endif
  3479. #ifdef ULTIPANEL
  3480. powersupply = true;
  3481. LCD_MESSAGERPGM(WELCOME_MSG);
  3482. lcd_update();
  3483. #endif
  3484. break;
  3485. #endif
  3486. case 81: // M81 - Turn off Power Supply
  3487. disable_heater();
  3488. st_synchronize();
  3489. disable_e0();
  3490. disable_e1();
  3491. disable_e2();
  3492. finishAndDisableSteppers();
  3493. fanSpeed = 0;
  3494. delay(1000); // Wait a little before to switch off
  3495. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3496. st_synchronize();
  3497. suicide();
  3498. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3499. SET_OUTPUT(PS_ON_PIN);
  3500. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3501. #endif
  3502. #ifdef ULTIPANEL
  3503. powersupply = false;
  3504. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3505. /*
  3506. MACHNAME = "Prusa i3"
  3507. MSGOFF = "Vypnuto"
  3508. "Prusai3"" ""vypnuto""."
  3509. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3510. */
  3511. lcd_update();
  3512. #endif
  3513. break;
  3514. case 82:
  3515. axis_relative_modes[3] = false;
  3516. break;
  3517. case 83:
  3518. axis_relative_modes[3] = true;
  3519. break;
  3520. case 18: //compatibility
  3521. case 84: // M84
  3522. if(code_seen('S')){
  3523. stepper_inactive_time = code_value() * 1000;
  3524. }
  3525. else
  3526. {
  3527. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3528. if(all_axis)
  3529. {
  3530. st_synchronize();
  3531. disable_e0();
  3532. disable_e1();
  3533. disable_e2();
  3534. finishAndDisableSteppers();
  3535. }
  3536. else
  3537. {
  3538. st_synchronize();
  3539. if(code_seen('X')) disable_x();
  3540. if(code_seen('Y')) disable_y();
  3541. if(code_seen('Z')) disable_z();
  3542. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3543. if(code_seen('E')) {
  3544. disable_e0();
  3545. disable_e1();
  3546. disable_e2();
  3547. }
  3548. #endif
  3549. }
  3550. }
  3551. break;
  3552. case 85: // M85
  3553. if(code_seen('S')) {
  3554. max_inactive_time = code_value() * 1000;
  3555. }
  3556. break;
  3557. case 92: // M92
  3558. for(int8_t i=0; i < NUM_AXIS; i++)
  3559. {
  3560. if(code_seen(axis_codes[i]))
  3561. {
  3562. if(i == 3) { // E
  3563. float value = code_value();
  3564. if(value < 20.0) {
  3565. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3566. max_jerk[E_AXIS] *= factor;
  3567. max_feedrate[i] *= factor;
  3568. axis_steps_per_sqr_second[i] *= factor;
  3569. }
  3570. axis_steps_per_unit[i] = value;
  3571. }
  3572. else {
  3573. axis_steps_per_unit[i] = code_value();
  3574. }
  3575. }
  3576. }
  3577. break;
  3578. case 115: // M115
  3579. if (code_seen('V')) {
  3580. // Report the Prusa version number.
  3581. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3582. } else if (code_seen('U')) {
  3583. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3584. // pause the print and ask the user to upgrade the firmware.
  3585. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3586. } else {
  3587. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3588. }
  3589. break;
  3590. case 117: // M117 display message
  3591. starpos = (strchr(strchr_pointer + 5,'*'));
  3592. if(starpos!=NULL)
  3593. *(starpos)='\0';
  3594. lcd_setstatus(strchr_pointer + 5);
  3595. break;
  3596. case 114: // M114
  3597. SERIAL_PROTOCOLPGM("X:");
  3598. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3599. SERIAL_PROTOCOLPGM(" Y:");
  3600. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3601. SERIAL_PROTOCOLPGM(" Z:");
  3602. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3603. SERIAL_PROTOCOLPGM(" E:");
  3604. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3605. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3606. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3607. SERIAL_PROTOCOLPGM(" Y:");
  3608. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3609. SERIAL_PROTOCOLPGM(" Z:");
  3610. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3611. SERIAL_PROTOCOLLN("");
  3612. break;
  3613. case 120: // M120
  3614. enable_endstops(false) ;
  3615. break;
  3616. case 121: // M121
  3617. enable_endstops(true) ;
  3618. break;
  3619. case 119: // M119
  3620. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3621. SERIAL_PROTOCOLLN("");
  3622. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3623. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3624. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3625. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3626. }else{
  3627. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3628. }
  3629. SERIAL_PROTOCOLLN("");
  3630. #endif
  3631. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3632. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3633. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3634. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3635. }else{
  3636. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3637. }
  3638. SERIAL_PROTOCOLLN("");
  3639. #endif
  3640. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3641. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3642. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3643. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3644. }else{
  3645. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3646. }
  3647. SERIAL_PROTOCOLLN("");
  3648. #endif
  3649. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3650. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3651. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3652. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3653. }else{
  3654. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3655. }
  3656. SERIAL_PROTOCOLLN("");
  3657. #endif
  3658. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3659. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3660. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3661. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3662. }else{
  3663. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3664. }
  3665. SERIAL_PROTOCOLLN("");
  3666. #endif
  3667. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3668. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3669. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3670. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3671. }else{
  3672. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3673. }
  3674. SERIAL_PROTOCOLLN("");
  3675. #endif
  3676. break;
  3677. //TODO: update for all axis, use for loop
  3678. #ifdef BLINKM
  3679. case 150: // M150
  3680. {
  3681. byte red;
  3682. byte grn;
  3683. byte blu;
  3684. if(code_seen('R')) red = code_value();
  3685. if(code_seen('U')) grn = code_value();
  3686. if(code_seen('B')) blu = code_value();
  3687. SendColors(red,grn,blu);
  3688. }
  3689. break;
  3690. #endif //BLINKM
  3691. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3692. {
  3693. tmp_extruder = active_extruder;
  3694. if(code_seen('T')) {
  3695. tmp_extruder = code_value();
  3696. if(tmp_extruder >= EXTRUDERS) {
  3697. SERIAL_ECHO_START;
  3698. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3699. break;
  3700. }
  3701. }
  3702. float area = .0;
  3703. if(code_seen('D')) {
  3704. float diameter = (float)code_value();
  3705. if (diameter == 0.0) {
  3706. // setting any extruder filament size disables volumetric on the assumption that
  3707. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3708. // for all extruders
  3709. volumetric_enabled = false;
  3710. } else {
  3711. filament_size[tmp_extruder] = (float)code_value();
  3712. // make sure all extruders have some sane value for the filament size
  3713. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3714. #if EXTRUDERS > 1
  3715. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3716. #if EXTRUDERS > 2
  3717. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3718. #endif
  3719. #endif
  3720. volumetric_enabled = true;
  3721. }
  3722. } else {
  3723. //reserved for setting filament diameter via UFID or filament measuring device
  3724. break;
  3725. }
  3726. calculate_volumetric_multipliers();
  3727. }
  3728. break;
  3729. case 201: // M201
  3730. for(int8_t i=0; i < NUM_AXIS; i++)
  3731. {
  3732. if(code_seen(axis_codes[i]))
  3733. {
  3734. max_acceleration_units_per_sq_second[i] = code_value();
  3735. }
  3736. }
  3737. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3738. reset_acceleration_rates();
  3739. break;
  3740. #if 0 // Not used for Sprinter/grbl gen6
  3741. case 202: // M202
  3742. for(int8_t i=0; i < NUM_AXIS; i++) {
  3743. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3744. }
  3745. break;
  3746. #endif
  3747. case 203: // M203 max feedrate mm/sec
  3748. for(int8_t i=0; i < NUM_AXIS; i++) {
  3749. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3750. }
  3751. break;
  3752. case 204: // M204 acclereration S normal moves T filmanent only moves
  3753. {
  3754. if(code_seen('S')) acceleration = code_value() ;
  3755. if(code_seen('T')) retract_acceleration = code_value() ;
  3756. }
  3757. break;
  3758. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3759. {
  3760. if(code_seen('S')) minimumfeedrate = code_value();
  3761. if(code_seen('T')) mintravelfeedrate = code_value();
  3762. if(code_seen('B')) minsegmenttime = code_value() ;
  3763. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3764. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3765. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3766. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3767. }
  3768. break;
  3769. case 206: // M206 additional homing offset
  3770. for(int8_t i=0; i < 3; i++)
  3771. {
  3772. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3773. }
  3774. break;
  3775. #ifdef FWRETRACT
  3776. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3777. {
  3778. if(code_seen('S'))
  3779. {
  3780. retract_length = code_value() ;
  3781. }
  3782. if(code_seen('F'))
  3783. {
  3784. retract_feedrate = code_value()/60 ;
  3785. }
  3786. if(code_seen('Z'))
  3787. {
  3788. retract_zlift = code_value() ;
  3789. }
  3790. }break;
  3791. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3792. {
  3793. if(code_seen('S'))
  3794. {
  3795. retract_recover_length = code_value() ;
  3796. }
  3797. if(code_seen('F'))
  3798. {
  3799. retract_recover_feedrate = code_value()/60 ;
  3800. }
  3801. }break;
  3802. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3803. {
  3804. if(code_seen('S'))
  3805. {
  3806. int t= code_value() ;
  3807. switch(t)
  3808. {
  3809. case 0:
  3810. {
  3811. autoretract_enabled=false;
  3812. retracted[0]=false;
  3813. #if EXTRUDERS > 1
  3814. retracted[1]=false;
  3815. #endif
  3816. #if EXTRUDERS > 2
  3817. retracted[2]=false;
  3818. #endif
  3819. }break;
  3820. case 1:
  3821. {
  3822. autoretract_enabled=true;
  3823. retracted[0]=false;
  3824. #if EXTRUDERS > 1
  3825. retracted[1]=false;
  3826. #endif
  3827. #if EXTRUDERS > 2
  3828. retracted[2]=false;
  3829. #endif
  3830. }break;
  3831. default:
  3832. SERIAL_ECHO_START;
  3833. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3834. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3835. SERIAL_ECHOLNPGM("\"");
  3836. }
  3837. }
  3838. }break;
  3839. #endif // FWRETRACT
  3840. #if EXTRUDERS > 1
  3841. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3842. {
  3843. if(setTargetedHotend(218)){
  3844. break;
  3845. }
  3846. if(code_seen('X'))
  3847. {
  3848. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3849. }
  3850. if(code_seen('Y'))
  3851. {
  3852. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3853. }
  3854. SERIAL_ECHO_START;
  3855. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3856. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3857. {
  3858. SERIAL_ECHO(" ");
  3859. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3860. SERIAL_ECHO(",");
  3861. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3862. }
  3863. SERIAL_ECHOLN("");
  3864. }break;
  3865. #endif
  3866. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3867. {
  3868. if(code_seen('S'))
  3869. {
  3870. feedmultiply = code_value() ;
  3871. }
  3872. }
  3873. break;
  3874. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3875. {
  3876. if(code_seen('S'))
  3877. {
  3878. int tmp_code = code_value();
  3879. if (code_seen('T'))
  3880. {
  3881. if(setTargetedHotend(221)){
  3882. break;
  3883. }
  3884. extruder_multiply[tmp_extruder] = tmp_code;
  3885. }
  3886. else
  3887. {
  3888. extrudemultiply = tmp_code ;
  3889. }
  3890. }
  3891. }
  3892. break;
  3893. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3894. {
  3895. if(code_seen('P')){
  3896. int pin_number = code_value(); // pin number
  3897. int pin_state = -1; // required pin state - default is inverted
  3898. if(code_seen('S')) pin_state = code_value(); // required pin state
  3899. if(pin_state >= -1 && pin_state <= 1){
  3900. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3901. {
  3902. if (sensitive_pins[i] == pin_number)
  3903. {
  3904. pin_number = -1;
  3905. break;
  3906. }
  3907. }
  3908. if (pin_number > -1)
  3909. {
  3910. int target = LOW;
  3911. st_synchronize();
  3912. pinMode(pin_number, INPUT);
  3913. switch(pin_state){
  3914. case 1:
  3915. target = HIGH;
  3916. break;
  3917. case 0:
  3918. target = LOW;
  3919. break;
  3920. case -1:
  3921. target = !digitalRead(pin_number);
  3922. break;
  3923. }
  3924. while(digitalRead(pin_number) != target){
  3925. manage_heater();
  3926. manage_inactivity();
  3927. lcd_update();
  3928. }
  3929. }
  3930. }
  3931. }
  3932. }
  3933. break;
  3934. #if NUM_SERVOS > 0
  3935. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3936. {
  3937. int servo_index = -1;
  3938. int servo_position = 0;
  3939. if (code_seen('P'))
  3940. servo_index = code_value();
  3941. if (code_seen('S')) {
  3942. servo_position = code_value();
  3943. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3944. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3945. servos[servo_index].attach(0);
  3946. #endif
  3947. servos[servo_index].write(servo_position);
  3948. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3949. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3950. servos[servo_index].detach();
  3951. #endif
  3952. }
  3953. else {
  3954. SERIAL_ECHO_START;
  3955. SERIAL_ECHO("Servo ");
  3956. SERIAL_ECHO(servo_index);
  3957. SERIAL_ECHOLN(" out of range");
  3958. }
  3959. }
  3960. else if (servo_index >= 0) {
  3961. SERIAL_PROTOCOL(MSG_OK);
  3962. SERIAL_PROTOCOL(" Servo ");
  3963. SERIAL_PROTOCOL(servo_index);
  3964. SERIAL_PROTOCOL(": ");
  3965. SERIAL_PROTOCOL(servos[servo_index].read());
  3966. SERIAL_PROTOCOLLN("");
  3967. }
  3968. }
  3969. break;
  3970. #endif // NUM_SERVOS > 0
  3971. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3972. case 300: // M300
  3973. {
  3974. int beepS = code_seen('S') ? code_value() : 110;
  3975. int beepP = code_seen('P') ? code_value() : 1000;
  3976. if (beepS > 0)
  3977. {
  3978. #if BEEPER > 0
  3979. tone(BEEPER, beepS);
  3980. delay(beepP);
  3981. noTone(BEEPER);
  3982. #elif defined(ULTRALCD)
  3983. lcd_buzz(beepS, beepP);
  3984. #elif defined(LCD_USE_I2C_BUZZER)
  3985. lcd_buzz(beepP, beepS);
  3986. #endif
  3987. }
  3988. else
  3989. {
  3990. delay(beepP);
  3991. }
  3992. }
  3993. break;
  3994. #endif // M300
  3995. #ifdef PIDTEMP
  3996. case 301: // M301
  3997. {
  3998. if(code_seen('P')) Kp = code_value();
  3999. if(code_seen('I')) Ki = scalePID_i(code_value());
  4000. if(code_seen('D')) Kd = scalePID_d(code_value());
  4001. #ifdef PID_ADD_EXTRUSION_RATE
  4002. if(code_seen('C')) Kc = code_value();
  4003. #endif
  4004. updatePID();
  4005. SERIAL_PROTOCOLRPGM(MSG_OK);
  4006. SERIAL_PROTOCOL(" p:");
  4007. SERIAL_PROTOCOL(Kp);
  4008. SERIAL_PROTOCOL(" i:");
  4009. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4010. SERIAL_PROTOCOL(" d:");
  4011. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4012. #ifdef PID_ADD_EXTRUSION_RATE
  4013. SERIAL_PROTOCOL(" c:");
  4014. //Kc does not have scaling applied above, or in resetting defaults
  4015. SERIAL_PROTOCOL(Kc);
  4016. #endif
  4017. SERIAL_PROTOCOLLN("");
  4018. }
  4019. break;
  4020. #endif //PIDTEMP
  4021. #ifdef PIDTEMPBED
  4022. case 304: // M304
  4023. {
  4024. if(code_seen('P')) bedKp = code_value();
  4025. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4026. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4027. updatePID();
  4028. SERIAL_PROTOCOLRPGM(MSG_OK);
  4029. SERIAL_PROTOCOL(" p:");
  4030. SERIAL_PROTOCOL(bedKp);
  4031. SERIAL_PROTOCOL(" i:");
  4032. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4033. SERIAL_PROTOCOL(" d:");
  4034. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4035. SERIAL_PROTOCOLLN("");
  4036. }
  4037. break;
  4038. #endif //PIDTEMP
  4039. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4040. {
  4041. #ifdef CHDK
  4042. SET_OUTPUT(CHDK);
  4043. WRITE(CHDK, HIGH);
  4044. chdkHigh = millis();
  4045. chdkActive = true;
  4046. #else
  4047. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4048. const uint8_t NUM_PULSES=16;
  4049. const float PULSE_LENGTH=0.01524;
  4050. for(int i=0; i < NUM_PULSES; i++) {
  4051. WRITE(PHOTOGRAPH_PIN, HIGH);
  4052. _delay_ms(PULSE_LENGTH);
  4053. WRITE(PHOTOGRAPH_PIN, LOW);
  4054. _delay_ms(PULSE_LENGTH);
  4055. }
  4056. delay(7.33);
  4057. for(int i=0; i < NUM_PULSES; i++) {
  4058. WRITE(PHOTOGRAPH_PIN, HIGH);
  4059. _delay_ms(PULSE_LENGTH);
  4060. WRITE(PHOTOGRAPH_PIN, LOW);
  4061. _delay_ms(PULSE_LENGTH);
  4062. }
  4063. #endif
  4064. #endif //chdk end if
  4065. }
  4066. break;
  4067. #ifdef DOGLCD
  4068. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4069. {
  4070. if (code_seen('C')) {
  4071. lcd_setcontrast( ((int)code_value())&63 );
  4072. }
  4073. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4074. SERIAL_PROTOCOL(lcd_contrast);
  4075. SERIAL_PROTOCOLLN("");
  4076. }
  4077. break;
  4078. #endif
  4079. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4080. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4081. {
  4082. float temp = .0;
  4083. if (code_seen('S')) temp=code_value();
  4084. set_extrude_min_temp(temp);
  4085. }
  4086. break;
  4087. #endif
  4088. case 303: // M303 PID autotune
  4089. {
  4090. float temp = 150.0;
  4091. int e=0;
  4092. int c=5;
  4093. if (code_seen('E')) e=code_value();
  4094. if (e<0)
  4095. temp=70;
  4096. if (code_seen('S')) temp=code_value();
  4097. if (code_seen('C')) c=code_value();
  4098. PID_autotune(temp, e, c);
  4099. }
  4100. break;
  4101. case 400: // M400 finish all moves
  4102. {
  4103. st_synchronize();
  4104. }
  4105. break;
  4106. #ifdef FILAMENT_SENSOR
  4107. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4108. {
  4109. #if (FILWIDTH_PIN > -1)
  4110. if(code_seen('N')) filament_width_nominal=code_value();
  4111. else{
  4112. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4113. SERIAL_PROTOCOLLN(filament_width_nominal);
  4114. }
  4115. #endif
  4116. }
  4117. break;
  4118. case 405: //M405 Turn on filament sensor for control
  4119. {
  4120. if(code_seen('D')) meas_delay_cm=code_value();
  4121. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4122. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4123. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4124. {
  4125. int temp_ratio = widthFil_to_size_ratio();
  4126. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4127. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4128. }
  4129. delay_index1=0;
  4130. delay_index2=0;
  4131. }
  4132. filament_sensor = true ;
  4133. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4134. //SERIAL_PROTOCOL(filament_width_meas);
  4135. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4136. //SERIAL_PROTOCOL(extrudemultiply);
  4137. }
  4138. break;
  4139. case 406: //M406 Turn off filament sensor for control
  4140. {
  4141. filament_sensor = false ;
  4142. }
  4143. break;
  4144. case 407: //M407 Display measured filament diameter
  4145. {
  4146. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4147. SERIAL_PROTOCOLLN(filament_width_meas);
  4148. }
  4149. break;
  4150. #endif
  4151. case 500: // M500 Store settings in EEPROM
  4152. {
  4153. Config_StoreSettings();
  4154. }
  4155. break;
  4156. case 501: // M501 Read settings from EEPROM
  4157. {
  4158. Config_RetrieveSettings();
  4159. }
  4160. break;
  4161. case 502: // M502 Revert to default settings
  4162. {
  4163. Config_ResetDefault();
  4164. }
  4165. break;
  4166. case 503: // M503 print settings currently in memory
  4167. {
  4168. Config_PrintSettings();
  4169. }
  4170. break;
  4171. case 509: //M509 Force language selection
  4172. {
  4173. lcd_force_language_selection();
  4174. SERIAL_ECHO_START;
  4175. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4176. }
  4177. break;
  4178. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4179. case 540:
  4180. {
  4181. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4182. }
  4183. break;
  4184. #endif
  4185. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4186. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4187. {
  4188. float value;
  4189. if (code_seen('Z'))
  4190. {
  4191. value = code_value();
  4192. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4193. {
  4194. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4195. SERIAL_ECHO_START;
  4196. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4197. SERIAL_PROTOCOLLN("");
  4198. }
  4199. else
  4200. {
  4201. SERIAL_ECHO_START;
  4202. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4203. SERIAL_ECHORPGM(MSG_Z_MIN);
  4204. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4205. SERIAL_ECHORPGM(MSG_Z_MAX);
  4206. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4207. SERIAL_PROTOCOLLN("");
  4208. }
  4209. }
  4210. else
  4211. {
  4212. SERIAL_ECHO_START;
  4213. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4214. SERIAL_ECHO(-zprobe_zoffset);
  4215. SERIAL_PROTOCOLLN("");
  4216. }
  4217. break;
  4218. }
  4219. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4220. #ifdef FILAMENTCHANGEENABLE
  4221. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4222. {
  4223. st_synchronize();
  4224. if (farm_mode)
  4225. {
  4226. prusa_statistics(22);
  4227. }
  4228. feedmultiplyBckp=feedmultiply;
  4229. int8_t TooLowZ = 0;
  4230. float target[4];
  4231. float lastpos[4];
  4232. target[X_AXIS]=current_position[X_AXIS];
  4233. target[Y_AXIS]=current_position[Y_AXIS];
  4234. target[Z_AXIS]=current_position[Z_AXIS];
  4235. target[E_AXIS]=current_position[E_AXIS];
  4236. lastpos[X_AXIS]=current_position[X_AXIS];
  4237. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4238. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4239. lastpos[E_AXIS]=current_position[E_AXIS];
  4240. //Restract extruder
  4241. if(code_seen('E'))
  4242. {
  4243. target[E_AXIS]+= code_value();
  4244. }
  4245. else
  4246. {
  4247. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4248. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4249. #endif
  4250. }
  4251. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4252. //Lift Z
  4253. if(code_seen('Z'))
  4254. {
  4255. target[Z_AXIS]+= code_value();
  4256. }
  4257. else
  4258. {
  4259. #ifdef FILAMENTCHANGE_ZADD
  4260. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4261. if(target[Z_AXIS] < 10){
  4262. target[Z_AXIS]+= 10 ;
  4263. TooLowZ = 1;
  4264. }else{
  4265. TooLowZ = 0;
  4266. }
  4267. #endif
  4268. }
  4269. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4270. //Move XY to side
  4271. if(code_seen('X'))
  4272. {
  4273. target[X_AXIS]+= code_value();
  4274. }
  4275. else
  4276. {
  4277. #ifdef FILAMENTCHANGE_XPOS
  4278. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4279. #endif
  4280. }
  4281. if(code_seen('Y'))
  4282. {
  4283. target[Y_AXIS]= code_value();
  4284. }
  4285. else
  4286. {
  4287. #ifdef FILAMENTCHANGE_YPOS
  4288. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4289. #endif
  4290. }
  4291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4292. // Unload filament
  4293. if(code_seen('L'))
  4294. {
  4295. target[E_AXIS]+= code_value();
  4296. }
  4297. else
  4298. {
  4299. #ifdef FILAMENTCHANGE_FINALRETRACT
  4300. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4301. #endif
  4302. }
  4303. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4304. //finish moves
  4305. st_synchronize();
  4306. //disable extruder steppers so filament can be removed
  4307. disable_e0();
  4308. disable_e1();
  4309. disable_e2();
  4310. delay(100);
  4311. //Wait for user to insert filament
  4312. uint8_t cnt=0;
  4313. int counterBeep = 0;
  4314. lcd_wait_interact();
  4315. while(!lcd_clicked()){
  4316. cnt++;
  4317. manage_heater();
  4318. manage_inactivity(true);
  4319. if(cnt==0)
  4320. {
  4321. #if BEEPER > 0
  4322. if (counterBeep== 500){
  4323. counterBeep = 0;
  4324. }
  4325. SET_OUTPUT(BEEPER);
  4326. if (counterBeep== 0){
  4327. WRITE(BEEPER,HIGH);
  4328. }
  4329. if (counterBeep== 20){
  4330. WRITE(BEEPER,LOW);
  4331. }
  4332. counterBeep++;
  4333. #else
  4334. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4335. lcd_buzz(1000/6,100);
  4336. #else
  4337. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4338. #endif
  4339. #endif
  4340. }
  4341. }
  4342. //Filament inserted
  4343. WRITE(BEEPER,LOW);
  4344. //Feed the filament to the end of nozzle quickly
  4345. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4346. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4347. //Extrude some filament
  4348. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4350. //Wait for user to check the state
  4351. lcd_change_fil_state = 0;
  4352. lcd_loading_filament();
  4353. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4354. lcd_change_fil_state = 0;
  4355. lcd_alright();
  4356. switch(lcd_change_fil_state){
  4357. // Filament failed to load so load it again
  4358. case 2:
  4359. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4360. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4361. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4363. lcd_loading_filament();
  4364. break;
  4365. // Filament loaded properly but color is not clear
  4366. case 3:
  4367. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4368. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4369. lcd_loading_color();
  4370. break;
  4371. // Everything good
  4372. default:
  4373. lcd_change_success();
  4374. break;
  4375. }
  4376. }
  4377. //Not let's go back to print
  4378. //Feed a little of filament to stabilize pressure
  4379. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4380. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4381. //Retract
  4382. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4384. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4385. //Move XY back
  4386. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4387. //Move Z back
  4388. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4389. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4390. //Unretract
  4391. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4392. //Set E position to original
  4393. plan_set_e_position(lastpos[E_AXIS]);
  4394. //Recover feed rate
  4395. feedmultiply=feedmultiplyBckp;
  4396. char cmd[9];
  4397. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4398. enquecommand(cmd);
  4399. }
  4400. break;
  4401. #endif //FILAMENTCHANGEENABLE
  4402. case 907: // M907 Set digital trimpot motor current using axis codes.
  4403. {
  4404. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4405. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4406. if(code_seen('B')) digipot_current(4,code_value());
  4407. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4408. #endif
  4409. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4410. if(code_seen('X')) digipot_current(0, code_value());
  4411. #endif
  4412. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4413. if(code_seen('Z')) digipot_current(1, code_value());
  4414. #endif
  4415. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4416. if(code_seen('E')) digipot_current(2, code_value());
  4417. #endif
  4418. #ifdef DIGIPOT_I2C
  4419. // this one uses actual amps in floating point
  4420. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4421. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4422. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4423. #endif
  4424. }
  4425. break;
  4426. case 908: // M908 Control digital trimpot directly.
  4427. {
  4428. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4429. uint8_t channel,current;
  4430. if(code_seen('P')) channel=code_value();
  4431. if(code_seen('S')) current=code_value();
  4432. digitalPotWrite(channel, current);
  4433. #endif
  4434. }
  4435. break;
  4436. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4437. {
  4438. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4439. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4440. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4441. if(code_seen('B')) microstep_mode(4,code_value());
  4442. microstep_readings();
  4443. #endif
  4444. }
  4445. break;
  4446. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4447. {
  4448. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4449. if(code_seen('S')) switch((int)code_value())
  4450. {
  4451. case 1:
  4452. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4453. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4454. break;
  4455. case 2:
  4456. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4457. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4458. break;
  4459. }
  4460. microstep_readings();
  4461. #endif
  4462. }
  4463. break;
  4464. case 701: //M701: load filament
  4465. {
  4466. enable_z();
  4467. custom_message = true;
  4468. custom_message_type = 2;
  4469. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4470. current_position[E_AXIS] += 65;
  4471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4472. current_position[E_AXIS] += 40;
  4473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4474. st_synchronize();
  4475. if (!farm_mode && loading_flag) {
  4476. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4477. while (!clean) {
  4478. lcd_update_enable(true);
  4479. lcd_update(2);
  4480. current_position[E_AXIS] += 40;
  4481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4482. st_synchronize();
  4483. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4484. }
  4485. }
  4486. lcd_update_enable(true);
  4487. lcd_update(2);
  4488. lcd_setstatuspgm(WELCOME_MSG);
  4489. disable_z();
  4490. loading_flag = false;
  4491. custom_message = false;
  4492. custom_message_type = 0;
  4493. }
  4494. break;
  4495. case 702:
  4496. {
  4497. custom_message = true;
  4498. custom_message_type = 2;
  4499. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4500. current_position[E_AXIS] -= 80;
  4501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4502. st_synchronize();
  4503. lcd_setstatuspgm(WELCOME_MSG);
  4504. custom_message = false;
  4505. custom_message_type = 0;
  4506. }
  4507. break;
  4508. case 999: // M999: Restart after being stopped
  4509. Stopped = false;
  4510. lcd_reset_alert_level();
  4511. gcode_LastN = Stopped_gcode_LastN;
  4512. FlushSerialRequestResend();
  4513. break;
  4514. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4515. }
  4516. } // end if(code_seen('M')) (end of M codes)
  4517. else if(code_seen('T'))
  4518. {
  4519. int index;
  4520. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4521. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4522. SERIAL_ECHOLNPGM("Invalid T code.");
  4523. }
  4524. else {
  4525. tmp_extruder = code_value();
  4526. #ifdef SNMM
  4527. st_synchronize();
  4528. delay(100);
  4529. disable_e0();
  4530. disable_e1();
  4531. disable_e2();
  4532. pinMode(E_MUX0_PIN, OUTPUT);
  4533. pinMode(E_MUX1_PIN, OUTPUT);
  4534. pinMode(E_MUX2_PIN, OUTPUT);
  4535. delay(100);
  4536. SERIAL_ECHO_START;
  4537. SERIAL_ECHO("T:");
  4538. SERIAL_ECHOLN((int)tmp_extruder);
  4539. switch (tmp_extruder) {
  4540. case 1:
  4541. WRITE(E_MUX0_PIN, HIGH);
  4542. WRITE(E_MUX1_PIN, LOW);
  4543. WRITE(E_MUX2_PIN, LOW);
  4544. break;
  4545. case 2:
  4546. WRITE(E_MUX0_PIN, LOW);
  4547. WRITE(E_MUX1_PIN, HIGH);
  4548. WRITE(E_MUX2_PIN, LOW);
  4549. break;
  4550. case 3:
  4551. WRITE(E_MUX0_PIN, HIGH);
  4552. WRITE(E_MUX1_PIN, HIGH);
  4553. WRITE(E_MUX2_PIN, LOW);
  4554. break;
  4555. default:
  4556. WRITE(E_MUX0_PIN, LOW);
  4557. WRITE(E_MUX1_PIN, LOW);
  4558. WRITE(E_MUX2_PIN, LOW);
  4559. break;
  4560. }
  4561. delay(100);
  4562. #else
  4563. if (tmp_extruder >= EXTRUDERS) {
  4564. SERIAL_ECHO_START;
  4565. SERIAL_ECHOPGM("T");
  4566. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4567. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4568. }
  4569. else {
  4570. boolean make_move = false;
  4571. if (code_seen('F')) {
  4572. make_move = true;
  4573. next_feedrate = code_value();
  4574. if (next_feedrate > 0.0) {
  4575. feedrate = next_feedrate;
  4576. }
  4577. }
  4578. #if EXTRUDERS > 1
  4579. if (tmp_extruder != active_extruder) {
  4580. // Save current position to return to after applying extruder offset
  4581. memcpy(destination, current_position, sizeof(destination));
  4582. // Offset extruder (only by XY)
  4583. int i;
  4584. for (i = 0; i < 2; i++) {
  4585. current_position[i] = current_position[i] -
  4586. extruder_offset[i][active_extruder] +
  4587. extruder_offset[i][tmp_extruder];
  4588. }
  4589. // Set the new active extruder and position
  4590. active_extruder = tmp_extruder;
  4591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4592. // Move to the old position if 'F' was in the parameters
  4593. if (make_move && Stopped == false) {
  4594. prepare_move();
  4595. }
  4596. }
  4597. #endif
  4598. SERIAL_ECHO_START;
  4599. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4600. SERIAL_PROTOCOLLN((int)active_extruder);
  4601. }
  4602. #endif
  4603. }
  4604. } // end if(code_seen('T')) (end of T codes)
  4605. else
  4606. {
  4607. SERIAL_ECHO_START;
  4608. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4609. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4610. SERIAL_ECHOLNPGM("\"");
  4611. }
  4612. ClearToSend();
  4613. }
  4614. void FlushSerialRequestResend()
  4615. {
  4616. //char cmdbuffer[bufindr][100]="Resend:";
  4617. MYSERIAL.flush();
  4618. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4619. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4620. ClearToSend();
  4621. }
  4622. // Confirm the execution of a command, if sent from a serial line.
  4623. // Execution of a command from a SD card will not be confirmed.
  4624. void ClearToSend()
  4625. {
  4626. previous_millis_cmd = millis();
  4627. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4628. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4629. }
  4630. void get_coordinates()
  4631. {
  4632. bool seen[4]={false,false,false,false};
  4633. for(int8_t i=0; i < NUM_AXIS; i++) {
  4634. if(code_seen(axis_codes[i]))
  4635. {
  4636. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4637. seen[i]=true;
  4638. }
  4639. else destination[i] = current_position[i]; //Are these else lines really needed?
  4640. }
  4641. if(code_seen('F')) {
  4642. next_feedrate = code_value();
  4643. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4644. }
  4645. }
  4646. void get_arc_coordinates()
  4647. {
  4648. #ifdef SF_ARC_FIX
  4649. bool relative_mode_backup = relative_mode;
  4650. relative_mode = true;
  4651. #endif
  4652. get_coordinates();
  4653. #ifdef SF_ARC_FIX
  4654. relative_mode=relative_mode_backup;
  4655. #endif
  4656. if(code_seen('I')) {
  4657. offset[0] = code_value();
  4658. }
  4659. else {
  4660. offset[0] = 0.0;
  4661. }
  4662. if(code_seen('J')) {
  4663. offset[1] = code_value();
  4664. }
  4665. else {
  4666. offset[1] = 0.0;
  4667. }
  4668. }
  4669. void clamp_to_software_endstops(float target[3])
  4670. {
  4671. world2machine_clamp(target[0], target[1]);
  4672. // Clamp the Z coordinate.
  4673. if (min_software_endstops) {
  4674. float negative_z_offset = 0;
  4675. #ifdef ENABLE_AUTO_BED_LEVELING
  4676. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4677. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4678. #endif
  4679. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4680. }
  4681. if (max_software_endstops) {
  4682. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4683. }
  4684. }
  4685. #ifdef MESH_BED_LEVELING
  4686. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4687. float dx = x - current_position[X_AXIS];
  4688. float dy = y - current_position[Y_AXIS];
  4689. float dz = z - current_position[Z_AXIS];
  4690. int n_segments = 0;
  4691. if (mbl.active) {
  4692. float len = abs(dx) + abs(dy);
  4693. if (len > 0)
  4694. // Split to 3cm segments or shorter.
  4695. n_segments = int(ceil(len / 30.f));
  4696. }
  4697. if (n_segments > 1) {
  4698. float de = e - current_position[E_AXIS];
  4699. for (int i = 1; i < n_segments; ++ i) {
  4700. float t = float(i) / float(n_segments);
  4701. plan_buffer_line(
  4702. current_position[X_AXIS] + t * dx,
  4703. current_position[Y_AXIS] + t * dy,
  4704. current_position[Z_AXIS] + t * dz,
  4705. current_position[E_AXIS] + t * de,
  4706. feed_rate, extruder);
  4707. }
  4708. }
  4709. // The rest of the path.
  4710. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4711. current_position[X_AXIS] = x;
  4712. current_position[Y_AXIS] = y;
  4713. current_position[Z_AXIS] = z;
  4714. current_position[E_AXIS] = e;
  4715. }
  4716. #endif // MESH_BED_LEVELING
  4717. void prepare_move()
  4718. {
  4719. clamp_to_software_endstops(destination);
  4720. previous_millis_cmd = millis();
  4721. // Do not use feedmultiply for E or Z only moves
  4722. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4724. }
  4725. else {
  4726. #ifdef MESH_BED_LEVELING
  4727. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4728. #else
  4729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4730. #endif
  4731. }
  4732. for(int8_t i=0; i < NUM_AXIS; i++) {
  4733. current_position[i] = destination[i];
  4734. }
  4735. }
  4736. void prepare_arc_move(char isclockwise) {
  4737. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4738. // Trace the arc
  4739. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4740. // As far as the parser is concerned, the position is now == target. In reality the
  4741. // motion control system might still be processing the action and the real tool position
  4742. // in any intermediate location.
  4743. for(int8_t i=0; i < NUM_AXIS; i++) {
  4744. current_position[i] = destination[i];
  4745. }
  4746. previous_millis_cmd = millis();
  4747. }
  4748. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4749. #if defined(FAN_PIN)
  4750. #if CONTROLLERFAN_PIN == FAN_PIN
  4751. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4752. #endif
  4753. #endif
  4754. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4755. unsigned long lastMotorCheck = 0;
  4756. void controllerFan()
  4757. {
  4758. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4759. {
  4760. lastMotorCheck = millis();
  4761. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4762. #if EXTRUDERS > 2
  4763. || !READ(E2_ENABLE_PIN)
  4764. #endif
  4765. #if EXTRUDER > 1
  4766. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4767. || !READ(X2_ENABLE_PIN)
  4768. #endif
  4769. || !READ(E1_ENABLE_PIN)
  4770. #endif
  4771. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4772. {
  4773. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4774. }
  4775. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4776. {
  4777. digitalWrite(CONTROLLERFAN_PIN, 0);
  4778. analogWrite(CONTROLLERFAN_PIN, 0);
  4779. }
  4780. else
  4781. {
  4782. // allows digital or PWM fan output to be used (see M42 handling)
  4783. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4784. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4785. }
  4786. }
  4787. }
  4788. #endif
  4789. #ifdef TEMP_STAT_LEDS
  4790. static bool blue_led = false;
  4791. static bool red_led = false;
  4792. static uint32_t stat_update = 0;
  4793. void handle_status_leds(void) {
  4794. float max_temp = 0.0;
  4795. if(millis() > stat_update) {
  4796. stat_update += 500; // Update every 0.5s
  4797. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4798. max_temp = max(max_temp, degHotend(cur_extruder));
  4799. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4800. }
  4801. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4802. max_temp = max(max_temp, degTargetBed());
  4803. max_temp = max(max_temp, degBed());
  4804. #endif
  4805. if((max_temp > 55.0) && (red_led == false)) {
  4806. digitalWrite(STAT_LED_RED, 1);
  4807. digitalWrite(STAT_LED_BLUE, 0);
  4808. red_led = true;
  4809. blue_led = false;
  4810. }
  4811. if((max_temp < 54.0) && (blue_led == false)) {
  4812. digitalWrite(STAT_LED_RED, 0);
  4813. digitalWrite(STAT_LED_BLUE, 1);
  4814. red_led = false;
  4815. blue_led = true;
  4816. }
  4817. }
  4818. }
  4819. #endif
  4820. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4821. {
  4822. #if defined(KILL_PIN) && KILL_PIN > -1
  4823. static int killCount = 0; // make the inactivity button a bit less responsive
  4824. const int KILL_DELAY = 10000;
  4825. #endif
  4826. if(buflen < (BUFSIZE-1)){
  4827. get_command();
  4828. }
  4829. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4830. if(max_inactive_time)
  4831. kill();
  4832. if(stepper_inactive_time) {
  4833. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4834. {
  4835. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4836. disable_x();
  4837. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4838. disable_y();
  4839. disable_z();
  4840. disable_e0();
  4841. disable_e1();
  4842. disable_e2();
  4843. }
  4844. }
  4845. }
  4846. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4847. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4848. {
  4849. chdkActive = false;
  4850. WRITE(CHDK, LOW);
  4851. }
  4852. #endif
  4853. #if defined(KILL_PIN) && KILL_PIN > -1
  4854. // Check if the kill button was pressed and wait just in case it was an accidental
  4855. // key kill key press
  4856. // -------------------------------------------------------------------------------
  4857. if( 0 == READ(KILL_PIN) )
  4858. {
  4859. killCount++;
  4860. }
  4861. else if (killCount > 0)
  4862. {
  4863. killCount--;
  4864. }
  4865. // Exceeded threshold and we can confirm that it was not accidental
  4866. // KILL the machine
  4867. // ----------------------------------------------------------------
  4868. if ( killCount >= KILL_DELAY)
  4869. {
  4870. kill();
  4871. }
  4872. #endif
  4873. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4874. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4875. #endif
  4876. #ifdef EXTRUDER_RUNOUT_PREVENT
  4877. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4878. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4879. {
  4880. bool oldstatus=READ(E0_ENABLE_PIN);
  4881. enable_e0();
  4882. float oldepos=current_position[E_AXIS];
  4883. float oldedes=destination[E_AXIS];
  4884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4885. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4886. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4887. current_position[E_AXIS]=oldepos;
  4888. destination[E_AXIS]=oldedes;
  4889. plan_set_e_position(oldepos);
  4890. previous_millis_cmd=millis();
  4891. st_synchronize();
  4892. WRITE(E0_ENABLE_PIN,oldstatus);
  4893. }
  4894. #endif
  4895. #ifdef TEMP_STAT_LEDS
  4896. handle_status_leds();
  4897. #endif
  4898. check_axes_activity();
  4899. }
  4900. void kill(const char *full_screen_message)
  4901. {
  4902. cli(); // Stop interrupts
  4903. disable_heater();
  4904. disable_x();
  4905. // SERIAL_ECHOLNPGM("kill - disable Y");
  4906. disable_y();
  4907. disable_z();
  4908. disable_e0();
  4909. disable_e1();
  4910. disable_e2();
  4911. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4912. pinMode(PS_ON_PIN,INPUT);
  4913. #endif
  4914. SERIAL_ERROR_START;
  4915. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4916. if (full_screen_message != NULL) {
  4917. SERIAL_ERRORLNRPGM(full_screen_message);
  4918. lcd_display_message_fullscreen_P(full_screen_message);
  4919. } else {
  4920. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4921. }
  4922. // FMC small patch to update the LCD before ending
  4923. sei(); // enable interrupts
  4924. for ( int i=5; i--; lcd_update())
  4925. {
  4926. delay(200);
  4927. }
  4928. cli(); // disable interrupts
  4929. suicide();
  4930. while(1) { /* Intentionally left empty */ } // Wait for reset
  4931. }
  4932. void Stop()
  4933. {
  4934. disable_heater();
  4935. if(Stopped == false) {
  4936. Stopped = true;
  4937. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4938. SERIAL_ERROR_START;
  4939. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4940. LCD_MESSAGERPGM(MSG_STOPPED);
  4941. }
  4942. }
  4943. bool IsStopped() { return Stopped; };
  4944. #ifdef FAST_PWM_FAN
  4945. void setPwmFrequency(uint8_t pin, int val)
  4946. {
  4947. val &= 0x07;
  4948. switch(digitalPinToTimer(pin))
  4949. {
  4950. #if defined(TCCR0A)
  4951. case TIMER0A:
  4952. case TIMER0B:
  4953. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4954. // TCCR0B |= val;
  4955. break;
  4956. #endif
  4957. #if defined(TCCR1A)
  4958. case TIMER1A:
  4959. case TIMER1B:
  4960. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4961. // TCCR1B |= val;
  4962. break;
  4963. #endif
  4964. #if defined(TCCR2)
  4965. case TIMER2:
  4966. case TIMER2:
  4967. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4968. TCCR2 |= val;
  4969. break;
  4970. #endif
  4971. #if defined(TCCR2A)
  4972. case TIMER2A:
  4973. case TIMER2B:
  4974. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4975. TCCR2B |= val;
  4976. break;
  4977. #endif
  4978. #if defined(TCCR3A)
  4979. case TIMER3A:
  4980. case TIMER3B:
  4981. case TIMER3C:
  4982. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4983. TCCR3B |= val;
  4984. break;
  4985. #endif
  4986. #if defined(TCCR4A)
  4987. case TIMER4A:
  4988. case TIMER4B:
  4989. case TIMER4C:
  4990. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4991. TCCR4B |= val;
  4992. break;
  4993. #endif
  4994. #if defined(TCCR5A)
  4995. case TIMER5A:
  4996. case TIMER5B:
  4997. case TIMER5C:
  4998. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4999. TCCR5B |= val;
  5000. break;
  5001. #endif
  5002. }
  5003. }
  5004. #endif //FAST_PWM_FAN
  5005. bool setTargetedHotend(int code){
  5006. tmp_extruder = active_extruder;
  5007. if(code_seen('T')) {
  5008. tmp_extruder = code_value();
  5009. if(tmp_extruder >= EXTRUDERS) {
  5010. SERIAL_ECHO_START;
  5011. switch(code){
  5012. case 104:
  5013. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5014. break;
  5015. case 105:
  5016. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5017. break;
  5018. case 109:
  5019. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5020. break;
  5021. case 218:
  5022. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5023. break;
  5024. case 221:
  5025. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5026. break;
  5027. }
  5028. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5029. return true;
  5030. }
  5031. }
  5032. return false;
  5033. }
  5034. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5035. {
  5036. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5037. {
  5038. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5039. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5040. }
  5041. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5042. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5043. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5044. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5045. total_filament_used = 0;
  5046. }
  5047. float calculate_volumetric_multiplier(float diameter) {
  5048. float area = .0;
  5049. float radius = .0;
  5050. radius = diameter * .5;
  5051. if (! volumetric_enabled || radius == 0) {
  5052. area = 1;
  5053. }
  5054. else {
  5055. area = M_PI * pow(radius, 2);
  5056. }
  5057. return 1.0 / area;
  5058. }
  5059. void calculate_volumetric_multipliers() {
  5060. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5061. #if EXTRUDERS > 1
  5062. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5063. #if EXTRUDERS > 2
  5064. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5065. #endif
  5066. #endif
  5067. }
  5068. void delay_keep_alive(int ms)
  5069. {
  5070. for (;;) {
  5071. manage_heater();
  5072. // Manage inactivity, but don't disable steppers on timeout.
  5073. manage_inactivity(true);
  5074. lcd_update();
  5075. if (ms == 0)
  5076. break;
  5077. else if (ms >= 50) {
  5078. delay(50);
  5079. ms -= 50;
  5080. } else {
  5081. delay(ms);
  5082. ms = 0;
  5083. }
  5084. }
  5085. }
  5086. void check_babystep() {
  5087. int babystep_z;
  5088. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5089. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5090. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5091. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5092. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5093. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5094. lcd_update_enable(true);
  5095. }
  5096. }
  5097. #ifdef DIS
  5098. void d_setup()
  5099. {
  5100. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5101. pinMode(D_DATA, INPUT_PULLUP);
  5102. pinMode(D_REQUIRE, OUTPUT);
  5103. digitalWrite(D_REQUIRE, HIGH);
  5104. }
  5105. float d_ReadData()
  5106. {
  5107. int digit[13];
  5108. String mergeOutput;
  5109. float output;
  5110. digitalWrite(D_REQUIRE, HIGH);
  5111. for (int i = 0; i<13; i++)
  5112. {
  5113. for (int j = 0; j < 4; j++)
  5114. {
  5115. while (digitalRead(D_DATACLOCK) == LOW) {}
  5116. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5117. bitWrite(digit[i], j, digitalRead(D_DATA));
  5118. }
  5119. }
  5120. digitalWrite(D_REQUIRE, LOW);
  5121. mergeOutput = "";
  5122. output = 0;
  5123. for (int r = 5; r <= 10; r++) //Merge digits
  5124. {
  5125. mergeOutput += digit[r];
  5126. }
  5127. output = mergeOutput.toFloat();
  5128. if (digit[4] == 8) //Handle sign
  5129. {
  5130. output *= -1;
  5131. }
  5132. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5133. {
  5134. output /= 10;
  5135. }
  5136. return output;
  5137. }
  5138. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5139. int t1 = 0;
  5140. int t_delay = 0;
  5141. int digit[13];
  5142. int m;
  5143. char str[3];
  5144. //String mergeOutput;
  5145. char mergeOutput[15];
  5146. float output;
  5147. int mesh_point = 0; //index number of calibration point
  5148. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5149. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5150. float mesh_home_z_search = 4;
  5151. float row[x_points_num];
  5152. int ix = 0;
  5153. int iy = 0;
  5154. char* filename_wldsd = "wldsd.txt";
  5155. char data_wldsd[70];
  5156. char numb_wldsd[10];
  5157. d_setup();
  5158. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5159. // We don't know where we are! HOME!
  5160. // Push the commands to the front of the message queue in the reverse order!
  5161. // There shall be always enough space reserved for these commands.
  5162. repeatcommand_front(); // repeat G80 with all its parameters
  5163. enquecommand_front_P((PSTR("G28 W0")));
  5164. enquecommand_front_P((PSTR("G1 Z5")));
  5165. return;
  5166. }
  5167. bool custom_message_old = custom_message;
  5168. unsigned int custom_message_type_old = custom_message_type;
  5169. unsigned int custom_message_state_old = custom_message_state;
  5170. custom_message = true;
  5171. custom_message_type = 1;
  5172. custom_message_state = (x_points_num * y_points_num) + 10;
  5173. lcd_update(1);
  5174. mbl.reset();
  5175. babystep_undo();
  5176. card.openFile(filename_wldsd, false);
  5177. current_position[Z_AXIS] = mesh_home_z_search;
  5178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5179. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5180. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5181. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5182. setup_for_endstop_move(false);
  5183. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5184. SERIAL_PROTOCOL(x_points_num);
  5185. SERIAL_PROTOCOLPGM(",");
  5186. SERIAL_PROTOCOL(y_points_num);
  5187. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5188. SERIAL_PROTOCOL(mesh_home_z_search);
  5189. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5190. SERIAL_PROTOCOL(x_dimension);
  5191. SERIAL_PROTOCOLPGM(",");
  5192. SERIAL_PROTOCOL(y_dimension);
  5193. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5194. while (mesh_point != x_points_num * y_points_num) {
  5195. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5196. iy = mesh_point / x_points_num;
  5197. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5198. float z0 = 0.f;
  5199. current_position[Z_AXIS] = mesh_home_z_search;
  5200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5201. st_synchronize();
  5202. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5203. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5205. st_synchronize();
  5206. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5207. break;
  5208. card.closefile();
  5209. }
  5210. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5211. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5212. //strcat(data_wldsd, numb_wldsd);
  5213. //MYSERIAL.println(data_wldsd);
  5214. //delay(1000);
  5215. //delay(3000);
  5216. //t1 = millis();
  5217. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5218. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5219. memset(digit, 0, sizeof(digit));
  5220. //cli();
  5221. digitalWrite(D_REQUIRE, LOW);
  5222. for (int i = 0; i<13; i++)
  5223. {
  5224. //t1 = millis();
  5225. for (int j = 0; j < 4; j++)
  5226. {
  5227. while (digitalRead(D_DATACLOCK) == LOW) {}
  5228. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5229. bitWrite(digit[i], j, digitalRead(D_DATA));
  5230. }
  5231. //t_delay = (millis() - t1);
  5232. //SERIAL_PROTOCOLPGM(" ");
  5233. //SERIAL_PROTOCOL_F(t_delay, 5);
  5234. //SERIAL_PROTOCOLPGM(" ");
  5235. }
  5236. //sei();
  5237. digitalWrite(D_REQUIRE, HIGH);
  5238. mergeOutput[0] = '\0';
  5239. output = 0;
  5240. for (int r = 5; r <= 10; r++) //Merge digits
  5241. {
  5242. sprintf(str, "%d", digit[r]);
  5243. strcat(mergeOutput, str);
  5244. }
  5245. output = atof(mergeOutput);
  5246. if (digit[4] == 8) //Handle sign
  5247. {
  5248. output *= -1;
  5249. }
  5250. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5251. {
  5252. output *= 0.1;
  5253. }
  5254. //output = d_ReadData();
  5255. //row[ix] = current_position[Z_AXIS];
  5256. memset(data_wldsd, 0, sizeof(data_wldsd));
  5257. for (int i = 0; i <3; i++) {
  5258. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5259. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5260. strcat(data_wldsd, numb_wldsd);
  5261. strcat(data_wldsd, ";");
  5262. }
  5263. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5264. dtostrf(output, 8, 5, numb_wldsd);
  5265. strcat(data_wldsd, numb_wldsd);
  5266. //strcat(data_wldsd, ";");
  5267. card.write_command(data_wldsd);
  5268. //row[ix] = d_ReadData();
  5269. row[ix] = output; // current_position[Z_AXIS];
  5270. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5271. for (int i = 0; i < x_points_num; i++) {
  5272. SERIAL_PROTOCOLPGM(" ");
  5273. SERIAL_PROTOCOL_F(row[i], 5);
  5274. }
  5275. SERIAL_PROTOCOLPGM("\n");
  5276. }
  5277. custom_message_state--;
  5278. mesh_point++;
  5279. lcd_update(1);
  5280. }
  5281. card.closefile();
  5282. }
  5283. #endif