stepper.cpp 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef PAT9125
  33. #include "fsensor.h"
  34. int fsensor_counter = 0; //counter for e-steps
  35. #endif //PAT9125
  36. //===========================================================================
  37. //=============================public variables ============================
  38. //===========================================================================
  39. block_t *current_block; // A pointer to the block currently being traced
  40. bool x_min_endstop = false;
  41. bool x_max_endstop = false;
  42. bool y_min_endstop = false;
  43. bool y_max_endstop = false;
  44. bool z_min_endstop = false;
  45. bool z_max_endstop = false;
  46. //===========================================================================
  47. //=============================private variables ============================
  48. //===========================================================================
  49. //static makes it inpossible to be called from outside of this file by extern.!
  50. // Variables used by The Stepper Driver Interrupt
  51. static unsigned char out_bits; // The next stepping-bits to be output
  52. static int32_t counter_x, // Counter variables for the bresenham line tracer
  53. counter_y,
  54. counter_z,
  55. counter_e;
  56. volatile uint32_t step_events_completed; // The number of step events executed in the current block
  57. static int32_t acceleration_time, deceleration_time;
  58. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  59. static uint16_t acc_step_rate; // needed for deccelaration start point
  60. static uint8_t step_loops;
  61. static uint16_t OCR1A_nominal;
  62. static uint8_t step_loops_nominal;
  63. volatile long endstops_trigsteps[3]={0,0,0};
  64. volatile long endstops_stepsTotal,endstops_stepsDone;
  65. static volatile bool endstop_x_hit=false;
  66. static volatile bool endstop_y_hit=false;
  67. static volatile bool endstop_z_hit=false;
  68. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  69. bool abort_on_endstop_hit = false;
  70. #endif
  71. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  72. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  73. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  74. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  75. #endif
  76. static bool old_x_min_endstop=false;
  77. static bool old_x_max_endstop=false;
  78. static bool old_y_min_endstop=false;
  79. static bool old_y_max_endstop=false;
  80. static bool old_z_min_endstop=false;
  81. static bool old_z_max_endstop=false;
  82. static bool check_endstops = true;
  83. static bool check_z_endstop = false;
  84. int8_t SilentMode = 0;
  85. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  86. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  87. uint8_t LastStepMask = 0;
  88. #ifdef LIN_ADVANCE
  89. uint16_t ADV_NEVER = 65535;
  90. static uint16_t nextMainISR = 0;
  91. static uint16_t nextAdvanceISR = ADV_NEVER;
  92. static uint16_t eISR_Rate = ADV_NEVER;
  93. static volatile int e_steps; //Extrusion steps to be executed by the stepper
  94. static int final_estep_rate; //Speed of extruder at cruising speed
  95. static int current_estep_rate; //The current speed of the extruder
  96. static int current_adv_steps; //The current pretension of filament expressed in steps
  97. #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
  98. #define _NEXT_ISR(T) nextMainISR = T
  99. #else
  100. #define _NEXT_ISR(T) OCR1A = T
  101. #endif
  102. //===========================================================================
  103. //=============================functions ============================
  104. //===========================================================================
  105. #define CHECK_ENDSTOPS if(check_endstops)
  106. // intRes = intIn1 * intIn2 >> 16
  107. // uses:
  108. // r26 to store 0
  109. // r27 to store the byte 1 of the 24 bit result
  110. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  111. asm volatile ( \
  112. "clr r26 \n\t" \
  113. "mul %A1, %B2 \n\t" \
  114. "movw %A0, r0 \n\t" \
  115. "mul %A1, %A2 \n\t" \
  116. "add %A0, r1 \n\t" \
  117. "adc %B0, r26 \n\t" \
  118. "lsr r0 \n\t" \
  119. "adc %A0, r26 \n\t" \
  120. "adc %B0, r26 \n\t" \
  121. "clr r1 \n\t" \
  122. : \
  123. "=&r" (intRes) \
  124. : \
  125. "d" (charIn1), \
  126. "d" (intIn2) \
  127. : \
  128. "r26" \
  129. )
  130. // intRes = longIn1 * longIn2 >> 24
  131. // uses:
  132. // r26 to store 0
  133. // r27 to store the byte 1 of the 48bit result
  134. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  135. asm volatile ( \
  136. "clr r26 \n\t" \
  137. "mul %A1, %B2 \n\t" \
  138. "mov r27, r1 \n\t" \
  139. "mul %B1, %C2 \n\t" \
  140. "movw %A0, r0 \n\t" \
  141. "mul %C1, %C2 \n\t" \
  142. "add %B0, r0 \n\t" \
  143. "mul %C1, %B2 \n\t" \
  144. "add %A0, r0 \n\t" \
  145. "adc %B0, r1 \n\t" \
  146. "mul %A1, %C2 \n\t" \
  147. "add r27, r0 \n\t" \
  148. "adc %A0, r1 \n\t" \
  149. "adc %B0, r26 \n\t" \
  150. "mul %B1, %B2 \n\t" \
  151. "add r27, r0 \n\t" \
  152. "adc %A0, r1 \n\t" \
  153. "adc %B0, r26 \n\t" \
  154. "mul %C1, %A2 \n\t" \
  155. "add r27, r0 \n\t" \
  156. "adc %A0, r1 \n\t" \
  157. "adc %B0, r26 \n\t" \
  158. "mul %B1, %A2 \n\t" \
  159. "add r27, r1 \n\t" \
  160. "adc %A0, r26 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "lsr r27 \n\t" \
  163. "adc %A0, r26 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "clr r1 \n\t" \
  166. : \
  167. "=&r" (intRes) \
  168. : \
  169. "d" (longIn1), \
  170. "d" (longIn2) \
  171. : \
  172. "r26" , "r27" \
  173. )
  174. // Some useful constants
  175. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  176. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  177. void checkHitEndstops()
  178. {
  179. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  180. SERIAL_ECHO_START;
  181. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  182. if(endstop_x_hit) {
  183. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  184. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  185. }
  186. if(endstop_y_hit) {
  187. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  188. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  189. }
  190. if(endstop_z_hit) {
  191. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  192. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  193. }
  194. SERIAL_ECHOLN("");
  195. endstop_x_hit=false;
  196. endstop_y_hit=false;
  197. endstop_z_hit=false;
  198. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  199. if (abort_on_endstop_hit)
  200. {
  201. card.sdprinting = false;
  202. card.closefile();
  203. quickStop();
  204. setTargetHotend0(0);
  205. setTargetHotend1(0);
  206. setTargetHotend2(0);
  207. }
  208. #endif
  209. }
  210. }
  211. bool endstops_hit_on_purpose()
  212. {
  213. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  214. endstop_x_hit=false;
  215. endstop_y_hit=false;
  216. endstop_z_hit=false;
  217. return hit;
  218. }
  219. bool endstop_z_hit_on_purpose()
  220. {
  221. bool hit = endstop_z_hit;
  222. endstop_z_hit=false;
  223. return hit;
  224. }
  225. bool enable_endstops(bool check)
  226. {
  227. bool old = check_endstops;
  228. check_endstops = check;
  229. return old;
  230. }
  231. bool enable_z_endstop(bool check)
  232. {
  233. bool old = check_z_endstop;
  234. check_z_endstop = check;
  235. endstop_z_hit=false;
  236. return old;
  237. }
  238. // __________________________
  239. // /| |\ _________________ ^
  240. // / | | \ /| |\ |
  241. // / | | \ / | | \ s
  242. // / | | | | | \ p
  243. // / | | | | | \ e
  244. // +-----+------------------------+---+--+---------------+----+ e
  245. // | BLOCK 1 | BLOCK 2 | d
  246. //
  247. // time ----->
  248. //
  249. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  250. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  251. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  252. // The slope of acceleration is calculated with the leib ramp alghorithm.
  253. void st_wake_up() {
  254. // TCNT1 = 0;
  255. ENABLE_STEPPER_DRIVER_INTERRUPT();
  256. }
  257. void step_wait(){
  258. for(int8_t i=0; i < 6; i++){
  259. }
  260. }
  261. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  262. unsigned short timer;
  263. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  264. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  265. step_rate = (step_rate >> 2)&0x3fff;
  266. step_loops = 4;
  267. }
  268. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  269. step_rate = (step_rate >> 1)&0x7fff;
  270. step_loops = 2;
  271. }
  272. else {
  273. step_loops = 1;
  274. }
  275. // step_loops = 1;
  276. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  277. step_rate -= (F_CPU/500000); // Correct for minimal speed
  278. if(step_rate >= (8*256)){ // higher step rate
  279. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  280. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  281. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  282. MultiU16X8toH16(timer, tmp_step_rate, gain);
  283. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  284. }
  285. else { // lower step rates
  286. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  287. table_address += ((step_rate)>>1) & 0xfffc;
  288. timer = (unsigned short)pgm_read_word_near(table_address);
  289. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  290. }
  291. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  292. return timer;
  293. }
  294. // Initializes the trapezoid generator from the current block. Called whenever a new
  295. // block begins.
  296. FORCE_INLINE void trapezoid_generator_reset() {
  297. deceleration_time = 0;
  298. // step_rate to timer interval
  299. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  300. // make a note of the number of step loops required at nominal speed
  301. step_loops_nominal = step_loops;
  302. acc_step_rate = current_block->initial_rate;
  303. acceleration_time = calc_timer(acc_step_rate);
  304. _NEXT_ISR(acceleration_time);
  305. #ifdef LIN_ADVANCE
  306. if (current_block->use_advance_lead) {
  307. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  308. final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  309. }
  310. #endif
  311. }
  312. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  313. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  314. ISR(TIMER1_COMPA_vect) {
  315. #ifdef LIN_ADVANCE
  316. advance_isr_scheduler();
  317. #else
  318. isr();
  319. #endif
  320. }
  321. void isr() {
  322. //if (UVLO) uvlo();
  323. // If there is no current block, attempt to pop one from the buffer
  324. if (current_block == NULL) {
  325. // Anything in the buffer?
  326. current_block = plan_get_current_block();
  327. if (current_block != NULL) {
  328. #ifdef PAT9125
  329. fsensor_counter = 0;
  330. fsensor_st_block_begin(current_block);
  331. #endif //PAT9125
  332. // The busy flag is set by the plan_get_current_block() call.
  333. // current_block->busy = true;
  334. trapezoid_generator_reset();
  335. counter_x = -(current_block->step_event_count >> 1);
  336. counter_y = counter_x;
  337. counter_z = counter_x;
  338. counter_e = counter_x;
  339. step_events_completed = 0;
  340. #ifdef Z_LATE_ENABLE
  341. if(current_block->steps_z > 0) {
  342. enable_z();
  343. _NEXT_ISR(2000); //1ms wait
  344. return;
  345. }
  346. #endif
  347. }
  348. else {
  349. _NEXT_ISR(2000); // 1kHz.
  350. }
  351. }
  352. LastStepMask = 0;
  353. if (current_block != NULL) {
  354. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  355. out_bits = current_block->direction_bits;
  356. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  357. if((out_bits & (1<<X_AXIS))!=0){
  358. WRITE(X_DIR_PIN, INVERT_X_DIR);
  359. count_direction[X_AXIS]=-1;
  360. }
  361. else{
  362. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  363. count_direction[X_AXIS]=1;
  364. }
  365. if((out_bits & (1<<Y_AXIS))!=0){
  366. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  367. #ifdef Y_DUAL_STEPPER_DRIVERS
  368. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  369. #endif
  370. count_direction[Y_AXIS]=-1;
  371. }
  372. else{
  373. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  374. #ifdef Y_DUAL_STEPPER_DRIVERS
  375. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  376. #endif
  377. count_direction[Y_AXIS]=1;
  378. }
  379. // Set direction en check limit switches
  380. #ifndef COREXY
  381. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  382. #else
  383. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  384. #endif
  385. CHECK_ENDSTOPS
  386. {
  387. {
  388. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  389. #ifdef TMC2130_SG_HOMING
  390. // Stall guard homing turned on, now decide if software or hardware one
  391. #ifndef TMC2130_SG_HOMING_SW_XY
  392. x_min_endstop = (READ(X_TMC2130_DIAG) != X_MIN_ENDSTOP_INVERTING);
  393. #else //TMC2130_SG_HOMING_SW_XY
  394. x_min_endstop = tmc2130_axis_stalled[X_AXIS];
  395. #endif //TMC2130_SG_HOMING_SW_XY
  396. #else
  397. // Normal homing
  398. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  399. #endif
  400. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  401. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  402. endstop_x_hit=true;
  403. step_events_completed = current_block->step_event_count;
  404. }
  405. old_x_min_endstop = x_min_endstop;
  406. #endif
  407. }
  408. }
  409. }
  410. else { // +direction
  411. CHECK_ENDSTOPS
  412. {
  413. {
  414. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  415. #ifdef TMC2130_SG_HOMING
  416. // Stall guard homing turned on, now decide if software or hardware one
  417. #ifndef TMC2130_SG_HOMING_SW_XY
  418. x_max_endstop = (READ(X_TMC2130_DIAG) != X_MAX_ENDSTOP_INVERTING);
  419. #else //TMC2130_SG_HOMING_SW_XY
  420. x_max_endstop = tmc2130_axis_stalled[X_AXIS];
  421. #endif //TMC2130_SG_HOMING_SW_XY
  422. #else
  423. // Normal homing
  424. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  425. #endif
  426. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  427. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  428. endstop_x_hit=true;
  429. step_events_completed = current_block->step_event_count;
  430. }
  431. old_x_max_endstop = x_max_endstop;
  432. #endif
  433. }
  434. }
  435. }
  436. #ifndef COREXY
  437. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  438. #else
  439. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  440. #endif
  441. CHECK_ENDSTOPS
  442. {
  443. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  444. #ifdef TMC2130_SG_HOMING
  445. // Stall guard homing turned on, now decide if software or hardware one
  446. #ifndef TMC2130_SG_HOMING_SW_XY
  447. y_min_endstop = (READ(Y_TMC2130_DIAG) != Y_MIN_ENDSTOP_INVERTING);
  448. #else //TMC2130_SG_HOMING_SW_XY
  449. y_min_endstop = tmc2130_axis_stalled[Y_AXIS];
  450. #endif //TMC2130_SG_HOMING_SW_XY
  451. #else
  452. // Normal homing
  453. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  454. #endif
  455. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  456. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  457. endstop_y_hit=true;
  458. step_events_completed = current_block->step_event_count;
  459. }
  460. old_y_min_endstop = y_min_endstop;
  461. #endif
  462. }
  463. }
  464. else { // +direction
  465. CHECK_ENDSTOPS
  466. {
  467. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  468. #ifdef TMC2130_SG_HOMING
  469. // Stall guard homing turned on, now decide if software or hardware one
  470. #ifndef TMC2130_SG_HOMING_SW_XY
  471. y_max_endstop = (READ(Y_TMC2130_DIAG) != Y_MAX_ENDSTOP_INVERTING);
  472. #else //TMC2130_SG_HOMING_SW_XY
  473. y_max_endstop = tmc2130_axis_stalled[Y_AXIS];
  474. #endif //TMC2130_SG_HOMING_SW_XY
  475. #else
  476. // Normal homing
  477. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  478. #endif
  479. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  480. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  481. endstop_y_hit=true;
  482. step_events_completed = current_block->step_event_count;
  483. }
  484. old_y_max_endstop = y_max_endstop;
  485. #endif
  486. }
  487. }
  488. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  489. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  490. #ifdef Z_DUAL_STEPPER_DRIVERS
  491. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  492. #endif
  493. count_direction[Z_AXIS]=-1;
  494. if(check_endstops && ! check_z_endstop)
  495. {
  496. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  497. z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  498. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  499. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  500. endstop_z_hit=true;
  501. step_events_completed = current_block->step_event_count;
  502. }
  503. old_z_min_endstop = z_min_endstop;
  504. #endif
  505. }
  506. }
  507. else { // +direction
  508. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  509. #ifdef Z_DUAL_STEPPER_DRIVERS
  510. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  511. #endif
  512. count_direction[Z_AXIS]=1;
  513. CHECK_ENDSTOPS
  514. {
  515. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  516. #ifndef TMC2130_SG_HOMING_SW_Z
  517. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  518. #else //TMC2130_SG_HOMING_SW_Z
  519. z_max_endstop = tmc2130_axis_stalled[Z_AXIS];
  520. #endif //TMC2130_SG_HOMING_SW_Z
  521. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  522. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  523. endstop_z_hit=true;
  524. step_events_completed = current_block->step_event_count;
  525. }
  526. old_z_max_endstop = z_max_endstop;
  527. #endif
  528. }
  529. }
  530. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  531. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  532. if(check_z_endstop) {
  533. // Check the Z min end-stop no matter what.
  534. // Good for searching for the center of an induction target.
  535. z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  536. if(z_min_endstop && old_z_min_endstop) {
  537. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  538. endstop_z_hit=true;
  539. step_events_completed = current_block->step_event_count;
  540. }
  541. old_z_min_endstop = z_min_endstop;
  542. }
  543. #endif
  544. if ((out_bits & (1 << E_AXIS)) != 0)
  545. { // -direction
  546. //AKU
  547. #ifdef SNMM
  548. if (snmm_extruder == 0 || snmm_extruder == 2)
  549. {
  550. NORM_E_DIR();
  551. }
  552. else
  553. {
  554. REV_E_DIR();
  555. }
  556. #else
  557. REV_E_DIR();
  558. #endif // SNMM
  559. count_direction[E_AXIS] = -1;
  560. }
  561. else
  562. { // +direction
  563. #ifdef SNMM
  564. if (snmm_extruder == 0 || snmm_extruder == 2)
  565. {
  566. REV_E_DIR();
  567. }
  568. else
  569. {
  570. NORM_E_DIR();
  571. }
  572. #else
  573. NORM_E_DIR();
  574. #endif // SNMM
  575. count_direction[E_AXIS] = 1;
  576. }
  577. for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  578. #ifndef AT90USB
  579. MSerial.checkRx(); // Check for serial chars.
  580. #endif
  581. #ifdef LIN_ADVANCE
  582. counter_e += current_block->steps_e;
  583. if (counter_e > 0) {
  584. counter_e -= current_block->step_event_count;
  585. count_position[E_AXIS] += count_direction[E_AXIS];
  586. ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
  587. }
  588. #endif
  589. counter_x += current_block->steps_x;
  590. if (counter_x > 0) {
  591. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  592. LastStepMask |= X_AXIS_MASK;
  593. #ifdef DEBUG_XSTEP_DUP_PIN
  594. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  595. #endif //DEBUG_XSTEP_DUP_PIN
  596. counter_x -= current_block->step_event_count;
  597. count_position[X_AXIS]+=count_direction[X_AXIS];
  598. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  599. #ifdef DEBUG_XSTEP_DUP_PIN
  600. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  601. #endif //DEBUG_XSTEP_DUP_PIN
  602. }
  603. counter_y += current_block->steps_y;
  604. if (counter_y > 0) {
  605. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  606. LastStepMask |= Y_AXIS_MASK;
  607. #ifdef DEBUG_YSTEP_DUP_PIN
  608. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  609. #endif //DEBUG_YSTEP_DUP_PIN
  610. #ifdef Y_DUAL_STEPPER_DRIVERS
  611. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  612. #endif
  613. counter_y -= current_block->step_event_count;
  614. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  615. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  616. #ifdef DEBUG_YSTEP_DUP_PIN
  617. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  618. #endif //DEBUG_YSTEP_DUP_PIN
  619. #ifdef Y_DUAL_STEPPER_DRIVERS
  620. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  621. #endif
  622. }
  623. counter_z += current_block->steps_z;
  624. if (counter_z > 0) {
  625. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  626. LastStepMask |= Z_AXIS_MASK;
  627. #ifdef Z_DUAL_STEPPER_DRIVERS
  628. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  629. #endif
  630. counter_z -= current_block->step_event_count;
  631. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  632. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  633. #ifdef Z_DUAL_STEPPER_DRIVERS
  634. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  635. #endif
  636. }
  637. #ifndef LIN_ADVANCE
  638. counter_e += current_block->steps_e;
  639. if (counter_e > 0) {
  640. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  641. counter_e -= current_block->step_event_count;
  642. count_position[E_AXIS]+=count_direction[E_AXIS];
  643. WRITE_E_STEP(INVERT_E_STEP_PIN);
  644. #ifdef PAT9125
  645. fsensor_counter++;
  646. #endif //PAT9125
  647. }
  648. #endif
  649. step_events_completed += 1;
  650. if(step_events_completed >= current_block->step_event_count) break;
  651. }
  652. #ifdef LIN_ADVANCE
  653. if (current_block->use_advance_lead) {
  654. const int delta_adv_steps = current_estep_rate - current_adv_steps;
  655. current_adv_steps += delta_adv_steps;
  656. e_steps += delta_adv_steps;
  657. }
  658. // If we have esteps to execute, fire the next advance_isr "now"
  659. if (e_steps) nextAdvanceISR = 0;
  660. #endif
  661. // Calculare new timer value
  662. unsigned short timer;
  663. unsigned short step_rate;
  664. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  665. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  666. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  667. acc_step_rate += current_block->initial_rate;
  668. // upper limit
  669. if(acc_step_rate > current_block->nominal_rate)
  670. acc_step_rate = current_block->nominal_rate;
  671. // step_rate to timer interval
  672. timer = calc_timer(acc_step_rate);
  673. _NEXT_ISR(timer);
  674. acceleration_time += timer;
  675. #ifdef LIN_ADVANCE
  676. if (current_block->use_advance_lead) {
  677. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  678. }
  679. eISR_Rate = ADV_RATE(timer, step_loops);
  680. #endif
  681. }
  682. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  683. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  684. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  685. step_rate = current_block->final_rate;
  686. }
  687. else {
  688. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  689. }
  690. // lower limit
  691. if(step_rate < current_block->final_rate)
  692. step_rate = current_block->final_rate;
  693. // step_rate to timer interval
  694. timer = calc_timer(step_rate);
  695. _NEXT_ISR(timer);
  696. deceleration_time += timer;
  697. #ifdef LIN_ADVANCE
  698. if (current_block->use_advance_lead) {
  699. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  700. }
  701. eISR_Rate = ADV_RATE(timer, step_loops);
  702. #endif
  703. }
  704. else {
  705. #ifdef LIN_ADVANCE
  706. if (current_block->use_advance_lead)
  707. current_estep_rate = final_estep_rate;
  708. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  709. #endif
  710. _NEXT_ISR(OCR1A_nominal);
  711. // ensure we're running at the correct step rate, even if we just came off an acceleration
  712. step_loops = step_loops_nominal;
  713. }
  714. // If current block is finished, reset pointer
  715. if (step_events_completed >= current_block->step_event_count) {
  716. #ifdef PAT9125
  717. fsensor_st_block_chunk(current_block, fsensor_counter);
  718. fsensor_counter = 0;
  719. #endif //PAT9125
  720. current_block = NULL;
  721. plan_discard_current_block();
  722. }
  723. #ifdef PAT9125
  724. else if (fsensor_counter >= fsensor_chunk_len)
  725. {
  726. fsensor_st_block_chunk(current_block, fsensor_counter);
  727. fsensor_counter = 0;
  728. }
  729. #endif //PAT9125
  730. }
  731. #ifdef TMC2130
  732. tmc2130_st_isr(LastStepMask);
  733. #endif //TMC2130
  734. }
  735. #ifdef LIN_ADVANCE
  736. // Timer interrupt for E. e_steps is set in the main routine.
  737. void advance_isr() {
  738. nextAdvanceISR = eISR_Rate;
  739. if (e_steps) {
  740. bool dir =
  741. #ifdef SNMM
  742. ((e_steps < 0) == (snmm_extruder & 1))
  743. #else
  744. (e_steps < 0)
  745. #endif
  746. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  747. WRITE(E0_DIR_PIN, dir);
  748. for (uint8_t i = step_loops; e_steps && i--;) {
  749. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  750. e_steps < 0 ? ++e_steps : --e_steps;
  751. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  752. #ifdef PAT9125
  753. fsensor_counter++;
  754. #endif //PAT9125
  755. }
  756. }
  757. }
  758. void advance_isr_scheduler() {
  759. // Run main stepping ISR if flagged
  760. if (!nextMainISR) isr();
  761. // Run Advance stepping ISR if flagged
  762. if (!nextAdvanceISR) advance_isr();
  763. // Is the next advance ISR scheduled before the next main ISR?
  764. if (nextAdvanceISR <= nextMainISR) {
  765. // Set up the next interrupt
  766. OCR1A = nextAdvanceISR;
  767. // New interval for the next main ISR
  768. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  769. // Will call Stepper::advance_isr on the next interrupt
  770. nextAdvanceISR = 0;
  771. }
  772. else {
  773. // The next main ISR comes first
  774. OCR1A = nextMainISR;
  775. // New interval for the next advance ISR, if any
  776. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  777. nextAdvanceISR -= nextMainISR;
  778. // Will call Stepper::isr on the next interrupt
  779. nextMainISR = 0;
  780. }
  781. // Don't run the ISR faster than possible
  782. if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
  783. }
  784. void clear_current_adv_vars() {
  785. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  786. current_adv_steps = 0;
  787. }
  788. #endif // LIN_ADVANCE
  789. void st_init()
  790. {
  791. #ifdef TMC2130
  792. tmc2130_init();
  793. #endif //TMC2130
  794. digipot_init(); //Initialize Digipot Motor Current
  795. microstep_init(); //Initialize Microstepping Pins
  796. //Initialize Dir Pins
  797. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  798. SET_OUTPUT(X_DIR_PIN);
  799. #endif
  800. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  801. SET_OUTPUT(X2_DIR_PIN);
  802. #endif
  803. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  804. SET_OUTPUT(Y_DIR_PIN);
  805. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  806. SET_OUTPUT(Y2_DIR_PIN);
  807. #endif
  808. #endif
  809. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  810. SET_OUTPUT(Z_DIR_PIN);
  811. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  812. SET_OUTPUT(Z2_DIR_PIN);
  813. #endif
  814. #endif
  815. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  816. SET_OUTPUT(E0_DIR_PIN);
  817. #endif
  818. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  819. SET_OUTPUT(E1_DIR_PIN);
  820. #endif
  821. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  822. SET_OUTPUT(E2_DIR_PIN);
  823. #endif
  824. //Initialize Enable Pins - steppers default to disabled.
  825. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  826. SET_OUTPUT(X_ENABLE_PIN);
  827. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  828. #endif
  829. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  830. SET_OUTPUT(X2_ENABLE_PIN);
  831. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  832. #endif
  833. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  834. SET_OUTPUT(Y_ENABLE_PIN);
  835. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  836. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  837. SET_OUTPUT(Y2_ENABLE_PIN);
  838. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  842. SET_OUTPUT(Z_ENABLE_PIN);
  843. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  844. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  845. SET_OUTPUT(Z2_ENABLE_PIN);
  846. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  850. SET_OUTPUT(E0_ENABLE_PIN);
  851. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  852. #endif
  853. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  854. SET_OUTPUT(E1_ENABLE_PIN);
  855. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  856. #endif
  857. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  858. SET_OUTPUT(E2_ENABLE_PIN);
  859. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  860. #endif
  861. //endstops and pullups
  862. #ifdef TMC2130_SG_HOMING
  863. SET_INPUT(X_TMC2130_DIAG);
  864. WRITE(X_TMC2130_DIAG,HIGH);
  865. SET_INPUT(Y_TMC2130_DIAG);
  866. WRITE(Y_TMC2130_DIAG,HIGH);
  867. SET_INPUT(Z_TMC2130_DIAG);
  868. WRITE(Z_TMC2130_DIAG,HIGH);
  869. #endif
  870. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  871. SET_INPUT(X_MIN_PIN);
  872. #ifdef ENDSTOPPULLUP_XMIN
  873. WRITE(X_MIN_PIN,HIGH);
  874. #endif
  875. #endif
  876. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  877. SET_INPUT(Y_MIN_PIN);
  878. #ifdef ENDSTOPPULLUP_YMIN
  879. WRITE(Y_MIN_PIN,HIGH);
  880. #endif
  881. #endif
  882. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  883. SET_INPUT(Z_MIN_PIN);
  884. #ifdef ENDSTOPPULLUP_ZMIN
  885. WRITE(Z_MIN_PIN,HIGH);
  886. #endif
  887. #endif
  888. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  889. SET_INPUT(X_MAX_PIN);
  890. #ifdef ENDSTOPPULLUP_XMAX
  891. WRITE(X_MAX_PIN,HIGH);
  892. #endif
  893. #endif
  894. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  895. SET_INPUT(Y_MAX_PIN);
  896. #ifdef ENDSTOPPULLUP_YMAX
  897. WRITE(Y_MAX_PIN,HIGH);
  898. #endif
  899. #endif
  900. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  901. SET_INPUT(Z_MAX_PIN);
  902. #ifdef ENDSTOPPULLUP_ZMAX
  903. WRITE(Z_MAX_PIN,HIGH);
  904. #endif
  905. #endif
  906. //Initialize Step Pins
  907. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  908. SET_OUTPUT(X_STEP_PIN);
  909. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  910. #ifdef DEBUG_XSTEP_DUP_PIN
  911. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  912. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  913. #endif //DEBUG_XSTEP_DUP_PIN
  914. disable_x();
  915. #endif
  916. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  917. SET_OUTPUT(X2_STEP_PIN);
  918. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  919. disable_x();
  920. #endif
  921. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  922. SET_OUTPUT(Y_STEP_PIN);
  923. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  924. #ifdef DEBUG_YSTEP_DUP_PIN
  925. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  926. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  927. #endif //DEBUG_YSTEP_DUP_PIN
  928. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  929. SET_OUTPUT(Y2_STEP_PIN);
  930. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  931. #endif
  932. disable_y();
  933. #endif
  934. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  935. SET_OUTPUT(Z_STEP_PIN);
  936. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  937. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  938. SET_OUTPUT(Z2_STEP_PIN);
  939. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  940. #endif
  941. disable_z();
  942. #endif
  943. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  944. SET_OUTPUT(E0_STEP_PIN);
  945. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  946. disable_e0();
  947. #endif
  948. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  949. SET_OUTPUT(E1_STEP_PIN);
  950. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  951. disable_e1();
  952. #endif
  953. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  954. SET_OUTPUT(E2_STEP_PIN);
  955. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  956. disable_e2();
  957. #endif
  958. // waveform generation = 0100 = CTC
  959. TCCR1B &= ~(1<<WGM13);
  960. TCCR1B |= (1<<WGM12);
  961. TCCR1A &= ~(1<<WGM11);
  962. TCCR1A &= ~(1<<WGM10);
  963. // output mode = 00 (disconnected)
  964. TCCR1A &= ~(3<<COM1A0);
  965. TCCR1A &= ~(3<<COM1B0);
  966. // Set the timer pre-scaler
  967. // Generally we use a divider of 8, resulting in a 2MHz timer
  968. // frequency on a 16MHz MCU. If you are going to change this, be
  969. // sure to regenerate speed_lookuptable.h with
  970. // create_speed_lookuptable.py
  971. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  972. OCR1A = 0x4000;
  973. TCNT1 = 0;
  974. ENABLE_STEPPER_DRIVER_INTERRUPT();
  975. #ifdef LIN_ADVANCE
  976. e_steps = 0;
  977. current_adv_steps = 0;
  978. #endif
  979. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  980. sei();
  981. }
  982. // Block until all buffered steps are executed
  983. void st_synchronize()
  984. {
  985. while(blocks_queued())
  986. {
  987. #ifdef TMC2130
  988. manage_heater();
  989. // Vojtech: Don't disable motors inside the planner!
  990. if (!tmc2130_update_sg())
  991. {
  992. manage_inactivity(true);
  993. lcd_update();
  994. }
  995. #else //TMC2130
  996. manage_heater();
  997. // Vojtech: Don't disable motors inside the planner!
  998. manage_inactivity(true);
  999. lcd_update();
  1000. #endif //TMC2130
  1001. }
  1002. }
  1003. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1004. {
  1005. CRITICAL_SECTION_START;
  1006. count_position[X_AXIS] = x;
  1007. count_position[Y_AXIS] = y;
  1008. count_position[Z_AXIS] = z;
  1009. count_position[E_AXIS] = e;
  1010. CRITICAL_SECTION_END;
  1011. }
  1012. void st_set_e_position(const long &e)
  1013. {
  1014. CRITICAL_SECTION_START;
  1015. count_position[E_AXIS] = e;
  1016. CRITICAL_SECTION_END;
  1017. }
  1018. long st_get_position(uint8_t axis)
  1019. {
  1020. long count_pos;
  1021. CRITICAL_SECTION_START;
  1022. count_pos = count_position[axis];
  1023. CRITICAL_SECTION_END;
  1024. return count_pos;
  1025. }
  1026. void st_get_position_xy(long &x, long &y)
  1027. {
  1028. CRITICAL_SECTION_START;
  1029. x = count_position[X_AXIS];
  1030. y = count_position[Y_AXIS];
  1031. CRITICAL_SECTION_END;
  1032. }
  1033. float st_get_position_mm(uint8_t axis)
  1034. {
  1035. float steper_position_in_steps = st_get_position(axis);
  1036. return steper_position_in_steps / axis_steps_per_unit[axis];
  1037. }
  1038. void finishAndDisableSteppers()
  1039. {
  1040. st_synchronize();
  1041. disable_x();
  1042. disable_y();
  1043. disable_z();
  1044. disable_e0();
  1045. disable_e1();
  1046. disable_e2();
  1047. }
  1048. void quickStop()
  1049. {
  1050. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1051. while (blocks_queued()) plan_discard_current_block();
  1052. current_block = NULL;
  1053. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1054. }
  1055. #ifdef BABYSTEPPING
  1056. void babystep(const uint8_t axis,const bool direction)
  1057. {
  1058. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1059. //store initial pin states
  1060. switch(axis)
  1061. {
  1062. case X_AXIS:
  1063. {
  1064. enable_x();
  1065. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1066. //setup new step
  1067. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1068. //perform step
  1069. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1070. LastStepMask |= X_AXIS_MASK;
  1071. #ifdef DEBUG_XSTEP_DUP_PIN
  1072. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1073. #endif //DEBUG_XSTEP_DUP_PIN
  1074. {
  1075. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1076. }
  1077. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1078. #ifdef DEBUG_XSTEP_DUP_PIN
  1079. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1080. #endif //DEBUG_XSTEP_DUP_PIN
  1081. //get old pin state back.
  1082. WRITE(X_DIR_PIN,old_x_dir_pin);
  1083. }
  1084. break;
  1085. case Y_AXIS:
  1086. {
  1087. enable_y();
  1088. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1089. //setup new step
  1090. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1091. //perform step
  1092. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1093. LastStepMask |= Y_AXIS_MASK;
  1094. #ifdef DEBUG_YSTEP_DUP_PIN
  1095. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1096. #endif //DEBUG_YSTEP_DUP_PIN
  1097. {
  1098. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1099. }
  1100. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1101. #ifdef DEBUG_YSTEP_DUP_PIN
  1102. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1103. #endif //DEBUG_YSTEP_DUP_PIN
  1104. //get old pin state back.
  1105. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1106. }
  1107. break;
  1108. case Z_AXIS:
  1109. {
  1110. enable_z();
  1111. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1112. //setup new step
  1113. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1114. #ifdef Z_DUAL_STEPPER_DRIVERS
  1115. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1116. #endif
  1117. //perform step
  1118. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1119. LastStepMask |= Z_AXIS_MASK;
  1120. #ifdef Z_DUAL_STEPPER_DRIVERS
  1121. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1122. #endif
  1123. //wait a tiny bit
  1124. {
  1125. volatile float x=1./float(axis+1); //absolutely useless
  1126. }
  1127. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1128. #ifdef Z_DUAL_STEPPER_DRIVERS
  1129. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1130. #endif
  1131. //get old pin state back.
  1132. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1133. #ifdef Z_DUAL_STEPPER_DRIVERS
  1134. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1135. #endif
  1136. }
  1137. break;
  1138. default: break;
  1139. }
  1140. }
  1141. #endif //BABYSTEPPING
  1142. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1143. {
  1144. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1145. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1146. SPI.transfer(address); // send in the address and value via SPI:
  1147. SPI.transfer(value);
  1148. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1149. //delay(10);
  1150. #endif
  1151. }
  1152. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1153. {
  1154. do
  1155. {
  1156. *value = eeprom_read_byte((unsigned char*)pos);
  1157. pos++;
  1158. value++;
  1159. }while(--size);
  1160. }
  1161. void digipot_init() //Initialize Digipot Motor Current
  1162. {
  1163. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1164. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1165. if(SilentMode == 0){
  1166. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1167. }else{
  1168. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1169. }
  1170. SPI.begin();
  1171. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1172. for(int i=0;i<=4;i++)
  1173. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1174. digipot_current(i,digipot_motor_current[i]);
  1175. #endif
  1176. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1177. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1178. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1179. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1180. if((SilentMode == 0) || (farm_mode) ){
  1181. motor_current_setting[0] = motor_current_setting_loud[0];
  1182. motor_current_setting[1] = motor_current_setting_loud[1];
  1183. motor_current_setting[2] = motor_current_setting_loud[2];
  1184. }else{
  1185. motor_current_setting[0] = motor_current_setting_silent[0];
  1186. motor_current_setting[1] = motor_current_setting_silent[1];
  1187. motor_current_setting[2] = motor_current_setting_silent[2];
  1188. }
  1189. digipot_current(0, motor_current_setting[0]);
  1190. digipot_current(1, motor_current_setting[1]);
  1191. digipot_current(2, motor_current_setting[2]);
  1192. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1193. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1194. #endif
  1195. }
  1196. void digipot_current(uint8_t driver, int current)
  1197. {
  1198. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1199. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1200. digitalPotWrite(digipot_ch[driver], current);
  1201. #endif
  1202. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1203. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1204. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1205. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1206. #endif
  1207. }
  1208. void microstep_init()
  1209. {
  1210. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1211. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1212. pinMode(E1_MS1_PIN,OUTPUT);
  1213. pinMode(E1_MS2_PIN,OUTPUT);
  1214. #endif
  1215. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1216. pinMode(X_MS1_PIN,OUTPUT);
  1217. pinMode(X_MS2_PIN,OUTPUT);
  1218. pinMode(Y_MS1_PIN,OUTPUT);
  1219. pinMode(Y_MS2_PIN,OUTPUT);
  1220. pinMode(Z_MS1_PIN,OUTPUT);
  1221. pinMode(Z_MS2_PIN,OUTPUT);
  1222. pinMode(E0_MS1_PIN,OUTPUT);
  1223. pinMode(E0_MS2_PIN,OUTPUT);
  1224. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1225. #endif
  1226. }
  1227. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1228. {
  1229. if(ms1 > -1) switch(driver)
  1230. {
  1231. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1232. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1233. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1234. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1235. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1236. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1237. #endif
  1238. }
  1239. if(ms2 > -1) switch(driver)
  1240. {
  1241. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1242. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1243. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1244. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1245. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1246. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1247. #endif
  1248. }
  1249. }
  1250. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1251. {
  1252. switch(stepping_mode)
  1253. {
  1254. case 1: microstep_ms(driver,MICROSTEP1); break;
  1255. case 2: microstep_ms(driver,MICROSTEP2); break;
  1256. case 4: microstep_ms(driver,MICROSTEP4); break;
  1257. case 8: microstep_ms(driver,MICROSTEP8); break;
  1258. case 16: microstep_ms(driver,MICROSTEP16); break;
  1259. }
  1260. }
  1261. void microstep_readings()
  1262. {
  1263. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1264. SERIAL_PROTOCOLPGM("X: ");
  1265. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1266. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1267. SERIAL_PROTOCOLPGM("Y: ");
  1268. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1269. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1270. SERIAL_PROTOCOLPGM("Z: ");
  1271. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1272. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1273. SERIAL_PROTOCOLPGM("E0: ");
  1274. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1275. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1276. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1277. SERIAL_PROTOCOLPGM("E1: ");
  1278. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1279. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1280. #endif
  1281. }