temperature.cpp 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. unsigned char soft_pwm_bed;
  74. #ifdef BABYSTEPPING
  75. volatile int babystepsTodo[3]={0,0,0};
  76. #endif
  77. //===========================================================================
  78. //=============================private variables============================
  79. //===========================================================================
  80. static volatile bool temp_meas_ready = false;
  81. #ifdef PIDTEMP
  82. //static cannot be external:
  83. static float iState_sum[EXTRUDERS] = { 0 };
  84. static float dState_last[EXTRUDERS] = { 0 };
  85. static float pTerm[EXTRUDERS];
  86. static float iTerm[EXTRUDERS];
  87. static float dTerm[EXTRUDERS];
  88. //int output;
  89. static float pid_error[EXTRUDERS];
  90. static float iState_sum_min[EXTRUDERS];
  91. static float iState_sum_max[EXTRUDERS];
  92. // static float pid_input[EXTRUDERS];
  93. // static float pid_output[EXTRUDERS];
  94. static bool pid_reset[EXTRUDERS];
  95. #endif //PIDTEMP
  96. #ifdef PIDTEMPBED
  97. //static cannot be external:
  98. static float temp_iState_bed = { 0 };
  99. static float temp_dState_bed = { 0 };
  100. static float pTerm_bed;
  101. static float iTerm_bed;
  102. static float dTerm_bed;
  103. //int output;
  104. static float pid_error_bed;
  105. static float temp_iState_min_bed;
  106. static float temp_iState_max_bed;
  107. #else //PIDTEMPBED
  108. static unsigned long previous_millis_bed_heater;
  109. #endif //PIDTEMPBED
  110. static unsigned char soft_pwm[EXTRUDERS];
  111. #ifdef FAN_SOFT_PWM
  112. static unsigned char soft_pwm_fan;
  113. #endif
  114. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  117. unsigned long extruder_autofan_last_check = _millis();
  118. uint8_t fanSpeedBckp = 255;
  119. bool fan_measuring = false;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  143. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  144. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  145. #else
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. #endif
  149. static float analog2temp(int raw, uint8_t e);
  150. static float analog2tempBed(int raw);
  151. static float analog2tempAmbient(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  170. static float temp_runaway_status[4];
  171. static float temp_runaway_target[4];
  172. static float temp_runaway_timer[4];
  173. static int temp_runaway_error_counter[4];
  174. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  175. static void temp_runaway_stop(bool isPreheat, bool isBed);
  176. #endif
  177. void PID_autotune(float temp, int extruder, int ncycles)
  178. {
  179. pid_number_of_cycles = ncycles;
  180. pid_tuning_finished = false;
  181. float input = 0.0;
  182. pid_cycle=0;
  183. bool heating = true;
  184. unsigned long temp_millis = _millis();
  185. unsigned long t1=temp_millis;
  186. unsigned long t2=temp_millis;
  187. long t_high = 0;
  188. long t_low = 0;
  189. long bias, d;
  190. float Ku, Tu;
  191. float max = 0, min = 10000;
  192. uint8_t safety_check_cycles = 0;
  193. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  194. float temp_ambient;
  195. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  197. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  198. unsigned long extruder_autofan_last_check = _millis();
  199. #endif
  200. if ((extruder >= EXTRUDERS)
  201. #if (TEMP_BED_PIN <= -1)
  202. ||(extruder < 0)
  203. #endif
  204. ){
  205. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  206. pid_tuning_finished = true;
  207. pid_cycle = 0;
  208. return;
  209. }
  210. SERIAL_ECHOLN("PID Autotune start");
  211. disable_heater(); // switch off all heaters.
  212. if (extruder<0)
  213. {
  214. soft_pwm_bed = (MAX_BED_POWER)/2;
  215. timer02_set_pwm0(soft_pwm_bed << 1);
  216. bias = d = (MAX_BED_POWER)/2;
  217. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  218. }
  219. else
  220. {
  221. soft_pwm[extruder] = (PID_MAX)/2;
  222. bias = d = (PID_MAX)/2;
  223. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  224. }
  225. for(;;) {
  226. #ifdef WATCHDOG
  227. wdt_reset();
  228. #endif //WATCHDOG
  229. if(temp_meas_ready == true) { // temp sample ready
  230. updateTemperaturesFromRawValues();
  231. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  232. max=max(max,input);
  233. min=min(min,input);
  234. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  235. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  236. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  237. if(_millis() - extruder_autofan_last_check > 2500) {
  238. checkExtruderAutoFans();
  239. extruder_autofan_last_check = _millis();
  240. }
  241. #endif
  242. if(heating == true && input > temp) {
  243. if(_millis() - t2 > 5000) {
  244. heating=false;
  245. if (extruder<0)
  246. {
  247. soft_pwm_bed = (bias - d) >> 1;
  248. timer02_set_pwm0(soft_pwm_bed << 1);
  249. }
  250. else
  251. soft_pwm[extruder] = (bias - d) >> 1;
  252. t1=_millis();
  253. t_high=t1 - t2;
  254. max=temp;
  255. }
  256. }
  257. if(heating == false && input < temp) {
  258. if(_millis() - t1 > 5000) {
  259. heating=true;
  260. t2=_millis();
  261. t_low=t2 - t1;
  262. if(pid_cycle > 0) {
  263. bias += (d*(t_high - t_low))/(t_low + t_high);
  264. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  265. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  266. else d = bias;
  267. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  268. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  269. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  270. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  271. if(pid_cycle > 2) {
  272. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  273. Tu = ((float)(t_low + t_high)/1000.0);
  274. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  275. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  276. _Kp = 0.6*Ku;
  277. _Ki = 2*_Kp/Tu;
  278. _Kd = _Kp*Tu/8;
  279. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. /*
  284. _Kp = 0.33*Ku;
  285. _Ki = _Kp/Tu;
  286. _Kd = _Kp*Tu/3;
  287. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  288. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  289. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  290. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  291. _Kp = 0.2*Ku;
  292. _Ki = 2*_Kp/Tu;
  293. _Kd = _Kp*Tu/3;
  294. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  295. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  296. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  297. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  298. */
  299. }
  300. }
  301. if (extruder<0)
  302. {
  303. soft_pwm_bed = (bias + d) >> 1;
  304. timer02_set_pwm0(soft_pwm_bed << 1);
  305. }
  306. else
  307. soft_pwm[extruder] = (bias + d) >> 1;
  308. pid_cycle++;
  309. min=temp;
  310. }
  311. }
  312. }
  313. if(input > (temp + 20)) {
  314. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  315. pid_tuning_finished = true;
  316. pid_cycle = 0;
  317. return;
  318. }
  319. if(_millis() - temp_millis > 2000) {
  320. int p;
  321. if (extruder<0){
  322. p=soft_pwm_bed;
  323. SERIAL_PROTOCOLPGM("B:");
  324. }else{
  325. p=soft_pwm[extruder];
  326. SERIAL_PROTOCOLPGM("T:");
  327. }
  328. SERIAL_PROTOCOL(input);
  329. SERIAL_PROTOCOLPGM(" @:");
  330. SERIAL_PROTOCOLLN(p);
  331. if (safety_check_cycles == 0) { //save ambient temp
  332. temp_ambient = input;
  333. //SERIAL_ECHOPGM("Ambient T: ");
  334. //MYSERIAL.println(temp_ambient);
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  341. safety_check_cycles++;
  342. //SERIAL_ECHOPGM("Time from beginning: ");
  343. //MYSERIAL.print(safety_check_cycles_count * 2);
  344. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  345. //MYSERIAL.println(input - temp_ambient);
  346. if (abs(input - temp_ambient) < 5.0) {
  347. temp_runaway_stop(false, (extruder<0));
  348. pid_tuning_finished = true;
  349. return;
  350. }
  351. }
  352. temp_millis = _millis();
  353. }
  354. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  355. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  356. pid_tuning_finished = true;
  357. pid_cycle = 0;
  358. return;
  359. }
  360. if(pid_cycle > ncycles) {
  361. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  362. pid_tuning_finished = true;
  363. pid_cycle = 0;
  364. return;
  365. }
  366. lcd_update(0);
  367. }
  368. }
  369. void updatePID()
  370. {
  371. #ifdef PIDTEMP
  372. for(int e = 0; e < EXTRUDERS; e++) {
  373. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  374. }
  375. #endif
  376. #ifdef PIDTEMPBED
  377. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  378. #endif
  379. }
  380. int getHeaterPower(int heater) {
  381. if (heater<0)
  382. return soft_pwm_bed;
  383. return soft_pwm[heater];
  384. }
  385. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  386. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  387. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  388. #if defined(FAN_PIN) && FAN_PIN > -1
  389. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  390. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  391. #endif
  392. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #endif
  399. void setExtruderAutoFanState(int pin, bool state)
  400. {
  401. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  402. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  403. pinMode(pin, OUTPUT);
  404. digitalWrite(pin, newFanSpeed);
  405. //analogWrite(pin, newFanSpeed);
  406. }
  407. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  408. void countFanSpeed()
  409. {
  410. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  411. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  412. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  413. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  414. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  415. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  416. SERIAL_ECHOLNPGM(" ");*/
  417. fan_edge_counter[0] = 0;
  418. fan_edge_counter[1] = 0;
  419. }
  420. void checkFanSpeed()
  421. {
  422. uint8_t max_print_fan_errors = 0;
  423. uint8_t max_extruder_fan_errors = 0;
  424. #ifdef FAN_SOFT_PWM
  425. max_print_fan_errors = 3; //15 seconds
  426. max_extruder_fan_errors = 2; //10seconds
  427. #else //FAN_SOFT_PWM
  428. max_print_fan_errors = 15; //15 seconds
  429. max_extruder_fan_errors = 5; //5 seconds
  430. #endif //FAN_SOFT_PWM
  431. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  432. static unsigned char fan_speed_errors[2] = { 0,0 };
  433. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  434. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  435. else fan_speed_errors[0] = 0;
  436. #endif
  437. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  438. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  439. else fan_speed_errors[1] = 0;
  440. #endif
  441. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  442. fan_speed_errors[0] = 0;
  443. fanSpeedError(0); //extruder fan
  444. }
  445. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  446. fan_speed_errors[1] = 0;
  447. fanSpeedError(1); //print fan
  448. }
  449. }
  450. void fanSpeedError(unsigned char _fan) {
  451. if (get_message_level() != 0 && isPrintPaused) return;
  452. //to ensure that target temp. is not set to zero in case taht we are resuming print
  453. if (card.sdprinting) {
  454. if (heating_status != 0) {
  455. lcd_print_stop();
  456. }
  457. else {
  458. lcd_pause_print();
  459. }
  460. }
  461. else {
  462. setTargetHotend0(0);
  463. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  464. }
  465. switch (_fan) {
  466. case 0:
  467. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  468. if (get_message_level() == 0) {
  469. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  470. WRITE(BEEPER, HIGH);
  471. delayMicroseconds(200);
  472. WRITE(BEEPER, LOW);
  473. delayMicroseconds(100);
  474. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  475. }
  476. break;
  477. case 1:
  478. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  479. if (get_message_level() == 0) {
  480. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  481. WRITE(BEEPER, HIGH);
  482. delayMicroseconds(200);
  483. WRITE(BEEPER, LOW);
  484. delayMicroseconds(100);
  485. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  486. }
  487. break;
  488. }
  489. }
  490. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  491. void checkExtruderAutoFans()
  492. {
  493. uint8_t fanState = 0;
  494. // which fan pins need to be turned on?
  495. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  496. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  497. fanState |= 1;
  498. #endif
  499. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  500. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  501. {
  502. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  503. fanState |= 1;
  504. else
  505. fanState |= 2;
  506. }
  507. #endif
  508. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  509. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  510. {
  511. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  512. fanState |= 1;
  513. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  514. fanState |= 2;
  515. else
  516. fanState |= 4;
  517. }
  518. #endif
  519. // update extruder auto fan states
  520. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  521. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  522. #endif
  523. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  524. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  525. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  526. #endif
  527. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  528. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  529. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  530. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  531. #endif
  532. }
  533. #endif // any extruder auto fan pins set
  534. // ready for eventually parameters adjusting
  535. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  536. //void resetPID(uint8_t extruder)
  537. {
  538. }
  539. void manage_heater()
  540. {
  541. #ifdef WATCHDOG
  542. wdt_reset();
  543. #endif //WATCHDOG
  544. float pid_input;
  545. float pid_output;
  546. if(temp_meas_ready != true) //better readability
  547. return;
  548. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  549. updateTemperaturesFromRawValues();
  550. check_max_temp();
  551. check_min_temp();
  552. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  553. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  554. #endif
  555. for(int e = 0; e < EXTRUDERS; e++)
  556. {
  557. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  558. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  559. #endif
  560. #ifdef PIDTEMP
  561. pid_input = current_temperature[e];
  562. #ifndef PID_OPENLOOP
  563. if(target_temperature[e] == 0) {
  564. pid_output = 0;
  565. pid_reset[e] = true;
  566. } else {
  567. pid_error[e] = target_temperature[e] - pid_input;
  568. if(pid_reset[e]) {
  569. iState_sum[e] = 0.0;
  570. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  571. pid_reset[e] = false;
  572. }
  573. #ifndef PonM
  574. pTerm[e] = cs.Kp * pid_error[e];
  575. iState_sum[e] += pid_error[e];
  576. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  577. iTerm[e] = cs.Ki * iState_sum[e];
  578. // PID_K1 defined in Configuration.h in the PID settings
  579. #define K2 (1.0-PID_K1)
  580. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  581. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  582. if (pid_output > PID_MAX) {
  583. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  584. pid_output=PID_MAX;
  585. } else if (pid_output < 0) {
  586. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  587. pid_output=0;
  588. }
  589. #else // PonM ("Proportional on Measurement" method)
  590. iState_sum[e] += cs.Ki * pid_error[e];
  591. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  592. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  593. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  594. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  595. pid_output = constrain(pid_output, 0, PID_MAX);
  596. #endif // PonM
  597. }
  598. dState_last[e] = pid_input;
  599. #else
  600. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  601. #endif //PID_OPENLOOP
  602. #ifdef PID_DEBUG
  603. SERIAL_ECHO_START;
  604. SERIAL_ECHO(" PID_DEBUG ");
  605. SERIAL_ECHO(e);
  606. SERIAL_ECHO(": Input ");
  607. SERIAL_ECHO(pid_input);
  608. SERIAL_ECHO(" Output ");
  609. SERIAL_ECHO(pid_output);
  610. SERIAL_ECHO(" pTerm ");
  611. SERIAL_ECHO(pTerm[e]);
  612. SERIAL_ECHO(" iTerm ");
  613. SERIAL_ECHO(iTerm[e]);
  614. SERIAL_ECHO(" dTerm ");
  615. SERIAL_ECHOLN(-dTerm[e]);
  616. #endif //PID_DEBUG
  617. #else /* PID off */
  618. pid_output = 0;
  619. if(current_temperature[e] < target_temperature[e]) {
  620. pid_output = PID_MAX;
  621. }
  622. #endif
  623. // Check if temperature is within the correct range
  624. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  625. {
  626. soft_pwm[e] = (int)pid_output >> 1;
  627. }
  628. else
  629. {
  630. soft_pwm[e] = 0;
  631. }
  632. #ifdef WATCH_TEMP_PERIOD
  633. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  634. {
  635. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  636. {
  637. setTargetHotend(0, e);
  638. LCD_MESSAGEPGM("Heating failed");
  639. SERIAL_ECHO_START;
  640. SERIAL_ECHOLN("Heating failed");
  641. }else{
  642. watchmillis[e] = 0;
  643. }
  644. }
  645. #endif
  646. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  647. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  648. disable_heater();
  649. if(IsStopped() == false) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  652. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  653. }
  654. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  655. Stop();
  656. #endif
  657. }
  658. #endif
  659. } // End extruder for loop
  660. #define FAN_CHECK_PERIOD 5000 //5s
  661. #define FAN_CHECK_DURATION 100 //100ms
  662. #ifndef DEBUG_DISABLE_FANCHECK
  663. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  664. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  665. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  666. #ifdef FAN_SOFT_PWM
  667. #ifdef FANCHECK
  668. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  669. extruder_autofan_last_check = _millis();
  670. fanSpeedBckp = fanSpeedSoftPwm;
  671. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  672. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  673. fanSpeedSoftPwm = 255;
  674. }
  675. fan_measuring = true;
  676. }
  677. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  678. countFanSpeed();
  679. checkFanSpeed();
  680. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  681. fanSpeedSoftPwm = fanSpeedBckp;
  682. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  683. extruder_autofan_last_check = _millis();
  684. fan_measuring = false;
  685. }
  686. #endif //FANCHECK
  687. checkExtruderAutoFans();
  688. #else //FAN_SOFT_PWM
  689. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  690. {
  691. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  692. countFanSpeed();
  693. checkFanSpeed();
  694. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  695. checkExtruderAutoFans();
  696. extruder_autofan_last_check = _millis();
  697. }
  698. #endif //FAN_SOFT_PWM
  699. #endif
  700. #endif //DEBUG_DISABLE_FANCHECK
  701. #ifndef PIDTEMPBED
  702. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  703. return;
  704. previous_millis_bed_heater = _millis();
  705. #endif
  706. #if TEMP_SENSOR_BED != 0
  707. #ifdef PIDTEMPBED
  708. pid_input = current_temperature_bed;
  709. #ifndef PID_OPENLOOP
  710. pid_error_bed = target_temperature_bed - pid_input;
  711. pTerm_bed = cs.bedKp * pid_error_bed;
  712. temp_iState_bed += pid_error_bed;
  713. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  714. iTerm_bed = cs.bedKi * temp_iState_bed;
  715. //PID_K1 defined in Configuration.h in the PID settings
  716. #define K2 (1.0-PID_K1)
  717. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  718. temp_dState_bed = pid_input;
  719. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  720. if (pid_output > MAX_BED_POWER) {
  721. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  722. pid_output=MAX_BED_POWER;
  723. } else if (pid_output < 0){
  724. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  725. pid_output=0;
  726. }
  727. #else
  728. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  729. #endif //PID_OPENLOOP
  730. if(current_temperature_bed < BED_MAXTEMP)
  731. {
  732. soft_pwm_bed = (int)pid_output >> 1;
  733. timer02_set_pwm0(soft_pwm_bed << 1);
  734. }
  735. else {
  736. soft_pwm_bed = 0;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. #elif !defined(BED_LIMIT_SWITCHING)
  740. // Check if temperature is within the correct range
  741. if(current_temperature_bed < BED_MAXTEMP)
  742. {
  743. if(current_temperature_bed >= target_temperature_bed)
  744. {
  745. soft_pwm_bed = 0;
  746. timer02_set_pwm0(soft_pwm_bed << 1);
  747. }
  748. else
  749. {
  750. soft_pwm_bed = MAX_BED_POWER>>1;
  751. timer02_set_pwm0(soft_pwm_bed << 1);
  752. }
  753. }
  754. else
  755. {
  756. soft_pwm_bed = 0;
  757. timer02_set_pwm0(soft_pwm_bed << 1);
  758. WRITE(HEATER_BED_PIN,LOW);
  759. }
  760. #else //#ifdef BED_LIMIT_SWITCHING
  761. // Check if temperature is within the correct band
  762. if(current_temperature_bed < BED_MAXTEMP)
  763. {
  764. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  765. {
  766. soft_pwm_bed = 0;
  767. timer02_set_pwm0(soft_pwm_bed << 1);
  768. }
  769. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  770. {
  771. soft_pwm_bed = MAX_BED_POWER>>1;
  772. timer02_set_pwm0(soft_pwm_bed << 1);
  773. }
  774. }
  775. else
  776. {
  777. soft_pwm_bed = 0;
  778. timer02_set_pwm0(soft_pwm_bed << 1);
  779. WRITE(HEATER_BED_PIN,LOW);
  780. }
  781. #endif
  782. if(target_temperature_bed==0)
  783. {
  784. soft_pwm_bed = 0;
  785. timer02_set_pwm0(soft_pwm_bed << 1);
  786. }
  787. #endif
  788. host_keepalive();
  789. }
  790. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  791. // Derived from RepRap FiveD extruder::getTemperature()
  792. // For hot end temperature measurement.
  793. static float analog2temp(int raw, uint8_t e) {
  794. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  795. if(e > EXTRUDERS)
  796. #else
  797. if(e >= EXTRUDERS)
  798. #endif
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(PSTR(""), 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  911. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  912. #endif
  913. #ifdef AMBIENT_THERMISTOR
  914. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  915. #endif
  916. #ifdef DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = target_temperature_bed;
  918. #else //DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  920. #endif //DEBUG_HEATER_BED_SIM
  921. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  922. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  923. #endif
  924. CRITICAL_SECTION_START;
  925. temp_meas_ready = false;
  926. CRITICAL_SECTION_END;
  927. }
  928. void tp_init()
  929. {
  930. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  931. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  932. MCUCR=(1<<JTD);
  933. MCUCR=(1<<JTD);
  934. #endif
  935. // Finish init of mult extruder arrays
  936. for(int e = 0; e < EXTRUDERS; e++) {
  937. // populate with the first value
  938. maxttemp[e] = maxttemp[0];
  939. #ifdef PIDTEMP
  940. iState_sum_min[e] = 0.0;
  941. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  942. #endif //PIDTEMP
  943. #ifdef PIDTEMPBED
  944. temp_iState_min_bed = 0.0;
  945. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  946. #endif //PIDTEMPBED
  947. }
  948. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  949. SET_OUTPUT(HEATER_0_PIN);
  950. #endif
  951. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  952. SET_OUTPUT(HEATER_1_PIN);
  953. #endif
  954. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  955. SET_OUTPUT(HEATER_2_PIN);
  956. #endif
  957. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  958. SET_OUTPUT(HEATER_BED_PIN);
  959. #endif
  960. #if defined(FAN_PIN) && (FAN_PIN > -1)
  961. SET_OUTPUT(FAN_PIN);
  962. #ifdef FAST_PWM_FAN
  963. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  964. #endif
  965. #ifdef FAN_SOFT_PWM
  966. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  967. #endif
  968. #endif
  969. #ifdef HEATER_0_USES_MAX6675
  970. #ifndef SDSUPPORT
  971. SET_OUTPUT(SCK_PIN);
  972. WRITE(SCK_PIN,0);
  973. SET_OUTPUT(MOSI_PIN);
  974. WRITE(MOSI_PIN,1);
  975. SET_INPUT(MISO_PIN);
  976. WRITE(MISO_PIN,1);
  977. #endif
  978. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  979. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  980. pinMode(SS_PIN, OUTPUT);
  981. digitalWrite(SS_PIN,0);
  982. pinMode(MAX6675_SS, OUTPUT);
  983. digitalWrite(MAX6675_SS,1);
  984. #endif
  985. adc_init();
  986. #ifdef SYSTEM_TIMER_2
  987. timer02_init();
  988. OCR2B = 128;
  989. TIMSK2 |= (1<<OCIE2B);
  990. #else //SYSTEM_TIMER_2
  991. // Use timer0 for temperature measurement
  992. // Interleave temperature interrupt with millies interrupt
  993. OCR0B = 128;
  994. TIMSK0 |= (1<<OCIE0B);
  995. #endif //SYSTEM_TIMER_2
  996. // Wait for temperature measurement to settle
  997. _delay(250);
  998. #ifdef HEATER_0_MINTEMP
  999. minttemp[0] = HEATER_0_MINTEMP;
  1000. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1001. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1002. minttemp_raw[0] += OVERSAMPLENR;
  1003. #else
  1004. minttemp_raw[0] -= OVERSAMPLENR;
  1005. #endif
  1006. }
  1007. #endif //MINTEMP
  1008. #ifdef HEATER_0_MAXTEMP
  1009. maxttemp[0] = HEATER_0_MAXTEMP;
  1010. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1011. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1012. maxttemp_raw[0] -= OVERSAMPLENR;
  1013. #else
  1014. maxttemp_raw[0] += OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif //MAXTEMP
  1018. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1019. minttemp[1] = HEATER_1_MINTEMP;
  1020. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1021. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1022. minttemp_raw[1] += OVERSAMPLENR;
  1023. #else
  1024. minttemp_raw[1] -= OVERSAMPLENR;
  1025. #endif
  1026. }
  1027. #endif // MINTEMP 1
  1028. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1029. maxttemp[1] = HEATER_1_MAXTEMP;
  1030. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1031. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1032. maxttemp_raw[1] -= OVERSAMPLENR;
  1033. #else
  1034. maxttemp_raw[1] += OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //MAXTEMP 1
  1038. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1039. minttemp[2] = HEATER_2_MINTEMP;
  1040. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1041. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1042. minttemp_raw[2] += OVERSAMPLENR;
  1043. #else
  1044. minttemp_raw[2] -= OVERSAMPLENR;
  1045. #endif
  1046. }
  1047. #endif //MINTEMP 2
  1048. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1049. maxttemp[2] = HEATER_2_MAXTEMP;
  1050. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1051. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1052. maxttemp_raw[2] -= OVERSAMPLENR;
  1053. #else
  1054. maxttemp_raw[2] += OVERSAMPLENR;
  1055. #endif
  1056. }
  1057. #endif //MAXTEMP 2
  1058. #ifdef BED_MINTEMP
  1059. /* No bed MINTEMP error implemented?!? */
  1060. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1061. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1062. bed_minttemp_raw += OVERSAMPLENR;
  1063. #else
  1064. bed_minttemp_raw -= OVERSAMPLENR;
  1065. #endif
  1066. }
  1067. #endif //BED_MINTEMP
  1068. #ifdef BED_MAXTEMP
  1069. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1070. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1071. bed_maxttemp_raw -= OVERSAMPLENR;
  1072. #else
  1073. bed_maxttemp_raw += OVERSAMPLENR;
  1074. #endif
  1075. }
  1076. #endif //BED_MAXTEMP
  1077. }
  1078. void setWatch()
  1079. {
  1080. #ifdef WATCH_TEMP_PERIOD
  1081. for (int e = 0; e < EXTRUDERS; e++)
  1082. {
  1083. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1084. {
  1085. watch_start_temp[e] = degHotend(e);
  1086. watchmillis[e] = _millis();
  1087. }
  1088. }
  1089. #endif
  1090. }
  1091. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1092. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1093. {
  1094. float __delta;
  1095. float __hysteresis = 0;
  1096. int __timeout = 0;
  1097. bool temp_runaway_check_active = false;
  1098. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1099. static int __preheat_counter[2] = { 0,0};
  1100. static int __preheat_errors[2] = { 0,0};
  1101. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1102. {
  1103. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1104. if (_isbed)
  1105. {
  1106. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1107. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1108. }
  1109. #endif
  1110. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1111. if (!_isbed)
  1112. {
  1113. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1114. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1115. }
  1116. #endif
  1117. temp_runaway_timer[_heater_id] = _millis();
  1118. if (_output == 0)
  1119. {
  1120. temp_runaway_check_active = false;
  1121. temp_runaway_error_counter[_heater_id] = 0;
  1122. }
  1123. if (temp_runaway_target[_heater_id] != _target_temperature)
  1124. {
  1125. if (_target_temperature > 0)
  1126. {
  1127. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1128. temp_runaway_target[_heater_id] = _target_temperature;
  1129. __preheat_start[_heater_id] = _current_temperature;
  1130. __preheat_counter[_heater_id] = 0;
  1131. }
  1132. else
  1133. {
  1134. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1135. temp_runaway_target[_heater_id] = _target_temperature;
  1136. }
  1137. }
  1138. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1139. {
  1140. __preheat_counter[_heater_id]++;
  1141. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1142. {
  1143. /*SERIAL_ECHOPGM("Heater:");
  1144. MYSERIAL.print(_heater_id);
  1145. SERIAL_ECHOPGM(" T:");
  1146. MYSERIAL.print(_current_temperature);
  1147. SERIAL_ECHOPGM(" Tstart:");
  1148. MYSERIAL.print(__preheat_start[_heater_id]);
  1149. SERIAL_ECHOPGM(" delta:");
  1150. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1151. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1152. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1153. __delta=2.0;
  1154. if(_isbed)
  1155. {
  1156. __delta=3.0;
  1157. if(_current_temperature>90.0) __delta=2.0;
  1158. if(_current_temperature>105.0) __delta=0.6;
  1159. }
  1160. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1161. __preheat_errors[_heater_id]++;
  1162. /*SERIAL_ECHOPGM(" Preheat errors:");
  1163. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1164. }
  1165. else {
  1166. //SERIAL_ECHOLNPGM("");
  1167. __preheat_errors[_heater_id] = 0;
  1168. }
  1169. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1170. {
  1171. if (farm_mode) { prusa_statistics(0); }
  1172. temp_runaway_stop(true, _isbed);
  1173. if (farm_mode) { prusa_statistics(91); }
  1174. }
  1175. __preheat_start[_heater_id] = _current_temperature;
  1176. __preheat_counter[_heater_id] = 0;
  1177. }
  1178. }
  1179. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1180. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1181. {
  1182. /*SERIAL_ECHOPGM("Heater:");
  1183. MYSERIAL.print(_heater_id);
  1184. MYSERIAL.println(" ->tempRunaway");*/
  1185. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1186. temp_runaway_check_active = false;
  1187. temp_runaway_error_counter[_heater_id] = 0;
  1188. }
  1189. if (_output > 0)
  1190. {
  1191. temp_runaway_check_active = true;
  1192. }
  1193. if (temp_runaway_check_active)
  1194. {
  1195. // we are in range
  1196. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1197. {
  1198. temp_runaway_check_active = false;
  1199. temp_runaway_error_counter[_heater_id] = 0;
  1200. }
  1201. else
  1202. {
  1203. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1204. {
  1205. temp_runaway_error_counter[_heater_id]++;
  1206. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1207. {
  1208. if (farm_mode) { prusa_statistics(0); }
  1209. temp_runaway_stop(false, _isbed);
  1210. if (farm_mode) { prusa_statistics(90); }
  1211. }
  1212. }
  1213. }
  1214. }
  1215. }
  1216. }
  1217. void temp_runaway_stop(bool isPreheat, bool isBed)
  1218. {
  1219. cancel_heatup = true;
  1220. quickStop();
  1221. if (card.sdprinting)
  1222. {
  1223. card.sdprinting = false;
  1224. card.closefile();
  1225. }
  1226. // Clean the input command queue
  1227. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1228. cmdqueue_reset();
  1229. disable_heater();
  1230. disable_x();
  1231. disable_y();
  1232. disable_e0();
  1233. disable_e1();
  1234. disable_e2();
  1235. manage_heater();
  1236. lcd_update(0);
  1237. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1238. WRITE(BEEPER, HIGH);
  1239. delayMicroseconds(500);
  1240. WRITE(BEEPER, LOW);
  1241. delayMicroseconds(100);
  1242. if (isPreheat)
  1243. {
  1244. Stop();
  1245. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1246. SERIAL_ERROR_START;
  1247. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1248. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1249. SET_OUTPUT(FAN_PIN);
  1250. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1251. #ifdef FAN_SOFT_PWM
  1252. fanSpeedSoftPwm = 255;
  1253. #else //FAN_SOFT_PWM
  1254. analogWrite(FAN_PIN, 255);
  1255. #endif //FAN_SOFT_PWM
  1256. fanSpeed = 255;
  1257. delayMicroseconds(2000);
  1258. }
  1259. else
  1260. {
  1261. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1262. SERIAL_ERROR_START;
  1263. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1264. }
  1265. }
  1266. #endif
  1267. void disable_heater()
  1268. {
  1269. setAllTargetHotends(0);
  1270. setTargetBed(0);
  1271. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1272. target_temperature[0]=0;
  1273. soft_pwm[0]=0;
  1274. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1275. WRITE(HEATER_0_PIN,LOW);
  1276. #endif
  1277. #endif
  1278. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1279. target_temperature[1]=0;
  1280. soft_pwm[1]=0;
  1281. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1282. WRITE(HEATER_1_PIN,LOW);
  1283. #endif
  1284. #endif
  1285. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1286. target_temperature[2]=0;
  1287. soft_pwm[2]=0;
  1288. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1289. WRITE(HEATER_2_PIN,LOW);
  1290. #endif
  1291. #endif
  1292. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1293. target_temperature_bed=0;
  1294. soft_pwm_bed=0;
  1295. timer02_set_pwm0(soft_pwm_bed << 1);
  1296. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1297. WRITE(HEATER_BED_PIN,LOW);
  1298. #endif
  1299. #endif
  1300. }
  1301. void max_temp_error(uint8_t e) {
  1302. disable_heater();
  1303. if(IsStopped() == false) {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORLN((int)e);
  1306. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1307. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1308. }
  1309. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1310. Stop();
  1311. #endif
  1312. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1313. SET_OUTPUT(FAN_PIN);
  1314. SET_OUTPUT(BEEPER);
  1315. WRITE(FAN_PIN, 1);
  1316. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1317. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1318. WRITE(BEEPER, 1);
  1319. // fanSpeed will consumed by the check_axes_activity() routine.
  1320. fanSpeed=255;
  1321. if (farm_mode) { prusa_statistics(93); }
  1322. }
  1323. void min_temp_error(uint8_t e) {
  1324. #ifdef DEBUG_DISABLE_MINTEMP
  1325. return;
  1326. #endif
  1327. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1328. disable_heater();
  1329. if(IsStopped() == false) {
  1330. SERIAL_ERROR_START;
  1331. SERIAL_ERRORLN((int)e);
  1332. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1333. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1334. }
  1335. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1336. Stop();
  1337. #endif
  1338. if (farm_mode) { prusa_statistics(92); }
  1339. }
  1340. void bed_max_temp_error(void) {
  1341. #if HEATER_BED_PIN > -1
  1342. WRITE(HEATER_BED_PIN, 0);
  1343. #endif
  1344. if(IsStopped() == false) {
  1345. SERIAL_ERROR_START;
  1346. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1347. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1348. }
  1349. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1350. Stop();
  1351. #endif
  1352. }
  1353. void bed_min_temp_error(void) {
  1354. #ifdef DEBUG_DISABLE_MINTEMP
  1355. return;
  1356. #endif
  1357. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1358. #if HEATER_BED_PIN > -1
  1359. WRITE(HEATER_BED_PIN, 0);
  1360. #endif
  1361. if(IsStopped() == false) {
  1362. SERIAL_ERROR_START;
  1363. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1364. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1365. }
  1366. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1367. Stop();
  1368. #endif
  1369. }
  1370. #ifdef HEATER_0_USES_MAX6675
  1371. #define MAX6675_HEAT_INTERVAL 250
  1372. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1373. int max6675_temp = 2000;
  1374. int read_max6675()
  1375. {
  1376. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1377. return max6675_temp;
  1378. max6675_previous_millis = _millis();
  1379. max6675_temp = 0;
  1380. #ifdef PRR
  1381. PRR &= ~(1<<PRSPI);
  1382. #elif defined PRR0
  1383. PRR0 &= ~(1<<PRSPI);
  1384. #endif
  1385. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1386. // enable TT_MAX6675
  1387. WRITE(MAX6675_SS, 0);
  1388. // ensure 100ns delay - a bit extra is fine
  1389. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1390. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1391. // read MSB
  1392. SPDR = 0;
  1393. for (;(SPSR & (1<<SPIF)) == 0;);
  1394. max6675_temp = SPDR;
  1395. max6675_temp <<= 8;
  1396. // read LSB
  1397. SPDR = 0;
  1398. for (;(SPSR & (1<<SPIF)) == 0;);
  1399. max6675_temp |= SPDR;
  1400. // disable TT_MAX6675
  1401. WRITE(MAX6675_SS, 1);
  1402. if (max6675_temp & 4)
  1403. {
  1404. // thermocouple open
  1405. max6675_temp = 2000;
  1406. }
  1407. else
  1408. {
  1409. max6675_temp = max6675_temp >> 3;
  1410. }
  1411. return max6675_temp;
  1412. }
  1413. #endif
  1414. extern "C" {
  1415. void adc_ready(void) //callback from adc when sampling finished
  1416. {
  1417. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1418. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1419. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1420. #ifdef VOLT_PWR_PIN
  1421. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1422. #endif
  1423. #ifdef AMBIENT_THERMISTOR
  1424. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1425. #endif //AMBIENT_THERMISTOR
  1426. #ifdef VOLT_BED_PIN
  1427. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1428. #endif
  1429. temp_meas_ready = true;
  1430. }
  1431. } // extern "C"
  1432. // Timer2 (originaly timer0) is shared with millies
  1433. #ifdef SYSTEM_TIMER_2
  1434. ISR(TIMER2_COMPB_vect)
  1435. #else //SYSTEM_TIMER_2
  1436. ISR(TIMER0_COMPB_vect)
  1437. #endif //SYSTEM_TIMER_2
  1438. {
  1439. static bool _lock = false;
  1440. if (_lock) return;
  1441. _lock = true;
  1442. asm("sei");
  1443. if (!temp_meas_ready) adc_cycle();
  1444. lcd_buttons_update();
  1445. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1446. static unsigned char soft_pwm_0;
  1447. #ifdef SLOW_PWM_HEATERS
  1448. static unsigned char slow_pwm_count = 0;
  1449. static unsigned char state_heater_0 = 0;
  1450. static unsigned char state_timer_heater_0 = 0;
  1451. #endif
  1452. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1453. static unsigned char soft_pwm_1;
  1454. #ifdef SLOW_PWM_HEATERS
  1455. static unsigned char state_heater_1 = 0;
  1456. static unsigned char state_timer_heater_1 = 0;
  1457. #endif
  1458. #endif
  1459. #if EXTRUDERS > 2
  1460. static unsigned char soft_pwm_2;
  1461. #ifdef SLOW_PWM_HEATERS
  1462. static unsigned char state_heater_2 = 0;
  1463. static unsigned char state_timer_heater_2 = 0;
  1464. #endif
  1465. #endif
  1466. #if HEATER_BED_PIN > -1
  1467. static unsigned char soft_pwm_b;
  1468. #ifdef SLOW_PWM_HEATERS
  1469. static unsigned char state_heater_b = 0;
  1470. static unsigned char state_timer_heater_b = 0;
  1471. #endif
  1472. #endif
  1473. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1474. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1475. #endif
  1476. #ifndef SLOW_PWM_HEATERS
  1477. /*
  1478. * standard PWM modulation
  1479. */
  1480. if (pwm_count == 0)
  1481. {
  1482. soft_pwm_0 = soft_pwm[0];
  1483. if(soft_pwm_0 > 0)
  1484. {
  1485. WRITE(HEATER_0_PIN,1);
  1486. #ifdef HEATERS_PARALLEL
  1487. WRITE(HEATER_1_PIN,1);
  1488. #endif
  1489. } else WRITE(HEATER_0_PIN,0);
  1490. #if EXTRUDERS > 1
  1491. soft_pwm_1 = soft_pwm[1];
  1492. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1493. #endif
  1494. #if EXTRUDERS > 2
  1495. soft_pwm_2 = soft_pwm[2];
  1496. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1497. #endif
  1498. }
  1499. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1500. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1501. {
  1502. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1503. #ifndef SYSTEM_TIMER_2
  1504. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1505. #endif //SYSTEM_TIMER_2
  1506. }
  1507. #endif
  1508. #ifdef FAN_SOFT_PWM
  1509. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1510. {
  1511. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1512. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1513. }
  1514. #endif
  1515. if(soft_pwm_0 < pwm_count)
  1516. {
  1517. WRITE(HEATER_0_PIN,0);
  1518. #ifdef HEATERS_PARALLEL
  1519. WRITE(HEATER_1_PIN,0);
  1520. #endif
  1521. }
  1522. #if EXTRUDERS > 1
  1523. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1524. #endif
  1525. #if EXTRUDERS > 2
  1526. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1527. #endif
  1528. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1529. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1530. #endif
  1531. #ifdef FAN_SOFT_PWM
  1532. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1533. #endif
  1534. pwm_count += (1 << SOFT_PWM_SCALE);
  1535. pwm_count &= 0x7f;
  1536. #else //ifndef SLOW_PWM_HEATERS
  1537. /*
  1538. * SLOW PWM HEATERS
  1539. *
  1540. * for heaters drived by relay
  1541. */
  1542. #ifndef MIN_STATE_TIME
  1543. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1544. #endif
  1545. if (slow_pwm_count == 0) {
  1546. // EXTRUDER 0
  1547. soft_pwm_0 = soft_pwm[0];
  1548. if (soft_pwm_0 > 0) {
  1549. // turn ON heather only if the minimum time is up
  1550. if (state_timer_heater_0 == 0) {
  1551. // if change state set timer
  1552. if (state_heater_0 == 0) {
  1553. state_timer_heater_0 = MIN_STATE_TIME;
  1554. }
  1555. state_heater_0 = 1;
  1556. WRITE(HEATER_0_PIN, 1);
  1557. #ifdef HEATERS_PARALLEL
  1558. WRITE(HEATER_1_PIN, 1);
  1559. #endif
  1560. }
  1561. } else {
  1562. // turn OFF heather only if the minimum time is up
  1563. if (state_timer_heater_0 == 0) {
  1564. // if change state set timer
  1565. if (state_heater_0 == 1) {
  1566. state_timer_heater_0 = MIN_STATE_TIME;
  1567. }
  1568. state_heater_0 = 0;
  1569. WRITE(HEATER_0_PIN, 0);
  1570. #ifdef HEATERS_PARALLEL
  1571. WRITE(HEATER_1_PIN, 0);
  1572. #endif
  1573. }
  1574. }
  1575. #if EXTRUDERS > 1
  1576. // EXTRUDER 1
  1577. soft_pwm_1 = soft_pwm[1];
  1578. if (soft_pwm_1 > 0) {
  1579. // turn ON heather only if the minimum time is up
  1580. if (state_timer_heater_1 == 0) {
  1581. // if change state set timer
  1582. if (state_heater_1 == 0) {
  1583. state_timer_heater_1 = MIN_STATE_TIME;
  1584. }
  1585. state_heater_1 = 1;
  1586. WRITE(HEATER_1_PIN, 1);
  1587. }
  1588. } else {
  1589. // turn OFF heather only if the minimum time is up
  1590. if (state_timer_heater_1 == 0) {
  1591. // if change state set timer
  1592. if (state_heater_1 == 1) {
  1593. state_timer_heater_1 = MIN_STATE_TIME;
  1594. }
  1595. state_heater_1 = 0;
  1596. WRITE(HEATER_1_PIN, 0);
  1597. }
  1598. }
  1599. #endif
  1600. #if EXTRUDERS > 2
  1601. // EXTRUDER 2
  1602. soft_pwm_2 = soft_pwm[2];
  1603. if (soft_pwm_2 > 0) {
  1604. // turn ON heather only if the minimum time is up
  1605. if (state_timer_heater_2 == 0) {
  1606. // if change state set timer
  1607. if (state_heater_2 == 0) {
  1608. state_timer_heater_2 = MIN_STATE_TIME;
  1609. }
  1610. state_heater_2 = 1;
  1611. WRITE(HEATER_2_PIN, 1);
  1612. }
  1613. } else {
  1614. // turn OFF heather only if the minimum time is up
  1615. if (state_timer_heater_2 == 0) {
  1616. // if change state set timer
  1617. if (state_heater_2 == 1) {
  1618. state_timer_heater_2 = MIN_STATE_TIME;
  1619. }
  1620. state_heater_2 = 0;
  1621. WRITE(HEATER_2_PIN, 0);
  1622. }
  1623. }
  1624. #endif
  1625. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1626. // BED
  1627. soft_pwm_b = soft_pwm_bed;
  1628. if (soft_pwm_b > 0) {
  1629. // turn ON heather only if the minimum time is up
  1630. if (state_timer_heater_b == 0) {
  1631. // if change state set timer
  1632. if (state_heater_b == 0) {
  1633. state_timer_heater_b = MIN_STATE_TIME;
  1634. }
  1635. state_heater_b = 1;
  1636. //WRITE(HEATER_BED_PIN, 1);
  1637. }
  1638. } else {
  1639. // turn OFF heather only if the minimum time is up
  1640. if (state_timer_heater_b == 0) {
  1641. // if change state set timer
  1642. if (state_heater_b == 1) {
  1643. state_timer_heater_b = MIN_STATE_TIME;
  1644. }
  1645. state_heater_b = 0;
  1646. WRITE(HEATER_BED_PIN, 0);
  1647. }
  1648. }
  1649. #endif
  1650. } // if (slow_pwm_count == 0)
  1651. // EXTRUDER 0
  1652. if (soft_pwm_0 < slow_pwm_count) {
  1653. // turn OFF heather only if the minimum time is up
  1654. if (state_timer_heater_0 == 0) {
  1655. // if change state set timer
  1656. if (state_heater_0 == 1) {
  1657. state_timer_heater_0 = MIN_STATE_TIME;
  1658. }
  1659. state_heater_0 = 0;
  1660. WRITE(HEATER_0_PIN, 0);
  1661. #ifdef HEATERS_PARALLEL
  1662. WRITE(HEATER_1_PIN, 0);
  1663. #endif
  1664. }
  1665. }
  1666. #if EXTRUDERS > 1
  1667. // EXTRUDER 1
  1668. if (soft_pwm_1 < slow_pwm_count) {
  1669. // turn OFF heather only if the minimum time is up
  1670. if (state_timer_heater_1 == 0) {
  1671. // if change state set timer
  1672. if (state_heater_1 == 1) {
  1673. state_timer_heater_1 = MIN_STATE_TIME;
  1674. }
  1675. state_heater_1 = 0;
  1676. WRITE(HEATER_1_PIN, 0);
  1677. }
  1678. }
  1679. #endif
  1680. #if EXTRUDERS > 2
  1681. // EXTRUDER 2
  1682. if (soft_pwm_2 < slow_pwm_count) {
  1683. // turn OFF heather only if the minimum time is up
  1684. if (state_timer_heater_2 == 0) {
  1685. // if change state set timer
  1686. if (state_heater_2 == 1) {
  1687. state_timer_heater_2 = MIN_STATE_TIME;
  1688. }
  1689. state_heater_2 = 0;
  1690. WRITE(HEATER_2_PIN, 0);
  1691. }
  1692. }
  1693. #endif
  1694. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1695. // BED
  1696. if (soft_pwm_b < slow_pwm_count) {
  1697. // turn OFF heather only if the minimum time is up
  1698. if (state_timer_heater_b == 0) {
  1699. // if change state set timer
  1700. if (state_heater_b == 1) {
  1701. state_timer_heater_b = MIN_STATE_TIME;
  1702. }
  1703. state_heater_b = 0;
  1704. WRITE(HEATER_BED_PIN, 0);
  1705. }
  1706. }
  1707. #endif
  1708. #ifdef FAN_SOFT_PWM
  1709. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1710. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1711. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1712. }
  1713. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1714. #endif
  1715. pwm_count += (1 << SOFT_PWM_SCALE);
  1716. pwm_count &= 0x7f;
  1717. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1718. if ((pwm_count % 64) == 0) {
  1719. slow_pwm_count++;
  1720. slow_pwm_count &= 0x7f;
  1721. // Extruder 0
  1722. if (state_timer_heater_0 > 0) {
  1723. state_timer_heater_0--;
  1724. }
  1725. #if EXTRUDERS > 1
  1726. // Extruder 1
  1727. if (state_timer_heater_1 > 0)
  1728. state_timer_heater_1--;
  1729. #endif
  1730. #if EXTRUDERS > 2
  1731. // Extruder 2
  1732. if (state_timer_heater_2 > 0)
  1733. state_timer_heater_2--;
  1734. #endif
  1735. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1736. // Bed
  1737. if (state_timer_heater_b > 0)
  1738. state_timer_heater_b--;
  1739. #endif
  1740. } //if ((pwm_count % 64) == 0) {
  1741. #endif //ifndef SLOW_PWM_HEATERS
  1742. #ifdef BABYSTEPPING
  1743. for(uint8_t axis=0;axis<3;axis++)
  1744. {
  1745. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1746. if(curTodo>0)
  1747. {
  1748. asm("cli");
  1749. babystep(axis,/*fwd*/true);
  1750. babystepsTodo[axis]--; //less to do next time
  1751. asm("sei");
  1752. }
  1753. else
  1754. if(curTodo<0)
  1755. {
  1756. asm("cli");
  1757. babystep(axis,/*fwd*/false);
  1758. babystepsTodo[axis]++; //less to do next time
  1759. asm("sei");
  1760. }
  1761. }
  1762. #endif //BABYSTEPPING
  1763. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1764. check_fans();
  1765. #endif //(defined(TACH_0))
  1766. _lock = false;
  1767. }
  1768. void check_max_temp()
  1769. {
  1770. //heater
  1771. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1772. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1773. #else
  1774. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1775. #endif
  1776. max_temp_error(0);
  1777. }
  1778. //bed
  1779. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1780. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1781. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1782. #else
  1783. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1784. #endif
  1785. target_temperature_bed = 0;
  1786. bed_max_temp_error();
  1787. }
  1788. #endif
  1789. }
  1790. void check_min_temp_heater0()
  1791. {
  1792. //heater
  1793. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1794. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1795. #else
  1796. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1797. #endif
  1798. min_temp_error(0);
  1799. }
  1800. }
  1801. void check_min_temp_bed()
  1802. {
  1803. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1804. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1805. #else
  1806. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1807. #endif
  1808. bed_min_temp_error();
  1809. }
  1810. }
  1811. void check_min_temp()
  1812. {
  1813. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1814. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1815. #ifdef AMBIENT_THERMISTOR
  1816. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1817. { // ambient temperature is low
  1818. #endif //AMBIENT_THERMISTOR
  1819. // *** 'common' part of code for MK2.5 & MK3
  1820. // * nozzle checking
  1821. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1822. { // ~ nozzle heating is on
  1823. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1824. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1825. {
  1826. bCheckingOnHeater=true; // not necessary
  1827. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1828. }
  1829. }
  1830. else { // ~ nozzle heating is off
  1831. oTimer4minTempHeater.start();
  1832. bCheckingOnHeater=false;
  1833. }
  1834. // * bed checking
  1835. if(target_temperature_bed>BED_MINTEMP)
  1836. { // ~ bed heating is on
  1837. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1838. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1839. {
  1840. bCheckingOnBed=true; // not necessary
  1841. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1842. }
  1843. }
  1844. else { // ~ bed heating is off
  1845. oTimer4minTempBed.start();
  1846. bCheckingOnBed=false;
  1847. }
  1848. // *** end of 'common' part
  1849. #ifdef AMBIENT_THERMISTOR
  1850. }
  1851. else { // ambient temperature is standard
  1852. check_min_temp_heater0();
  1853. check_min_temp_bed();
  1854. }
  1855. #endif //AMBIENT_THERMISTOR
  1856. }
  1857. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1858. void check_fans() {
  1859. #ifdef FAN_SOFT_PWM
  1860. if (READ(TACH_0) != fan_state[0]) {
  1861. if(fan_measuring) fan_edge_counter[0] ++;
  1862. fan_state[0] = !fan_state[0];
  1863. }
  1864. #else //FAN_SOFT_PWM
  1865. if (READ(TACH_0) != fan_state[0]) {
  1866. fan_edge_counter[0] ++;
  1867. fan_state[0] = !fan_state[0];
  1868. }
  1869. #endif
  1870. //if (READ(TACH_1) != fan_state[1]) {
  1871. // fan_edge_counter[1] ++;
  1872. // fan_state[1] = !fan_state[1];
  1873. //}
  1874. }
  1875. #endif //TACH_0
  1876. #ifdef PIDTEMP
  1877. // Apply the scale factors to the PID values
  1878. float scalePID_i(float i)
  1879. {
  1880. return i*PID_dT;
  1881. }
  1882. float unscalePID_i(float i)
  1883. {
  1884. return i/PID_dT;
  1885. }
  1886. float scalePID_d(float d)
  1887. {
  1888. return d/PID_dT;
  1889. }
  1890. float unscalePID_d(float d)
  1891. {
  1892. return d*PID_dT;
  1893. }
  1894. #endif //PIDTEMP