fsensor.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "cmdqueue.h"
  8. #include "ultralcd.h"
  9. #include "mmu.h"
  10. #include "cardreader.h"
  11. #include "adc.h"
  12. #include "temperature.h"
  13. #include "config.h"
  14. #include "Filament_sensor.h" //temporary
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  18. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
  25. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
  26. #define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
  27. #define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
  28. //! @}
  29. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  30. //! enabled = initialized and sampled every chunk event
  31. bool fsensor_enabled = true;
  32. //! runout watching is done in fsensor_update (called from main loop)
  33. bool fsensor_watch_runout = true;
  34. //! not responding - is set if any communication error occurred during initialization or readout
  35. bool fsensor_not_responding = false;
  36. #ifdef PAT9125
  37. //! optical checking "chunk lenght" (already in steps)
  38. int16_t fsensor_chunk_len = 0;
  39. //! number of errors, updated in ISR
  40. uint8_t fsensor_err_cnt = 0;
  41. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  42. int16_t fsensor_st_cnt = 0;
  43. //! count of total sensor "soft" failures (filament status checks)
  44. uint8_t fsensor_softfail = 0;
  45. //! timestamp of last soft failure
  46. unsigned long fsensor_softfail_last = 0;
  47. //! count of soft failures within the configured time
  48. uint8_t fsensor_softfail_ccnt = 0;
  49. #endif
  50. #ifdef DEBUG_FSENSOR_LOG
  51. //! log flag: 0=log disabled, 1=log enabled
  52. uint8_t fsensor_log = 1;
  53. #endif //DEBUG_FSENSOR_LOG
  54. //! @name filament autoload variables
  55. //! @{
  56. //! autoload feature enabled
  57. bool fsensor_autoload_enabled = true;
  58. //! autoload watching enable/disable flag
  59. bool fsensor_watch_autoload = false;
  60. #ifdef PAT9125
  61. //
  62. uint16_t fsensor_autoload_y;
  63. //
  64. uint8_t fsensor_autoload_c;
  65. //
  66. uint32_t fsensor_autoload_last_millis;
  67. //
  68. uint8_t fsensor_autoload_sum;
  69. //! @}
  70. #endif
  71. //! @name filament optical quality measurement variables
  72. //! @{
  73. //! Measurement enable/disable flag
  74. bool fsensor_oq_meassure = false;
  75. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  76. uint8_t fsensor_oq_skipchunk;
  77. //! number of samples from start of measurement
  78. uint8_t fsensor_oq_samples;
  79. //! sum of steps in positive direction movements
  80. uint16_t fsensor_oq_st_sum;
  81. //! sum of deltas in positive direction movements
  82. uint16_t fsensor_oq_yd_sum;
  83. //! sum of errors during measurement
  84. uint16_t fsensor_oq_er_sum;
  85. //! max error counter value during measurement
  86. uint8_t fsensor_oq_er_max;
  87. //! minimum delta value
  88. int16_t fsensor_oq_yd_min;
  89. //! maximum delta value
  90. int16_t fsensor_oq_yd_max;
  91. //! sum of shutter value
  92. uint16_t fsensor_oq_sh_sum;
  93. //! @}
  94. #ifdef IR_SENSOR_ANALOG
  95. ClFsensorActionNA oFsensorActionNA;
  96. bool bIRsensorStateFlag=false;
  97. ShortTimer tIRsensorCheckTimer;
  98. #endif //IR_SENSOR_ANALOG
  99. #ifdef PAT9125
  100. // Reset all internal counters to zero, including stepper callbacks
  101. void fsensor_reset_err_cnt()
  102. {
  103. fsensor_err_cnt = 0;
  104. pat9125_y = 0;
  105. st_reset_fsensor();
  106. }
  107. void fsensor_set_axis_steps_per_unit(float u)
  108. {
  109. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  110. }
  111. #endif
  112. // fsensor_checkpoint_print cuts the current print job at the current position,
  113. // allowing new instructions to be inserted in the middle
  114. void fsensor_checkpoint_print(void)
  115. {
  116. puts_P(PSTR("fsensor_checkpoint_print"));
  117. stop_and_save_print_to_ram(0, 0);
  118. restore_print_from_ram_and_continue(0);
  119. }
  120. #ifdef IR_SENSOR_ANALOG
  121. const char* FsensorIRVersionText()
  122. {
  123. switch(oFsensorPCB)
  124. {
  125. case ClFsensorPCB::_Old:
  126. return _T(MSG_IR_03_OR_OLDER);
  127. case ClFsensorPCB::_Rev04:
  128. return _T(MSG_IR_04_OR_NEWER);
  129. default:
  130. return _T(MSG_IR_UNKNOWN);
  131. }
  132. }
  133. #endif //IR_SENSOR_ANALOG
  134. void fsensor_init(void)
  135. {
  136. #ifdef PAT9125
  137. uint8_t pat9125 = pat9125_init();
  138. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  139. #endif //PAT9125
  140. uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  141. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  142. fsensor_not_responding = false;
  143. #ifdef PAT9125
  144. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  145. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  146. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  147. if (!pat9125){
  148. fsensor_enabled = 0; //disable sensor
  149. fsensor_not_responding = true;
  150. }
  151. #endif //PAT9125
  152. #ifdef IR_SENSOR_ANALOG
  153. bIRsensorStateFlag=false;
  154. oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  155. oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  156. // If the fsensor is not responding even at the start of the printer,
  157. // set this flag accordingly to show N/A in Settings->Filament sensor.
  158. // This is even valid for both fsensor board revisions (0.3 or older and 0.4).
  159. // Must be done after reading what type of fsensor board we have
  160. fsensor_not_responding = ! fsensor_IR_check();
  161. #endif //IR_SENSOR_ANALOG
  162. if (fsensor_enabled){
  163. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  164. } else {
  165. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  166. }
  167. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  168. #ifdef IR_SENSOR_ANALOG
  169. printf_P(PSTR(" (sensor board revision:%S)\n"), FsensorIRVersionText());
  170. #else //IR_SENSOR_ANALOG
  171. MYSERIAL.println();
  172. #endif //IR_SENSOR_ANALOG
  173. if (check_for_ir_sensor()){
  174. ir_sensor_detected = true;
  175. }
  176. }
  177. bool fsensor_enable(bool bUpdateEEPROM)
  178. {
  179. #ifdef PAT9125
  180. (void)bUpdateEEPROM; // silence unused warning in this variant
  181. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  182. uint8_t pat9125 = pat9125_init();
  183. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  184. if (pat9125)
  185. fsensor_not_responding = false;
  186. else
  187. fsensor_not_responding = true;
  188. fsensor_enabled = pat9125 ? true : false;
  189. fsensor_watch_runout = true;
  190. fsensor_oq_meassure = false;
  191. fsensor_reset_err_cnt();
  192. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  193. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  194. }
  195. else //filament sensor is FINDA, always enable
  196. {
  197. fsensor_enabled = true;
  198. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  199. FSensorStateMenu = 1;
  200. }
  201. #else // PAT9125
  202. #ifdef IR_SENSOR_ANALOG
  203. if(!fsensor.checkVoltage(fsensor.getVoltRaw()))
  204. {
  205. bUpdateEEPROM=true;
  206. fsensor_enabled=false;
  207. fsensor_not_responding=true;
  208. FSensorStateMenu=0;
  209. }
  210. else {
  211. #endif //IR_SENSOR_ANALOG
  212. fsensor_enabled=true;
  213. fsensor_not_responding=false;
  214. FSensorStateMenu=1;
  215. #ifdef IR_SENSOR_ANALOG
  216. }
  217. #endif //IR_SENSOR_ANALOG
  218. if(bUpdateEEPROM)
  219. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  220. #endif //PAT9125
  221. return fsensor_enabled;
  222. }
  223. void fsensor_disable(bool bUpdateEEPROM)
  224. {
  225. fsensor_enabled = false;
  226. FSensorStateMenu = 0;
  227. if(bUpdateEEPROM)
  228. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  229. }
  230. void fsensor_autoload_set(bool State)
  231. {
  232. #ifdef PAT9125
  233. if (!State) fsensor_autoload_check_stop();
  234. #endif //PAT9125
  235. fsensor_autoload_enabled = State;
  236. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  237. }
  238. void pciSetup(byte pin)
  239. {
  240. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  241. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  242. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  243. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  244. }
  245. #ifdef PAT9125
  246. void fsensor_autoload_check_start(void)
  247. {
  248. // puts_P(_N("fsensor_autoload_check_start\n"));
  249. if (!fsensor_enabled) return;
  250. if (!fsensor_autoload_enabled) return;
  251. if (fsensor_watch_autoload) return;
  252. if (!pat9125_update()) //update sensor
  253. {
  254. fsensor_disable();
  255. fsensor_not_responding = true;
  256. fsensor_watch_autoload = false;
  257. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  258. return;
  259. }
  260. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED"));
  261. fsensor_autoload_y = pat9125_y; //save current y value
  262. fsensor_autoload_c = 0; //reset number of changes counter
  263. fsensor_autoload_sum = 0;
  264. fsensor_autoload_last_millis = _millis();
  265. fsensor_watch_runout = false;
  266. fsensor_watch_autoload = true;
  267. }
  268. void fsensor_autoload_check_stop(void)
  269. {
  270. // puts_P(_N("fsensor_autoload_check_stop\n"));
  271. if (!fsensor_enabled) return;
  272. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  273. if (!fsensor_autoload_enabled) return;
  274. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  275. if (!fsensor_watch_autoload) return;
  276. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED"));
  277. fsensor_autoload_sum = 0;
  278. fsensor_watch_autoload = false;
  279. fsensor_watch_runout = true;
  280. fsensor_reset_err_cnt();
  281. }
  282. #endif //PAT9125
  283. bool fsensor_check_autoload(void)
  284. {
  285. if (!fsensor_enabled) return false;
  286. if (!fsensor_autoload_enabled) return false;
  287. if (ir_sensor_detected) {
  288. if (READ(IR_SENSOR_PIN)) {
  289. fsensor_watch_autoload = true;
  290. }
  291. else if (fsensor_watch_autoload == true) {
  292. fsensor_watch_autoload = false;
  293. return true;
  294. }
  295. }
  296. #ifdef PAT9125
  297. if (!fsensor_watch_autoload)
  298. {
  299. fsensor_autoload_check_start();
  300. return false;
  301. }
  302. #if 0
  303. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  304. #endif
  305. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  306. fsensor_autoload_last_millis = _millis();
  307. if (!pat9125_update_y()) //update sensor
  308. {
  309. fsensor_disable();
  310. fsensor_not_responding = true;
  311. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  312. return false;
  313. }
  314. int16_t dy = pat9125_y - fsensor_autoload_y;
  315. if (dy) //? dy value is nonzero
  316. {
  317. if (dy > 0) //? delta-y value is positive (inserting)
  318. {
  319. fsensor_autoload_sum += dy;
  320. fsensor_autoload_c += 3; //increment change counter by 3
  321. }
  322. else if (fsensor_autoload_c > 1)
  323. fsensor_autoload_c -= 2; //decrement change counter by 2
  324. fsensor_autoload_y = pat9125_y; //save current value
  325. }
  326. else if (fsensor_autoload_c > 0)
  327. fsensor_autoload_c--;
  328. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  329. #if 0
  330. puts_P(_N("fsensor_check_autoload\n"));
  331. if (fsensor_autoload_c != fsensor_autoload_c_old)
  332. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  333. #endif
  334. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  335. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  336. {
  337. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  338. return true;
  339. }
  340. #endif //PAT9125
  341. return false;
  342. }
  343. #ifdef PAT9125
  344. void fsensor_oq_meassure_set(bool State)
  345. {
  346. fsensor_oq_meassure_enabled = State;
  347. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  348. }
  349. void fsensor_oq_meassure_start(uint8_t skip)
  350. {
  351. if (!fsensor_enabled) return;
  352. if (!fsensor_oq_meassure_enabled) return;
  353. puts_P(PSTR("fsensor_oq_meassure_start"));
  354. fsensor_oq_skipchunk = skip;
  355. fsensor_oq_samples = 0;
  356. fsensor_oq_st_sum = 0;
  357. fsensor_oq_yd_sum = 0;
  358. fsensor_oq_er_sum = 0;
  359. fsensor_oq_er_max = 0;
  360. fsensor_oq_yd_min = INT16_MAX;
  361. fsensor_oq_yd_max = 0;
  362. fsensor_oq_sh_sum = 0;
  363. pat9125_update();
  364. pat9125_y = 0;
  365. fsensor_oq_meassure = true;
  366. }
  367. void fsensor_oq_meassure_stop(void)
  368. {
  369. if (!fsensor_enabled) return;
  370. if (!fsensor_oq_meassure_enabled) return;
  371. printf_P(PSTR("fsensor_oq_meassure_stop, %u samples\n"), fsensor_oq_samples);
  372. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  373. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  374. fsensor_oq_meassure = false;
  375. }
  376. #ifdef FSENSOR_QUALITY
  377. const char _OK[] PROGMEM = "OK";
  378. const char _NG[] PROGMEM = "NG!";
  379. bool fsensor_oq_result(void)
  380. {
  381. if (!fsensor_enabled) return true;
  382. if (!fsensor_oq_meassure_enabled) return true;
  383. puts_P(_N("fsensor_oq_result"));
  384. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  385. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  386. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  387. printf_P(_N(" er_max = %u %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  388. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  389. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  390. printf_P(_N(" yd_avg = %u %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  391. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  392. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  393. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  394. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  395. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  396. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  397. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  398. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  399. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  400. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  401. if (yd_qua >= 8) res_sh_avg = true;
  402. printf_P(_N(" sh_avg = %u %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  403. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  404. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  405. return res;
  406. }
  407. #endif //FSENSOR_QUALITY
  408. FORCE_INLINE static void fsensor_isr(int st_cnt)
  409. {
  410. uint8_t old_err_cnt = fsensor_err_cnt;
  411. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  412. if (!pat9125_res)
  413. {
  414. fsensor_disable();
  415. fsensor_not_responding = true;
  416. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  417. }
  418. if (st_cnt != 0)
  419. {
  420. // movement was planned, check for sensor movement
  421. int8_t st_dir = st_cnt >= 0;
  422. int8_t pat9125_dir = pat9125_y >= 0;
  423. if (pat9125_y == 0)
  424. {
  425. if (st_dir)
  426. {
  427. // no movement detected: we might be within a blind sensor range,
  428. // update the frame and shutter parameters we didn't earlier
  429. if (!fsensor_oq_meassure)
  430. pat9125_update_bs();
  431. // increment the error count only if underexposed: filament likely missing
  432. if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
  433. {
  434. // check for a dark frame (<30% avg brightness) with long exposure
  435. ++fsensor_err_cnt;
  436. }
  437. else
  438. {
  439. // good frame, filament likely present
  440. if(fsensor_err_cnt) --fsensor_err_cnt;
  441. }
  442. }
  443. }
  444. else if (pat9125_dir != st_dir)
  445. {
  446. // detected direction opposite of motor movement
  447. if (st_dir) ++fsensor_err_cnt;
  448. }
  449. else if (pat9125_dir == st_dir)
  450. {
  451. // direction agreeing with planned movement
  452. if (fsensor_err_cnt) --fsensor_err_cnt;
  453. }
  454. if (st_dir && fsensor_oq_meassure)
  455. {
  456. // extruding with quality assessment
  457. if (fsensor_oq_skipchunk)
  458. {
  459. fsensor_oq_skipchunk--;
  460. fsensor_err_cnt = 0;
  461. }
  462. else
  463. {
  464. if (st_cnt == fsensor_chunk_len)
  465. {
  466. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  467. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  468. }
  469. fsensor_oq_samples++;
  470. fsensor_oq_st_sum += st_cnt;
  471. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  472. if (fsensor_err_cnt > old_err_cnt)
  473. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  474. if (fsensor_oq_er_max < fsensor_err_cnt)
  475. fsensor_oq_er_max = fsensor_err_cnt;
  476. fsensor_oq_sh_sum += pat9125_s;
  477. }
  478. }
  479. }
  480. #ifdef DEBUG_FSENSOR_LOG
  481. if (fsensor_log)
  482. {
  483. printf_P(_N("FSENSOR cnt=%d dy=%d err=%u %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  484. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%u yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  485. }
  486. #endif //DEBUG_FSENSOR_LOG
  487. pat9125_y = 0;
  488. }
  489. ISR(FSENSOR_INT_PIN_VECT)
  490. {
  491. if (mmu_enabled || ir_sensor_detected) return;
  492. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  493. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  494. // prevent isr re-entry
  495. static bool _lock = false;
  496. if (!_lock)
  497. {
  498. // fetch fsensor_st_cnt atomically
  499. int st_cnt = fsensor_st_cnt;
  500. fsensor_st_cnt = 0;
  501. _lock = true;
  502. sei();
  503. fsensor_isr(st_cnt);
  504. cli();
  505. _lock = false;
  506. }
  507. }
  508. void fsensor_setup_interrupt(void)
  509. {
  510. WRITE(FSENSOR_INT_PIN, 0);
  511. SET_OUTPUT(FSENSOR_INT_PIN);
  512. fsensor_int_pin_old = 0;
  513. //pciSetup(FSENSOR_INT_PIN);
  514. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  515. // so interrupt registers settings:
  516. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  517. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  518. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  519. }
  520. void fsensor_st_block_chunk(int cnt)
  521. {
  522. if (!fsensor_enabled) return;
  523. fsensor_st_cnt += cnt;
  524. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  525. WRITE(FSENSOR_INT_PIN, !READ(FSENSOR_INT_PIN));
  526. }
  527. #endif //PAT9125
  528. //! Common code for enqueing M600 and supplemental codes into the command queue.
  529. //! Used both for the IR sensor and the PAT9125
  530. void fsensor_enque_M600(){
  531. puts_P(PSTR("fsensor_update - M600"));
  532. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  533. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  534. enquecommand_front_P((PSTR("M600")));
  535. }
  536. //! @brief filament sensor update (perform M600 on filament runout)
  537. //!
  538. //! Works only if filament sensor is enabled.
  539. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  540. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  541. void fsensor_update(void)
  542. {
  543. #ifdef PAT9125
  544. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  545. {
  546. fsensor_stop_and_save_print();
  547. KEEPALIVE_STATE(IN_HANDLER);
  548. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  549. fsensor_autoload_enabled = false;
  550. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  551. fsensor_oq_meassure_enabled = true;
  552. // move the nozzle away while checking the filament
  553. current_position[Z_AXIS] += 0.8;
  554. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  555. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  556. st_synchronize();
  557. // check the filament in isolation
  558. fsensor_reset_err_cnt();
  559. fsensor_oq_meassure_start(0);
  560. float e_tmp = current_position[E_AXIS];
  561. current_position[E_AXIS] -= 3;
  562. plan_buffer_line_curposXYZE(250/60);
  563. current_position[E_AXIS] = e_tmp;
  564. plan_buffer_line_curposXYZE(200/60);
  565. st_synchronize();
  566. fsensor_oq_meassure_stop();
  567. bool err = false;
  568. err |= (fsensor_err_cnt > 0); // final error count is non-zero
  569. err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
  570. err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
  571. fsensor_restore_print_and_continue();
  572. fsensor_autoload_enabled = autoload_enabled_tmp;
  573. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  574. unsigned long now = _millis();
  575. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  576. fsensor_softfail_ccnt = 0;
  577. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  578. {
  579. puts_P(PSTR("fsensor_err_cnt = 0"));
  580. ++fsensor_softfail;
  581. ++fsensor_softfail_ccnt;
  582. fsensor_softfail_last = now;
  583. }
  584. else
  585. {
  586. fsensor_softfail_ccnt = 0;
  587. fsensor_softfail_last = 0;
  588. fsensor_enque_M600();
  589. }
  590. }
  591. #else //PAT9125
  592. if (CHECK_FSENSOR && ir_sensor_detected)
  593. {
  594. if (READ(IR_SENSOR_PIN))
  595. { // IR_SENSOR_PIN ~ H
  596. fsensor_checkpoint_print();
  597. fsensor_enque_M600();
  598. }
  599. }
  600. #endif //PAT9125
  601. }
  602. #ifdef IR_SENSOR_ANALOG
  603. /// This is called only upon start of the printer or when switching the fsensor ON in the menu
  604. /// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
  605. bool fsensor_IR_check(uint16_t raw){
  606. if( IRsensor_Lmax_TRESHOLD <= raw && raw <= IRsensor_Hmin_TRESHOLD ){
  607. /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
  608. /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
  609. /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
  610. /// and would have been considered more like a sabotage than normal printer operation
  611. puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));
  612. return false;
  613. }
  614. if( oFsensorPCB == ClFsensorPCB::_Rev04 ){
  615. /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
  616. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  617. puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));
  618. return false;
  619. }
  620. /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure
  621. #if 0 //Disabled as it has to be decided if we gonna use this or not.
  622. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  623. puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));
  624. return false;
  625. }
  626. #endif
  627. }
  628. /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false
  629. #if 0
  630. if( (oFsensorPCB == ClFsensorPCB::_Undef) && ( raw > IRsensor_Lmax_TRESHOLD ) ){
  631. puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));
  632. return false;
  633. }
  634. #endif
  635. // otherwise the IR fsensor is considered working correctly
  636. return true;
  637. }
  638. #endif //IR_SENSOR_ANALOG