Marlin_main.cpp 315 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. //used for PINDA temp calibration and pause print
  135. #define DEFAULT_RETRACTION 1
  136. #define DEFAULT_RETRACTION_MM 4 //MM
  137. float default_retraction = DEFAULT_RETRACTION;
  138. float homing_feedrate[] = HOMING_FEEDRATE;
  139. // Currently only the extruder axis may be switched to a relative mode.
  140. // Other axes are always absolute or relative based on the common relative_mode flag.
  141. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  142. int feedmultiply=100; //100->1 200->2
  143. int extrudemultiply=100; //100->1 200->2
  144. int extruder_multiply[EXTRUDERS] = {100
  145. #if EXTRUDERS > 1
  146. , 100
  147. #if EXTRUDERS > 2
  148. , 100
  149. #endif
  150. #endif
  151. };
  152. int bowden_length[4] = {385, 385, 385, 385};
  153. bool is_usb_printing = false;
  154. bool homing_flag = false;
  155. bool temp_cal_active = false;
  156. unsigned long kicktime = _millis()+100000;
  157. unsigned int usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = _millis();
  161. unsigned long t_fan_rising_edge = _millis();
  162. LongTimer safetyTimer;
  163. static LongTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. bool mesh_bed_run_from_menu = false;
  167. int8_t FarmMode = 0;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. #ifdef HOST_KEEPALIVE_FEATURE
  235. int busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. #else
  239. #define host_keepalive();
  240. #define KEEPALIVE_STATE(n);
  241. #endif
  242. const char errormagic[] PROGMEM = "Error:";
  243. const char echomagic[] PROGMEM = "echo:";
  244. bool no_response = false;
  245. uint8_t important_status;
  246. uint8_t saved_filament_type;
  247. // save/restore printing in case that mmu was not responding
  248. bool mmu_print_saved = false;
  249. // storing estimated time to end of print counted by slicer
  250. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  253. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  254. bool wizard_active = false; //autoload temporarily disabled during wizard
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  264. // Determines Absolute or Relative Coordinates.
  265. // Also there is bool axis_relative_modes[] per axis flag.
  266. static bool relative_mode = false;
  267. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  268. //static float tt = 0;
  269. //static float bt = 0;
  270. //Inactivity shutdown variables
  271. static unsigned long previous_millis_cmd = 0;
  272. unsigned long max_inactive_time = 0;
  273. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  274. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  275. unsigned long starttime=0;
  276. unsigned long stoptime=0;
  277. unsigned long _usb_timer = 0;
  278. bool extruder_under_pressure = true;
  279. bool Stopped=false;
  280. #if NUM_SERVOS > 0
  281. Servo servos[NUM_SERVOS];
  282. #endif
  283. bool CooldownNoWait = true;
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  297. static float saved_feedrate2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_under_pressure = false;
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. //===========================================================================
  306. //=============================Routines======================================
  307. //===========================================================================
  308. static void get_arc_coordinates();
  309. static bool setTargetedHotend(int code, uint8_t &extruder);
  310. static void print_time_remaining_init();
  311. static void wait_for_heater(long codenum, uint8_t extruder);
  312. uint16_t gcode_in_progress = 0;
  313. uint16_t mcode_in_progress = 0;
  314. void serial_echopair_P(const char *s_P, float v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, double v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. void serial_echopair_P(const char *s_P, unsigned long v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. #ifdef SDSUPPORT
  321. #include "SdFatUtil.h"
  322. int freeMemory() { return SdFatUtil::FreeRam(); }
  323. #else
  324. extern "C" {
  325. extern unsigned int __bss_end;
  326. extern unsigned int __heap_start;
  327. extern void *__brkval;
  328. int freeMemory() {
  329. int free_memory;
  330. if ((int)__brkval == 0)
  331. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  332. else
  333. free_memory = ((int)&free_memory) - ((int)__brkval);
  334. return free_memory;
  335. }
  336. }
  337. #endif //!SDSUPPORT
  338. void setup_killpin()
  339. {
  340. #if defined(KILL_PIN) && KILL_PIN > -1
  341. SET_INPUT(KILL_PIN);
  342. WRITE(KILL_PIN,HIGH);
  343. #endif
  344. }
  345. // Set home pin
  346. void setup_homepin(void)
  347. {
  348. #if defined(HOME_PIN) && HOME_PIN > -1
  349. SET_INPUT(HOME_PIN);
  350. WRITE(HOME_PIN,HIGH);
  351. #endif
  352. }
  353. void setup_photpin()
  354. {
  355. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  356. SET_OUTPUT(PHOTOGRAPH_PIN);
  357. WRITE(PHOTOGRAPH_PIN, LOW);
  358. #endif
  359. }
  360. void setup_powerhold()
  361. {
  362. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  363. SET_OUTPUT(SUICIDE_PIN);
  364. WRITE(SUICIDE_PIN, HIGH);
  365. #endif
  366. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  367. SET_OUTPUT(PS_ON_PIN);
  368. #if defined(PS_DEFAULT_OFF)
  369. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  370. #else
  371. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  372. #endif
  373. #endif
  374. }
  375. void suicide()
  376. {
  377. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  378. SET_OUTPUT(SUICIDE_PIN);
  379. WRITE(SUICIDE_PIN, LOW);
  380. #endif
  381. }
  382. void servo_init()
  383. {
  384. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  385. servos[0].attach(SERVO0_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  388. servos[1].attach(SERVO1_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  391. servos[2].attach(SERVO2_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  394. servos[3].attach(SERVO3_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 5)
  397. #error "TODO: enter initalisation code for more servos"
  398. #endif
  399. }
  400. bool fans_check_enabled = true;
  401. #ifdef TMC2130
  402. extern int8_t CrashDetectMenu;
  403. void crashdet_enable()
  404. {
  405. tmc2130_sg_stop_on_crash = true;
  406. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  407. CrashDetectMenu = 1;
  408. }
  409. void crashdet_disable()
  410. {
  411. tmc2130_sg_stop_on_crash = false;
  412. tmc2130_sg_crash = 0;
  413. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  414. CrashDetectMenu = 0;
  415. }
  416. void crashdet_stop_and_save_print()
  417. {
  418. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  419. }
  420. void crashdet_restore_print_and_continue()
  421. {
  422. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  423. // babystep_apply();
  424. }
  425. void crashdet_stop_and_save_print2()
  426. {
  427. cli();
  428. planner_abort_hard(); //abort printing
  429. cmdqueue_reset(); //empty cmdqueue
  430. card.sdprinting = false;
  431. card.closefile();
  432. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  433. st_reset_timer();
  434. sei();
  435. }
  436. void crashdet_detected(uint8_t mask)
  437. {
  438. st_synchronize();
  439. static uint8_t crashDet_counter = 0;
  440. bool automatic_recovery_after_crash = true;
  441. if (crashDet_counter++ == 0) {
  442. crashDetTimer.start();
  443. }
  444. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  445. crashDetTimer.stop();
  446. crashDet_counter = 0;
  447. }
  448. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  449. automatic_recovery_after_crash = false;
  450. crashDetTimer.stop();
  451. crashDet_counter = 0;
  452. }
  453. else {
  454. crashDetTimer.start();
  455. }
  456. lcd_update_enable(true);
  457. lcd_clear();
  458. lcd_update(2);
  459. if (mask & X_AXIS_MASK)
  460. {
  461. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  462. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  463. }
  464. if (mask & Y_AXIS_MASK)
  465. {
  466. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  467. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  468. }
  469. lcd_update_enable(true);
  470. lcd_update(2);
  471. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  472. gcode_G28(true, true, false); //home X and Y
  473. st_synchronize();
  474. if (automatic_recovery_after_crash) {
  475. enquecommand_P(PSTR("CRASH_RECOVER"));
  476. }else{
  477. setTargetHotend(0, active_extruder);
  478. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  479. lcd_update_enable(true);
  480. if (yesno)
  481. {
  482. enquecommand_P(PSTR("CRASH_RECOVER"));
  483. }
  484. else
  485. {
  486. enquecommand_P(PSTR("CRASH_CANCEL"));
  487. }
  488. }
  489. }
  490. void crashdet_recover()
  491. {
  492. crashdet_restore_print_and_continue();
  493. tmc2130_sg_stop_on_crash = true;
  494. }
  495. void crashdet_cancel()
  496. {
  497. saved_printing = false;
  498. tmc2130_sg_stop_on_crash = true;
  499. if (saved_printing_type == PRINTING_TYPE_SD) {
  500. lcd_print_stop();
  501. }else if(saved_printing_type == PRINTING_TYPE_USB){
  502. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  504. }
  505. }
  506. #endif //TMC2130
  507. void failstats_reset_print()
  508. {
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  515. }
  516. #ifdef MESH_BED_LEVELING
  517. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  518. #endif
  519. // Factory reset function
  520. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  521. // Level input parameter sets depth of reset
  522. int er_progress = 0;
  523. static void factory_reset(char level)
  524. {
  525. lcd_clear();
  526. switch (level) {
  527. // Level 0: Language reset
  528. case 0:
  529. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  530. WRITE(BEEPER, HIGH);
  531. _delay_ms(100);
  532. WRITE(BEEPER, LOW);
  533. lang_reset();
  534. break;
  535. //Level 1: Reset statistics
  536. case 1:
  537. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  538. WRITE(BEEPER, HIGH);
  539. _delay_ms(100);
  540. WRITE(BEEPER, LOW);
  541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. lcd_menu_statistics();
  556. break;
  557. // Level 2: Prepare for shipping
  558. case 2:
  559. //lcd_puts_P(PSTR("Factory RESET"));
  560. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  561. // Force language selection at the next boot up.
  562. lang_reset();
  563. // Force the "Follow calibration flow" message at the next boot up.
  564. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  565. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  566. farm_no = 0;
  567. farm_mode = false;
  568. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  569. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  570. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  571. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  580. #ifdef FILAMENT_SENSOR
  581. fsensor_enable();
  582. fsensor_autoload_set(true);
  583. #endif //FILAMENT_SENSOR
  584. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  585. WRITE(BEEPER, HIGH);
  586. _delay_ms(100);
  587. WRITE(BEEPER, LOW);
  588. //_delay_ms(2000);
  589. break;
  590. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  591. case 3:
  592. lcd_puts_P(PSTR("Factory RESET"));
  593. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  594. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  595. WRITE(BEEPER, HIGH);
  596. _delay_ms(100);
  597. WRITE(BEEPER, LOW);
  598. er_progress = 0;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. // Erase EEPROM
  603. for (int i = 0; i < 4096; i++) {
  604. eeprom_update_byte((uint8_t*)i, 0xFF);
  605. if (i % 41 == 0) {
  606. er_progress++;
  607. lcd_puts_at_P(3, 3, PSTR(" "));
  608. lcd_set_cursor(3, 3);
  609. lcd_print(er_progress);
  610. lcd_puts_P(PSTR("%"));
  611. }
  612. }
  613. break;
  614. case 4:
  615. bowden_menu();
  616. break;
  617. default:
  618. break;
  619. }
  620. }
  621. extern "C" {
  622. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  623. }
  624. int uart_putchar(char c, FILE *)
  625. {
  626. MYSERIAL.write(c);
  627. return 0;
  628. }
  629. void lcd_splash()
  630. {
  631. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  632. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  633. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  634. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  635. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  636. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  637. }
  638. void factory_reset()
  639. {
  640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  641. if (!READ(BTN_ENC))
  642. {
  643. _delay_ms(1000);
  644. if (!READ(BTN_ENC))
  645. {
  646. lcd_clear();
  647. lcd_puts_P(PSTR("Factory RESET"));
  648. SET_OUTPUT(BEEPER);
  649. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  650. WRITE(BEEPER, HIGH);
  651. while (!READ(BTN_ENC));
  652. WRITE(BEEPER, LOW);
  653. _delay_ms(2000);
  654. char level = reset_menu();
  655. factory_reset(level);
  656. switch (level) {
  657. case 0: _delay_ms(0); break;
  658. case 1: _delay_ms(0); break;
  659. case 2: _delay_ms(0); break;
  660. case 3: _delay_ms(0); break;
  661. }
  662. }
  663. }
  664. KEEPALIVE_STATE(IN_HANDLER);
  665. }
  666. void show_fw_version_warnings() {
  667. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  668. switch (FW_DEV_VERSION) {
  669. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  670. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  671. case(FW_VERSION_DEVEL):
  672. case(FW_VERSION_DEBUG):
  673. lcd_update_enable(false);
  674. lcd_clear();
  675. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  676. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  677. #else
  678. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  679. #endif
  680. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  681. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  682. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  683. lcd_wait_for_click();
  684. break;
  685. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  686. }
  687. lcd_update_enable(true);
  688. }
  689. uint8_t check_printer_version()
  690. {
  691. uint8_t version_changed = 0;
  692. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  693. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  694. if (printer_type != PRINTER_TYPE) {
  695. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  696. else version_changed |= 0b10;
  697. }
  698. if (motherboard != MOTHERBOARD) {
  699. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  700. else version_changed |= 0b01;
  701. }
  702. return version_changed;
  703. }
  704. #ifdef BOOTAPP
  705. #include "bootapp.h" //bootloader support
  706. #endif //BOOTAPP
  707. #if (LANG_MODE != 0) //secondary language support
  708. #ifdef W25X20CL
  709. // language update from external flash
  710. #define LANGBOOT_BLOCKSIZE 0x1000u
  711. #define LANGBOOT_RAMBUFFER 0x0800
  712. void update_sec_lang_from_external_flash()
  713. {
  714. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  715. {
  716. uint8_t lang = boot_reserved >> 4;
  717. uint8_t state = boot_reserved & 0xf;
  718. lang_table_header_t header;
  719. uint32_t src_addr;
  720. if (lang_get_header(lang, &header, &src_addr))
  721. {
  722. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  723. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  724. _delay(100);
  725. boot_reserved = (state + 1) | (lang << 4);
  726. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  727. {
  728. cli();
  729. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  730. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  731. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  732. if (state == 0)
  733. {
  734. //TODO - check header integrity
  735. }
  736. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  737. }
  738. else
  739. {
  740. //TODO - check sec lang data integrity
  741. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  742. }
  743. }
  744. }
  745. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  746. }
  747. #ifdef DEBUG_W25X20CL
  748. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  749. {
  750. lang_table_header_t header;
  751. uint8_t count = 0;
  752. uint32_t addr = 0x00000;
  753. while (1)
  754. {
  755. printf_P(_n("LANGTABLE%d:"), count);
  756. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  757. if (header.magic != LANG_MAGIC)
  758. {
  759. printf_P(_n("NG!\n"));
  760. break;
  761. }
  762. printf_P(_n("OK\n"));
  763. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  764. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  765. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  766. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  767. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  768. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  769. addr += header.size;
  770. codes[count] = header.code;
  771. count ++;
  772. }
  773. return count;
  774. }
  775. void list_sec_lang_from_external_flash()
  776. {
  777. uint16_t codes[8];
  778. uint8_t count = lang_xflash_enum_codes(codes);
  779. printf_P(_n("XFlash lang count = %hhd\n"), count);
  780. }
  781. #endif //DEBUG_W25X20CL
  782. #endif //W25X20CL
  783. #endif //(LANG_MODE != 0)
  784. // "Setup" function is called by the Arduino framework on startup.
  785. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  786. // are initialized by the main() routine provided by the Arduino framework.
  787. void setup()
  788. {
  789. mmu_init();
  790. ultralcd_init();
  791. spi_init();
  792. lcd_splash();
  793. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  794. #ifdef W25X20CL
  795. if (!w25x20cl_init())
  796. kill(_i("External SPI flash W25X20CL not responding."));
  797. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  798. optiboot_w25x20cl_enter();
  799. #endif
  800. #if (LANG_MODE != 0) //secondary language support
  801. #ifdef W25X20CL
  802. if (w25x20cl_init())
  803. update_sec_lang_from_external_flash();
  804. #endif //W25X20CL
  805. #endif //(LANG_MODE != 0)
  806. setup_killpin();
  807. setup_powerhold();
  808. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  809. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  810. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  811. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  812. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  813. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  814. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  815. if (farm_mode)
  816. {
  817. no_response = true; //we need confirmation by recieving PRUSA thx
  818. important_status = 8;
  819. prusa_statistics(8);
  820. selectedSerialPort = 1;
  821. #ifdef TMC2130
  822. //increased extruder current (PFW363)
  823. tmc2130_current_h[E_AXIS] = 36;
  824. tmc2130_current_r[E_AXIS] = 36;
  825. #endif //TMC2130
  826. #ifdef FILAMENT_SENSOR
  827. //disabled filament autoload (PFW360)
  828. fsensor_autoload_set(false);
  829. #endif //FILAMENT_SENSOR
  830. }
  831. MYSERIAL.begin(BAUDRATE);
  832. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  833. #ifndef W25X20CL
  834. SERIAL_PROTOCOLLNPGM("start");
  835. #endif //W25X20CL
  836. stdout = uartout;
  837. SERIAL_ECHO_START;
  838. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  839. #ifdef DEBUG_SEC_LANG
  840. lang_table_header_t header;
  841. uint32_t src_addr = 0x00000;
  842. if (lang_get_header(1, &header, &src_addr))
  843. {
  844. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  845. #define LT_PRINT_TEST 2
  846. // flash usage
  847. // total p.test
  848. //0 252718 t+c text code
  849. //1 253142 424 170 254
  850. //2 253040 322 164 158
  851. //3 253248 530 135 395
  852. #if (LT_PRINT_TEST==1) //not optimized printf
  853. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  854. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  855. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  856. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  857. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  858. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  859. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  860. #elif (LT_PRINT_TEST==2) //optimized printf
  861. printf_P(
  862. _n(
  863. " _src_addr = 0x%08lx\n"
  864. " _lt_magic = 0x%08lx %S\n"
  865. " _lt_size = 0x%04x (%d)\n"
  866. " _lt_count = 0x%04x (%d)\n"
  867. " _lt_chsum = 0x%04x\n"
  868. " _lt_code = 0x%04x (%c%c)\n"
  869. " _lt_resv1 = 0x%08lx\n"
  870. ),
  871. src_addr,
  872. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  873. header.size, header.size,
  874. header.count, header.count,
  875. header.checksum,
  876. header.code, header.code >> 8, header.code & 0xff,
  877. header.signature
  878. );
  879. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  880. MYSERIAL.print(" _src_addr = 0x");
  881. MYSERIAL.println(src_addr, 16);
  882. MYSERIAL.print(" _lt_magic = 0x");
  883. MYSERIAL.print(header.magic, 16);
  884. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  885. MYSERIAL.print(" _lt_size = 0x");
  886. MYSERIAL.print(header.size, 16);
  887. MYSERIAL.print(" (");
  888. MYSERIAL.print(header.size, 10);
  889. MYSERIAL.println(")");
  890. MYSERIAL.print(" _lt_count = 0x");
  891. MYSERIAL.print(header.count, 16);
  892. MYSERIAL.print(" (");
  893. MYSERIAL.print(header.count, 10);
  894. MYSERIAL.println(")");
  895. MYSERIAL.print(" _lt_chsum = 0x");
  896. MYSERIAL.println(header.checksum, 16);
  897. MYSERIAL.print(" _lt_code = 0x");
  898. MYSERIAL.print(header.code, 16);
  899. MYSERIAL.print(" (");
  900. MYSERIAL.print((char)(header.code >> 8), 0);
  901. MYSERIAL.print((char)(header.code & 0xff), 0);
  902. MYSERIAL.println(")");
  903. MYSERIAL.print(" _lt_resv1 = 0x");
  904. MYSERIAL.println(header.signature, 16);
  905. #endif //(LT_PRINT_TEST==)
  906. #undef LT_PRINT_TEST
  907. #if 0
  908. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  909. for (uint16_t i = 0; i < 1024; i++)
  910. {
  911. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  912. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  913. if ((i % 16) == 15) putchar('\n');
  914. }
  915. #endif
  916. uint16_t sum = 0;
  917. for (uint16_t i = 0; i < header.size; i++)
  918. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  919. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  920. sum -= header.checksum; //subtract checksum
  921. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  922. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  923. if (sum == header.checksum)
  924. printf_P(_n("Checksum OK\n"), sum);
  925. else
  926. printf_P(_n("Checksum NG\n"), sum);
  927. }
  928. else
  929. printf_P(_n("lang_get_header failed!\n"));
  930. #if 0
  931. for (uint16_t i = 0; i < 1024*10; i++)
  932. {
  933. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  934. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  935. if ((i % 16) == 15) putchar('\n');
  936. }
  937. #endif
  938. #if 0
  939. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  940. for (int i = 0; i < 4096; ++i) {
  941. int b = eeprom_read_byte((unsigned char*)i);
  942. if (b != 255) {
  943. SERIAL_ECHO(i);
  944. SERIAL_ECHO(":");
  945. SERIAL_ECHO(b);
  946. SERIAL_ECHOLN("");
  947. }
  948. }
  949. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  950. #endif
  951. #endif //DEBUG_SEC_LANG
  952. // Check startup - does nothing if bootloader sets MCUSR to 0
  953. byte mcu = MCUSR;
  954. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  955. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  956. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  957. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  958. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  959. if (mcu & 1) puts_P(MSG_POWERUP);
  960. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  961. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  962. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  963. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  964. MCUSR = 0;
  965. //SERIAL_ECHORPGM(MSG_MARLIN);
  966. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  967. #ifdef STRING_VERSION_CONFIG_H
  968. #ifdef STRING_CONFIG_H_AUTHOR
  969. SERIAL_ECHO_START;
  970. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  971. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  972. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  973. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  974. SERIAL_ECHOPGM("Compiled: ");
  975. SERIAL_ECHOLNPGM(__DATE__);
  976. #endif
  977. #endif
  978. SERIAL_ECHO_START;
  979. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  980. SERIAL_ECHO(freeMemory());
  981. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  982. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  983. //lcd_update_enable(false); // why do we need this?? - andre
  984. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  985. bool previous_settings_retrieved = false;
  986. uint8_t hw_changed = check_printer_version();
  987. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  988. previous_settings_retrieved = Config_RetrieveSettings();
  989. }
  990. else { //printer version was changed so use default settings
  991. Config_ResetDefault();
  992. }
  993. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  994. tp_init(); // Initialize temperature loop
  995. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  996. plan_init(); // Initialize planner;
  997. factory_reset();
  998. lcd_encoder_diff=0;
  999. #ifdef TMC2130
  1000. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1001. if (silentMode == 0xff) silentMode = 0;
  1002. tmc2130_mode = TMC2130_MODE_NORMAL;
  1003. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1004. if (crashdet && !farm_mode)
  1005. {
  1006. crashdet_enable();
  1007. puts_P(_N("CrashDetect ENABLED!"));
  1008. }
  1009. else
  1010. {
  1011. crashdet_disable();
  1012. puts_P(_N("CrashDetect DISABLED"));
  1013. }
  1014. #ifdef TMC2130_LINEARITY_CORRECTION
  1015. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1016. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1017. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1018. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1019. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1020. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1021. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1022. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1023. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1024. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1025. #endif //TMC2130_LINEARITY_CORRECTION
  1026. #ifdef TMC2130_VARIABLE_RESOLUTION
  1027. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1028. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1029. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1030. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1031. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1032. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1033. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1034. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1035. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1036. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1037. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1039. #else //TMC2130_VARIABLE_RESOLUTION
  1040. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1041. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1042. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1043. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1044. #endif //TMC2130_VARIABLE_RESOLUTION
  1045. #endif //TMC2130
  1046. st_init(); // Initialize stepper, this enables interrupts!
  1047. #ifdef TMC2130
  1048. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1049. update_mode_profile();
  1050. tmc2130_init();
  1051. #endif //TMC2130
  1052. setup_photpin();
  1053. servo_init();
  1054. // Reset the machine correction matrix.
  1055. // It does not make sense to load the correction matrix until the machine is homed.
  1056. world2machine_reset();
  1057. #ifdef FILAMENT_SENSOR
  1058. fsensor_init();
  1059. #endif //FILAMENT_SENSOR
  1060. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1061. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1062. #endif
  1063. setup_homepin();
  1064. #ifdef TMC2130
  1065. if (1) {
  1066. // try to run to zero phase before powering the Z motor.
  1067. // Move in negative direction
  1068. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1069. // Round the current micro-micro steps to micro steps.
  1070. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1071. // Until the phase counter is reset to zero.
  1072. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1073. _delay(2);
  1074. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1075. _delay(2);
  1076. }
  1077. }
  1078. #endif //TMC2130
  1079. #if defined(Z_AXIS_ALWAYS_ON)
  1080. enable_z();
  1081. #endif
  1082. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1083. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1084. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1085. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1086. if (farm_mode)
  1087. {
  1088. prusa_statistics(8);
  1089. }
  1090. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1091. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1092. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1093. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1094. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1095. // where all the EEPROM entries are set to 0x0ff.
  1096. // Once a firmware boots up, it forces at least a language selection, which changes
  1097. // EEPROM_LANG to number lower than 0x0ff.
  1098. // 1) Set a high power mode.
  1099. #ifdef TMC2130
  1100. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1101. tmc2130_mode = TMC2130_MODE_NORMAL;
  1102. #endif //TMC2130
  1103. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1104. }
  1105. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1106. // but this times out if a blocking dialog is shown in setup().
  1107. card.initsd();
  1108. #ifdef DEBUG_SD_SPEED_TEST
  1109. if (card.cardOK)
  1110. {
  1111. uint8_t* buff = (uint8_t*)block_buffer;
  1112. uint32_t block = 0;
  1113. uint32_t sumr = 0;
  1114. uint32_t sumw = 0;
  1115. for (int i = 0; i < 1024; i++)
  1116. {
  1117. uint32_t u = _micros();
  1118. bool res = card.card.readBlock(i, buff);
  1119. u = _micros() - u;
  1120. if (res)
  1121. {
  1122. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1123. sumr += u;
  1124. u = _micros();
  1125. res = card.card.writeBlock(i, buff);
  1126. u = _micros() - u;
  1127. if (res)
  1128. {
  1129. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1130. sumw += u;
  1131. }
  1132. else
  1133. {
  1134. printf_P(PSTR("writeBlock %4d error\n"), i);
  1135. break;
  1136. }
  1137. }
  1138. else
  1139. {
  1140. printf_P(PSTR("readBlock %4d error\n"), i);
  1141. break;
  1142. }
  1143. }
  1144. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1145. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1146. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1147. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1148. }
  1149. else
  1150. printf_P(PSTR("Card NG!\n"));
  1151. #endif //DEBUG_SD_SPEED_TEST
  1152. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1153. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1154. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1156. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1157. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1158. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1162. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1163. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1164. #ifdef SNMM
  1165. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1166. int _z = BOWDEN_LENGTH;
  1167. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1168. }
  1169. #endif
  1170. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1171. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1172. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1173. #if (LANG_MODE != 0) //secondary language support
  1174. #ifdef DEBUG_W25X20CL
  1175. W25X20CL_SPI_ENTER();
  1176. uint8_t uid[8]; // 64bit unique id
  1177. w25x20cl_rd_uid(uid);
  1178. puts_P(_n("W25X20CL UID="));
  1179. for (uint8_t i = 0; i < 8; i ++)
  1180. printf_P(PSTR("%02hhx"), uid[i]);
  1181. putchar('\n');
  1182. list_sec_lang_from_external_flash();
  1183. #endif //DEBUG_W25X20CL
  1184. // lang_reset();
  1185. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1186. lcd_language();
  1187. #ifdef DEBUG_SEC_LANG
  1188. uint16_t sec_lang_code = lang_get_code(1);
  1189. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1190. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1191. lang_print_sec_lang(uartout);
  1192. #endif //DEBUG_SEC_LANG
  1193. #endif //(LANG_MODE != 0)
  1194. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1195. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1196. temp_cal_active = false;
  1197. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1198. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1199. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1200. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1201. int16_t z_shift = 0;
  1202. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1203. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1204. temp_cal_active = false;
  1205. }
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1207. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1208. }
  1209. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1210. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1211. }
  1212. check_babystep(); //checking if Z babystep is in allowed range
  1213. #ifdef UVLO_SUPPORT
  1214. setup_uvlo_interrupt();
  1215. #endif //UVLO_SUPPORT
  1216. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1217. setup_fan_interrupt();
  1218. #endif //DEBUG_DISABLE_FANCHECK
  1219. #ifdef FILAMENT_SENSOR
  1220. fsensor_setup_interrupt();
  1221. #endif //FILAMENT_SENSOR
  1222. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1223. #ifndef DEBUG_DISABLE_STARTMSGS
  1224. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1225. show_fw_version_warnings();
  1226. switch (hw_changed) {
  1227. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1228. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1229. case(0b01):
  1230. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1231. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1232. break;
  1233. case(0b10):
  1234. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1235. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1236. break;
  1237. case(0b11):
  1238. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1239. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1240. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1241. break;
  1242. default: break; //no change, show no message
  1243. }
  1244. if (!previous_settings_retrieved) {
  1245. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1246. Config_StoreSettings();
  1247. }
  1248. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1249. lcd_wizard(WizState::Run);
  1250. }
  1251. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1252. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1253. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1254. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1255. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1256. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1257. // Show the message.
  1258. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1259. }
  1260. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1261. // Show the message.
  1262. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1263. lcd_update_enable(true);
  1264. }
  1265. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1266. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1267. lcd_update_enable(true);
  1268. }
  1269. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1270. // Show the message.
  1271. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1272. }
  1273. }
  1274. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1275. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1276. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1277. update_current_firmware_version_to_eeprom();
  1278. lcd_selftest();
  1279. }
  1280. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1281. KEEPALIVE_STATE(IN_PROCESS);
  1282. #endif //DEBUG_DISABLE_STARTMSGS
  1283. lcd_update_enable(true);
  1284. lcd_clear();
  1285. lcd_update(2);
  1286. // Store the currently running firmware into an eeprom,
  1287. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1288. update_current_firmware_version_to_eeprom();
  1289. #ifdef TMC2130
  1290. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1291. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1292. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1293. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1294. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1295. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1296. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1297. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1298. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1299. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1300. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1301. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1302. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1303. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1304. #endif //TMC2130
  1305. #ifdef UVLO_SUPPORT
  1306. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1307. /*
  1308. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1309. else {
  1310. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1311. lcd_update_enable(true);
  1312. lcd_update(2);
  1313. lcd_setstatuspgm(_T(WELCOME_MSG));
  1314. }
  1315. */
  1316. manage_heater(); // Update temperatures
  1317. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1318. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1319. #endif
  1320. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1321. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1322. puts_P(_N("Automatic recovery!"));
  1323. #endif
  1324. recover_print(1);
  1325. }
  1326. else{
  1327. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1328. puts_P(_N("Normal recovery!"));
  1329. #endif
  1330. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1331. else {
  1332. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1333. lcd_update_enable(true);
  1334. lcd_update(2);
  1335. lcd_setstatuspgm(_T(WELCOME_MSG));
  1336. }
  1337. }
  1338. }
  1339. #endif //UVLO_SUPPORT
  1340. KEEPALIVE_STATE(NOT_BUSY);
  1341. #ifdef WATCHDOG
  1342. wdt_enable(WDTO_4S);
  1343. #endif //WATCHDOG
  1344. }
  1345. void trace();
  1346. #define CHUNK_SIZE 64 // bytes
  1347. #define SAFETY_MARGIN 1
  1348. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1349. int chunkHead = 0;
  1350. void serial_read_stream() {
  1351. setAllTargetHotends(0);
  1352. setTargetBed(0);
  1353. lcd_clear();
  1354. lcd_puts_P(PSTR(" Upload in progress"));
  1355. // first wait for how many bytes we will receive
  1356. uint32_t bytesToReceive;
  1357. // receive the four bytes
  1358. char bytesToReceiveBuffer[4];
  1359. for (int i=0; i<4; i++) {
  1360. int data;
  1361. while ((data = MYSERIAL.read()) == -1) {};
  1362. bytesToReceiveBuffer[i] = data;
  1363. }
  1364. // make it a uint32
  1365. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1366. // we're ready, notify the sender
  1367. MYSERIAL.write('+');
  1368. // lock in the routine
  1369. uint32_t receivedBytes = 0;
  1370. while (prusa_sd_card_upload) {
  1371. int i;
  1372. for (i=0; i<CHUNK_SIZE; i++) {
  1373. int data;
  1374. // check if we're not done
  1375. if (receivedBytes == bytesToReceive) {
  1376. break;
  1377. }
  1378. // read the next byte
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. receivedBytes++;
  1381. // save it to the chunk
  1382. chunk[i] = data;
  1383. }
  1384. // write the chunk to SD
  1385. card.write_command_no_newline(&chunk[0]);
  1386. // notify the sender we're ready for more data
  1387. MYSERIAL.write('+');
  1388. // for safety
  1389. manage_heater();
  1390. // check if we're done
  1391. if(receivedBytes == bytesToReceive) {
  1392. trace(); // beep
  1393. card.closefile();
  1394. prusa_sd_card_upload = false;
  1395. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1396. }
  1397. }
  1398. }
  1399. #ifdef HOST_KEEPALIVE_FEATURE
  1400. /**
  1401. * Output a "busy" message at regular intervals
  1402. * while the machine is not accepting commands.
  1403. */
  1404. void host_keepalive() {
  1405. if (farm_mode) return;
  1406. long ms = _millis();
  1407. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1408. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1409. switch (busy_state) {
  1410. case IN_HANDLER:
  1411. case IN_PROCESS:
  1412. SERIAL_ECHO_START;
  1413. SERIAL_ECHOLNPGM("busy: processing");
  1414. break;
  1415. case PAUSED_FOR_USER:
  1416. SERIAL_ECHO_START;
  1417. SERIAL_ECHOLNPGM("busy: paused for user");
  1418. break;
  1419. case PAUSED_FOR_INPUT:
  1420. SERIAL_ECHO_START;
  1421. SERIAL_ECHOLNPGM("busy: paused for input");
  1422. break;
  1423. default:
  1424. break;
  1425. }
  1426. }
  1427. prev_busy_signal_ms = ms;
  1428. }
  1429. #endif
  1430. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1431. // Before loop(), the setup() function is called by the main() routine.
  1432. void loop()
  1433. {
  1434. KEEPALIVE_STATE(NOT_BUSY);
  1435. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1436. {
  1437. is_usb_printing = true;
  1438. usb_printing_counter--;
  1439. _usb_timer = _millis();
  1440. }
  1441. if (usb_printing_counter == 0)
  1442. {
  1443. is_usb_printing = false;
  1444. }
  1445. if (prusa_sd_card_upload)
  1446. {
  1447. //we read byte-by byte
  1448. serial_read_stream();
  1449. } else
  1450. {
  1451. get_command();
  1452. #ifdef SDSUPPORT
  1453. card.checkautostart(false);
  1454. #endif
  1455. if(buflen)
  1456. {
  1457. cmdbuffer_front_already_processed = false;
  1458. #ifdef SDSUPPORT
  1459. if(card.saving)
  1460. {
  1461. // Saving a G-code file onto an SD-card is in progress.
  1462. // Saving starts with M28, saving until M29 is seen.
  1463. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1464. card.write_command(CMDBUFFER_CURRENT_STRING);
  1465. if(card.logging)
  1466. process_commands();
  1467. else
  1468. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1469. } else {
  1470. card.closefile();
  1471. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1472. }
  1473. } else {
  1474. process_commands();
  1475. }
  1476. #else
  1477. process_commands();
  1478. #endif //SDSUPPORT
  1479. if (! cmdbuffer_front_already_processed && buflen)
  1480. {
  1481. // ptr points to the start of the block currently being processed.
  1482. // The first character in the block is the block type.
  1483. char *ptr = cmdbuffer + bufindr;
  1484. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1485. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1486. union {
  1487. struct {
  1488. char lo;
  1489. char hi;
  1490. } lohi;
  1491. uint16_t value;
  1492. } sdlen;
  1493. sdlen.value = 0;
  1494. {
  1495. // This block locks the interrupts globally for 3.25 us,
  1496. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1497. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1498. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1499. cli();
  1500. // Reset the command to something, which will be ignored by the power panic routine,
  1501. // so this buffer length will not be counted twice.
  1502. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1503. // Extract the current buffer length.
  1504. sdlen.lohi.lo = *ptr ++;
  1505. sdlen.lohi.hi = *ptr;
  1506. // and pass it to the planner queue.
  1507. planner_add_sd_length(sdlen.value);
  1508. sei();
  1509. }
  1510. }
  1511. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1512. cli();
  1513. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1514. // and one for each command to previous block in the planner queue.
  1515. planner_add_sd_length(1);
  1516. sei();
  1517. }
  1518. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1519. // this block's SD card length will not be counted twice as its command type has been replaced
  1520. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1521. cmdqueue_pop_front();
  1522. }
  1523. host_keepalive();
  1524. }
  1525. }
  1526. //check heater every n milliseconds
  1527. manage_heater();
  1528. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1529. checkHitEndstops();
  1530. lcd_update(0);
  1531. #ifdef TMC2130
  1532. tmc2130_check_overtemp();
  1533. if (tmc2130_sg_crash)
  1534. {
  1535. uint8_t crash = tmc2130_sg_crash;
  1536. tmc2130_sg_crash = 0;
  1537. // crashdet_stop_and_save_print();
  1538. switch (crash)
  1539. {
  1540. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1541. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1542. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1543. }
  1544. }
  1545. #endif //TMC2130
  1546. mmu_loop();
  1547. }
  1548. #define DEFINE_PGM_READ_ANY(type, reader) \
  1549. static inline type pgm_read_any(const type *p) \
  1550. { return pgm_read_##reader##_near(p); }
  1551. DEFINE_PGM_READ_ANY(float, float);
  1552. DEFINE_PGM_READ_ANY(signed char, byte);
  1553. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1554. static const PROGMEM type array##_P[3] = \
  1555. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1556. static inline type array(int axis) \
  1557. { return pgm_read_any(&array##_P[axis]); } \
  1558. type array##_ext(int axis) \
  1559. { return pgm_read_any(&array##_P[axis]); }
  1560. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1561. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1562. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1563. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1564. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1565. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1566. static void axis_is_at_home(int axis) {
  1567. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1568. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1569. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1570. }
  1571. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1572. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1573. //! @return original feedmultiply
  1574. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1575. saved_feedrate = feedrate;
  1576. int l_feedmultiply = feedmultiply;
  1577. feedmultiply = 100;
  1578. previous_millis_cmd = _millis();
  1579. enable_endstops(enable_endstops_now);
  1580. return l_feedmultiply;
  1581. }
  1582. //! @param original_feedmultiply feedmultiply to restore
  1583. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1584. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1585. enable_endstops(false);
  1586. #endif
  1587. feedrate = saved_feedrate;
  1588. feedmultiply = original_feedmultiply;
  1589. previous_millis_cmd = _millis();
  1590. }
  1591. #ifdef ENABLE_AUTO_BED_LEVELING
  1592. #ifdef AUTO_BED_LEVELING_GRID
  1593. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1594. {
  1595. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1596. planeNormal.debug("planeNormal");
  1597. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1598. //bedLevel.debug("bedLevel");
  1599. //plan_bed_level_matrix.debug("bed level before");
  1600. //vector_3 uncorrected_position = plan_get_position_mm();
  1601. //uncorrected_position.debug("position before");
  1602. vector_3 corrected_position = plan_get_position();
  1603. // corrected_position.debug("position after");
  1604. current_position[X_AXIS] = corrected_position.x;
  1605. current_position[Y_AXIS] = corrected_position.y;
  1606. current_position[Z_AXIS] = corrected_position.z;
  1607. // put the bed at 0 so we don't go below it.
  1608. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. }
  1611. #else // not AUTO_BED_LEVELING_GRID
  1612. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1613. plan_bed_level_matrix.set_to_identity();
  1614. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1615. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1616. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1617. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1618. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1619. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1620. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1621. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1622. vector_3 corrected_position = plan_get_position();
  1623. current_position[X_AXIS] = corrected_position.x;
  1624. current_position[Y_AXIS] = corrected_position.y;
  1625. current_position[Z_AXIS] = corrected_position.z;
  1626. // put the bed at 0 so we don't go below it.
  1627. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. }
  1630. #endif // AUTO_BED_LEVELING_GRID
  1631. static void run_z_probe() {
  1632. plan_bed_level_matrix.set_to_identity();
  1633. feedrate = homing_feedrate[Z_AXIS];
  1634. // move down until you find the bed
  1635. float zPosition = -10;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. // we have to let the planner know where we are right now as it is not where we said to go.
  1639. zPosition = st_get_position_mm(Z_AXIS);
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1641. // move up the retract distance
  1642. zPosition += home_retract_mm(Z_AXIS);
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1644. st_synchronize();
  1645. // move back down slowly to find bed
  1646. feedrate = homing_feedrate[Z_AXIS]/4;
  1647. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1649. st_synchronize();
  1650. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1651. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1652. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1653. }
  1654. static void do_blocking_move_to(float x, float y, float z) {
  1655. float oldFeedRate = feedrate;
  1656. feedrate = homing_feedrate[Z_AXIS];
  1657. current_position[Z_AXIS] = z;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1659. st_synchronize();
  1660. feedrate = XY_TRAVEL_SPEED;
  1661. current_position[X_AXIS] = x;
  1662. current_position[Y_AXIS] = y;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1664. st_synchronize();
  1665. feedrate = oldFeedRate;
  1666. }
  1667. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1668. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1669. }
  1670. /// Probe bed height at position (x,y), returns the measured z value
  1671. static float probe_pt(float x, float y, float z_before) {
  1672. // move to right place
  1673. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1674. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1675. run_z_probe();
  1676. float measured_z = current_position[Z_AXIS];
  1677. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1678. SERIAL_PROTOCOLPGM(" x: ");
  1679. SERIAL_PROTOCOL(x);
  1680. SERIAL_PROTOCOLPGM(" y: ");
  1681. SERIAL_PROTOCOL(y);
  1682. SERIAL_PROTOCOLPGM(" z: ");
  1683. SERIAL_PROTOCOL(measured_z);
  1684. SERIAL_PROTOCOLPGM("\n");
  1685. return measured_z;
  1686. }
  1687. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1688. #ifdef LIN_ADVANCE
  1689. /**
  1690. * M900: Set and/or Get advance K factor and WH/D ratio
  1691. *
  1692. * K<factor> Set advance K factor
  1693. * R<ratio> Set ratio directly (overrides WH/D)
  1694. * W<width> H<height> D<diam> Set ratio from WH/D
  1695. */
  1696. inline void gcode_M900() {
  1697. st_synchronize();
  1698. const float newK = code_seen('K') ? code_value_float() : -1;
  1699. if (newK >= 0) extruder_advance_k = newK;
  1700. float newR = code_seen('R') ? code_value_float() : -1;
  1701. if (newR < 0) {
  1702. const float newD = code_seen('D') ? code_value_float() : -1,
  1703. newW = code_seen('W') ? code_value_float() : -1,
  1704. newH = code_seen('H') ? code_value_float() : -1;
  1705. if (newD >= 0 && newW >= 0 && newH >= 0)
  1706. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1707. }
  1708. if (newR >= 0) advance_ed_ratio = newR;
  1709. SERIAL_ECHO_START;
  1710. SERIAL_ECHOPGM("Advance K=");
  1711. SERIAL_ECHOLN(extruder_advance_k);
  1712. SERIAL_ECHOPGM(" E/D=");
  1713. const float ratio = advance_ed_ratio;
  1714. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1715. }
  1716. #endif // LIN_ADVANCE
  1717. bool check_commands() {
  1718. bool end_command_found = false;
  1719. while (buflen)
  1720. {
  1721. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1722. if (!cmdbuffer_front_already_processed)
  1723. cmdqueue_pop_front();
  1724. cmdbuffer_front_already_processed = false;
  1725. }
  1726. return end_command_found;
  1727. }
  1728. #ifdef TMC2130
  1729. bool calibrate_z_auto()
  1730. {
  1731. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1732. lcd_clear();
  1733. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1734. bool endstops_enabled = enable_endstops(true);
  1735. int axis_up_dir = -home_dir(Z_AXIS);
  1736. tmc2130_home_enter(Z_AXIS_MASK);
  1737. current_position[Z_AXIS] = 0;
  1738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1739. set_destination_to_current();
  1740. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1741. feedrate = homing_feedrate[Z_AXIS];
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1743. st_synchronize();
  1744. // current_position[axis] = 0;
  1745. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1746. tmc2130_home_exit();
  1747. enable_endstops(false);
  1748. current_position[Z_AXIS] = 0;
  1749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1750. set_destination_to_current();
  1751. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1752. feedrate = homing_feedrate[Z_AXIS] / 2;
  1753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1754. st_synchronize();
  1755. enable_endstops(endstops_enabled);
  1756. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1757. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1758. return true;
  1759. }
  1760. #endif //TMC2130
  1761. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1762. {
  1763. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1764. #define HOMEAXIS_DO(LETTER) \
  1765. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1766. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1767. {
  1768. int axis_home_dir = home_dir(axis);
  1769. feedrate = homing_feedrate[axis];
  1770. #ifdef TMC2130
  1771. tmc2130_home_enter(X_AXIS_MASK << axis);
  1772. #endif //TMC2130
  1773. // Move away a bit, so that the print head does not touch the end position,
  1774. // and the following movement to endstop has a chance to achieve the required velocity
  1775. // for the stall guard to work.
  1776. current_position[axis] = 0;
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. set_destination_to_current();
  1779. // destination[axis] = 11.f;
  1780. destination[axis] = -3.f * axis_home_dir;
  1781. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1782. st_synchronize();
  1783. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1784. endstops_hit_on_purpose();
  1785. enable_endstops(false);
  1786. current_position[axis] = 0;
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. destination[axis] = 1. * axis_home_dir;
  1789. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1790. st_synchronize();
  1791. // Now continue to move up to the left end stop with the collision detection enabled.
  1792. enable_endstops(true);
  1793. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1794. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. for (uint8_t i = 0; i < cnt; i++)
  1797. {
  1798. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1799. endstops_hit_on_purpose();
  1800. enable_endstops(false);
  1801. current_position[axis] = 0;
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1803. destination[axis] = -10.f * axis_home_dir;
  1804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. endstops_hit_on_purpose();
  1807. // Now move left up to the collision, this time with a repeatable velocity.
  1808. enable_endstops(true);
  1809. destination[axis] = 11.f * axis_home_dir;
  1810. #ifdef TMC2130
  1811. feedrate = homing_feedrate[axis];
  1812. #else //TMC2130
  1813. feedrate = homing_feedrate[axis] / 2;
  1814. #endif //TMC2130
  1815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1816. st_synchronize();
  1817. #ifdef TMC2130
  1818. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1819. if (pstep) pstep[i] = mscnt >> 4;
  1820. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1821. #endif //TMC2130
  1822. }
  1823. endstops_hit_on_purpose();
  1824. enable_endstops(false);
  1825. #ifdef TMC2130
  1826. uint8_t orig = tmc2130_home_origin[axis];
  1827. uint8_t back = tmc2130_home_bsteps[axis];
  1828. if (tmc2130_home_enabled && (orig <= 63))
  1829. {
  1830. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1831. if (back > 0)
  1832. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1833. }
  1834. else
  1835. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1836. tmc2130_home_exit();
  1837. #endif //TMC2130
  1838. axis_is_at_home(axis);
  1839. axis_known_position[axis] = true;
  1840. // Move from minimum
  1841. #ifdef TMC2130
  1842. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1843. #else //TMC2130
  1844. float dist = - axis_home_dir * 0.01f * 64;
  1845. #endif //TMC2130
  1846. current_position[axis] -= dist;
  1847. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1848. current_position[axis] += dist;
  1849. destination[axis] = current_position[axis];
  1850. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1851. st_synchronize();
  1852. feedrate = 0.0;
  1853. }
  1854. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1855. {
  1856. #ifdef TMC2130
  1857. FORCE_HIGH_POWER_START;
  1858. #endif
  1859. int axis_home_dir = home_dir(axis);
  1860. current_position[axis] = 0;
  1861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1862. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1863. feedrate = homing_feedrate[axis];
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. #ifdef TMC2130
  1867. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1868. FORCE_HIGH_POWER_END;
  1869. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1870. return;
  1871. }
  1872. #endif //TMC2130
  1873. current_position[axis] = 0;
  1874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1875. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1877. st_synchronize();
  1878. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1879. feedrate = homing_feedrate[axis]/2 ;
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. #ifdef TMC2130
  1883. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1884. FORCE_HIGH_POWER_END;
  1885. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1886. return;
  1887. }
  1888. #endif //TMC2130
  1889. axis_is_at_home(axis);
  1890. destination[axis] = current_position[axis];
  1891. feedrate = 0.0;
  1892. endstops_hit_on_purpose();
  1893. axis_known_position[axis] = true;
  1894. #ifdef TMC2130
  1895. FORCE_HIGH_POWER_END;
  1896. #endif
  1897. }
  1898. enable_endstops(endstops_enabled);
  1899. }
  1900. /**/
  1901. void home_xy()
  1902. {
  1903. set_destination_to_current();
  1904. homeaxis(X_AXIS);
  1905. homeaxis(Y_AXIS);
  1906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1907. endstops_hit_on_purpose();
  1908. }
  1909. void refresh_cmd_timeout(void)
  1910. {
  1911. previous_millis_cmd = _millis();
  1912. }
  1913. #ifdef FWRETRACT
  1914. void retract(bool retracting, bool swapretract = false) {
  1915. if(retracting && !retracted[active_extruder]) {
  1916. destination[X_AXIS]=current_position[X_AXIS];
  1917. destination[Y_AXIS]=current_position[Y_AXIS];
  1918. destination[Z_AXIS]=current_position[Z_AXIS];
  1919. destination[E_AXIS]=current_position[E_AXIS];
  1920. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1921. plan_set_e_position(current_position[E_AXIS]);
  1922. float oldFeedrate = feedrate;
  1923. feedrate=cs.retract_feedrate*60;
  1924. retracted[active_extruder]=true;
  1925. prepare_move();
  1926. current_position[Z_AXIS]-=cs.retract_zlift;
  1927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1928. prepare_move();
  1929. feedrate = oldFeedrate;
  1930. } else if(!retracting && retracted[active_extruder]) {
  1931. destination[X_AXIS]=current_position[X_AXIS];
  1932. destination[Y_AXIS]=current_position[Y_AXIS];
  1933. destination[Z_AXIS]=current_position[Z_AXIS];
  1934. destination[E_AXIS]=current_position[E_AXIS];
  1935. current_position[Z_AXIS]+=cs.retract_zlift;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1938. plan_set_e_position(current_position[E_AXIS]);
  1939. float oldFeedrate = feedrate;
  1940. feedrate=cs.retract_recover_feedrate*60;
  1941. retracted[active_extruder]=false;
  1942. prepare_move();
  1943. feedrate = oldFeedrate;
  1944. }
  1945. } //retract
  1946. #endif //FWRETRACT
  1947. void trace() {
  1948. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1949. tone(BEEPER, 440);
  1950. _delay(25);
  1951. noTone(BEEPER);
  1952. _delay(20);
  1953. }
  1954. /*
  1955. void ramming() {
  1956. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1957. if (current_temperature[0] < 230) {
  1958. //PLA
  1959. max_feedrate[E_AXIS] = 50;
  1960. //current_position[E_AXIS] -= 8;
  1961. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1962. //current_position[E_AXIS] += 8;
  1963. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1964. current_position[E_AXIS] += 5.4;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1966. current_position[E_AXIS] += 3.2;
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1968. current_position[E_AXIS] += 3;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1970. st_synchronize();
  1971. max_feedrate[E_AXIS] = 80;
  1972. current_position[E_AXIS] -= 82;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1974. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1975. current_position[E_AXIS] -= 20;
  1976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1977. current_position[E_AXIS] += 5;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1979. current_position[E_AXIS] += 5;
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1981. current_position[E_AXIS] -= 10;
  1982. st_synchronize();
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1984. current_position[E_AXIS] += 10;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1986. current_position[E_AXIS] -= 10;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1988. current_position[E_AXIS] += 10;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1990. current_position[E_AXIS] -= 10;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1992. st_synchronize();
  1993. }
  1994. else {
  1995. //ABS
  1996. max_feedrate[E_AXIS] = 50;
  1997. //current_position[E_AXIS] -= 8;
  1998. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1999. //current_position[E_AXIS] += 8;
  2000. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2001. current_position[E_AXIS] += 3.1;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2003. current_position[E_AXIS] += 3.1;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2005. current_position[E_AXIS] += 4;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2007. st_synchronize();
  2008. //current_position[X_AXIS] += 23; //delay
  2009. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2010. //current_position[X_AXIS] -= 23; //delay
  2011. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2012. _delay(4700);
  2013. max_feedrate[E_AXIS] = 80;
  2014. current_position[E_AXIS] -= 92;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2016. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2017. current_position[E_AXIS] -= 5;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2019. current_position[E_AXIS] += 5;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2021. current_position[E_AXIS] -= 5;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2023. st_synchronize();
  2024. current_position[E_AXIS] += 5;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2026. current_position[E_AXIS] -= 5;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] += 5;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2030. current_position[E_AXIS] -= 5;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2032. st_synchronize();
  2033. }
  2034. }
  2035. */
  2036. #ifdef TMC2130
  2037. void force_high_power_mode(bool start_high_power_section) {
  2038. uint8_t silent;
  2039. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2040. if (silent == 1) {
  2041. //we are in silent mode, set to normal mode to enable crash detection
  2042. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2043. st_synchronize();
  2044. cli();
  2045. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2046. update_mode_profile();
  2047. tmc2130_init();
  2048. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2049. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2050. st_reset_timer();
  2051. sei();
  2052. }
  2053. }
  2054. #endif //TMC2130
  2055. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2056. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2057. }
  2058. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2059. st_synchronize();
  2060. #if 0
  2061. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2062. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2063. #endif
  2064. // Flag for the display update routine and to disable the print cancelation during homing.
  2065. homing_flag = true;
  2066. // Which axes should be homed?
  2067. bool home_x = home_x_axis;
  2068. bool home_y = home_y_axis;
  2069. bool home_z = home_z_axis;
  2070. // Either all X,Y,Z codes are present, or none of them.
  2071. bool home_all_axes = home_x == home_y && home_x == home_z;
  2072. if (home_all_axes)
  2073. // No X/Y/Z code provided means to home all axes.
  2074. home_x = home_y = home_z = true;
  2075. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2076. if (home_all_axes) {
  2077. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2078. feedrate = homing_feedrate[Z_AXIS];
  2079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2080. st_synchronize();
  2081. }
  2082. #ifdef ENABLE_AUTO_BED_LEVELING
  2083. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2084. #endif //ENABLE_AUTO_BED_LEVELING
  2085. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2086. // the planner will not perform any adjustments in the XY plane.
  2087. // Wait for the motors to stop and update the current position with the absolute values.
  2088. world2machine_revert_to_uncorrected();
  2089. // For mesh bed leveling deactivate the matrix temporarily.
  2090. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2091. // in a single axis only.
  2092. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2093. #ifdef MESH_BED_LEVELING
  2094. uint8_t mbl_was_active = mbl.active;
  2095. mbl.active = 0;
  2096. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2097. #endif
  2098. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2099. // consumed during the first movements following this statement.
  2100. if (home_z)
  2101. babystep_undo();
  2102. saved_feedrate = feedrate;
  2103. int l_feedmultiply = feedmultiply;
  2104. feedmultiply = 100;
  2105. previous_millis_cmd = _millis();
  2106. enable_endstops(true);
  2107. memcpy(destination, current_position, sizeof(destination));
  2108. feedrate = 0.0;
  2109. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2110. if(home_z)
  2111. homeaxis(Z_AXIS);
  2112. #endif
  2113. #ifdef QUICK_HOME
  2114. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2115. if(home_x && home_y) //first diagonal move
  2116. {
  2117. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2118. int x_axis_home_dir = home_dir(X_AXIS);
  2119. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2120. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2121. feedrate = homing_feedrate[X_AXIS];
  2122. if(homing_feedrate[Y_AXIS]<feedrate)
  2123. feedrate = homing_feedrate[Y_AXIS];
  2124. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2125. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2126. } else {
  2127. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2128. }
  2129. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2130. st_synchronize();
  2131. axis_is_at_home(X_AXIS);
  2132. axis_is_at_home(Y_AXIS);
  2133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2134. destination[X_AXIS] = current_position[X_AXIS];
  2135. destination[Y_AXIS] = current_position[Y_AXIS];
  2136. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2137. feedrate = 0.0;
  2138. st_synchronize();
  2139. endstops_hit_on_purpose();
  2140. current_position[X_AXIS] = destination[X_AXIS];
  2141. current_position[Y_AXIS] = destination[Y_AXIS];
  2142. current_position[Z_AXIS] = destination[Z_AXIS];
  2143. }
  2144. #endif /* QUICK_HOME */
  2145. #ifdef TMC2130
  2146. if(home_x)
  2147. {
  2148. if (!calib)
  2149. homeaxis(X_AXIS);
  2150. else
  2151. tmc2130_home_calibrate(X_AXIS);
  2152. }
  2153. if(home_y)
  2154. {
  2155. if (!calib)
  2156. homeaxis(Y_AXIS);
  2157. else
  2158. tmc2130_home_calibrate(Y_AXIS);
  2159. }
  2160. #else //TMC2130
  2161. if(home_x) homeaxis(X_AXIS);
  2162. if(home_y) homeaxis(Y_AXIS);
  2163. #endif //TMC2130
  2164. if(home_x_axis && home_x_value != 0)
  2165. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2166. if(home_y_axis && home_y_value != 0)
  2167. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2168. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2169. #ifndef Z_SAFE_HOMING
  2170. if(home_z) {
  2171. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2172. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2173. feedrate = max_feedrate[Z_AXIS];
  2174. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2175. st_synchronize();
  2176. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2177. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2178. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2179. {
  2180. homeaxis(X_AXIS);
  2181. homeaxis(Y_AXIS);
  2182. }
  2183. // 1st mesh bed leveling measurement point, corrected.
  2184. world2machine_initialize();
  2185. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2186. world2machine_reset();
  2187. if (destination[Y_AXIS] < Y_MIN_POS)
  2188. destination[Y_AXIS] = Y_MIN_POS;
  2189. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2190. feedrate = homing_feedrate[Z_AXIS]/10;
  2191. current_position[Z_AXIS] = 0;
  2192. enable_endstops(false);
  2193. #ifdef DEBUG_BUILD
  2194. SERIAL_ECHOLNPGM("plan_set_position()");
  2195. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2196. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2197. #endif
  2198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2199. #ifdef DEBUG_BUILD
  2200. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2201. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2202. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2203. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2204. #endif
  2205. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2206. st_synchronize();
  2207. current_position[X_AXIS] = destination[X_AXIS];
  2208. current_position[Y_AXIS] = destination[Y_AXIS];
  2209. enable_endstops(true);
  2210. endstops_hit_on_purpose();
  2211. homeaxis(Z_AXIS);
  2212. #else // MESH_BED_LEVELING
  2213. homeaxis(Z_AXIS);
  2214. #endif // MESH_BED_LEVELING
  2215. }
  2216. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2217. if(home_all_axes) {
  2218. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2219. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2220. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2221. feedrate = XY_TRAVEL_SPEED/60;
  2222. current_position[Z_AXIS] = 0;
  2223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2224. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2225. st_synchronize();
  2226. current_position[X_AXIS] = destination[X_AXIS];
  2227. current_position[Y_AXIS] = destination[Y_AXIS];
  2228. homeaxis(Z_AXIS);
  2229. }
  2230. // Let's see if X and Y are homed and probe is inside bed area.
  2231. if(home_z) {
  2232. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2233. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2234. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2235. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2236. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2237. current_position[Z_AXIS] = 0;
  2238. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2239. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2240. feedrate = max_feedrate[Z_AXIS];
  2241. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2242. st_synchronize();
  2243. homeaxis(Z_AXIS);
  2244. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2245. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2246. SERIAL_ECHO_START;
  2247. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2248. } else {
  2249. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2250. SERIAL_ECHO_START;
  2251. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2252. }
  2253. }
  2254. #endif // Z_SAFE_HOMING
  2255. #endif // Z_HOME_DIR < 0
  2256. if(home_z_axis && home_z_value != 0)
  2257. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2258. #ifdef ENABLE_AUTO_BED_LEVELING
  2259. if(home_z)
  2260. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2261. #endif
  2262. // Set the planner and stepper routine positions.
  2263. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2264. // contains the machine coordinates.
  2265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2266. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2267. enable_endstops(false);
  2268. #endif
  2269. feedrate = saved_feedrate;
  2270. feedmultiply = l_feedmultiply;
  2271. previous_millis_cmd = _millis();
  2272. endstops_hit_on_purpose();
  2273. #ifndef MESH_BED_LEVELING
  2274. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2275. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2276. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2277. lcd_adjust_z();
  2278. #endif
  2279. // Load the machine correction matrix
  2280. world2machine_initialize();
  2281. // and correct the current_position XY axes to match the transformed coordinate system.
  2282. world2machine_update_current();
  2283. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2284. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2285. {
  2286. if (! home_z && mbl_was_active) {
  2287. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2288. mbl.active = true;
  2289. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2290. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2291. }
  2292. }
  2293. else
  2294. {
  2295. st_synchronize();
  2296. homing_flag = false;
  2297. }
  2298. #endif
  2299. if (farm_mode) { prusa_statistics(20); };
  2300. homing_flag = false;
  2301. #if 0
  2302. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2303. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2304. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2305. #endif
  2306. }
  2307. void adjust_bed_reset()
  2308. {
  2309. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2310. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2311. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2312. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2313. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2314. }
  2315. //! @brief Calibrate XYZ
  2316. //! @param onlyZ if true, calibrate only Z axis
  2317. //! @param verbosity_level
  2318. //! @retval true Succeeded
  2319. //! @retval false Failed
  2320. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2321. {
  2322. bool final_result = false;
  2323. #ifdef TMC2130
  2324. FORCE_HIGH_POWER_START;
  2325. #endif // TMC2130
  2326. // Only Z calibration?
  2327. if (!onlyZ)
  2328. {
  2329. setTargetBed(0);
  2330. setAllTargetHotends(0);
  2331. adjust_bed_reset(); //reset bed level correction
  2332. }
  2333. // Disable the default update procedure of the display. We will do a modal dialog.
  2334. lcd_update_enable(false);
  2335. // Let the planner use the uncorrected coordinates.
  2336. mbl.reset();
  2337. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2338. // the planner will not perform any adjustments in the XY plane.
  2339. // Wait for the motors to stop and update the current position with the absolute values.
  2340. world2machine_revert_to_uncorrected();
  2341. // Reset the baby step value applied without moving the axes.
  2342. babystep_reset();
  2343. // Mark all axes as in a need for homing.
  2344. memset(axis_known_position, 0, sizeof(axis_known_position));
  2345. // Home in the XY plane.
  2346. //set_destination_to_current();
  2347. int l_feedmultiply = setup_for_endstop_move();
  2348. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2349. home_xy();
  2350. enable_endstops(false);
  2351. current_position[X_AXIS] += 5;
  2352. current_position[Y_AXIS] += 5;
  2353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2354. st_synchronize();
  2355. // Let the user move the Z axes up to the end stoppers.
  2356. #ifdef TMC2130
  2357. if (calibrate_z_auto())
  2358. {
  2359. #else //TMC2130
  2360. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2361. {
  2362. #endif //TMC2130
  2363. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2364. if(onlyZ){
  2365. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2366. lcd_set_cursor(0, 3);
  2367. lcd_print(1);
  2368. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2369. }else{
  2370. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2371. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2372. lcd_set_cursor(0, 2);
  2373. lcd_print(1);
  2374. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2375. }
  2376. refresh_cmd_timeout();
  2377. #ifndef STEEL_SHEET
  2378. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2379. {
  2380. lcd_wait_for_cool_down();
  2381. }
  2382. #endif //STEEL_SHEET
  2383. if(!onlyZ)
  2384. {
  2385. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2386. #ifdef STEEL_SHEET
  2387. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2388. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2389. #endif //STEEL_SHEET
  2390. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2391. KEEPALIVE_STATE(IN_HANDLER);
  2392. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2393. lcd_set_cursor(0, 2);
  2394. lcd_print(1);
  2395. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2396. }
  2397. bool endstops_enabled = enable_endstops(false);
  2398. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2400. st_synchronize();
  2401. // Move the print head close to the bed.
  2402. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2403. enable_endstops(true);
  2404. #ifdef TMC2130
  2405. tmc2130_home_enter(Z_AXIS_MASK);
  2406. #endif //TMC2130
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2408. st_synchronize();
  2409. #ifdef TMC2130
  2410. tmc2130_home_exit();
  2411. #endif //TMC2130
  2412. enable_endstops(endstops_enabled);
  2413. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2414. {
  2415. if (onlyZ)
  2416. {
  2417. clean_up_after_endstop_move(l_feedmultiply);
  2418. // Z only calibration.
  2419. // Load the machine correction matrix
  2420. world2machine_initialize();
  2421. // and correct the current_position to match the transformed coordinate system.
  2422. world2machine_update_current();
  2423. //FIXME
  2424. bool result = sample_mesh_and_store_reference();
  2425. if (result)
  2426. {
  2427. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2428. // Shipped, the nozzle height has been set already. The user can start printing now.
  2429. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2430. final_result = true;
  2431. // babystep_apply();
  2432. }
  2433. }
  2434. else
  2435. {
  2436. // Reset the baby step value and the baby step applied flag.
  2437. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2438. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2439. // Complete XYZ calibration.
  2440. uint8_t point_too_far_mask = 0;
  2441. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2442. clean_up_after_endstop_move(l_feedmultiply);
  2443. // Print head up.
  2444. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2446. st_synchronize();
  2447. //#ifndef NEW_XYZCAL
  2448. if (result >= 0)
  2449. {
  2450. #ifdef HEATBED_V2
  2451. sample_z();
  2452. #else //HEATBED_V2
  2453. point_too_far_mask = 0;
  2454. // Second half: The fine adjustment.
  2455. // Let the planner use the uncorrected coordinates.
  2456. mbl.reset();
  2457. world2machine_reset();
  2458. // Home in the XY plane.
  2459. int l_feedmultiply = setup_for_endstop_move();
  2460. home_xy();
  2461. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2462. clean_up_after_endstop_move(l_feedmultiply);
  2463. // Print head up.
  2464. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2466. st_synchronize();
  2467. // if (result >= 0) babystep_apply();
  2468. #endif //HEATBED_V2
  2469. }
  2470. //#endif //NEW_XYZCAL
  2471. lcd_update_enable(true);
  2472. lcd_update(2);
  2473. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2474. if (result >= 0)
  2475. {
  2476. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2477. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2478. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2479. final_result = true;
  2480. }
  2481. }
  2482. #ifdef TMC2130
  2483. tmc2130_home_exit();
  2484. #endif
  2485. }
  2486. else
  2487. {
  2488. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2489. final_result = false;
  2490. }
  2491. }
  2492. else
  2493. {
  2494. // Timeouted.
  2495. }
  2496. lcd_update_enable(true);
  2497. #ifdef TMC2130
  2498. FORCE_HIGH_POWER_END;
  2499. #endif // TMC2130
  2500. return final_result;
  2501. }
  2502. void gcode_M114()
  2503. {
  2504. SERIAL_PROTOCOLPGM("X:");
  2505. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2506. SERIAL_PROTOCOLPGM(" Y:");
  2507. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2508. SERIAL_PROTOCOLPGM(" Z:");
  2509. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2510. SERIAL_PROTOCOLPGM(" E:");
  2511. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2512. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2513. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2514. SERIAL_PROTOCOLPGM(" Y:");
  2515. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2516. SERIAL_PROTOCOLPGM(" Z:");
  2517. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2518. SERIAL_PROTOCOLPGM(" E:");
  2519. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2520. SERIAL_PROTOCOLLN("");
  2521. }
  2522. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2523. {
  2524. st_synchronize();
  2525. float lastpos[4];
  2526. if (farm_mode)
  2527. {
  2528. prusa_statistics(22);
  2529. }
  2530. //First backup current position and settings
  2531. int feedmultiplyBckp = feedmultiply;
  2532. float HotendTempBckp = degTargetHotend(active_extruder);
  2533. int fanSpeedBckp = fanSpeed;
  2534. lastpos[X_AXIS] = current_position[X_AXIS];
  2535. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2536. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2537. lastpos[E_AXIS] = current_position[E_AXIS];
  2538. //Retract E
  2539. current_position[E_AXIS] += e_shift;
  2540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2541. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2542. st_synchronize();
  2543. //Lift Z
  2544. current_position[Z_AXIS] += z_shift;
  2545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2546. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2547. st_synchronize();
  2548. //Move XY to side
  2549. current_position[X_AXIS] = x_position;
  2550. current_position[Y_AXIS] = y_position;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2552. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2553. st_synchronize();
  2554. //Beep, manage nozzle heater and wait for user to start unload filament
  2555. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2556. lcd_change_fil_state = 0;
  2557. // Unload filament
  2558. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2559. else unload_filament(); //unload filament for single material (used also in M702)
  2560. //finish moves
  2561. st_synchronize();
  2562. if (!mmu_enabled)
  2563. {
  2564. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2565. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2566. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2567. if (lcd_change_fil_state == 0)
  2568. {
  2569. lcd_clear();
  2570. lcd_set_cursor(0, 2);
  2571. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2572. current_position[X_AXIS] -= 100;
  2573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2574. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2575. st_synchronize();
  2576. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2577. }
  2578. }
  2579. if (mmu_enabled)
  2580. {
  2581. if (!automatic) {
  2582. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2583. mmu_M600_wait_and_beep();
  2584. if (saved_printing) {
  2585. lcd_clear();
  2586. lcd_set_cursor(0, 2);
  2587. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2588. mmu_command(MMU_CMD_R0);
  2589. manage_response(false, false);
  2590. }
  2591. }
  2592. mmu_M600_load_filament(automatic);
  2593. }
  2594. else
  2595. M600_load_filament();
  2596. if (!automatic) M600_check_state();
  2597. lcd_update_enable(true);
  2598. //Not let's go back to print
  2599. fanSpeed = fanSpeedBckp;
  2600. //Feed a little of filament to stabilize pressure
  2601. if (!automatic)
  2602. {
  2603. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2605. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2606. }
  2607. //Move XY back
  2608. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2609. FILAMENTCHANGE_XYFEED, active_extruder);
  2610. st_synchronize();
  2611. //Move Z back
  2612. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2613. FILAMENTCHANGE_ZFEED, active_extruder);
  2614. st_synchronize();
  2615. //Set E position to original
  2616. plan_set_e_position(lastpos[E_AXIS]);
  2617. memcpy(current_position, lastpos, sizeof(lastpos));
  2618. memcpy(destination, current_position, sizeof(current_position));
  2619. //Recover feed rate
  2620. feedmultiply = feedmultiplyBckp;
  2621. char cmd[9];
  2622. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2623. enquecommand(cmd);
  2624. lcd_setstatuspgm(_T(WELCOME_MSG));
  2625. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2626. }
  2627. void gcode_M701()
  2628. {
  2629. printf_P(PSTR("gcode_M701 begin\n"));
  2630. if (mmu_enabled)
  2631. {
  2632. extr_adj(tmp_extruder);//loads current extruder
  2633. mmu_extruder = tmp_extruder;
  2634. }
  2635. else
  2636. {
  2637. enable_z();
  2638. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2639. #ifdef FSENSOR_QUALITY
  2640. fsensor_oq_meassure_start(40);
  2641. #endif //FSENSOR_QUALITY
  2642. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2643. current_position[E_AXIS] += 40;
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2645. st_synchronize();
  2646. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2647. current_position[E_AXIS] += 30;
  2648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2649. load_filament_final_feed(); //slow sequence
  2650. st_synchronize();
  2651. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2652. delay_keep_alive(50);
  2653. noTone(BEEPER);
  2654. if (!farm_mode && loading_flag) {
  2655. lcd_load_filament_color_check();
  2656. }
  2657. lcd_update_enable(true);
  2658. lcd_update(2);
  2659. lcd_setstatuspgm(_T(WELCOME_MSG));
  2660. disable_z();
  2661. loading_flag = false;
  2662. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2663. #ifdef FSENSOR_QUALITY
  2664. fsensor_oq_meassure_stop();
  2665. if (!fsensor_oq_result())
  2666. {
  2667. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2668. lcd_update_enable(true);
  2669. lcd_update(2);
  2670. if (disable)
  2671. fsensor_disable();
  2672. }
  2673. #endif //FSENSOR_QUALITY
  2674. }
  2675. }
  2676. /**
  2677. * @brief Get serial number from 32U2 processor
  2678. *
  2679. * Typical format of S/N is:CZPX0917X003XC13518
  2680. *
  2681. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2682. *
  2683. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2684. * reply is transmitted to serial port 1 character by character.
  2685. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2686. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2687. * in any case.
  2688. */
  2689. static void gcode_PRUSA_SN()
  2690. {
  2691. if (farm_mode) {
  2692. selectedSerialPort = 0;
  2693. putchar(';');
  2694. putchar('S');
  2695. int numbersRead = 0;
  2696. ShortTimer timeout;
  2697. timeout.start();
  2698. while (numbersRead < 19) {
  2699. while (MSerial.available() > 0) {
  2700. uint8_t serial_char = MSerial.read();
  2701. selectedSerialPort = 1;
  2702. putchar(serial_char);
  2703. numbersRead++;
  2704. selectedSerialPort = 0;
  2705. }
  2706. if (timeout.expired(100u)) break;
  2707. }
  2708. selectedSerialPort = 1;
  2709. putchar('\n');
  2710. #if 0
  2711. for (int b = 0; b < 3; b++) {
  2712. tone(BEEPER, 110);
  2713. _delay(50);
  2714. noTone(BEEPER);
  2715. _delay(50);
  2716. }
  2717. #endif
  2718. } else {
  2719. puts_P(_N("Not in farm mode."));
  2720. }
  2721. }
  2722. #ifdef BACKLASH_X
  2723. extern uint8_t st_backlash_x;
  2724. #endif //BACKLASH_X
  2725. #ifdef BACKLASH_Y
  2726. extern uint8_t st_backlash_y;
  2727. #endif //BACKLASH_Y
  2728. //! @brief Parse and process commands
  2729. //!
  2730. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2731. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2732. //!
  2733. //! Implemented Codes
  2734. //! -------------------
  2735. //!
  2736. //!@n PRUSA CODES
  2737. //!@n P F - Returns FW versions
  2738. //!@n P R - Returns revision of printer
  2739. //!
  2740. //!@n G0 -> G1
  2741. //!@n G1 - Coordinated Movement X Y Z E
  2742. //!@n G2 - CW ARC
  2743. //!@n G3 - CCW ARC
  2744. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2745. //!@n G10 - retract filament according to settings of M207
  2746. //!@n G11 - retract recover filament according to settings of M208
  2747. //!@n G28 - Home all Axis
  2748. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2749. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2750. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2751. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2752. //!@n G80 - Automatic mesh bed leveling
  2753. //!@n G81 - Print bed profile
  2754. //!@n G90 - Use Absolute Coordinates
  2755. //!@n G91 - Use Relative Coordinates
  2756. //!@n G92 - Set current position to coordinates given
  2757. //!
  2758. //!@n M Codes
  2759. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2760. //!@n M1 - Same as M0
  2761. //!@n M17 - Enable/Power all stepper motors
  2762. //!@n M18 - Disable all stepper motors; same as M84
  2763. //!@n M20 - List SD card
  2764. //!@n M21 - Init SD card
  2765. //!@n M22 - Release SD card
  2766. //!@n M23 - Select SD file (M23 filename.g)
  2767. //!@n M24 - Start/resume SD print
  2768. //!@n M25 - Pause SD print
  2769. //!@n M26 - Set SD position in bytes (M26 S12345)
  2770. //!@n M27 - Report SD print status
  2771. //!@n M28 - Start SD write (M28 filename.g)
  2772. //!@n M29 - Stop SD write
  2773. //!@n M30 - Delete file from SD (M30 filename.g)
  2774. //!@n M31 - Output time since last M109 or SD card start to serial
  2775. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2776. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2777. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2778. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2779. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2780. //!@n M73 - Show percent done and print time remaining
  2781. //!@n M80 - Turn on Power Supply
  2782. //!@n M81 - Turn off Power Supply
  2783. //!@n M82 - Set E codes absolute (default)
  2784. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2785. //!@n M84 - Disable steppers until next move,
  2786. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2787. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2788. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2789. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2790. //!@n M104 - Set extruder target temp
  2791. //!@n M105 - Read current temp
  2792. //!@n M106 - Fan on
  2793. //!@n M107 - Fan off
  2794. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2795. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2796. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2797. //!@n M112 - Emergency stop
  2798. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2799. //!@n M114 - Output current position to serial port
  2800. //!@n M115 - Capabilities string
  2801. //!@n M117 - display message
  2802. //!@n M119 - Output Endstop status to serial port
  2803. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2804. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2805. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2806. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2807. //!@n M140 - Set bed target temp
  2808. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2809. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2810. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2811. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2812. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2813. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2814. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2815. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2816. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2817. //!@n M206 - set additional homing offset
  2818. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2819. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2820. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2821. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2822. //!@n M220 S<factor in percent>- set speed factor override percentage
  2823. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2824. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2825. //!@n M240 - Trigger a camera to take a photograph
  2826. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2827. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2828. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2829. //!@n M301 - Set PID parameters P I and D
  2830. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2831. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2832. //!@n M304 - Set bed PID parameters P I and D
  2833. //!@n M400 - Finish all moves
  2834. //!@n M401 - Lower z-probe if present
  2835. //!@n M402 - Raise z-probe if present
  2836. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2837. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2838. //!@n M406 - Turn off Filament Sensor extrusion control
  2839. //!@n M407 - Displays measured filament diameter
  2840. //!@n M500 - stores parameters in EEPROM
  2841. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2842. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2843. //!@n M503 - print the current settings (from memory not from EEPROM)
  2844. //!@n M509 - force language selection on next restart
  2845. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2846. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2847. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2848. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2849. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2850. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2851. //!@n M907 - Set digital trimpot motor current using axis codes.
  2852. //!@n M908 - Control digital trimpot directly.
  2853. //!@n M350 - Set microstepping mode.
  2854. //!@n M351 - Toggle MS1 MS2 pins directly.
  2855. //!
  2856. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2857. //!@n M999 - Restart after being stopped by error
  2858. void process_commands()
  2859. {
  2860. if (!buflen) return; //empty command
  2861. #ifdef FILAMENT_RUNOUT_SUPPORT
  2862. SET_INPUT(FR_SENS);
  2863. #endif
  2864. #ifdef CMDBUFFER_DEBUG
  2865. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2866. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2867. SERIAL_ECHOLNPGM("");
  2868. SERIAL_ECHOPGM("In cmdqueue: ");
  2869. SERIAL_ECHO(buflen);
  2870. SERIAL_ECHOLNPGM("");
  2871. #endif /* CMDBUFFER_DEBUG */
  2872. unsigned long codenum; //throw away variable
  2873. char *starpos = NULL;
  2874. #ifdef ENABLE_AUTO_BED_LEVELING
  2875. float x_tmp, y_tmp, z_tmp, real_z;
  2876. #endif
  2877. // PRUSA GCODES
  2878. KEEPALIVE_STATE(IN_HANDLER);
  2879. #ifdef SNMM
  2880. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2881. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2882. int8_t SilentMode;
  2883. #endif
  2884. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2885. starpos = (strchr(strchr_pointer + 5, '*'));
  2886. if (starpos != NULL)
  2887. *(starpos) = '\0';
  2888. lcd_setstatus(strchr_pointer + 5);
  2889. }
  2890. #ifdef TMC2130
  2891. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2892. {
  2893. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2894. {
  2895. uint8_t mask = 0;
  2896. if (code_seen('X')) mask |= X_AXIS_MASK;
  2897. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2898. crashdet_detected(mask);
  2899. }
  2900. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2901. crashdet_recover();
  2902. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2903. crashdet_cancel();
  2904. }
  2905. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2906. {
  2907. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2908. {
  2909. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2910. axis = (axis == 'E')?3:(axis - 'X');
  2911. if (axis < 4)
  2912. {
  2913. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2914. tmc2130_set_wave(axis, 247, fac);
  2915. }
  2916. }
  2917. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2918. {
  2919. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2920. axis = (axis == 'E')?3:(axis - 'X');
  2921. if (axis < 4)
  2922. {
  2923. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2924. uint16_t res = tmc2130_get_res(axis);
  2925. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2926. }
  2927. }
  2928. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2929. {
  2930. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2931. axis = (axis == 'E')?3:(axis - 'X');
  2932. if (axis < 4)
  2933. {
  2934. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2935. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2936. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2937. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2938. char* str_end = 0;
  2939. if (CMDBUFFER_CURRENT_STRING[14])
  2940. {
  2941. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2942. if (str_end && *str_end)
  2943. {
  2944. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2945. if (str_end && *str_end)
  2946. {
  2947. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2948. if (str_end && *str_end)
  2949. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2950. }
  2951. }
  2952. }
  2953. tmc2130_chopper_config[axis].toff = chop0;
  2954. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2955. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2956. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2957. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2958. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2959. }
  2960. }
  2961. }
  2962. #ifdef BACKLASH_X
  2963. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2964. {
  2965. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2966. st_backlash_x = bl;
  2967. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2968. }
  2969. #endif //BACKLASH_X
  2970. #ifdef BACKLASH_Y
  2971. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2972. {
  2973. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2974. st_backlash_y = bl;
  2975. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2976. }
  2977. #endif //BACKLASH_Y
  2978. #endif //TMC2130
  2979. #ifdef PAT9125
  2980. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2981. fsensor_restore_print_and_continue();
  2982. }
  2983. #endif //PAT9125
  2984. else if(code_seen("PRUSA")){
  2985. if (code_seen("Ping")) { //! PRUSA Ping
  2986. if (farm_mode) {
  2987. PingTime = _millis();
  2988. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2989. }
  2990. }
  2991. else if (code_seen("PRN")) { //! PRUSA PRN
  2992. printf_P(_N("%d"), status_number);
  2993. }else if (code_seen("FAN")) { //! PRUSA FAN
  2994. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2995. }else if (code_seen("fn")) { //! PRUSA fn
  2996. if (farm_mode) {
  2997. printf_P(_N("%d"), farm_no);
  2998. }
  2999. else {
  3000. puts_P(_N("Not in farm mode."));
  3001. }
  3002. }
  3003. else if (code_seen("thx")) //! PRUSA thx
  3004. {
  3005. no_response = false;
  3006. }
  3007. else if (code_seen("uvlo")) //! PRUSA uvlo
  3008. {
  3009. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3010. enquecommand_P(PSTR("M24"));
  3011. }
  3012. else if (code_seen("MMURES")) //! PRUSA MMURES
  3013. {
  3014. mmu_reset();
  3015. }
  3016. else if (code_seen("RESET")) { //! PRUSA RESET
  3017. // careful!
  3018. if (farm_mode) {
  3019. #ifdef WATCHDOG
  3020. boot_app_magic = BOOT_APP_MAGIC;
  3021. boot_app_flags = BOOT_APP_FLG_RUN;
  3022. wdt_enable(WDTO_15MS);
  3023. cli();
  3024. while(1);
  3025. #else //WATCHDOG
  3026. asm volatile("jmp 0x3E000");
  3027. #endif //WATCHDOG
  3028. }
  3029. else {
  3030. MYSERIAL.println("Not in farm mode.");
  3031. }
  3032. }else if (code_seen("fv")) { //! PRUSA fv
  3033. // get file version
  3034. #ifdef SDSUPPORT
  3035. card.openFile(strchr_pointer + 3,true);
  3036. while (true) {
  3037. uint16_t readByte = card.get();
  3038. MYSERIAL.write(readByte);
  3039. if (readByte=='\n') {
  3040. break;
  3041. }
  3042. }
  3043. card.closefile();
  3044. #endif // SDSUPPORT
  3045. } else if (code_seen("M28")) { //! PRUSA M28
  3046. trace();
  3047. prusa_sd_card_upload = true;
  3048. card.openFile(strchr_pointer+4,false);
  3049. } else if (code_seen("SN")) { //! PRUSA SN
  3050. gcode_PRUSA_SN();
  3051. } else if(code_seen("Fir")){ //! PRUSA Fir
  3052. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3053. } else if(code_seen("Rev")){ //! PRUSA Rev
  3054. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3055. } else if(code_seen("Lang")) { //! PRUSA Lang
  3056. lang_reset();
  3057. } else if(code_seen("Lz")) { //! PRUSA Lz
  3058. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3059. } else if(code_seen("Beat")) { //! PRUSA Beat
  3060. // Kick farm link timer
  3061. kicktime = _millis();
  3062. } else if(code_seen("FR")) { //! PRUSA FR
  3063. // Factory full reset
  3064. factory_reset(0);
  3065. }
  3066. //else if (code_seen('Cal')) {
  3067. // lcd_calibration();
  3068. // }
  3069. }
  3070. else if (code_seen('^')) {
  3071. // nothing, this is a version line
  3072. } else if(code_seen('G'))
  3073. {
  3074. gcode_in_progress = (int)code_value();
  3075. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3076. switch (gcode_in_progress)
  3077. {
  3078. case 0: // G0 -> G1
  3079. case 1: // G1
  3080. if(Stopped == false) {
  3081. #ifdef FILAMENT_RUNOUT_SUPPORT
  3082. if(READ(FR_SENS)){
  3083. int feedmultiplyBckp=feedmultiply;
  3084. float target[4];
  3085. float lastpos[4];
  3086. target[X_AXIS]=current_position[X_AXIS];
  3087. target[Y_AXIS]=current_position[Y_AXIS];
  3088. target[Z_AXIS]=current_position[Z_AXIS];
  3089. target[E_AXIS]=current_position[E_AXIS];
  3090. lastpos[X_AXIS]=current_position[X_AXIS];
  3091. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3092. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3093. lastpos[E_AXIS]=current_position[E_AXIS];
  3094. //retract by E
  3095. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3096. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3097. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3098. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3099. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3100. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3101. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3102. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3103. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3104. //finish moves
  3105. st_synchronize();
  3106. //disable extruder steppers so filament can be removed
  3107. disable_e0();
  3108. disable_e1();
  3109. disable_e2();
  3110. _delay(100);
  3111. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3112. uint8_t cnt=0;
  3113. int counterBeep = 0;
  3114. lcd_wait_interact();
  3115. while(!lcd_clicked()){
  3116. cnt++;
  3117. manage_heater();
  3118. manage_inactivity(true);
  3119. //lcd_update(0);
  3120. if(cnt==0)
  3121. {
  3122. #if BEEPER > 0
  3123. if (counterBeep== 500){
  3124. counterBeep = 0;
  3125. }
  3126. SET_OUTPUT(BEEPER);
  3127. if (counterBeep== 0){
  3128. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3129. WRITE(BEEPER,HIGH);
  3130. }
  3131. if (counterBeep== 20){
  3132. WRITE(BEEPER,LOW);
  3133. }
  3134. counterBeep++;
  3135. #else
  3136. #endif
  3137. }
  3138. }
  3139. WRITE(BEEPER,LOW);
  3140. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3142. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3144. lcd_change_fil_state = 0;
  3145. lcd_loading_filament();
  3146. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3147. lcd_change_fil_state = 0;
  3148. lcd_alright();
  3149. switch(lcd_change_fil_state){
  3150. case 2:
  3151. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3153. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3155. lcd_loading_filament();
  3156. break;
  3157. case 3:
  3158. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3160. lcd_loading_color();
  3161. break;
  3162. default:
  3163. lcd_change_success();
  3164. break;
  3165. }
  3166. }
  3167. target[E_AXIS]+= 5;
  3168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3169. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3171. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3172. //plan_set_e_position(current_position[E_AXIS]);
  3173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3174. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3175. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3176. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3177. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3178. plan_set_e_position(lastpos[E_AXIS]);
  3179. feedmultiply=feedmultiplyBckp;
  3180. char cmd[9];
  3181. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3182. enquecommand(cmd);
  3183. }
  3184. #endif
  3185. get_coordinates(); // For X Y Z E F
  3186. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3187. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3188. }
  3189. #ifdef FWRETRACT
  3190. if(cs.autoretract_enabled)
  3191. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3192. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3193. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3194. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3195. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3196. retract(!retracted[active_extruder]);
  3197. return;
  3198. }
  3199. }
  3200. #endif //FWRETRACT
  3201. prepare_move();
  3202. //ClearToSend();
  3203. }
  3204. break;
  3205. case 2: // G2 - CW ARC
  3206. if(Stopped == false) {
  3207. get_arc_coordinates();
  3208. prepare_arc_move(true);
  3209. }
  3210. break;
  3211. case 3: // G3 - CCW ARC
  3212. if(Stopped == false) {
  3213. get_arc_coordinates();
  3214. prepare_arc_move(false);
  3215. }
  3216. break;
  3217. case 4: // G4 dwell
  3218. codenum = 0;
  3219. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3220. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3221. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3222. st_synchronize();
  3223. codenum += _millis(); // keep track of when we started waiting
  3224. previous_millis_cmd = _millis();
  3225. while(_millis() < codenum) {
  3226. manage_heater();
  3227. manage_inactivity();
  3228. lcd_update(0);
  3229. }
  3230. break;
  3231. #ifdef FWRETRACT
  3232. case 10: // G10 retract
  3233. #if EXTRUDERS > 1
  3234. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3235. retract(true,retracted_swap[active_extruder]);
  3236. #else
  3237. retract(true);
  3238. #endif
  3239. break;
  3240. case 11: // G11 retract_recover
  3241. #if EXTRUDERS > 1
  3242. retract(false,retracted_swap[active_extruder]);
  3243. #else
  3244. retract(false);
  3245. #endif
  3246. break;
  3247. #endif //FWRETRACT
  3248. case 28: //G28 Home all Axis one at a time
  3249. {
  3250. long home_x_value = 0;
  3251. long home_y_value = 0;
  3252. long home_z_value = 0;
  3253. // Which axes should be homed?
  3254. bool home_x = code_seen(axis_codes[X_AXIS]);
  3255. home_x_value = code_value_long();
  3256. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3257. home_y_value = code_value_long();
  3258. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3259. home_z_value = code_value_long();
  3260. bool without_mbl = code_seen('W');
  3261. // calibrate?
  3262. bool calib = code_seen('C');
  3263. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3264. if ((home_x || home_y || without_mbl || home_z) == false) {
  3265. // Push the commands to the front of the message queue in the reverse order!
  3266. // There shall be always enough space reserved for these commands.
  3267. goto case_G80;
  3268. }
  3269. break;
  3270. }
  3271. #ifdef ENABLE_AUTO_BED_LEVELING
  3272. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3273. {
  3274. #if Z_MIN_PIN == -1
  3275. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3276. #endif
  3277. // Prevent user from running a G29 without first homing in X and Y
  3278. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3279. {
  3280. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3281. SERIAL_ECHO_START;
  3282. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3283. break; // abort G29, since we don't know where we are
  3284. }
  3285. st_synchronize();
  3286. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3287. //vector_3 corrected_position = plan_get_position_mm();
  3288. //corrected_position.debug("position before G29");
  3289. plan_bed_level_matrix.set_to_identity();
  3290. vector_3 uncorrected_position = plan_get_position();
  3291. //uncorrected_position.debug("position durring G29");
  3292. current_position[X_AXIS] = uncorrected_position.x;
  3293. current_position[Y_AXIS] = uncorrected_position.y;
  3294. current_position[Z_AXIS] = uncorrected_position.z;
  3295. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3296. int l_feedmultiply = setup_for_endstop_move();
  3297. feedrate = homing_feedrate[Z_AXIS];
  3298. #ifdef AUTO_BED_LEVELING_GRID
  3299. // probe at the points of a lattice grid
  3300. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3301. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3302. // solve the plane equation ax + by + d = z
  3303. // A is the matrix with rows [x y 1] for all the probed points
  3304. // B is the vector of the Z positions
  3305. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3306. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3307. // "A" matrix of the linear system of equations
  3308. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3309. // "B" vector of Z points
  3310. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3311. int probePointCounter = 0;
  3312. bool zig = true;
  3313. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3314. {
  3315. int xProbe, xInc;
  3316. if (zig)
  3317. {
  3318. xProbe = LEFT_PROBE_BED_POSITION;
  3319. //xEnd = RIGHT_PROBE_BED_POSITION;
  3320. xInc = xGridSpacing;
  3321. zig = false;
  3322. } else // zag
  3323. {
  3324. xProbe = RIGHT_PROBE_BED_POSITION;
  3325. //xEnd = LEFT_PROBE_BED_POSITION;
  3326. xInc = -xGridSpacing;
  3327. zig = true;
  3328. }
  3329. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3330. {
  3331. float z_before;
  3332. if (probePointCounter == 0)
  3333. {
  3334. // raise before probing
  3335. z_before = Z_RAISE_BEFORE_PROBING;
  3336. } else
  3337. {
  3338. // raise extruder
  3339. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3340. }
  3341. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3342. eqnBVector[probePointCounter] = measured_z;
  3343. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3344. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3345. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3346. probePointCounter++;
  3347. xProbe += xInc;
  3348. }
  3349. }
  3350. clean_up_after_endstop_move(l_feedmultiply);
  3351. // solve lsq problem
  3352. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3353. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3354. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3355. SERIAL_PROTOCOLPGM(" b: ");
  3356. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3357. SERIAL_PROTOCOLPGM(" d: ");
  3358. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3359. set_bed_level_equation_lsq(plane_equation_coefficients);
  3360. free(plane_equation_coefficients);
  3361. #else // AUTO_BED_LEVELING_GRID not defined
  3362. // Probe at 3 arbitrary points
  3363. // probe 1
  3364. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3365. // probe 2
  3366. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3367. // probe 3
  3368. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3369. clean_up_after_endstop_move(l_feedmultiply);
  3370. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3371. #endif // AUTO_BED_LEVELING_GRID
  3372. st_synchronize();
  3373. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3374. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3375. // When the bed is uneven, this height must be corrected.
  3376. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3377. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3378. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3379. z_tmp = current_position[Z_AXIS];
  3380. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3381. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3383. }
  3384. break;
  3385. #ifndef Z_PROBE_SLED
  3386. case 30: // G30 Single Z Probe
  3387. {
  3388. st_synchronize();
  3389. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3390. int l_feedmultiply = setup_for_endstop_move();
  3391. feedrate = homing_feedrate[Z_AXIS];
  3392. run_z_probe();
  3393. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3394. SERIAL_PROTOCOLPGM(" X: ");
  3395. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3396. SERIAL_PROTOCOLPGM(" Y: ");
  3397. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3398. SERIAL_PROTOCOLPGM(" Z: ");
  3399. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3400. SERIAL_PROTOCOLPGM("\n");
  3401. clean_up_after_endstop_move(l_feedmultiply);
  3402. }
  3403. break;
  3404. #else
  3405. case 31: // dock the sled
  3406. dock_sled(true);
  3407. break;
  3408. case 32: // undock the sled
  3409. dock_sled(false);
  3410. break;
  3411. #endif // Z_PROBE_SLED
  3412. #endif // ENABLE_AUTO_BED_LEVELING
  3413. #ifdef MESH_BED_LEVELING
  3414. case 30: // G30 Single Z Probe
  3415. {
  3416. st_synchronize();
  3417. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3418. int l_feedmultiply = setup_for_endstop_move();
  3419. feedrate = homing_feedrate[Z_AXIS];
  3420. find_bed_induction_sensor_point_z(-10.f, 3);
  3421. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3422. clean_up_after_endstop_move(l_feedmultiply);
  3423. }
  3424. break;
  3425. case 75:
  3426. {
  3427. for (int i = 40; i <= 110; i++)
  3428. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3429. }
  3430. break;
  3431. case 76: //! G76 - PINDA probe temperature calibration
  3432. {
  3433. #ifdef PINDA_THERMISTOR
  3434. if (true)
  3435. {
  3436. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3437. //we need to know accurate position of first calibration point
  3438. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3439. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3440. break;
  3441. }
  3442. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3443. {
  3444. // We don't know where we are! HOME!
  3445. // Push the commands to the front of the message queue in the reverse order!
  3446. // There shall be always enough space reserved for these commands.
  3447. repeatcommand_front(); // repeat G76 with all its parameters
  3448. enquecommand_front_P((PSTR("G28 W0")));
  3449. break;
  3450. }
  3451. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3452. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3453. if (result)
  3454. {
  3455. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3457. current_position[Z_AXIS] = 50;
  3458. current_position[Y_AXIS] = 180;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3460. st_synchronize();
  3461. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3462. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3463. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3465. st_synchronize();
  3466. gcode_G28(false, false, true);
  3467. }
  3468. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3469. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3470. current_position[Z_AXIS] = 100;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3473. lcd_temp_cal_show_result(false);
  3474. break;
  3475. }
  3476. }
  3477. lcd_update_enable(true);
  3478. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3479. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3480. float zero_z;
  3481. int z_shift = 0; //unit: steps
  3482. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3483. if (start_temp < 35) start_temp = 35;
  3484. if (start_temp < current_temperature_pinda) start_temp += 5;
  3485. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3486. // setTargetHotend(200, 0);
  3487. setTargetBed(70 + (start_temp - 30));
  3488. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3489. custom_message_state = 1;
  3490. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3494. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3498. st_synchronize();
  3499. while (current_temperature_pinda < start_temp)
  3500. {
  3501. delay_keep_alive(1000);
  3502. serialecho_temperatures();
  3503. }
  3504. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3505. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3507. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3508. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3510. st_synchronize();
  3511. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3512. if (find_z_result == false) {
  3513. lcd_temp_cal_show_result(find_z_result);
  3514. break;
  3515. }
  3516. zero_z = current_position[Z_AXIS];
  3517. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3518. int i = -1; for (; i < 5; i++)
  3519. {
  3520. float temp = (40 + i * 5);
  3521. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3522. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3523. if (start_temp <= temp) break;
  3524. }
  3525. for (i++; i < 5; i++)
  3526. {
  3527. float temp = (40 + i * 5);
  3528. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3529. custom_message_state = i + 2;
  3530. setTargetBed(50 + 10 * (temp - 30) / 5);
  3531. // setTargetHotend(255, 0);
  3532. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3534. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3535. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3537. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3539. st_synchronize();
  3540. while (current_temperature_pinda < temp)
  3541. {
  3542. delay_keep_alive(1000);
  3543. serialecho_temperatures();
  3544. }
  3545. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3547. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3548. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3550. st_synchronize();
  3551. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3552. if (find_z_result == false) {
  3553. lcd_temp_cal_show_result(find_z_result);
  3554. break;
  3555. }
  3556. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3557. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3558. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3559. }
  3560. lcd_temp_cal_show_result(true);
  3561. break;
  3562. }
  3563. #endif //PINDA_THERMISTOR
  3564. setTargetBed(PINDA_MIN_T);
  3565. float zero_z;
  3566. int z_shift = 0; //unit: steps
  3567. int t_c; // temperature
  3568. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3569. // We don't know where we are! HOME!
  3570. // Push the commands to the front of the message queue in the reverse order!
  3571. // There shall be always enough space reserved for these commands.
  3572. repeatcommand_front(); // repeat G76 with all its parameters
  3573. enquecommand_front_P((PSTR("G28 W0")));
  3574. break;
  3575. }
  3576. puts_P(_N("PINDA probe calibration start"));
  3577. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3578. custom_message_state = 1;
  3579. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3580. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3581. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3582. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3586. delay_keep_alive(1000);
  3587. serialecho_temperatures();
  3588. }
  3589. //enquecommand_P(PSTR("M190 S50"));
  3590. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3591. delay_keep_alive(1000);
  3592. serialecho_temperatures();
  3593. }
  3594. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3595. current_position[Z_AXIS] = 5;
  3596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3597. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3598. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3600. st_synchronize();
  3601. find_bed_induction_sensor_point_z(-1.f);
  3602. zero_z = current_position[Z_AXIS];
  3603. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3604. for (int i = 0; i<5; i++) {
  3605. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3606. custom_message_state = i + 2;
  3607. t_c = 60 + i * 10;
  3608. setTargetBed(t_c);
  3609. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3610. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3611. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. st_synchronize();
  3614. while (degBed() < t_c) {
  3615. delay_keep_alive(1000);
  3616. serialecho_temperatures();
  3617. }
  3618. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3619. delay_keep_alive(1000);
  3620. serialecho_temperatures();
  3621. }
  3622. current_position[Z_AXIS] = 5;
  3623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3624. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3625. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3627. st_synchronize();
  3628. find_bed_induction_sensor_point_z(-1.f);
  3629. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3630. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3631. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3632. }
  3633. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3634. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3635. puts_P(_N("Temperature calibration done."));
  3636. disable_x();
  3637. disable_y();
  3638. disable_z();
  3639. disable_e0();
  3640. disable_e1();
  3641. disable_e2();
  3642. setTargetBed(0); //set bed target temperature back to 0
  3643. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3644. temp_cal_active = true;
  3645. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3646. lcd_update_enable(true);
  3647. lcd_update(2);
  3648. }
  3649. break;
  3650. #ifdef DIS
  3651. case 77:
  3652. {
  3653. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3654. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3655. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3656. float dimension_x = 40;
  3657. float dimension_y = 40;
  3658. int points_x = 40;
  3659. int points_y = 40;
  3660. float offset_x = 74;
  3661. float offset_y = 33;
  3662. if (code_seen('X')) dimension_x = code_value();
  3663. if (code_seen('Y')) dimension_y = code_value();
  3664. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3665. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3666. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3667. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3668. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3669. } break;
  3670. #endif
  3671. case 79: {
  3672. for (int i = 255; i > 0; i = i - 5) {
  3673. fanSpeed = i;
  3674. //delay_keep_alive(2000);
  3675. for (int j = 0; j < 100; j++) {
  3676. delay_keep_alive(100);
  3677. }
  3678. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3679. }
  3680. }break;
  3681. /**
  3682. * G80: Mesh-based Z probe, probes a grid and produces a
  3683. * mesh to compensate for variable bed height
  3684. *
  3685. * The S0 report the points as below
  3686. * @code{.unparsed}
  3687. * +----> X-axis
  3688. * |
  3689. * |
  3690. * v Y-axis
  3691. * @endcode
  3692. */
  3693. case 80:
  3694. #ifdef MK1BP
  3695. break;
  3696. #endif //MK1BP
  3697. case_G80:
  3698. {
  3699. mesh_bed_leveling_flag = true;
  3700. static bool run = false;
  3701. #ifdef SUPPORT_VERBOSITY
  3702. int8_t verbosity_level = 0;
  3703. if (code_seen('V')) {
  3704. // Just 'V' without a number counts as V1.
  3705. char c = strchr_pointer[1];
  3706. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3707. }
  3708. #endif //SUPPORT_VERBOSITY
  3709. // Firstly check if we know where we are
  3710. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3711. // We don't know where we are! HOME!
  3712. // Push the commands to the front of the message queue in the reverse order!
  3713. // There shall be always enough space reserved for these commands.
  3714. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3715. repeatcommand_front(); // repeat G80 with all its parameters
  3716. enquecommand_front_P((PSTR("G28 W0")));
  3717. }
  3718. else {
  3719. mesh_bed_leveling_flag = false;
  3720. }
  3721. break;
  3722. }
  3723. bool temp_comp_start = true;
  3724. #ifdef PINDA_THERMISTOR
  3725. temp_comp_start = false;
  3726. #endif //PINDA_THERMISTOR
  3727. if (temp_comp_start)
  3728. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3729. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3730. temp_compensation_start();
  3731. run = true;
  3732. repeatcommand_front(); // repeat G80 with all its parameters
  3733. enquecommand_front_P((PSTR("G28 W0")));
  3734. }
  3735. else {
  3736. mesh_bed_leveling_flag = false;
  3737. }
  3738. break;
  3739. }
  3740. run = false;
  3741. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3742. mesh_bed_leveling_flag = false;
  3743. break;
  3744. }
  3745. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3746. unsigned int custom_message_type_old = custom_message_type;
  3747. unsigned int custom_message_state_old = custom_message_state;
  3748. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3749. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3750. lcd_update(1);
  3751. mbl.reset(); //reset mesh bed leveling
  3752. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3753. // consumed during the first movements following this statement.
  3754. babystep_undo();
  3755. // Cycle through all points and probe them
  3756. // First move up. During this first movement, the babystepping will be reverted.
  3757. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3759. // The move to the first calibration point.
  3760. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3761. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3762. #ifdef SUPPORT_VERBOSITY
  3763. if (verbosity_level >= 1)
  3764. {
  3765. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3766. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3767. }
  3768. #endif //SUPPORT_VERBOSITY
  3769. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3771. // Wait until the move is finished.
  3772. st_synchronize();
  3773. int mesh_point = 0; //index number of calibration point
  3774. int ix = 0;
  3775. int iy = 0;
  3776. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3777. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3778. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3779. #ifdef SUPPORT_VERBOSITY
  3780. if (verbosity_level >= 1) {
  3781. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3782. }
  3783. #endif // SUPPORT_VERBOSITY
  3784. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3785. const char *kill_message = NULL;
  3786. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3787. // Get coords of a measuring point.
  3788. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3789. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3790. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3791. float z0 = 0.f;
  3792. if (has_z && mesh_point > 0) {
  3793. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3794. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3795. //#if 0
  3796. #ifdef SUPPORT_VERBOSITY
  3797. if (verbosity_level >= 1) {
  3798. SERIAL_ECHOLNPGM("");
  3799. SERIAL_ECHOPGM("Bed leveling, point: ");
  3800. MYSERIAL.print(mesh_point);
  3801. SERIAL_ECHOPGM(", calibration z: ");
  3802. MYSERIAL.print(z0, 5);
  3803. SERIAL_ECHOLNPGM("");
  3804. }
  3805. #endif // SUPPORT_VERBOSITY
  3806. //#endif
  3807. }
  3808. // Move Z up to MESH_HOME_Z_SEARCH.
  3809. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3811. st_synchronize();
  3812. // Move to XY position of the sensor point.
  3813. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3814. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3815. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3816. #ifdef SUPPORT_VERBOSITY
  3817. if (verbosity_level >= 1) {
  3818. SERIAL_PROTOCOL(mesh_point);
  3819. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3820. }
  3821. #endif // SUPPORT_VERBOSITY
  3822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3823. st_synchronize();
  3824. // Go down until endstop is hit
  3825. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3826. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3827. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3828. break;
  3829. }
  3830. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3831. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3832. break;
  3833. }
  3834. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3835. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3836. break;
  3837. }
  3838. #ifdef SUPPORT_VERBOSITY
  3839. if (verbosity_level >= 10) {
  3840. SERIAL_ECHOPGM("X: ");
  3841. MYSERIAL.print(current_position[X_AXIS], 5);
  3842. SERIAL_ECHOLNPGM("");
  3843. SERIAL_ECHOPGM("Y: ");
  3844. MYSERIAL.print(current_position[Y_AXIS], 5);
  3845. SERIAL_PROTOCOLPGM("\n");
  3846. }
  3847. #endif // SUPPORT_VERBOSITY
  3848. float offset_z = 0;
  3849. #ifdef PINDA_THERMISTOR
  3850. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3851. #endif //PINDA_THERMISTOR
  3852. // #ifdef SUPPORT_VERBOSITY
  3853. /* if (verbosity_level >= 1)
  3854. {
  3855. SERIAL_ECHOPGM("mesh bed leveling: ");
  3856. MYSERIAL.print(current_position[Z_AXIS], 5);
  3857. SERIAL_ECHOPGM(" offset: ");
  3858. MYSERIAL.print(offset_z, 5);
  3859. SERIAL_ECHOLNPGM("");
  3860. }*/
  3861. // #endif // SUPPORT_VERBOSITY
  3862. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3863. custom_message_state--;
  3864. mesh_point++;
  3865. lcd_update(1);
  3866. }
  3867. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3868. #ifdef SUPPORT_VERBOSITY
  3869. if (verbosity_level >= 20) {
  3870. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3871. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3872. MYSERIAL.print(current_position[Z_AXIS], 5);
  3873. }
  3874. #endif // SUPPORT_VERBOSITY
  3875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3876. st_synchronize();
  3877. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3878. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3879. bool bState;
  3880. do { // repeat until Z-leveling o.k.
  3881. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3882. #ifdef TMC2130
  3883. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3884. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3885. #else // TMC2130
  3886. lcd_wait_for_click_delay(0); // ~ no timeout
  3887. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3888. #endif // TMC2130
  3889. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3890. bState=enable_z_endstop(false);
  3891. current_position[Z_AXIS] -= 1;
  3892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3893. st_synchronize();
  3894. enable_z_endstop(true);
  3895. #ifdef TMC2130
  3896. tmc2130_home_enter(Z_AXIS_MASK);
  3897. #endif // TMC2130
  3898. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3900. st_synchronize();
  3901. #ifdef TMC2130
  3902. tmc2130_home_exit();
  3903. #endif // TMC2130
  3904. enable_z_endstop(bState);
  3905. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3906. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3907. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3908. lcd_update_enable(true); // display / status-line recovery
  3909. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3910. repeatcommand_front(); // re-run (i.e. of "G80")
  3911. break;
  3912. }
  3913. clean_up_after_endstop_move(l_feedmultiply);
  3914. // SERIAL_ECHOLNPGM("clean up finished ");
  3915. bool apply_temp_comp = true;
  3916. #ifdef PINDA_THERMISTOR
  3917. apply_temp_comp = false;
  3918. #endif
  3919. if (apply_temp_comp)
  3920. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3921. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3922. // SERIAL_ECHOLNPGM("babystep applied");
  3923. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3924. #ifdef SUPPORT_VERBOSITY
  3925. if (verbosity_level >= 1) {
  3926. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3927. }
  3928. #endif // SUPPORT_VERBOSITY
  3929. for (uint8_t i = 0; i < 4; ++i) {
  3930. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3931. long correction = 0;
  3932. if (code_seen(codes[i]))
  3933. correction = code_value_long();
  3934. else if (eeprom_bed_correction_valid) {
  3935. unsigned char *addr = (i < 2) ?
  3936. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3937. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3938. correction = eeprom_read_int8(addr);
  3939. }
  3940. if (correction == 0)
  3941. continue;
  3942. float offset = float(correction) * 0.001f;
  3943. if (fabs(offset) > 0.101f) {
  3944. SERIAL_ERROR_START;
  3945. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3946. SERIAL_ECHO(offset);
  3947. SERIAL_ECHOLNPGM(" microns");
  3948. }
  3949. else {
  3950. switch (i) {
  3951. case 0:
  3952. for (uint8_t row = 0; row < 3; ++row) {
  3953. mbl.z_values[row][1] += 0.5f * offset;
  3954. mbl.z_values[row][0] += offset;
  3955. }
  3956. break;
  3957. case 1:
  3958. for (uint8_t row = 0; row < 3; ++row) {
  3959. mbl.z_values[row][1] += 0.5f * offset;
  3960. mbl.z_values[row][2] += offset;
  3961. }
  3962. break;
  3963. case 2:
  3964. for (uint8_t col = 0; col < 3; ++col) {
  3965. mbl.z_values[1][col] += 0.5f * offset;
  3966. mbl.z_values[0][col] += offset;
  3967. }
  3968. break;
  3969. case 3:
  3970. for (uint8_t col = 0; col < 3; ++col) {
  3971. mbl.z_values[1][col] += 0.5f * offset;
  3972. mbl.z_values[2][col] += offset;
  3973. }
  3974. break;
  3975. }
  3976. }
  3977. }
  3978. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3979. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3980. // SERIAL_ECHOLNPGM("Upsample finished");
  3981. mbl.active = 1; //activate mesh bed leveling
  3982. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3983. go_home_with_z_lift();
  3984. // SERIAL_ECHOLNPGM("Go home finished");
  3985. //unretract (after PINDA preheat retraction)
  3986. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3987. current_position[E_AXIS] += default_retraction;
  3988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3989. }
  3990. KEEPALIVE_STATE(NOT_BUSY);
  3991. // Restore custom message state
  3992. lcd_setstatuspgm(_T(WELCOME_MSG));
  3993. custom_message_type = custom_message_type_old;
  3994. custom_message_state = custom_message_state_old;
  3995. mesh_bed_leveling_flag = false;
  3996. mesh_bed_run_from_menu = false;
  3997. lcd_update(2);
  3998. }
  3999. break;
  4000. /**
  4001. * G81: Print mesh bed leveling status and bed profile if activated
  4002. */
  4003. case 81:
  4004. if (mbl.active) {
  4005. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4006. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4007. SERIAL_PROTOCOLPGM(",");
  4008. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4009. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4010. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4011. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4012. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4013. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4014. SERIAL_PROTOCOLPGM(" ");
  4015. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4016. }
  4017. SERIAL_PROTOCOLPGM("\n");
  4018. }
  4019. }
  4020. else
  4021. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4022. break;
  4023. #if 0
  4024. /**
  4025. * G82: Single Z probe at current location
  4026. *
  4027. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4028. *
  4029. */
  4030. case 82:
  4031. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4032. int l_feedmultiply = setup_for_endstop_move();
  4033. find_bed_induction_sensor_point_z();
  4034. clean_up_after_endstop_move(l_feedmultiply);
  4035. SERIAL_PROTOCOLPGM("Bed found at: ");
  4036. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4037. SERIAL_PROTOCOLPGM("\n");
  4038. break;
  4039. /**
  4040. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4041. */
  4042. case 83:
  4043. {
  4044. int babystepz = code_seen('S') ? code_value() : 0;
  4045. int BabyPosition = code_seen('P') ? code_value() : 0;
  4046. if (babystepz != 0) {
  4047. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4048. // Is the axis indexed starting with zero or one?
  4049. if (BabyPosition > 4) {
  4050. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4051. }else{
  4052. // Save it to the eeprom
  4053. babystepLoadZ = babystepz;
  4054. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4055. // adjust the Z
  4056. babystepsTodoZadd(babystepLoadZ);
  4057. }
  4058. }
  4059. }
  4060. break;
  4061. /**
  4062. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4063. */
  4064. case 84:
  4065. babystepsTodoZsubtract(babystepLoadZ);
  4066. // babystepLoadZ = 0;
  4067. break;
  4068. /**
  4069. * G85: Prusa3D specific: Pick best babystep
  4070. */
  4071. case 85:
  4072. lcd_pick_babystep();
  4073. break;
  4074. #endif
  4075. /**
  4076. * G86: Prusa3D specific: Disable babystep correction after home.
  4077. * This G-code will be performed at the start of a calibration script.
  4078. */
  4079. case 86:
  4080. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4081. break;
  4082. /**
  4083. * G87: Prusa3D specific: Enable babystep correction after home
  4084. * This G-code will be performed at the end of a calibration script.
  4085. */
  4086. case 87:
  4087. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4088. break;
  4089. /**
  4090. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4091. */
  4092. case 88:
  4093. break;
  4094. #endif // ENABLE_MESH_BED_LEVELING
  4095. case 90: // G90
  4096. relative_mode = false;
  4097. break;
  4098. case 91: // G91
  4099. relative_mode = true;
  4100. break;
  4101. case 92: // G92
  4102. if(!code_seen(axis_codes[E_AXIS]))
  4103. st_synchronize();
  4104. for(int8_t i=0; i < NUM_AXIS; i++) {
  4105. if(code_seen(axis_codes[i])) {
  4106. if(i == E_AXIS) {
  4107. current_position[i] = code_value();
  4108. plan_set_e_position(current_position[E_AXIS]);
  4109. }
  4110. else {
  4111. current_position[i] = code_value()+cs.add_homing[i];
  4112. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4113. }
  4114. }
  4115. }
  4116. break;
  4117. case 98: //! G98 (activate farm mode)
  4118. farm_mode = 1;
  4119. PingTime = _millis();
  4120. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4121. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4122. SilentModeMenu = SILENT_MODE_OFF;
  4123. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4124. break;
  4125. case 99: //! G99 (deactivate farm mode)
  4126. farm_mode = 0;
  4127. lcd_printer_connected();
  4128. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4129. lcd_update(2);
  4130. break;
  4131. default:
  4132. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4133. }
  4134. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4135. gcode_in_progress = 0;
  4136. } // end if(code_seen('G'))
  4137. else if(code_seen('M'))
  4138. {
  4139. int index;
  4140. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4141. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4142. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4143. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4144. } else
  4145. {
  4146. mcode_in_progress = (int)code_value();
  4147. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4148. switch(mcode_in_progress)
  4149. {
  4150. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4151. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4152. {
  4153. char *src = strchr_pointer + 2;
  4154. codenum = 0;
  4155. bool hasP = false, hasS = false;
  4156. if (code_seen('P')) {
  4157. codenum = code_value(); // milliseconds to wait
  4158. hasP = codenum > 0;
  4159. }
  4160. if (code_seen('S')) {
  4161. codenum = code_value() * 1000; // seconds to wait
  4162. hasS = codenum > 0;
  4163. }
  4164. starpos = strchr(src, '*');
  4165. if (starpos != NULL) *(starpos) = '\0';
  4166. while (*src == ' ') ++src;
  4167. if (!hasP && !hasS && *src != '\0') {
  4168. lcd_setstatus(src);
  4169. } else {
  4170. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4171. }
  4172. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4173. st_synchronize();
  4174. previous_millis_cmd = _millis();
  4175. if (codenum > 0){
  4176. codenum += _millis(); // keep track of when we started waiting
  4177. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4178. while(_millis() < codenum && !lcd_clicked()){
  4179. manage_heater();
  4180. manage_inactivity(true);
  4181. lcd_update(0);
  4182. }
  4183. KEEPALIVE_STATE(IN_HANDLER);
  4184. lcd_ignore_click(false);
  4185. }else{
  4186. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4187. while(!lcd_clicked()){
  4188. manage_heater();
  4189. manage_inactivity(true);
  4190. lcd_update(0);
  4191. }
  4192. KEEPALIVE_STATE(IN_HANDLER);
  4193. }
  4194. if (IS_SD_PRINTING)
  4195. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4196. else
  4197. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4198. }
  4199. break;
  4200. case 17:
  4201. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4202. enable_x();
  4203. enable_y();
  4204. enable_z();
  4205. enable_e0();
  4206. enable_e1();
  4207. enable_e2();
  4208. break;
  4209. #ifdef SDSUPPORT
  4210. case 20: // M20 - list SD card
  4211. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4212. card.ls();
  4213. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4214. break;
  4215. case 21: // M21 - init SD card
  4216. card.initsd();
  4217. break;
  4218. case 22: //M22 - release SD card
  4219. card.release();
  4220. break;
  4221. case 23: //M23 - Select file
  4222. starpos = (strchr(strchr_pointer + 4,'*'));
  4223. if(starpos!=NULL)
  4224. *(starpos)='\0';
  4225. card.openFile(strchr_pointer + 4,true);
  4226. break;
  4227. case 24: //M24 - Start SD print
  4228. if (!card.paused)
  4229. failstats_reset_print();
  4230. card.startFileprint();
  4231. starttime=_millis();
  4232. break;
  4233. case 25: //M25 - Pause SD print
  4234. card.pauseSDPrint();
  4235. break;
  4236. case 26: //M26 - Set SD index
  4237. if(card.cardOK && code_seen('S')) {
  4238. card.setIndex(code_value_long());
  4239. }
  4240. break;
  4241. case 27: //M27 - Get SD status
  4242. card.getStatus();
  4243. break;
  4244. case 28: //M28 - Start SD write
  4245. starpos = (strchr(strchr_pointer + 4,'*'));
  4246. if(starpos != NULL){
  4247. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4248. strchr_pointer = strchr(npos,' ') + 1;
  4249. *(starpos) = '\0';
  4250. }
  4251. card.openFile(strchr_pointer+4,false);
  4252. break;
  4253. case 29: //M29 - Stop SD write
  4254. //processed in write to file routine above
  4255. //card,saving = false;
  4256. break;
  4257. case 30: //M30 <filename> Delete File
  4258. if (card.cardOK){
  4259. card.closefile();
  4260. starpos = (strchr(strchr_pointer + 4,'*'));
  4261. if(starpos != NULL){
  4262. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4263. strchr_pointer = strchr(npos,' ') + 1;
  4264. *(starpos) = '\0';
  4265. }
  4266. card.removeFile(strchr_pointer + 4);
  4267. }
  4268. break;
  4269. case 32: //M32 - Select file and start SD print
  4270. {
  4271. if(card.sdprinting) {
  4272. st_synchronize();
  4273. }
  4274. starpos = (strchr(strchr_pointer + 4,'*'));
  4275. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4276. if(namestartpos==NULL)
  4277. {
  4278. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4279. }
  4280. else
  4281. namestartpos++; //to skip the '!'
  4282. if(starpos!=NULL)
  4283. *(starpos)='\0';
  4284. bool call_procedure=(code_seen('P'));
  4285. if(strchr_pointer>namestartpos)
  4286. call_procedure=false; //false alert, 'P' found within filename
  4287. if( card.cardOK )
  4288. {
  4289. card.openFile(namestartpos,true,!call_procedure);
  4290. if(code_seen('S'))
  4291. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4292. card.setIndex(code_value_long());
  4293. card.startFileprint();
  4294. if(!call_procedure)
  4295. starttime=_millis(); //procedure calls count as normal print time.
  4296. }
  4297. } break;
  4298. case 928: //M928 - Start SD write
  4299. starpos = (strchr(strchr_pointer + 5,'*'));
  4300. if(starpos != NULL){
  4301. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4302. strchr_pointer = strchr(npos,' ') + 1;
  4303. *(starpos) = '\0';
  4304. }
  4305. card.openLogFile(strchr_pointer+5);
  4306. break;
  4307. #endif //SDSUPPORT
  4308. case 31: //M31 take time since the start of the SD print or an M109 command
  4309. {
  4310. stoptime=_millis();
  4311. char time[30];
  4312. unsigned long t=(stoptime-starttime)/1000;
  4313. int sec,min;
  4314. min=t/60;
  4315. sec=t%60;
  4316. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4317. SERIAL_ECHO_START;
  4318. SERIAL_ECHOLN(time);
  4319. lcd_setstatus(time);
  4320. autotempShutdown();
  4321. }
  4322. break;
  4323. case 42: //M42 -Change pin status via gcode
  4324. if (code_seen('S'))
  4325. {
  4326. int pin_status = code_value();
  4327. int pin_number = LED_PIN;
  4328. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4329. pin_number = code_value();
  4330. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4331. {
  4332. if (sensitive_pins[i] == pin_number)
  4333. {
  4334. pin_number = -1;
  4335. break;
  4336. }
  4337. }
  4338. #if defined(FAN_PIN) && FAN_PIN > -1
  4339. if (pin_number == FAN_PIN)
  4340. fanSpeed = pin_status;
  4341. #endif
  4342. if (pin_number > -1)
  4343. {
  4344. pinMode(pin_number, OUTPUT);
  4345. digitalWrite(pin_number, pin_status);
  4346. analogWrite(pin_number, pin_status);
  4347. }
  4348. }
  4349. break;
  4350. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4351. // Reset the baby step value and the baby step applied flag.
  4352. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4353. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4354. // Reset the skew and offset in both RAM and EEPROM.
  4355. reset_bed_offset_and_skew();
  4356. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4357. // the planner will not perform any adjustments in the XY plane.
  4358. // Wait for the motors to stop and update the current position with the absolute values.
  4359. world2machine_revert_to_uncorrected();
  4360. break;
  4361. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4362. {
  4363. int8_t verbosity_level = 0;
  4364. bool only_Z = code_seen('Z');
  4365. #ifdef SUPPORT_VERBOSITY
  4366. if (code_seen('V'))
  4367. {
  4368. // Just 'V' without a number counts as V1.
  4369. char c = strchr_pointer[1];
  4370. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4371. }
  4372. #endif //SUPPORT_VERBOSITY
  4373. gcode_M45(only_Z, verbosity_level);
  4374. }
  4375. break;
  4376. /*
  4377. case 46:
  4378. {
  4379. // M46: Prusa3D: Show the assigned IP address.
  4380. uint8_t ip[4];
  4381. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4382. if (hasIP) {
  4383. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4384. SERIAL_ECHO(int(ip[0]));
  4385. SERIAL_ECHOPGM(".");
  4386. SERIAL_ECHO(int(ip[1]));
  4387. SERIAL_ECHOPGM(".");
  4388. SERIAL_ECHO(int(ip[2]));
  4389. SERIAL_ECHOPGM(".");
  4390. SERIAL_ECHO(int(ip[3]));
  4391. SERIAL_ECHOLNPGM("");
  4392. } else {
  4393. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4394. }
  4395. break;
  4396. }
  4397. */
  4398. case 47:
  4399. //! M47: Prusa3D: Show end stops dialog on the display.
  4400. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4401. lcd_diag_show_end_stops();
  4402. KEEPALIVE_STATE(IN_HANDLER);
  4403. break;
  4404. #if 0
  4405. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4406. {
  4407. // Disable the default update procedure of the display. We will do a modal dialog.
  4408. lcd_update_enable(false);
  4409. // Let the planner use the uncorrected coordinates.
  4410. mbl.reset();
  4411. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4412. // the planner will not perform any adjustments in the XY plane.
  4413. // Wait for the motors to stop and update the current position with the absolute values.
  4414. world2machine_revert_to_uncorrected();
  4415. // Move the print head close to the bed.
  4416. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4418. st_synchronize();
  4419. // Home in the XY plane.
  4420. set_destination_to_current();
  4421. int l_feedmultiply = setup_for_endstop_move();
  4422. home_xy();
  4423. int8_t verbosity_level = 0;
  4424. if (code_seen('V')) {
  4425. // Just 'V' without a number counts as V1.
  4426. char c = strchr_pointer[1];
  4427. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4428. }
  4429. bool success = scan_bed_induction_points(verbosity_level);
  4430. clean_up_after_endstop_move(l_feedmultiply);
  4431. // Print head up.
  4432. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4434. st_synchronize();
  4435. lcd_update_enable(true);
  4436. break;
  4437. }
  4438. #endif
  4439. #ifdef ENABLE_AUTO_BED_LEVELING
  4440. #ifdef Z_PROBE_REPEATABILITY_TEST
  4441. //! M48 Z-Probe repeatability measurement function.
  4442. //!
  4443. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4444. //!
  4445. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4446. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4447. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4448. //! regenerated.
  4449. //!
  4450. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4451. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4452. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4453. //!
  4454. case 48: // M48 Z-Probe repeatability
  4455. {
  4456. #if Z_MIN_PIN == -1
  4457. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4458. #endif
  4459. double sum=0.0;
  4460. double mean=0.0;
  4461. double sigma=0.0;
  4462. double sample_set[50];
  4463. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4464. double X_current, Y_current, Z_current;
  4465. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4466. if (code_seen('V') || code_seen('v')) {
  4467. verbose_level = code_value();
  4468. if (verbose_level<0 || verbose_level>4 ) {
  4469. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4470. goto Sigma_Exit;
  4471. }
  4472. }
  4473. if (verbose_level > 0) {
  4474. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4475. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4476. }
  4477. if (code_seen('n')) {
  4478. n_samples = code_value();
  4479. if (n_samples<4 || n_samples>50 ) {
  4480. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4481. goto Sigma_Exit;
  4482. }
  4483. }
  4484. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4485. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4486. Z_current = st_get_position_mm(Z_AXIS);
  4487. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4488. ext_position = st_get_position_mm(E_AXIS);
  4489. if (code_seen('X') || code_seen('x') ) {
  4490. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4491. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4492. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4493. goto Sigma_Exit;
  4494. }
  4495. }
  4496. if (code_seen('Y') || code_seen('y') ) {
  4497. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4498. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4499. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4500. goto Sigma_Exit;
  4501. }
  4502. }
  4503. if (code_seen('L') || code_seen('l') ) {
  4504. n_legs = code_value();
  4505. if ( n_legs==1 )
  4506. n_legs = 2;
  4507. if ( n_legs<0 || n_legs>15 ) {
  4508. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4509. goto Sigma_Exit;
  4510. }
  4511. }
  4512. //
  4513. // Do all the preliminary setup work. First raise the probe.
  4514. //
  4515. st_synchronize();
  4516. plan_bed_level_matrix.set_to_identity();
  4517. plan_buffer_line( X_current, Y_current, Z_start_location,
  4518. ext_position,
  4519. homing_feedrate[Z_AXIS]/60,
  4520. active_extruder);
  4521. st_synchronize();
  4522. //
  4523. // Now get everything to the specified probe point So we can safely do a probe to
  4524. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4525. // use that as a starting point for each probe.
  4526. //
  4527. if (verbose_level > 2)
  4528. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4529. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4530. ext_position,
  4531. homing_feedrate[X_AXIS]/60,
  4532. active_extruder);
  4533. st_synchronize();
  4534. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4535. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4536. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4537. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4538. //
  4539. // OK, do the inital probe to get us close to the bed.
  4540. // Then retrace the right amount and use that in subsequent probes
  4541. //
  4542. int l_feedmultiply = setup_for_endstop_move();
  4543. run_z_probe();
  4544. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4545. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4546. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4547. ext_position,
  4548. homing_feedrate[X_AXIS]/60,
  4549. active_extruder);
  4550. st_synchronize();
  4551. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4552. for( n=0; n<n_samples; n++) {
  4553. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4554. if ( n_legs) {
  4555. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4556. int rotational_direction, l;
  4557. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4558. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4559. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4560. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4561. //SERIAL_ECHOPAIR(" theta: ",theta);
  4562. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4563. //SERIAL_PROTOCOLLNPGM("");
  4564. for( l=0; l<n_legs-1; l++) {
  4565. if (rotational_direction==1)
  4566. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4567. else
  4568. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4569. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4570. if ( radius<0.0 )
  4571. radius = -radius;
  4572. X_current = X_probe_location + cos(theta) * radius;
  4573. Y_current = Y_probe_location + sin(theta) * radius;
  4574. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4575. X_current = X_MIN_POS;
  4576. if ( X_current>X_MAX_POS)
  4577. X_current = X_MAX_POS;
  4578. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4579. Y_current = Y_MIN_POS;
  4580. if ( Y_current>Y_MAX_POS)
  4581. Y_current = Y_MAX_POS;
  4582. if (verbose_level>3 ) {
  4583. SERIAL_ECHOPAIR("x: ", X_current);
  4584. SERIAL_ECHOPAIR("y: ", Y_current);
  4585. SERIAL_PROTOCOLLNPGM("");
  4586. }
  4587. do_blocking_move_to( X_current, Y_current, Z_current );
  4588. }
  4589. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4590. }
  4591. int l_feedmultiply = setup_for_endstop_move();
  4592. run_z_probe();
  4593. sample_set[n] = current_position[Z_AXIS];
  4594. //
  4595. // Get the current mean for the data points we have so far
  4596. //
  4597. sum=0.0;
  4598. for( j=0; j<=n; j++) {
  4599. sum = sum + sample_set[j];
  4600. }
  4601. mean = sum / (double (n+1));
  4602. //
  4603. // Now, use that mean to calculate the standard deviation for the
  4604. // data points we have so far
  4605. //
  4606. sum=0.0;
  4607. for( j=0; j<=n; j++) {
  4608. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4609. }
  4610. sigma = sqrt( sum / (double (n+1)) );
  4611. if (verbose_level > 1) {
  4612. SERIAL_PROTOCOL(n+1);
  4613. SERIAL_PROTOCOL(" of ");
  4614. SERIAL_PROTOCOL(n_samples);
  4615. SERIAL_PROTOCOLPGM(" z: ");
  4616. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4617. }
  4618. if (verbose_level > 2) {
  4619. SERIAL_PROTOCOL(" mean: ");
  4620. SERIAL_PROTOCOL_F(mean,6);
  4621. SERIAL_PROTOCOL(" sigma: ");
  4622. SERIAL_PROTOCOL_F(sigma,6);
  4623. }
  4624. if (verbose_level > 0)
  4625. SERIAL_PROTOCOLPGM("\n");
  4626. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4627. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4628. st_synchronize();
  4629. }
  4630. _delay(1000);
  4631. clean_up_after_endstop_move(l_feedmultiply);
  4632. // enable_endstops(true);
  4633. if (verbose_level > 0) {
  4634. SERIAL_PROTOCOLPGM("Mean: ");
  4635. SERIAL_PROTOCOL_F(mean, 6);
  4636. SERIAL_PROTOCOLPGM("\n");
  4637. }
  4638. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4639. SERIAL_PROTOCOL_F(sigma, 6);
  4640. SERIAL_PROTOCOLPGM("\n\n");
  4641. Sigma_Exit:
  4642. break;
  4643. }
  4644. #endif // Z_PROBE_REPEATABILITY_TEST
  4645. #endif // ENABLE_AUTO_BED_LEVELING
  4646. case 73: //M73 show percent done and time remaining
  4647. if(code_seen('P')) print_percent_done_normal = code_value();
  4648. if(code_seen('R')) print_time_remaining_normal = code_value();
  4649. if(code_seen('Q')) print_percent_done_silent = code_value();
  4650. if(code_seen('S')) print_time_remaining_silent = code_value();
  4651. {
  4652. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4653. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4654. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4655. }
  4656. break;
  4657. case 104: // M104
  4658. {
  4659. uint8_t extruder;
  4660. if(setTargetedHotend(104,extruder)){
  4661. break;
  4662. }
  4663. if (code_seen('S'))
  4664. {
  4665. setTargetHotendSafe(code_value(), extruder);
  4666. }
  4667. setWatch();
  4668. break;
  4669. }
  4670. case 112: // M112 -Emergency Stop
  4671. kill(_n(""), 3);
  4672. break;
  4673. case 140: // M140 set bed temp
  4674. if (code_seen('S')) setTargetBed(code_value());
  4675. break;
  4676. case 105 : // M105
  4677. {
  4678. uint8_t extruder;
  4679. if(setTargetedHotend(105, extruder)){
  4680. break;
  4681. }
  4682. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4683. SERIAL_PROTOCOLPGM("ok T:");
  4684. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4685. SERIAL_PROTOCOLPGM(" /");
  4686. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4687. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4688. SERIAL_PROTOCOLPGM(" B:");
  4689. SERIAL_PROTOCOL_F(degBed(),1);
  4690. SERIAL_PROTOCOLPGM(" /");
  4691. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4692. #endif //TEMP_BED_PIN
  4693. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4694. SERIAL_PROTOCOLPGM(" T");
  4695. SERIAL_PROTOCOL(cur_extruder);
  4696. SERIAL_PROTOCOLPGM(":");
  4697. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4698. SERIAL_PROTOCOLPGM(" /");
  4699. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4700. }
  4701. #else
  4702. SERIAL_ERROR_START;
  4703. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4704. #endif
  4705. SERIAL_PROTOCOLPGM(" @:");
  4706. #ifdef EXTRUDER_WATTS
  4707. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4708. SERIAL_PROTOCOLPGM("W");
  4709. #else
  4710. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4711. #endif
  4712. SERIAL_PROTOCOLPGM(" B@:");
  4713. #ifdef BED_WATTS
  4714. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4715. SERIAL_PROTOCOLPGM("W");
  4716. #else
  4717. SERIAL_PROTOCOL(getHeaterPower(-1));
  4718. #endif
  4719. #ifdef PINDA_THERMISTOR
  4720. SERIAL_PROTOCOLPGM(" P:");
  4721. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4722. #endif //PINDA_THERMISTOR
  4723. #ifdef AMBIENT_THERMISTOR
  4724. SERIAL_PROTOCOLPGM(" A:");
  4725. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4726. #endif //AMBIENT_THERMISTOR
  4727. #ifdef SHOW_TEMP_ADC_VALUES
  4728. {float raw = 0.0;
  4729. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4730. SERIAL_PROTOCOLPGM(" ADC B:");
  4731. SERIAL_PROTOCOL_F(degBed(),1);
  4732. SERIAL_PROTOCOLPGM("C->");
  4733. raw = rawBedTemp();
  4734. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4735. SERIAL_PROTOCOLPGM(" Rb->");
  4736. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4737. SERIAL_PROTOCOLPGM(" Rxb->");
  4738. SERIAL_PROTOCOL_F(raw, 5);
  4739. #endif
  4740. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4741. SERIAL_PROTOCOLPGM(" T");
  4742. SERIAL_PROTOCOL(cur_extruder);
  4743. SERIAL_PROTOCOLPGM(":");
  4744. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4745. SERIAL_PROTOCOLPGM("C->");
  4746. raw = rawHotendTemp(cur_extruder);
  4747. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4748. SERIAL_PROTOCOLPGM(" Rt");
  4749. SERIAL_PROTOCOL(cur_extruder);
  4750. SERIAL_PROTOCOLPGM("->");
  4751. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4752. SERIAL_PROTOCOLPGM(" Rx");
  4753. SERIAL_PROTOCOL(cur_extruder);
  4754. SERIAL_PROTOCOLPGM("->");
  4755. SERIAL_PROTOCOL_F(raw, 5);
  4756. }}
  4757. #endif
  4758. SERIAL_PROTOCOLLN("");
  4759. KEEPALIVE_STATE(NOT_BUSY);
  4760. return;
  4761. break;
  4762. }
  4763. case 109:
  4764. {// M109 - Wait for extruder heater to reach target.
  4765. uint8_t extruder;
  4766. if(setTargetedHotend(109, extruder)){
  4767. break;
  4768. }
  4769. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4770. heating_status = 1;
  4771. if (farm_mode) { prusa_statistics(1); };
  4772. #ifdef AUTOTEMP
  4773. autotemp_enabled=false;
  4774. #endif
  4775. if (code_seen('S')) {
  4776. setTargetHotendSafe(code_value(), extruder);
  4777. CooldownNoWait = true;
  4778. } else if (code_seen('R')) {
  4779. setTargetHotendSafe(code_value(), extruder);
  4780. CooldownNoWait = false;
  4781. }
  4782. #ifdef AUTOTEMP
  4783. if (code_seen('S')) autotemp_min=code_value();
  4784. if (code_seen('B')) autotemp_max=code_value();
  4785. if (code_seen('F'))
  4786. {
  4787. autotemp_factor=code_value();
  4788. autotemp_enabled=true;
  4789. }
  4790. #endif
  4791. setWatch();
  4792. codenum = _millis();
  4793. /* See if we are heating up or cooling down */
  4794. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4795. KEEPALIVE_STATE(NOT_BUSY);
  4796. cancel_heatup = false;
  4797. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4798. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4799. KEEPALIVE_STATE(IN_HANDLER);
  4800. heating_status = 2;
  4801. if (farm_mode) { prusa_statistics(2); };
  4802. //starttime=_millis();
  4803. previous_millis_cmd = _millis();
  4804. }
  4805. break;
  4806. case 190: // M190 - Wait for bed heater to reach target.
  4807. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4808. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4809. heating_status = 3;
  4810. if (farm_mode) { prusa_statistics(1); };
  4811. if (code_seen('S'))
  4812. {
  4813. setTargetBed(code_value());
  4814. CooldownNoWait = true;
  4815. }
  4816. else if (code_seen('R'))
  4817. {
  4818. setTargetBed(code_value());
  4819. CooldownNoWait = false;
  4820. }
  4821. codenum = _millis();
  4822. cancel_heatup = false;
  4823. target_direction = isHeatingBed(); // true if heating, false if cooling
  4824. KEEPALIVE_STATE(NOT_BUSY);
  4825. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4826. {
  4827. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4828. {
  4829. if (!farm_mode) {
  4830. float tt = degHotend(active_extruder);
  4831. SERIAL_PROTOCOLPGM("T:");
  4832. SERIAL_PROTOCOL(tt);
  4833. SERIAL_PROTOCOLPGM(" E:");
  4834. SERIAL_PROTOCOL((int)active_extruder);
  4835. SERIAL_PROTOCOLPGM(" B:");
  4836. SERIAL_PROTOCOL_F(degBed(), 1);
  4837. SERIAL_PROTOCOLLN("");
  4838. }
  4839. codenum = _millis();
  4840. }
  4841. manage_heater();
  4842. manage_inactivity();
  4843. lcd_update(0);
  4844. }
  4845. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4846. KEEPALIVE_STATE(IN_HANDLER);
  4847. heating_status = 4;
  4848. previous_millis_cmd = _millis();
  4849. #endif
  4850. break;
  4851. #if defined(FAN_PIN) && FAN_PIN > -1
  4852. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4853. if (code_seen('S')){
  4854. fanSpeed=constrain(code_value(),0,255);
  4855. }
  4856. else {
  4857. fanSpeed=255;
  4858. }
  4859. break;
  4860. case 107: //M107 Fan Off
  4861. fanSpeed = 0;
  4862. break;
  4863. #endif //FAN_PIN
  4864. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4865. case 80: // M80 - Turn on Power Supply
  4866. SET_OUTPUT(PS_ON_PIN); //GND
  4867. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4868. // If you have a switch on suicide pin, this is useful
  4869. // if you want to start another print with suicide feature after
  4870. // a print without suicide...
  4871. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4872. SET_OUTPUT(SUICIDE_PIN);
  4873. WRITE(SUICIDE_PIN, HIGH);
  4874. #endif
  4875. powersupply = true;
  4876. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4877. lcd_update(0);
  4878. break;
  4879. #endif
  4880. case 81: // M81 - Turn off Power Supply
  4881. disable_heater();
  4882. st_synchronize();
  4883. disable_e0();
  4884. disable_e1();
  4885. disable_e2();
  4886. finishAndDisableSteppers();
  4887. fanSpeed = 0;
  4888. _delay(1000); // Wait a little before to switch off
  4889. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4890. st_synchronize();
  4891. suicide();
  4892. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4893. SET_OUTPUT(PS_ON_PIN);
  4894. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4895. #endif
  4896. powersupply = false;
  4897. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4898. lcd_update(0);
  4899. break;
  4900. case 82:
  4901. axis_relative_modes[3] = false;
  4902. break;
  4903. case 83:
  4904. axis_relative_modes[3] = true;
  4905. break;
  4906. case 18: //compatibility
  4907. case 84: // M84
  4908. if(code_seen('S')){
  4909. stepper_inactive_time = code_value() * 1000;
  4910. }
  4911. else
  4912. {
  4913. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4914. if(all_axis)
  4915. {
  4916. st_synchronize();
  4917. disable_e0();
  4918. disable_e1();
  4919. disable_e2();
  4920. finishAndDisableSteppers();
  4921. }
  4922. else
  4923. {
  4924. st_synchronize();
  4925. if (code_seen('X')) disable_x();
  4926. if (code_seen('Y')) disable_y();
  4927. if (code_seen('Z')) disable_z();
  4928. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4929. if (code_seen('E')) {
  4930. disable_e0();
  4931. disable_e1();
  4932. disable_e2();
  4933. }
  4934. #endif
  4935. }
  4936. }
  4937. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4938. print_time_remaining_init();
  4939. snmm_filaments_used = 0;
  4940. break;
  4941. case 85: // M85
  4942. if(code_seen('S')) {
  4943. max_inactive_time = code_value() * 1000;
  4944. }
  4945. break;
  4946. #ifdef SAFETYTIMER
  4947. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4948. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4949. if (code_seen('S')) {
  4950. safetytimer_inactive_time = code_value() * 1000;
  4951. safetyTimer.start();
  4952. }
  4953. break;
  4954. #endif
  4955. case 92: // M92
  4956. for(int8_t i=0; i < NUM_AXIS; i++)
  4957. {
  4958. if(code_seen(axis_codes[i]))
  4959. {
  4960. if(i == 3) { // E
  4961. float value = code_value();
  4962. if(value < 20.0) {
  4963. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4964. cs.max_jerk[E_AXIS] *= factor;
  4965. max_feedrate[i] *= factor;
  4966. axis_steps_per_sqr_second[i] *= factor;
  4967. }
  4968. cs.axis_steps_per_unit[i] = value;
  4969. }
  4970. else {
  4971. cs.axis_steps_per_unit[i] = code_value();
  4972. }
  4973. }
  4974. }
  4975. break;
  4976. case 110: //! M110 N<line number> - reset line pos
  4977. if (code_seen('N'))
  4978. gcode_LastN = code_value_long();
  4979. break;
  4980. #ifdef HOST_KEEPALIVE_FEATURE
  4981. case 113: // M113 - Get or set Host Keepalive interval
  4982. if (code_seen('S')) {
  4983. host_keepalive_interval = (uint8_t)code_value_short();
  4984. // NOMORE(host_keepalive_interval, 60);
  4985. }
  4986. else {
  4987. SERIAL_ECHO_START;
  4988. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4989. SERIAL_PROTOCOLLN("");
  4990. }
  4991. break;
  4992. #endif
  4993. case 115: // M115
  4994. if (code_seen('V')) {
  4995. // Report the Prusa version number.
  4996. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4997. } else if (code_seen('U')) {
  4998. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4999. // pause the print and ask the user to upgrade the firmware.
  5000. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5001. } else {
  5002. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5003. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5004. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5005. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5006. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5007. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5008. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5009. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5010. SERIAL_ECHOPGM(" UUID:");
  5011. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5012. }
  5013. break;
  5014. /* case 117: // M117 display message
  5015. starpos = (strchr(strchr_pointer + 5,'*'));
  5016. if(starpos!=NULL)
  5017. *(starpos)='\0';
  5018. lcd_setstatus(strchr_pointer + 5);
  5019. break;*/
  5020. case 114: // M114
  5021. gcode_M114();
  5022. break;
  5023. case 120: //! M120 - Disable endstops
  5024. enable_endstops(false) ;
  5025. break;
  5026. case 121: //! M121 - Enable endstops
  5027. enable_endstops(true) ;
  5028. break;
  5029. case 119: // M119
  5030. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5031. SERIAL_PROTOCOLLN("");
  5032. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5033. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5034. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5035. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5036. }else{
  5037. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5038. }
  5039. SERIAL_PROTOCOLLN("");
  5040. #endif
  5041. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5042. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5043. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5044. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5045. }else{
  5046. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5047. }
  5048. SERIAL_PROTOCOLLN("");
  5049. #endif
  5050. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5051. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5052. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5053. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5054. }else{
  5055. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5056. }
  5057. SERIAL_PROTOCOLLN("");
  5058. #endif
  5059. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5060. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5061. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5062. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5063. }else{
  5064. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5065. }
  5066. SERIAL_PROTOCOLLN("");
  5067. #endif
  5068. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5069. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5070. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5071. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5072. }else{
  5073. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5074. }
  5075. SERIAL_PROTOCOLLN("");
  5076. #endif
  5077. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5078. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5079. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5080. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5081. }else{
  5082. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5083. }
  5084. SERIAL_PROTOCOLLN("");
  5085. #endif
  5086. break;
  5087. //TODO: update for all axis, use for loop
  5088. #ifdef BLINKM
  5089. case 150: // M150
  5090. {
  5091. byte red;
  5092. byte grn;
  5093. byte blu;
  5094. if(code_seen('R')) red = code_value();
  5095. if(code_seen('U')) grn = code_value();
  5096. if(code_seen('B')) blu = code_value();
  5097. SendColors(red,grn,blu);
  5098. }
  5099. break;
  5100. #endif //BLINKM
  5101. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5102. {
  5103. uint8_t extruder = active_extruder;
  5104. if(code_seen('T')) {
  5105. extruder = code_value();
  5106. if(extruder >= EXTRUDERS) {
  5107. SERIAL_ECHO_START;
  5108. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5109. break;
  5110. }
  5111. }
  5112. if(code_seen('D')) {
  5113. float diameter = (float)code_value();
  5114. if (diameter == 0.0) {
  5115. // setting any extruder filament size disables volumetric on the assumption that
  5116. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5117. // for all extruders
  5118. cs.volumetric_enabled = false;
  5119. } else {
  5120. cs.filament_size[extruder] = (float)code_value();
  5121. // make sure all extruders have some sane value for the filament size
  5122. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5123. #if EXTRUDERS > 1
  5124. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5125. #if EXTRUDERS > 2
  5126. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5127. #endif
  5128. #endif
  5129. cs.volumetric_enabled = true;
  5130. }
  5131. } else {
  5132. //reserved for setting filament diameter via UFID or filament measuring device
  5133. break;
  5134. }
  5135. calculate_extruder_multipliers();
  5136. }
  5137. break;
  5138. case 201: // M201
  5139. for (int8_t i = 0; i < NUM_AXIS; i++)
  5140. {
  5141. if (code_seen(axis_codes[i]))
  5142. {
  5143. unsigned long val = code_value();
  5144. #ifdef TMC2130
  5145. unsigned long val_silent = val;
  5146. if ((i == X_AXIS) || (i == Y_AXIS))
  5147. {
  5148. if (val > NORMAL_MAX_ACCEL_XY)
  5149. val = NORMAL_MAX_ACCEL_XY;
  5150. if (val_silent > SILENT_MAX_ACCEL_XY)
  5151. val_silent = SILENT_MAX_ACCEL_XY;
  5152. }
  5153. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5154. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5155. #else //TMC2130
  5156. max_acceleration_units_per_sq_second[i] = val;
  5157. #endif //TMC2130
  5158. }
  5159. }
  5160. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5161. reset_acceleration_rates();
  5162. break;
  5163. #if 0 // Not used for Sprinter/grbl gen6
  5164. case 202: // M202
  5165. for(int8_t i=0; i < NUM_AXIS; i++) {
  5166. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5167. }
  5168. break;
  5169. #endif
  5170. case 203: // M203 max feedrate mm/sec
  5171. for (int8_t i = 0; i < NUM_AXIS; i++)
  5172. {
  5173. if (code_seen(axis_codes[i]))
  5174. {
  5175. float val = code_value();
  5176. #ifdef TMC2130
  5177. float val_silent = val;
  5178. if ((i == X_AXIS) || (i == Y_AXIS))
  5179. {
  5180. if (val > NORMAL_MAX_FEEDRATE_XY)
  5181. val = NORMAL_MAX_FEEDRATE_XY;
  5182. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5183. val_silent = SILENT_MAX_FEEDRATE_XY;
  5184. }
  5185. cs.max_feedrate_normal[i] = val;
  5186. cs.max_feedrate_silent[i] = val_silent;
  5187. #else //TMC2130
  5188. max_feedrate[i] = val;
  5189. #endif //TMC2130
  5190. }
  5191. }
  5192. break;
  5193. case 204:
  5194. //! M204 acclereration settings.
  5195. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5196. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5197. {
  5198. if(code_seen('S')) {
  5199. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5200. // and it is also generated by Slic3r to control acceleration per extrusion type
  5201. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5202. cs.acceleration = code_value();
  5203. // Interpret the T value as retract acceleration in the old Marlin format.
  5204. if(code_seen('T'))
  5205. cs.retract_acceleration = code_value();
  5206. } else {
  5207. // New acceleration format, compatible with the upstream Marlin.
  5208. if(code_seen('P'))
  5209. cs.acceleration = code_value();
  5210. if(code_seen('R'))
  5211. cs.retract_acceleration = code_value();
  5212. if(code_seen('T')) {
  5213. // Interpret the T value as the travel acceleration in the new Marlin format.
  5214. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5215. // travel_acceleration = code_value();
  5216. }
  5217. }
  5218. }
  5219. break;
  5220. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5221. {
  5222. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5223. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5224. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5225. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5226. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5227. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5228. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5229. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5230. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5231. }
  5232. break;
  5233. case 206: // M206 additional homing offset
  5234. for(int8_t i=0; i < 3; i++)
  5235. {
  5236. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5237. }
  5238. break;
  5239. #ifdef FWRETRACT
  5240. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5241. {
  5242. if(code_seen('S'))
  5243. {
  5244. cs.retract_length = code_value() ;
  5245. }
  5246. if(code_seen('F'))
  5247. {
  5248. cs.retract_feedrate = code_value()/60 ;
  5249. }
  5250. if(code_seen('Z'))
  5251. {
  5252. cs.retract_zlift = code_value() ;
  5253. }
  5254. }break;
  5255. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5256. {
  5257. if(code_seen('S'))
  5258. {
  5259. cs.retract_recover_length = code_value() ;
  5260. }
  5261. if(code_seen('F'))
  5262. {
  5263. cs.retract_recover_feedrate = code_value()/60 ;
  5264. }
  5265. }break;
  5266. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5267. {
  5268. if(code_seen('S'))
  5269. {
  5270. int t= code_value() ;
  5271. switch(t)
  5272. {
  5273. case 0:
  5274. {
  5275. cs.autoretract_enabled=false;
  5276. retracted[0]=false;
  5277. #if EXTRUDERS > 1
  5278. retracted[1]=false;
  5279. #endif
  5280. #if EXTRUDERS > 2
  5281. retracted[2]=false;
  5282. #endif
  5283. }break;
  5284. case 1:
  5285. {
  5286. cs.autoretract_enabled=true;
  5287. retracted[0]=false;
  5288. #if EXTRUDERS > 1
  5289. retracted[1]=false;
  5290. #endif
  5291. #if EXTRUDERS > 2
  5292. retracted[2]=false;
  5293. #endif
  5294. }break;
  5295. default:
  5296. SERIAL_ECHO_START;
  5297. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5298. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5299. SERIAL_ECHOLNPGM("\"(1)");
  5300. }
  5301. }
  5302. }break;
  5303. #endif // FWRETRACT
  5304. #if EXTRUDERS > 1
  5305. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5306. {
  5307. uint8_t extruder;
  5308. if(setTargetedHotend(218, extruder)){
  5309. break;
  5310. }
  5311. if(code_seen('X'))
  5312. {
  5313. extruder_offset[X_AXIS][extruder] = code_value();
  5314. }
  5315. if(code_seen('Y'))
  5316. {
  5317. extruder_offset[Y_AXIS][extruder] = code_value();
  5318. }
  5319. SERIAL_ECHO_START;
  5320. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5321. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5322. {
  5323. SERIAL_ECHO(" ");
  5324. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5325. SERIAL_ECHO(",");
  5326. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5327. }
  5328. SERIAL_ECHOLN("");
  5329. }break;
  5330. #endif
  5331. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5332. {
  5333. if (code_seen('B')) //backup current speed factor
  5334. {
  5335. saved_feedmultiply_mm = feedmultiply;
  5336. }
  5337. if(code_seen('S'))
  5338. {
  5339. feedmultiply = code_value() ;
  5340. }
  5341. if (code_seen('R')) { //restore previous feedmultiply
  5342. feedmultiply = saved_feedmultiply_mm;
  5343. }
  5344. }
  5345. break;
  5346. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5347. {
  5348. if(code_seen('S'))
  5349. {
  5350. int tmp_code = code_value();
  5351. if (code_seen('T'))
  5352. {
  5353. uint8_t extruder;
  5354. if(setTargetedHotend(221, extruder)){
  5355. break;
  5356. }
  5357. extruder_multiply[extruder] = tmp_code;
  5358. }
  5359. else
  5360. {
  5361. extrudemultiply = tmp_code ;
  5362. }
  5363. }
  5364. calculate_extruder_multipliers();
  5365. }
  5366. break;
  5367. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5368. {
  5369. if(code_seen('P')){
  5370. int pin_number = code_value(); // pin number
  5371. int pin_state = -1; // required pin state - default is inverted
  5372. if(code_seen('S')) pin_state = code_value(); // required pin state
  5373. if(pin_state >= -1 && pin_state <= 1){
  5374. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5375. {
  5376. if (sensitive_pins[i] == pin_number)
  5377. {
  5378. pin_number = -1;
  5379. break;
  5380. }
  5381. }
  5382. if (pin_number > -1)
  5383. {
  5384. int target = LOW;
  5385. st_synchronize();
  5386. pinMode(pin_number, INPUT);
  5387. switch(pin_state){
  5388. case 1:
  5389. target = HIGH;
  5390. break;
  5391. case 0:
  5392. target = LOW;
  5393. break;
  5394. case -1:
  5395. target = !digitalRead(pin_number);
  5396. break;
  5397. }
  5398. while(digitalRead(pin_number) != target){
  5399. manage_heater();
  5400. manage_inactivity();
  5401. lcd_update(0);
  5402. }
  5403. }
  5404. }
  5405. }
  5406. }
  5407. break;
  5408. #if NUM_SERVOS > 0
  5409. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5410. {
  5411. int servo_index = -1;
  5412. int servo_position = 0;
  5413. if (code_seen('P'))
  5414. servo_index = code_value();
  5415. if (code_seen('S')) {
  5416. servo_position = code_value();
  5417. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5418. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5419. servos[servo_index].attach(0);
  5420. #endif
  5421. servos[servo_index].write(servo_position);
  5422. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5423. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5424. servos[servo_index].detach();
  5425. #endif
  5426. }
  5427. else {
  5428. SERIAL_ECHO_START;
  5429. SERIAL_ECHO("Servo ");
  5430. SERIAL_ECHO(servo_index);
  5431. SERIAL_ECHOLN(" out of range");
  5432. }
  5433. }
  5434. else if (servo_index >= 0) {
  5435. SERIAL_PROTOCOL(MSG_OK);
  5436. SERIAL_PROTOCOL(" Servo ");
  5437. SERIAL_PROTOCOL(servo_index);
  5438. SERIAL_PROTOCOL(": ");
  5439. SERIAL_PROTOCOL(servos[servo_index].read());
  5440. SERIAL_PROTOCOLLN("");
  5441. }
  5442. }
  5443. break;
  5444. #endif // NUM_SERVOS > 0
  5445. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5446. case 300: // M300
  5447. {
  5448. int beepS = code_seen('S') ? code_value() : 110;
  5449. int beepP = code_seen('P') ? code_value() : 1000;
  5450. if (beepS > 0)
  5451. {
  5452. #if BEEPER > 0
  5453. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5454. tone(BEEPER, beepS);
  5455. _delay(beepP);
  5456. noTone(BEEPER);
  5457. #endif
  5458. }
  5459. else
  5460. {
  5461. _delay(beepP);
  5462. }
  5463. }
  5464. break;
  5465. #endif // M300
  5466. #ifdef PIDTEMP
  5467. case 301: // M301
  5468. {
  5469. if(code_seen('P')) cs.Kp = code_value();
  5470. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5471. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5472. #ifdef PID_ADD_EXTRUSION_RATE
  5473. if(code_seen('C')) Kc = code_value();
  5474. #endif
  5475. updatePID();
  5476. SERIAL_PROTOCOLRPGM(MSG_OK);
  5477. SERIAL_PROTOCOL(" p:");
  5478. SERIAL_PROTOCOL(cs.Kp);
  5479. SERIAL_PROTOCOL(" i:");
  5480. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5481. SERIAL_PROTOCOL(" d:");
  5482. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5483. #ifdef PID_ADD_EXTRUSION_RATE
  5484. SERIAL_PROTOCOL(" c:");
  5485. //Kc does not have scaling applied above, or in resetting defaults
  5486. SERIAL_PROTOCOL(Kc);
  5487. #endif
  5488. SERIAL_PROTOCOLLN("");
  5489. }
  5490. break;
  5491. #endif //PIDTEMP
  5492. #ifdef PIDTEMPBED
  5493. case 304: // M304
  5494. {
  5495. if(code_seen('P')) cs.bedKp = code_value();
  5496. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5497. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5498. updatePID();
  5499. SERIAL_PROTOCOLRPGM(MSG_OK);
  5500. SERIAL_PROTOCOL(" p:");
  5501. SERIAL_PROTOCOL(cs.bedKp);
  5502. SERIAL_PROTOCOL(" i:");
  5503. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5504. SERIAL_PROTOCOL(" d:");
  5505. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5506. SERIAL_PROTOCOLLN("");
  5507. }
  5508. break;
  5509. #endif //PIDTEMP
  5510. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5511. {
  5512. #ifdef CHDK
  5513. SET_OUTPUT(CHDK);
  5514. WRITE(CHDK, HIGH);
  5515. chdkHigh = _millis();
  5516. chdkActive = true;
  5517. #else
  5518. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5519. const uint8_t NUM_PULSES=16;
  5520. const float PULSE_LENGTH=0.01524;
  5521. for(int i=0; i < NUM_PULSES; i++) {
  5522. WRITE(PHOTOGRAPH_PIN, HIGH);
  5523. _delay_ms(PULSE_LENGTH);
  5524. WRITE(PHOTOGRAPH_PIN, LOW);
  5525. _delay_ms(PULSE_LENGTH);
  5526. }
  5527. _delay(7.33);
  5528. for(int i=0; i < NUM_PULSES; i++) {
  5529. WRITE(PHOTOGRAPH_PIN, HIGH);
  5530. _delay_ms(PULSE_LENGTH);
  5531. WRITE(PHOTOGRAPH_PIN, LOW);
  5532. _delay_ms(PULSE_LENGTH);
  5533. }
  5534. #endif
  5535. #endif //chdk end if
  5536. }
  5537. break;
  5538. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5539. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5540. {
  5541. float temp = .0;
  5542. if (code_seen('S')) temp=code_value();
  5543. set_extrude_min_temp(temp);
  5544. }
  5545. break;
  5546. #endif
  5547. case 303: // M303 PID autotune
  5548. {
  5549. float temp = 150.0;
  5550. int e=0;
  5551. int c=5;
  5552. if (code_seen('E')) e=code_value();
  5553. if (e<0)
  5554. temp=70;
  5555. if (code_seen('S')) temp=code_value();
  5556. if (code_seen('C')) c=code_value();
  5557. PID_autotune(temp, e, c);
  5558. }
  5559. break;
  5560. case 400: // M400 finish all moves
  5561. {
  5562. st_synchronize();
  5563. }
  5564. break;
  5565. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5566. {
  5567. //! currently three different materials are needed (default, flex and PVA)
  5568. //! add storing this information for different load/unload profiles etc. in the future
  5569. //!firmware does not wait for "ok" from mmu
  5570. if (mmu_enabled)
  5571. {
  5572. uint8_t extruder = 255;
  5573. uint8_t filament = FILAMENT_UNDEFINED;
  5574. if(code_seen('E')) extruder = code_value();
  5575. if(code_seen('F')) filament = code_value();
  5576. mmu_set_filament_type(extruder, filament);
  5577. }
  5578. }
  5579. break;
  5580. case 500: // M500 Store settings in EEPROM
  5581. {
  5582. Config_StoreSettings();
  5583. }
  5584. break;
  5585. case 501: // M501 Read settings from EEPROM
  5586. {
  5587. Config_RetrieveSettings();
  5588. }
  5589. break;
  5590. case 502: // M502 Revert to default settings
  5591. {
  5592. Config_ResetDefault();
  5593. }
  5594. break;
  5595. case 503: // M503 print settings currently in memory
  5596. {
  5597. Config_PrintSettings();
  5598. }
  5599. break;
  5600. case 509: //M509 Force language selection
  5601. {
  5602. lang_reset();
  5603. SERIAL_ECHO_START;
  5604. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5605. }
  5606. break;
  5607. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5608. case 540:
  5609. {
  5610. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5611. }
  5612. break;
  5613. #endif
  5614. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5615. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5616. {
  5617. float value;
  5618. if (code_seen('Z'))
  5619. {
  5620. value = code_value();
  5621. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5622. {
  5623. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5624. SERIAL_ECHO_START;
  5625. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5626. SERIAL_PROTOCOLLN("");
  5627. }
  5628. else
  5629. {
  5630. SERIAL_ECHO_START;
  5631. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5632. SERIAL_ECHORPGM(MSG_Z_MIN);
  5633. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5634. SERIAL_ECHORPGM(MSG_Z_MAX);
  5635. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5636. SERIAL_PROTOCOLLN("");
  5637. }
  5638. }
  5639. else
  5640. {
  5641. SERIAL_ECHO_START;
  5642. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5643. SERIAL_ECHO(-cs.zprobe_zoffset);
  5644. SERIAL_PROTOCOLLN("");
  5645. }
  5646. break;
  5647. }
  5648. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5649. #ifdef FILAMENTCHANGEENABLE
  5650. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5651. {
  5652. st_synchronize();
  5653. float x_position = current_position[X_AXIS];
  5654. float y_position = current_position[Y_AXIS];
  5655. float z_shift = 0;
  5656. float e_shift_init = 0;
  5657. float e_shift_late = 0;
  5658. bool automatic = false;
  5659. //Retract extruder
  5660. if(code_seen('E'))
  5661. {
  5662. e_shift_init = code_value();
  5663. }
  5664. else
  5665. {
  5666. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5667. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5668. #endif
  5669. }
  5670. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5671. if (code_seen('L'))
  5672. {
  5673. e_shift_late = code_value();
  5674. }
  5675. else
  5676. {
  5677. #ifdef FILAMENTCHANGE_FINALRETRACT
  5678. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5679. #endif
  5680. }
  5681. //Lift Z
  5682. if(code_seen('Z'))
  5683. {
  5684. z_shift = code_value();
  5685. }
  5686. else
  5687. {
  5688. #ifdef FILAMENTCHANGE_ZADD
  5689. z_shift= FILAMENTCHANGE_ZADD ;
  5690. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5691. #endif
  5692. }
  5693. //Move XY to side
  5694. if(code_seen('X'))
  5695. {
  5696. x_position = code_value();
  5697. }
  5698. else
  5699. {
  5700. #ifdef FILAMENTCHANGE_XPOS
  5701. x_position = FILAMENTCHANGE_XPOS;
  5702. #endif
  5703. }
  5704. if(code_seen('Y'))
  5705. {
  5706. y_position = code_value();
  5707. }
  5708. else
  5709. {
  5710. #ifdef FILAMENTCHANGE_YPOS
  5711. y_position = FILAMENTCHANGE_YPOS ;
  5712. #endif
  5713. }
  5714. if (mmu_enabled && code_seen("AUTO"))
  5715. automatic = true;
  5716. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5717. }
  5718. break;
  5719. #endif //FILAMENTCHANGEENABLE
  5720. case 601: //! M601 - Pause print
  5721. {
  5722. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5723. lcd_pause_print();
  5724. }
  5725. break;
  5726. case 602: { //! M602 - Resume print
  5727. lcd_resume_print();
  5728. }
  5729. break;
  5730. #ifdef PINDA_THERMISTOR
  5731. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5732. {
  5733. int set_target_pinda = 0;
  5734. if (code_seen('S')) {
  5735. set_target_pinda = code_value();
  5736. }
  5737. else {
  5738. break;
  5739. }
  5740. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5741. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5742. SERIAL_PROTOCOL(set_target_pinda);
  5743. SERIAL_PROTOCOLLN("");
  5744. codenum = _millis();
  5745. cancel_heatup = false;
  5746. bool is_pinda_cooling = false;
  5747. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5748. is_pinda_cooling = true;
  5749. }
  5750. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5751. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5752. {
  5753. SERIAL_PROTOCOLPGM("P:");
  5754. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5755. SERIAL_PROTOCOLPGM("/");
  5756. SERIAL_PROTOCOL(set_target_pinda);
  5757. SERIAL_PROTOCOLLN("");
  5758. codenum = _millis();
  5759. }
  5760. manage_heater();
  5761. manage_inactivity();
  5762. lcd_update(0);
  5763. }
  5764. LCD_MESSAGERPGM(MSG_OK);
  5765. break;
  5766. }
  5767. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5768. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5769. uint8_t cal_status = calibration_status_pinda();
  5770. int16_t usteps = 0;
  5771. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5772. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5773. for (uint8_t i = 0; i < 6; i++)
  5774. {
  5775. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5776. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5777. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5778. SERIAL_PROTOCOLPGM(", ");
  5779. SERIAL_PROTOCOL(35 + (i * 5));
  5780. SERIAL_PROTOCOLPGM(", ");
  5781. SERIAL_PROTOCOL(usteps);
  5782. SERIAL_PROTOCOLPGM(", ");
  5783. SERIAL_PROTOCOL(mm * 1000);
  5784. SERIAL_PROTOCOLLN("");
  5785. }
  5786. }
  5787. else if (code_seen('!')) { // ! - Set factory default values
  5788. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5789. int16_t z_shift = 8; //40C - 20um - 8usteps
  5790. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5791. z_shift = 24; //45C - 60um - 24usteps
  5792. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5793. z_shift = 48; //50C - 120um - 48usteps
  5794. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5795. z_shift = 80; //55C - 200um - 80usteps
  5796. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5797. z_shift = 120; //60C - 300um - 120usteps
  5798. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5799. SERIAL_PROTOCOLLN("factory restored");
  5800. }
  5801. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5802. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5803. int16_t z_shift = 0;
  5804. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5805. SERIAL_PROTOCOLLN("zerorized");
  5806. }
  5807. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5808. int16_t usteps = code_value();
  5809. if (code_seen('I')) {
  5810. uint8_t index = code_value();
  5811. if (index < 5) {
  5812. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5813. SERIAL_PROTOCOLLN("OK");
  5814. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5815. for (uint8_t i = 0; i < 6; i++)
  5816. {
  5817. usteps = 0;
  5818. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5819. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5820. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5821. SERIAL_PROTOCOLPGM(", ");
  5822. SERIAL_PROTOCOL(35 + (i * 5));
  5823. SERIAL_PROTOCOLPGM(", ");
  5824. SERIAL_PROTOCOL(usteps);
  5825. SERIAL_PROTOCOLPGM(", ");
  5826. SERIAL_PROTOCOL(mm * 1000);
  5827. SERIAL_PROTOCOLLN("");
  5828. }
  5829. }
  5830. }
  5831. }
  5832. else {
  5833. SERIAL_PROTOCOLPGM("no valid command");
  5834. }
  5835. break;
  5836. #endif //PINDA_THERMISTOR
  5837. #ifdef LIN_ADVANCE
  5838. case 900: // M900: Set LIN_ADVANCE options.
  5839. gcode_M900();
  5840. break;
  5841. #endif
  5842. case 907: // M907 Set digital trimpot motor current using axis codes.
  5843. {
  5844. #ifdef TMC2130
  5845. for (int i = 0; i < NUM_AXIS; i++)
  5846. if(code_seen(axis_codes[i]))
  5847. {
  5848. long cur_mA = code_value_long();
  5849. uint8_t val = tmc2130_cur2val(cur_mA);
  5850. tmc2130_set_current_h(i, val);
  5851. tmc2130_set_current_r(i, val);
  5852. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5853. }
  5854. #else //TMC2130
  5855. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5856. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5857. if(code_seen('B')) st_current_set(4,code_value());
  5858. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5859. #endif
  5860. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5861. if(code_seen('X')) st_current_set(0, code_value());
  5862. #endif
  5863. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5864. if(code_seen('Z')) st_current_set(1, code_value());
  5865. #endif
  5866. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5867. if(code_seen('E')) st_current_set(2, code_value());
  5868. #endif
  5869. #endif //TMC2130
  5870. }
  5871. break;
  5872. case 908: // M908 Control digital trimpot directly.
  5873. {
  5874. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5875. uint8_t channel,current;
  5876. if(code_seen('P')) channel=code_value();
  5877. if(code_seen('S')) current=code_value();
  5878. digitalPotWrite(channel, current);
  5879. #endif
  5880. }
  5881. break;
  5882. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5883. case 910: //! M910 - TMC2130 init
  5884. {
  5885. tmc2130_init();
  5886. }
  5887. break;
  5888. case 911: //! M911 - Set TMC2130 holding currents
  5889. {
  5890. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5891. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5892. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5893. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5894. }
  5895. break;
  5896. case 912: //! M912 - Set TMC2130 running currents
  5897. {
  5898. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5899. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5900. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5901. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5902. }
  5903. break;
  5904. case 913: //! M913 - Print TMC2130 currents
  5905. {
  5906. tmc2130_print_currents();
  5907. }
  5908. break;
  5909. case 914: //! M914 - Set normal mode
  5910. {
  5911. tmc2130_mode = TMC2130_MODE_NORMAL;
  5912. update_mode_profile();
  5913. tmc2130_init();
  5914. }
  5915. break;
  5916. case 915: //! M915 - Set silent mode
  5917. {
  5918. tmc2130_mode = TMC2130_MODE_SILENT;
  5919. update_mode_profile();
  5920. tmc2130_init();
  5921. }
  5922. break;
  5923. case 916: //! M916 - Set sg_thrs
  5924. {
  5925. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5926. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5927. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5928. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5929. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5930. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5931. }
  5932. break;
  5933. case 917: //! M917 - Set TMC2130 pwm_ampl
  5934. {
  5935. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5936. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5937. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5938. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5939. }
  5940. break;
  5941. case 918: //! M918 - Set TMC2130 pwm_grad
  5942. {
  5943. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5944. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5945. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5946. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5947. }
  5948. break;
  5949. #endif //TMC2130_SERVICE_CODES_M910_M918
  5950. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5951. {
  5952. #ifdef TMC2130
  5953. if(code_seen('E'))
  5954. {
  5955. uint16_t res_new = code_value();
  5956. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5957. {
  5958. st_synchronize();
  5959. uint8_t axis = E_AXIS;
  5960. uint16_t res = tmc2130_get_res(axis);
  5961. tmc2130_set_res(axis, res_new);
  5962. if (res_new > res)
  5963. {
  5964. uint16_t fac = (res_new / res);
  5965. cs.axis_steps_per_unit[axis] *= fac;
  5966. position[E_AXIS] *= fac;
  5967. }
  5968. else
  5969. {
  5970. uint16_t fac = (res / res_new);
  5971. cs.axis_steps_per_unit[axis] /= fac;
  5972. position[E_AXIS] /= fac;
  5973. }
  5974. }
  5975. }
  5976. #else //TMC2130
  5977. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5978. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5979. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5980. if(code_seen('B')) microstep_mode(4,code_value());
  5981. microstep_readings();
  5982. #endif
  5983. #endif //TMC2130
  5984. }
  5985. break;
  5986. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5987. {
  5988. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5989. if(code_seen('S')) switch((int)code_value())
  5990. {
  5991. case 1:
  5992. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5993. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5994. break;
  5995. case 2:
  5996. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5997. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5998. break;
  5999. }
  6000. microstep_readings();
  6001. #endif
  6002. }
  6003. break;
  6004. case 701: //! M701 - load filament
  6005. {
  6006. if (mmu_enabled && code_seen('E'))
  6007. tmp_extruder = code_value();
  6008. gcode_M701();
  6009. }
  6010. break;
  6011. case 702: //! M702 [U C] -
  6012. {
  6013. #ifdef SNMM
  6014. if (code_seen('U'))
  6015. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6016. else if (code_seen('C'))
  6017. extr_unload(); //! if "C" unload just current filament
  6018. else
  6019. extr_unload_all(); //! otherwise unload all filaments
  6020. #else
  6021. if (code_seen('C')) {
  6022. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6023. }
  6024. else {
  6025. if(mmu_enabled) extr_unload(); //! unload current filament
  6026. else unload_filament();
  6027. }
  6028. #endif //SNMM
  6029. }
  6030. break;
  6031. case 999: // M999: Restart after being stopped
  6032. Stopped = false;
  6033. lcd_reset_alert_level();
  6034. gcode_LastN = Stopped_gcode_LastN;
  6035. FlushSerialRequestResend();
  6036. break;
  6037. default:
  6038. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6039. }
  6040. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6041. mcode_in_progress = 0;
  6042. }
  6043. }
  6044. // end if(code_seen('M')) (end of M codes)
  6045. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6046. //! select filament in case of MMU_V2
  6047. //! if extruder is "?", open menu to let the user select extruder/filament
  6048. //!
  6049. //! For MMU_V2:
  6050. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6051. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6052. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6053. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6054. else if(code_seen('T'))
  6055. {
  6056. int index;
  6057. bool load_to_nozzle = false;
  6058. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6059. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6060. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6061. SERIAL_ECHOLNPGM("Invalid T code.");
  6062. }
  6063. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6064. if (mmu_enabled)
  6065. {
  6066. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6067. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6068. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6069. return; //dont execute the same T-code twice in a row
  6070. }
  6071. st_synchronize();
  6072. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6073. manage_response(true, true, MMU_TCODE_MOVE);
  6074. }
  6075. }
  6076. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6077. if (mmu_enabled)
  6078. {
  6079. st_synchronize();
  6080. mmu_continue_loading();
  6081. mmu_extruder = tmp_extruder; //filament change is finished
  6082. mmu_load_to_nozzle();
  6083. }
  6084. }
  6085. else {
  6086. if (*(strchr_pointer + index) == '?')
  6087. {
  6088. if(mmu_enabled)
  6089. {
  6090. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6091. load_to_nozzle = true;
  6092. } else
  6093. {
  6094. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6095. }
  6096. }
  6097. else {
  6098. tmp_extruder = code_value();
  6099. if (mmu_enabled && lcd_autoDepleteEnabled())
  6100. {
  6101. tmp_extruder = ad_getAlternative(tmp_extruder);
  6102. }
  6103. }
  6104. st_synchronize();
  6105. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6106. if (mmu_enabled)
  6107. {
  6108. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6109. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6110. return; //dont execute the same T-code twice in a row
  6111. }
  6112. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6113. manage_response(true, true, MMU_TCODE_MOVE);
  6114. mmu_continue_loading();
  6115. mmu_extruder = tmp_extruder; //filament change is finished
  6116. if (load_to_nozzle)// for single material usage with mmu
  6117. {
  6118. mmu_load_to_nozzle();
  6119. }
  6120. }
  6121. else
  6122. {
  6123. #ifdef SNMM
  6124. #ifdef LIN_ADVANCE
  6125. if (mmu_extruder != tmp_extruder)
  6126. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6127. #endif
  6128. mmu_extruder = tmp_extruder;
  6129. _delay(100);
  6130. disable_e0();
  6131. disable_e1();
  6132. disable_e2();
  6133. pinMode(E_MUX0_PIN, OUTPUT);
  6134. pinMode(E_MUX1_PIN, OUTPUT);
  6135. _delay(100);
  6136. SERIAL_ECHO_START;
  6137. SERIAL_ECHO("T:");
  6138. SERIAL_ECHOLN((int)tmp_extruder);
  6139. switch (tmp_extruder) {
  6140. case 1:
  6141. WRITE(E_MUX0_PIN, HIGH);
  6142. WRITE(E_MUX1_PIN, LOW);
  6143. break;
  6144. case 2:
  6145. WRITE(E_MUX0_PIN, LOW);
  6146. WRITE(E_MUX1_PIN, HIGH);
  6147. break;
  6148. case 3:
  6149. WRITE(E_MUX0_PIN, HIGH);
  6150. WRITE(E_MUX1_PIN, HIGH);
  6151. break;
  6152. default:
  6153. WRITE(E_MUX0_PIN, LOW);
  6154. WRITE(E_MUX1_PIN, LOW);
  6155. break;
  6156. }
  6157. _delay(100);
  6158. #else //SNMM
  6159. if (tmp_extruder >= EXTRUDERS) {
  6160. SERIAL_ECHO_START;
  6161. SERIAL_ECHOPGM("T");
  6162. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6163. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6164. }
  6165. else {
  6166. #if EXTRUDERS > 1
  6167. boolean make_move = false;
  6168. #endif
  6169. if (code_seen('F')) {
  6170. #if EXTRUDERS > 1
  6171. make_move = true;
  6172. #endif
  6173. next_feedrate = code_value();
  6174. if (next_feedrate > 0.0) {
  6175. feedrate = next_feedrate;
  6176. }
  6177. }
  6178. #if EXTRUDERS > 1
  6179. if (tmp_extruder != active_extruder) {
  6180. // Save current position to return to after applying extruder offset
  6181. memcpy(destination, current_position, sizeof(destination));
  6182. // Offset extruder (only by XY)
  6183. int i;
  6184. for (i = 0; i < 2; i++) {
  6185. current_position[i] = current_position[i] -
  6186. extruder_offset[i][active_extruder] +
  6187. extruder_offset[i][tmp_extruder];
  6188. }
  6189. // Set the new active extruder and position
  6190. active_extruder = tmp_extruder;
  6191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6192. // Move to the old position if 'F' was in the parameters
  6193. if (make_move && Stopped == false) {
  6194. prepare_move();
  6195. }
  6196. }
  6197. #endif
  6198. SERIAL_ECHO_START;
  6199. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6200. SERIAL_PROTOCOLLN((int)active_extruder);
  6201. }
  6202. #endif //SNMM
  6203. }
  6204. }
  6205. } // end if(code_seen('T')) (end of T codes)
  6206. else if (code_seen('D')) // D codes (debug)
  6207. {
  6208. switch((int)code_value())
  6209. {
  6210. #ifdef DEBUG_DCODES
  6211. case -1: //! D-1 - Endless loop
  6212. dcode__1(); break;
  6213. case 0: //! D0 - Reset
  6214. dcode_0(); break;
  6215. case 1: //! D1 - Clear EEPROM
  6216. dcode_1(); break;
  6217. case 2: //! D2 - Read/Write RAM
  6218. dcode_2(); break;
  6219. #endif //DEBUG_DCODES
  6220. #ifdef DEBUG_DCODE3
  6221. case 3: //! D3 - Read/Write EEPROM
  6222. dcode_3(); break;
  6223. #endif //DEBUG_DCODE3
  6224. #ifdef DEBUG_DCODES
  6225. case 4: //! D4 - Read/Write PIN
  6226. dcode_4(); break;
  6227. #endif //DEBUG_DCODES
  6228. #ifdef DEBUG_DCODE5
  6229. case 5: // D5 - Read/Write FLASH
  6230. dcode_5(); break;
  6231. break;
  6232. #endif //DEBUG_DCODE5
  6233. #ifdef DEBUG_DCODES
  6234. case 6: // D6 - Read/Write external FLASH
  6235. dcode_6(); break;
  6236. case 7: //! D7 - Read/Write Bootloader
  6237. dcode_7(); break;
  6238. case 8: //! D8 - Read/Write PINDA
  6239. dcode_8(); break;
  6240. case 9: //! D9 - Read/Write ADC
  6241. dcode_9(); break;
  6242. case 10: //! D10 - XYZ calibration = OK
  6243. dcode_10(); break;
  6244. #ifdef TMC2130
  6245. case 2130: //! D2130 - TMC2130
  6246. dcode_2130(); break;
  6247. #endif //TMC2130
  6248. #ifdef FILAMENT_SENSOR
  6249. case 9125: //! D9125 - FILAMENT_SENSOR
  6250. dcode_9125(); break;
  6251. #endif //FILAMENT_SENSOR
  6252. #endif //DEBUG_DCODES
  6253. }
  6254. }
  6255. else
  6256. {
  6257. SERIAL_ECHO_START;
  6258. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6259. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6260. SERIAL_ECHOLNPGM("\"(2)");
  6261. }
  6262. KEEPALIVE_STATE(NOT_BUSY);
  6263. ClearToSend();
  6264. }
  6265. void FlushSerialRequestResend()
  6266. {
  6267. //char cmdbuffer[bufindr][100]="Resend:";
  6268. MYSERIAL.flush();
  6269. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6270. }
  6271. // Confirm the execution of a command, if sent from a serial line.
  6272. // Execution of a command from a SD card will not be confirmed.
  6273. void ClearToSend()
  6274. {
  6275. previous_millis_cmd = _millis();
  6276. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6277. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6278. }
  6279. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6280. void update_currents() {
  6281. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6282. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6283. float tmp_motor[3];
  6284. //SERIAL_ECHOLNPGM("Currents updated: ");
  6285. if (destination[Z_AXIS] < Z_SILENT) {
  6286. //SERIAL_ECHOLNPGM("LOW");
  6287. for (uint8_t i = 0; i < 3; i++) {
  6288. st_current_set(i, current_low[i]);
  6289. /*MYSERIAL.print(int(i));
  6290. SERIAL_ECHOPGM(": ");
  6291. MYSERIAL.println(current_low[i]);*/
  6292. }
  6293. }
  6294. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6295. //SERIAL_ECHOLNPGM("HIGH");
  6296. for (uint8_t i = 0; i < 3; i++) {
  6297. st_current_set(i, current_high[i]);
  6298. /*MYSERIAL.print(int(i));
  6299. SERIAL_ECHOPGM(": ");
  6300. MYSERIAL.println(current_high[i]);*/
  6301. }
  6302. }
  6303. else {
  6304. for (uint8_t i = 0; i < 3; i++) {
  6305. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6306. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6307. st_current_set(i, tmp_motor[i]);
  6308. /*MYSERIAL.print(int(i));
  6309. SERIAL_ECHOPGM(": ");
  6310. MYSERIAL.println(tmp_motor[i]);*/
  6311. }
  6312. }
  6313. }
  6314. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6315. void get_coordinates()
  6316. {
  6317. bool seen[4]={false,false,false,false};
  6318. for(int8_t i=0; i < NUM_AXIS; i++) {
  6319. if(code_seen(axis_codes[i]))
  6320. {
  6321. bool relative = axis_relative_modes[i] || relative_mode;
  6322. destination[i] = (float)code_value();
  6323. if (i == E_AXIS) {
  6324. float emult = extruder_multiplier[active_extruder];
  6325. if (emult != 1.) {
  6326. if (! relative) {
  6327. destination[i] -= current_position[i];
  6328. relative = true;
  6329. }
  6330. destination[i] *= emult;
  6331. }
  6332. }
  6333. if (relative)
  6334. destination[i] += current_position[i];
  6335. seen[i]=true;
  6336. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6337. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6338. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6339. }
  6340. else destination[i] = current_position[i]; //Are these else lines really needed?
  6341. }
  6342. if(code_seen('F')) {
  6343. next_feedrate = code_value();
  6344. #ifdef MAX_SILENT_FEEDRATE
  6345. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6346. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6347. #endif //MAX_SILENT_FEEDRATE
  6348. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6349. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6350. {
  6351. // float e_max_speed =
  6352. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6353. }
  6354. }
  6355. }
  6356. void get_arc_coordinates()
  6357. {
  6358. #ifdef SF_ARC_FIX
  6359. bool relative_mode_backup = relative_mode;
  6360. relative_mode = true;
  6361. #endif
  6362. get_coordinates();
  6363. #ifdef SF_ARC_FIX
  6364. relative_mode=relative_mode_backup;
  6365. #endif
  6366. if(code_seen('I')) {
  6367. offset[0] = code_value();
  6368. }
  6369. else {
  6370. offset[0] = 0.0;
  6371. }
  6372. if(code_seen('J')) {
  6373. offset[1] = code_value();
  6374. }
  6375. else {
  6376. offset[1] = 0.0;
  6377. }
  6378. }
  6379. void clamp_to_software_endstops(float target[3])
  6380. {
  6381. #ifdef DEBUG_DISABLE_SWLIMITS
  6382. return;
  6383. #endif //DEBUG_DISABLE_SWLIMITS
  6384. world2machine_clamp(target[0], target[1]);
  6385. // Clamp the Z coordinate.
  6386. if (min_software_endstops) {
  6387. float negative_z_offset = 0;
  6388. #ifdef ENABLE_AUTO_BED_LEVELING
  6389. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6390. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6391. #endif
  6392. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6393. }
  6394. if (max_software_endstops) {
  6395. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6396. }
  6397. }
  6398. #ifdef MESH_BED_LEVELING
  6399. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6400. float dx = x - current_position[X_AXIS];
  6401. float dy = y - current_position[Y_AXIS];
  6402. float dz = z - current_position[Z_AXIS];
  6403. int n_segments = 0;
  6404. if (mbl.active) {
  6405. float len = abs(dx) + abs(dy);
  6406. if (len > 0)
  6407. // Split to 3cm segments or shorter.
  6408. n_segments = int(ceil(len / 30.f));
  6409. }
  6410. if (n_segments > 1) {
  6411. float de = e - current_position[E_AXIS];
  6412. for (int i = 1; i < n_segments; ++ i) {
  6413. float t = float(i) / float(n_segments);
  6414. if (saved_printing || (mbl.active == false)) return;
  6415. plan_buffer_line(
  6416. current_position[X_AXIS] + t * dx,
  6417. current_position[Y_AXIS] + t * dy,
  6418. current_position[Z_AXIS] + t * dz,
  6419. current_position[E_AXIS] + t * de,
  6420. feed_rate, extruder);
  6421. }
  6422. }
  6423. // The rest of the path.
  6424. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6425. current_position[X_AXIS] = x;
  6426. current_position[Y_AXIS] = y;
  6427. current_position[Z_AXIS] = z;
  6428. current_position[E_AXIS] = e;
  6429. }
  6430. #endif // MESH_BED_LEVELING
  6431. void prepare_move()
  6432. {
  6433. clamp_to_software_endstops(destination);
  6434. previous_millis_cmd = _millis();
  6435. // Do not use feedmultiply for E or Z only moves
  6436. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6438. }
  6439. else {
  6440. #ifdef MESH_BED_LEVELING
  6441. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6442. #else
  6443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6444. #endif
  6445. }
  6446. for(int8_t i=0; i < NUM_AXIS; i++) {
  6447. current_position[i] = destination[i];
  6448. }
  6449. }
  6450. void prepare_arc_move(char isclockwise) {
  6451. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6452. // Trace the arc
  6453. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6454. // As far as the parser is concerned, the position is now == target. In reality the
  6455. // motion control system might still be processing the action and the real tool position
  6456. // in any intermediate location.
  6457. for(int8_t i=0; i < NUM_AXIS; i++) {
  6458. current_position[i] = destination[i];
  6459. }
  6460. previous_millis_cmd = _millis();
  6461. }
  6462. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6463. #if defined(FAN_PIN)
  6464. #if CONTROLLERFAN_PIN == FAN_PIN
  6465. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6466. #endif
  6467. #endif
  6468. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6469. unsigned long lastMotorCheck = 0;
  6470. void controllerFan()
  6471. {
  6472. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6473. {
  6474. lastMotorCheck = _millis();
  6475. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6476. #if EXTRUDERS > 2
  6477. || !READ(E2_ENABLE_PIN)
  6478. #endif
  6479. #if EXTRUDER > 1
  6480. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6481. || !READ(X2_ENABLE_PIN)
  6482. #endif
  6483. || !READ(E1_ENABLE_PIN)
  6484. #endif
  6485. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6486. {
  6487. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6488. }
  6489. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6490. {
  6491. digitalWrite(CONTROLLERFAN_PIN, 0);
  6492. analogWrite(CONTROLLERFAN_PIN, 0);
  6493. }
  6494. else
  6495. {
  6496. // allows digital or PWM fan output to be used (see M42 handling)
  6497. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6498. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6499. }
  6500. }
  6501. }
  6502. #endif
  6503. #ifdef TEMP_STAT_LEDS
  6504. static bool blue_led = false;
  6505. static bool red_led = false;
  6506. static uint32_t stat_update = 0;
  6507. void handle_status_leds(void) {
  6508. float max_temp = 0.0;
  6509. if(_millis() > stat_update) {
  6510. stat_update += 500; // Update every 0.5s
  6511. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6512. max_temp = max(max_temp, degHotend(cur_extruder));
  6513. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6514. }
  6515. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6516. max_temp = max(max_temp, degTargetBed());
  6517. max_temp = max(max_temp, degBed());
  6518. #endif
  6519. if((max_temp > 55.0) && (red_led == false)) {
  6520. digitalWrite(STAT_LED_RED, 1);
  6521. digitalWrite(STAT_LED_BLUE, 0);
  6522. red_led = true;
  6523. blue_led = false;
  6524. }
  6525. if((max_temp < 54.0) && (blue_led == false)) {
  6526. digitalWrite(STAT_LED_RED, 0);
  6527. digitalWrite(STAT_LED_BLUE, 1);
  6528. red_led = false;
  6529. blue_led = true;
  6530. }
  6531. }
  6532. }
  6533. #endif
  6534. #ifdef SAFETYTIMER
  6535. /**
  6536. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6537. *
  6538. * Full screen blocking notification message is shown after heater turning off.
  6539. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6540. * damage print.
  6541. *
  6542. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6543. */
  6544. static void handleSafetyTimer()
  6545. {
  6546. #if (EXTRUDERS > 1)
  6547. #error Implemented only for one extruder.
  6548. #endif //(EXTRUDERS > 1)
  6549. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6550. {
  6551. safetyTimer.stop();
  6552. }
  6553. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6554. {
  6555. safetyTimer.start();
  6556. }
  6557. else if (safetyTimer.expired(safetytimer_inactive_time))
  6558. {
  6559. setTargetBed(0);
  6560. setAllTargetHotends(0);
  6561. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6562. }
  6563. }
  6564. #endif //SAFETYTIMER
  6565. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6566. {
  6567. #ifdef FILAMENT_SENSOR
  6568. if (mmu_enabled == false)
  6569. {
  6570. if ((mcode_in_progress != 600) && (!bFilamentAutoloadFlag)) //M600 not in progress, preHeat @ autoLoad menu not active
  6571. {
  6572. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6573. {
  6574. if (fsensor_check_autoload())
  6575. {
  6576. fsensor_autoload_check_stop();
  6577. if (degHotend0() > EXTRUDE_MINTEMP)
  6578. {
  6579. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6580. tone(BEEPER, 1000);
  6581. delay_keep_alive(50);
  6582. noTone(BEEPER);
  6583. loading_flag = true;
  6584. enquecommand_front_P((PSTR("M701")));
  6585. }
  6586. else
  6587. {
  6588. bFilamentLoad=true; // i.e. filament loading mode
  6589. bFilamentFirstRun=false;
  6590. bFilamentAutoloadFlag=true;
  6591. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6592. {
  6593. bFilamentPreheatState=true;
  6594. mFilamentItem(target_temperature[0]);
  6595. }
  6596. else
  6597. {
  6598. menu_submenu(mFilamentMenu);
  6599. lcd_timeoutToStatus.start();
  6600. }
  6601. }
  6602. }
  6603. }
  6604. else
  6605. {
  6606. fsensor_autoload_check_stop();
  6607. fsensor_update();
  6608. }
  6609. }
  6610. }
  6611. #endif //FILAMENT_SENSOR
  6612. #ifdef SAFETYTIMER
  6613. handleSafetyTimer();
  6614. #endif //SAFETYTIMER
  6615. #if defined(KILL_PIN) && KILL_PIN > -1
  6616. static int killCount = 0; // make the inactivity button a bit less responsive
  6617. const int KILL_DELAY = 10000;
  6618. #endif
  6619. if(buflen < (BUFSIZE-1)){
  6620. get_command();
  6621. }
  6622. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6623. if(max_inactive_time)
  6624. kill(_n(""), 4);
  6625. if(stepper_inactive_time) {
  6626. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6627. {
  6628. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6629. disable_x();
  6630. disable_y();
  6631. disable_z();
  6632. disable_e0();
  6633. disable_e1();
  6634. disable_e2();
  6635. }
  6636. }
  6637. }
  6638. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6639. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6640. {
  6641. chdkActive = false;
  6642. WRITE(CHDK, LOW);
  6643. }
  6644. #endif
  6645. #if defined(KILL_PIN) && KILL_PIN > -1
  6646. // Check if the kill button was pressed and wait just in case it was an accidental
  6647. // key kill key press
  6648. // -------------------------------------------------------------------------------
  6649. if( 0 == READ(KILL_PIN) )
  6650. {
  6651. killCount++;
  6652. }
  6653. else if (killCount > 0)
  6654. {
  6655. killCount--;
  6656. }
  6657. // Exceeded threshold and we can confirm that it was not accidental
  6658. // KILL the machine
  6659. // ----------------------------------------------------------------
  6660. if ( killCount >= KILL_DELAY)
  6661. {
  6662. kill("", 5);
  6663. }
  6664. #endif
  6665. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6666. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6667. #endif
  6668. #ifdef EXTRUDER_RUNOUT_PREVENT
  6669. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6670. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6671. {
  6672. bool oldstatus=READ(E0_ENABLE_PIN);
  6673. enable_e0();
  6674. float oldepos=current_position[E_AXIS];
  6675. float oldedes=destination[E_AXIS];
  6676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6677. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6678. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6679. current_position[E_AXIS]=oldepos;
  6680. destination[E_AXIS]=oldedes;
  6681. plan_set_e_position(oldepos);
  6682. previous_millis_cmd=_millis();
  6683. st_synchronize();
  6684. WRITE(E0_ENABLE_PIN,oldstatus);
  6685. }
  6686. #endif
  6687. #ifdef TEMP_STAT_LEDS
  6688. handle_status_leds();
  6689. #endif
  6690. check_axes_activity();
  6691. mmu_loop();
  6692. }
  6693. void kill(const char *full_screen_message, unsigned char id)
  6694. {
  6695. printf_P(_N("KILL: %d\n"), id);
  6696. //return;
  6697. cli(); // Stop interrupts
  6698. disable_heater();
  6699. disable_x();
  6700. // SERIAL_ECHOLNPGM("kill - disable Y");
  6701. disable_y();
  6702. disable_z();
  6703. disable_e0();
  6704. disable_e1();
  6705. disable_e2();
  6706. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6707. pinMode(PS_ON_PIN,INPUT);
  6708. #endif
  6709. SERIAL_ERROR_START;
  6710. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6711. if (full_screen_message != NULL) {
  6712. SERIAL_ERRORLNRPGM(full_screen_message);
  6713. lcd_display_message_fullscreen_P(full_screen_message);
  6714. } else {
  6715. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6716. }
  6717. // FMC small patch to update the LCD before ending
  6718. sei(); // enable interrupts
  6719. for ( int i=5; i--; lcd_update(0))
  6720. {
  6721. _delay(200);
  6722. }
  6723. cli(); // disable interrupts
  6724. suicide();
  6725. while(1)
  6726. {
  6727. #ifdef WATCHDOG
  6728. wdt_reset();
  6729. #endif //WATCHDOG
  6730. /* Intentionally left empty */
  6731. } // Wait for reset
  6732. }
  6733. void Stop()
  6734. {
  6735. disable_heater();
  6736. if(Stopped == false) {
  6737. Stopped = true;
  6738. lcd_print_stop();
  6739. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6740. SERIAL_ERROR_START;
  6741. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6742. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6743. }
  6744. }
  6745. bool IsStopped() { return Stopped; };
  6746. #ifdef FAST_PWM_FAN
  6747. void setPwmFrequency(uint8_t pin, int val)
  6748. {
  6749. val &= 0x07;
  6750. switch(digitalPinToTimer(pin))
  6751. {
  6752. #if defined(TCCR0A)
  6753. case TIMER0A:
  6754. case TIMER0B:
  6755. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6756. // TCCR0B |= val;
  6757. break;
  6758. #endif
  6759. #if defined(TCCR1A)
  6760. case TIMER1A:
  6761. case TIMER1B:
  6762. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6763. // TCCR1B |= val;
  6764. break;
  6765. #endif
  6766. #if defined(TCCR2)
  6767. case TIMER2:
  6768. case TIMER2:
  6769. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6770. TCCR2 |= val;
  6771. break;
  6772. #endif
  6773. #if defined(TCCR2A)
  6774. case TIMER2A:
  6775. case TIMER2B:
  6776. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6777. TCCR2B |= val;
  6778. break;
  6779. #endif
  6780. #if defined(TCCR3A)
  6781. case TIMER3A:
  6782. case TIMER3B:
  6783. case TIMER3C:
  6784. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6785. TCCR3B |= val;
  6786. break;
  6787. #endif
  6788. #if defined(TCCR4A)
  6789. case TIMER4A:
  6790. case TIMER4B:
  6791. case TIMER4C:
  6792. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6793. TCCR4B |= val;
  6794. break;
  6795. #endif
  6796. #if defined(TCCR5A)
  6797. case TIMER5A:
  6798. case TIMER5B:
  6799. case TIMER5C:
  6800. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6801. TCCR5B |= val;
  6802. break;
  6803. #endif
  6804. }
  6805. }
  6806. #endif //FAST_PWM_FAN
  6807. //! @brief Get and validate extruder number
  6808. //!
  6809. //! If it is not specified, active_extruder is returned in parameter extruder.
  6810. //! @param [in] code M code number
  6811. //! @param [out] extruder
  6812. //! @return error
  6813. //! @retval true Invalid extruder specified in T code
  6814. //! @retval false Valid extruder specified in T code, or not specifiead
  6815. bool setTargetedHotend(int code, uint8_t &extruder)
  6816. {
  6817. extruder = active_extruder;
  6818. if(code_seen('T')) {
  6819. extruder = code_value();
  6820. if(extruder >= EXTRUDERS) {
  6821. SERIAL_ECHO_START;
  6822. switch(code){
  6823. case 104:
  6824. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6825. break;
  6826. case 105:
  6827. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6828. break;
  6829. case 109:
  6830. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6831. break;
  6832. case 218:
  6833. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6834. break;
  6835. case 221:
  6836. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6837. break;
  6838. }
  6839. SERIAL_PROTOCOLLN((int)extruder);
  6840. return true;
  6841. }
  6842. }
  6843. return false;
  6844. }
  6845. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6846. {
  6847. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6848. {
  6849. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6850. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6851. }
  6852. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6853. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6854. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6855. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6856. total_filament_used = 0;
  6857. }
  6858. float calculate_extruder_multiplier(float diameter) {
  6859. float out = 1.f;
  6860. if (cs.volumetric_enabled && diameter > 0.f) {
  6861. float area = M_PI * diameter * diameter * 0.25;
  6862. out = 1.f / area;
  6863. }
  6864. if (extrudemultiply != 100)
  6865. out *= float(extrudemultiply) * 0.01f;
  6866. return out;
  6867. }
  6868. void calculate_extruder_multipliers() {
  6869. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6870. #if EXTRUDERS > 1
  6871. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6872. #if EXTRUDERS > 2
  6873. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6874. #endif
  6875. #endif
  6876. }
  6877. void delay_keep_alive(unsigned int ms)
  6878. {
  6879. for (;;) {
  6880. manage_heater();
  6881. // Manage inactivity, but don't disable steppers on timeout.
  6882. manage_inactivity(true);
  6883. lcd_update(0);
  6884. if (ms == 0)
  6885. break;
  6886. else if (ms >= 50) {
  6887. _delay(50);
  6888. ms -= 50;
  6889. } else {
  6890. _delay(ms);
  6891. ms = 0;
  6892. }
  6893. }
  6894. }
  6895. static void wait_for_heater(long codenum, uint8_t extruder) {
  6896. #ifdef TEMP_RESIDENCY_TIME
  6897. long residencyStart;
  6898. residencyStart = -1;
  6899. /* continue to loop until we have reached the target temp
  6900. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6901. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6902. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6903. #else
  6904. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6905. #endif //TEMP_RESIDENCY_TIME
  6906. if ((_millis() - codenum) > 1000UL)
  6907. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6908. if (!farm_mode) {
  6909. SERIAL_PROTOCOLPGM("T:");
  6910. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6911. SERIAL_PROTOCOLPGM(" E:");
  6912. SERIAL_PROTOCOL((int)extruder);
  6913. #ifdef TEMP_RESIDENCY_TIME
  6914. SERIAL_PROTOCOLPGM(" W:");
  6915. if (residencyStart > -1)
  6916. {
  6917. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  6918. SERIAL_PROTOCOLLN(codenum);
  6919. }
  6920. else
  6921. {
  6922. SERIAL_PROTOCOLLN("?");
  6923. }
  6924. }
  6925. #else
  6926. SERIAL_PROTOCOLLN("");
  6927. #endif
  6928. codenum = _millis();
  6929. }
  6930. manage_heater();
  6931. manage_inactivity(true); //do not disable steppers
  6932. lcd_update(0);
  6933. #ifdef TEMP_RESIDENCY_TIME
  6934. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6935. or when current temp falls outside the hysteresis after target temp was reached */
  6936. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6937. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6938. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6939. {
  6940. residencyStart = _millis();
  6941. }
  6942. #endif //TEMP_RESIDENCY_TIME
  6943. }
  6944. }
  6945. void check_babystep()
  6946. {
  6947. int babystep_z;
  6948. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6949. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6950. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6951. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6952. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6953. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6954. lcd_update_enable(true);
  6955. }
  6956. }
  6957. #ifdef DIS
  6958. void d_setup()
  6959. {
  6960. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6961. pinMode(D_DATA, INPUT_PULLUP);
  6962. pinMode(D_REQUIRE, OUTPUT);
  6963. digitalWrite(D_REQUIRE, HIGH);
  6964. }
  6965. float d_ReadData()
  6966. {
  6967. int digit[13];
  6968. String mergeOutput;
  6969. float output;
  6970. digitalWrite(D_REQUIRE, HIGH);
  6971. for (int i = 0; i<13; i++)
  6972. {
  6973. for (int j = 0; j < 4; j++)
  6974. {
  6975. while (digitalRead(D_DATACLOCK) == LOW) {}
  6976. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6977. bitWrite(digit[i], j, digitalRead(D_DATA));
  6978. }
  6979. }
  6980. digitalWrite(D_REQUIRE, LOW);
  6981. mergeOutput = "";
  6982. output = 0;
  6983. for (int r = 5; r <= 10; r++) //Merge digits
  6984. {
  6985. mergeOutput += digit[r];
  6986. }
  6987. output = mergeOutput.toFloat();
  6988. if (digit[4] == 8) //Handle sign
  6989. {
  6990. output *= -1;
  6991. }
  6992. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6993. {
  6994. output /= 10;
  6995. }
  6996. return output;
  6997. }
  6998. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6999. int t1 = 0;
  7000. int t_delay = 0;
  7001. int digit[13];
  7002. int m;
  7003. char str[3];
  7004. //String mergeOutput;
  7005. char mergeOutput[15];
  7006. float output;
  7007. int mesh_point = 0; //index number of calibration point
  7008. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7009. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7010. float mesh_home_z_search = 4;
  7011. float row[x_points_num];
  7012. int ix = 0;
  7013. int iy = 0;
  7014. const char* filename_wldsd = "wldsd.txt";
  7015. char data_wldsd[70];
  7016. char numb_wldsd[10];
  7017. d_setup();
  7018. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7019. // We don't know where we are! HOME!
  7020. // Push the commands to the front of the message queue in the reverse order!
  7021. // There shall be always enough space reserved for these commands.
  7022. repeatcommand_front(); // repeat G80 with all its parameters
  7023. enquecommand_front_P((PSTR("G28 W0")));
  7024. enquecommand_front_P((PSTR("G1 Z5")));
  7025. return;
  7026. }
  7027. unsigned int custom_message_type_old = custom_message_type;
  7028. unsigned int custom_message_state_old = custom_message_state;
  7029. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7030. custom_message_state = (x_points_num * y_points_num) + 10;
  7031. lcd_update(1);
  7032. mbl.reset();
  7033. babystep_undo();
  7034. card.openFile(filename_wldsd, false);
  7035. current_position[Z_AXIS] = mesh_home_z_search;
  7036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7037. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7038. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7039. int l_feedmultiply = setup_for_endstop_move(false);
  7040. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7041. SERIAL_PROTOCOL(x_points_num);
  7042. SERIAL_PROTOCOLPGM(",");
  7043. SERIAL_PROTOCOL(y_points_num);
  7044. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7045. SERIAL_PROTOCOL(mesh_home_z_search);
  7046. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7047. SERIAL_PROTOCOL(x_dimension);
  7048. SERIAL_PROTOCOLPGM(",");
  7049. SERIAL_PROTOCOL(y_dimension);
  7050. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7051. while (mesh_point != x_points_num * y_points_num) {
  7052. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7053. iy = mesh_point / x_points_num;
  7054. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7055. float z0 = 0.f;
  7056. current_position[Z_AXIS] = mesh_home_z_search;
  7057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7058. st_synchronize();
  7059. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7060. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7062. st_synchronize();
  7063. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7064. break;
  7065. card.closefile();
  7066. }
  7067. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7068. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7069. //strcat(data_wldsd, numb_wldsd);
  7070. //MYSERIAL.println(data_wldsd);
  7071. //_delay(1000);
  7072. //_delay(3000);
  7073. //t1 = _millis();
  7074. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7075. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7076. memset(digit, 0, sizeof(digit));
  7077. //cli();
  7078. digitalWrite(D_REQUIRE, LOW);
  7079. for (int i = 0; i<13; i++)
  7080. {
  7081. //t1 = _millis();
  7082. for (int j = 0; j < 4; j++)
  7083. {
  7084. while (digitalRead(D_DATACLOCK) == LOW) {}
  7085. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7086. bitWrite(digit[i], j, digitalRead(D_DATA));
  7087. }
  7088. //t_delay = (_millis() - t1);
  7089. //SERIAL_PROTOCOLPGM(" ");
  7090. //SERIAL_PROTOCOL_F(t_delay, 5);
  7091. //SERIAL_PROTOCOLPGM(" ");
  7092. }
  7093. //sei();
  7094. digitalWrite(D_REQUIRE, HIGH);
  7095. mergeOutput[0] = '\0';
  7096. output = 0;
  7097. for (int r = 5; r <= 10; r++) //Merge digits
  7098. {
  7099. sprintf(str, "%d", digit[r]);
  7100. strcat(mergeOutput, str);
  7101. }
  7102. output = atof(mergeOutput);
  7103. if (digit[4] == 8) //Handle sign
  7104. {
  7105. output *= -1;
  7106. }
  7107. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7108. {
  7109. output *= 0.1;
  7110. }
  7111. //output = d_ReadData();
  7112. //row[ix] = current_position[Z_AXIS];
  7113. memset(data_wldsd, 0, sizeof(data_wldsd));
  7114. for (int i = 0; i <3; i++) {
  7115. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7116. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7117. strcat(data_wldsd, numb_wldsd);
  7118. strcat(data_wldsd, ";");
  7119. }
  7120. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7121. dtostrf(output, 8, 5, numb_wldsd);
  7122. strcat(data_wldsd, numb_wldsd);
  7123. //strcat(data_wldsd, ";");
  7124. card.write_command(data_wldsd);
  7125. //row[ix] = d_ReadData();
  7126. row[ix] = output; // current_position[Z_AXIS];
  7127. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7128. for (int i = 0; i < x_points_num; i++) {
  7129. SERIAL_PROTOCOLPGM(" ");
  7130. SERIAL_PROTOCOL_F(row[i], 5);
  7131. }
  7132. SERIAL_PROTOCOLPGM("\n");
  7133. }
  7134. custom_message_state--;
  7135. mesh_point++;
  7136. lcd_update(1);
  7137. }
  7138. card.closefile();
  7139. clean_up_after_endstop_move(l_feedmultiply);
  7140. }
  7141. #endif
  7142. void temp_compensation_start() {
  7143. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7144. custom_message_state = PINDA_HEAT_T + 1;
  7145. lcd_update(2);
  7146. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7147. current_position[E_AXIS] -= default_retraction;
  7148. }
  7149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7150. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7151. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7152. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7154. st_synchronize();
  7155. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7156. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7157. delay_keep_alive(1000);
  7158. custom_message_state = PINDA_HEAT_T - i;
  7159. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7160. else lcd_update(1);
  7161. }
  7162. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7163. custom_message_state = 0;
  7164. }
  7165. void temp_compensation_apply() {
  7166. int i_add;
  7167. int z_shift = 0;
  7168. float z_shift_mm;
  7169. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7170. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7171. i_add = (target_temperature_bed - 60) / 10;
  7172. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7173. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7174. }else {
  7175. //interpolation
  7176. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7177. }
  7178. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7180. st_synchronize();
  7181. plan_set_z_position(current_position[Z_AXIS]);
  7182. }
  7183. else {
  7184. //we have no temp compensation data
  7185. }
  7186. }
  7187. float temp_comp_interpolation(float inp_temperature) {
  7188. //cubic spline interpolation
  7189. int n, i, j;
  7190. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7191. int shift[10];
  7192. int temp_C[10];
  7193. n = 6; //number of measured points
  7194. shift[0] = 0;
  7195. for (i = 0; i < n; i++) {
  7196. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7197. temp_C[i] = 50 + i * 10; //temperature in C
  7198. #ifdef PINDA_THERMISTOR
  7199. temp_C[i] = 35 + i * 5; //temperature in C
  7200. #else
  7201. temp_C[i] = 50 + i * 10; //temperature in C
  7202. #endif
  7203. x[i] = (float)temp_C[i];
  7204. f[i] = (float)shift[i];
  7205. }
  7206. if (inp_temperature < x[0]) return 0;
  7207. for (i = n - 1; i>0; i--) {
  7208. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7209. h[i - 1] = x[i] - x[i - 1];
  7210. }
  7211. //*********** formation of h, s , f matrix **************
  7212. for (i = 1; i<n - 1; i++) {
  7213. m[i][i] = 2 * (h[i - 1] + h[i]);
  7214. if (i != 1) {
  7215. m[i][i - 1] = h[i - 1];
  7216. m[i - 1][i] = h[i - 1];
  7217. }
  7218. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7219. }
  7220. //*********** forward elimination **************
  7221. for (i = 1; i<n - 2; i++) {
  7222. temp = (m[i + 1][i] / m[i][i]);
  7223. for (j = 1; j <= n - 1; j++)
  7224. m[i + 1][j] -= temp*m[i][j];
  7225. }
  7226. //*********** backward substitution *********
  7227. for (i = n - 2; i>0; i--) {
  7228. sum = 0;
  7229. for (j = i; j <= n - 2; j++)
  7230. sum += m[i][j] * s[j];
  7231. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7232. }
  7233. for (i = 0; i<n - 1; i++)
  7234. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7235. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7236. b = s[i] / 2;
  7237. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7238. d = f[i];
  7239. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7240. }
  7241. return sum;
  7242. }
  7243. #ifdef PINDA_THERMISTOR
  7244. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7245. {
  7246. if (!temp_cal_active) return 0;
  7247. if (!calibration_status_pinda()) return 0;
  7248. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7249. }
  7250. #endif //PINDA_THERMISTOR
  7251. void long_pause() //long pause print
  7252. {
  7253. st_synchronize();
  7254. start_pause_print = _millis();
  7255. //retract
  7256. current_position[E_AXIS] -= default_retraction;
  7257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7258. //lift z
  7259. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7260. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7262. //Move XY to side
  7263. current_position[X_AXIS] = X_PAUSE_POS;
  7264. current_position[Y_AXIS] = Y_PAUSE_POS;
  7265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7266. // Turn off the print fan
  7267. fanSpeed = 0;
  7268. st_synchronize();
  7269. }
  7270. void serialecho_temperatures() {
  7271. float tt = degHotend(active_extruder);
  7272. SERIAL_PROTOCOLPGM("T:");
  7273. SERIAL_PROTOCOL(tt);
  7274. SERIAL_PROTOCOLPGM(" E:");
  7275. SERIAL_PROTOCOL((int)active_extruder);
  7276. SERIAL_PROTOCOLPGM(" B:");
  7277. SERIAL_PROTOCOL_F(degBed(), 1);
  7278. SERIAL_PROTOCOLLN("");
  7279. }
  7280. extern uint32_t sdpos_atomic;
  7281. #ifdef UVLO_SUPPORT
  7282. void uvlo_()
  7283. {
  7284. unsigned long time_start = _millis();
  7285. bool sd_print = card.sdprinting;
  7286. // Conserve power as soon as possible.
  7287. disable_x();
  7288. disable_y();
  7289. #ifdef TMC2130
  7290. tmc2130_set_current_h(Z_AXIS, 20);
  7291. tmc2130_set_current_r(Z_AXIS, 20);
  7292. tmc2130_set_current_h(E_AXIS, 20);
  7293. tmc2130_set_current_r(E_AXIS, 20);
  7294. #endif //TMC2130
  7295. // Indicate that the interrupt has been triggered.
  7296. // SERIAL_ECHOLNPGM("UVLO");
  7297. // Read out the current Z motor microstep counter. This will be later used
  7298. // for reaching the zero full step before powering off.
  7299. uint16_t z_microsteps = 0;
  7300. #ifdef TMC2130
  7301. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7302. #endif //TMC2130
  7303. // Calculate the file position, from which to resume this print.
  7304. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7305. {
  7306. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7307. sd_position -= sdlen_planner;
  7308. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7309. sd_position -= sdlen_cmdqueue;
  7310. if (sd_position < 0) sd_position = 0;
  7311. }
  7312. // Backup the feedrate in mm/min.
  7313. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7314. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7315. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7316. // are in action.
  7317. planner_abort_hard();
  7318. // Store the current extruder position.
  7319. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7320. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7321. // Clean the input command queue.
  7322. cmdqueue_reset();
  7323. card.sdprinting = false;
  7324. // card.closefile();
  7325. // Enable stepper driver interrupt to move Z axis.
  7326. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7327. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7328. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7329. sei();
  7330. plan_buffer_line(
  7331. current_position[X_AXIS],
  7332. current_position[Y_AXIS],
  7333. current_position[Z_AXIS],
  7334. current_position[E_AXIS] - default_retraction,
  7335. 95, active_extruder);
  7336. st_synchronize();
  7337. disable_e0();
  7338. plan_buffer_line(
  7339. current_position[X_AXIS],
  7340. current_position[Y_AXIS],
  7341. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7342. current_position[E_AXIS] - default_retraction,
  7343. 40, active_extruder);
  7344. st_synchronize();
  7345. disable_e0();
  7346. plan_buffer_line(
  7347. current_position[X_AXIS],
  7348. current_position[Y_AXIS],
  7349. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7350. current_position[E_AXIS] - default_retraction,
  7351. 40, active_extruder);
  7352. st_synchronize();
  7353. disable_e0();
  7354. disable_z();
  7355. // Move Z up to the next 0th full step.
  7356. // Write the file position.
  7357. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7358. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7359. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7360. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7361. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7362. // Scale the z value to 1u resolution.
  7363. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7364. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7365. }
  7366. // Read out the current Z motor microstep counter. This will be later used
  7367. // for reaching the zero full step before powering off.
  7368. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7369. // Store the current position.
  7370. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7371. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7372. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7373. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7374. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7375. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7376. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7377. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7378. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7379. #if EXTRUDERS > 1
  7380. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7381. #if EXTRUDERS > 2
  7382. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7383. #endif
  7384. #endif
  7385. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7386. // Finaly store the "power outage" flag.
  7387. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7388. st_synchronize();
  7389. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7390. disable_z();
  7391. // Increment power failure counter
  7392. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7393. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7394. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7395. #if 0
  7396. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7397. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7399. st_synchronize();
  7400. #endif
  7401. wdt_enable(WDTO_500MS);
  7402. WRITE(BEEPER,HIGH);
  7403. while(1)
  7404. ;
  7405. }
  7406. void uvlo_tiny()
  7407. {
  7408. uint16_t z_microsteps=0;
  7409. // Conserve power as soon as possible.
  7410. disable_x();
  7411. disable_y();
  7412. disable_e0();
  7413. #ifdef TMC2130
  7414. tmc2130_set_current_h(Z_AXIS, 20);
  7415. tmc2130_set_current_r(Z_AXIS, 20);
  7416. #endif //TMC2130
  7417. // Read out the current Z motor microstep counter
  7418. #ifdef TMC2130
  7419. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7420. #endif //TMC2130
  7421. planner_abort_hard();
  7422. sei();
  7423. plan_buffer_line(
  7424. current_position[X_AXIS],
  7425. current_position[Y_AXIS],
  7426. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7427. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7428. current_position[E_AXIS],
  7429. 40, active_extruder);
  7430. st_synchronize();
  7431. disable_z();
  7432. // Finaly store the "power outage" flag.
  7433. //if(sd_print)
  7434. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7435. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7436. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7437. // Increment power failure counter
  7438. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7439. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7440. wdt_enable(WDTO_500MS);
  7441. WRITE(BEEPER,HIGH);
  7442. while(1)
  7443. ;
  7444. }
  7445. #endif //UVLO_SUPPORT
  7446. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7447. void setup_fan_interrupt() {
  7448. //INT7
  7449. DDRE &= ~(1 << 7); //input pin
  7450. PORTE &= ~(1 << 7); //no internal pull-up
  7451. //start with sensing rising edge
  7452. EICRB &= ~(1 << 6);
  7453. EICRB |= (1 << 7);
  7454. //enable INT7 interrupt
  7455. EIMSK |= (1 << 7);
  7456. }
  7457. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7458. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7459. ISR(INT7_vect) {
  7460. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7461. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7462. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7463. t_fan_rising_edge = millis_nc();
  7464. }
  7465. else { //interrupt was triggered by falling edge
  7466. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7467. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7468. }
  7469. }
  7470. EICRB ^= (1 << 6); //change edge
  7471. }
  7472. #endif
  7473. #ifdef UVLO_SUPPORT
  7474. void setup_uvlo_interrupt() {
  7475. DDRE &= ~(1 << 4); //input pin
  7476. PORTE &= ~(1 << 4); //no internal pull-up
  7477. //sensing falling edge
  7478. EICRB |= (1 << 0);
  7479. EICRB &= ~(1 << 1);
  7480. //enable INT4 interrupt
  7481. EIMSK |= (1 << 4);
  7482. }
  7483. ISR(INT4_vect) {
  7484. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7485. SERIAL_ECHOLNPGM("INT4");
  7486. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7487. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7488. }
  7489. void recover_print(uint8_t automatic) {
  7490. char cmd[30];
  7491. lcd_update_enable(true);
  7492. lcd_update(2);
  7493. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7494. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7495. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7496. // Lift the print head, so one may remove the excess priming material.
  7497. if(!bTiny&&(current_position[Z_AXIS]<25))
  7498. enquecommand_P(PSTR("G1 Z25 F800"));
  7499. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7500. enquecommand_P(PSTR("G28 X Y"));
  7501. // Set the target bed and nozzle temperatures and wait.
  7502. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7503. enquecommand(cmd);
  7504. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7505. enquecommand(cmd);
  7506. enquecommand_P(PSTR("M83")); //E axis relative mode
  7507. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7508. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7509. if(automatic == 0){
  7510. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7511. }
  7512. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7513. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7514. // Restart the print.
  7515. restore_print_from_eeprom();
  7516. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7517. }
  7518. void recover_machine_state_after_power_panic(bool bTiny)
  7519. {
  7520. char cmd[30];
  7521. // 1) Recover the logical cordinates at the time of the power panic.
  7522. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7523. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7524. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7525. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7526. // The current position after power panic is moved to the next closest 0th full step.
  7527. if(bTiny)
  7528. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7529. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7530. else
  7531. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7532. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7533. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7534. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7535. sprintf_P(cmd, PSTR("G92 E"));
  7536. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7537. enquecommand(cmd);
  7538. }
  7539. memcpy(destination, current_position, sizeof(destination));
  7540. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7541. print_world_coordinates();
  7542. // 2) Initialize the logical to physical coordinate system transformation.
  7543. world2machine_initialize();
  7544. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7545. mbl.active = false;
  7546. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7547. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7548. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7549. // Scale the z value to 10u resolution.
  7550. int16_t v;
  7551. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7552. if (v != 0)
  7553. mbl.active = true;
  7554. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7555. }
  7556. if (mbl.active)
  7557. mbl.upsample_3x3();
  7558. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7559. // print_mesh_bed_leveling_table();
  7560. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7561. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7562. babystep_load();
  7563. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7565. // 6) Power up the motors, mark their positions as known.
  7566. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7567. axis_known_position[X_AXIS] = true; enable_x();
  7568. axis_known_position[Y_AXIS] = true; enable_y();
  7569. axis_known_position[Z_AXIS] = true; enable_z();
  7570. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7571. print_physical_coordinates();
  7572. // 7) Recover the target temperatures.
  7573. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7574. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7575. // 8) Recover extruder multipilers
  7576. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7577. #if EXTRUDERS > 1
  7578. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7579. #if EXTRUDERS > 2
  7580. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7581. #endif
  7582. #endif
  7583. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7584. }
  7585. void restore_print_from_eeprom() {
  7586. int feedrate_rec;
  7587. uint8_t fan_speed_rec;
  7588. char cmd[30];
  7589. char filename[13];
  7590. uint8_t depth = 0;
  7591. char dir_name[9];
  7592. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7593. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7594. SERIAL_ECHOPGM("Feedrate:");
  7595. MYSERIAL.println(feedrate_rec);
  7596. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7597. MYSERIAL.println(int(depth));
  7598. for (int i = 0; i < depth; i++) {
  7599. for (int j = 0; j < 8; j++) {
  7600. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7601. }
  7602. dir_name[8] = '\0';
  7603. MYSERIAL.println(dir_name);
  7604. strcpy(dir_names[i], dir_name);
  7605. card.chdir(dir_name);
  7606. }
  7607. for (int i = 0; i < 8; i++) {
  7608. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7609. }
  7610. filename[8] = '\0';
  7611. MYSERIAL.print(filename);
  7612. strcat_P(filename, PSTR(".gco"));
  7613. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7614. enquecommand(cmd);
  7615. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7616. SERIAL_ECHOPGM("Position read from eeprom:");
  7617. MYSERIAL.println(position);
  7618. // E axis relative mode.
  7619. enquecommand_P(PSTR("M83"));
  7620. // Move to the XY print position in logical coordinates, where the print has been killed.
  7621. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7622. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7623. strcat_P(cmd, PSTR(" F2000"));
  7624. enquecommand(cmd);
  7625. // Move the Z axis down to the print, in logical coordinates.
  7626. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7627. enquecommand(cmd);
  7628. // Unretract.
  7629. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7630. // Set the feedrate saved at the power panic.
  7631. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7632. enquecommand(cmd);
  7633. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7634. {
  7635. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7636. }
  7637. // Set the fan speed saved at the power panic.
  7638. strcpy_P(cmd, PSTR("M106 S"));
  7639. strcat(cmd, itostr3(int(fan_speed_rec)));
  7640. enquecommand(cmd);
  7641. // Set a position in the file.
  7642. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7643. enquecommand(cmd);
  7644. enquecommand_P(PSTR("G4 S0"));
  7645. enquecommand_P(PSTR("PRUSA uvlo"));
  7646. }
  7647. #endif //UVLO_SUPPORT
  7648. //! @brief Immediately stop print moves
  7649. //!
  7650. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7651. //! If printing from sd card, position in file is saved.
  7652. //! If printing from USB, line number is saved.
  7653. //!
  7654. //! @param z_move
  7655. //! @param e_move
  7656. void stop_and_save_print_to_ram(float z_move, float e_move)
  7657. {
  7658. if (saved_printing) return;
  7659. #if 0
  7660. unsigned char nplanner_blocks;
  7661. #endif
  7662. unsigned char nlines;
  7663. uint16_t sdlen_planner;
  7664. uint16_t sdlen_cmdqueue;
  7665. cli();
  7666. if (card.sdprinting) {
  7667. #if 0
  7668. nplanner_blocks = number_of_blocks();
  7669. #endif
  7670. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7671. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7672. saved_sdpos -= sdlen_planner;
  7673. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7674. saved_sdpos -= sdlen_cmdqueue;
  7675. saved_printing_type = PRINTING_TYPE_SD;
  7676. }
  7677. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7678. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7679. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7680. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7681. saved_sdpos -= nlines;
  7682. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7683. saved_printing_type = PRINTING_TYPE_USB;
  7684. }
  7685. else {
  7686. //not sd printing nor usb printing
  7687. }
  7688. #if 0
  7689. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7690. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7691. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7692. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7693. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7694. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7695. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7696. {
  7697. card.setIndex(saved_sdpos);
  7698. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7699. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7700. MYSERIAL.print(char(card.get()));
  7701. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7702. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7703. MYSERIAL.print(char(card.get()));
  7704. SERIAL_ECHOLNPGM("End of command buffer");
  7705. }
  7706. {
  7707. // Print the content of the planner buffer, line by line:
  7708. card.setIndex(saved_sdpos);
  7709. int8_t iline = 0;
  7710. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7711. SERIAL_ECHOPGM("Planner line (from file): ");
  7712. MYSERIAL.print(int(iline), DEC);
  7713. SERIAL_ECHOPGM(", length: ");
  7714. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7715. SERIAL_ECHOPGM(", steps: (");
  7716. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7717. SERIAL_ECHOPGM(",");
  7718. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7719. SERIAL_ECHOPGM(",");
  7720. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7721. SERIAL_ECHOPGM(",");
  7722. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7723. SERIAL_ECHOPGM("), events: ");
  7724. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7725. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7726. MYSERIAL.print(char(card.get()));
  7727. }
  7728. }
  7729. {
  7730. // Print the content of the command buffer, line by line:
  7731. int8_t iline = 0;
  7732. union {
  7733. struct {
  7734. char lo;
  7735. char hi;
  7736. } lohi;
  7737. uint16_t value;
  7738. } sdlen_single;
  7739. int _bufindr = bufindr;
  7740. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7741. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7742. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7743. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7744. }
  7745. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7746. MYSERIAL.print(int(iline), DEC);
  7747. SERIAL_ECHOPGM(", type: ");
  7748. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7749. SERIAL_ECHOPGM(", len: ");
  7750. MYSERIAL.println(sdlen_single.value, DEC);
  7751. // Print the content of the buffer line.
  7752. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7753. SERIAL_ECHOPGM("Buffer line (from file): ");
  7754. MYSERIAL.println(int(iline), DEC);
  7755. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7756. MYSERIAL.print(char(card.get()));
  7757. if (-- _buflen == 0)
  7758. break;
  7759. // First skip the current command ID and iterate up to the end of the string.
  7760. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7761. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7762. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7763. // If the end of the buffer was empty,
  7764. if (_bufindr == sizeof(cmdbuffer)) {
  7765. // skip to the start and find the nonzero command.
  7766. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7767. }
  7768. }
  7769. }
  7770. #endif
  7771. #if 0
  7772. saved_feedrate2 = feedrate; //save feedrate
  7773. #else
  7774. // Try to deduce the feedrate from the first block of the planner.
  7775. // Speed is in mm/min.
  7776. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7777. #endif
  7778. planner_abort_hard(); //abort printing
  7779. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7780. saved_active_extruder = active_extruder; //save active_extruder
  7781. saved_extruder_temperature = degTargetHotend(active_extruder);
  7782. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7783. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7784. saved_fanSpeed = fanSpeed;
  7785. cmdqueue_reset(); //empty cmdqueue
  7786. card.sdprinting = false;
  7787. // card.closefile();
  7788. saved_printing = true;
  7789. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7790. st_reset_timer();
  7791. sei();
  7792. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7793. #if 1
  7794. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7795. char buf[48];
  7796. // First unretract (relative extrusion)
  7797. if(!saved_extruder_relative_mode){
  7798. strcpy_P(buf, PSTR("M83"));
  7799. enquecommand(buf, false);
  7800. }
  7801. //retract 45mm/s
  7802. strcpy_P(buf, PSTR("G1 E"));
  7803. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7804. strcat_P(buf, PSTR(" F"));
  7805. dtostrf(2700, 8, 3, buf + strlen(buf));
  7806. enquecommand(buf, false);
  7807. // Then lift Z axis
  7808. strcpy_P(buf, PSTR("G1 Z"));
  7809. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7810. strcat_P(buf, PSTR(" F"));
  7811. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7812. // At this point the command queue is empty.
  7813. enquecommand(buf, false);
  7814. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7815. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7816. repeatcommand_front();
  7817. #else
  7818. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7819. st_synchronize(); //wait moving
  7820. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7821. memcpy(destination, current_position, sizeof(destination));
  7822. #endif
  7823. }
  7824. }
  7825. //! @brief Restore print from ram
  7826. //!
  7827. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7828. //! waits for extruder temperature restore, then restores position and continues
  7829. //! print moves.
  7830. //! Internaly lcd_update() is called by wait_for_heater().
  7831. //!
  7832. //! @param e_move
  7833. void restore_print_from_ram_and_continue(float e_move)
  7834. {
  7835. if (!saved_printing) return;
  7836. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7837. // current_position[axis] = st_get_position_mm(axis);
  7838. active_extruder = saved_active_extruder; //restore active_extruder
  7839. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7840. heating_status = 1;
  7841. wait_for_heater(_millis(),saved_active_extruder);
  7842. heating_status = 2;
  7843. feedrate = saved_feedrate2; //restore feedrate
  7844. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7845. fanSpeed = saved_fanSpeed;
  7846. float e = saved_pos[E_AXIS] - e_move;
  7847. plan_set_e_position(e);
  7848. //first move print head in XY to the saved position:
  7849. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7850. st_synchronize();
  7851. //then move Z
  7852. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7853. st_synchronize();
  7854. //and finaly unretract (35mm/s)
  7855. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7856. st_synchronize();
  7857. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7858. memcpy(destination, current_position, sizeof(destination));
  7859. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7860. card.setIndex(saved_sdpos);
  7861. sdpos_atomic = saved_sdpos;
  7862. card.sdprinting = true;
  7863. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7864. }
  7865. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7866. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7867. serial_count = 0;
  7868. FlushSerialRequestResend();
  7869. }
  7870. else {
  7871. //not sd printing nor usb printing
  7872. }
  7873. lcd_setstatuspgm(_T(WELCOME_MSG));
  7874. saved_printing = false;
  7875. }
  7876. void print_world_coordinates()
  7877. {
  7878. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7879. }
  7880. void print_physical_coordinates()
  7881. {
  7882. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7883. }
  7884. void print_mesh_bed_leveling_table()
  7885. {
  7886. SERIAL_ECHOPGM("mesh bed leveling: ");
  7887. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7888. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7889. MYSERIAL.print(mbl.z_values[y][x], 3);
  7890. SERIAL_ECHOPGM(" ");
  7891. }
  7892. SERIAL_ECHOLNPGM("");
  7893. }
  7894. uint16_t print_time_remaining() {
  7895. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7896. #ifdef TMC2130
  7897. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7898. else print_t = print_time_remaining_silent;
  7899. #else
  7900. print_t = print_time_remaining_normal;
  7901. #endif //TMC2130
  7902. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7903. return print_t;
  7904. }
  7905. uint8_t calc_percent_done()
  7906. {
  7907. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7908. uint8_t percent_done = 0;
  7909. #ifdef TMC2130
  7910. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7911. percent_done = print_percent_done_normal;
  7912. }
  7913. else if (print_percent_done_silent <= 100) {
  7914. percent_done = print_percent_done_silent;
  7915. }
  7916. #else
  7917. if (print_percent_done_normal <= 100) {
  7918. percent_done = print_percent_done_normal;
  7919. }
  7920. #endif //TMC2130
  7921. else {
  7922. percent_done = card.percentDone();
  7923. }
  7924. return percent_done;
  7925. }
  7926. static void print_time_remaining_init()
  7927. {
  7928. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7929. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7930. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7931. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7932. }
  7933. void load_filament_final_feed()
  7934. {
  7935. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7937. }
  7938. void M600_check_state()
  7939. {
  7940. //Wait for user to check the state
  7941. lcd_change_fil_state = 0;
  7942. while (lcd_change_fil_state != 1){
  7943. lcd_change_fil_state = 0;
  7944. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7945. lcd_alright();
  7946. KEEPALIVE_STATE(IN_HANDLER);
  7947. switch(lcd_change_fil_state){
  7948. // Filament failed to load so load it again
  7949. case 2:
  7950. if (mmu_enabled)
  7951. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7952. else
  7953. M600_load_filament_movements();
  7954. break;
  7955. // Filament loaded properly but color is not clear
  7956. case 3:
  7957. st_synchronize();
  7958. load_filament_final_feed();
  7959. lcd_loading_color();
  7960. st_synchronize();
  7961. break;
  7962. // Everything good
  7963. default:
  7964. lcd_change_success();
  7965. break;
  7966. }
  7967. }
  7968. }
  7969. //! @brief Wait for user action
  7970. //!
  7971. //! Beep, manage nozzle heater and wait for user to start unload filament
  7972. //! If times out, active extruder temperature is set to 0.
  7973. //!
  7974. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7975. void M600_wait_for_user(float HotendTempBckp) {
  7976. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7977. int counterBeep = 0;
  7978. unsigned long waiting_start_time = _millis();
  7979. uint8_t wait_for_user_state = 0;
  7980. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7981. bool bFirst=true;
  7982. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7983. manage_heater();
  7984. manage_inactivity(true);
  7985. #if BEEPER > 0
  7986. if (counterBeep == 500) {
  7987. counterBeep = 0;
  7988. }
  7989. SET_OUTPUT(BEEPER);
  7990. if (counterBeep == 0) {
  7991. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7992. {
  7993. bFirst=false;
  7994. WRITE(BEEPER, HIGH);
  7995. }
  7996. }
  7997. if (counterBeep == 20) {
  7998. WRITE(BEEPER, LOW);
  7999. }
  8000. counterBeep++;
  8001. #endif //BEEPER > 0
  8002. switch (wait_for_user_state) {
  8003. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8004. delay_keep_alive(4);
  8005. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8006. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8007. wait_for_user_state = 1;
  8008. setAllTargetHotends(0);
  8009. st_synchronize();
  8010. disable_e0();
  8011. disable_e1();
  8012. disable_e2();
  8013. }
  8014. break;
  8015. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8016. delay_keep_alive(4);
  8017. if (lcd_clicked()) {
  8018. setTargetHotend(HotendTempBckp, active_extruder);
  8019. lcd_wait_for_heater();
  8020. wait_for_user_state = 2;
  8021. }
  8022. break;
  8023. case 2: //waiting for nozzle to reach target temperature
  8024. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8025. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8026. waiting_start_time = _millis();
  8027. wait_for_user_state = 0;
  8028. }
  8029. else {
  8030. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8031. lcd_set_cursor(1, 4);
  8032. lcd_print(ftostr3(degHotend(active_extruder)));
  8033. }
  8034. break;
  8035. }
  8036. }
  8037. WRITE(BEEPER, LOW);
  8038. }
  8039. void M600_load_filament_movements()
  8040. {
  8041. #ifdef SNMM
  8042. display_loading();
  8043. do
  8044. {
  8045. current_position[E_AXIS] += 0.002;
  8046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8047. delay_keep_alive(2);
  8048. }
  8049. while (!lcd_clicked());
  8050. st_synchronize();
  8051. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8053. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8055. current_position[E_AXIS] += 40;
  8056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8057. current_position[E_AXIS] += 10;
  8058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8059. #else
  8060. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8062. #endif
  8063. load_filament_final_feed();
  8064. lcd_loading_filament();
  8065. st_synchronize();
  8066. }
  8067. void M600_load_filament() {
  8068. //load filament for single material and SNMM
  8069. lcd_wait_interact();
  8070. //load_filament_time = _millis();
  8071. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8072. #ifdef FILAMENT_SENSOR
  8073. fsensor_autoload_check_start();
  8074. #endif //FILAMENT_SENSOR
  8075. while(!lcd_clicked())
  8076. {
  8077. manage_heater();
  8078. manage_inactivity(true);
  8079. #ifdef FILAMENT_SENSOR
  8080. if (fsensor_check_autoload())
  8081. {
  8082. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8083. tone(BEEPER, 1000);
  8084. delay_keep_alive(50);
  8085. noTone(BEEPER);
  8086. break;
  8087. }
  8088. #endif //FILAMENT_SENSOR
  8089. }
  8090. #ifdef FILAMENT_SENSOR
  8091. fsensor_autoload_check_stop();
  8092. #endif //FILAMENT_SENSOR
  8093. KEEPALIVE_STATE(IN_HANDLER);
  8094. #ifdef FSENSOR_QUALITY
  8095. fsensor_oq_meassure_start(70);
  8096. #endif //FSENSOR_QUALITY
  8097. M600_load_filament_movements();
  8098. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8099. tone(BEEPER, 500);
  8100. delay_keep_alive(50);
  8101. noTone(BEEPER);
  8102. #ifdef FSENSOR_QUALITY
  8103. fsensor_oq_meassure_stop();
  8104. if (!fsensor_oq_result())
  8105. {
  8106. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8107. lcd_update_enable(true);
  8108. lcd_update(2);
  8109. if (disable)
  8110. fsensor_disable();
  8111. }
  8112. #endif //FSENSOR_QUALITY
  8113. lcd_update_enable(false);
  8114. }
  8115. #define FIL_LOAD_LENGTH 60