planner.cpp 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. float max_feedrate[NUM_AXIS]; // set the max speeds
  54. float axis_steps_per_unit[NUM_AXIS];
  55. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  56. float minimumfeedrate;
  57. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  58. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  59. // Jerk is a maximum immediate velocity change.
  60. float max_jerk[NUM_AXIS];
  61. float mintravelfeedrate;
  62. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  63. #ifdef ENABLE_AUTO_BED_LEVELING
  64. // this holds the required transform to compensate for bed level
  65. matrix_3x3 plan_bed_level_matrix = {
  66. 1.0, 0.0, 0.0,
  67. 0.0, 1.0, 0.0,
  68. 0.0, 0.0, 1.0,
  69. };
  70. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  71. // The current position of the tool in absolute steps
  72. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  73. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  74. static float previous_nominal_speed; // Nominal speed of previous path line segment
  75. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  76. #ifdef AUTOTEMP
  77. float autotemp_max=250;
  78. float autotemp_min=210;
  79. float autotemp_factor=0.1;
  80. bool autotemp_enabled=false;
  81. #endif
  82. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  83. //===========================================================================
  84. //=================semi-private variables, used in inline functions =====
  85. //===========================================================================
  86. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  87. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  88. volatile unsigned char block_buffer_tail; // Index of the block to process now
  89. #ifdef PLANNER_DIAGNOSTICS
  90. // Diagnostic function: Minimum number of planned moves since the last
  91. static uint8_t g_cntr_planner_queue_min = 0;
  92. #endif /* PLANNER_DIAGNOSTICS */
  93. //===========================================================================
  94. //=============================private variables ============================
  95. //===========================================================================
  96. #ifdef PREVENT_DANGEROUS_EXTRUDE
  97. float extrude_min_temp=EXTRUDE_MINTEMP;
  98. #endif
  99. #ifdef LIN_ADVANCE
  100. float extruder_advance_k = LIN_ADVANCE_K,
  101. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  102. position_float[NUM_AXIS] = { 0 };
  103. #endif
  104. // Returns the index of the next block in the ring buffer
  105. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  106. static inline int8_t next_block_index(int8_t block_index) {
  107. if (++ block_index == BLOCK_BUFFER_SIZE)
  108. block_index = 0;
  109. return block_index;
  110. }
  111. // Returns the index of the previous block in the ring buffer
  112. static inline int8_t prev_block_index(int8_t block_index) {
  113. if (block_index == 0)
  114. block_index = BLOCK_BUFFER_SIZE;
  115. -- block_index;
  116. return block_index;
  117. }
  118. //===========================================================================
  119. //=============================functions ============================
  120. //===========================================================================
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  124. {
  125. if (acceleration!=0) {
  126. return((target_rate*target_rate-initial_rate*initial_rate)/
  127. (2.0*acceleration));
  128. }
  129. else {
  130. return 0.0; // acceleration was 0, set acceleration distance to 0
  131. }
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  138. {
  139. if (acceleration!=0) {
  140. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  141. (4.0*acceleration) );
  142. }
  143. else {
  144. return 0.0; // acceleration was 0, set intersection distance to 0
  145. }
  146. }
  147. // Minimum stepper rate 120Hz.
  148. #define MINIMAL_STEP_RATE 120
  149. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  150. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  151. {
  152. // These two lines are the only floating point calculations performed in this routine.
  153. // initial_rate, final_rate in Hz.
  154. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  155. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  156. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  157. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  158. // Limit minimal step rate (Otherwise the timer will overflow.)
  159. if (initial_rate < MINIMAL_STEP_RATE)
  160. initial_rate = MINIMAL_STEP_RATE;
  161. if (initial_rate > block->nominal_rate)
  162. initial_rate = block->nominal_rate;
  163. if (final_rate < MINIMAL_STEP_RATE)
  164. final_rate = MINIMAL_STEP_RATE;
  165. if (final_rate > block->nominal_rate)
  166. final_rate = block->nominal_rate;
  167. uint32_t acceleration = block->acceleration_st;
  168. if (acceleration == 0)
  169. // Don't allow zero acceleration.
  170. acceleration = 1;
  171. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  172. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  173. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  174. //FIXME assert that this result fits a 64bit unsigned int.
  175. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  176. uint32_t final_rate_sqr = final_rate*final_rate;
  177. uint32_t acceleration_x2 = acceleration << 1;
  178. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  179. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  180. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  181. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  182. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  183. // Size of Plateau of Nominal Rate.
  184. uint32_t plateau_steps = 0;
  185. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  186. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  187. // in order to reach the final_rate exactly at the end of this block.
  188. if (accel_decel_steps < block->step_event_count.wide) {
  189. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  190. } else {
  191. uint32_t acceleration_x4 = acceleration << 2;
  192. // Avoid negative numbers
  193. if (final_rate_sqr >= initial_rate_sqr) {
  194. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  195. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  196. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  197. #if 0
  198. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  199. #else
  200. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  201. if (block->step_event_count.wide & 1)
  202. accelerate_steps += acceleration_x2;
  203. accelerate_steps /= acceleration_x4;
  204. accelerate_steps += (block->step_event_count.wide >> 1);
  205. #endif
  206. if (accelerate_steps > block->step_event_count.wide)
  207. accelerate_steps = block->step_event_count.wide;
  208. } else {
  209. #if 0
  210. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  211. #else
  212. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  213. if (block->step_event_count.wide & 1)
  214. decelerate_steps += acceleration_x2;
  215. decelerate_steps /= acceleration_x4;
  216. decelerate_steps += (block->step_event_count.wide >> 1);
  217. #endif
  218. if (decelerate_steps > block->step_event_count.wide)
  219. decelerate_steps = block->step_event_count.wide;
  220. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  221. }
  222. }
  223. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  224. // This block locks the interrupts globally for 4.38 us,
  225. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  226. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  227. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  228. if (! block->busy) { // Don't update variables if block is busy.
  229. block->accelerate_until = accelerate_steps;
  230. block->decelerate_after = accelerate_steps+plateau_steps;
  231. block->initial_rate = initial_rate;
  232. block->final_rate = final_rate;
  233. }
  234. CRITICAL_SECTION_END;
  235. }
  236. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  237. // decceleration within the allotted distance.
  238. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  239. {
  240. // assert(decceleration < 0);
  241. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  242. }
  243. // Recalculates the motion plan according to the following algorithm:
  244. //
  245. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  246. // so that:
  247. // a. The junction jerk is within the set limit
  248. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  249. // acceleration.
  250. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  251. // a. The speed increase within one block would require faster accelleration than the one, true
  252. // constant acceleration.
  253. //
  254. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  255. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  256. // the set limit. Finally it will:
  257. //
  258. // 3. Recalculate trapezoids for all blocks.
  259. //
  260. //FIXME This routine is called 15x every time a new line is added to the planner,
  261. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  262. // if the CPU is found lacking computational power.
  263. //
  264. // Following sources may be used to optimize the 8-bit AVR code:
  265. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  266. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  267. //
  268. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  269. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  270. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  271. //
  272. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  273. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  274. // https://github.com/rekka/avrmultiplication
  275. //
  276. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  277. // https://courses.cit.cornell.edu/ee476/Math/
  278. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  279. //
  280. void planner_recalculate(const float &safe_final_speed)
  281. {
  282. // Reverse pass
  283. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  284. // by consuming the blocks, therefore shortening the queue.
  285. unsigned char tail = block_buffer_tail;
  286. uint8_t block_index;
  287. block_t *prev, *current, *next;
  288. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  289. // At least three blocks are in the queue?
  290. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  291. if (n_blocks >= 3) {
  292. // Initialize the last tripple of blocks.
  293. block_index = prev_block_index(block_buffer_head);
  294. next = block_buffer + block_index;
  295. current = block_buffer + (block_index = prev_block_index(block_index));
  296. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  297. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  298. // 1) it may already be running at the stepper interrupt,
  299. // 2) there is no way to limit it when going in the forward direction.
  300. while (block_index != tail) {
  301. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  302. // Don't modify the entry velocity of the starting block.
  303. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  304. // for the stepper interrupt routine to use them.
  305. tail = block_index;
  306. // Update the number of blocks to process.
  307. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  308. // SERIAL_ECHOLNPGM("START");
  309. break;
  310. }
  311. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  312. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  313. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  314. if (current->entry_speed != current->max_entry_speed) {
  315. // assert(current->entry_speed < current->max_entry_speed);
  316. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  317. // segment and the maximum acceleration allowed for this segment.
  318. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  319. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  320. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  321. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  322. // together with an assembly 32bit->16bit sqrt function.
  323. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  324. current->max_entry_speed :
  325. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  326. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  327. current->flag |= BLOCK_FLAG_RECALCULATE;
  328. }
  329. next = current;
  330. current = block_buffer + (block_index = prev_block_index(block_index));
  331. }
  332. }
  333. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  334. // Forward pass and recalculate the trapezoids.
  335. if (n_blocks >= 2) {
  336. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  337. block_index = tail;
  338. prev = block_buffer + block_index;
  339. current = block_buffer + (block_index = next_block_index(block_index));
  340. do {
  341. // If the previous block is an acceleration block, but it is not long enough to complete the
  342. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  343. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  344. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  345. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  346. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  347. // Check for junction speed change
  348. if (current->entry_speed != entry_speed) {
  349. current->entry_speed = entry_speed;
  350. current->flag |= BLOCK_FLAG_RECALCULATE;
  351. }
  352. }
  353. // Recalculate if current block entry or exit junction speed has changed.
  354. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  355. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  356. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  357. // Reset current only to ensure next trapezoid is computed.
  358. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  359. }
  360. prev = current;
  361. current = block_buffer + (block_index = next_block_index(block_index));
  362. } while (block_index != block_buffer_head);
  363. }
  364. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  365. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  366. current = block_buffer + prev_block_index(block_buffer_head);
  367. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  368. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  369. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  370. }
  371. void plan_init() {
  372. block_buffer_head = 0;
  373. block_buffer_tail = 0;
  374. memset(position, 0, sizeof(position)); // clear position
  375. #ifdef LIN_ADVANCE
  376. memset(position_float, 0, sizeof(position)); // clear position
  377. #endif
  378. previous_speed[0] = 0.0;
  379. previous_speed[1] = 0.0;
  380. previous_speed[2] = 0.0;
  381. previous_speed[3] = 0.0;
  382. previous_nominal_speed = 0.0;
  383. }
  384. #ifdef AUTOTEMP
  385. void getHighESpeed()
  386. {
  387. static float oldt=0;
  388. if(!autotemp_enabled){
  389. return;
  390. }
  391. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  392. return; //do nothing
  393. }
  394. float high=0.0;
  395. uint8_t block_index = block_buffer_tail;
  396. while(block_index != block_buffer_head) {
  397. if((block_buffer[block_index].steps_x.wide != 0) ||
  398. (block_buffer[block_index].steps_y.wide != 0) ||
  399. (block_buffer[block_index].steps_z.wide != 0)) {
  400. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  401. //se; mm/sec;
  402. if(se>high)
  403. {
  404. high=se;
  405. }
  406. }
  407. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  408. }
  409. float g=autotemp_min+high*autotemp_factor;
  410. float t=g;
  411. if(t<autotemp_min)
  412. t=autotemp_min;
  413. if(t>autotemp_max)
  414. t=autotemp_max;
  415. if(oldt>t)
  416. {
  417. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  418. }
  419. oldt=t;
  420. setTargetHotend0(t);
  421. }
  422. #endif
  423. void check_axes_activity()
  424. {
  425. unsigned char x_active = 0;
  426. unsigned char y_active = 0;
  427. unsigned char z_active = 0;
  428. unsigned char e_active = 0;
  429. unsigned char tail_fan_speed = fanSpeed;
  430. block_t *block;
  431. if(block_buffer_tail != block_buffer_head)
  432. {
  433. uint8_t block_index = block_buffer_tail;
  434. tail_fan_speed = block_buffer[block_index].fan_speed;
  435. while(block_index != block_buffer_head)
  436. {
  437. block = &block_buffer[block_index];
  438. if(block->steps_x.wide != 0) x_active++;
  439. if(block->steps_y.wide != 0) y_active++;
  440. if(block->steps_z.wide != 0) z_active++;
  441. if(block->steps_e.wide != 0) e_active++;
  442. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  443. }
  444. }
  445. if((DISABLE_X) && (x_active == 0)) disable_x();
  446. if((DISABLE_Y) && (y_active == 0)) disable_y();
  447. if((DISABLE_Z) && (z_active == 0)) disable_z();
  448. if((DISABLE_E) && (e_active == 0))
  449. {
  450. disable_e0();
  451. disable_e1();
  452. disable_e2();
  453. }
  454. #if defined(FAN_PIN) && FAN_PIN > -1
  455. #ifdef FAN_KICKSTART_TIME
  456. static unsigned long fan_kick_end;
  457. if (tail_fan_speed) {
  458. if (fan_kick_end == 0) {
  459. // Just starting up fan - run at full power.
  460. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  461. tail_fan_speed = 255;
  462. } else if (fan_kick_end > millis())
  463. // Fan still spinning up.
  464. tail_fan_speed = 255;
  465. } else {
  466. fan_kick_end = 0;
  467. }
  468. #endif//FAN_KICKSTART_TIME
  469. #ifdef FAN_SOFT_PWM
  470. fanSpeedSoftPwm = tail_fan_speed;
  471. #else
  472. analogWrite(FAN_PIN,tail_fan_speed);
  473. #endif//!FAN_SOFT_PWM
  474. #endif//FAN_PIN > -1
  475. #ifdef AUTOTEMP
  476. getHighESpeed();
  477. #endif
  478. }
  479. bool waiting_inside_plan_buffer_line_print_aborted = false;
  480. /*
  481. void planner_abort_soft()
  482. {
  483. // Empty the queue.
  484. while (blocks_queued()) plan_discard_current_block();
  485. // Relay to planner wait routine, that the current line shall be canceled.
  486. waiting_inside_plan_buffer_line_print_aborted = true;
  487. //current_position[i]
  488. }
  489. */
  490. #ifdef PLANNER_DIAGNOSTICS
  491. static inline void planner_update_queue_min_counter()
  492. {
  493. uint8_t new_counter = moves_planned();
  494. if (new_counter < g_cntr_planner_queue_min)
  495. g_cntr_planner_queue_min = new_counter;
  496. }
  497. #endif /* PLANNER_DIAGNOSTICS */
  498. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  499. void planner_abort_hard()
  500. {
  501. // Abort the stepper routine and flush the planner queue.
  502. DISABLE_STEPPER_DRIVER_INTERRUPT();
  503. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  504. // First update the planner's current position in the physical motor steps.
  505. position[X_AXIS] = st_get_position(X_AXIS);
  506. position[Y_AXIS] = st_get_position(Y_AXIS);
  507. position[Z_AXIS] = st_get_position(Z_AXIS);
  508. position[E_AXIS] = st_get_position(E_AXIS);
  509. // Second update the current position of the front end.
  510. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  511. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  512. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  513. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  514. // Apply the mesh bed leveling correction to the Z axis.
  515. #ifdef MESH_BED_LEVELING
  516. if (mbl.active) {
  517. #if 1
  518. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  519. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  520. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  521. #else
  522. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  523. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  524. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  525. else {
  526. float t = float(step_events_completed) / float(current_block->step_event_count);
  527. float vec[3] = {
  528. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  529. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  530. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  531. };
  532. float pos1[3], pos2[3];
  533. for (int8_t i = 0; i < 3; ++ i) {
  534. if (current_block->direction_bits & (1<<i))
  535. vec[i] = - vec[i];
  536. pos1[i] = current_position[i] - vec[i] * t;
  537. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  538. }
  539. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  540. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  541. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  542. }
  543. #endif
  544. }
  545. #endif
  546. // Clear the planner queue, reset and re-enable the stepper timer.
  547. quickStop();
  548. // Apply inverse world correction matrix.
  549. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  550. memcpy(destination, current_position, sizeof(destination));
  551. // Resets planner junction speeds. Assumes start from rest.
  552. previous_nominal_speed = 0.0;
  553. previous_speed[0] = 0.0;
  554. previous_speed[1] = 0.0;
  555. previous_speed[2] = 0.0;
  556. previous_speed[3] = 0.0;
  557. // Relay to planner wait routine, that the current line shall be canceled.
  558. waiting_inside_plan_buffer_line_print_aborted = true;
  559. }
  560. float junction_deviation = 0.1;
  561. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  562. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  563. // calculation the caller must also provide the physical length of the line in millimeters.
  564. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  565. {
  566. // Calculate the buffer head after we push this byte
  567. int next_buffer_head = next_block_index(block_buffer_head);
  568. // If the buffer is full: good! That means we are well ahead of the robot.
  569. // Rest here until there is room in the buffer.
  570. if (block_buffer_tail == next_buffer_head) {
  571. waiting_inside_plan_buffer_line_print_aborted = false;
  572. do {
  573. manage_heater();
  574. // Vojtech: Don't disable motors inside the planner!
  575. manage_inactivity(false);
  576. lcd_update(0);
  577. } while (block_buffer_tail == next_buffer_head);
  578. if (waiting_inside_plan_buffer_line_print_aborted) {
  579. // Inside the lcd_update(0) routine the print has been aborted.
  580. // Cancel the print, do not plan the current line this routine is waiting on.
  581. #ifdef PLANNER_DIAGNOSTICS
  582. planner_update_queue_min_counter();
  583. #endif /* PLANNER_DIAGNOSTICS */
  584. return;
  585. }
  586. }
  587. #ifdef PLANNER_DIAGNOSTICS
  588. planner_update_queue_min_counter();
  589. #endif /* PLANNER_DIAGNOSTICS */
  590. #ifdef ENABLE_AUTO_BED_LEVELING
  591. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  592. #endif // ENABLE_AUTO_BED_LEVELING
  593. // Apply the machine correction matrix.
  594. {
  595. #if 0
  596. SERIAL_ECHOPGM("Planner, current position - servos: ");
  597. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  598. SERIAL_ECHOPGM(", ");
  599. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  600. SERIAL_ECHOPGM(", ");
  601. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  602. SERIAL_ECHOLNPGM("");
  603. SERIAL_ECHOPGM("Planner, target position, initial: ");
  604. MYSERIAL.print(x, 5);
  605. SERIAL_ECHOPGM(", ");
  606. MYSERIAL.print(y, 5);
  607. SERIAL_ECHOLNPGM("");
  608. SERIAL_ECHOPGM("Planner, world2machine: ");
  609. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  610. SERIAL_ECHOPGM(", ");
  611. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  612. SERIAL_ECHOPGM(", ");
  613. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  614. SERIAL_ECHOPGM(", ");
  615. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  616. SERIAL_ECHOLNPGM("");
  617. SERIAL_ECHOPGM("Planner, offset: ");
  618. MYSERIAL.print(world2machine_shift[0], 5);
  619. SERIAL_ECHOPGM(", ");
  620. MYSERIAL.print(world2machine_shift[1], 5);
  621. SERIAL_ECHOLNPGM("");
  622. #endif
  623. world2machine(x, y);
  624. #if 0
  625. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  626. MYSERIAL.print(x, 5);
  627. SERIAL_ECHOPGM(", ");
  628. MYSERIAL.print(y, 5);
  629. SERIAL_ECHOLNPGM("");
  630. #endif
  631. }
  632. // The target position of the tool in absolute steps
  633. // Calculate target position in absolute steps
  634. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  635. long target[4];
  636. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  637. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  638. #ifdef MESH_BED_LEVELING
  639. if (mbl.active){
  640. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  641. }else{
  642. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  643. }
  644. #else
  645. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  646. #endif // ENABLE_MESH_BED_LEVELING
  647. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  648. #ifdef LIN_ADVANCE
  649. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  650. float de_float = e - position_float[E_AXIS];
  651. #endif
  652. #ifdef PREVENT_DANGEROUS_EXTRUDE
  653. if(target[E_AXIS]!=position[E_AXIS])
  654. {
  655. if(degHotend(active_extruder)<extrude_min_temp)
  656. {
  657. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  658. #ifdef LIN_ADVANCE
  659. position_float[E_AXIS] = e;
  660. de_float = 0;
  661. #endif
  662. SERIAL_ECHO_START;
  663. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  664. }
  665. #ifdef PREVENT_LENGTHY_EXTRUDE
  666. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  667. {
  668. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  669. #ifdef LIN_ADVANCE
  670. position_float[E_AXIS] = e;
  671. de_float = 0;
  672. #endif
  673. SERIAL_ECHO_START;
  674. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  675. }
  676. #endif
  677. }
  678. #endif
  679. // Prepare to set up new block
  680. block_t *block = &block_buffer[block_buffer_head];
  681. // Set sdlen for calculating sd position
  682. block->sdlen = 0;
  683. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  684. block->busy = false;
  685. // Number of steps for each axis
  686. #ifndef COREXY
  687. // default non-h-bot planning
  688. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  689. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  690. #else
  691. // corexy planning
  692. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  693. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  694. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  695. #endif
  696. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  697. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  698. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  699. // Bail if this is a zero-length block
  700. if (block->step_event_count.wide <= dropsegments)
  701. {
  702. #ifdef PLANNER_DIAGNOSTICS
  703. planner_update_queue_min_counter();
  704. #endif /* PLANNER_DIAGNOSTICS */
  705. return;
  706. }
  707. block->fan_speed = fanSpeed;
  708. // Compute direction bits for this block
  709. block->direction_bits = 0;
  710. #ifndef COREXY
  711. if (target[X_AXIS] < position[X_AXIS])
  712. {
  713. block->direction_bits |= (1<<X_AXIS);
  714. }
  715. if (target[Y_AXIS] < position[Y_AXIS])
  716. {
  717. block->direction_bits |= (1<<Y_AXIS);
  718. }
  719. #else
  720. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  721. {
  722. block->direction_bits |= (1<<X_AXIS);
  723. }
  724. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  725. {
  726. block->direction_bits |= (1<<Y_AXIS);
  727. }
  728. #endif
  729. if (target[Z_AXIS] < position[Z_AXIS])
  730. {
  731. block->direction_bits |= (1<<Z_AXIS);
  732. }
  733. if (target[E_AXIS] < position[E_AXIS])
  734. {
  735. block->direction_bits |= (1<<E_AXIS);
  736. }
  737. block->active_extruder = extruder;
  738. //enable active axes
  739. #ifdef COREXY
  740. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  741. {
  742. enable_x();
  743. enable_y();
  744. }
  745. #else
  746. if(block->steps_x.wide != 0) enable_x();
  747. if(block->steps_y.wide != 0) enable_y();
  748. #endif
  749. if(block->steps_z.wide != 0) enable_z();
  750. // Enable extruder(s)
  751. if(block->steps_e.wide != 0)
  752. {
  753. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  754. {
  755. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  756. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  757. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  758. switch(extruder)
  759. {
  760. case 0:
  761. enable_e0();
  762. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  763. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  764. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  765. break;
  766. case 1:
  767. enable_e1();
  768. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  769. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  770. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  771. break;
  772. case 2:
  773. enable_e2();
  774. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  775. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  776. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  777. break;
  778. }
  779. }
  780. else //enable all
  781. {
  782. enable_e0();
  783. enable_e1();
  784. enable_e2();
  785. }
  786. }
  787. if (block->steps_e.wide == 0)
  788. {
  789. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  790. }
  791. else
  792. {
  793. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  794. }
  795. /* This part of the code calculates the total length of the movement.
  796. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  797. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  798. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  799. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  800. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  801. */
  802. #ifndef COREXY
  803. float delta_mm[4];
  804. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  805. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  806. #else
  807. float delta_mm[6];
  808. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  809. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  810. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  811. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  812. #endif
  813. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  814. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  815. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  816. {
  817. block->millimeters = fabs(delta_mm[E_AXIS]);
  818. }
  819. else
  820. {
  821. #ifndef COREXY
  822. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  823. #else
  824. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  825. #endif
  826. }
  827. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  828. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  829. float inverse_second = feed_rate * inverse_millimeters;
  830. int moves_queued = moves_planned();
  831. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  832. #ifdef SLOWDOWN
  833. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  834. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  835. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  836. // segment time in micro seconds
  837. unsigned long segment_time = lround(1000000.0/inverse_second);
  838. if (segment_time < minsegmenttime)
  839. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  840. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  841. }
  842. #endif // SLOWDOWN
  843. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  844. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  845. // Calculate and limit speed in mm/sec for each axis
  846. float current_speed[4];
  847. float speed_factor = 1.0; //factor <=1 do decrease speed
  848. for(int i=0; i < 4; i++)
  849. {
  850. current_speed[i] = delta_mm[i] * inverse_second;
  851. #ifdef TMC2130
  852. #ifdef FEEDRATE_LIMIT
  853. float max_fr = max_feedrate[i];
  854. if (i < 2) // X, Y
  855. {
  856. if (tmc2130_mode == TMC2130_MODE_SILENT)
  857. {
  858. if (max_fr > SILENT_MAX_FEEDRATE)
  859. max_fr = SILENT_MAX_FEEDRATE;
  860. }
  861. else
  862. {
  863. if (max_fr > NORMAL_MAX_FEEDRATE)
  864. max_fr = NORMAL_MAX_FEEDRATE;
  865. }
  866. }
  867. if(fabs(current_speed[i]) > max_fr)
  868. speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
  869. #else //FEEDRATE_LIMIT
  870. if(fabs(current_speed[i]) > max_feedrate[i])
  871. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  872. #endif //FEEDRATE_LIMIT
  873. #else //TMC2130
  874. if(fabs(current_speed[i]) > max_feedrate[i])
  875. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  876. #endif //TMC2130
  877. }
  878. // Correct the speed
  879. if( speed_factor < 1.0)
  880. {
  881. for(unsigned char i=0; i < 4; i++)
  882. {
  883. current_speed[i] *= speed_factor;
  884. }
  885. block->nominal_speed *= speed_factor;
  886. block->nominal_rate *= speed_factor;
  887. }
  888. // Compute and limit the acceleration rate for the trapezoid generator.
  889. // block->step_event_count ... event count of the fastest axis
  890. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  891. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  892. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  893. {
  894. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  895. }
  896. else
  897. {
  898. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  899. #ifdef TMC2130
  900. #ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
  901. if (tmc2130_mode == TMC2130_MODE_SILENT)
  902. {
  903. if (block->steps_x.wide || block->steps_y.wide)
  904. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  905. }
  906. else
  907. {
  908. if (block->steps_x.wide || block->steps_y.wide)
  909. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  910. }
  911. if (block->steps_x.wide && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  912. if (block->steps_y.wide && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  913. if (block->steps_z.wide && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  914. if (block->steps_e.wide && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  915. #else // SIMPLE_ACCEL_LIMIT
  916. #ifdef ACCEL_LIMIT
  917. if (tmc2130_mode == TMC2130_MODE_SILENT)
  918. {
  919. if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
  920. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  921. }
  922. else
  923. {
  924. if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
  925. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  926. }
  927. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  928. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  929. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  930. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  931. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Z_AXIS])
  932. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  933. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  934. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  935. #endif // ACCEL_LIMIT
  936. #endif // SIMPLE_ACCEL_LIMIT
  937. #else //TMC2130
  938. // Limit acceleration per axis
  939. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  940. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  941. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  942. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  943. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  944. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  945. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  946. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  947. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  948. #endif //TMC2130
  949. }
  950. // Acceleration of the segment, in mm/sec^2
  951. block->acceleration = block->acceleration_st / steps_per_mm;
  952. #if 0
  953. // Oversample diagonal movements by a power of 2 up to 8x
  954. // to achieve more accurate diagonal movements.
  955. uint8_t bresenham_oversample = 1;
  956. for (uint8_t i = 0; i < 3; ++ i) {
  957. if (block->nominal_rate >= 5000) // 5kHz
  958. break;
  959. block->nominal_rate << 1;
  960. bresenham_oversample << 1;
  961. block->step_event_count << 1;
  962. }
  963. if (bresenham_oversample > 1)
  964. // Lower the acceleration steps/sec^2 to account for the oversampling.
  965. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  966. #endif
  967. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  968. // Start with a safe speed.
  969. // Safe speed is the speed, from which the machine may halt to stop immediately.
  970. float safe_speed = block->nominal_speed;
  971. bool limited = false;
  972. for (uint8_t axis = 0; axis < 4; ++ axis) {
  973. float jerk = fabs(current_speed[axis]);
  974. if (jerk > max_jerk[axis]) {
  975. // The actual jerk is lower, if it has been limited by the XY jerk.
  976. if (limited) {
  977. // Spare one division by a following gymnastics:
  978. // Instead of jerk *= safe_speed / block->nominal_speed,
  979. // multiply max_jerk[axis] by the divisor.
  980. jerk *= safe_speed;
  981. float mjerk = max_jerk[axis] * block->nominal_speed;
  982. if (jerk > mjerk) {
  983. safe_speed *= mjerk / jerk;
  984. limited = true;
  985. }
  986. } else {
  987. safe_speed = max_jerk[axis];
  988. limited = true;
  989. }
  990. }
  991. }
  992. // Reset the block flag.
  993. block->flag = 0;
  994. // Initial limit on the segment entry velocity.
  995. float vmax_junction;
  996. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  997. // Is it because we don't want to tinker with the first buffer line, which
  998. // is likely to be executed by the stepper interrupt routine soon?
  999. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1000. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1001. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1002. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1003. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1004. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1005. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1006. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1007. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1008. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1009. float v_factor = 1.f;
  1010. limited = false;
  1011. // Now limit the jerk in all axes.
  1012. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1013. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1014. float v_exit = previous_speed[axis];
  1015. float v_entry = current_speed [axis];
  1016. if (prev_speed_larger)
  1017. v_exit *= smaller_speed_factor;
  1018. if (limited) {
  1019. v_exit *= v_factor;
  1020. v_entry *= v_factor;
  1021. }
  1022. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1023. float jerk =
  1024. (v_exit > v_entry) ?
  1025. ((v_entry > 0.f || v_exit < 0.f) ?
  1026. // coasting
  1027. (v_exit - v_entry) :
  1028. // axis reversal
  1029. max(v_exit, - v_entry)) :
  1030. // v_exit <= v_entry
  1031. ((v_entry < 0.f || v_exit > 0.f) ?
  1032. // coasting
  1033. (v_entry - v_exit) :
  1034. // axis reversal
  1035. max(- v_exit, v_entry));
  1036. if (jerk > max_jerk[axis]) {
  1037. v_factor *= max_jerk[axis] / jerk;
  1038. limited = true;
  1039. }
  1040. }
  1041. if (limited)
  1042. vmax_junction *= v_factor;
  1043. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1044. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1045. float vmax_junction_threshold = vmax_junction * 0.99f;
  1046. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1047. // Not coasting. The machine will stop and start the movements anyway,
  1048. // better to start the segment from start.
  1049. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1050. vmax_junction = safe_speed;
  1051. }
  1052. } else {
  1053. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1054. vmax_junction = safe_speed;
  1055. }
  1056. // Max entry speed of this block equals the max exit speed of the previous block.
  1057. block->max_entry_speed = vmax_junction;
  1058. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1059. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1060. block->entry_speed = min(vmax_junction, v_allowable);
  1061. // Initialize planner efficiency flags
  1062. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1063. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1064. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1065. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1066. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1067. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1068. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1069. // Always calculate trapezoid for new block
  1070. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1071. // Update previous path unit_vector and nominal speed
  1072. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1073. previous_nominal_speed = block->nominal_speed;
  1074. previous_safe_speed = safe_speed;
  1075. #ifdef LIN_ADVANCE
  1076. //
  1077. // Use LIN_ADVANCE for blocks if all these are true:
  1078. //
  1079. // esteps : We have E steps todo (a printing move)
  1080. //
  1081. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1082. //
  1083. // extruder_advance_k : There is an advance factor set.
  1084. //
  1085. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1086. // In that case, the retract and move will be executed together.
  1087. // This leads to too many advance steps due to a huge e_acceleration.
  1088. // The math is good, but we must avoid retract moves with advance!
  1089. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1090. //
  1091. block->use_advance_lead = block->steps_e.wide
  1092. && (block->steps_x.wide || block->steps_y.wide)
  1093. && extruder_advance_k
  1094. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1095. && de_float > 0.0;
  1096. if (block->use_advance_lead)
  1097. block->abs_adv_steps_multiplier8 = lround(
  1098. extruder_advance_k
  1099. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1100. * (block->nominal_speed / (float)block->nominal_rate)
  1101. * axis_steps_per_unit[E_AXIS] * 256.0
  1102. );
  1103. #endif
  1104. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1105. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1106. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1107. if (block->step_event_count.wide <= 32767)
  1108. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1109. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1110. block_buffer_head = next_buffer_head;
  1111. // Update position
  1112. memcpy(position, target, sizeof(target)); // position[] = target[]
  1113. #ifdef LIN_ADVANCE
  1114. position_float[X_AXIS] = x;
  1115. position_float[Y_AXIS] = y;
  1116. position_float[Z_AXIS] = z;
  1117. position_float[E_AXIS] = e;
  1118. #endif
  1119. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1120. // the machine limits (maximum acceleration and maximum jerk).
  1121. // This runs asynchronously with the stepper interrupt controller, which may
  1122. // interfere with the process.
  1123. planner_recalculate(safe_speed);
  1124. // SERIAL_ECHOPGM("Q");
  1125. // SERIAL_ECHO(int(moves_planned()));
  1126. // SERIAL_ECHOLNPGM("");
  1127. #ifdef PLANNER_DIAGNOSTICS
  1128. planner_update_queue_min_counter();
  1129. #endif /* PLANNER_DIAGNOSTIC */
  1130. // The stepper timer interrupt will run continuously from now on.
  1131. // If there are no planner blocks to be executed by the stepper routine,
  1132. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1133. // from the planner queue if available.
  1134. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1135. }
  1136. #ifdef ENABLE_AUTO_BED_LEVELING
  1137. vector_3 plan_get_position() {
  1138. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1139. //position.debug("in plan_get position");
  1140. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1141. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1142. //inverse.debug("in plan_get inverse");
  1143. position.apply_rotation(inverse);
  1144. //position.debug("after rotation");
  1145. return position;
  1146. }
  1147. #endif // ENABLE_AUTO_BED_LEVELING
  1148. void plan_set_position(float x, float y, float z, const float &e)
  1149. {
  1150. #ifdef ENABLE_AUTO_BED_LEVELING
  1151. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1152. #endif // ENABLE_AUTO_BED_LEVELING
  1153. // Apply the machine correction matrix.
  1154. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1155. {
  1156. float tmpx = x;
  1157. float tmpy = y;
  1158. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1159. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1160. }
  1161. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1162. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1163. #ifdef MESH_BED_LEVELING
  1164. position[Z_AXIS] = mbl.active ?
  1165. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1166. lround(z*axis_steps_per_unit[Z_AXIS]);
  1167. #else
  1168. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1169. #endif // ENABLE_MESH_BED_LEVELING
  1170. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1171. #ifdef LIN_ADVANCE
  1172. position_float[X_AXIS] = x;
  1173. position_float[Y_AXIS] = y;
  1174. position_float[Z_AXIS] = z;
  1175. position_float[E_AXIS] = e;
  1176. #endif
  1177. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1178. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1179. previous_speed[0] = 0.0;
  1180. previous_speed[1] = 0.0;
  1181. previous_speed[2] = 0.0;
  1182. previous_speed[3] = 0.0;
  1183. }
  1184. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1185. void plan_set_z_position(const float &z)
  1186. {
  1187. #ifdef LIN_ADVANCE
  1188. position_float[Z_AXIS] = z;
  1189. #endif
  1190. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1191. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1192. }
  1193. void plan_set_e_position(const float &e)
  1194. {
  1195. #ifdef LIN_ADVANCE
  1196. position_float[E_AXIS] = e;
  1197. #endif
  1198. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1199. st_set_e_position(position[E_AXIS]);
  1200. }
  1201. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1202. void set_extrude_min_temp(float temp)
  1203. {
  1204. extrude_min_temp=temp;
  1205. }
  1206. #endif
  1207. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1208. void reset_acceleration_rates()
  1209. {
  1210. for(int8_t i=0; i < NUM_AXIS; i++)
  1211. {
  1212. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1213. }
  1214. }
  1215. unsigned char number_of_blocks() {
  1216. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1217. }
  1218. #ifdef PLANNER_DIAGNOSTICS
  1219. uint8_t planner_queue_min()
  1220. {
  1221. return g_cntr_planner_queue_min;
  1222. }
  1223. void planner_queue_min_reset()
  1224. {
  1225. g_cntr_planner_queue_min = moves_planned();
  1226. }
  1227. #endif /* PLANNER_DIAGNOSTICS */
  1228. void planner_add_sd_length(uint16_t sdlen)
  1229. {
  1230. if (block_buffer_head != block_buffer_tail) {
  1231. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1232. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1233. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1234. } else {
  1235. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1236. // at a power panic, so the length of this command may be forgotten.
  1237. }
  1238. }
  1239. uint16_t planner_calc_sd_length()
  1240. {
  1241. unsigned char _block_buffer_head = block_buffer_head;
  1242. unsigned char _block_buffer_tail = block_buffer_tail;
  1243. uint16_t sdlen = 0;
  1244. while (_block_buffer_head != _block_buffer_tail)
  1245. {
  1246. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1247. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1248. }
  1249. return sdlen;
  1250. }