Marlin_main.cpp 222 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. char snmm_filaments_used = 0;
  244. float distance_from_min[3];
  245. float angleDiff;
  246. bool volumetric_enabled = false;
  247. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  248. #if EXTRUDERS > 1
  249. , DEFAULT_NOMINAL_FILAMENT_DIA
  250. #if EXTRUDERS > 2
  251. , DEFAULT_NOMINAL_FILAMENT_DIA
  252. #endif
  253. #endif
  254. };
  255. float volumetric_multiplier[EXTRUDERS] = {1.0
  256. #if EXTRUDERS > 1
  257. , 1.0
  258. #if EXTRUDERS > 2
  259. , 1.0
  260. #endif
  261. #endif
  262. };
  263. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  264. float add_homing[3]={0,0,0};
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. bool axis_known_position[3] = {false, false, false};
  268. float zprobe_zoffset;
  269. // Extruder offset
  270. #if EXTRUDERS > 1
  271. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  272. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  273. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  274. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  275. #endif
  276. };
  277. #endif
  278. uint8_t active_extruder = 0;
  279. int fanSpeed=0;
  280. #ifdef FWRETRACT
  281. bool autoretract_enabled=false;
  282. bool retracted[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. bool retracted_swap[EXTRUDERS]={false
  291. #if EXTRUDERS > 1
  292. , false
  293. #if EXTRUDERS > 2
  294. , false
  295. #endif
  296. #endif
  297. };
  298. float retract_length = RETRACT_LENGTH;
  299. float retract_length_swap = RETRACT_LENGTH_SWAP;
  300. float retract_feedrate = RETRACT_FEEDRATE;
  301. float retract_zlift = RETRACT_ZLIFT;
  302. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  303. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  304. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  305. #endif
  306. #ifdef ULTIPANEL
  307. #ifdef PS_DEFAULT_OFF
  308. bool powersupply = false;
  309. #else
  310. bool powersupply = true;
  311. #endif
  312. #endif
  313. bool cancel_heatup = false ;
  314. #ifdef FILAMENT_SENSOR
  315. //Variables for Filament Sensor input
  316. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  317. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  318. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  319. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  320. int delay_index1=0; //index into ring buffer
  321. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  322. float delay_dist=0; //delay distance counter
  323. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. //===========================================================================
  328. //=============================Private Variables=============================
  329. //===========================================================================
  330. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  331. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  332. static float delta[3] = {0.0, 0.0, 0.0};
  333. // For tracing an arc
  334. static float offset[3] = {0.0, 0.0, 0.0};
  335. static bool home_all_axis = true;
  336. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  337. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  338. // Determines Absolute or Relative Coordinates.
  339. // Also there is bool axis_relative_modes[] per axis flag.
  340. static bool relative_mode = false;
  341. // String circular buffer. Commands may be pushed to the buffer from both sides:
  342. // Chained commands will be pushed to the front, interactive (from LCD menu)
  343. // and printing commands (from serial line or from SD card) are pushed to the tail.
  344. // First character of each entry indicates the type of the entry:
  345. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  346. // Command in cmdbuffer was sent over USB.
  347. #define CMDBUFFER_CURRENT_TYPE_USB 1
  348. // Command in cmdbuffer was read from SDCARD.
  349. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  350. // Command in cmdbuffer was generated by the UI.
  351. #define CMDBUFFER_CURRENT_TYPE_UI 3
  352. // Command in cmdbuffer was generated by another G-code.
  353. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  354. // How much space to reserve for the chained commands
  355. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  356. // which are pushed to the front of the queue?
  357. // Maximum 5 commands of max length 20 + null terminator.
  358. #define CMDBUFFER_RESERVE_FRONT (5*21)
  359. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  360. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  361. // Head of the circular buffer, where to read.
  362. static int bufindr = 0;
  363. // Tail of the buffer, where to write.
  364. static int bufindw = 0;
  365. // Number of lines in cmdbuffer.
  366. static int buflen = 0;
  367. // Flag for processing the current command inside the main Arduino loop().
  368. // If a new command was pushed to the front of a command buffer while
  369. // processing another command, this replaces the command on the top.
  370. // Therefore don't remove the command from the queue in the loop() function.
  371. static bool cmdbuffer_front_already_processed = false;
  372. // Type of a command, which is to be executed right now.
  373. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  374. // String of a command, which is to be executed right now.
  375. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  376. // Enable debugging of the command buffer.
  377. // Debugging information will be sent to serial line.
  378. // #define CMDBUFFER_DEBUG
  379. static int serial_count = 0; //index of character read from serial line
  380. static boolean comment_mode = false;
  381. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  382. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  383. //static float tt = 0;
  384. //static float bt = 0;
  385. //Inactivity shutdown variables
  386. static unsigned long previous_millis_cmd = 0;
  387. unsigned long max_inactive_time = 0;
  388. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  389. unsigned long starttime=0;
  390. unsigned long stoptime=0;
  391. unsigned long _usb_timer = 0;
  392. static uint8_t tmp_extruder;
  393. bool Stopped=false;
  394. #if NUM_SERVOS > 0
  395. Servo servos[NUM_SERVOS];
  396. #endif
  397. bool CooldownNoWait = true;
  398. bool target_direction;
  399. //Insert variables if CHDK is defined
  400. #ifdef CHDK
  401. unsigned long chdkHigh = 0;
  402. boolean chdkActive = false;
  403. #endif
  404. //===========================================================================
  405. //=============================Routines======================================
  406. //===========================================================================
  407. void get_arc_coordinates();
  408. bool setTargetedHotend(int code);
  409. void serial_echopair_P(const char *s_P, float v)
  410. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  411. void serial_echopair_P(const char *s_P, double v)
  412. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. void serial_echopair_P(const char *s_P, unsigned long v)
  414. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  415. #ifdef SDSUPPORT
  416. #include "SdFatUtil.h"
  417. int freeMemory() { return SdFatUtil::FreeRam(); }
  418. #else
  419. extern "C" {
  420. extern unsigned int __bss_end;
  421. extern unsigned int __heap_start;
  422. extern void *__brkval;
  423. int freeMemory() {
  424. int free_memory;
  425. if ((int)__brkval == 0)
  426. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  427. else
  428. free_memory = ((int)&free_memory) - ((int)__brkval);
  429. return free_memory;
  430. }
  431. }
  432. #endif //!SDSUPPORT
  433. // Pop the currently processed command from the queue.
  434. // It is expected, that there is at least one command in the queue.
  435. bool cmdqueue_pop_front()
  436. {
  437. if (buflen > 0) {
  438. #ifdef CMDBUFFER_DEBUG
  439. SERIAL_ECHOPGM("Dequeing ");
  440. SERIAL_ECHO(cmdbuffer+bufindr+1);
  441. SERIAL_ECHOLNPGM("");
  442. SERIAL_ECHOPGM("Old indices: buflen ");
  443. SERIAL_ECHO(buflen);
  444. SERIAL_ECHOPGM(", bufindr ");
  445. SERIAL_ECHO(bufindr);
  446. SERIAL_ECHOPGM(", bufindw ");
  447. SERIAL_ECHO(bufindw);
  448. SERIAL_ECHOPGM(", serial_count ");
  449. SERIAL_ECHO(serial_count);
  450. SERIAL_ECHOPGM(", bufsize ");
  451. SERIAL_ECHO(sizeof(cmdbuffer));
  452. SERIAL_ECHOLNPGM("");
  453. #endif /* CMDBUFFER_DEBUG */
  454. if (-- buflen == 0) {
  455. // Empty buffer.
  456. if (serial_count == 0)
  457. // No serial communication is pending. Reset both pointers to zero.
  458. bufindw = 0;
  459. bufindr = bufindw;
  460. } else {
  461. // There is at least one ready line in the buffer.
  462. // First skip the current command ID and iterate up to the end of the string.
  463. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  464. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  465. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  466. // If the end of the buffer was empty,
  467. if (bufindr == sizeof(cmdbuffer)) {
  468. // skip to the start and find the nonzero command.
  469. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  470. }
  471. #ifdef CMDBUFFER_DEBUG
  472. SERIAL_ECHOPGM("New indices: buflen ");
  473. SERIAL_ECHO(buflen);
  474. SERIAL_ECHOPGM(", bufindr ");
  475. SERIAL_ECHO(bufindr);
  476. SERIAL_ECHOPGM(", bufindw ");
  477. SERIAL_ECHO(bufindw);
  478. SERIAL_ECHOPGM(", serial_count ");
  479. SERIAL_ECHO(serial_count);
  480. SERIAL_ECHOPGM(" new command on the top: ");
  481. SERIAL_ECHO(cmdbuffer+bufindr+1);
  482. SERIAL_ECHOLNPGM("");
  483. #endif /* CMDBUFFER_DEBUG */
  484. }
  485. return true;
  486. }
  487. return false;
  488. }
  489. void cmdqueue_reset()
  490. {
  491. while (cmdqueue_pop_front()) ;
  492. }
  493. // How long a string could be pushed to the front of the command queue?
  494. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  495. // len_asked does not contain the zero terminator size.
  496. bool cmdqueue_could_enqueue_front(int len_asked)
  497. {
  498. // MAX_CMD_SIZE has to accommodate the zero terminator.
  499. if (len_asked >= MAX_CMD_SIZE)
  500. return false;
  501. // Remove the currently processed command from the queue.
  502. if (! cmdbuffer_front_already_processed) {
  503. cmdqueue_pop_front();
  504. cmdbuffer_front_already_processed = true;
  505. }
  506. if (bufindr == bufindw && buflen > 0)
  507. // Full buffer.
  508. return false;
  509. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  510. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  511. if (bufindw < bufindr) {
  512. int bufindr_new = bufindr - len_asked - 2;
  513. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  514. if (endw <= bufindr_new) {
  515. bufindr = bufindr_new;
  516. return true;
  517. }
  518. } else {
  519. // Otherwise the free space is split between the start and end.
  520. if (len_asked + 2 <= bufindr) {
  521. // Could fit at the start.
  522. bufindr -= len_asked + 2;
  523. return true;
  524. }
  525. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  526. if (endw <= bufindr_new) {
  527. memset(cmdbuffer, 0, bufindr);
  528. bufindr = bufindr_new;
  529. return true;
  530. }
  531. }
  532. return false;
  533. }
  534. // Could one enqueue a command of lenthg len_asked into the buffer,
  535. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  536. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  537. // len_asked does not contain the zero terminator size.
  538. bool cmdqueue_could_enqueue_back(int len_asked)
  539. {
  540. // MAX_CMD_SIZE has to accommodate the zero terminator.
  541. if (len_asked >= MAX_CMD_SIZE)
  542. return false;
  543. if (bufindr == bufindw && buflen > 0)
  544. // Full buffer.
  545. return false;
  546. if (serial_count > 0) {
  547. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  548. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  549. // serial data.
  550. // How much memory to reserve for the commands pushed to the front?
  551. // End of the queue, when pushing to the end.
  552. int endw = bufindw + len_asked + 2;
  553. if (bufindw < bufindr)
  554. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  555. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  556. // Otherwise the free space is split between the start and end.
  557. if (// Could one fit to the end, including the reserve?
  558. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  559. // Could one fit to the end, and the reserve to the start?
  560. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  561. return true;
  562. // Could one fit both to the start?
  563. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  564. // Mark the rest of the buffer as used.
  565. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  566. // and point to the start.
  567. bufindw = 0;
  568. return true;
  569. }
  570. } else {
  571. // How much memory to reserve for the commands pushed to the front?
  572. // End of the queue, when pushing to the end.
  573. int endw = bufindw + len_asked + 2;
  574. if (bufindw < bufindr)
  575. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  576. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  577. // Otherwise the free space is split between the start and end.
  578. if (// Could one fit to the end, including the reserve?
  579. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  580. // Could one fit to the end, and the reserve to the start?
  581. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  582. return true;
  583. // Could one fit both to the start?
  584. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  585. // Mark the rest of the buffer as used.
  586. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  587. // and point to the start.
  588. bufindw = 0;
  589. return true;
  590. }
  591. }
  592. return false;
  593. }
  594. #ifdef CMDBUFFER_DEBUG
  595. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  596. {
  597. SERIAL_ECHOPGM("Entry nr: ");
  598. SERIAL_ECHO(nr);
  599. SERIAL_ECHOPGM(", type: ");
  600. SERIAL_ECHO(int(*p));
  601. SERIAL_ECHOPGM(", cmd: ");
  602. SERIAL_ECHO(p+1);
  603. SERIAL_ECHOLNPGM("");
  604. }
  605. static void cmdqueue_dump_to_serial()
  606. {
  607. if (buflen == 0) {
  608. SERIAL_ECHOLNPGM("The command buffer is empty.");
  609. } else {
  610. SERIAL_ECHOPGM("Content of the buffer: entries ");
  611. SERIAL_ECHO(buflen);
  612. SERIAL_ECHOPGM(", indr ");
  613. SERIAL_ECHO(bufindr);
  614. SERIAL_ECHOPGM(", indw ");
  615. SERIAL_ECHO(bufindw);
  616. SERIAL_ECHOLNPGM("");
  617. int nr = 0;
  618. if (bufindr < bufindw) {
  619. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  620. cmdqueue_dump_to_serial_single_line(nr, p);
  621. // Skip the command.
  622. for (++p; *p != 0; ++ p);
  623. // Skip the gaps.
  624. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  625. }
  626. } else {
  627. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  628. cmdqueue_dump_to_serial_single_line(nr, p);
  629. // Skip the command.
  630. for (++p; *p != 0; ++ p);
  631. // Skip the gaps.
  632. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  633. }
  634. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  640. }
  641. }
  642. SERIAL_ECHOLNPGM("End of the buffer.");
  643. }
  644. }
  645. #endif /* CMDBUFFER_DEBUG */
  646. //adds an command to the main command buffer
  647. //thats really done in a non-safe way.
  648. //needs overworking someday
  649. // Currently the maximum length of a command piped through this function is around 20 characters
  650. void enquecommand(const char *cmd, bool from_progmem)
  651. {
  652. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  653. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  654. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  655. if (cmdqueue_could_enqueue_back(len)) {
  656. // This is dangerous if a mixing of serial and this happens
  657. // This may easily be tested: If serial_count > 0, we have a problem.
  658. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  659. if (from_progmem)
  660. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  661. else
  662. strcpy(cmdbuffer + bufindw + 1, cmd);
  663. SERIAL_ECHO_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  666. SERIAL_ECHOLNPGM("\"");
  667. bufindw += len + 2;
  668. if (bufindw == sizeof(cmdbuffer))
  669. bufindw = 0;
  670. ++ buflen;
  671. #ifdef CMDBUFFER_DEBUG
  672. cmdqueue_dump_to_serial();
  673. #endif /* CMDBUFFER_DEBUG */
  674. } else {
  675. SERIAL_ERROR_START;
  676. SERIAL_ECHORPGM(MSG_Enqueing);
  677. if (from_progmem)
  678. SERIAL_PROTOCOLRPGM(cmd);
  679. else
  680. SERIAL_ECHO(cmd);
  681. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. }
  686. }
  687. void enquecommand_front(const char *cmd, bool from_progmem)
  688. {
  689. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  690. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  691. if (cmdqueue_could_enqueue_front(len)) {
  692. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  693. if (from_progmem)
  694. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  695. else
  696. strcpy(cmdbuffer + bufindr + 1, cmd);
  697. ++ buflen;
  698. SERIAL_ECHO_START;
  699. SERIAL_ECHOPGM("Enqueing to the front: \"");
  700. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  701. SERIAL_ECHOLNPGM("\"");
  702. #ifdef CMDBUFFER_DEBUG
  703. cmdqueue_dump_to_serial();
  704. #endif /* CMDBUFFER_DEBUG */
  705. } else {
  706. SERIAL_ERROR_START;
  707. SERIAL_ECHOPGM("Enqueing to the front: \"");
  708. if (from_progmem)
  709. SERIAL_PROTOCOLRPGM(cmd);
  710. else
  711. SERIAL_ECHO(cmd);
  712. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  713. #ifdef CMDBUFFER_DEBUG
  714. cmdqueue_dump_to_serial();
  715. #endif /* CMDBUFFER_DEBUG */
  716. }
  717. }
  718. // Mark the command at the top of the command queue as new.
  719. // Therefore it will not be removed from the queue.
  720. void repeatcommand_front()
  721. {
  722. cmdbuffer_front_already_processed = true;
  723. }
  724. bool is_buffer_empty()
  725. {
  726. if (buflen == 0) return true;
  727. else return false;
  728. }
  729. void setup_killpin()
  730. {
  731. #if defined(KILL_PIN) && KILL_PIN > -1
  732. SET_INPUT(KILL_PIN);
  733. WRITE(KILL_PIN,HIGH);
  734. #endif
  735. }
  736. // Set home pin
  737. void setup_homepin(void)
  738. {
  739. #if defined(HOME_PIN) && HOME_PIN > -1
  740. SET_INPUT(HOME_PIN);
  741. WRITE(HOME_PIN,HIGH);
  742. #endif
  743. }
  744. void setup_photpin()
  745. {
  746. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  747. SET_OUTPUT(PHOTOGRAPH_PIN);
  748. WRITE(PHOTOGRAPH_PIN, LOW);
  749. #endif
  750. }
  751. void setup_powerhold()
  752. {
  753. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  754. SET_OUTPUT(SUICIDE_PIN);
  755. WRITE(SUICIDE_PIN, HIGH);
  756. #endif
  757. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  758. SET_OUTPUT(PS_ON_PIN);
  759. #if defined(PS_DEFAULT_OFF)
  760. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  761. #else
  762. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  763. #endif
  764. #endif
  765. }
  766. void suicide()
  767. {
  768. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  769. SET_OUTPUT(SUICIDE_PIN);
  770. WRITE(SUICIDE_PIN, LOW);
  771. #endif
  772. }
  773. void servo_init()
  774. {
  775. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  776. servos[0].attach(SERVO0_PIN);
  777. #endif
  778. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  779. servos[1].attach(SERVO1_PIN);
  780. #endif
  781. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  782. servos[2].attach(SERVO2_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  785. servos[3].attach(SERVO3_PIN);
  786. #endif
  787. #if (NUM_SERVOS >= 5)
  788. #error "TODO: enter initalisation code for more servos"
  789. #endif
  790. }
  791. static void lcd_language_menu();
  792. #ifdef MESH_BED_LEVELING
  793. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  794. #endif
  795. // Factory reset function
  796. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  797. // Level input parameter sets depth of reset
  798. // Quiet parameter masks all waitings for user interact.
  799. int er_progress = 0;
  800. void factory_reset(char level, bool quiet)
  801. {
  802. lcd_implementation_clear();
  803. int cursor_pos = 0;
  804. switch (level) {
  805. // Level 0: Language reset
  806. case 0:
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. lcd_force_language_selection();
  811. break;
  812. //Level 1: Reset statistics
  813. case 1:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  818. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  819. lcd_menu_statistics();
  820. break;
  821. // Level 2: Prepare for shipping
  822. case 2:
  823. //lcd_printPGM(PSTR("Factory RESET"));
  824. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  825. // Force language selection at the next boot up.
  826. lcd_force_language_selection();
  827. // Force the "Follow calibration flow" message at the next boot up.
  828. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  829. farm_no = 0;
  830. farm_mode == false;
  831. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  832. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  833. WRITE(BEEPER, HIGH);
  834. _delay_ms(100);
  835. WRITE(BEEPER, LOW);
  836. //_delay_ms(2000);
  837. break;
  838. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  839. case 3:
  840. lcd_printPGM(PSTR("Factory RESET"));
  841. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. er_progress = 0;
  846. lcd_print_at_PGM(3, 3, PSTR(" "));
  847. lcd_implementation_print_at(3, 3, er_progress);
  848. // Erase EEPROM
  849. for (int i = 0; i < 4096; i++) {
  850. eeprom_write_byte((uint8_t*)i, 0xFF);
  851. if (i % 41 == 0) {
  852. er_progress++;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. lcd_printPGM(PSTR("%"));
  856. }
  857. }
  858. break;
  859. case 4:
  860. bowden_menu();
  861. break;
  862. default:
  863. break;
  864. }
  865. }
  866. // "Setup" function is called by the Arduino framework on startup.
  867. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  868. // are initialized by the main() routine provided by the Arduino framework.
  869. void setup()
  870. {
  871. setup_killpin();
  872. setup_powerhold();
  873. MYSERIAL.begin(BAUDRATE);
  874. SERIAL_PROTOCOLLNPGM("start");
  875. SERIAL_ECHO_START;
  876. #if 0
  877. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  878. for (int i = 0; i < 4096; ++i) {
  879. int b = eeprom_read_byte((unsigned char*)i);
  880. if (b != 255) {
  881. SERIAL_ECHO(i);
  882. SERIAL_ECHO(":");
  883. SERIAL_ECHO(b);
  884. SERIAL_ECHOLN("");
  885. }
  886. }
  887. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  888. #endif
  889. // Check startup - does nothing if bootloader sets MCUSR to 0
  890. byte mcu = MCUSR;
  891. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  892. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  893. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  894. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  895. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  896. MCUSR = 0;
  897. //SERIAL_ECHORPGM(MSG_MARLIN);
  898. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  899. #ifdef STRING_VERSION_CONFIG_H
  900. #ifdef STRING_CONFIG_H_AUTHOR
  901. SERIAL_ECHO_START;
  902. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  903. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  904. SERIAL_ECHORPGM(MSG_AUTHOR);
  905. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  906. SERIAL_ECHOPGM("Compiled: ");
  907. SERIAL_ECHOLNPGM(__DATE__);
  908. #endif
  909. #endif
  910. SERIAL_ECHO_START;
  911. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  912. SERIAL_ECHO(freeMemory());
  913. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  914. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  915. lcd_update_enable(false);
  916. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  917. bool previous_settings_retrieved = Config_RetrieveSettings();
  918. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  919. tp_init(); // Initialize temperature loop
  920. plan_init(); // Initialize planner;
  921. watchdog_init();
  922. st_init(); // Initialize stepper, this enables interrupts!
  923. setup_photpin();
  924. servo_init();
  925. // Reset the machine correction matrix.
  926. // It does not make sense to load the correction matrix until the machine is homed.
  927. world2machine_reset();
  928. lcd_init();
  929. if (!READ(BTN_ENC))
  930. {
  931. _delay_ms(1000);
  932. if (!READ(BTN_ENC))
  933. {
  934. lcd_implementation_clear();
  935. lcd_printPGM(PSTR("Factory RESET"));
  936. SET_OUTPUT(BEEPER);
  937. WRITE(BEEPER, HIGH);
  938. while (!READ(BTN_ENC));
  939. WRITE(BEEPER, LOW);
  940. _delay_ms(2000);
  941. char level = reset_menu();
  942. factory_reset(level, false);
  943. switch (level) {
  944. case 0: _delay_ms(0); break;
  945. case 1: _delay_ms(0); break;
  946. case 2: _delay_ms(0); break;
  947. case 3: _delay_ms(0); break;
  948. }
  949. // _delay_ms(100);
  950. /*
  951. #ifdef MESH_BED_LEVELING
  952. _delay_ms(2000);
  953. if (!READ(BTN_ENC))
  954. {
  955. WRITE(BEEPER, HIGH);
  956. _delay_ms(100);
  957. WRITE(BEEPER, LOW);
  958. _delay_ms(200);
  959. WRITE(BEEPER, HIGH);
  960. _delay_ms(100);
  961. WRITE(BEEPER, LOW);
  962. int _z = 0;
  963. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  964. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  965. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  966. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  967. }
  968. else
  969. {
  970. WRITE(BEEPER, HIGH);
  971. _delay_ms(100);
  972. WRITE(BEEPER, LOW);
  973. }
  974. #endif // mesh */
  975. }
  976. }
  977. else
  978. {
  979. _delay_ms(1000); // wait 1sec to display the splash screen
  980. }
  981. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  982. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  983. #endif
  984. #ifdef DIGIPOT_I2C
  985. digipot_i2c_init();
  986. #endif
  987. setup_homepin();
  988. #if defined(Z_AXIS_ALWAYS_ON)
  989. enable_z();
  990. #endif
  991. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  992. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  993. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  994. if (farm_no == 0xFFFF) farm_no = 0;
  995. if (farm_mode)
  996. {
  997. prusa_statistics(8);
  998. }
  999. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1000. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1001. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1002. // but this times out if a blocking dialog is shown in setup().
  1003. card.initsd();
  1004. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1005. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1006. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1007. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1008. // where all the EEPROM entries are set to 0x0ff.
  1009. // Once a firmware boots up, it forces at least a language selection, which changes
  1010. // EEPROM_LANG to number lower than 0x0ff.
  1011. // 1) Set a high power mode.
  1012. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1013. }
  1014. #ifdef SNMM
  1015. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1016. int _z = BOWDEN_LENGTH;
  1017. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1018. }
  1019. #endif
  1020. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1021. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1022. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1023. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1024. if (lang_selected >= LANG_NUM){
  1025. lcd_mylang();
  1026. }
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1028. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1029. temp_cal_active = false;
  1030. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1031. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1032. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1033. }
  1034. check_babystep(); //checking if Z babystep is in allowed range
  1035. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1036. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1037. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1038. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1039. // Show the message.
  1040. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1041. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1042. // Show the message.
  1043. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1044. lcd_update_enable(true);
  1045. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1047. lcd_update_enable(true);
  1048. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1049. // Show the message.
  1050. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1051. }
  1052. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1053. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1054. if (!previous_settings_retrieved) {
  1055. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1056. }
  1057. lcd_update_enable(true);
  1058. // Store the currently running firmware into an eeprom,
  1059. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1060. update_current_firmware_version_to_eeprom();
  1061. }
  1062. void trace();
  1063. #define CHUNK_SIZE 64 // bytes
  1064. #define SAFETY_MARGIN 1
  1065. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1066. int chunkHead = 0;
  1067. int serial_read_stream() {
  1068. setTargetHotend(0, 0);
  1069. setTargetBed(0);
  1070. lcd_implementation_clear();
  1071. lcd_printPGM(PSTR(" Upload in progress"));
  1072. // first wait for how many bytes we will receive
  1073. uint32_t bytesToReceive;
  1074. // receive the four bytes
  1075. char bytesToReceiveBuffer[4];
  1076. for (int i=0; i<4; i++) {
  1077. int data;
  1078. while ((data = MYSERIAL.read()) == -1) {};
  1079. bytesToReceiveBuffer[i] = data;
  1080. }
  1081. // make it a uint32
  1082. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1083. // we're ready, notify the sender
  1084. MYSERIAL.write('+');
  1085. // lock in the routine
  1086. uint32_t receivedBytes = 0;
  1087. while (prusa_sd_card_upload) {
  1088. int i;
  1089. for (i=0; i<CHUNK_SIZE; i++) {
  1090. int data;
  1091. // check if we're not done
  1092. if (receivedBytes == bytesToReceive) {
  1093. break;
  1094. }
  1095. // read the next byte
  1096. while ((data = MYSERIAL.read()) == -1) {};
  1097. receivedBytes++;
  1098. // save it to the chunk
  1099. chunk[i] = data;
  1100. }
  1101. // write the chunk to SD
  1102. card.write_command_no_newline(&chunk[0]);
  1103. // notify the sender we're ready for more data
  1104. MYSERIAL.write('+');
  1105. // for safety
  1106. manage_heater();
  1107. // check if we're done
  1108. if(receivedBytes == bytesToReceive) {
  1109. trace(); // beep
  1110. card.closefile();
  1111. prusa_sd_card_upload = false;
  1112. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1113. return 0;
  1114. }
  1115. }
  1116. }
  1117. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1118. // Before loop(), the setup() function is called by the main() routine.
  1119. void loop()
  1120. {
  1121. bool stack_integrity = true;
  1122. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1123. {
  1124. is_usb_printing = true;
  1125. usb_printing_counter--;
  1126. _usb_timer = millis();
  1127. }
  1128. if (usb_printing_counter == 0)
  1129. {
  1130. is_usb_printing = false;
  1131. }
  1132. if (prusa_sd_card_upload)
  1133. {
  1134. //we read byte-by byte
  1135. serial_read_stream();
  1136. } else
  1137. {
  1138. get_command();
  1139. #ifdef SDSUPPORT
  1140. card.checkautostart(false);
  1141. #endif
  1142. if(buflen)
  1143. {
  1144. #ifdef SDSUPPORT
  1145. if(card.saving)
  1146. {
  1147. // Saving a G-code file onto an SD-card is in progress.
  1148. // Saving starts with M28, saving until M29 is seen.
  1149. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1150. card.write_command(CMDBUFFER_CURRENT_STRING);
  1151. if(card.logging)
  1152. process_commands();
  1153. else
  1154. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1155. } else {
  1156. card.closefile();
  1157. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1158. }
  1159. } else {
  1160. process_commands();
  1161. }
  1162. #else
  1163. process_commands();
  1164. #endif //SDSUPPORT
  1165. if (! cmdbuffer_front_already_processed)
  1166. cmdqueue_pop_front();
  1167. cmdbuffer_front_already_processed = false;
  1168. }
  1169. }
  1170. //check heater every n milliseconds
  1171. manage_heater();
  1172. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1173. checkHitEndstops();
  1174. lcd_update();
  1175. }
  1176. void get_command()
  1177. {
  1178. // Test and reserve space for the new command string.
  1179. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1180. return;
  1181. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1182. while (MYSERIAL.available() > 0) {
  1183. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1184. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1185. rx_buffer_full = true; //sets flag that buffer was full
  1186. }
  1187. char serial_char = MYSERIAL.read();
  1188. TimeSent = millis();
  1189. TimeNow = millis();
  1190. if (serial_char < 0)
  1191. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1192. // and Marlin does not support such file names anyway.
  1193. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1194. // to a hang-up of the print process from an SD card.
  1195. continue;
  1196. if(serial_char == '\n' ||
  1197. serial_char == '\r' ||
  1198. (serial_char == ':' && comment_mode == false) ||
  1199. serial_count >= (MAX_CMD_SIZE - 1) )
  1200. {
  1201. if(!serial_count) { //if empty line
  1202. comment_mode = false; //for new command
  1203. return;
  1204. }
  1205. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1206. if(!comment_mode){
  1207. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1208. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1209. {
  1210. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1211. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1212. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1213. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1214. // M110 - set current line number.
  1215. // Line numbers not sent in succession.
  1216. SERIAL_ERROR_START;
  1217. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1218. SERIAL_ERRORLN(gcode_LastN);
  1219. //Serial.println(gcode_N);
  1220. FlushSerialRequestResend();
  1221. serial_count = 0;
  1222. return;
  1223. }
  1224. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1225. {
  1226. byte checksum = 0;
  1227. char *p = cmdbuffer+bufindw+1;
  1228. while (p != strchr_pointer)
  1229. checksum = checksum^(*p++);
  1230. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1231. SERIAL_ERROR_START;
  1232. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1233. SERIAL_ERRORLN(gcode_LastN);
  1234. FlushSerialRequestResend();
  1235. serial_count = 0;
  1236. return;
  1237. }
  1238. // If no errors, remove the checksum and continue parsing.
  1239. *strchr_pointer = 0;
  1240. }
  1241. else
  1242. {
  1243. SERIAL_ERROR_START;
  1244. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1245. SERIAL_ERRORLN(gcode_LastN);
  1246. FlushSerialRequestResend();
  1247. serial_count = 0;
  1248. return;
  1249. }
  1250. gcode_LastN = gcode_N;
  1251. //if no errors, continue parsing
  1252. } // end of 'N' command
  1253. }
  1254. else // if we don't receive 'N' but still see '*'
  1255. {
  1256. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1257. {
  1258. SERIAL_ERROR_START;
  1259. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1260. SERIAL_ERRORLN(gcode_LastN);
  1261. serial_count = 0;
  1262. return;
  1263. }
  1264. } // end of '*' command
  1265. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1266. if (! IS_SD_PRINTING) {
  1267. usb_printing_counter = 10;
  1268. is_usb_printing = true;
  1269. }
  1270. if (Stopped == true) {
  1271. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1272. if (gcode >= 0 && gcode <= 3) {
  1273. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1274. LCD_MESSAGERPGM(MSG_STOPPED);
  1275. }
  1276. }
  1277. } // end of 'G' command
  1278. //If command was e-stop process now
  1279. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1280. kill();
  1281. // Store the current line into buffer, move to the next line.
  1282. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1283. #ifdef CMDBUFFER_DEBUG
  1284. SERIAL_ECHO_START;
  1285. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1286. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1287. SERIAL_ECHOLNPGM("");
  1288. #endif /* CMDBUFFER_DEBUG */
  1289. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1290. if (bufindw == sizeof(cmdbuffer))
  1291. bufindw = 0;
  1292. ++ buflen;
  1293. #ifdef CMDBUFFER_DEBUG
  1294. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1295. SERIAL_ECHO(buflen);
  1296. SERIAL_ECHOLNPGM("");
  1297. #endif /* CMDBUFFER_DEBUG */
  1298. } // end of 'not comment mode'
  1299. serial_count = 0; //clear buffer
  1300. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1301. // in the queue, as this function will reserve the memory.
  1302. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1303. return;
  1304. } // end of "end of line" processing
  1305. else {
  1306. // Not an "end of line" symbol. Store the new character into a buffer.
  1307. if(serial_char == ';') comment_mode = true;
  1308. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1309. }
  1310. } // end of serial line processing loop
  1311. if(farm_mode){
  1312. TimeNow = millis();
  1313. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1314. cmdbuffer[bufindw+serial_count+1] = 0;
  1315. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1316. if (bufindw == sizeof(cmdbuffer))
  1317. bufindw = 0;
  1318. ++ buflen;
  1319. serial_count = 0;
  1320. SERIAL_ECHOPGM("TIMEOUT:");
  1321. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1322. return;
  1323. }
  1324. }
  1325. //add comment
  1326. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1327. rx_buffer_full = false;
  1328. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1329. serial_count = 0;
  1330. }
  1331. #ifdef SDSUPPORT
  1332. if(!card.sdprinting || serial_count!=0){
  1333. // If there is a half filled buffer from serial line, wait until return before
  1334. // continuing with the serial line.
  1335. return;
  1336. }
  1337. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1338. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1339. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1340. static bool stop_buffering=false;
  1341. if(buflen==0) stop_buffering=false;
  1342. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1343. while( !card.eof() && !stop_buffering) {
  1344. int16_t n=card.get();
  1345. char serial_char = (char)n;
  1346. if(serial_char == '\n' ||
  1347. serial_char == '\r' ||
  1348. (serial_char == '#' && comment_mode == false) ||
  1349. (serial_char == ':' && comment_mode == false) ||
  1350. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1351. {
  1352. if(card.eof()){
  1353. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1354. stoptime=millis();
  1355. char time[30];
  1356. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1357. pause_time = 0;
  1358. int hours, minutes;
  1359. minutes=(t/60)%60;
  1360. hours=t/60/60;
  1361. save_statistics(total_filament_used, t);
  1362. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1363. SERIAL_ECHO_START;
  1364. SERIAL_ECHOLN(time);
  1365. lcd_setstatus(time);
  1366. card.printingHasFinished();
  1367. card.checkautostart(true);
  1368. if (farm_mode)
  1369. {
  1370. prusa_statistics(6);
  1371. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1372. }
  1373. }
  1374. if(serial_char=='#')
  1375. stop_buffering=true;
  1376. if(!serial_count)
  1377. {
  1378. comment_mode = false; //for new command
  1379. return; //if empty line
  1380. }
  1381. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1382. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1383. ++ buflen;
  1384. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1385. if (bufindw == sizeof(cmdbuffer))
  1386. bufindw = 0;
  1387. comment_mode = false; //for new command
  1388. serial_count = 0; //clear buffer
  1389. // The following line will reserve buffer space if available.
  1390. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1391. return;
  1392. }
  1393. else
  1394. {
  1395. if(serial_char == ';') comment_mode = true;
  1396. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1397. }
  1398. }
  1399. #endif //SDSUPPORT
  1400. }
  1401. // Return True if a character was found
  1402. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1403. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1404. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1405. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1406. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1407. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1408. #define DEFINE_PGM_READ_ANY(type, reader) \
  1409. static inline type pgm_read_any(const type *p) \
  1410. { return pgm_read_##reader##_near(p); }
  1411. DEFINE_PGM_READ_ANY(float, float);
  1412. DEFINE_PGM_READ_ANY(signed char, byte);
  1413. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1414. static const PROGMEM type array##_P[3] = \
  1415. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1416. static inline type array(int axis) \
  1417. { return pgm_read_any(&array##_P[axis]); } \
  1418. type array##_ext(int axis) \
  1419. { return pgm_read_any(&array##_P[axis]); }
  1420. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1421. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1422. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1423. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1424. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1425. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1426. static void axis_is_at_home(int axis) {
  1427. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1428. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1429. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1430. }
  1431. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1432. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1433. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1434. saved_feedrate = feedrate;
  1435. saved_feedmultiply = feedmultiply;
  1436. feedmultiply = 100;
  1437. previous_millis_cmd = millis();
  1438. enable_endstops(enable_endstops_now);
  1439. }
  1440. static void clean_up_after_endstop_move() {
  1441. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1442. enable_endstops(false);
  1443. #endif
  1444. feedrate = saved_feedrate;
  1445. feedmultiply = saved_feedmultiply;
  1446. previous_millis_cmd = millis();
  1447. }
  1448. #ifdef ENABLE_AUTO_BED_LEVELING
  1449. #ifdef AUTO_BED_LEVELING_GRID
  1450. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1451. {
  1452. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1453. planeNormal.debug("planeNormal");
  1454. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1455. //bedLevel.debug("bedLevel");
  1456. //plan_bed_level_matrix.debug("bed level before");
  1457. //vector_3 uncorrected_position = plan_get_position_mm();
  1458. //uncorrected_position.debug("position before");
  1459. vector_3 corrected_position = plan_get_position();
  1460. // corrected_position.debug("position after");
  1461. current_position[X_AXIS] = corrected_position.x;
  1462. current_position[Y_AXIS] = corrected_position.y;
  1463. current_position[Z_AXIS] = corrected_position.z;
  1464. // put the bed at 0 so we don't go below it.
  1465. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1467. }
  1468. #else // not AUTO_BED_LEVELING_GRID
  1469. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1470. plan_bed_level_matrix.set_to_identity();
  1471. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1472. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1473. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1474. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1475. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1476. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1477. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1478. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1479. vector_3 corrected_position = plan_get_position();
  1480. current_position[X_AXIS] = corrected_position.x;
  1481. current_position[Y_AXIS] = corrected_position.y;
  1482. current_position[Z_AXIS] = corrected_position.z;
  1483. // put the bed at 0 so we don't go below it.
  1484. current_position[Z_AXIS] = zprobe_zoffset;
  1485. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1486. }
  1487. #endif // AUTO_BED_LEVELING_GRID
  1488. static void run_z_probe() {
  1489. plan_bed_level_matrix.set_to_identity();
  1490. feedrate = homing_feedrate[Z_AXIS];
  1491. // move down until you find the bed
  1492. float zPosition = -10;
  1493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1494. st_synchronize();
  1495. // we have to let the planner know where we are right now as it is not where we said to go.
  1496. zPosition = st_get_position_mm(Z_AXIS);
  1497. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1498. // move up the retract distance
  1499. zPosition += home_retract_mm(Z_AXIS);
  1500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1501. st_synchronize();
  1502. // move back down slowly to find bed
  1503. feedrate = homing_feedrate[Z_AXIS]/4;
  1504. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1506. st_synchronize();
  1507. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1508. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1510. }
  1511. static void do_blocking_move_to(float x, float y, float z) {
  1512. float oldFeedRate = feedrate;
  1513. feedrate = homing_feedrate[Z_AXIS];
  1514. current_position[Z_AXIS] = z;
  1515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1516. st_synchronize();
  1517. feedrate = XY_TRAVEL_SPEED;
  1518. current_position[X_AXIS] = x;
  1519. current_position[Y_AXIS] = y;
  1520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1521. st_synchronize();
  1522. feedrate = oldFeedRate;
  1523. }
  1524. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1525. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1526. }
  1527. /// Probe bed height at position (x,y), returns the measured z value
  1528. static float probe_pt(float x, float y, float z_before) {
  1529. // move to right place
  1530. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1531. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1532. run_z_probe();
  1533. float measured_z = current_position[Z_AXIS];
  1534. SERIAL_PROTOCOLRPGM(MSG_BED);
  1535. SERIAL_PROTOCOLPGM(" x: ");
  1536. SERIAL_PROTOCOL(x);
  1537. SERIAL_PROTOCOLPGM(" y: ");
  1538. SERIAL_PROTOCOL(y);
  1539. SERIAL_PROTOCOLPGM(" z: ");
  1540. SERIAL_PROTOCOL(measured_z);
  1541. SERIAL_PROTOCOLPGM("\n");
  1542. return measured_z;
  1543. }
  1544. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1545. void homeaxis(int axis) {
  1546. #define HOMEAXIS_DO(LETTER) \
  1547. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1548. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1549. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1550. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1551. 0) {
  1552. int axis_home_dir = home_dir(axis);
  1553. current_position[axis] = 0;
  1554. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1555. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1556. feedrate = homing_feedrate[axis];
  1557. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1558. st_synchronize();
  1559. current_position[axis] = 0;
  1560. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1561. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1562. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1563. st_synchronize();
  1564. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1565. feedrate = homing_feedrate[axis]/2 ;
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. axis_is_at_home(axis);
  1569. destination[axis] = current_position[axis];
  1570. feedrate = 0.0;
  1571. endstops_hit_on_purpose();
  1572. axis_known_position[axis] = true;
  1573. }
  1574. }
  1575. void home_xy()
  1576. {
  1577. set_destination_to_current();
  1578. homeaxis(X_AXIS);
  1579. homeaxis(Y_AXIS);
  1580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1581. endstops_hit_on_purpose();
  1582. }
  1583. void refresh_cmd_timeout(void)
  1584. {
  1585. previous_millis_cmd = millis();
  1586. }
  1587. #ifdef FWRETRACT
  1588. void retract(bool retracting, bool swapretract = false) {
  1589. if(retracting && !retracted[active_extruder]) {
  1590. destination[X_AXIS]=current_position[X_AXIS];
  1591. destination[Y_AXIS]=current_position[Y_AXIS];
  1592. destination[Z_AXIS]=current_position[Z_AXIS];
  1593. destination[E_AXIS]=current_position[E_AXIS];
  1594. if (swapretract) {
  1595. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1596. } else {
  1597. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1598. }
  1599. plan_set_e_position(current_position[E_AXIS]);
  1600. float oldFeedrate = feedrate;
  1601. feedrate=retract_feedrate*60;
  1602. retracted[active_extruder]=true;
  1603. prepare_move();
  1604. current_position[Z_AXIS]-=retract_zlift;
  1605. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1606. prepare_move();
  1607. feedrate = oldFeedrate;
  1608. } else if(!retracting && retracted[active_extruder]) {
  1609. destination[X_AXIS]=current_position[X_AXIS];
  1610. destination[Y_AXIS]=current_position[Y_AXIS];
  1611. destination[Z_AXIS]=current_position[Z_AXIS];
  1612. destination[E_AXIS]=current_position[E_AXIS];
  1613. current_position[Z_AXIS]+=retract_zlift;
  1614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1615. //prepare_move();
  1616. if (swapretract) {
  1617. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1618. } else {
  1619. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1620. }
  1621. plan_set_e_position(current_position[E_AXIS]);
  1622. float oldFeedrate = feedrate;
  1623. feedrate=retract_recover_feedrate*60;
  1624. retracted[active_extruder]=false;
  1625. prepare_move();
  1626. feedrate = oldFeedrate;
  1627. }
  1628. } //retract
  1629. #endif //FWRETRACT
  1630. void trace() {
  1631. tone(BEEPER, 440);
  1632. delay(25);
  1633. noTone(BEEPER);
  1634. delay(20);
  1635. }
  1636. /*
  1637. void ramming() {
  1638. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1639. if (current_temperature[0] < 230) {
  1640. //PLA
  1641. max_feedrate[E_AXIS] = 50;
  1642. //current_position[E_AXIS] -= 8;
  1643. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1644. //current_position[E_AXIS] += 8;
  1645. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1646. current_position[E_AXIS] += 5.4;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1648. current_position[E_AXIS] += 3.2;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1650. current_position[E_AXIS] += 3;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1652. st_synchronize();
  1653. max_feedrate[E_AXIS] = 80;
  1654. current_position[E_AXIS] -= 82;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1656. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1657. current_position[E_AXIS] -= 20;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1659. current_position[E_AXIS] += 5;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1661. current_position[E_AXIS] += 5;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1663. current_position[E_AXIS] -= 10;
  1664. st_synchronize();
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. current_position[E_AXIS] += 10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1668. current_position[E_AXIS] -= 10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1670. current_position[E_AXIS] += 10;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1672. current_position[E_AXIS] -= 10;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1674. st_synchronize();
  1675. }
  1676. else {
  1677. //ABS
  1678. max_feedrate[E_AXIS] = 50;
  1679. //current_position[E_AXIS] -= 8;
  1680. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1681. //current_position[E_AXIS] += 8;
  1682. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1683. current_position[E_AXIS] += 3.1;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1685. current_position[E_AXIS] += 3.1;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1687. current_position[E_AXIS] += 4;
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1689. st_synchronize();
  1690. //current_position[X_AXIS] += 23; //delay
  1691. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1692. //current_position[X_AXIS] -= 23; //delay
  1693. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1694. delay(4700);
  1695. max_feedrate[E_AXIS] = 80;
  1696. current_position[E_AXIS] -= 92;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1698. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1699. current_position[E_AXIS] -= 5;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1701. current_position[E_AXIS] += 5;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1703. current_position[E_AXIS] -= 5;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1705. st_synchronize();
  1706. current_position[E_AXIS] += 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. current_position[E_AXIS] -= 5;
  1709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1710. current_position[E_AXIS] += 5;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1712. current_position[E_AXIS] -= 5;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1714. st_synchronize();
  1715. }
  1716. }
  1717. */
  1718. void process_commands()
  1719. {
  1720. #ifdef FILAMENT_RUNOUT_SUPPORT
  1721. SET_INPUT(FR_SENS);
  1722. #endif
  1723. #ifdef CMDBUFFER_DEBUG
  1724. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1725. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1726. SERIAL_ECHOLNPGM("");
  1727. SERIAL_ECHOPGM("In cmdqueue: ");
  1728. SERIAL_ECHO(buflen);
  1729. SERIAL_ECHOLNPGM("");
  1730. #endif /* CMDBUFFER_DEBUG */
  1731. unsigned long codenum; //throw away variable
  1732. char *starpos = NULL;
  1733. #ifdef ENABLE_AUTO_BED_LEVELING
  1734. float x_tmp, y_tmp, z_tmp, real_z;
  1735. #endif
  1736. // PRUSA GCODES
  1737. #ifdef SNMM
  1738. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1739. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1740. int8_t SilentMode;
  1741. #endif
  1742. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1743. starpos = (strchr(strchr_pointer + 5, '*'));
  1744. if (starpos != NULL)
  1745. *(starpos) = '\0';
  1746. lcd_setstatus(strchr_pointer + 5);
  1747. }
  1748. else if(code_seen("PRUSA")){
  1749. if (code_seen("Ping")) { //PRUSA Ping
  1750. if (farm_mode) {
  1751. PingTime = millis();
  1752. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1753. }
  1754. }
  1755. else if (code_seen("PRN")) {
  1756. MYSERIAL.println(status_number);
  1757. }else if (code_seen("fn")) {
  1758. if (farm_mode) {
  1759. MYSERIAL.println(farm_no);
  1760. }
  1761. else {
  1762. MYSERIAL.println("Not in farm mode.");
  1763. }
  1764. }else if (code_seen("fv")) {
  1765. // get file version
  1766. #ifdef SDSUPPORT
  1767. card.openFile(strchr_pointer + 3,true);
  1768. while (true) {
  1769. uint16_t readByte = card.get();
  1770. MYSERIAL.write(readByte);
  1771. if (readByte=='\n') {
  1772. break;
  1773. }
  1774. }
  1775. card.closefile();
  1776. #endif // SDSUPPORT
  1777. } else if (code_seen("M28")) {
  1778. trace();
  1779. prusa_sd_card_upload = true;
  1780. card.openFile(strchr_pointer+4,false);
  1781. } else if(code_seen("Fir")){
  1782. SERIAL_PROTOCOLLN(FW_version);
  1783. } else if(code_seen("Rev")){
  1784. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1785. } else if(code_seen("Lang")) {
  1786. lcd_force_language_selection();
  1787. } else if(code_seen("Lz")) {
  1788. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1789. } else if (code_seen("SERIAL LOW")) {
  1790. MYSERIAL.println("SERIAL LOW");
  1791. MYSERIAL.begin(BAUDRATE);
  1792. return;
  1793. } else if (code_seen("SERIAL HIGH")) {
  1794. MYSERIAL.println("SERIAL HIGH");
  1795. MYSERIAL.begin(1152000);
  1796. return;
  1797. } else if(code_seen("Beat")) {
  1798. // Kick farm link timer
  1799. kicktime = millis();
  1800. } else if(code_seen("FR")) {
  1801. // Factory full reset
  1802. factory_reset(0,true);
  1803. }
  1804. //else if (code_seen('Cal')) {
  1805. // lcd_calibration();
  1806. // }
  1807. }
  1808. else if (code_seen('^')) {
  1809. // nothing, this is a version line
  1810. } else if(code_seen('G'))
  1811. {
  1812. switch((int)code_value())
  1813. {
  1814. case 0: // G0 -> G1
  1815. case 1: // G1
  1816. if(Stopped == false) {
  1817. #ifdef FILAMENT_RUNOUT_SUPPORT
  1818. if(READ(FR_SENS)){
  1819. feedmultiplyBckp=feedmultiply;
  1820. float target[4];
  1821. float lastpos[4];
  1822. target[X_AXIS]=current_position[X_AXIS];
  1823. target[Y_AXIS]=current_position[Y_AXIS];
  1824. target[Z_AXIS]=current_position[Z_AXIS];
  1825. target[E_AXIS]=current_position[E_AXIS];
  1826. lastpos[X_AXIS]=current_position[X_AXIS];
  1827. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1828. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1829. lastpos[E_AXIS]=current_position[E_AXIS];
  1830. //retract by E
  1831. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1833. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1835. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1836. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1838. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1839. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1840. //finish moves
  1841. st_synchronize();
  1842. //disable extruder steppers so filament can be removed
  1843. disable_e0();
  1844. disable_e1();
  1845. disable_e2();
  1846. delay(100);
  1847. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1848. uint8_t cnt=0;
  1849. int counterBeep = 0;
  1850. lcd_wait_interact();
  1851. while(!lcd_clicked()){
  1852. cnt++;
  1853. manage_heater();
  1854. manage_inactivity(true);
  1855. //lcd_update();
  1856. if(cnt==0)
  1857. {
  1858. #if BEEPER > 0
  1859. if (counterBeep== 500){
  1860. counterBeep = 0;
  1861. }
  1862. SET_OUTPUT(BEEPER);
  1863. if (counterBeep== 0){
  1864. WRITE(BEEPER,HIGH);
  1865. }
  1866. if (counterBeep== 20){
  1867. WRITE(BEEPER,LOW);
  1868. }
  1869. counterBeep++;
  1870. #else
  1871. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1872. lcd_buzz(1000/6,100);
  1873. #else
  1874. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1875. #endif
  1876. #endif
  1877. }
  1878. }
  1879. WRITE(BEEPER,LOW);
  1880. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1881. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1882. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1884. lcd_change_fil_state = 0;
  1885. lcd_loading_filament();
  1886. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1887. lcd_change_fil_state = 0;
  1888. lcd_alright();
  1889. switch(lcd_change_fil_state){
  1890. case 2:
  1891. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1893. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1895. lcd_loading_filament();
  1896. break;
  1897. case 3:
  1898. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1900. lcd_loading_color();
  1901. break;
  1902. default:
  1903. lcd_change_success();
  1904. break;
  1905. }
  1906. }
  1907. target[E_AXIS]+= 5;
  1908. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1909. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1911. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1912. //plan_set_e_position(current_position[E_AXIS]);
  1913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1914. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1915. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1916. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1917. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1918. plan_set_e_position(lastpos[E_AXIS]);
  1919. feedmultiply=feedmultiplyBckp;
  1920. char cmd[9];
  1921. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1922. enquecommand(cmd);
  1923. }
  1924. #endif
  1925. get_coordinates(); // For X Y Z E F
  1926. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1927. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1928. }
  1929. #ifdef FWRETRACT
  1930. if(autoretract_enabled)
  1931. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1932. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1933. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1934. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1935. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1936. retract(!retracted);
  1937. return;
  1938. }
  1939. }
  1940. #endif //FWRETRACT
  1941. prepare_move();
  1942. //ClearToSend();
  1943. }
  1944. break;
  1945. case 2: // G2 - CW ARC
  1946. if(Stopped == false) {
  1947. get_arc_coordinates();
  1948. prepare_arc_move(true);
  1949. }
  1950. break;
  1951. case 3: // G3 - CCW ARC
  1952. if(Stopped == false) {
  1953. get_arc_coordinates();
  1954. prepare_arc_move(false);
  1955. }
  1956. break;
  1957. case 4: // G4 dwell
  1958. codenum = 0;
  1959. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1960. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1961. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1962. st_synchronize();
  1963. codenum += millis(); // keep track of when we started waiting
  1964. previous_millis_cmd = millis();
  1965. while(millis() < codenum) {
  1966. manage_heater();
  1967. manage_inactivity();
  1968. lcd_update();
  1969. }
  1970. break;
  1971. #ifdef FWRETRACT
  1972. case 10: // G10 retract
  1973. #if EXTRUDERS > 1
  1974. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1975. retract(true,retracted_swap[active_extruder]);
  1976. #else
  1977. retract(true);
  1978. #endif
  1979. break;
  1980. case 11: // G11 retract_recover
  1981. #if EXTRUDERS > 1
  1982. retract(false,retracted_swap[active_extruder]);
  1983. #else
  1984. retract(false);
  1985. #endif
  1986. break;
  1987. #endif //FWRETRACT
  1988. case 28: //G28 Home all Axis one at a time
  1989. homing_flag = true;
  1990. #ifdef ENABLE_AUTO_BED_LEVELING
  1991. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1992. #endif //ENABLE_AUTO_BED_LEVELING
  1993. // For mesh bed leveling deactivate the matrix temporarily
  1994. #ifdef MESH_BED_LEVELING
  1995. mbl.active = 0;
  1996. #endif
  1997. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1998. // the planner will not perform any adjustments in the XY plane.
  1999. // Wait for the motors to stop and update the current position with the absolute values.
  2000. world2machine_revert_to_uncorrected();
  2001. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2002. // consumed during the first movements following this statement.
  2003. babystep_undo();
  2004. saved_feedrate = feedrate;
  2005. saved_feedmultiply = feedmultiply;
  2006. feedmultiply = 100;
  2007. previous_millis_cmd = millis();
  2008. enable_endstops(true);
  2009. for(int8_t i=0; i < NUM_AXIS; i++)
  2010. destination[i] = current_position[i];
  2011. feedrate = 0.0;
  2012. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2013. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2014. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2015. homeaxis(Z_AXIS);
  2016. }
  2017. #endif
  2018. #ifdef QUICK_HOME
  2019. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2020. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2021. {
  2022. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2023. int x_axis_home_dir = home_dir(X_AXIS);
  2024. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2025. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2026. feedrate = homing_feedrate[X_AXIS];
  2027. if(homing_feedrate[Y_AXIS]<feedrate)
  2028. feedrate = homing_feedrate[Y_AXIS];
  2029. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2030. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2031. } else {
  2032. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2033. }
  2034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2035. st_synchronize();
  2036. axis_is_at_home(X_AXIS);
  2037. axis_is_at_home(Y_AXIS);
  2038. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2039. destination[X_AXIS] = current_position[X_AXIS];
  2040. destination[Y_AXIS] = current_position[Y_AXIS];
  2041. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2042. feedrate = 0.0;
  2043. st_synchronize();
  2044. endstops_hit_on_purpose();
  2045. current_position[X_AXIS] = destination[X_AXIS];
  2046. current_position[Y_AXIS] = destination[Y_AXIS];
  2047. current_position[Z_AXIS] = destination[Z_AXIS];
  2048. }
  2049. #endif /* QUICK_HOME */
  2050. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2051. homeaxis(X_AXIS);
  2052. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2053. homeaxis(Y_AXIS);
  2054. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2055. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2056. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2057. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2058. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2059. #ifndef Z_SAFE_HOMING
  2060. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2061. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2062. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2063. feedrate = max_feedrate[Z_AXIS];
  2064. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2065. st_synchronize();
  2066. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2067. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2068. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2069. {
  2070. homeaxis(X_AXIS);
  2071. homeaxis(Y_AXIS);
  2072. }
  2073. // 1st mesh bed leveling measurement point, corrected.
  2074. world2machine_initialize();
  2075. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2076. world2machine_reset();
  2077. if (destination[Y_AXIS] < Y_MIN_POS)
  2078. destination[Y_AXIS] = Y_MIN_POS;
  2079. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2080. feedrate = homing_feedrate[Z_AXIS]/10;
  2081. current_position[Z_AXIS] = 0;
  2082. enable_endstops(false);
  2083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2084. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2085. st_synchronize();
  2086. current_position[X_AXIS] = destination[X_AXIS];
  2087. current_position[Y_AXIS] = destination[Y_AXIS];
  2088. enable_endstops(true);
  2089. endstops_hit_on_purpose();
  2090. homeaxis(Z_AXIS);
  2091. #else // MESH_BED_LEVELING
  2092. homeaxis(Z_AXIS);
  2093. #endif // MESH_BED_LEVELING
  2094. }
  2095. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2096. if(home_all_axis) {
  2097. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2098. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2099. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2100. feedrate = XY_TRAVEL_SPEED/60;
  2101. current_position[Z_AXIS] = 0;
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2104. st_synchronize();
  2105. current_position[X_AXIS] = destination[X_AXIS];
  2106. current_position[Y_AXIS] = destination[Y_AXIS];
  2107. homeaxis(Z_AXIS);
  2108. }
  2109. // Let's see if X and Y are homed and probe is inside bed area.
  2110. if(code_seen(axis_codes[Z_AXIS])) {
  2111. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2112. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2113. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2114. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2115. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2116. current_position[Z_AXIS] = 0;
  2117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2118. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2119. feedrate = max_feedrate[Z_AXIS];
  2120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2121. st_synchronize();
  2122. homeaxis(Z_AXIS);
  2123. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2124. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2125. SERIAL_ECHO_START;
  2126. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2127. } else {
  2128. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2129. SERIAL_ECHO_START;
  2130. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2131. }
  2132. }
  2133. #endif // Z_SAFE_HOMING
  2134. #endif // Z_HOME_DIR < 0
  2135. if(code_seen(axis_codes[Z_AXIS])) {
  2136. if(code_value_long() != 0) {
  2137. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2138. }
  2139. }
  2140. #ifdef ENABLE_AUTO_BED_LEVELING
  2141. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2142. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2143. }
  2144. #endif
  2145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2146. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2147. enable_endstops(false);
  2148. #endif
  2149. feedrate = saved_feedrate;
  2150. feedmultiply = saved_feedmultiply;
  2151. previous_millis_cmd = millis();
  2152. endstops_hit_on_purpose();
  2153. #ifndef MESH_BED_LEVELING
  2154. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2155. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2156. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2157. lcd_adjust_z();
  2158. #endif
  2159. // Load the machine correction matrix
  2160. world2machine_initialize();
  2161. // and correct the current_position to match the transformed coordinate system.
  2162. world2machine_update_current();
  2163. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2164. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2165. {
  2166. }
  2167. else
  2168. {
  2169. st_synchronize();
  2170. homing_flag = false;
  2171. // Push the commands to the front of the message queue in the reverse order!
  2172. // There shall be always enough space reserved for these commands.
  2173. // enquecommand_front_P((PSTR("G80")));
  2174. goto case_G80;
  2175. }
  2176. #endif
  2177. if (farm_mode) { prusa_statistics(20); };
  2178. homing_flag = false;
  2179. break;
  2180. #ifdef ENABLE_AUTO_BED_LEVELING
  2181. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2182. {
  2183. #if Z_MIN_PIN == -1
  2184. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2185. #endif
  2186. // Prevent user from running a G29 without first homing in X and Y
  2187. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2188. {
  2189. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2190. SERIAL_ECHO_START;
  2191. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2192. break; // abort G29, since we don't know where we are
  2193. }
  2194. st_synchronize();
  2195. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2196. //vector_3 corrected_position = plan_get_position_mm();
  2197. //corrected_position.debug("position before G29");
  2198. plan_bed_level_matrix.set_to_identity();
  2199. vector_3 uncorrected_position = plan_get_position();
  2200. //uncorrected_position.debug("position durring G29");
  2201. current_position[X_AXIS] = uncorrected_position.x;
  2202. current_position[Y_AXIS] = uncorrected_position.y;
  2203. current_position[Z_AXIS] = uncorrected_position.z;
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. setup_for_endstop_move();
  2206. feedrate = homing_feedrate[Z_AXIS];
  2207. #ifdef AUTO_BED_LEVELING_GRID
  2208. // probe at the points of a lattice grid
  2209. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2210. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2211. // solve the plane equation ax + by + d = z
  2212. // A is the matrix with rows [x y 1] for all the probed points
  2213. // B is the vector of the Z positions
  2214. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2215. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2216. // "A" matrix of the linear system of equations
  2217. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2218. // "B" vector of Z points
  2219. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2220. int probePointCounter = 0;
  2221. bool zig = true;
  2222. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2223. {
  2224. int xProbe, xInc;
  2225. if (zig)
  2226. {
  2227. xProbe = LEFT_PROBE_BED_POSITION;
  2228. //xEnd = RIGHT_PROBE_BED_POSITION;
  2229. xInc = xGridSpacing;
  2230. zig = false;
  2231. } else // zag
  2232. {
  2233. xProbe = RIGHT_PROBE_BED_POSITION;
  2234. //xEnd = LEFT_PROBE_BED_POSITION;
  2235. xInc = -xGridSpacing;
  2236. zig = true;
  2237. }
  2238. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2239. {
  2240. float z_before;
  2241. if (probePointCounter == 0)
  2242. {
  2243. // raise before probing
  2244. z_before = Z_RAISE_BEFORE_PROBING;
  2245. } else
  2246. {
  2247. // raise extruder
  2248. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2249. }
  2250. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2251. eqnBVector[probePointCounter] = measured_z;
  2252. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2253. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2254. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2255. probePointCounter++;
  2256. xProbe += xInc;
  2257. }
  2258. }
  2259. clean_up_after_endstop_move();
  2260. // solve lsq problem
  2261. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2262. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2263. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2264. SERIAL_PROTOCOLPGM(" b: ");
  2265. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2266. SERIAL_PROTOCOLPGM(" d: ");
  2267. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2268. set_bed_level_equation_lsq(plane_equation_coefficients);
  2269. free(plane_equation_coefficients);
  2270. #else // AUTO_BED_LEVELING_GRID not defined
  2271. // Probe at 3 arbitrary points
  2272. // probe 1
  2273. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2274. // probe 2
  2275. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2276. // probe 3
  2277. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2278. clean_up_after_endstop_move();
  2279. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2280. #endif // AUTO_BED_LEVELING_GRID
  2281. st_synchronize();
  2282. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2283. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2284. // When the bed is uneven, this height must be corrected.
  2285. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2286. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2287. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2288. z_tmp = current_position[Z_AXIS];
  2289. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2290. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2292. }
  2293. break;
  2294. #ifndef Z_PROBE_SLED
  2295. case 30: // G30 Single Z Probe
  2296. {
  2297. st_synchronize();
  2298. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2299. setup_for_endstop_move();
  2300. feedrate = homing_feedrate[Z_AXIS];
  2301. run_z_probe();
  2302. SERIAL_PROTOCOLPGM(MSG_BED);
  2303. SERIAL_PROTOCOLPGM(" X: ");
  2304. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2305. SERIAL_PROTOCOLPGM(" Y: ");
  2306. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2307. SERIAL_PROTOCOLPGM(" Z: ");
  2308. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2309. SERIAL_PROTOCOLPGM("\n");
  2310. clean_up_after_endstop_move();
  2311. }
  2312. break;
  2313. #else
  2314. case 31: // dock the sled
  2315. dock_sled(true);
  2316. break;
  2317. case 32: // undock the sled
  2318. dock_sled(false);
  2319. break;
  2320. #endif // Z_PROBE_SLED
  2321. #endif // ENABLE_AUTO_BED_LEVELING
  2322. #ifdef MESH_BED_LEVELING
  2323. case 30: // G30 Single Z Probe
  2324. {
  2325. st_synchronize();
  2326. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2327. setup_for_endstop_move();
  2328. feedrate = homing_feedrate[Z_AXIS];
  2329. find_bed_induction_sensor_point_z(-10.f, 3);
  2330. SERIAL_PROTOCOLRPGM(MSG_BED);
  2331. SERIAL_PROTOCOLPGM(" X: ");
  2332. MYSERIAL.print(current_position[X_AXIS], 5);
  2333. SERIAL_PROTOCOLPGM(" Y: ");
  2334. MYSERIAL.print(current_position[Y_AXIS], 5);
  2335. SERIAL_PROTOCOLPGM(" Z: ");
  2336. MYSERIAL.print(current_position[Z_AXIS], 5);
  2337. SERIAL_PROTOCOLPGM("\n");
  2338. clean_up_after_endstop_move();
  2339. }
  2340. break;
  2341. case 75:
  2342. {
  2343. for (int i = 40; i <= 110; i++) {
  2344. MYSERIAL.print(i);
  2345. MYSERIAL.print(" ");
  2346. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2347. }
  2348. }
  2349. break;
  2350. case 76: //PINDA probe temperature calibration
  2351. {
  2352. setTargetBed(PINDA_MIN_T);
  2353. float zero_z;
  2354. int z_shift = 0; //unit: steps
  2355. int t_c; // temperature
  2356. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2357. // We don't know where we are! HOME!
  2358. // Push the commands to the front of the message queue in the reverse order!
  2359. // There shall be always enough space reserved for these commands.
  2360. repeatcommand_front(); // repeat G76 with all its parameters
  2361. enquecommand_front_P((PSTR("G28 W0")));
  2362. break;
  2363. }
  2364. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2365. custom_message = true;
  2366. custom_message_type = 4;
  2367. custom_message_state = 1;
  2368. custom_message = MSG_TEMP_CALIBRATION;
  2369. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2370. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2371. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2373. st_synchronize();
  2374. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2375. delay_keep_alive(1000);
  2376. serialecho_temperatures();
  2377. }
  2378. //enquecommand_P(PSTR("M190 S50"));
  2379. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2380. delay_keep_alive(1000);
  2381. serialecho_temperatures();
  2382. }
  2383. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2384. current_position[Z_AXIS] = 5;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2386. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2387. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2389. st_synchronize();
  2390. find_bed_induction_sensor_point_z(-1.f);
  2391. zero_z = current_position[Z_AXIS];
  2392. //current_position[Z_AXIS]
  2393. SERIAL_ECHOLNPGM("");
  2394. SERIAL_ECHOPGM("ZERO: ");
  2395. MYSERIAL.print(current_position[Z_AXIS]);
  2396. SERIAL_ECHOLNPGM("");
  2397. for (int i = 0; i<5; i++) {
  2398. SERIAL_ECHOPGM("Step: ");
  2399. MYSERIAL.print(i+2);
  2400. SERIAL_ECHOLNPGM("/6");
  2401. custom_message_state = i + 2;
  2402. t_c = 60 + i * 10;
  2403. setTargetBed(t_c);
  2404. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2405. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2406. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2408. st_synchronize();
  2409. while (degBed() < t_c) {
  2410. delay_keep_alive(1000);
  2411. serialecho_temperatures();
  2412. }
  2413. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2414. delay_keep_alive(1000);
  2415. serialecho_temperatures();
  2416. }
  2417. current_position[Z_AXIS] = 5;
  2418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2419. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2420. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2422. st_synchronize();
  2423. find_bed_induction_sensor_point_z(-1.f);
  2424. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2425. SERIAL_ECHOLNPGM("");
  2426. SERIAL_ECHOPGM("Temperature: ");
  2427. MYSERIAL.print(t_c);
  2428. SERIAL_ECHOPGM(" Z shift (mm):");
  2429. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2430. SERIAL_ECHOLNPGM("");
  2431. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2432. }
  2433. custom_message_type = 0;
  2434. custom_message = false;
  2435. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2436. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2437. disable_x();
  2438. disable_y();
  2439. disable_z();
  2440. disable_e0();
  2441. disable_e1();
  2442. disable_e2();
  2443. setTargetBed(0); //set bed target temperature back to 0
  2444. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2445. lcd_update_enable(true);
  2446. lcd_update(2);
  2447. }
  2448. break;
  2449. #ifdef DIS
  2450. case 77:
  2451. {
  2452. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2453. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2454. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2455. float dimension_x = 40;
  2456. float dimension_y = 40;
  2457. int points_x = 40;
  2458. int points_y = 40;
  2459. float offset_x = 74;
  2460. float offset_y = 33;
  2461. if (code_seen('X')) dimension_x = code_value();
  2462. if (code_seen('Y')) dimension_y = code_value();
  2463. if (code_seen('XP')) points_x = code_value();
  2464. if (code_seen('YP')) points_y = code_value();
  2465. if (code_seen('XO')) offset_x = code_value();
  2466. if (code_seen('YO')) offset_y = code_value();
  2467. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2468. } break;
  2469. #endif
  2470. /**
  2471. * G80: Mesh-based Z probe, probes a grid and produces a
  2472. * mesh to compensate for variable bed height
  2473. *
  2474. * The S0 report the points as below
  2475. *
  2476. * +----> X-axis
  2477. * |
  2478. * |
  2479. * v Y-axis
  2480. *
  2481. */
  2482. case 80:
  2483. #ifdef MK1BP
  2484. break;
  2485. #endif //MK1BP
  2486. case_G80:
  2487. {
  2488. mesh_bed_leveling_flag = true;
  2489. int8_t verbosity_level = 0;
  2490. static bool run = false;
  2491. if (code_seen('V')) {
  2492. // Just 'V' without a number counts as V1.
  2493. char c = strchr_pointer[1];
  2494. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2495. }
  2496. // Firstly check if we know where we are
  2497. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2498. // We don't know where we are! HOME!
  2499. // Push the commands to the front of the message queue in the reverse order!
  2500. // There shall be always enough space reserved for these commands.
  2501. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2502. repeatcommand_front(); // repeat G80 with all its parameters
  2503. enquecommand_front_P((PSTR("G28 W0")));
  2504. }
  2505. else {
  2506. mesh_bed_leveling_flag = false;
  2507. }
  2508. break;
  2509. }
  2510. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2511. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2512. temp_compensation_start();
  2513. run = true;
  2514. repeatcommand_front(); // repeat G80 with all its parameters
  2515. enquecommand_front_P((PSTR("G28 W0")));
  2516. }
  2517. else {
  2518. mesh_bed_leveling_flag = false;
  2519. }
  2520. break;
  2521. }
  2522. run = false;
  2523. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2524. mesh_bed_leveling_flag = false;
  2525. break;
  2526. }
  2527. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2528. bool custom_message_old = custom_message;
  2529. unsigned int custom_message_type_old = custom_message_type;
  2530. unsigned int custom_message_state_old = custom_message_state;
  2531. custom_message = true;
  2532. custom_message_type = 1;
  2533. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2534. lcd_update(1);
  2535. mbl.reset(); //reset mesh bed leveling
  2536. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2537. // consumed during the first movements following this statement.
  2538. babystep_undo();
  2539. // Cycle through all points and probe them
  2540. // First move up. During this first movement, the babystepping will be reverted.
  2541. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2543. // The move to the first calibration point.
  2544. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2545. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2546. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2547. if (verbosity_level >= 1) {
  2548. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2549. }
  2550. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2552. // Wait until the move is finished.
  2553. st_synchronize();
  2554. int mesh_point = 0; //index number of calibration point
  2555. int ix = 0;
  2556. int iy = 0;
  2557. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2558. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2559. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2560. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2561. if (verbosity_level >= 1) {
  2562. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2563. }
  2564. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2565. const char *kill_message = NULL;
  2566. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2567. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2568. // Get coords of a measuring point.
  2569. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2570. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2571. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2572. float z0 = 0.f;
  2573. if (has_z && mesh_point > 0) {
  2574. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2575. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2576. //#if 0
  2577. if (verbosity_level >= 1) {
  2578. SERIAL_ECHOPGM("Bed leveling, point: ");
  2579. MYSERIAL.print(mesh_point);
  2580. SERIAL_ECHOPGM(", calibration z: ");
  2581. MYSERIAL.print(z0, 5);
  2582. SERIAL_ECHOLNPGM("");
  2583. }
  2584. //#endif
  2585. }
  2586. // Move Z up to MESH_HOME_Z_SEARCH.
  2587. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2589. st_synchronize();
  2590. // Move to XY position of the sensor point.
  2591. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2592. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2593. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2594. if (verbosity_level >= 1) {
  2595. SERIAL_PROTOCOL(mesh_point);
  2596. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2597. }
  2598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2599. st_synchronize();
  2600. // Go down until endstop is hit
  2601. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2602. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2603. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2604. break;
  2605. }
  2606. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2607. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2608. break;
  2609. }
  2610. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2611. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2612. break;
  2613. }
  2614. if (verbosity_level >= 10) {
  2615. SERIAL_ECHOPGM("X: ");
  2616. MYSERIAL.print(current_position[X_AXIS], 5);
  2617. SERIAL_ECHOLNPGM("");
  2618. SERIAL_ECHOPGM("Y: ");
  2619. MYSERIAL.print(current_position[Y_AXIS], 5);
  2620. SERIAL_PROTOCOLPGM("\n");
  2621. }
  2622. if (verbosity_level >= 1) {
  2623. SERIAL_ECHOPGM("mesh bed leveling: ");
  2624. MYSERIAL.print(current_position[Z_AXIS], 5);
  2625. SERIAL_ECHOLNPGM("");
  2626. }
  2627. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2628. custom_message_state--;
  2629. mesh_point++;
  2630. lcd_update(1);
  2631. }
  2632. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2633. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2634. if (verbosity_level >= 20) {
  2635. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2636. MYSERIAL.print(current_position[Z_AXIS], 5);
  2637. }
  2638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2639. st_synchronize();
  2640. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2641. kill(kill_message);
  2642. SERIAL_ECHOLNPGM("killed");
  2643. }
  2644. clean_up_after_endstop_move();
  2645. SERIAL_ECHOLNPGM("clean up finished ");
  2646. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2647. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2648. SERIAL_ECHOLNPGM("babystep applied");
  2649. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2650. if (verbosity_level >= 1) {
  2651. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2652. }
  2653. for (uint8_t i = 0; i < 4; ++i) {
  2654. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2655. long correction = 0;
  2656. if (code_seen(codes[i]))
  2657. correction = code_value_long();
  2658. else if (eeprom_bed_correction_valid) {
  2659. unsigned char *addr = (i < 2) ?
  2660. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2661. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2662. correction = eeprom_read_int8(addr);
  2663. }
  2664. if (correction == 0)
  2665. continue;
  2666. float offset = float(correction) * 0.001f;
  2667. if (fabs(offset) > 0.101f) {
  2668. SERIAL_ERROR_START;
  2669. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2670. SERIAL_ECHO(offset);
  2671. SERIAL_ECHOLNPGM(" microns");
  2672. }
  2673. else {
  2674. switch (i) {
  2675. case 0:
  2676. for (uint8_t row = 0; row < 3; ++row) {
  2677. mbl.z_values[row][1] += 0.5f * offset;
  2678. mbl.z_values[row][0] += offset;
  2679. }
  2680. break;
  2681. case 1:
  2682. for (uint8_t row = 0; row < 3; ++row) {
  2683. mbl.z_values[row][1] += 0.5f * offset;
  2684. mbl.z_values[row][2] += offset;
  2685. }
  2686. break;
  2687. case 2:
  2688. for (uint8_t col = 0; col < 3; ++col) {
  2689. mbl.z_values[1][col] += 0.5f * offset;
  2690. mbl.z_values[0][col] += offset;
  2691. }
  2692. break;
  2693. case 3:
  2694. for (uint8_t col = 0; col < 3; ++col) {
  2695. mbl.z_values[1][col] += 0.5f * offset;
  2696. mbl.z_values[2][col] += offset;
  2697. }
  2698. break;
  2699. }
  2700. }
  2701. }
  2702. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2703. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2704. SERIAL_ECHOLNPGM("Upsample finished");
  2705. mbl.active = 1; //activate mesh bed leveling
  2706. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2707. go_home_with_z_lift();
  2708. SERIAL_ECHOLNPGM("Go home finished");
  2709. //unretract (after PINDA preheat retraction)
  2710. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2711. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2713. }
  2714. // Restore custom message state
  2715. custom_message = custom_message_old;
  2716. custom_message_type = custom_message_type_old;
  2717. custom_message_state = custom_message_state_old;
  2718. mesh_bed_leveling_flag = false;
  2719. mesh_bed_run_from_menu = false;
  2720. lcd_update(2);
  2721. }
  2722. break;
  2723. /**
  2724. * G81: Print mesh bed leveling status and bed profile if activated
  2725. */
  2726. case 81:
  2727. if (mbl.active) {
  2728. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2729. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2730. SERIAL_PROTOCOLPGM(",");
  2731. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2732. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2733. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2734. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2735. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2736. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2737. SERIAL_PROTOCOLPGM(" ");
  2738. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2739. }
  2740. SERIAL_PROTOCOLPGM("\n");
  2741. }
  2742. }
  2743. else
  2744. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2745. break;
  2746. #if 0
  2747. /**
  2748. * G82: Single Z probe at current location
  2749. *
  2750. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2751. *
  2752. */
  2753. case 82:
  2754. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2755. setup_for_endstop_move();
  2756. find_bed_induction_sensor_point_z();
  2757. clean_up_after_endstop_move();
  2758. SERIAL_PROTOCOLPGM("Bed found at: ");
  2759. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2760. SERIAL_PROTOCOLPGM("\n");
  2761. break;
  2762. /**
  2763. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2764. */
  2765. case 83:
  2766. {
  2767. int babystepz = code_seen('S') ? code_value() : 0;
  2768. int BabyPosition = code_seen('P') ? code_value() : 0;
  2769. if (babystepz != 0) {
  2770. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2771. // Is the axis indexed starting with zero or one?
  2772. if (BabyPosition > 4) {
  2773. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2774. }else{
  2775. // Save it to the eeprom
  2776. babystepLoadZ = babystepz;
  2777. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2778. // adjust the Z
  2779. babystepsTodoZadd(babystepLoadZ);
  2780. }
  2781. }
  2782. }
  2783. break;
  2784. /**
  2785. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2786. */
  2787. case 84:
  2788. babystepsTodoZsubtract(babystepLoadZ);
  2789. // babystepLoadZ = 0;
  2790. break;
  2791. /**
  2792. * G85: Prusa3D specific: Pick best babystep
  2793. */
  2794. case 85:
  2795. lcd_pick_babystep();
  2796. break;
  2797. #endif
  2798. /**
  2799. * G86: Prusa3D specific: Disable babystep correction after home.
  2800. * This G-code will be performed at the start of a calibration script.
  2801. */
  2802. case 86:
  2803. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2804. break;
  2805. /**
  2806. * G87: Prusa3D specific: Enable babystep correction after home
  2807. * This G-code will be performed at the end of a calibration script.
  2808. */
  2809. case 87:
  2810. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2811. break;
  2812. /**
  2813. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2814. */
  2815. case 88:
  2816. break;
  2817. #endif // ENABLE_MESH_BED_LEVELING
  2818. case 90: // G90
  2819. relative_mode = false;
  2820. break;
  2821. case 91: // G91
  2822. relative_mode = true;
  2823. break;
  2824. case 92: // G92
  2825. if(!code_seen(axis_codes[E_AXIS]))
  2826. st_synchronize();
  2827. for(int8_t i=0; i < NUM_AXIS; i++) {
  2828. if(code_seen(axis_codes[i])) {
  2829. if(i == E_AXIS) {
  2830. current_position[i] = code_value();
  2831. plan_set_e_position(current_position[E_AXIS]);
  2832. }
  2833. else {
  2834. current_position[i] = code_value()+add_homing[i];
  2835. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2836. }
  2837. }
  2838. }
  2839. break;
  2840. case 98: //activate farm mode
  2841. farm_mode = 1;
  2842. PingTime = millis();
  2843. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2844. break;
  2845. case 99: //deactivate farm mode
  2846. farm_mode = 0;
  2847. lcd_printer_connected();
  2848. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2849. lcd_update(2);
  2850. break;
  2851. }
  2852. } // end if(code_seen('G'))
  2853. else if(code_seen('M'))
  2854. {
  2855. int index;
  2856. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2857. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2858. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2859. SERIAL_ECHOLNPGM("Invalid M code");
  2860. } else
  2861. switch((int)code_value())
  2862. {
  2863. #ifdef ULTIPANEL
  2864. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2865. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2866. {
  2867. char *src = strchr_pointer + 2;
  2868. codenum = 0;
  2869. bool hasP = false, hasS = false;
  2870. if (code_seen('P')) {
  2871. codenum = code_value(); // milliseconds to wait
  2872. hasP = codenum > 0;
  2873. }
  2874. if (code_seen('S')) {
  2875. codenum = code_value() * 1000; // seconds to wait
  2876. hasS = codenum > 0;
  2877. }
  2878. starpos = strchr(src, '*');
  2879. if (starpos != NULL) *(starpos) = '\0';
  2880. while (*src == ' ') ++src;
  2881. if (!hasP && !hasS && *src != '\0') {
  2882. lcd_setstatus(src);
  2883. } else {
  2884. LCD_MESSAGERPGM(MSG_USERWAIT);
  2885. }
  2886. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2887. st_synchronize();
  2888. previous_millis_cmd = millis();
  2889. if (codenum > 0){
  2890. codenum += millis(); // keep track of when we started waiting
  2891. while(millis() < codenum && !lcd_clicked()){
  2892. manage_heater();
  2893. manage_inactivity(true);
  2894. lcd_update();
  2895. }
  2896. lcd_ignore_click(false);
  2897. }else{
  2898. if (!lcd_detected())
  2899. break;
  2900. while(!lcd_clicked()){
  2901. manage_heater();
  2902. manage_inactivity(true);
  2903. lcd_update();
  2904. }
  2905. }
  2906. if (IS_SD_PRINTING)
  2907. LCD_MESSAGERPGM(MSG_RESUMING);
  2908. else
  2909. LCD_MESSAGERPGM(WELCOME_MSG);
  2910. }
  2911. break;
  2912. #endif
  2913. case 17:
  2914. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2915. enable_x();
  2916. enable_y();
  2917. enable_z();
  2918. enable_e0();
  2919. enable_e1();
  2920. enable_e2();
  2921. break;
  2922. #ifdef SDSUPPORT
  2923. case 20: // M20 - list SD card
  2924. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2925. card.ls();
  2926. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2927. break;
  2928. case 21: // M21 - init SD card
  2929. card.initsd();
  2930. break;
  2931. case 22: //M22 - release SD card
  2932. card.release();
  2933. break;
  2934. case 23: //M23 - Select file
  2935. starpos = (strchr(strchr_pointer + 4,'*'));
  2936. if(starpos!=NULL)
  2937. *(starpos)='\0';
  2938. card.openFile(strchr_pointer + 4,true);
  2939. break;
  2940. case 24: //M24 - Start SD print
  2941. card.startFileprint();
  2942. starttime=millis();
  2943. break;
  2944. case 25: //M25 - Pause SD print
  2945. card.pauseSDPrint();
  2946. break;
  2947. case 26: //M26 - Set SD index
  2948. if(card.cardOK && code_seen('S')) {
  2949. card.setIndex(code_value_long());
  2950. }
  2951. break;
  2952. case 27: //M27 - Get SD status
  2953. card.getStatus();
  2954. break;
  2955. case 28: //M28 - Start SD write
  2956. starpos = (strchr(strchr_pointer + 4,'*'));
  2957. if(starpos != NULL){
  2958. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2959. strchr_pointer = strchr(npos,' ') + 1;
  2960. *(starpos) = '\0';
  2961. }
  2962. card.openFile(strchr_pointer+4,false);
  2963. break;
  2964. case 29: //M29 - Stop SD write
  2965. //processed in write to file routine above
  2966. //card,saving = false;
  2967. break;
  2968. case 30: //M30 <filename> Delete File
  2969. if (card.cardOK){
  2970. card.closefile();
  2971. starpos = (strchr(strchr_pointer + 4,'*'));
  2972. if(starpos != NULL){
  2973. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2974. strchr_pointer = strchr(npos,' ') + 1;
  2975. *(starpos) = '\0';
  2976. }
  2977. card.removeFile(strchr_pointer + 4);
  2978. }
  2979. break;
  2980. case 32: //M32 - Select file and start SD print
  2981. {
  2982. if(card.sdprinting) {
  2983. st_synchronize();
  2984. }
  2985. starpos = (strchr(strchr_pointer + 4,'*'));
  2986. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2987. if(namestartpos==NULL)
  2988. {
  2989. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2990. }
  2991. else
  2992. namestartpos++; //to skip the '!'
  2993. if(starpos!=NULL)
  2994. *(starpos)='\0';
  2995. bool call_procedure=(code_seen('P'));
  2996. if(strchr_pointer>namestartpos)
  2997. call_procedure=false; //false alert, 'P' found within filename
  2998. if( card.cardOK )
  2999. {
  3000. card.openFile(namestartpos,true,!call_procedure);
  3001. if(code_seen('S'))
  3002. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3003. card.setIndex(code_value_long());
  3004. card.startFileprint();
  3005. if(!call_procedure)
  3006. starttime=millis(); //procedure calls count as normal print time.
  3007. }
  3008. } break;
  3009. case 928: //M928 - Start SD write
  3010. starpos = (strchr(strchr_pointer + 5,'*'));
  3011. if(starpos != NULL){
  3012. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3013. strchr_pointer = strchr(npos,' ') + 1;
  3014. *(starpos) = '\0';
  3015. }
  3016. card.openLogFile(strchr_pointer+5);
  3017. break;
  3018. #endif //SDSUPPORT
  3019. case 31: //M31 take time since the start of the SD print or an M109 command
  3020. {
  3021. stoptime=millis();
  3022. char time[30];
  3023. unsigned long t=(stoptime-starttime)/1000;
  3024. int sec,min;
  3025. min=t/60;
  3026. sec=t%60;
  3027. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3028. SERIAL_ECHO_START;
  3029. SERIAL_ECHOLN(time);
  3030. lcd_setstatus(time);
  3031. autotempShutdown();
  3032. }
  3033. break;
  3034. case 42: //M42 -Change pin status via gcode
  3035. if (code_seen('S'))
  3036. {
  3037. int pin_status = code_value();
  3038. int pin_number = LED_PIN;
  3039. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3040. pin_number = code_value();
  3041. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3042. {
  3043. if (sensitive_pins[i] == pin_number)
  3044. {
  3045. pin_number = -1;
  3046. break;
  3047. }
  3048. }
  3049. #if defined(FAN_PIN) && FAN_PIN > -1
  3050. if (pin_number == FAN_PIN)
  3051. fanSpeed = pin_status;
  3052. #endif
  3053. if (pin_number > -1)
  3054. {
  3055. pinMode(pin_number, OUTPUT);
  3056. digitalWrite(pin_number, pin_status);
  3057. analogWrite(pin_number, pin_status);
  3058. }
  3059. }
  3060. break;
  3061. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3062. // Reset the baby step value and the baby step applied flag.
  3063. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3064. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3065. // Reset the skew and offset in both RAM and EEPROM.
  3066. reset_bed_offset_and_skew();
  3067. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3068. // the planner will not perform any adjustments in the XY plane.
  3069. // Wait for the motors to stop and update the current position with the absolute values.
  3070. world2machine_revert_to_uncorrected();
  3071. break;
  3072. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3073. {
  3074. // Only Z calibration?
  3075. bool onlyZ = code_seen('Z');
  3076. if (!onlyZ) {
  3077. setTargetBed(0);
  3078. setTargetHotend(0, 0);
  3079. setTargetHotend(0, 1);
  3080. setTargetHotend(0, 2);
  3081. adjust_bed_reset(); //reset bed level correction
  3082. }
  3083. // Disable the default update procedure of the display. We will do a modal dialog.
  3084. lcd_update_enable(false);
  3085. // Let the planner use the uncorrected coordinates.
  3086. mbl.reset();
  3087. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3088. // the planner will not perform any adjustments in the XY plane.
  3089. // Wait for the motors to stop and update the current position with the absolute values.
  3090. world2machine_revert_to_uncorrected();
  3091. // Reset the baby step value applied without moving the axes.
  3092. babystep_reset();
  3093. // Mark all axes as in a need for homing.
  3094. memset(axis_known_position, 0, sizeof(axis_known_position));
  3095. // Let the user move the Z axes up to the end stoppers.
  3096. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3097. refresh_cmd_timeout();
  3098. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3099. lcd_wait_for_cool_down();
  3100. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3101. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3102. lcd_implementation_print_at(0, 2, 1);
  3103. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3104. }
  3105. // Move the print head close to the bed.
  3106. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3108. st_synchronize();
  3109. // Home in the XY plane.
  3110. set_destination_to_current();
  3111. setup_for_endstop_move();
  3112. home_xy();
  3113. int8_t verbosity_level = 0;
  3114. if (code_seen('V')) {
  3115. // Just 'V' without a number counts as V1.
  3116. char c = strchr_pointer[1];
  3117. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3118. }
  3119. if (onlyZ) {
  3120. clean_up_after_endstop_move();
  3121. // Z only calibration.
  3122. // Load the machine correction matrix
  3123. world2machine_initialize();
  3124. // and correct the current_position to match the transformed coordinate system.
  3125. world2machine_update_current();
  3126. //FIXME
  3127. bool result = sample_mesh_and_store_reference();
  3128. if (result) {
  3129. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3130. // Shipped, the nozzle height has been set already. The user can start printing now.
  3131. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3132. // babystep_apply();
  3133. }
  3134. } else {
  3135. // Reset the baby step value and the baby step applied flag.
  3136. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3137. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3138. // Complete XYZ calibration.
  3139. uint8_t point_too_far_mask = 0;
  3140. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3141. clean_up_after_endstop_move();
  3142. // Print head up.
  3143. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3145. st_synchronize();
  3146. if (result >= 0) {
  3147. point_too_far_mask = 0;
  3148. // Second half: The fine adjustment.
  3149. // Let the planner use the uncorrected coordinates.
  3150. mbl.reset();
  3151. world2machine_reset();
  3152. // Home in the XY plane.
  3153. setup_for_endstop_move();
  3154. home_xy();
  3155. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3156. clean_up_after_endstop_move();
  3157. // Print head up.
  3158. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3160. st_synchronize();
  3161. // if (result >= 0) babystep_apply();
  3162. }
  3163. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3164. if (result >= 0) {
  3165. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3166. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3167. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3168. }
  3169. }
  3170. } else {
  3171. // Timeouted.
  3172. }
  3173. lcd_update_enable(true);
  3174. break;
  3175. }
  3176. /*
  3177. case 46:
  3178. {
  3179. // M46: Prusa3D: Show the assigned IP address.
  3180. uint8_t ip[4];
  3181. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3182. if (hasIP) {
  3183. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3184. SERIAL_ECHO(int(ip[0]));
  3185. SERIAL_ECHOPGM(".");
  3186. SERIAL_ECHO(int(ip[1]));
  3187. SERIAL_ECHOPGM(".");
  3188. SERIAL_ECHO(int(ip[2]));
  3189. SERIAL_ECHOPGM(".");
  3190. SERIAL_ECHO(int(ip[3]));
  3191. SERIAL_ECHOLNPGM("");
  3192. } else {
  3193. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3194. }
  3195. break;
  3196. }
  3197. */
  3198. case 47:
  3199. // M47: Prusa3D: Show end stops dialog on the display.
  3200. lcd_diag_show_end_stops();
  3201. break;
  3202. #if 0
  3203. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3204. {
  3205. // Disable the default update procedure of the display. We will do a modal dialog.
  3206. lcd_update_enable(false);
  3207. // Let the planner use the uncorrected coordinates.
  3208. mbl.reset();
  3209. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3210. // the planner will not perform any adjustments in the XY plane.
  3211. // Wait for the motors to stop and update the current position with the absolute values.
  3212. world2machine_revert_to_uncorrected();
  3213. // Move the print head close to the bed.
  3214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3216. st_synchronize();
  3217. // Home in the XY plane.
  3218. set_destination_to_current();
  3219. setup_for_endstop_move();
  3220. home_xy();
  3221. int8_t verbosity_level = 0;
  3222. if (code_seen('V')) {
  3223. // Just 'V' without a number counts as V1.
  3224. char c = strchr_pointer[1];
  3225. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3226. }
  3227. bool success = scan_bed_induction_points(verbosity_level);
  3228. clean_up_after_endstop_move();
  3229. // Print head up.
  3230. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3232. st_synchronize();
  3233. lcd_update_enable(true);
  3234. break;
  3235. }
  3236. #endif
  3237. // M48 Z-Probe repeatability measurement function.
  3238. //
  3239. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3240. //
  3241. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3242. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3243. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3244. // regenerated.
  3245. //
  3246. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3247. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3248. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3249. //
  3250. #ifdef ENABLE_AUTO_BED_LEVELING
  3251. #ifdef Z_PROBE_REPEATABILITY_TEST
  3252. case 48: // M48 Z-Probe repeatability
  3253. {
  3254. #if Z_MIN_PIN == -1
  3255. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3256. #endif
  3257. double sum=0.0;
  3258. double mean=0.0;
  3259. double sigma=0.0;
  3260. double sample_set[50];
  3261. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3262. double X_current, Y_current, Z_current;
  3263. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3264. if (code_seen('V') || code_seen('v')) {
  3265. verbose_level = code_value();
  3266. if (verbose_level<0 || verbose_level>4 ) {
  3267. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3268. goto Sigma_Exit;
  3269. }
  3270. }
  3271. if (verbose_level > 0) {
  3272. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3273. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3274. }
  3275. if (code_seen('n')) {
  3276. n_samples = code_value();
  3277. if (n_samples<4 || n_samples>50 ) {
  3278. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3279. goto Sigma_Exit;
  3280. }
  3281. }
  3282. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3283. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3284. Z_current = st_get_position_mm(Z_AXIS);
  3285. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3286. ext_position = st_get_position_mm(E_AXIS);
  3287. if (code_seen('X') || code_seen('x') ) {
  3288. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3289. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3290. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3291. goto Sigma_Exit;
  3292. }
  3293. }
  3294. if (code_seen('Y') || code_seen('y') ) {
  3295. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3296. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3297. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3298. goto Sigma_Exit;
  3299. }
  3300. }
  3301. if (code_seen('L') || code_seen('l') ) {
  3302. n_legs = code_value();
  3303. if ( n_legs==1 )
  3304. n_legs = 2;
  3305. if ( n_legs<0 || n_legs>15 ) {
  3306. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3307. goto Sigma_Exit;
  3308. }
  3309. }
  3310. //
  3311. // Do all the preliminary setup work. First raise the probe.
  3312. //
  3313. st_synchronize();
  3314. plan_bed_level_matrix.set_to_identity();
  3315. plan_buffer_line( X_current, Y_current, Z_start_location,
  3316. ext_position,
  3317. homing_feedrate[Z_AXIS]/60,
  3318. active_extruder);
  3319. st_synchronize();
  3320. //
  3321. // Now get everything to the specified probe point So we can safely do a probe to
  3322. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3323. // use that as a starting point for each probe.
  3324. //
  3325. if (verbose_level > 2)
  3326. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3327. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3328. ext_position,
  3329. homing_feedrate[X_AXIS]/60,
  3330. active_extruder);
  3331. st_synchronize();
  3332. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3333. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3334. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3335. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3336. //
  3337. // OK, do the inital probe to get us close to the bed.
  3338. // Then retrace the right amount and use that in subsequent probes
  3339. //
  3340. setup_for_endstop_move();
  3341. run_z_probe();
  3342. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3343. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3344. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3345. ext_position,
  3346. homing_feedrate[X_AXIS]/60,
  3347. active_extruder);
  3348. st_synchronize();
  3349. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3350. for( n=0; n<n_samples; n++) {
  3351. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3352. if ( n_legs) {
  3353. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3354. int rotational_direction, l;
  3355. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3356. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3357. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3358. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3359. //SERIAL_ECHOPAIR(" theta: ",theta);
  3360. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3361. //SERIAL_PROTOCOLLNPGM("");
  3362. for( l=0; l<n_legs-1; l++) {
  3363. if (rotational_direction==1)
  3364. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3365. else
  3366. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3367. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3368. if ( radius<0.0 )
  3369. radius = -radius;
  3370. X_current = X_probe_location + cos(theta) * radius;
  3371. Y_current = Y_probe_location + sin(theta) * radius;
  3372. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3373. X_current = X_MIN_POS;
  3374. if ( X_current>X_MAX_POS)
  3375. X_current = X_MAX_POS;
  3376. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3377. Y_current = Y_MIN_POS;
  3378. if ( Y_current>Y_MAX_POS)
  3379. Y_current = Y_MAX_POS;
  3380. if (verbose_level>3 ) {
  3381. SERIAL_ECHOPAIR("x: ", X_current);
  3382. SERIAL_ECHOPAIR("y: ", Y_current);
  3383. SERIAL_PROTOCOLLNPGM("");
  3384. }
  3385. do_blocking_move_to( X_current, Y_current, Z_current );
  3386. }
  3387. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3388. }
  3389. setup_for_endstop_move();
  3390. run_z_probe();
  3391. sample_set[n] = current_position[Z_AXIS];
  3392. //
  3393. // Get the current mean for the data points we have so far
  3394. //
  3395. sum=0.0;
  3396. for( j=0; j<=n; j++) {
  3397. sum = sum + sample_set[j];
  3398. }
  3399. mean = sum / (double (n+1));
  3400. //
  3401. // Now, use that mean to calculate the standard deviation for the
  3402. // data points we have so far
  3403. //
  3404. sum=0.0;
  3405. for( j=0; j<=n; j++) {
  3406. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3407. }
  3408. sigma = sqrt( sum / (double (n+1)) );
  3409. if (verbose_level > 1) {
  3410. SERIAL_PROTOCOL(n+1);
  3411. SERIAL_PROTOCOL(" of ");
  3412. SERIAL_PROTOCOL(n_samples);
  3413. SERIAL_PROTOCOLPGM(" z: ");
  3414. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3415. }
  3416. if (verbose_level > 2) {
  3417. SERIAL_PROTOCOL(" mean: ");
  3418. SERIAL_PROTOCOL_F(mean,6);
  3419. SERIAL_PROTOCOL(" sigma: ");
  3420. SERIAL_PROTOCOL_F(sigma,6);
  3421. }
  3422. if (verbose_level > 0)
  3423. SERIAL_PROTOCOLPGM("\n");
  3424. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3425. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3426. st_synchronize();
  3427. }
  3428. delay(1000);
  3429. clean_up_after_endstop_move();
  3430. // enable_endstops(true);
  3431. if (verbose_level > 0) {
  3432. SERIAL_PROTOCOLPGM("Mean: ");
  3433. SERIAL_PROTOCOL_F(mean, 6);
  3434. SERIAL_PROTOCOLPGM("\n");
  3435. }
  3436. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3437. SERIAL_PROTOCOL_F(sigma, 6);
  3438. SERIAL_PROTOCOLPGM("\n\n");
  3439. Sigma_Exit:
  3440. break;
  3441. }
  3442. #endif // Z_PROBE_REPEATABILITY_TEST
  3443. #endif // ENABLE_AUTO_BED_LEVELING
  3444. case 104: // M104
  3445. if(setTargetedHotend(104)){
  3446. break;
  3447. }
  3448. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3449. setWatch();
  3450. break;
  3451. case 112: // M112 -Emergency Stop
  3452. kill();
  3453. break;
  3454. case 140: // M140 set bed temp
  3455. if (code_seen('S')) setTargetBed(code_value());
  3456. break;
  3457. case 105 : // M105
  3458. if(setTargetedHotend(105)){
  3459. break;
  3460. }
  3461. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3462. SERIAL_PROTOCOLPGM("ok T:");
  3463. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3464. SERIAL_PROTOCOLPGM(" /");
  3465. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3466. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3467. SERIAL_PROTOCOLPGM(" B:");
  3468. SERIAL_PROTOCOL_F(degBed(),1);
  3469. SERIAL_PROTOCOLPGM(" /");
  3470. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3471. #endif //TEMP_BED_PIN
  3472. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3473. SERIAL_PROTOCOLPGM(" T");
  3474. SERIAL_PROTOCOL(cur_extruder);
  3475. SERIAL_PROTOCOLPGM(":");
  3476. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3477. SERIAL_PROTOCOLPGM(" /");
  3478. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3479. }
  3480. #else
  3481. SERIAL_ERROR_START;
  3482. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3483. #endif
  3484. SERIAL_PROTOCOLPGM(" @:");
  3485. #ifdef EXTRUDER_WATTS
  3486. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3487. SERIAL_PROTOCOLPGM("W");
  3488. #else
  3489. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3490. #endif
  3491. SERIAL_PROTOCOLPGM(" B@:");
  3492. #ifdef BED_WATTS
  3493. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3494. SERIAL_PROTOCOLPGM("W");
  3495. #else
  3496. SERIAL_PROTOCOL(getHeaterPower(-1));
  3497. #endif
  3498. #ifdef SHOW_TEMP_ADC_VALUES
  3499. {float raw = 0.0;
  3500. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3501. SERIAL_PROTOCOLPGM(" ADC B:");
  3502. SERIAL_PROTOCOL_F(degBed(),1);
  3503. SERIAL_PROTOCOLPGM("C->");
  3504. raw = rawBedTemp();
  3505. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3506. SERIAL_PROTOCOLPGM(" Rb->");
  3507. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3508. SERIAL_PROTOCOLPGM(" Rxb->");
  3509. SERIAL_PROTOCOL_F(raw, 5);
  3510. #endif
  3511. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3512. SERIAL_PROTOCOLPGM(" T");
  3513. SERIAL_PROTOCOL(cur_extruder);
  3514. SERIAL_PROTOCOLPGM(":");
  3515. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3516. SERIAL_PROTOCOLPGM("C->");
  3517. raw = rawHotendTemp(cur_extruder);
  3518. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3519. SERIAL_PROTOCOLPGM(" Rt");
  3520. SERIAL_PROTOCOL(cur_extruder);
  3521. SERIAL_PROTOCOLPGM("->");
  3522. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3523. SERIAL_PROTOCOLPGM(" Rx");
  3524. SERIAL_PROTOCOL(cur_extruder);
  3525. SERIAL_PROTOCOLPGM("->");
  3526. SERIAL_PROTOCOL_F(raw, 5);
  3527. }}
  3528. #endif
  3529. SERIAL_PROTOCOLLN("");
  3530. return;
  3531. break;
  3532. case 109:
  3533. {// M109 - Wait for extruder heater to reach target.
  3534. if(setTargetedHotend(109)){
  3535. break;
  3536. }
  3537. LCD_MESSAGERPGM(MSG_HEATING);
  3538. heating_status = 1;
  3539. if (farm_mode) { prusa_statistics(1); };
  3540. #ifdef AUTOTEMP
  3541. autotemp_enabled=false;
  3542. #endif
  3543. if (code_seen('S')) {
  3544. setTargetHotend(code_value(), tmp_extruder);
  3545. CooldownNoWait = true;
  3546. } else if (code_seen('R')) {
  3547. setTargetHotend(code_value(), tmp_extruder);
  3548. CooldownNoWait = false;
  3549. }
  3550. #ifdef AUTOTEMP
  3551. if (code_seen('S')) autotemp_min=code_value();
  3552. if (code_seen('B')) autotemp_max=code_value();
  3553. if (code_seen('F'))
  3554. {
  3555. autotemp_factor=code_value();
  3556. autotemp_enabled=true;
  3557. }
  3558. #endif
  3559. setWatch();
  3560. codenum = millis();
  3561. /* See if we are heating up or cooling down */
  3562. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3563. cancel_heatup = false;
  3564. wait_for_heater(codenum); //loops until target temperature is reached
  3565. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3566. heating_status = 2;
  3567. if (farm_mode) { prusa_statistics(2); };
  3568. //starttime=millis();
  3569. previous_millis_cmd = millis();
  3570. }
  3571. break;
  3572. case 190: // M190 - Wait for bed heater to reach target.
  3573. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3574. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3575. heating_status = 3;
  3576. if (farm_mode) { prusa_statistics(1); };
  3577. if (code_seen('S'))
  3578. {
  3579. setTargetBed(code_value());
  3580. CooldownNoWait = true;
  3581. }
  3582. else if (code_seen('R'))
  3583. {
  3584. setTargetBed(code_value());
  3585. CooldownNoWait = false;
  3586. }
  3587. codenum = millis();
  3588. cancel_heatup = false;
  3589. target_direction = isHeatingBed(); // true if heating, false if cooling
  3590. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3591. {
  3592. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3593. {
  3594. if (!farm_mode) {
  3595. float tt = degHotend(active_extruder);
  3596. SERIAL_PROTOCOLPGM("T:");
  3597. SERIAL_PROTOCOL(tt);
  3598. SERIAL_PROTOCOLPGM(" E:");
  3599. SERIAL_PROTOCOL((int)active_extruder);
  3600. SERIAL_PROTOCOLPGM(" B:");
  3601. SERIAL_PROTOCOL_F(degBed(), 1);
  3602. SERIAL_PROTOCOLLN("");
  3603. }
  3604. codenum = millis();
  3605. }
  3606. manage_heater();
  3607. manage_inactivity();
  3608. lcd_update();
  3609. }
  3610. LCD_MESSAGERPGM(MSG_BED_DONE);
  3611. heating_status = 4;
  3612. previous_millis_cmd = millis();
  3613. #endif
  3614. break;
  3615. #if defined(FAN_PIN) && FAN_PIN > -1
  3616. case 106: //M106 Fan On
  3617. if (code_seen('S')){
  3618. fanSpeed=constrain(code_value(),0,255);
  3619. }
  3620. else {
  3621. fanSpeed=255;
  3622. }
  3623. break;
  3624. case 107: //M107 Fan Off
  3625. fanSpeed = 0;
  3626. break;
  3627. #endif //FAN_PIN
  3628. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3629. case 80: // M80 - Turn on Power Supply
  3630. SET_OUTPUT(PS_ON_PIN); //GND
  3631. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3632. // If you have a switch on suicide pin, this is useful
  3633. // if you want to start another print with suicide feature after
  3634. // a print without suicide...
  3635. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3636. SET_OUTPUT(SUICIDE_PIN);
  3637. WRITE(SUICIDE_PIN, HIGH);
  3638. #endif
  3639. #ifdef ULTIPANEL
  3640. powersupply = true;
  3641. LCD_MESSAGERPGM(WELCOME_MSG);
  3642. lcd_update();
  3643. #endif
  3644. break;
  3645. #endif
  3646. case 81: // M81 - Turn off Power Supply
  3647. disable_heater();
  3648. st_synchronize();
  3649. disable_e0();
  3650. disable_e1();
  3651. disable_e2();
  3652. finishAndDisableSteppers();
  3653. fanSpeed = 0;
  3654. delay(1000); // Wait a little before to switch off
  3655. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3656. st_synchronize();
  3657. suicide();
  3658. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3659. SET_OUTPUT(PS_ON_PIN);
  3660. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3661. #endif
  3662. #ifdef ULTIPANEL
  3663. powersupply = false;
  3664. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3665. /*
  3666. MACHNAME = "Prusa i3"
  3667. MSGOFF = "Vypnuto"
  3668. "Prusai3"" ""vypnuto""."
  3669. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3670. */
  3671. lcd_update();
  3672. #endif
  3673. break;
  3674. case 82:
  3675. axis_relative_modes[3] = false;
  3676. break;
  3677. case 83:
  3678. axis_relative_modes[3] = true;
  3679. break;
  3680. case 18: //compatibility
  3681. case 84: // M84
  3682. if(code_seen('S')){
  3683. stepper_inactive_time = code_value() * 1000;
  3684. }
  3685. else
  3686. {
  3687. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3688. if(all_axis)
  3689. {
  3690. st_synchronize();
  3691. disable_e0();
  3692. disable_e1();
  3693. disable_e2();
  3694. finishAndDisableSteppers();
  3695. }
  3696. else
  3697. {
  3698. st_synchronize();
  3699. if (code_seen('X')) disable_x();
  3700. if (code_seen('Y')) disable_y();
  3701. if (code_seen('Z')) disable_z();
  3702. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3703. if (code_seen('E')) {
  3704. disable_e0();
  3705. disable_e1();
  3706. disable_e2();
  3707. }
  3708. #endif
  3709. }
  3710. }
  3711. snmm_filaments_used = 0;
  3712. break;
  3713. case 85: // M85
  3714. if(code_seen('S')) {
  3715. max_inactive_time = code_value() * 1000;
  3716. }
  3717. break;
  3718. case 92: // M92
  3719. for(int8_t i=0; i < NUM_AXIS; i++)
  3720. {
  3721. if(code_seen(axis_codes[i]))
  3722. {
  3723. if(i == 3) { // E
  3724. float value = code_value();
  3725. if(value < 20.0) {
  3726. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3727. max_jerk[E_AXIS] *= factor;
  3728. max_feedrate[i] *= factor;
  3729. axis_steps_per_sqr_second[i] *= factor;
  3730. }
  3731. axis_steps_per_unit[i] = value;
  3732. }
  3733. else {
  3734. axis_steps_per_unit[i] = code_value();
  3735. }
  3736. }
  3737. }
  3738. break;
  3739. case 110: // M110 - reset line pos
  3740. if (code_seen('N'))
  3741. gcode_LastN = code_value_long();
  3742. else
  3743. gcode_LastN = 0;
  3744. break;
  3745. case 115: // M115
  3746. if (code_seen('V')) {
  3747. // Report the Prusa version number.
  3748. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3749. } else if (code_seen('U')) {
  3750. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3751. // pause the print and ask the user to upgrade the firmware.
  3752. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3753. } else {
  3754. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3755. }
  3756. break;
  3757. /* case 117: // M117 display message
  3758. starpos = (strchr(strchr_pointer + 5,'*'));
  3759. if(starpos!=NULL)
  3760. *(starpos)='\0';
  3761. lcd_setstatus(strchr_pointer + 5);
  3762. break;*/
  3763. case 114: // M114
  3764. SERIAL_PROTOCOLPGM("X:");
  3765. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3766. SERIAL_PROTOCOLPGM(" Y:");
  3767. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3768. SERIAL_PROTOCOLPGM(" Z:");
  3769. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3770. SERIAL_PROTOCOLPGM(" E:");
  3771. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3772. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3773. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3774. SERIAL_PROTOCOLPGM(" Y:");
  3775. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3776. SERIAL_PROTOCOLPGM(" Z:");
  3777. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3778. SERIAL_PROTOCOLLN("");
  3779. break;
  3780. case 120: // M120
  3781. enable_endstops(false) ;
  3782. break;
  3783. case 121: // M121
  3784. enable_endstops(true) ;
  3785. break;
  3786. case 119: // M119
  3787. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3788. SERIAL_PROTOCOLLN("");
  3789. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3790. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3791. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3792. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3793. }else{
  3794. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3795. }
  3796. SERIAL_PROTOCOLLN("");
  3797. #endif
  3798. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3799. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3800. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3801. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3802. }else{
  3803. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3804. }
  3805. SERIAL_PROTOCOLLN("");
  3806. #endif
  3807. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3808. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3809. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3810. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3811. }else{
  3812. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3813. }
  3814. SERIAL_PROTOCOLLN("");
  3815. #endif
  3816. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3817. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3818. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3819. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3820. }else{
  3821. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3822. }
  3823. SERIAL_PROTOCOLLN("");
  3824. #endif
  3825. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3826. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3827. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3828. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3829. }else{
  3830. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3831. }
  3832. SERIAL_PROTOCOLLN("");
  3833. #endif
  3834. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3835. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3836. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3837. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3838. }else{
  3839. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3840. }
  3841. SERIAL_PROTOCOLLN("");
  3842. #endif
  3843. break;
  3844. //TODO: update for all axis, use for loop
  3845. #ifdef BLINKM
  3846. case 150: // M150
  3847. {
  3848. byte red;
  3849. byte grn;
  3850. byte blu;
  3851. if(code_seen('R')) red = code_value();
  3852. if(code_seen('U')) grn = code_value();
  3853. if(code_seen('B')) blu = code_value();
  3854. SendColors(red,grn,blu);
  3855. }
  3856. break;
  3857. #endif //BLINKM
  3858. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3859. {
  3860. tmp_extruder = active_extruder;
  3861. if(code_seen('T')) {
  3862. tmp_extruder = code_value();
  3863. if(tmp_extruder >= EXTRUDERS) {
  3864. SERIAL_ECHO_START;
  3865. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3866. break;
  3867. }
  3868. }
  3869. float area = .0;
  3870. if(code_seen('D')) {
  3871. float diameter = (float)code_value();
  3872. if (diameter == 0.0) {
  3873. // setting any extruder filament size disables volumetric on the assumption that
  3874. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3875. // for all extruders
  3876. volumetric_enabled = false;
  3877. } else {
  3878. filament_size[tmp_extruder] = (float)code_value();
  3879. // make sure all extruders have some sane value for the filament size
  3880. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3881. #if EXTRUDERS > 1
  3882. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3883. #if EXTRUDERS > 2
  3884. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3885. #endif
  3886. #endif
  3887. volumetric_enabled = true;
  3888. }
  3889. } else {
  3890. //reserved for setting filament diameter via UFID or filament measuring device
  3891. break;
  3892. }
  3893. calculate_volumetric_multipliers();
  3894. }
  3895. break;
  3896. case 201: // M201
  3897. for(int8_t i=0; i < NUM_AXIS; i++)
  3898. {
  3899. if(code_seen(axis_codes[i]))
  3900. {
  3901. max_acceleration_units_per_sq_second[i] = code_value();
  3902. }
  3903. }
  3904. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3905. reset_acceleration_rates();
  3906. break;
  3907. #if 0 // Not used for Sprinter/grbl gen6
  3908. case 202: // M202
  3909. for(int8_t i=0; i < NUM_AXIS; i++) {
  3910. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3911. }
  3912. break;
  3913. #endif
  3914. case 203: // M203 max feedrate mm/sec
  3915. for(int8_t i=0; i < NUM_AXIS; i++) {
  3916. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3917. }
  3918. break;
  3919. case 204: // M204 acclereration S normal moves T filmanent only moves
  3920. {
  3921. if(code_seen('S')) acceleration = code_value() ;
  3922. if(code_seen('T')) retract_acceleration = code_value() ;
  3923. }
  3924. break;
  3925. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3926. {
  3927. if(code_seen('S')) minimumfeedrate = code_value();
  3928. if(code_seen('T')) mintravelfeedrate = code_value();
  3929. if(code_seen('B')) minsegmenttime = code_value() ;
  3930. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3931. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3932. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3933. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3934. }
  3935. break;
  3936. case 206: // M206 additional homing offset
  3937. for(int8_t i=0; i < 3; i++)
  3938. {
  3939. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3940. }
  3941. break;
  3942. #ifdef FWRETRACT
  3943. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3944. {
  3945. if(code_seen('S'))
  3946. {
  3947. retract_length = code_value() ;
  3948. }
  3949. if(code_seen('F'))
  3950. {
  3951. retract_feedrate = code_value()/60 ;
  3952. }
  3953. if(code_seen('Z'))
  3954. {
  3955. retract_zlift = code_value() ;
  3956. }
  3957. }break;
  3958. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3959. {
  3960. if(code_seen('S'))
  3961. {
  3962. retract_recover_length = code_value() ;
  3963. }
  3964. if(code_seen('F'))
  3965. {
  3966. retract_recover_feedrate = code_value()/60 ;
  3967. }
  3968. }break;
  3969. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3970. {
  3971. if(code_seen('S'))
  3972. {
  3973. int t= code_value() ;
  3974. switch(t)
  3975. {
  3976. case 0:
  3977. {
  3978. autoretract_enabled=false;
  3979. retracted[0]=false;
  3980. #if EXTRUDERS > 1
  3981. retracted[1]=false;
  3982. #endif
  3983. #if EXTRUDERS > 2
  3984. retracted[2]=false;
  3985. #endif
  3986. }break;
  3987. case 1:
  3988. {
  3989. autoretract_enabled=true;
  3990. retracted[0]=false;
  3991. #if EXTRUDERS > 1
  3992. retracted[1]=false;
  3993. #endif
  3994. #if EXTRUDERS > 2
  3995. retracted[2]=false;
  3996. #endif
  3997. }break;
  3998. default:
  3999. SERIAL_ECHO_START;
  4000. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4001. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4002. SERIAL_ECHOLNPGM("\"");
  4003. }
  4004. }
  4005. }break;
  4006. #endif // FWRETRACT
  4007. #if EXTRUDERS > 1
  4008. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4009. {
  4010. if(setTargetedHotend(218)){
  4011. break;
  4012. }
  4013. if(code_seen('X'))
  4014. {
  4015. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4016. }
  4017. if(code_seen('Y'))
  4018. {
  4019. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4020. }
  4021. SERIAL_ECHO_START;
  4022. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4023. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4024. {
  4025. SERIAL_ECHO(" ");
  4026. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4027. SERIAL_ECHO(",");
  4028. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4029. }
  4030. SERIAL_ECHOLN("");
  4031. }break;
  4032. #endif
  4033. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4034. {
  4035. if(code_seen('S'))
  4036. {
  4037. feedmultiply = code_value() ;
  4038. }
  4039. }
  4040. break;
  4041. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4042. {
  4043. if(code_seen('S'))
  4044. {
  4045. int tmp_code = code_value();
  4046. if (code_seen('T'))
  4047. {
  4048. if(setTargetedHotend(221)){
  4049. break;
  4050. }
  4051. extruder_multiply[tmp_extruder] = tmp_code;
  4052. }
  4053. else
  4054. {
  4055. extrudemultiply = tmp_code ;
  4056. }
  4057. }
  4058. }
  4059. break;
  4060. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4061. {
  4062. if(code_seen('P')){
  4063. int pin_number = code_value(); // pin number
  4064. int pin_state = -1; // required pin state - default is inverted
  4065. if(code_seen('S')) pin_state = code_value(); // required pin state
  4066. if(pin_state >= -1 && pin_state <= 1){
  4067. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4068. {
  4069. if (sensitive_pins[i] == pin_number)
  4070. {
  4071. pin_number = -1;
  4072. break;
  4073. }
  4074. }
  4075. if (pin_number > -1)
  4076. {
  4077. int target = LOW;
  4078. st_synchronize();
  4079. pinMode(pin_number, INPUT);
  4080. switch(pin_state){
  4081. case 1:
  4082. target = HIGH;
  4083. break;
  4084. case 0:
  4085. target = LOW;
  4086. break;
  4087. case -1:
  4088. target = !digitalRead(pin_number);
  4089. break;
  4090. }
  4091. while(digitalRead(pin_number) != target){
  4092. manage_heater();
  4093. manage_inactivity();
  4094. lcd_update();
  4095. }
  4096. }
  4097. }
  4098. }
  4099. }
  4100. break;
  4101. #if NUM_SERVOS > 0
  4102. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4103. {
  4104. int servo_index = -1;
  4105. int servo_position = 0;
  4106. if (code_seen('P'))
  4107. servo_index = code_value();
  4108. if (code_seen('S')) {
  4109. servo_position = code_value();
  4110. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4111. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4112. servos[servo_index].attach(0);
  4113. #endif
  4114. servos[servo_index].write(servo_position);
  4115. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4116. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4117. servos[servo_index].detach();
  4118. #endif
  4119. }
  4120. else {
  4121. SERIAL_ECHO_START;
  4122. SERIAL_ECHO("Servo ");
  4123. SERIAL_ECHO(servo_index);
  4124. SERIAL_ECHOLN(" out of range");
  4125. }
  4126. }
  4127. else if (servo_index >= 0) {
  4128. SERIAL_PROTOCOL(MSG_OK);
  4129. SERIAL_PROTOCOL(" Servo ");
  4130. SERIAL_PROTOCOL(servo_index);
  4131. SERIAL_PROTOCOL(": ");
  4132. SERIAL_PROTOCOL(servos[servo_index].read());
  4133. SERIAL_PROTOCOLLN("");
  4134. }
  4135. }
  4136. break;
  4137. #endif // NUM_SERVOS > 0
  4138. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4139. case 300: // M300
  4140. {
  4141. int beepS = code_seen('S') ? code_value() : 110;
  4142. int beepP = code_seen('P') ? code_value() : 1000;
  4143. if (beepS > 0)
  4144. {
  4145. #if BEEPER > 0
  4146. tone(BEEPER, beepS);
  4147. delay(beepP);
  4148. noTone(BEEPER);
  4149. #elif defined(ULTRALCD)
  4150. lcd_buzz(beepS, beepP);
  4151. #elif defined(LCD_USE_I2C_BUZZER)
  4152. lcd_buzz(beepP, beepS);
  4153. #endif
  4154. }
  4155. else
  4156. {
  4157. delay(beepP);
  4158. }
  4159. }
  4160. break;
  4161. #endif // M300
  4162. #ifdef PIDTEMP
  4163. case 301: // M301
  4164. {
  4165. if(code_seen('P')) Kp = code_value();
  4166. if(code_seen('I')) Ki = scalePID_i(code_value());
  4167. if(code_seen('D')) Kd = scalePID_d(code_value());
  4168. #ifdef PID_ADD_EXTRUSION_RATE
  4169. if(code_seen('C')) Kc = code_value();
  4170. #endif
  4171. updatePID();
  4172. SERIAL_PROTOCOLRPGM(MSG_OK);
  4173. SERIAL_PROTOCOL(" p:");
  4174. SERIAL_PROTOCOL(Kp);
  4175. SERIAL_PROTOCOL(" i:");
  4176. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4177. SERIAL_PROTOCOL(" d:");
  4178. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4179. #ifdef PID_ADD_EXTRUSION_RATE
  4180. SERIAL_PROTOCOL(" c:");
  4181. //Kc does not have scaling applied above, or in resetting defaults
  4182. SERIAL_PROTOCOL(Kc);
  4183. #endif
  4184. SERIAL_PROTOCOLLN("");
  4185. }
  4186. break;
  4187. #endif //PIDTEMP
  4188. #ifdef PIDTEMPBED
  4189. case 304: // M304
  4190. {
  4191. if(code_seen('P')) bedKp = code_value();
  4192. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4193. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4194. updatePID();
  4195. SERIAL_PROTOCOLRPGM(MSG_OK);
  4196. SERIAL_PROTOCOL(" p:");
  4197. SERIAL_PROTOCOL(bedKp);
  4198. SERIAL_PROTOCOL(" i:");
  4199. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4200. SERIAL_PROTOCOL(" d:");
  4201. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4202. SERIAL_PROTOCOLLN("");
  4203. }
  4204. break;
  4205. #endif //PIDTEMP
  4206. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4207. {
  4208. #ifdef CHDK
  4209. SET_OUTPUT(CHDK);
  4210. WRITE(CHDK, HIGH);
  4211. chdkHigh = millis();
  4212. chdkActive = true;
  4213. #else
  4214. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4215. const uint8_t NUM_PULSES=16;
  4216. const float PULSE_LENGTH=0.01524;
  4217. for(int i=0; i < NUM_PULSES; i++) {
  4218. WRITE(PHOTOGRAPH_PIN, HIGH);
  4219. _delay_ms(PULSE_LENGTH);
  4220. WRITE(PHOTOGRAPH_PIN, LOW);
  4221. _delay_ms(PULSE_LENGTH);
  4222. }
  4223. delay(7.33);
  4224. for(int i=0; i < NUM_PULSES; i++) {
  4225. WRITE(PHOTOGRAPH_PIN, HIGH);
  4226. _delay_ms(PULSE_LENGTH);
  4227. WRITE(PHOTOGRAPH_PIN, LOW);
  4228. _delay_ms(PULSE_LENGTH);
  4229. }
  4230. #endif
  4231. #endif //chdk end if
  4232. }
  4233. break;
  4234. #ifdef DOGLCD
  4235. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4236. {
  4237. if (code_seen('C')) {
  4238. lcd_setcontrast( ((int)code_value())&63 );
  4239. }
  4240. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4241. SERIAL_PROTOCOL(lcd_contrast);
  4242. SERIAL_PROTOCOLLN("");
  4243. }
  4244. break;
  4245. #endif
  4246. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4247. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4248. {
  4249. float temp = .0;
  4250. if (code_seen('S')) temp=code_value();
  4251. set_extrude_min_temp(temp);
  4252. }
  4253. break;
  4254. #endif
  4255. case 303: // M303 PID autotune
  4256. {
  4257. float temp = 150.0;
  4258. int e=0;
  4259. int c=5;
  4260. if (code_seen('E')) e=code_value();
  4261. if (e<0)
  4262. temp=70;
  4263. if (code_seen('S')) temp=code_value();
  4264. if (code_seen('C')) c=code_value();
  4265. PID_autotune(temp, e, c);
  4266. }
  4267. break;
  4268. case 400: // M400 finish all moves
  4269. {
  4270. st_synchronize();
  4271. }
  4272. break;
  4273. #ifdef FILAMENT_SENSOR
  4274. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4275. {
  4276. #if (FILWIDTH_PIN > -1)
  4277. if(code_seen('N')) filament_width_nominal=code_value();
  4278. else{
  4279. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4280. SERIAL_PROTOCOLLN(filament_width_nominal);
  4281. }
  4282. #endif
  4283. }
  4284. break;
  4285. case 405: //M405 Turn on filament sensor for control
  4286. {
  4287. if(code_seen('D')) meas_delay_cm=code_value();
  4288. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4289. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4290. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4291. {
  4292. int temp_ratio = widthFil_to_size_ratio();
  4293. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4294. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4295. }
  4296. delay_index1=0;
  4297. delay_index2=0;
  4298. }
  4299. filament_sensor = true ;
  4300. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4301. //SERIAL_PROTOCOL(filament_width_meas);
  4302. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4303. //SERIAL_PROTOCOL(extrudemultiply);
  4304. }
  4305. break;
  4306. case 406: //M406 Turn off filament sensor for control
  4307. {
  4308. filament_sensor = false ;
  4309. }
  4310. break;
  4311. case 407: //M407 Display measured filament diameter
  4312. {
  4313. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4314. SERIAL_PROTOCOLLN(filament_width_meas);
  4315. }
  4316. break;
  4317. #endif
  4318. case 500: // M500 Store settings in EEPROM
  4319. {
  4320. Config_StoreSettings();
  4321. }
  4322. break;
  4323. case 501: // M501 Read settings from EEPROM
  4324. {
  4325. Config_RetrieveSettings();
  4326. }
  4327. break;
  4328. case 502: // M502 Revert to default settings
  4329. {
  4330. Config_ResetDefault();
  4331. }
  4332. break;
  4333. case 503: // M503 print settings currently in memory
  4334. {
  4335. Config_PrintSettings();
  4336. }
  4337. break;
  4338. case 509: //M509 Force language selection
  4339. {
  4340. lcd_force_language_selection();
  4341. SERIAL_ECHO_START;
  4342. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4343. }
  4344. break;
  4345. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4346. case 540:
  4347. {
  4348. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4349. }
  4350. break;
  4351. #endif
  4352. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4353. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4354. {
  4355. float value;
  4356. if (code_seen('Z'))
  4357. {
  4358. value = code_value();
  4359. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4360. {
  4361. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4362. SERIAL_ECHO_START;
  4363. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4364. SERIAL_PROTOCOLLN("");
  4365. }
  4366. else
  4367. {
  4368. SERIAL_ECHO_START;
  4369. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4370. SERIAL_ECHORPGM(MSG_Z_MIN);
  4371. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4372. SERIAL_ECHORPGM(MSG_Z_MAX);
  4373. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4374. SERIAL_PROTOCOLLN("");
  4375. }
  4376. }
  4377. else
  4378. {
  4379. SERIAL_ECHO_START;
  4380. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4381. SERIAL_ECHO(-zprobe_zoffset);
  4382. SERIAL_PROTOCOLLN("");
  4383. }
  4384. break;
  4385. }
  4386. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4387. #ifdef FILAMENTCHANGEENABLE
  4388. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4389. {
  4390. st_synchronize();
  4391. float target[4];
  4392. float lastpos[4];
  4393. if (farm_mode)
  4394. {
  4395. prusa_statistics(22);
  4396. }
  4397. feedmultiplyBckp=feedmultiply;
  4398. int8_t TooLowZ = 0;
  4399. target[X_AXIS]=current_position[X_AXIS];
  4400. target[Y_AXIS]=current_position[Y_AXIS];
  4401. target[Z_AXIS]=current_position[Z_AXIS];
  4402. target[E_AXIS]=current_position[E_AXIS];
  4403. lastpos[X_AXIS]=current_position[X_AXIS];
  4404. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4405. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4406. lastpos[E_AXIS]=current_position[E_AXIS];
  4407. //Retract extruder
  4408. if(code_seen('E'))
  4409. {
  4410. target[E_AXIS]+= code_value();
  4411. }
  4412. else
  4413. {
  4414. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4415. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4416. #endif
  4417. }
  4418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4419. //Lift Z
  4420. if(code_seen('Z'))
  4421. {
  4422. target[Z_AXIS]+= code_value();
  4423. }
  4424. else
  4425. {
  4426. #ifdef FILAMENTCHANGE_ZADD
  4427. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4428. if(target[Z_AXIS] < 10){
  4429. target[Z_AXIS]+= 10 ;
  4430. TooLowZ = 1;
  4431. }else{
  4432. TooLowZ = 0;
  4433. }
  4434. #endif
  4435. }
  4436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4437. //Move XY to side
  4438. if(code_seen('X'))
  4439. {
  4440. target[X_AXIS]+= code_value();
  4441. }
  4442. else
  4443. {
  4444. #ifdef FILAMENTCHANGE_XPOS
  4445. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4446. #endif
  4447. }
  4448. if(code_seen('Y'))
  4449. {
  4450. target[Y_AXIS]= code_value();
  4451. }
  4452. else
  4453. {
  4454. #ifdef FILAMENTCHANGE_YPOS
  4455. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4456. #endif
  4457. }
  4458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4459. st_synchronize();
  4460. custom_message = true;
  4461. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4462. // Unload filament
  4463. if(code_seen('L'))
  4464. {
  4465. target[E_AXIS]+= code_value();
  4466. }
  4467. else
  4468. {
  4469. #ifdef SNMM
  4470. #else
  4471. #ifdef FILAMENTCHANGE_FINALRETRACT
  4472. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4473. #endif
  4474. #endif // SNMM
  4475. }
  4476. #ifdef SNMM
  4477. target[E_AXIS] += 12;
  4478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4479. target[E_AXIS] += 6;
  4480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4481. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4483. st_synchronize();
  4484. target[E_AXIS] += (FIL_COOLING);
  4485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4486. target[E_AXIS] += (FIL_COOLING*-1);
  4487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4488. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4490. st_synchronize();
  4491. #else
  4492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4493. #endif // SNMM
  4494. //finish moves
  4495. st_synchronize();
  4496. //disable extruder steppers so filament can be removed
  4497. disable_e0();
  4498. disable_e1();
  4499. disable_e2();
  4500. delay(100);
  4501. //Wait for user to insert filament
  4502. uint8_t cnt=0;
  4503. int counterBeep = 0;
  4504. lcd_wait_interact();
  4505. load_filament_time = millis();
  4506. while(!lcd_clicked()){
  4507. cnt++;
  4508. manage_heater();
  4509. manage_inactivity(true);
  4510. /*#ifdef SNMM
  4511. target[E_AXIS] += 0.002;
  4512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4513. #endif // SNMM*/
  4514. if(cnt==0)
  4515. {
  4516. #if BEEPER > 0
  4517. if (counterBeep== 500){
  4518. counterBeep = 0;
  4519. }
  4520. SET_OUTPUT(BEEPER);
  4521. if (counterBeep== 0){
  4522. WRITE(BEEPER,HIGH);
  4523. }
  4524. if (counterBeep== 20){
  4525. WRITE(BEEPER,LOW);
  4526. }
  4527. counterBeep++;
  4528. #else
  4529. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4530. lcd_buzz(1000/6,100);
  4531. #else
  4532. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4533. #endif
  4534. #endif
  4535. }
  4536. }
  4537. WRITE(BEEPER, LOW);
  4538. #ifdef SNMM
  4539. display_loading();
  4540. do {
  4541. target[E_AXIS] += 0.002;
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4543. delay_keep_alive(2);
  4544. } while (!lcd_clicked());
  4545. /*if (millis() - load_filament_time > 2) {
  4546. load_filament_time = millis();
  4547. target[E_AXIS] += 0.001;
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4549. }*/
  4550. #endif
  4551. //Filament inserted
  4552. //Feed the filament to the end of nozzle quickly
  4553. #ifdef SNMM
  4554. st_synchronize();
  4555. target[E_AXIS] += bowden_length[snmm_extruder];
  4556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4557. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4558. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4559. target[E_AXIS] += 40;
  4560. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4561. target[E_AXIS] += 10;
  4562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4563. #else
  4564. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4566. #endif // SNMM
  4567. //Extrude some filament
  4568. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4570. //Wait for user to check the state
  4571. lcd_change_fil_state = 0;
  4572. lcd_loading_filament();
  4573. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4574. lcd_change_fil_state = 0;
  4575. lcd_alright();
  4576. switch(lcd_change_fil_state){
  4577. // Filament failed to load so load it again
  4578. case 2:
  4579. #ifdef SNMM
  4580. display_loading();
  4581. do {
  4582. target[E_AXIS] += 0.002;
  4583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4584. delay_keep_alive(2);
  4585. } while (!lcd_clicked());
  4586. st_synchronize();
  4587. target[E_AXIS] += bowden_length[snmm_extruder];
  4588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4589. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4591. target[E_AXIS] += 40;
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4593. target[E_AXIS] += 10;
  4594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4595. #else
  4596. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4598. #endif
  4599. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4601. lcd_loading_filament();
  4602. break;
  4603. // Filament loaded properly but color is not clear
  4604. case 3:
  4605. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4607. lcd_loading_color();
  4608. break;
  4609. // Everything good
  4610. default:
  4611. lcd_change_success();
  4612. lcd_update_enable(true);
  4613. break;
  4614. }
  4615. }
  4616. //Not let's go back to print
  4617. //Feed a little of filament to stabilize pressure
  4618. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4620. //Retract
  4621. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4623. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4624. //Move XY back
  4625. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4626. //Move Z back
  4627. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4628. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4629. //Unretract
  4630. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4631. //Set E position to original
  4632. plan_set_e_position(lastpos[E_AXIS]);
  4633. //Recover feed rate
  4634. feedmultiply=feedmultiplyBckp;
  4635. char cmd[9];
  4636. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4637. enquecommand(cmd);
  4638. lcd_setstatuspgm(WELCOME_MSG);
  4639. custom_message = false;
  4640. custom_message_type = 0;
  4641. }
  4642. break;
  4643. #endif //FILAMENTCHANGEENABLE
  4644. case 601: {
  4645. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4646. }
  4647. break;
  4648. case 602: {
  4649. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4650. }
  4651. break;
  4652. case 907: // M907 Set digital trimpot motor current using axis codes.
  4653. {
  4654. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4655. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4656. if(code_seen('B')) digipot_current(4,code_value());
  4657. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4658. #endif
  4659. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4660. if(code_seen('X')) digipot_current(0, code_value());
  4661. #endif
  4662. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4663. if(code_seen('Z')) digipot_current(1, code_value());
  4664. #endif
  4665. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4666. if(code_seen('E')) digipot_current(2, code_value());
  4667. #endif
  4668. #ifdef DIGIPOT_I2C
  4669. // this one uses actual amps in floating point
  4670. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4671. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4672. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4673. #endif
  4674. }
  4675. break;
  4676. case 908: // M908 Control digital trimpot directly.
  4677. {
  4678. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4679. uint8_t channel,current;
  4680. if(code_seen('P')) channel=code_value();
  4681. if(code_seen('S')) current=code_value();
  4682. digitalPotWrite(channel, current);
  4683. #endif
  4684. }
  4685. break;
  4686. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4687. {
  4688. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4689. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4690. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4691. if(code_seen('B')) microstep_mode(4,code_value());
  4692. microstep_readings();
  4693. #endif
  4694. }
  4695. break;
  4696. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4697. {
  4698. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4699. if(code_seen('S')) switch((int)code_value())
  4700. {
  4701. case 1:
  4702. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4703. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4704. break;
  4705. case 2:
  4706. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4707. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4708. break;
  4709. }
  4710. microstep_readings();
  4711. #endif
  4712. }
  4713. break;
  4714. case 701: //M701: load filament
  4715. {
  4716. enable_z();
  4717. custom_message = true;
  4718. custom_message_type = 2;
  4719. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4720. current_position[E_AXIS] += 70;
  4721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4722. current_position[E_AXIS] += 25;
  4723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4724. st_synchronize();
  4725. if (!farm_mode && loading_flag) {
  4726. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4727. while (!clean) {
  4728. lcd_update_enable(true);
  4729. lcd_update(2);
  4730. current_position[E_AXIS] += 25;
  4731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4732. st_synchronize();
  4733. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4734. }
  4735. }
  4736. lcd_update_enable(true);
  4737. lcd_update(2);
  4738. lcd_setstatuspgm(WELCOME_MSG);
  4739. disable_z();
  4740. loading_flag = false;
  4741. custom_message = false;
  4742. custom_message_type = 0;
  4743. }
  4744. break;
  4745. case 702:
  4746. {
  4747. #ifdef SNMM
  4748. if (code_seen('U')) {
  4749. extr_unload_used(); //unload all filaments which were used in current print
  4750. }
  4751. else if (code_seen('C')) {
  4752. extr_unload(); //unload just current filament
  4753. }
  4754. else {
  4755. extr_unload_all(); //unload all filaments
  4756. }
  4757. #else
  4758. custom_message = true;
  4759. custom_message_type = 2;
  4760. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4761. current_position[E_AXIS] -= 80;
  4762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4763. st_synchronize();
  4764. lcd_setstatuspgm(WELCOME_MSG);
  4765. custom_message = false;
  4766. custom_message_type = 0;
  4767. #endif
  4768. }
  4769. break;
  4770. case 999: // M999: Restart after being stopped
  4771. Stopped = false;
  4772. lcd_reset_alert_level();
  4773. gcode_LastN = Stopped_gcode_LastN;
  4774. FlushSerialRequestResend();
  4775. break;
  4776. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4777. }
  4778. } // end if(code_seen('M')) (end of M codes)
  4779. else if(code_seen('T'))
  4780. {
  4781. int index;
  4782. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4783. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4784. SERIAL_ECHOLNPGM("Invalid T code.");
  4785. }
  4786. else {
  4787. if (*(strchr_pointer + index) == '?') {
  4788. tmp_extruder = choose_extruder_menu();
  4789. }
  4790. else {
  4791. tmp_extruder = code_value();
  4792. }
  4793. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4794. #ifdef SNMM
  4795. snmm_extruder = tmp_extruder;
  4796. st_synchronize();
  4797. delay(100);
  4798. disable_e0();
  4799. disable_e1();
  4800. disable_e2();
  4801. pinMode(E_MUX0_PIN, OUTPUT);
  4802. pinMode(E_MUX1_PIN, OUTPUT);
  4803. pinMode(E_MUX2_PIN, OUTPUT);
  4804. delay(100);
  4805. SERIAL_ECHO_START;
  4806. SERIAL_ECHO("T:");
  4807. SERIAL_ECHOLN((int)tmp_extruder);
  4808. switch (tmp_extruder) {
  4809. case 1:
  4810. WRITE(E_MUX0_PIN, HIGH);
  4811. WRITE(E_MUX1_PIN, LOW);
  4812. WRITE(E_MUX2_PIN, LOW);
  4813. break;
  4814. case 2:
  4815. WRITE(E_MUX0_PIN, LOW);
  4816. WRITE(E_MUX1_PIN, HIGH);
  4817. WRITE(E_MUX2_PIN, LOW);
  4818. break;
  4819. case 3:
  4820. WRITE(E_MUX0_PIN, HIGH);
  4821. WRITE(E_MUX1_PIN, HIGH);
  4822. WRITE(E_MUX2_PIN, LOW);
  4823. break;
  4824. default:
  4825. WRITE(E_MUX0_PIN, LOW);
  4826. WRITE(E_MUX1_PIN, LOW);
  4827. WRITE(E_MUX2_PIN, LOW);
  4828. break;
  4829. }
  4830. delay(100);
  4831. #else
  4832. if (tmp_extruder >= EXTRUDERS) {
  4833. SERIAL_ECHO_START;
  4834. SERIAL_ECHOPGM("T");
  4835. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4836. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4837. }
  4838. else {
  4839. boolean make_move = false;
  4840. if (code_seen('F')) {
  4841. make_move = true;
  4842. next_feedrate = code_value();
  4843. if (next_feedrate > 0.0) {
  4844. feedrate = next_feedrate;
  4845. }
  4846. }
  4847. #if EXTRUDERS > 1
  4848. if (tmp_extruder != active_extruder) {
  4849. // Save current position to return to after applying extruder offset
  4850. memcpy(destination, current_position, sizeof(destination));
  4851. // Offset extruder (only by XY)
  4852. int i;
  4853. for (i = 0; i < 2; i++) {
  4854. current_position[i] = current_position[i] -
  4855. extruder_offset[i][active_extruder] +
  4856. extruder_offset[i][tmp_extruder];
  4857. }
  4858. // Set the new active extruder and position
  4859. active_extruder = tmp_extruder;
  4860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4861. // Move to the old position if 'F' was in the parameters
  4862. if (make_move && Stopped == false) {
  4863. prepare_move();
  4864. }
  4865. }
  4866. #endif
  4867. SERIAL_ECHO_START;
  4868. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4869. SERIAL_PROTOCOLLN((int)active_extruder);
  4870. }
  4871. #endif
  4872. }
  4873. } // end if(code_seen('T')) (end of T codes)
  4874. else
  4875. {
  4876. SERIAL_ECHO_START;
  4877. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4878. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4879. SERIAL_ECHOLNPGM("\"");
  4880. }
  4881. ClearToSend();
  4882. }
  4883. void FlushSerialRequestResend()
  4884. {
  4885. //char cmdbuffer[bufindr][100]="Resend:";
  4886. MYSERIAL.flush();
  4887. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4888. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4889. ClearToSend();
  4890. }
  4891. // Confirm the execution of a command, if sent from a serial line.
  4892. // Execution of a command from a SD card will not be confirmed.
  4893. void ClearToSend()
  4894. {
  4895. previous_millis_cmd = millis();
  4896. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4897. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4898. }
  4899. void get_coordinates()
  4900. {
  4901. bool seen[4]={false,false,false,false};
  4902. for(int8_t i=0; i < NUM_AXIS; i++) {
  4903. if(code_seen(axis_codes[i]))
  4904. {
  4905. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4906. seen[i]=true;
  4907. }
  4908. else destination[i] = current_position[i]; //Are these else lines really needed?
  4909. }
  4910. if(code_seen('F')) {
  4911. next_feedrate = code_value();
  4912. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4913. }
  4914. }
  4915. void get_arc_coordinates()
  4916. {
  4917. #ifdef SF_ARC_FIX
  4918. bool relative_mode_backup = relative_mode;
  4919. relative_mode = true;
  4920. #endif
  4921. get_coordinates();
  4922. #ifdef SF_ARC_FIX
  4923. relative_mode=relative_mode_backup;
  4924. #endif
  4925. if(code_seen('I')) {
  4926. offset[0] = code_value();
  4927. }
  4928. else {
  4929. offset[0] = 0.0;
  4930. }
  4931. if(code_seen('J')) {
  4932. offset[1] = code_value();
  4933. }
  4934. else {
  4935. offset[1] = 0.0;
  4936. }
  4937. }
  4938. void clamp_to_software_endstops(float target[3])
  4939. {
  4940. world2machine_clamp(target[0], target[1]);
  4941. // Clamp the Z coordinate.
  4942. if (min_software_endstops) {
  4943. float negative_z_offset = 0;
  4944. #ifdef ENABLE_AUTO_BED_LEVELING
  4945. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4946. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4947. #endif
  4948. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4949. }
  4950. if (max_software_endstops) {
  4951. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4952. }
  4953. }
  4954. #ifdef MESH_BED_LEVELING
  4955. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4956. float dx = x - current_position[X_AXIS];
  4957. float dy = y - current_position[Y_AXIS];
  4958. float dz = z - current_position[Z_AXIS];
  4959. int n_segments = 0;
  4960. if (mbl.active) {
  4961. float len = abs(dx) + abs(dy);
  4962. if (len > 0)
  4963. // Split to 3cm segments or shorter.
  4964. n_segments = int(ceil(len / 30.f));
  4965. }
  4966. if (n_segments > 1) {
  4967. float de = e - current_position[E_AXIS];
  4968. for (int i = 1; i < n_segments; ++ i) {
  4969. float t = float(i) / float(n_segments);
  4970. plan_buffer_line(
  4971. current_position[X_AXIS] + t * dx,
  4972. current_position[Y_AXIS] + t * dy,
  4973. current_position[Z_AXIS] + t * dz,
  4974. current_position[E_AXIS] + t * de,
  4975. feed_rate, extruder);
  4976. }
  4977. }
  4978. // The rest of the path.
  4979. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4980. current_position[X_AXIS] = x;
  4981. current_position[Y_AXIS] = y;
  4982. current_position[Z_AXIS] = z;
  4983. current_position[E_AXIS] = e;
  4984. }
  4985. #endif // MESH_BED_LEVELING
  4986. void prepare_move()
  4987. {
  4988. clamp_to_software_endstops(destination);
  4989. previous_millis_cmd = millis();
  4990. // Do not use feedmultiply for E or Z only moves
  4991. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4992. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4993. }
  4994. else {
  4995. #ifdef MESH_BED_LEVELING
  4996. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4997. #else
  4998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4999. #endif
  5000. }
  5001. for(int8_t i=0; i < NUM_AXIS; i++) {
  5002. current_position[i] = destination[i];
  5003. }
  5004. }
  5005. void prepare_arc_move(char isclockwise) {
  5006. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5007. // Trace the arc
  5008. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5009. // As far as the parser is concerned, the position is now == target. In reality the
  5010. // motion control system might still be processing the action and the real tool position
  5011. // in any intermediate location.
  5012. for(int8_t i=0; i < NUM_AXIS; i++) {
  5013. current_position[i] = destination[i];
  5014. }
  5015. previous_millis_cmd = millis();
  5016. }
  5017. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5018. #if defined(FAN_PIN)
  5019. #if CONTROLLERFAN_PIN == FAN_PIN
  5020. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5021. #endif
  5022. #endif
  5023. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5024. unsigned long lastMotorCheck = 0;
  5025. void controllerFan()
  5026. {
  5027. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5028. {
  5029. lastMotorCheck = millis();
  5030. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5031. #if EXTRUDERS > 2
  5032. || !READ(E2_ENABLE_PIN)
  5033. #endif
  5034. #if EXTRUDER > 1
  5035. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5036. || !READ(X2_ENABLE_PIN)
  5037. #endif
  5038. || !READ(E1_ENABLE_PIN)
  5039. #endif
  5040. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5041. {
  5042. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5043. }
  5044. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5045. {
  5046. digitalWrite(CONTROLLERFAN_PIN, 0);
  5047. analogWrite(CONTROLLERFAN_PIN, 0);
  5048. }
  5049. else
  5050. {
  5051. // allows digital or PWM fan output to be used (see M42 handling)
  5052. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5053. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5054. }
  5055. }
  5056. }
  5057. #endif
  5058. #ifdef TEMP_STAT_LEDS
  5059. static bool blue_led = false;
  5060. static bool red_led = false;
  5061. static uint32_t stat_update = 0;
  5062. void handle_status_leds(void) {
  5063. float max_temp = 0.0;
  5064. if(millis() > stat_update) {
  5065. stat_update += 500; // Update every 0.5s
  5066. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5067. max_temp = max(max_temp, degHotend(cur_extruder));
  5068. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5069. }
  5070. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5071. max_temp = max(max_temp, degTargetBed());
  5072. max_temp = max(max_temp, degBed());
  5073. #endif
  5074. if((max_temp > 55.0) && (red_led == false)) {
  5075. digitalWrite(STAT_LED_RED, 1);
  5076. digitalWrite(STAT_LED_BLUE, 0);
  5077. red_led = true;
  5078. blue_led = false;
  5079. }
  5080. if((max_temp < 54.0) && (blue_led == false)) {
  5081. digitalWrite(STAT_LED_RED, 0);
  5082. digitalWrite(STAT_LED_BLUE, 1);
  5083. red_led = false;
  5084. blue_led = true;
  5085. }
  5086. }
  5087. }
  5088. #endif
  5089. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5090. {
  5091. #if defined(KILL_PIN) && KILL_PIN > -1
  5092. static int killCount = 0; // make the inactivity button a bit less responsive
  5093. const int KILL_DELAY = 10000;
  5094. #endif
  5095. if(buflen < (BUFSIZE-1)){
  5096. get_command();
  5097. }
  5098. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5099. if(max_inactive_time)
  5100. kill();
  5101. if(stepper_inactive_time) {
  5102. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5103. {
  5104. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5105. disable_x();
  5106. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5107. disable_y();
  5108. disable_z();
  5109. disable_e0();
  5110. disable_e1();
  5111. disable_e2();
  5112. }
  5113. }
  5114. }
  5115. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5116. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5117. {
  5118. chdkActive = false;
  5119. WRITE(CHDK, LOW);
  5120. }
  5121. #endif
  5122. #if defined(KILL_PIN) && KILL_PIN > -1
  5123. // Check if the kill button was pressed and wait just in case it was an accidental
  5124. // key kill key press
  5125. // -------------------------------------------------------------------------------
  5126. if( 0 == READ(KILL_PIN) )
  5127. {
  5128. killCount++;
  5129. }
  5130. else if (killCount > 0)
  5131. {
  5132. killCount--;
  5133. }
  5134. // Exceeded threshold and we can confirm that it was not accidental
  5135. // KILL the machine
  5136. // ----------------------------------------------------------------
  5137. if ( killCount >= KILL_DELAY)
  5138. {
  5139. kill();
  5140. }
  5141. #endif
  5142. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5143. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5144. #endif
  5145. #ifdef EXTRUDER_RUNOUT_PREVENT
  5146. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5147. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5148. {
  5149. bool oldstatus=READ(E0_ENABLE_PIN);
  5150. enable_e0();
  5151. float oldepos=current_position[E_AXIS];
  5152. float oldedes=destination[E_AXIS];
  5153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5154. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5155. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5156. current_position[E_AXIS]=oldepos;
  5157. destination[E_AXIS]=oldedes;
  5158. plan_set_e_position(oldepos);
  5159. previous_millis_cmd=millis();
  5160. st_synchronize();
  5161. WRITE(E0_ENABLE_PIN,oldstatus);
  5162. }
  5163. #endif
  5164. #ifdef TEMP_STAT_LEDS
  5165. handle_status_leds();
  5166. #endif
  5167. check_axes_activity();
  5168. }
  5169. void kill(const char *full_screen_message)
  5170. {
  5171. cli(); // Stop interrupts
  5172. disable_heater();
  5173. disable_x();
  5174. // SERIAL_ECHOLNPGM("kill - disable Y");
  5175. disable_y();
  5176. disable_z();
  5177. disable_e0();
  5178. disable_e1();
  5179. disable_e2();
  5180. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5181. pinMode(PS_ON_PIN,INPUT);
  5182. #endif
  5183. SERIAL_ERROR_START;
  5184. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5185. if (full_screen_message != NULL) {
  5186. SERIAL_ERRORLNRPGM(full_screen_message);
  5187. lcd_display_message_fullscreen_P(full_screen_message);
  5188. } else {
  5189. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5190. }
  5191. // FMC small patch to update the LCD before ending
  5192. sei(); // enable interrupts
  5193. for ( int i=5; i--; lcd_update())
  5194. {
  5195. delay(200);
  5196. }
  5197. cli(); // disable interrupts
  5198. suicide();
  5199. while(1) { /* Intentionally left empty */ } // Wait for reset
  5200. }
  5201. void Stop()
  5202. {
  5203. disable_heater();
  5204. if(Stopped == false) {
  5205. Stopped = true;
  5206. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5207. SERIAL_ERROR_START;
  5208. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5209. LCD_MESSAGERPGM(MSG_STOPPED);
  5210. }
  5211. }
  5212. bool IsStopped() { return Stopped; };
  5213. #ifdef FAST_PWM_FAN
  5214. void setPwmFrequency(uint8_t pin, int val)
  5215. {
  5216. val &= 0x07;
  5217. switch(digitalPinToTimer(pin))
  5218. {
  5219. #if defined(TCCR0A)
  5220. case TIMER0A:
  5221. case TIMER0B:
  5222. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5223. // TCCR0B |= val;
  5224. break;
  5225. #endif
  5226. #if defined(TCCR1A)
  5227. case TIMER1A:
  5228. case TIMER1B:
  5229. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5230. // TCCR1B |= val;
  5231. break;
  5232. #endif
  5233. #if defined(TCCR2)
  5234. case TIMER2:
  5235. case TIMER2:
  5236. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5237. TCCR2 |= val;
  5238. break;
  5239. #endif
  5240. #if defined(TCCR2A)
  5241. case TIMER2A:
  5242. case TIMER2B:
  5243. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5244. TCCR2B |= val;
  5245. break;
  5246. #endif
  5247. #if defined(TCCR3A)
  5248. case TIMER3A:
  5249. case TIMER3B:
  5250. case TIMER3C:
  5251. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5252. TCCR3B |= val;
  5253. break;
  5254. #endif
  5255. #if defined(TCCR4A)
  5256. case TIMER4A:
  5257. case TIMER4B:
  5258. case TIMER4C:
  5259. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5260. TCCR4B |= val;
  5261. break;
  5262. #endif
  5263. #if defined(TCCR5A)
  5264. case TIMER5A:
  5265. case TIMER5B:
  5266. case TIMER5C:
  5267. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5268. TCCR5B |= val;
  5269. break;
  5270. #endif
  5271. }
  5272. }
  5273. #endif //FAST_PWM_FAN
  5274. bool setTargetedHotend(int code){
  5275. tmp_extruder = active_extruder;
  5276. if(code_seen('T')) {
  5277. tmp_extruder = code_value();
  5278. if(tmp_extruder >= EXTRUDERS) {
  5279. SERIAL_ECHO_START;
  5280. switch(code){
  5281. case 104:
  5282. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5283. break;
  5284. case 105:
  5285. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5286. break;
  5287. case 109:
  5288. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5289. break;
  5290. case 218:
  5291. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5292. break;
  5293. case 221:
  5294. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5295. break;
  5296. }
  5297. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5298. return true;
  5299. }
  5300. }
  5301. return false;
  5302. }
  5303. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5304. {
  5305. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5306. {
  5307. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5308. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5309. }
  5310. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5311. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5312. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5313. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5314. total_filament_used = 0;
  5315. }
  5316. float calculate_volumetric_multiplier(float diameter) {
  5317. float area = .0;
  5318. float radius = .0;
  5319. radius = diameter * .5;
  5320. if (! volumetric_enabled || radius == 0) {
  5321. area = 1;
  5322. }
  5323. else {
  5324. area = M_PI * pow(radius, 2);
  5325. }
  5326. return 1.0 / area;
  5327. }
  5328. void calculate_volumetric_multipliers() {
  5329. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5330. #if EXTRUDERS > 1
  5331. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5332. #if EXTRUDERS > 2
  5333. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5334. #endif
  5335. #endif
  5336. }
  5337. void delay_keep_alive(unsigned int ms)
  5338. {
  5339. for (;;) {
  5340. manage_heater();
  5341. // Manage inactivity, but don't disable steppers on timeout.
  5342. manage_inactivity(true);
  5343. lcd_update();
  5344. if (ms == 0)
  5345. break;
  5346. else if (ms >= 50) {
  5347. delay(50);
  5348. ms -= 50;
  5349. } else {
  5350. delay(ms);
  5351. ms = 0;
  5352. }
  5353. }
  5354. }
  5355. void wait_for_heater(long codenum) {
  5356. #ifdef TEMP_RESIDENCY_TIME
  5357. long residencyStart;
  5358. residencyStart = -1;
  5359. /* continue to loop until we have reached the target temp
  5360. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5361. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5362. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5363. #else
  5364. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5365. #endif //TEMP_RESIDENCY_TIME
  5366. if ((millis() - codenum) > 1000UL)
  5367. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5368. if (!farm_mode) {
  5369. SERIAL_PROTOCOLPGM("T:");
  5370. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5371. SERIAL_PROTOCOLPGM(" E:");
  5372. SERIAL_PROTOCOL((int)tmp_extruder);
  5373. #ifdef TEMP_RESIDENCY_TIME
  5374. SERIAL_PROTOCOLPGM(" W:");
  5375. if (residencyStart > -1)
  5376. {
  5377. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5378. SERIAL_PROTOCOLLN(codenum);
  5379. }
  5380. else
  5381. {
  5382. SERIAL_PROTOCOLLN("?");
  5383. }
  5384. }
  5385. #else
  5386. SERIAL_PROTOCOLLN("");
  5387. #endif
  5388. codenum = millis();
  5389. }
  5390. manage_heater();
  5391. manage_inactivity();
  5392. lcd_update();
  5393. #ifdef TEMP_RESIDENCY_TIME
  5394. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5395. or when current temp falls outside the hysteresis after target temp was reached */
  5396. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5397. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5398. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5399. {
  5400. residencyStart = millis();
  5401. }
  5402. #endif //TEMP_RESIDENCY_TIME
  5403. }
  5404. }
  5405. void check_babystep() {
  5406. int babystep_z;
  5407. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5408. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5409. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5410. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5411. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5412. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5413. lcd_update_enable(true);
  5414. }
  5415. }
  5416. #ifdef DIS
  5417. void d_setup()
  5418. {
  5419. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5420. pinMode(D_DATA, INPUT_PULLUP);
  5421. pinMode(D_REQUIRE, OUTPUT);
  5422. digitalWrite(D_REQUIRE, HIGH);
  5423. }
  5424. float d_ReadData()
  5425. {
  5426. int digit[13];
  5427. String mergeOutput;
  5428. float output;
  5429. digitalWrite(D_REQUIRE, HIGH);
  5430. for (int i = 0; i<13; i++)
  5431. {
  5432. for (int j = 0; j < 4; j++)
  5433. {
  5434. while (digitalRead(D_DATACLOCK) == LOW) {}
  5435. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5436. bitWrite(digit[i], j, digitalRead(D_DATA));
  5437. }
  5438. }
  5439. digitalWrite(D_REQUIRE, LOW);
  5440. mergeOutput = "";
  5441. output = 0;
  5442. for (int r = 5; r <= 10; r++) //Merge digits
  5443. {
  5444. mergeOutput += digit[r];
  5445. }
  5446. output = mergeOutput.toFloat();
  5447. if (digit[4] == 8) //Handle sign
  5448. {
  5449. output *= -1;
  5450. }
  5451. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5452. {
  5453. output /= 10;
  5454. }
  5455. return output;
  5456. }
  5457. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5458. int t1 = 0;
  5459. int t_delay = 0;
  5460. int digit[13];
  5461. int m;
  5462. char str[3];
  5463. //String mergeOutput;
  5464. char mergeOutput[15];
  5465. float output;
  5466. int mesh_point = 0; //index number of calibration point
  5467. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5468. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5469. float mesh_home_z_search = 4;
  5470. float row[x_points_num];
  5471. int ix = 0;
  5472. int iy = 0;
  5473. char* filename_wldsd = "wldsd.txt";
  5474. char data_wldsd[70];
  5475. char numb_wldsd[10];
  5476. d_setup();
  5477. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5478. // We don't know where we are! HOME!
  5479. // Push the commands to the front of the message queue in the reverse order!
  5480. // There shall be always enough space reserved for these commands.
  5481. repeatcommand_front(); // repeat G80 with all its parameters
  5482. enquecommand_front_P((PSTR("G28 W0")));
  5483. enquecommand_front_P((PSTR("G1 Z5")));
  5484. return;
  5485. }
  5486. bool custom_message_old = custom_message;
  5487. unsigned int custom_message_type_old = custom_message_type;
  5488. unsigned int custom_message_state_old = custom_message_state;
  5489. custom_message = true;
  5490. custom_message_type = 1;
  5491. custom_message_state = (x_points_num * y_points_num) + 10;
  5492. lcd_update(1);
  5493. mbl.reset();
  5494. babystep_undo();
  5495. card.openFile(filename_wldsd, false);
  5496. current_position[Z_AXIS] = mesh_home_z_search;
  5497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5498. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5499. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5500. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5501. setup_for_endstop_move(false);
  5502. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5503. SERIAL_PROTOCOL(x_points_num);
  5504. SERIAL_PROTOCOLPGM(",");
  5505. SERIAL_PROTOCOL(y_points_num);
  5506. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5507. SERIAL_PROTOCOL(mesh_home_z_search);
  5508. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5509. SERIAL_PROTOCOL(x_dimension);
  5510. SERIAL_PROTOCOLPGM(",");
  5511. SERIAL_PROTOCOL(y_dimension);
  5512. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5513. while (mesh_point != x_points_num * y_points_num) {
  5514. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5515. iy = mesh_point / x_points_num;
  5516. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5517. float z0 = 0.f;
  5518. current_position[Z_AXIS] = mesh_home_z_search;
  5519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5520. st_synchronize();
  5521. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5522. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5524. st_synchronize();
  5525. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5526. break;
  5527. card.closefile();
  5528. }
  5529. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5530. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5531. //strcat(data_wldsd, numb_wldsd);
  5532. //MYSERIAL.println(data_wldsd);
  5533. //delay(1000);
  5534. //delay(3000);
  5535. //t1 = millis();
  5536. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5537. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5538. memset(digit, 0, sizeof(digit));
  5539. //cli();
  5540. digitalWrite(D_REQUIRE, LOW);
  5541. for (int i = 0; i<13; i++)
  5542. {
  5543. //t1 = millis();
  5544. for (int j = 0; j < 4; j++)
  5545. {
  5546. while (digitalRead(D_DATACLOCK) == LOW) {}
  5547. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5548. bitWrite(digit[i], j, digitalRead(D_DATA));
  5549. }
  5550. //t_delay = (millis() - t1);
  5551. //SERIAL_PROTOCOLPGM(" ");
  5552. //SERIAL_PROTOCOL_F(t_delay, 5);
  5553. //SERIAL_PROTOCOLPGM(" ");
  5554. }
  5555. //sei();
  5556. digitalWrite(D_REQUIRE, HIGH);
  5557. mergeOutput[0] = '\0';
  5558. output = 0;
  5559. for (int r = 5; r <= 10; r++) //Merge digits
  5560. {
  5561. sprintf(str, "%d", digit[r]);
  5562. strcat(mergeOutput, str);
  5563. }
  5564. output = atof(mergeOutput);
  5565. if (digit[4] == 8) //Handle sign
  5566. {
  5567. output *= -1;
  5568. }
  5569. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5570. {
  5571. output *= 0.1;
  5572. }
  5573. //output = d_ReadData();
  5574. //row[ix] = current_position[Z_AXIS];
  5575. memset(data_wldsd, 0, sizeof(data_wldsd));
  5576. for (int i = 0; i <3; i++) {
  5577. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5578. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5579. strcat(data_wldsd, numb_wldsd);
  5580. strcat(data_wldsd, ";");
  5581. }
  5582. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5583. dtostrf(output, 8, 5, numb_wldsd);
  5584. strcat(data_wldsd, numb_wldsd);
  5585. //strcat(data_wldsd, ";");
  5586. card.write_command(data_wldsd);
  5587. //row[ix] = d_ReadData();
  5588. row[ix] = output; // current_position[Z_AXIS];
  5589. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5590. for (int i = 0; i < x_points_num; i++) {
  5591. SERIAL_PROTOCOLPGM(" ");
  5592. SERIAL_PROTOCOL_F(row[i], 5);
  5593. }
  5594. SERIAL_PROTOCOLPGM("\n");
  5595. }
  5596. custom_message_state--;
  5597. mesh_point++;
  5598. lcd_update(1);
  5599. }
  5600. card.closefile();
  5601. }
  5602. #endif
  5603. void temp_compensation_start() {
  5604. custom_message = true;
  5605. custom_message_type = 5;
  5606. custom_message_state = PINDA_HEAT_T + 1;
  5607. lcd_update(2);
  5608. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5609. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5610. }
  5611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5612. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5613. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5614. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5616. st_synchronize();
  5617. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5618. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5619. delay_keep_alive(1000);
  5620. custom_message_state = PINDA_HEAT_T - i;
  5621. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5622. else lcd_update(1);
  5623. }
  5624. custom_message_type = 0;
  5625. custom_message_state = 0;
  5626. custom_message = false;
  5627. }
  5628. void temp_compensation_apply() {
  5629. int i_add;
  5630. int compensation_value;
  5631. int z_shift = 0;
  5632. float z_shift_mm;
  5633. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5634. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5635. i_add = (target_temperature_bed - 60) / 10;
  5636. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5637. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5638. }else {
  5639. //interpolation
  5640. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5641. }
  5642. SERIAL_PROTOCOLPGM("\n");
  5643. SERIAL_PROTOCOLPGM("Z shift applied:");
  5644. MYSERIAL.print(z_shift_mm);
  5645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5646. st_synchronize();
  5647. plan_set_z_position(current_position[Z_AXIS]);
  5648. }
  5649. else {
  5650. //we have no temp compensation data
  5651. }
  5652. }
  5653. float temp_comp_interpolation(float inp_temperature) {
  5654. //cubic spline interpolation
  5655. int n, i, j, k;
  5656. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5657. int shift[10];
  5658. int temp_C[10];
  5659. n = 6; //number of measured points
  5660. shift[0] = 0;
  5661. for (i = 0; i < n; i++) {
  5662. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5663. temp_C[i] = 50 + i * 10; //temperature in C
  5664. x[i] = (float)temp_C[i];
  5665. f[i] = (float)shift[i];
  5666. }
  5667. if (inp_temperature < x[0]) return 0;
  5668. for (i = n - 1; i>0; i--) {
  5669. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5670. h[i - 1] = x[i] - x[i - 1];
  5671. }
  5672. //*********** formation of h, s , f matrix **************
  5673. for (i = 1; i<n - 1; i++) {
  5674. m[i][i] = 2 * (h[i - 1] + h[i]);
  5675. if (i != 1) {
  5676. m[i][i - 1] = h[i - 1];
  5677. m[i - 1][i] = h[i - 1];
  5678. }
  5679. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5680. }
  5681. //*********** forward elimination **************
  5682. for (i = 1; i<n - 2; i++) {
  5683. temp = (m[i + 1][i] / m[i][i]);
  5684. for (j = 1; j <= n - 1; j++)
  5685. m[i + 1][j] -= temp*m[i][j];
  5686. }
  5687. //*********** backward substitution *********
  5688. for (i = n - 2; i>0; i--) {
  5689. sum = 0;
  5690. for (j = i; j <= n - 2; j++)
  5691. sum += m[i][j] * s[j];
  5692. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5693. }
  5694. for (i = 0; i<n - 1; i++)
  5695. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5696. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5697. b = s[i] / 2;
  5698. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5699. d = f[i];
  5700. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5701. }
  5702. return sum;
  5703. }
  5704. void long_pause() //long pause print
  5705. {
  5706. st_synchronize();
  5707. //save currently set parameters to global variables
  5708. saved_feedmultiply = feedmultiply;
  5709. HotendTempBckp = degTargetHotend(active_extruder);
  5710. fanSpeedBckp = fanSpeed;
  5711. start_pause_print = millis();
  5712. //save position
  5713. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5714. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5715. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5716. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5717. //retract
  5718. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5720. //lift z
  5721. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5722. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5724. //set nozzle target temperature to 0
  5725. setTargetHotend(0, 0);
  5726. setTargetHotend(0, 1);
  5727. setTargetHotend(0, 2);
  5728. //Move XY to side
  5729. current_position[X_AXIS] = X_PAUSE_POS;
  5730. current_position[Y_AXIS] = Y_PAUSE_POS;
  5731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5732. // Turn off the print fan
  5733. fanSpeed = 0;
  5734. st_synchronize();
  5735. }
  5736. void serialecho_temperatures() {
  5737. float tt = degHotend(active_extruder);
  5738. SERIAL_PROTOCOLPGM("T:");
  5739. SERIAL_PROTOCOL(tt);
  5740. SERIAL_PROTOCOLPGM(" E:");
  5741. SERIAL_PROTOCOL((int)active_extruder);
  5742. SERIAL_PROTOCOLPGM(" B:");
  5743. SERIAL_PROTOCOL_F(degBed(), 1);
  5744. SERIAL_PROTOCOLLN("");
  5745. }