temperature.cpp 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile uint8_t fan_check_error = EFCE_OK;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(int e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. void checkFanSpeed()
  424. {
  425. uint8_t max_print_fan_errors = 0;
  426. uint8_t max_extruder_fan_errors = 0;
  427. #ifdef FAN_SOFT_PWM
  428. max_print_fan_errors = 3; //15 seconds
  429. max_extruder_fan_errors = 2; //10seconds
  430. #else //FAN_SOFT_PWM
  431. max_print_fan_errors = 15; //15 seconds
  432. max_extruder_fan_errors = 5; //5 seconds
  433. #endif //FAN_SOFT_PWM
  434. if(fans_check_enabled != false)
  435. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  436. static unsigned char fan_speed_errors[2] = { 0,0 };
  437. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  438. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  439. else fan_speed_errors[0] = 0;
  440. #endif
  441. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  442. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  443. else fan_speed_errors[1] = 0;
  444. #endif
  445. // drop the fan_check_error flag when both fans are ok
  446. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  447. // we may even send some info to the LCD from here
  448. fan_check_error = EFCE_OK;
  449. }
  450. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  451. fan_speed_errors[0] = 0;
  452. fanSpeedError(0); //extruder fan
  453. }
  454. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  455. fan_speed_errors[1] = 0;
  456. fanSpeedError(1); //print fan
  457. }
  458. }
  459. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  460. //! Extracted from fanSpeedError to save some space.
  461. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  462. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  463. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  464. SERIAL_ECHOLNRPGM(serialMsg);
  465. if (get_message_level() == 0) {
  466. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT)){
  467. WRITE(BEEPER, HIGH);
  468. delayMicroseconds(200);
  469. WRITE(BEEPER, LOW);
  470. delayMicroseconds(100); // what is this wait for?
  471. }
  472. LCD_ALERTMESSAGERPGM(lcdMsg);
  473. }
  474. }
  475. void fanSpeedError(unsigned char _fan) {
  476. if (get_message_level() != 0 && isPrintPaused) return;
  477. //to ensure that target temp. is not set to zero in case taht we are resuming print
  478. if (card.sdprinting) {
  479. if (heating_status != 0) {
  480. lcd_print_stop();
  481. }
  482. else {
  483. fan_check_error = EFCE_DETECTED;
  484. }
  485. }
  486. else {
  487. setTargetHotend0(0);
  488. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  489. heating_status = 0;
  490. fan_check_error = EFCE_REPORTED;
  491. }
  492. switch (_fan) {
  493. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  494. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  495. break;
  496. case 1:
  497. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  498. break;
  499. }
  500. }
  501. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  502. void checkExtruderAutoFans()
  503. {
  504. uint8_t fanState = 0;
  505. // which fan pins need to be turned on?
  506. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  507. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. fanState |= 1;
  509. #endif
  510. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  511. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  512. {
  513. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  514. fanState |= 1;
  515. else
  516. fanState |= 2;
  517. }
  518. #endif
  519. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  520. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  521. {
  522. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  523. fanState |= 1;
  524. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  525. fanState |= 2;
  526. else
  527. fanState |= 4;
  528. }
  529. #endif
  530. // update extruder auto fan states
  531. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  532. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  533. #endif
  534. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  535. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  536. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  537. #endif
  538. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  539. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  540. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  541. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  542. #endif
  543. }
  544. #endif // any extruder auto fan pins set
  545. // ready for eventually parameters adjusting
  546. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  547. //void resetPID(uint8_t extruder)
  548. {
  549. }
  550. void manage_heater()
  551. {
  552. #ifdef WATCHDOG
  553. wdt_reset();
  554. #endif //WATCHDOG
  555. float pid_input;
  556. float pid_output;
  557. if(temp_meas_ready != true) //better readability
  558. return;
  559. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  560. updateTemperaturesFromRawValues();
  561. check_max_temp();
  562. check_min_temp();
  563. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  564. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  565. #endif
  566. for(int e = 0; e < EXTRUDERS; e++)
  567. {
  568. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  569. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  570. #endif
  571. #ifdef PIDTEMP
  572. pid_input = current_temperature[e];
  573. #ifndef PID_OPENLOOP
  574. if(target_temperature[e] == 0) {
  575. pid_output = 0;
  576. pid_reset[e] = true;
  577. } else {
  578. pid_error[e] = target_temperature[e] - pid_input;
  579. if(pid_reset[e]) {
  580. iState_sum[e] = 0.0;
  581. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  582. pid_reset[e] = false;
  583. }
  584. #ifndef PonM
  585. pTerm[e] = cs.Kp * pid_error[e];
  586. iState_sum[e] += pid_error[e];
  587. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  588. iTerm[e] = cs.Ki * iState_sum[e];
  589. // PID_K1 defined in Configuration.h in the PID settings
  590. #define K2 (1.0-PID_K1)
  591. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  592. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. if (pid_output > PID_MAX) {
  594. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  595. pid_output=PID_MAX;
  596. } else if (pid_output < 0) {
  597. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  598. pid_output=0;
  599. }
  600. #else // PonM ("Proportional on Measurement" method)
  601. iState_sum[e] += cs.Ki * pid_error[e];
  602. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  603. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  604. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  605. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  606. pid_output = constrain(pid_output, 0, PID_MAX);
  607. #endif // PonM
  608. }
  609. dState_last[e] = pid_input;
  610. #else
  611. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  612. #endif //PID_OPENLOOP
  613. #ifdef PID_DEBUG
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHO(" PID_DEBUG ");
  616. SERIAL_ECHO(e);
  617. SERIAL_ECHO(": Input ");
  618. SERIAL_ECHO(pid_input);
  619. SERIAL_ECHO(" Output ");
  620. SERIAL_ECHO(pid_output);
  621. SERIAL_ECHO(" pTerm ");
  622. SERIAL_ECHO(pTerm[e]);
  623. SERIAL_ECHO(" iTerm ");
  624. SERIAL_ECHO(iTerm[e]);
  625. SERIAL_ECHO(" dTerm ");
  626. SERIAL_ECHOLN(-dTerm[e]);
  627. #endif //PID_DEBUG
  628. #else /* PID off */
  629. pid_output = 0;
  630. if(current_temperature[e] < target_temperature[e]) {
  631. pid_output = PID_MAX;
  632. }
  633. #endif
  634. // Check if temperature is within the correct range
  635. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  636. {
  637. soft_pwm[e] = (int)pid_output >> 1;
  638. }
  639. else
  640. {
  641. soft_pwm[e] = 0;
  642. }
  643. #ifdef WATCH_TEMP_PERIOD
  644. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  645. {
  646. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  647. {
  648. setTargetHotend(0, e);
  649. LCD_MESSAGEPGM("Heating failed");
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHOLN("Heating failed");
  652. }else{
  653. watchmillis[e] = 0;
  654. }
  655. }
  656. #endif
  657. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  658. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  659. disable_heater();
  660. if(IsStopped() == false) {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  663. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  664. }
  665. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  666. Stop();
  667. #endif
  668. }
  669. #endif
  670. } // End extruder for loop
  671. #define FAN_CHECK_PERIOD 5000 //5s
  672. #define FAN_CHECK_DURATION 100 //100ms
  673. #ifndef DEBUG_DISABLE_FANCHECK
  674. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  675. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  676. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  677. #ifdef FAN_SOFT_PWM
  678. #ifdef FANCHECK
  679. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  680. extruder_autofan_last_check = _millis();
  681. fanSpeedBckp = fanSpeedSoftPwm;
  682. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  683. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  684. fanSpeedSoftPwm = 255;
  685. }
  686. fan_measuring = true;
  687. }
  688. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  689. countFanSpeed();
  690. checkFanSpeed();
  691. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  692. fanSpeedSoftPwm = fanSpeedBckp;
  693. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  694. extruder_autofan_last_check = _millis();
  695. fan_measuring = false;
  696. }
  697. #endif //FANCHECK
  698. checkExtruderAutoFans();
  699. #else //FAN_SOFT_PWM
  700. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  701. {
  702. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  703. countFanSpeed();
  704. checkFanSpeed();
  705. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  706. checkExtruderAutoFans();
  707. extruder_autofan_last_check = _millis();
  708. }
  709. #endif //FAN_SOFT_PWM
  710. #endif
  711. #endif //DEBUG_DISABLE_FANCHECK
  712. #ifndef PIDTEMPBED
  713. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  714. return;
  715. previous_millis_bed_heater = _millis();
  716. #endif
  717. #if TEMP_SENSOR_BED != 0
  718. #ifdef PIDTEMPBED
  719. pid_input = current_temperature_bed;
  720. #ifndef PID_OPENLOOP
  721. pid_error_bed = target_temperature_bed - pid_input;
  722. pTerm_bed = cs.bedKp * pid_error_bed;
  723. temp_iState_bed += pid_error_bed;
  724. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  725. iTerm_bed = cs.bedKi * temp_iState_bed;
  726. //PID_K1 defined in Configuration.h in the PID settings
  727. #define K2 (1.0-PID_K1)
  728. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  729. temp_dState_bed = pid_input;
  730. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  731. if (pid_output > MAX_BED_POWER) {
  732. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  733. pid_output=MAX_BED_POWER;
  734. } else if (pid_output < 0){
  735. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  736. pid_output=0;
  737. }
  738. #else
  739. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  740. #endif //PID_OPENLOOP
  741. if(current_temperature_bed < BED_MAXTEMP)
  742. {
  743. soft_pwm_bed = (int)pid_output >> 1;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. else {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. #elif !defined(BED_LIMIT_SWITCHING)
  751. // Check if temperature is within the correct range
  752. if(current_temperature_bed < BED_MAXTEMP)
  753. {
  754. if(current_temperature_bed >= target_temperature_bed)
  755. {
  756. soft_pwm_bed = 0;
  757. timer02_set_pwm0(soft_pwm_bed << 1);
  758. }
  759. else
  760. {
  761. soft_pwm_bed = MAX_BED_POWER>>1;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. }
  764. }
  765. else
  766. {
  767. soft_pwm_bed = 0;
  768. timer02_set_pwm0(soft_pwm_bed << 1);
  769. WRITE(HEATER_BED_PIN,LOW);
  770. }
  771. #else //#ifdef BED_LIMIT_SWITCHING
  772. // Check if temperature is within the correct band
  773. if(current_temperature_bed < BED_MAXTEMP)
  774. {
  775. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  776. {
  777. soft_pwm_bed = 0;
  778. timer02_set_pwm0(soft_pwm_bed << 1);
  779. }
  780. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  781. {
  782. soft_pwm_bed = MAX_BED_POWER>>1;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. }
  786. else
  787. {
  788. soft_pwm_bed = 0;
  789. timer02_set_pwm0(soft_pwm_bed << 1);
  790. WRITE(HEATER_BED_PIN,LOW);
  791. }
  792. #endif
  793. if(target_temperature_bed==0)
  794. {
  795. soft_pwm_bed = 0;
  796. timer02_set_pwm0(soft_pwm_bed << 1);
  797. }
  798. #endif
  799. host_keepalive();
  800. }
  801. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  802. // Derived from RepRap FiveD extruder::getTemperature()
  803. // For hot end temperature measurement.
  804. static float analog2temp(int raw, uint8_t e) {
  805. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  806. if(e > EXTRUDERS)
  807. #else
  808. if(e >= EXTRUDERS)
  809. #endif
  810. {
  811. SERIAL_ERROR_START;
  812. SERIAL_ERROR((int)e);
  813. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  814. kill(PSTR(""), 6);
  815. return 0.0;
  816. }
  817. #ifdef HEATER_0_USES_MAX6675
  818. if (e == 0)
  819. {
  820. return 0.25 * raw;
  821. }
  822. #endif
  823. if(heater_ttbl_map[e] != NULL)
  824. {
  825. float celsius = 0;
  826. uint8_t i;
  827. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  828. for (i=1; i<heater_ttbllen_map[e]; i++)
  829. {
  830. if (PGM_RD_W((*tt)[i][0]) > raw)
  831. {
  832. celsius = PGM_RD_W((*tt)[i-1][1]) +
  833. (raw - PGM_RD_W((*tt)[i-1][0])) *
  834. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  835. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  836. break;
  837. }
  838. }
  839. // Overflow: Set to last value in the table
  840. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  841. return celsius;
  842. }
  843. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  844. }
  845. // Derived from RepRap FiveD extruder::getTemperature()
  846. // For bed temperature measurement.
  847. static float analog2tempBed(int raw) {
  848. #ifdef BED_USES_THERMISTOR
  849. float celsius = 0;
  850. byte i;
  851. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  852. {
  853. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  854. {
  855. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  856. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  857. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  858. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  859. break;
  860. }
  861. }
  862. // Overflow: Set to last value in the table
  863. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  864. // temperature offset adjustment
  865. #ifdef BED_OFFSET
  866. float _offset = BED_OFFSET;
  867. float _offset_center = BED_OFFSET_CENTER;
  868. float _offset_start = BED_OFFSET_START;
  869. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  870. float _second_koef = (_offset / 2) / (100 - _offset_center);
  871. if (celsius >= _offset_start && celsius <= _offset_center)
  872. {
  873. celsius = celsius + (_first_koef * (celsius - _offset_start));
  874. }
  875. else if (celsius > _offset_center && celsius <= 100)
  876. {
  877. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  878. }
  879. else if (celsius > 100)
  880. {
  881. celsius = celsius + _offset;
  882. }
  883. #endif
  884. return celsius;
  885. #elif defined BED_USES_AD595
  886. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  887. #else
  888. return 0;
  889. #endif
  890. }
  891. #ifdef AMBIENT_THERMISTOR
  892. static float analog2tempAmbient(int raw)
  893. {
  894. float celsius = 0;
  895. byte i;
  896. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  897. {
  898. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  899. {
  900. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  901. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  902. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  903. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  904. break;
  905. }
  906. }
  907. // Overflow: Set to last value in the table
  908. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  909. return celsius;
  910. }
  911. #endif //AMBIENT_THERMISTOR
  912. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  913. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  914. static void updateTemperaturesFromRawValues()
  915. {
  916. for(uint8_t e=0;e<EXTRUDERS;e++)
  917. {
  918. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  919. }
  920. #ifdef PINDA_THERMISTOR
  921. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  922. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  923. #endif
  924. #ifdef AMBIENT_THERMISTOR
  925. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  926. #endif
  927. #ifdef DEBUG_HEATER_BED_SIM
  928. current_temperature_bed = target_temperature_bed;
  929. #else //DEBUG_HEATER_BED_SIM
  930. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  931. #endif //DEBUG_HEATER_BED_SIM
  932. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  933. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  934. #endif
  935. CRITICAL_SECTION_START;
  936. temp_meas_ready = false;
  937. CRITICAL_SECTION_END;
  938. }
  939. void tp_init()
  940. {
  941. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  942. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  943. MCUCR=(1<<JTD);
  944. MCUCR=(1<<JTD);
  945. #endif
  946. // Finish init of mult extruder arrays
  947. for(int e = 0; e < EXTRUDERS; e++) {
  948. // populate with the first value
  949. maxttemp[e] = maxttemp[0];
  950. #ifdef PIDTEMP
  951. iState_sum_min[e] = 0.0;
  952. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  953. #endif //PIDTEMP
  954. #ifdef PIDTEMPBED
  955. temp_iState_min_bed = 0.0;
  956. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  957. #endif //PIDTEMPBED
  958. }
  959. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  960. SET_OUTPUT(HEATER_0_PIN);
  961. #endif
  962. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  963. SET_OUTPUT(HEATER_1_PIN);
  964. #endif
  965. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  966. SET_OUTPUT(HEATER_2_PIN);
  967. #endif
  968. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  969. SET_OUTPUT(HEATER_BED_PIN);
  970. #endif
  971. #if defined(FAN_PIN) && (FAN_PIN > -1)
  972. SET_OUTPUT(FAN_PIN);
  973. #ifdef FAST_PWM_FAN
  974. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  975. #endif
  976. #ifdef FAN_SOFT_PWM
  977. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  978. #endif
  979. #endif
  980. #ifdef HEATER_0_USES_MAX6675
  981. #ifndef SDSUPPORT
  982. SET_OUTPUT(SCK_PIN);
  983. WRITE(SCK_PIN,0);
  984. SET_OUTPUT(MOSI_PIN);
  985. WRITE(MOSI_PIN,1);
  986. SET_INPUT(MISO_PIN);
  987. WRITE(MISO_PIN,1);
  988. #endif
  989. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  990. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  991. pinMode(SS_PIN, OUTPUT);
  992. digitalWrite(SS_PIN,0);
  993. pinMode(MAX6675_SS, OUTPUT);
  994. digitalWrite(MAX6675_SS,1);
  995. #endif
  996. adc_init();
  997. #ifdef SYSTEM_TIMER_2
  998. timer02_init();
  999. OCR2B = 128;
  1000. TIMSK2 |= (1<<OCIE2B);
  1001. #else //SYSTEM_TIMER_2
  1002. // Use timer0 for temperature measurement
  1003. // Interleave temperature interrupt with millies interrupt
  1004. OCR0B = 128;
  1005. TIMSK0 |= (1<<OCIE0B);
  1006. #endif //SYSTEM_TIMER_2
  1007. // Wait for temperature measurement to settle
  1008. _delay(250);
  1009. #ifdef HEATER_0_MINTEMP
  1010. minttemp[0] = HEATER_0_MINTEMP;
  1011. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1012. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1013. minttemp_raw[0] += OVERSAMPLENR;
  1014. #else
  1015. minttemp_raw[0] -= OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //MINTEMP
  1019. #ifdef HEATER_0_MAXTEMP
  1020. maxttemp[0] = HEATER_0_MAXTEMP;
  1021. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1022. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1023. maxttemp_raw[0] -= OVERSAMPLENR;
  1024. #else
  1025. maxttemp_raw[0] += OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //MAXTEMP
  1029. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1030. minttemp[1] = HEATER_1_MINTEMP;
  1031. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1032. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1033. minttemp_raw[1] += OVERSAMPLENR;
  1034. #else
  1035. minttemp_raw[1] -= OVERSAMPLENR;
  1036. #endif
  1037. }
  1038. #endif // MINTEMP 1
  1039. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1040. maxttemp[1] = HEATER_1_MAXTEMP;
  1041. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1042. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1043. maxttemp_raw[1] -= OVERSAMPLENR;
  1044. #else
  1045. maxttemp_raw[1] += OVERSAMPLENR;
  1046. #endif
  1047. }
  1048. #endif //MAXTEMP 1
  1049. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1050. minttemp[2] = HEATER_2_MINTEMP;
  1051. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1052. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1053. minttemp_raw[2] += OVERSAMPLENR;
  1054. #else
  1055. minttemp_raw[2] -= OVERSAMPLENR;
  1056. #endif
  1057. }
  1058. #endif //MINTEMP 2
  1059. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1060. maxttemp[2] = HEATER_2_MAXTEMP;
  1061. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1062. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1063. maxttemp_raw[2] -= OVERSAMPLENR;
  1064. #else
  1065. maxttemp_raw[2] += OVERSAMPLENR;
  1066. #endif
  1067. }
  1068. #endif //MAXTEMP 2
  1069. #ifdef BED_MINTEMP
  1070. /* No bed MINTEMP error implemented?!? */
  1071. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1072. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1073. bed_minttemp_raw += OVERSAMPLENR;
  1074. #else
  1075. bed_minttemp_raw -= OVERSAMPLENR;
  1076. #endif
  1077. }
  1078. #endif //BED_MINTEMP
  1079. #ifdef BED_MAXTEMP
  1080. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1081. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1082. bed_maxttemp_raw -= OVERSAMPLENR;
  1083. #else
  1084. bed_maxttemp_raw += OVERSAMPLENR;
  1085. #endif
  1086. }
  1087. #endif //BED_MAXTEMP
  1088. }
  1089. void setWatch()
  1090. {
  1091. #ifdef WATCH_TEMP_PERIOD
  1092. for (int e = 0; e < EXTRUDERS; e++)
  1093. {
  1094. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1095. {
  1096. watch_start_temp[e] = degHotend(e);
  1097. watchmillis[e] = _millis();
  1098. }
  1099. }
  1100. #endif
  1101. }
  1102. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1103. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1104. {
  1105. float __delta;
  1106. float __hysteresis = 0;
  1107. int __timeout = 0;
  1108. bool temp_runaway_check_active = false;
  1109. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1110. static int __preheat_counter[2] = { 0,0};
  1111. static int __preheat_errors[2] = { 0,0};
  1112. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1113. {
  1114. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1115. if (_isbed)
  1116. {
  1117. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1118. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1119. }
  1120. #endif
  1121. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1122. if (!_isbed)
  1123. {
  1124. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1125. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1126. }
  1127. #endif
  1128. temp_runaway_timer[_heater_id] = _millis();
  1129. if (_output == 0)
  1130. {
  1131. temp_runaway_check_active = false;
  1132. temp_runaway_error_counter[_heater_id] = 0;
  1133. }
  1134. if (temp_runaway_target[_heater_id] != _target_temperature)
  1135. {
  1136. if (_target_temperature > 0)
  1137. {
  1138. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1139. temp_runaway_target[_heater_id] = _target_temperature;
  1140. __preheat_start[_heater_id] = _current_temperature;
  1141. __preheat_counter[_heater_id] = 0;
  1142. }
  1143. else
  1144. {
  1145. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1146. temp_runaway_target[_heater_id] = _target_temperature;
  1147. }
  1148. }
  1149. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1150. {
  1151. __preheat_counter[_heater_id]++;
  1152. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1153. {
  1154. /*SERIAL_ECHOPGM("Heater:");
  1155. MYSERIAL.print(_heater_id);
  1156. SERIAL_ECHOPGM(" T:");
  1157. MYSERIAL.print(_current_temperature);
  1158. SERIAL_ECHOPGM(" Tstart:");
  1159. MYSERIAL.print(__preheat_start[_heater_id]);
  1160. SERIAL_ECHOPGM(" delta:");
  1161. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1162. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1163. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1164. __delta=2.0;
  1165. if(_isbed)
  1166. {
  1167. __delta=3.0;
  1168. if(_current_temperature>90.0) __delta=2.0;
  1169. if(_current_temperature>105.0) __delta=0.6;
  1170. }
  1171. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1172. __preheat_errors[_heater_id]++;
  1173. /*SERIAL_ECHOPGM(" Preheat errors:");
  1174. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1175. }
  1176. else {
  1177. //SERIAL_ECHOLNPGM("");
  1178. __preheat_errors[_heater_id] = 0;
  1179. }
  1180. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1181. {
  1182. if (farm_mode) { prusa_statistics(0); }
  1183. temp_runaway_stop(true, _isbed);
  1184. if (farm_mode) { prusa_statistics(91); }
  1185. }
  1186. __preheat_start[_heater_id] = _current_temperature;
  1187. __preheat_counter[_heater_id] = 0;
  1188. }
  1189. }
  1190. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1191. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1192. {
  1193. /*SERIAL_ECHOPGM("Heater:");
  1194. MYSERIAL.print(_heater_id);
  1195. MYSERIAL.println(" ->tempRunaway");*/
  1196. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1197. temp_runaway_check_active = false;
  1198. temp_runaway_error_counter[_heater_id] = 0;
  1199. }
  1200. if (_output > 0)
  1201. {
  1202. temp_runaway_check_active = true;
  1203. }
  1204. if (temp_runaway_check_active)
  1205. {
  1206. // we are in range
  1207. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1208. {
  1209. temp_runaway_check_active = false;
  1210. temp_runaway_error_counter[_heater_id] = 0;
  1211. }
  1212. else
  1213. {
  1214. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1215. {
  1216. temp_runaway_error_counter[_heater_id]++;
  1217. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1218. {
  1219. if (farm_mode) { prusa_statistics(0); }
  1220. temp_runaway_stop(false, _isbed);
  1221. if (farm_mode) { prusa_statistics(90); }
  1222. }
  1223. }
  1224. }
  1225. }
  1226. }
  1227. }
  1228. void temp_runaway_stop(bool isPreheat, bool isBed)
  1229. {
  1230. cancel_heatup = true;
  1231. quickStop();
  1232. if (card.sdprinting)
  1233. {
  1234. card.sdprinting = false;
  1235. card.closefile();
  1236. }
  1237. // Clean the input command queue
  1238. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1239. cmdqueue_reset();
  1240. disable_heater();
  1241. disable_x();
  1242. disable_y();
  1243. disable_e0();
  1244. disable_e1();
  1245. disable_e2();
  1246. manage_heater();
  1247. lcd_update(0);
  1248. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1249. WRITE(BEEPER, HIGH);
  1250. delayMicroseconds(500);
  1251. WRITE(BEEPER, LOW);
  1252. delayMicroseconds(100);
  1253. if (isPreheat)
  1254. {
  1255. Stop();
  1256. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1257. SERIAL_ERROR_START;
  1258. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1259. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1260. SET_OUTPUT(FAN_PIN);
  1261. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1262. #ifdef FAN_SOFT_PWM
  1263. fanSpeedSoftPwm = 255;
  1264. #else //FAN_SOFT_PWM
  1265. analogWrite(FAN_PIN, 255);
  1266. #endif //FAN_SOFT_PWM
  1267. fanSpeed = 255;
  1268. delayMicroseconds(2000);
  1269. }
  1270. else
  1271. {
  1272. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1273. SERIAL_ERROR_START;
  1274. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1275. }
  1276. }
  1277. #endif
  1278. void disable_heater()
  1279. {
  1280. setAllTargetHotends(0);
  1281. setTargetBed(0);
  1282. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1283. target_temperature[0]=0;
  1284. soft_pwm[0]=0;
  1285. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1286. WRITE(HEATER_0_PIN,LOW);
  1287. #endif
  1288. #endif
  1289. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1290. target_temperature[1]=0;
  1291. soft_pwm[1]=0;
  1292. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1293. WRITE(HEATER_1_PIN,LOW);
  1294. #endif
  1295. #endif
  1296. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1297. target_temperature[2]=0;
  1298. soft_pwm[2]=0;
  1299. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1300. WRITE(HEATER_2_PIN,LOW);
  1301. #endif
  1302. #endif
  1303. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1304. target_temperature_bed=0;
  1305. soft_pwm_bed=0;
  1306. timer02_set_pwm0(soft_pwm_bed << 1);
  1307. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1308. WRITE(HEATER_BED_PIN,LOW);
  1309. #endif
  1310. #endif
  1311. }
  1312. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1313. //! than raw const char * of the messages themselves.
  1314. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1315. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1316. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1317. //! remember the last alert message sent to the LCD
  1318. //! to prevent flicker and improve speed
  1319. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1320. void max_temp_error(uint8_t e) {
  1321. disable_heater();
  1322. if(IsStopped() == false) {
  1323. SERIAL_ERROR_START;
  1324. SERIAL_ERRORLN((int)e);
  1325. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1326. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1327. }
  1328. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1329. Stop();
  1330. #endif
  1331. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1332. SET_OUTPUT(FAN_PIN);
  1333. SET_OUTPUT(BEEPER);
  1334. WRITE(FAN_PIN, 1);
  1335. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1336. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1337. WRITE(BEEPER, 1);
  1338. // fanSpeed will consumed by the check_axes_activity() routine.
  1339. fanSpeed=255;
  1340. if (farm_mode) { prusa_statistics(93); }
  1341. }
  1342. void min_temp_error(uint8_t e) {
  1343. #ifdef DEBUG_DISABLE_MINTEMP
  1344. return;
  1345. #endif
  1346. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1347. disable_heater();
  1348. static const char err[] PROGMEM = "Err: MINTEMP";
  1349. if(IsStopped() == false) {
  1350. SERIAL_ERROR_START;
  1351. SERIAL_ERRORLN((int)e);
  1352. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1353. lcd_setalertstatuspgm(err);
  1354. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1355. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1356. // we are already stopped due to some error, only update the status message without flickering
  1357. lcd_updatestatuspgm(err);
  1358. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1359. }
  1360. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1361. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1362. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1363. // lcd_print_stop();
  1364. // }
  1365. Stop();
  1366. #endif
  1367. if (farm_mode) { prusa_statistics(92); }
  1368. }
  1369. void bed_max_temp_error(void) {
  1370. #if HEATER_BED_PIN > -1
  1371. WRITE(HEATER_BED_PIN, 0);
  1372. #endif
  1373. if(IsStopped() == false) {
  1374. SERIAL_ERROR_START;
  1375. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1376. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1377. }
  1378. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1379. Stop();
  1380. #endif
  1381. }
  1382. void bed_min_temp_error(void) {
  1383. #ifdef DEBUG_DISABLE_MINTEMP
  1384. return;
  1385. #endif
  1386. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1387. #if HEATER_BED_PIN > -1
  1388. WRITE(HEATER_BED_PIN, 0);
  1389. #endif
  1390. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1391. if(IsStopped() == false) {
  1392. SERIAL_ERROR_START;
  1393. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1394. lcd_setalertstatuspgm(err);
  1395. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1396. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1397. // we are already stopped due to some error, only update the status message without flickering
  1398. lcd_updatestatuspgm(err);
  1399. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1400. }
  1401. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1402. Stop();
  1403. #endif
  1404. }
  1405. #ifdef HEATER_0_USES_MAX6675
  1406. #define MAX6675_HEAT_INTERVAL 250
  1407. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1408. int max6675_temp = 2000;
  1409. int read_max6675()
  1410. {
  1411. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1412. return max6675_temp;
  1413. max6675_previous_millis = _millis();
  1414. max6675_temp = 0;
  1415. #ifdef PRR
  1416. PRR &= ~(1<<PRSPI);
  1417. #elif defined PRR0
  1418. PRR0 &= ~(1<<PRSPI);
  1419. #endif
  1420. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1421. // enable TT_MAX6675
  1422. WRITE(MAX6675_SS, 0);
  1423. // ensure 100ns delay - a bit extra is fine
  1424. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1425. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1426. // read MSB
  1427. SPDR = 0;
  1428. for (;(SPSR & (1<<SPIF)) == 0;);
  1429. max6675_temp = SPDR;
  1430. max6675_temp <<= 8;
  1431. // read LSB
  1432. SPDR = 0;
  1433. for (;(SPSR & (1<<SPIF)) == 0;);
  1434. max6675_temp |= SPDR;
  1435. // disable TT_MAX6675
  1436. WRITE(MAX6675_SS, 1);
  1437. if (max6675_temp & 4)
  1438. {
  1439. // thermocouple open
  1440. max6675_temp = 2000;
  1441. }
  1442. else
  1443. {
  1444. max6675_temp = max6675_temp >> 3;
  1445. }
  1446. return max6675_temp;
  1447. }
  1448. #endif
  1449. extern "C" {
  1450. void adc_ready(void) //callback from adc when sampling finished
  1451. {
  1452. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1453. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1454. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1455. #ifdef VOLT_PWR_PIN
  1456. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1457. #endif
  1458. #ifdef AMBIENT_THERMISTOR
  1459. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1460. #endif //AMBIENT_THERMISTOR
  1461. #ifdef VOLT_BED_PIN
  1462. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1463. #endif
  1464. temp_meas_ready = true;
  1465. }
  1466. } // extern "C"
  1467. // Timer2 (originaly timer0) is shared with millies
  1468. #ifdef SYSTEM_TIMER_2
  1469. ISR(TIMER2_COMPB_vect)
  1470. #else //SYSTEM_TIMER_2
  1471. ISR(TIMER0_COMPB_vect)
  1472. #endif //SYSTEM_TIMER_2
  1473. {
  1474. static bool _lock = false;
  1475. if (_lock) return;
  1476. _lock = true;
  1477. asm("sei");
  1478. if (!temp_meas_ready) adc_cycle();
  1479. lcd_buttons_update();
  1480. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1481. static unsigned char soft_pwm_0;
  1482. #ifdef SLOW_PWM_HEATERS
  1483. static unsigned char slow_pwm_count = 0;
  1484. static unsigned char state_heater_0 = 0;
  1485. static unsigned char state_timer_heater_0 = 0;
  1486. #endif
  1487. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1488. static unsigned char soft_pwm_1;
  1489. #ifdef SLOW_PWM_HEATERS
  1490. static unsigned char state_heater_1 = 0;
  1491. static unsigned char state_timer_heater_1 = 0;
  1492. #endif
  1493. #endif
  1494. #if EXTRUDERS > 2
  1495. static unsigned char soft_pwm_2;
  1496. #ifdef SLOW_PWM_HEATERS
  1497. static unsigned char state_heater_2 = 0;
  1498. static unsigned char state_timer_heater_2 = 0;
  1499. #endif
  1500. #endif
  1501. #if HEATER_BED_PIN > -1
  1502. static unsigned char soft_pwm_b;
  1503. #ifdef SLOW_PWM_HEATERS
  1504. static unsigned char state_heater_b = 0;
  1505. static unsigned char state_timer_heater_b = 0;
  1506. #endif
  1507. #endif
  1508. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1509. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1510. #endif
  1511. #ifndef SLOW_PWM_HEATERS
  1512. /*
  1513. * standard PWM modulation
  1514. */
  1515. if (pwm_count == 0)
  1516. {
  1517. soft_pwm_0 = soft_pwm[0];
  1518. if(soft_pwm_0 > 0)
  1519. {
  1520. WRITE(HEATER_0_PIN,1);
  1521. #ifdef HEATERS_PARALLEL
  1522. WRITE(HEATER_1_PIN,1);
  1523. #endif
  1524. } else WRITE(HEATER_0_PIN,0);
  1525. #if EXTRUDERS > 1
  1526. soft_pwm_1 = soft_pwm[1];
  1527. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1528. #endif
  1529. #if EXTRUDERS > 2
  1530. soft_pwm_2 = soft_pwm[2];
  1531. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1532. #endif
  1533. }
  1534. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1535. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1536. {
  1537. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1538. #ifndef SYSTEM_TIMER_2
  1539. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1540. #endif //SYSTEM_TIMER_2
  1541. }
  1542. #endif
  1543. #ifdef FAN_SOFT_PWM
  1544. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1545. {
  1546. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1547. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1548. }
  1549. #endif
  1550. if(soft_pwm_0 < pwm_count)
  1551. {
  1552. WRITE(HEATER_0_PIN,0);
  1553. #ifdef HEATERS_PARALLEL
  1554. WRITE(HEATER_1_PIN,0);
  1555. #endif
  1556. }
  1557. #if EXTRUDERS > 1
  1558. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1559. #endif
  1560. #if EXTRUDERS > 2
  1561. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1562. #endif
  1563. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1564. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1565. #endif
  1566. #ifdef FAN_SOFT_PWM
  1567. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1568. #endif
  1569. pwm_count += (1 << SOFT_PWM_SCALE);
  1570. pwm_count &= 0x7f;
  1571. #else //ifndef SLOW_PWM_HEATERS
  1572. /*
  1573. * SLOW PWM HEATERS
  1574. *
  1575. * for heaters drived by relay
  1576. */
  1577. #ifndef MIN_STATE_TIME
  1578. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1579. #endif
  1580. if (slow_pwm_count == 0) {
  1581. // EXTRUDER 0
  1582. soft_pwm_0 = soft_pwm[0];
  1583. if (soft_pwm_0 > 0) {
  1584. // turn ON heather only if the minimum time is up
  1585. if (state_timer_heater_0 == 0) {
  1586. // if change state set timer
  1587. if (state_heater_0 == 0) {
  1588. state_timer_heater_0 = MIN_STATE_TIME;
  1589. }
  1590. state_heater_0 = 1;
  1591. WRITE(HEATER_0_PIN, 1);
  1592. #ifdef HEATERS_PARALLEL
  1593. WRITE(HEATER_1_PIN, 1);
  1594. #endif
  1595. }
  1596. } else {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_0 == 0) {
  1599. // if change state set timer
  1600. if (state_heater_0 == 1) {
  1601. state_timer_heater_0 = MIN_STATE_TIME;
  1602. }
  1603. state_heater_0 = 0;
  1604. WRITE(HEATER_0_PIN, 0);
  1605. #ifdef HEATERS_PARALLEL
  1606. WRITE(HEATER_1_PIN, 0);
  1607. #endif
  1608. }
  1609. }
  1610. #if EXTRUDERS > 1
  1611. // EXTRUDER 1
  1612. soft_pwm_1 = soft_pwm[1];
  1613. if (soft_pwm_1 > 0) {
  1614. // turn ON heather only if the minimum time is up
  1615. if (state_timer_heater_1 == 0) {
  1616. // if change state set timer
  1617. if (state_heater_1 == 0) {
  1618. state_timer_heater_1 = MIN_STATE_TIME;
  1619. }
  1620. state_heater_1 = 1;
  1621. WRITE(HEATER_1_PIN, 1);
  1622. }
  1623. } else {
  1624. // turn OFF heather only if the minimum time is up
  1625. if (state_timer_heater_1 == 0) {
  1626. // if change state set timer
  1627. if (state_heater_1 == 1) {
  1628. state_timer_heater_1 = MIN_STATE_TIME;
  1629. }
  1630. state_heater_1 = 0;
  1631. WRITE(HEATER_1_PIN, 0);
  1632. }
  1633. }
  1634. #endif
  1635. #if EXTRUDERS > 2
  1636. // EXTRUDER 2
  1637. soft_pwm_2 = soft_pwm[2];
  1638. if (soft_pwm_2 > 0) {
  1639. // turn ON heather only if the minimum time is up
  1640. if (state_timer_heater_2 == 0) {
  1641. // if change state set timer
  1642. if (state_heater_2 == 0) {
  1643. state_timer_heater_2 = MIN_STATE_TIME;
  1644. }
  1645. state_heater_2 = 1;
  1646. WRITE(HEATER_2_PIN, 1);
  1647. }
  1648. } else {
  1649. // turn OFF heather only if the minimum time is up
  1650. if (state_timer_heater_2 == 0) {
  1651. // if change state set timer
  1652. if (state_heater_2 == 1) {
  1653. state_timer_heater_2 = MIN_STATE_TIME;
  1654. }
  1655. state_heater_2 = 0;
  1656. WRITE(HEATER_2_PIN, 0);
  1657. }
  1658. }
  1659. #endif
  1660. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1661. // BED
  1662. soft_pwm_b = soft_pwm_bed;
  1663. if (soft_pwm_b > 0) {
  1664. // turn ON heather only if the minimum time is up
  1665. if (state_timer_heater_b == 0) {
  1666. // if change state set timer
  1667. if (state_heater_b == 0) {
  1668. state_timer_heater_b = MIN_STATE_TIME;
  1669. }
  1670. state_heater_b = 1;
  1671. //WRITE(HEATER_BED_PIN, 1);
  1672. }
  1673. } else {
  1674. // turn OFF heather only if the minimum time is up
  1675. if (state_timer_heater_b == 0) {
  1676. // if change state set timer
  1677. if (state_heater_b == 1) {
  1678. state_timer_heater_b = MIN_STATE_TIME;
  1679. }
  1680. state_heater_b = 0;
  1681. WRITE(HEATER_BED_PIN, 0);
  1682. }
  1683. }
  1684. #endif
  1685. } // if (slow_pwm_count == 0)
  1686. // EXTRUDER 0
  1687. if (soft_pwm_0 < slow_pwm_count) {
  1688. // turn OFF heather only if the minimum time is up
  1689. if (state_timer_heater_0 == 0) {
  1690. // if change state set timer
  1691. if (state_heater_0 == 1) {
  1692. state_timer_heater_0 = MIN_STATE_TIME;
  1693. }
  1694. state_heater_0 = 0;
  1695. WRITE(HEATER_0_PIN, 0);
  1696. #ifdef HEATERS_PARALLEL
  1697. WRITE(HEATER_1_PIN, 0);
  1698. #endif
  1699. }
  1700. }
  1701. #if EXTRUDERS > 1
  1702. // EXTRUDER 1
  1703. if (soft_pwm_1 < slow_pwm_count) {
  1704. // turn OFF heather only if the minimum time is up
  1705. if (state_timer_heater_1 == 0) {
  1706. // if change state set timer
  1707. if (state_heater_1 == 1) {
  1708. state_timer_heater_1 = MIN_STATE_TIME;
  1709. }
  1710. state_heater_1 = 0;
  1711. WRITE(HEATER_1_PIN, 0);
  1712. }
  1713. }
  1714. #endif
  1715. #if EXTRUDERS > 2
  1716. // EXTRUDER 2
  1717. if (soft_pwm_2 < slow_pwm_count) {
  1718. // turn OFF heather only if the minimum time is up
  1719. if (state_timer_heater_2 == 0) {
  1720. // if change state set timer
  1721. if (state_heater_2 == 1) {
  1722. state_timer_heater_2 = MIN_STATE_TIME;
  1723. }
  1724. state_heater_2 = 0;
  1725. WRITE(HEATER_2_PIN, 0);
  1726. }
  1727. }
  1728. #endif
  1729. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1730. // BED
  1731. if (soft_pwm_b < slow_pwm_count) {
  1732. // turn OFF heather only if the minimum time is up
  1733. if (state_timer_heater_b == 0) {
  1734. // if change state set timer
  1735. if (state_heater_b == 1) {
  1736. state_timer_heater_b = MIN_STATE_TIME;
  1737. }
  1738. state_heater_b = 0;
  1739. WRITE(HEATER_BED_PIN, 0);
  1740. }
  1741. }
  1742. #endif
  1743. #ifdef FAN_SOFT_PWM
  1744. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1745. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1746. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1747. }
  1748. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1749. #endif
  1750. pwm_count += (1 << SOFT_PWM_SCALE);
  1751. pwm_count &= 0x7f;
  1752. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1753. if ((pwm_count % 64) == 0) {
  1754. slow_pwm_count++;
  1755. slow_pwm_count &= 0x7f;
  1756. // Extruder 0
  1757. if (state_timer_heater_0 > 0) {
  1758. state_timer_heater_0--;
  1759. }
  1760. #if EXTRUDERS > 1
  1761. // Extruder 1
  1762. if (state_timer_heater_1 > 0)
  1763. state_timer_heater_1--;
  1764. #endif
  1765. #if EXTRUDERS > 2
  1766. // Extruder 2
  1767. if (state_timer_heater_2 > 0)
  1768. state_timer_heater_2--;
  1769. #endif
  1770. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1771. // Bed
  1772. if (state_timer_heater_b > 0)
  1773. state_timer_heater_b--;
  1774. #endif
  1775. } //if ((pwm_count % 64) == 0) {
  1776. #endif //ifndef SLOW_PWM_HEATERS
  1777. #ifdef BABYSTEPPING
  1778. for(uint8_t axis=0;axis<3;axis++)
  1779. {
  1780. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1781. if(curTodo>0)
  1782. {
  1783. asm("cli");
  1784. babystep(axis,/*fwd*/true);
  1785. babystepsTodo[axis]--; //less to do next time
  1786. asm("sei");
  1787. }
  1788. else
  1789. if(curTodo<0)
  1790. {
  1791. asm("cli");
  1792. babystep(axis,/*fwd*/false);
  1793. babystepsTodo[axis]++; //less to do next time
  1794. asm("sei");
  1795. }
  1796. }
  1797. #endif //BABYSTEPPING
  1798. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1799. check_fans();
  1800. #endif //(defined(TACH_0))
  1801. _lock = false;
  1802. }
  1803. void check_max_temp()
  1804. {
  1805. //heater
  1806. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1807. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1808. #else
  1809. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1810. #endif
  1811. max_temp_error(0);
  1812. }
  1813. //bed
  1814. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1815. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1816. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1817. #else
  1818. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1819. #endif
  1820. target_temperature_bed = 0;
  1821. bed_max_temp_error();
  1822. }
  1823. #endif
  1824. }
  1825. //! number of repeating the same state with consecutive step() calls
  1826. //! used to slow down text switching
  1827. struct alert_automaton_mintemp {
  1828. private:
  1829. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1830. enum class States : uint8_t { INIT = 0, TEMP_ABOVE_MINTEMP, SHOW_PLEASE_RESTART, SHOW_MINTEMP };
  1831. States state = States::INIT;
  1832. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1833. void substep(States next_state){
  1834. if( repeat == 0 ){
  1835. state = next_state; // advance to the next state
  1836. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1837. } else {
  1838. --repeat;
  1839. }
  1840. }
  1841. public:
  1842. //! brief state automaton step routine
  1843. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1844. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1845. void step(float current_temp, float mintemp){
  1846. static const char m2[] PROGMEM = "MINTEMP fixed";
  1847. static const char m1[] PROGMEM = "Please restart";
  1848. switch(state){
  1849. case States::INIT: // initial state - check hysteresis
  1850. if( current_temp > mintemp ){
  1851. state = States::TEMP_ABOVE_MINTEMP;
  1852. }
  1853. // otherwise keep the Err MINTEMP alert message on the display,
  1854. // i.e. do not transfer to state 1
  1855. break;
  1856. case States::TEMP_ABOVE_MINTEMP: // the temperature has risen above the hysteresis check
  1857. lcd_setalertstatuspgm(m2);
  1858. substep(States::SHOW_MINTEMP);
  1859. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1860. break;
  1861. case States::SHOW_PLEASE_RESTART: // displaying "Please restart"
  1862. lcd_updatestatuspgm(m1);
  1863. substep(States::SHOW_MINTEMP);
  1864. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1865. break;
  1866. case States::SHOW_MINTEMP: // displaying "MINTEMP fixed"
  1867. lcd_updatestatuspgm(m2);
  1868. substep(States::SHOW_PLEASE_RESTART);
  1869. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1870. break;
  1871. }
  1872. }
  1873. };
  1874. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1875. void check_min_temp_heater0()
  1876. {
  1877. //heater
  1878. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1879. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1880. #else
  1881. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1882. #endif
  1883. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1884. min_temp_error(0);
  1885. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1886. // no recovery, just force the user to restart the printer
  1887. // which is a safer variant than just continuing printing
  1888. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1889. // we shall signalize, that MINTEMP has been fixed
  1890. // Code notice: normally the alert_automaton instance would have been placed here
  1891. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1892. // due to stupid compiler that takes 16 more bytes.
  1893. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1894. }
  1895. }
  1896. void check_min_temp_bed()
  1897. {
  1898. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1899. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1900. #else
  1901. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1902. #endif
  1903. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1904. bed_min_temp_error();
  1905. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1906. // no recovery, just force the user to restart the printer
  1907. // which is a safer variant than just continuing printing
  1908. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1909. }
  1910. }
  1911. void check_min_temp()
  1912. {
  1913. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1914. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1915. #ifdef AMBIENT_THERMISTOR
  1916. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1917. { // ambient temperature is low
  1918. #endif //AMBIENT_THERMISTOR
  1919. // *** 'common' part of code for MK2.5 & MK3
  1920. // * nozzle checking
  1921. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1922. { // ~ nozzle heating is on
  1923. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1924. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1925. {
  1926. bCheckingOnHeater=true; // not necessary
  1927. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1928. }
  1929. }
  1930. else { // ~ nozzle heating is off
  1931. oTimer4minTempHeater.start();
  1932. bCheckingOnHeater=false;
  1933. }
  1934. // * bed checking
  1935. if(target_temperature_bed>BED_MINTEMP)
  1936. { // ~ bed heating is on
  1937. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1938. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1939. {
  1940. bCheckingOnBed=true; // not necessary
  1941. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1942. }
  1943. }
  1944. else { // ~ bed heating is off
  1945. oTimer4minTempBed.start();
  1946. bCheckingOnBed=false;
  1947. }
  1948. // *** end of 'common' part
  1949. #ifdef AMBIENT_THERMISTOR
  1950. }
  1951. else { // ambient temperature is standard
  1952. check_min_temp_heater0();
  1953. check_min_temp_bed();
  1954. }
  1955. #endif //AMBIENT_THERMISTOR
  1956. }
  1957. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1958. void check_fans() {
  1959. #ifdef FAN_SOFT_PWM
  1960. if (READ(TACH_0) != fan_state[0]) {
  1961. if(fan_measuring) fan_edge_counter[0] ++;
  1962. fan_state[0] = !fan_state[0];
  1963. }
  1964. #else //FAN_SOFT_PWM
  1965. if (READ(TACH_0) != fan_state[0]) {
  1966. fan_edge_counter[0] ++;
  1967. fan_state[0] = !fan_state[0];
  1968. }
  1969. #endif
  1970. //if (READ(TACH_1) != fan_state[1]) {
  1971. // fan_edge_counter[1] ++;
  1972. // fan_state[1] = !fan_state[1];
  1973. //}
  1974. }
  1975. #endif //TACH_0
  1976. #ifdef PIDTEMP
  1977. // Apply the scale factors to the PID values
  1978. float scalePID_i(float i)
  1979. {
  1980. return i*PID_dT;
  1981. }
  1982. float unscalePID_i(float i)
  1983. {
  1984. return i/PID_dT;
  1985. }
  1986. float scalePID_d(float d)
  1987. {
  1988. return d/PID_dT;
  1989. }
  1990. float unscalePID_d(float d)
  1991. {
  1992. return d*PID_dT;
  1993. }
  1994. #endif //PIDTEMP