Przeglądaj źródła

Marlin_main - lineending CRLF -> LF

Robert Pelnar 6 lat temu
rodzic
commit
bd7c3d08f3
1 zmienionych plików z 7411 dodań i 7411 usunięć
  1. 7411 7411
      Firmware/Marlin_main.cpp

+ 7411 - 7411
Firmware/Marlin_main.cpp

@@ -1,7411 +1,7411 @@
-/* -*- c++ -*- */
-
-/*
-    Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
-  (https://github.com/kliment/Sprinter)
-  (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
-    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "Marlin.h"
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#include "vector_3.h"
-  #ifdef AUTO_BED_LEVELING_GRID
-    #include "qr_solve.h"
-  #endif
-#endif // ENABLE_AUTO_BED_LEVELING
-
-#ifdef MESH_BED_LEVELING
-  #include "mesh_bed_leveling.h"
-  #include "mesh_bed_calibration.h"
-#endif
-
-#include "ultralcd.h"
-#include "Configuration_prusa.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-#include "motion_control.h"
-#include "cardreader.h"
-#include "watchdog.h"
-#include "ConfigurationStore.h"
-#include "language.h"
-#include "pins_arduino.h"
-#include "math.h"
-#include "util.h"
-
-#include <avr/wdt.h>
-
-#include "Dcodes.h"
-
-
-#ifdef SWSPI
-#include "swspi.h"
-#endif //SWSPI
-
-#ifdef SWI2C
-#include "swi2c.h"
-#endif //SWI2C
-
-#ifdef PAT9125
-#include "pat9125.h"
-#include "fsensor.h"
-#endif //PAT9125
-
-#ifdef TMC2130
-#include "tmc2130.h"
-#endif //TMC2130
-
-
-#ifdef BLINKM
-#include "BlinkM.h"
-#include "Wire.h"
-#endif
-
-#ifdef ULTRALCD
-#include "ultralcd.h"
-#endif
-
-#if NUM_SERVOS > 0
-#include "Servo.h"
-#endif
-
-#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-#include <SPI.h>
-#endif
-
-#define VERSION_STRING  "1.0.2"
-
-
-#include "ultralcd.h"
-
-#include "cmdqueue.h"
-
-// Macros for bit masks
-#define BIT(b) (1<<(b))
-#define TEST(n,b) (((n)&BIT(b))!=0)
-#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
-
-//Macro for print fan speed
-#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
-
-// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-
-// PRUSA CODES
-// P F - Returns FW versions
-// P R - Returns revision of printer
-
-// G0  -> G1
-// G1  - Coordinated Movement X Y Z E
-// G2  - CW ARC
-// G3  - CCW ARC
-// G4  - Dwell S<seconds> or P<milliseconds>
-// G10 - retract filament according to settings of M207
-// G11 - retract recover filament according to settings of M208
-// G28 - Home all Axis
-// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
-// G30 - Single Z Probe, probes bed at current XY location.
-// G31 - Dock sled (Z_PROBE_SLED only)
-// G32 - Undock sled (Z_PROBE_SLED only)
-// G80 - Automatic mesh bed leveling
-// G81 - Print bed profile
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to coordinates given
-
-// M Codes
-// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
-// M1   - Same as M0
-// M17  - Enable/Power all stepper motors
-// M18  - Disable all stepper motors; same as M84
-// M20  - List SD card
-// M21  - Init SD card
-// M22  - Release SD card
-// M23  - Select SD file (M23 filename.g)
-// M24  - Start/resume SD print
-// M25  - Pause SD print
-// M26  - Set SD position in bytes (M26 S12345)
-// M27  - Report SD print status
-// M28  - Start SD write (M28 filename.g)
-// M29  - Stop SD write
-// M30  - Delete file from SD (M30 filename.g)
-// M31  - Output time since last M109 or SD card start to serial
-// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
-//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
-//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
-//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
-// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
-// M80  - Turn on Power Supply
-// M81  - Turn off Power Supply
-// M82  - Set E codes absolute (default)
-// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84  - Disable steppers until next move,
-//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
-// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
-// M92  - Set axis_steps_per_unit - same syntax as G92
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
-//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
-//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
-// M112 - Emergency stop
-// M114 - Output current position to serial port
-// M115 - Capabilities string
-// M117 - display message
-// M119 - Output Endstop status to serial port
-// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
-// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
-// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M140 - Set bed target temp
-// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
-// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
-//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
-// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
-// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
-// M206 - set additional homing offset
-// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
-// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
-// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
-// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
-// M220 S<factor in percent>- set speed factor override percentage
-// M221 S<factor in percent>- set extrude factor override percentage
-// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
-// M240 - Trigger a camera to take a photograph
-// M250 - Set LCD contrast C<contrast value> (value 0..63)
-// M280 - set servo position absolute. P: servo index, S: angle or microseconds
-// M300 - Play beep sound S<frequency Hz> P<duration ms>
-// M301 - Set PID parameters P I and D
-// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
-// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
-// M304 - Set bed PID parameters P I and D
-// M400 - Finish all moves
-// M401 - Lower z-probe if present
-// M402 - Raise z-probe if present
-// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
-// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
-// M406 - Turn off Filament Sensor extrusion control 
-// M407 - Displays measured filament diameter 
-// M500 - stores parameters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
-// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
-// M503 - print the current settings (from memory not from EEPROM)
-// M509 - force language selection on next restart
-// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
-// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
-// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
-// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
-// M907 - Set digital trimpot motor current using axis codes.
-// M908 - Control digital trimpot directly.
-// M350 - Set microstepping mode.
-// M351 - Toggle MS1 MS2 pins directly.
-
-// M928 - Start SD logging (M928 filename.g) - ended by M29
-// M999 - Restart after being stopped by error
-
-//Stepper Movement Variables
-
-//===========================================================================
-//=============================imported variables============================
-//===========================================================================
-
-
-//===========================================================================
-//=============================public variables=============================
-//===========================================================================
-#ifdef SDSUPPORT
-CardReader card;
-#endif
-
-unsigned long PingTime = millis();
-union Data
-{
-byte b[2];
-int value;
-};
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-// Currently only the extruder axis may be switched to a relative mode.
-// Other axes are always absolute or relative based on the common relative_mode flag.
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-int extrudemultiply=100; //100->1 200->2
-int extruder_multiply[EXTRUDERS] = {100
-  #if EXTRUDERS > 1
-    , 100
-    #if EXTRUDERS > 2
-      , 100
-    #endif
-  #endif
-};
-
-int bowden_length[4];
-
-bool is_usb_printing = false;
-bool homing_flag = false;
-
-bool temp_cal_active = false;
-
-unsigned long kicktime = millis()+100000;
-
-unsigned int  usb_printing_counter;
-
-int lcd_change_fil_state = 0;
-
-int feedmultiplyBckp = 100;
-float HotendTempBckp = 0;
-int fanSpeedBckp = 0;
-float pause_lastpos[4];
-unsigned long pause_time = 0;
-unsigned long start_pause_print = millis();
-unsigned long t_fan_rising_edge = millis();
-
-unsigned long load_filament_time;
-
-bool mesh_bed_leveling_flag = false;
-bool mesh_bed_run_from_menu = false;
-
-unsigned char lang_selected = 0;
-int8_t FarmMode = 0;
-
-bool prusa_sd_card_upload = false;
-
-unsigned int status_number = 0;
-
-unsigned long total_filament_used;
-unsigned int heating_status;
-unsigned int heating_status_counter;
-bool custom_message;
-bool loading_flag = false;
-unsigned int custom_message_type;
-unsigned int custom_message_state;
-char snmm_filaments_used = 0;
-
-float distance_from_min[3];
-float angleDiff;
-
-bool fan_state[2];
-int fan_edge_counter[2];
-int fan_speed[2];
-
-
-bool volumetric_enabled = false;
-float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
-  #if EXTRUDERS > 1
-      , DEFAULT_NOMINAL_FILAMENT_DIA
-    #if EXTRUDERS > 2
-       , DEFAULT_NOMINAL_FILAMENT_DIA
-    #endif
-  #endif
-};
-float volumetric_multiplier[EXTRUDERS] = {1.0
-  #if EXTRUDERS > 1
-    , 1.0
-    #if EXTRUDERS > 2
-      , 1.0
-    #endif
-  #endif
-};
-float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
-float add_homing[3]={0,0,0};
-
-float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
-float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
-bool axis_known_position[3] = {false, false, false};
-float zprobe_zoffset;
-
-// Extruder offset
-#if EXTRUDERS > 1
-  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
-float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
-#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
-  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
-#endif
-};
-#endif
-
-uint8_t active_extruder = 0;
-int fanSpeed=0;
-
-#ifdef FWRETRACT
-  bool autoretract_enabled=false;
-  bool retracted[EXTRUDERS]={false
-    #if EXTRUDERS > 1
-    , false
-     #if EXTRUDERS > 2
-      , false
-     #endif
-  #endif
-  };
-  bool retracted_swap[EXTRUDERS]={false
-    #if EXTRUDERS > 1
-    , false
-     #if EXTRUDERS > 2
-      , false
-     #endif
-  #endif
-  };
-
-  float retract_length = RETRACT_LENGTH;
-  float retract_length_swap = RETRACT_LENGTH_SWAP;
-  float retract_feedrate = RETRACT_FEEDRATE;
-  float retract_zlift = RETRACT_ZLIFT;
-  float retract_recover_length = RETRACT_RECOVER_LENGTH;
-  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
-  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
-#endif
-
-#ifdef ULTIPANEL
-  #ifdef PS_DEFAULT_OFF
-    bool powersupply = false;
-  #else
-	  bool powersupply = true;
-  #endif
-#endif
-
-bool cancel_heatup = false ;
-
-#ifdef FILAMENT_SENSOR
-  //Variables for Filament Sensor input 
-  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
-  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
-  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
-  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
-  int delay_index1=0;  //index into ring buffer
-  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
-  float delay_dist=0; //delay distance counter  
-  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
-#endif
-
-const char errormagic[] PROGMEM = "Error:";
-const char echomagic[] PROGMEM = "echo:";
-
-//===========================================================================
-//=============================Private Variables=============================
-//===========================================================================
-const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
-
-static float delta[3] = {0.0, 0.0, 0.0};
-
-// For tracing an arc
-static float offset[3] = {0.0, 0.0, 0.0};
-static float feedrate = 1500.0, next_feedrate, saved_feedrate;
-
-// Determines Absolute or Relative Coordinates.
-// Also there is bool axis_relative_modes[] per axis flag.
-static bool relative_mode = false;  
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-//static float tt = 0;
-//static float bt = 0;
-
-//Inactivity shutdown variables
-static unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-unsigned long _usb_timer = 0;
-
-static uint8_t tmp_extruder;
-
-bool extruder_under_pressure = true;
-
-
-bool Stopped=false;
-
-#if NUM_SERVOS > 0
-  Servo servos[NUM_SERVOS];
-#endif
-
-bool CooldownNoWait = true;
-bool target_direction;
-
-//Insert variables if CHDK is defined
-#ifdef CHDK
-unsigned long chdkHigh = 0;
-boolean chdkActive = false;
-#endif
-
-//===========================================================================
-//=============================Routines======================================
-//===========================================================================
-
-void get_arc_coordinates();
-bool setTargetedHotend(int code);
-
-void serial_echopair_P(const char *s_P, float v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, double v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, unsigned long v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-
-#ifdef SDSUPPORT
-  #include "SdFatUtil.h"
-  int freeMemory() { return SdFatUtil::FreeRam(); }
-#else
-  extern "C" {
-    extern unsigned int __bss_end;
-    extern unsigned int __heap_start;
-    extern void *__brkval;
-
-    int freeMemory() {
-      int free_memory;
-
-      if ((int)__brkval == 0)
-        free_memory = ((int)&free_memory) - ((int)&__bss_end);
-      else
-        free_memory = ((int)&free_memory) - ((int)__brkval);
-
-      return free_memory;
-    }
-  }
-#endif //!SDSUPPORT
-
-void setup_killpin()
-{
-  #if defined(KILL_PIN) && KILL_PIN > -1
-    SET_INPUT(KILL_PIN);
-    WRITE(KILL_PIN,HIGH);
-  #endif
-}
-
-// Set home pin
-void setup_homepin(void)
-{
-#if defined(HOME_PIN) && HOME_PIN > -1
-   SET_INPUT(HOME_PIN);
-   WRITE(HOME_PIN,HIGH);
-#endif
-}
-
-void setup_photpin()
-{
-  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
-    SET_OUTPUT(PHOTOGRAPH_PIN);
-    WRITE(PHOTOGRAPH_PIN, LOW);
-  #endif
-}
-
-void setup_powerhold()
-{
-  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-    SET_OUTPUT(SUICIDE_PIN);
-    WRITE(SUICIDE_PIN, HIGH);
-  #endif
-  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
-    SET_OUTPUT(PS_ON_PIN);
-	#if defined(PS_DEFAULT_OFF)
-	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
-    #else
-	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
-	#endif
-  #endif
-}
-
-void suicide()
-{
-  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-    SET_OUTPUT(SUICIDE_PIN);
-    WRITE(SUICIDE_PIN, LOW);
-  #endif
-}
-
-void servo_init()
-{
-  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
-    servos[0].attach(SERVO0_PIN);
-  #endif
-  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
-    servos[1].attach(SERVO1_PIN);
-  #endif
-  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
-    servos[2].attach(SERVO2_PIN);
-  #endif
-  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
-    servos[3].attach(SERVO3_PIN);
-  #endif
-  #if (NUM_SERVOS >= 5)
-    #error "TODO: enter initalisation code for more servos"
-  #endif
-}
-
-static void lcd_language_menu();
-
-void stop_and_save_print_to_ram(float z_move, float e_move);
-void restore_print_from_ram_and_continue(float e_move);
-
-extern int8_t CrashDetectMenu;
-
-
-void crashdet_enable()
-{
-	MYSERIAL.println("crashdet_enable"); 
-	tmc2130_sg_stop_on_crash = true;
-	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); 
-	CrashDetectMenu = 1;
-
-}
-
-void crashdet_disable()
-{
-	MYSERIAL.println("crashdet_disable"); 
-	tmc2130_sg_stop_on_crash = false;
-	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); 
-	CrashDetectMenu = 0;
-}
-
-void crashdet_stop_and_save_print()
-{
-	stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
-}
-
-void crashdet_restore_print_and_continue()
-{
-	restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
-//	babystep_apply();
-}
-
-
-void crashdet_stop_and_save_print2()
-{
-	cli();
-	planner_abort_hard(); //abort printing
-	cmdqueue_reset(); //empty cmdqueue
-	card.sdprinting = false;
-	card.closefile();
-	sei();
-}
-
-
-
-#ifdef MESH_BED_LEVELING
-   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
-#endif
-
-
-// Factory reset function
-// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
-// Level input parameter sets depth of reset
-// Quiet parameter masks all waitings for user interact.
-int  er_progress = 0;
-void factory_reset(char level, bool quiet)
-{	
-	lcd_implementation_clear();
-	int cursor_pos = 0;
-    switch (level) {
-                   
-        // Level 0: Language reset
-        case 0:
-            WRITE(BEEPER, HIGH);
-            _delay_ms(100);
-            WRITE(BEEPER, LOW);
-            
-            lcd_force_language_selection();
-            break;
-         
-		//Level 1: Reset statistics
-		case 1:
-			WRITE(BEEPER, HIGH);
-			_delay_ms(100);
-			WRITE(BEEPER, LOW);
-			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
-			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
-			lcd_menu_statistics();
-            
-			break;
-
-        // Level 2: Prepare for shipping
-        case 2:
-			//lcd_printPGM(PSTR("Factory RESET"));
-            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
-            
-            // Force language selection at the next boot up.
-            lcd_force_language_selection();
-            // Force the "Follow calibration flow" message at the next boot up.
-            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
-            farm_no = 0;
-			farm_mode == false;
-			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
-            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
-                       
-            WRITE(BEEPER, HIGH);
-            _delay_ms(100);
-            WRITE(BEEPER, LOW);
-			//_delay_ms(2000);
-            break;
-
-			// Level 3: erase everything, whole EEPROM will be set to 0xFF
-
-		case 3:
-			lcd_printPGM(PSTR("Factory RESET"));
-			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
-
-			WRITE(BEEPER, HIGH);
-			_delay_ms(100);
-			WRITE(BEEPER, LOW);
-
-			er_progress = 0;
-			lcd_print_at_PGM(3, 3, PSTR("      "));
-			lcd_implementation_print_at(3, 3, er_progress);
-
-			// Erase EEPROM
-			for (int i = 0; i < 4096; i++) {
-				eeprom_write_byte((uint8_t*)i, 0xFF);
-
-				if (i % 41 == 0) {
-					er_progress++;
-					lcd_print_at_PGM(3, 3, PSTR("      "));
-					lcd_implementation_print_at(3, 3, er_progress);
-					lcd_printPGM(PSTR("%"));
-				}
-
-			}
-
-
-			break;
-		case 4:
-			bowden_menu();
-			break;
-        
-        default:
-            break;
-    }
-    
-
-}
-
-
-// "Setup" function is called by the Arduino framework on startup.
-// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
-// are initialized by the main() routine provided by the Arduino framework.
-void setup()
-{
-    lcd_init();
-    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   "));
-    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));
-	setup_killpin();
-	setup_powerhold();
-	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); 
-	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
-	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
-	if (farm_no == 0xFFFF) farm_no = 0;
-	if (farm_mode)
-	{ 
-		prusa_statistics(8);
-		selectedSerialPort = 1;
-	}
-	else
-		selectedSerialPort = 0;
-	MYSERIAL.begin(BAUDRATE);
-	SERIAL_PROTOCOLLNPGM("start");
-	SERIAL_ECHO_START;
-
-#if 0
-	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
-	for (int i = 0; i < 4096; ++i) {
-		int b = eeprom_read_byte((unsigned char*)i);
-		if (b != 255) {
-			SERIAL_ECHO(i);
-			SERIAL_ECHO(":");
-			SERIAL_ECHO(b);
-			SERIAL_ECHOLN("");
-		}
-	}
-	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
-#endif
-
-	// Check startup - does nothing if bootloader sets MCUSR to 0
-	byte mcu = MCUSR;
-	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
-	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
-	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
-	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
-	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
-	MCUSR = 0;
-
-	//SERIAL_ECHORPGM(MSG_MARLIN);
-	//SERIAL_ECHOLNRPGM(VERSION_STRING);
-
-#ifdef STRING_VERSION_CONFIG_H
-#ifdef STRING_CONFIG_H_AUTHOR
-	SERIAL_ECHO_START;
-	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
-	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
-	SERIAL_ECHORPGM(MSG_AUTHOR);
-	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
-	SERIAL_ECHOPGM("Compiled: ");
-	SERIAL_ECHOLNPGM(__DATE__);
-#endif
-#endif
-
-	SERIAL_ECHO_START;
-	SERIAL_ECHORPGM(MSG_FREE_MEMORY);
-	SERIAL_ECHO(freeMemory());
-	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
-	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
-	//lcd_update_enable(false); // why do we need this?? - andre
-	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
-	Config_RetrieveSettings(EEPROM_OFFSET);
-	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
-	tp_init();    // Initialize temperature loop
-	plan_init();  // Initialize planner;
-	watchdog_init();
-
-#ifdef TMC2130
-	uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
-	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
-	uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
-	if (crashdet)
-	{
-		crashdet_enable();
-	    MYSERIAL.println("CrashDetect ENABLED!");
-	}
-	else
-	{
-		crashdet_disable();
-	    MYSERIAL.println("CrashDetect DISABLED");
-	}
-
-#endif //TMC2130
-
-#ifdef PAT9125
-    MYSERIAL.print("PAT9125_init:");
-	int pat9125 = pat9125_init(200, 200);
-	MYSERIAL.println(pat9125);
-	uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
-	if (!pat9125) fsensor = 0; //disable sensor
-	if (fsensor)
-	{
-		fsensor_enable();
-	    MYSERIAL.println("Filament Sensor ENABLED!");
-	}
-	else
-	{
-		fsensor_disable();
-	    MYSERIAL.println("Filament Sensor DISABLED");
-	}
-
-#endif //PAT9125
-    
-	st_init();    // Initialize stepper, this enables interrupts!
-    
-	setup_photpin();
-    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   ")); // we need to do this again for some reason, no time to research
-    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    ")); 
-	servo_init();
-	// Reset the machine correction matrix.
-	// It does not make sense to load the correction matrix until the machine is homed.
-	world2machine_reset();
-    
-	if (!READ(BTN_ENC))
-	{
-		_delay_ms(1000);
-		if (!READ(BTN_ENC))
-		{
-			lcd_implementation_clear();
-
-
-			lcd_printPGM(PSTR("Factory RESET"));
-
-
-			SET_OUTPUT(BEEPER);
-			WRITE(BEEPER, HIGH);
-
-			while (!READ(BTN_ENC));
-
-			WRITE(BEEPER, LOW);
-
-
-
-			_delay_ms(2000);
-
-			char level = reset_menu();
-			factory_reset(level, false);
-
-			switch (level) {
-			case 0: _delay_ms(0); break;
-			case 1: _delay_ms(0); break;
-			case 2: _delay_ms(0); break;
-			case 3: _delay_ms(0); break;
-			}
-			// _delay_ms(100);
-  /*
-  #ifdef MESH_BED_LEVELING
-			_delay_ms(2000);
-
-			if (!READ(BTN_ENC))
-			{
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-				_delay_ms(200);
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-
-				int _z = 0;
-				calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-				EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
-				EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
-				EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
-			}
-			else
-			{
-
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-			}
-  #endif // mesh */
-
-		}
-	}
-	else
-	{
-		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
-	}
-    
-
-
-
-#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
-	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
-#endif
-
-#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
-	SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
-#endif
-
-#ifdef DIGIPOT_I2C
-	digipot_i2c_init();
-#endif
-	setup_homepin();
-
-  if (1) {
-    SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
-    // try to run to zero phase before powering the Z motor.    
-    // Move in negative direction
-    WRITE(Z_DIR_PIN,INVERT_Z_DIR);
-    // Round the current micro-micro steps to micro steps.
-    for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
-      // Until the phase counter is reset to zero.
-      WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
-      delay(2);
-      WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
-      delay(2);
-    }
-    SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
-  }
-
-#if defined(Z_AXIS_ALWAYS_ON)
-	enable_z();
-#endif
-	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
-	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
-	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
-	if (farm_no == 0xFFFF) farm_no = 0;
-	if (farm_mode)
-	{
-		prusa_statistics(8);
-	}
-
-	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
-	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
-	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
-	// but this times out if a blocking dialog is shown in setup().
-	card.initsd();
-
-	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
-		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
-		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
-		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
-		// where all the EEPROM entries are set to 0x0ff.
-		// Once a firmware boots up, it forces at least a language selection, which changes
-		// EEPROM_LANG to number lower than 0x0ff.
-		// 1) Set a high power mode.
-		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
-	}
-#ifdef SNMM
-	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
-	  int _z = BOWDEN_LENGTH;
-	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
-	}
-#endif
-
-  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
-  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
-  // is being written into the EEPROM, so the update procedure will be triggered only once.
-    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
-    if (lang_selected >= LANG_NUM){
-      lcd_mylang();
-    }
-	
-	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
-		temp_cal_active = false;
-	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
-
-	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
-	}
-	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
-	}
-
-	check_babystep(); //checking if Z babystep is in allowed range
-	setup_uvlo_interrupt();
-	setup_fan_interrupt();
-	fsensor_setup_interrupt();
-
-	
-#ifndef DEBUG_DISABLE_STARTMSGS
-
-  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
-      calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
-      // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
-      eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-      // Show the message.
-      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
-  } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
-      // Show the message.
-      lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
-      lcd_update_enable(true);
-  } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
-	  lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
-	  lcd_update_enable(true);
-  } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
-      // Show the message.
-	  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
-  }
-#endif //DEBUG_DISABLE_STARTMSGS
-  for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
-  lcd_update_enable(true);
-  lcd_implementation_clear();
-  lcd_update(2);
-  // Store the currently running firmware into an eeprom,
-  // so the next time the firmware gets updated, it will know from which version it has been updated.
-  update_current_firmware_version_to_eeprom();
-  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
-/*
-	  if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false))	recover_print();
-	  else {
-		  eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
-		  lcd_update_enable(true);
-		  lcd_update(2);
-		  lcd_setstatuspgm(WELCOME_MSG);
-	  }
-*/
-      manage_heater(); // Update temperatures 
-#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
-      MYSERIAL.println("Power panic detected!"); 
-      MYSERIAL.print("Current bed temp:"); 
-      MYSERIAL.println(degBed()); 
-      MYSERIAL.print("Saved bed temp:"); 
-      MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); 
-#endif 
-     if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ 
-          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
-        MYSERIAL.println("Automatic recovery!"); 
-          #endif 
-         recover_print(1); 
-      } 
-      else{ 
-          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
-        MYSERIAL.println("Normal recovery!"); 
-          #endif 
-          if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); 
-          else { 
-              eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); 
-              lcd_update_enable(true); 
-              lcd_update(2); 
-              lcd_setstatuspgm(WELCOME_MSG); 
-          } 
-           
-      } 
-	   
-  }
-  
-}
-
-void trace();
-
-#define CHUNK_SIZE 64 // bytes
-#define SAFETY_MARGIN 1
-char chunk[CHUNK_SIZE+SAFETY_MARGIN];
-int chunkHead = 0;
-
-int serial_read_stream() {
-
-    setTargetHotend(0, 0);
-    setTargetBed(0);
-
-    lcd_implementation_clear();
-    lcd_printPGM(PSTR(" Upload in progress"));
-
-    // first wait for how many bytes we will receive
-    uint32_t bytesToReceive;
-
-    // receive the four bytes
-    char bytesToReceiveBuffer[4];
-    for (int i=0; i<4; i++) {
-        int data;
-        while ((data = MYSERIAL.read()) == -1) {};
-        bytesToReceiveBuffer[i] = data;
-
-    }
-
-    // make it a uint32
-    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
-
-    // we're ready, notify the sender
-    MYSERIAL.write('+');
-
-    // lock in the routine
-    uint32_t receivedBytes = 0;
-    while (prusa_sd_card_upload) {
-        int i;
-        for (i=0; i<CHUNK_SIZE; i++) {
-            int data;
-
-            // check if we're not done
-            if (receivedBytes == bytesToReceive) {
-                break;
-            }
-
-            // read the next byte
-            while ((data = MYSERIAL.read()) == -1) {};
-            receivedBytes++;
-
-            // save it to the chunk
-            chunk[i] = data;
-        }
-
-        // write the chunk to SD
-        card.write_command_no_newline(&chunk[0]);
-
-        // notify the sender we're ready for more data
-        MYSERIAL.write('+');
-
-        // for safety
-        manage_heater();
-
-        // check if we're done
-        if(receivedBytes == bytesToReceive) {
-            trace(); // beep
-            card.closefile();
-            prusa_sd_card_upload = false;
-            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
-            return 0;
-        }
-
-    }
-}
-
-// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
-// Before loop(), the setup() function is called by the main() routine.
-void loop()
-{
-	bool stack_integrity = true;
-
-	if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
-	{
-		is_usb_printing = true;
-		usb_printing_counter--;
-		_usb_timer = millis();
-	}
-	if (usb_printing_counter == 0)
-	{
-		is_usb_printing = false;
-	}
-
-    if (prusa_sd_card_upload)
-    {
-        //we read byte-by byte
-        serial_read_stream();
-    } else 
-    {
-
-        get_command();
-
-  #ifdef SDSUPPORT
-  card.checkautostart(false);
-  #endif
-  if(buflen)
-  {
-    cmdbuffer_front_already_processed = false;
-    #ifdef SDSUPPORT
-      if(card.saving)
-      {
-        // Saving a G-code file onto an SD-card is in progress.
-        // Saving starts with M28, saving until M29 is seen.
-        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
-          card.write_command(CMDBUFFER_CURRENT_STRING);
-          if(card.logging)
-            process_commands();
-          else
-           SERIAL_PROTOCOLLNRPGM(MSG_OK);
-        } else {
-          card.closefile();
-          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
-        }
-      } else {
-        process_commands();
-      }
-    #else
-      process_commands();
-    #endif //SDSUPPORT
-
-    if (! cmdbuffer_front_already_processed && buflen)
-	  {
-		    cli();
-        union {
-          struct {
-              char lo;
-              char hi;
-          } lohi;
-          uint16_t value;
-        } sdlen;
-        sdlen.value = 0;
-		    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
-			      sdlen.lohi.lo = cmdbuffer[bufindr + 1];
-            sdlen.lohi.hi = cmdbuffer[bufindr + 2];
-        }
-	      cmdqueue_pop_front();
-		    planner_add_sd_length(sdlen.value);
-		    sei();
-	  }
-  }
-}
-  //check heater every n milliseconds
-  manage_heater();
-  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
-  checkHitEndstops();
-  lcd_update();
-#ifdef PAT9125
-	fsensor_update();
-#endif //PAT9125
-#ifdef TMC2130
-	tmc2130_check_overtemp();
-	if (tmc2130_sg_crash)
-	{
-		tmc2130_sg_crash = false;
-//		crashdet_stop_and_save_print();
-		enquecommand_P((PSTR("D999")));
-	}
-#endif //TMC2130
-}
-
-#define DEFINE_PGM_READ_ANY(type, reader)       \
-    static inline type pgm_read_any(const type *p)  \
-    { return pgm_read_##reader##_near(p); }
-
-DEFINE_PGM_READ_ANY(float,       float);
-DEFINE_PGM_READ_ANY(signed char, byte);
-
-#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
-static const PROGMEM type array##_P[3] =        \
-    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
-static inline type array(int axis)              \
-    { return pgm_read_any(&array##_P[axis]); }  \
-type array##_ext(int axis)                      \
-    { return pgm_read_any(&array##_P[axis]); }
-
-XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
-XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
-XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
-XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
-
-static void axis_is_at_home(int axis) {
-  current_position[axis] = base_home_pos(axis) + add_homing[axis];
-  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
-  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
-}
-
-
-inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
-inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
-
-
-static void setup_for_endstop_move(bool enable_endstops_now = true) {
-    saved_feedrate = feedrate;
-    saved_feedmultiply = feedmultiply;
-    feedmultiply = 100;
-    previous_millis_cmd = millis();
-    
-    enable_endstops(enable_endstops_now);
-}
-
-static void clean_up_after_endstop_move() {
-#ifdef ENDSTOPS_ONLY_FOR_HOMING
-    enable_endstops(false);
-#endif
-    
-    feedrate = saved_feedrate;
-    feedmultiply = saved_feedmultiply;
-    previous_millis_cmd = millis();
-}
-
-
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef AUTO_BED_LEVELING_GRID
-static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
-{
-    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
-    planeNormal.debug("planeNormal");
-    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-    //bedLevel.debug("bedLevel");
-
-    //plan_bed_level_matrix.debug("bed level before");
-    //vector_3 uncorrected_position = plan_get_position_mm();
-    //uncorrected_position.debug("position before");
-
-    vector_3 corrected_position = plan_get_position();
-//    corrected_position.debug("position after");
-    current_position[X_AXIS] = corrected_position.x;
-    current_position[Y_AXIS] = corrected_position.y;
-    current_position[Z_AXIS] = corrected_position.z;
-
-    // put the bed at 0 so we don't go below it.
-    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
-
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-#else // not AUTO_BED_LEVELING_GRID
-
-static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
-
-    plan_bed_level_matrix.set_to_identity();
-
-    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
-    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
-    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
-
-    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
-    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
-    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
-    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
-
-    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-
-    vector_3 corrected_position = plan_get_position();
-    current_position[X_AXIS] = corrected_position.x;
-    current_position[Y_AXIS] = corrected_position.y;
-    current_position[Z_AXIS] = corrected_position.z;
-
-    // put the bed at 0 so we don't go below it.
-    current_position[Z_AXIS] = zprobe_zoffset;
-
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-}
-
-#endif // AUTO_BED_LEVELING_GRID
-
-static void run_z_probe() {
-    plan_bed_level_matrix.set_to_identity();
-    feedrate = homing_feedrate[Z_AXIS];
-
-    // move down until you find the bed
-    float zPosition = -10;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-        // we have to let the planner know where we are right now as it is not where we said to go.
-    zPosition = st_get_position_mm(Z_AXIS);
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
-
-    // move up the retract distance
-    zPosition += home_retract_mm(Z_AXIS);
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    // move back down slowly to find bed
-    feedrate = homing_feedrate[Z_AXIS]/4;
-    zPosition -= home_retract_mm(Z_AXIS) * 2;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
-    // make sure the planner knows where we are as it may be a bit different than we last said to move to
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-static void do_blocking_move_to(float x, float y, float z) {
-    float oldFeedRate = feedrate;
-
-    feedrate = homing_feedrate[Z_AXIS];
-
-    current_position[Z_AXIS] = z;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    feedrate = XY_TRAVEL_SPEED;
-
-    current_position[X_AXIS] = x;
-    current_position[Y_AXIS] = y;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    feedrate = oldFeedRate;
-}
-
-static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
-    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
-}
-
-
-/// Probe bed height at position (x,y), returns the measured z value
-static float probe_pt(float x, float y, float z_before) {
-  // move to right place
-  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
-  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
-
-  run_z_probe();
-  float measured_z = current_position[Z_AXIS];
-
-  SERIAL_PROTOCOLRPGM(MSG_BED);
-  SERIAL_PROTOCOLPGM(" x: ");
-  SERIAL_PROTOCOL(x);
-  SERIAL_PROTOCOLPGM(" y: ");
-  SERIAL_PROTOCOL(y);
-  SERIAL_PROTOCOLPGM(" z: ");
-  SERIAL_PROTOCOL(measured_z);
-  SERIAL_PROTOCOLPGM("\n");
-  return measured_z;
-}
-
-#endif // #ifdef ENABLE_AUTO_BED_LEVELING
-
-
-#ifdef LIN_ADVANCE
-   /**
-    * M900: Set and/or Get advance K factor and WH/D ratio
-    *
-    *  K<factor>                  Set advance K factor
-    *  R<ratio>                   Set ratio directly (overrides WH/D)
-    *  W<width> H<height> D<diam> Set ratio from WH/D
-    */
-inline void gcode_M900() {
-    st_synchronize();
-    
-    const float newK = code_seen('K') ? code_value_float() : -1;
-    if (newK >= 0) extruder_advance_k = newK;
-    
-    float newR = code_seen('R') ? code_value_float() : -1;
-    if (newR < 0) {
-        const float newD = code_seen('D') ? code_value_float() : -1,
-        newW = code_seen('W') ? code_value_float() : -1,
-        newH = code_seen('H') ? code_value_float() : -1;
-        if (newD >= 0 && newW >= 0 && newH >= 0)
-            newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
-    }
-    if (newR >= 0) advance_ed_ratio = newR;
-    
-    SERIAL_ECHO_START;
-    SERIAL_ECHOPGM("Advance K=");
-    SERIAL_ECHOLN(extruder_advance_k);
-    SERIAL_ECHOPGM(" E/D=");
-    const float ratio = advance_ed_ratio;
-    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
-    }
-#endif // LIN_ADVANCE
-
-#ifdef TMC2130
-bool calibrate_z_auto()
-{
-	lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
-	bool endstops_enabled  = enable_endstops(true);
-	int axis_up_dir = -home_dir(Z_AXIS);
-	tmc2130_home_enter(Z_AXIS_MASK);
-	current_position[Z_AXIS] = 0;
-	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-	set_destination_to_current();
-	destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
-	feedrate = homing_feedrate[Z_AXIS];
-	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-	tmc2130_home_restart(Z_AXIS);
-	st_synchronize();
-//	current_position[axis] = 0;
-//	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-	tmc2130_home_exit();
-    enable_endstops(false);
-	current_position[Z_AXIS] = 0;
-	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-	set_destination_to_current();
-	destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
-	feedrate = homing_feedrate[Z_AXIS] / 2;
-	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-	st_synchronize();
-    enable_endstops(endstops_enabled);
-    current_position[Z_AXIS] = Z_MAX_POS-3.f;
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-	return true;
-}
-#endif //TMC2130
-
-void homeaxis(int axis)
-{
-	bool endstops_enabled  = enable_endstops(true); //RP: endstops should be allways enabled durring homming
-#define HOMEAXIS_DO(LETTER) \
-((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
-    if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
-	{
-        int axis_home_dir = home_dir(axis);
-        feedrate = homing_feedrate[axis];
-
-#ifdef TMC2130
-    		tmc2130_home_enter(X_AXIS_MASK << axis);
-#endif
-
-        // Move right a bit, so that the print head does not touch the left end position,
-        // and the following left movement has a chance to achieve the required velocity
-        // for the stall guard to work.
-        current_position[axis] = 0;
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-//        destination[axis] = 11.f;
-        destination[axis] = 3.f;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        // Move left away from the possible collision with the collision detection disabled.
-        endstops_hit_on_purpose();
-        enable_endstops(false);
-        current_position[axis] = 0;
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[axis] = - 1.;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        // Now continue to move up to the left end stop with the collision detection enabled.
-        enable_endstops(true);
-        destination[axis] = - 1.1 * max_length(axis);
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
-        endstops_hit_on_purpose();
-        enable_endstops(false);
-        current_position[axis] = 0;
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[axis] = 10.f;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        endstops_hit_on_purpose();
-        // Now move left up to the collision, this time with a repeatable velocity.
-        enable_endstops(true);
-        destination[axis] = - 15.f;
-        feedrate = homing_feedrate[axis]/2;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-
-        axis_is_at_home(axis);
-        axis_known_position[axis] = true;
-
-#ifdef TMC2130
-        tmc2130_home_exit();
-#endif
-        // Move the X carriage away from the collision.
-        // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
-        endstops_hit_on_purpose();
-        enable_endstops(false);
-        {
-          // Two full periods (4 full steps).
-          float gap = 0.32f * 2.f;
-          current_position[axis] -= gap;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          current_position[axis] += gap;
-        }
-        destination[axis] = current_position[axis];
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
-        st_synchronize();
-
-    		feedrate = 0.0;
-    }
-    else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
-	{
-        int axis_home_dir = home_dir(axis);
-        current_position[axis] = 0;
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
-        feedrate = homing_feedrate[axis];
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        current_position[axis] = 0;
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[axis] = -home_retract_mm(axis) * axis_home_dir;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
-        feedrate = homing_feedrate[axis]/2 ;
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-        axis_is_at_home(axis);
-        destination[axis] = current_position[axis];
-        feedrate = 0.0;
-        endstops_hit_on_purpose();
-        axis_known_position[axis] = true;
-    }
-    enable_endstops(endstops_enabled);
-}
-
-/**/
-void home_xy()
-{
-    set_destination_to_current();
-    homeaxis(X_AXIS);
-    homeaxis(Y_AXIS);
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-    endstops_hit_on_purpose();
-}
-
-void refresh_cmd_timeout(void)
-{
-  previous_millis_cmd = millis();
-}
-
-#ifdef FWRETRACT
-  void retract(bool retracting, bool swapretract = false) {
-    if(retracting && !retracted[active_extruder]) {
-      destination[X_AXIS]=current_position[X_AXIS];
-      destination[Y_AXIS]=current_position[Y_AXIS];
-      destination[Z_AXIS]=current_position[Z_AXIS];
-      destination[E_AXIS]=current_position[E_AXIS];
-      if (swapretract) {
-        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
-      } else {
-        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
-      }
-      plan_set_e_position(current_position[E_AXIS]);
-      float oldFeedrate = feedrate;
-      feedrate=retract_feedrate*60;
-      retracted[active_extruder]=true;
-      prepare_move();
-      current_position[Z_AXIS]-=retract_zlift;
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-      prepare_move();
-      feedrate = oldFeedrate;
-    } else if(!retracting && retracted[active_extruder]) {
-      destination[X_AXIS]=current_position[X_AXIS];
-      destination[Y_AXIS]=current_position[Y_AXIS];
-      destination[Z_AXIS]=current_position[Z_AXIS];
-      destination[E_AXIS]=current_position[E_AXIS];
-      current_position[Z_AXIS]+=retract_zlift;
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-      //prepare_move();
-      if (swapretract) {
-        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
-      } else {
-        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
-      }
-      plan_set_e_position(current_position[E_AXIS]);
-      float oldFeedrate = feedrate;
-      feedrate=retract_recover_feedrate*60;
-      retracted[active_extruder]=false;
-      prepare_move();
-      feedrate = oldFeedrate;
-    }
-  } //retract
-#endif //FWRETRACT
-
-void trace() {
-    tone(BEEPER, 440);
-    delay(25);
-    noTone(BEEPER);
-    delay(20);
-}
-/*
-void ramming() {
-//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
-	if (current_temperature[0] < 230) {
-		//PLA
-
-		max_feedrate[E_AXIS] = 50;
-		//current_position[E_AXIS] -= 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		//current_position[E_AXIS] += 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		current_position[E_AXIS] += 5.4;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
-		current_position[E_AXIS] += 3.2;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		current_position[E_AXIS] += 3;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
-		st_synchronize();
-		max_feedrate[E_AXIS] = 80;
-		current_position[E_AXIS] -= 82;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
-		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
-		current_position[E_AXIS] -= 20;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		st_synchronize();
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] += 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] += 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		st_synchronize();
-	}
-	else {
-		//ABS
-		max_feedrate[E_AXIS] = 50;
-		//current_position[E_AXIS] -= 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		//current_position[E_AXIS] += 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		current_position[E_AXIS] += 3.1;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
-		current_position[E_AXIS] += 3.1;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
-		current_position[E_AXIS] += 4;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		//current_position[X_AXIS] += 23; //delay
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
-		//current_position[X_AXIS] -= 23; //delay
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
-		delay(4700);
-		max_feedrate[E_AXIS] = 80;
-		current_position[E_AXIS] -= 92;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
-		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		st_synchronize();
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		st_synchronize();
-
-	}
-  }
-*/
-void process_commands()
-{
-  #ifdef FILAMENT_RUNOUT_SUPPORT
-    SET_INPUT(FR_SENS);
-  #endif
-
-#ifdef CMDBUFFER_DEBUG
-  SERIAL_ECHOPGM("Processing a GCODE command: ");
-  SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
-  SERIAL_ECHOLNPGM("");
-  SERIAL_ECHOPGM("In cmdqueue: ");
-  SERIAL_ECHO(buflen);
-  SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-  
-  unsigned long codenum; //throw away variable
-  char *starpos = NULL;
-#ifdef ENABLE_AUTO_BED_LEVELING
-  float x_tmp, y_tmp, z_tmp, real_z;
-#endif
-
-  // PRUSA GCODES
-
-#ifdef SNMM
-  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
-  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
-  int8_t SilentMode;
-#endif
-  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
-	  starpos = (strchr(strchr_pointer + 5, '*'));
-	  if (starpos != NULL)
-		  *(starpos) = '\0';
-	  lcd_setstatus(strchr_pointer + 5);
-  }
-  else if(code_seen("PRUSA")){
-		if (code_seen("Ping")) {  //PRUSA Ping
-			if (farm_mode) {
-				PingTime = millis();
-				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
-			}	  
-		}
-		else if (code_seen("PRN")) {
-		  MYSERIAL.println(status_number);
-
-		}else if (code_seen("fn")) {
-		  if (farm_mode) {
-			  MYSERIAL.println(farm_no);
-		  }
-		  else {
-			  MYSERIAL.println("Not in farm mode.");
-		  }
-		  
-		}else if (code_seen("fv")) {
-        // get file version
-        #ifdef SDSUPPORT
-        card.openFile(strchr_pointer + 3,true);
-        while (true) {
-            uint16_t readByte = card.get();
-            MYSERIAL.write(readByte);
-            if (readByte=='\n') {
-                break;
-            }
-        }
-        card.closefile();
-
-        #endif // SDSUPPORT
-
-    } else if (code_seen("M28")) {
-        trace();
-        prusa_sd_card_upload = true;
-        card.openFile(strchr_pointer+4,false);
-	} else if (code_seen("SN")) { 
-        if (farm_mode) { 
-            selectedSerialPort = 0; 
-            MSerial.write(";S"); 
-            // S/N is:CZPX0917X003XC13518 
-            int numbersRead = 0; 
- 
-            while (numbersRead < 19) { 
-                while (MSerial.available() > 0) { 
-                    uint8_t serial_char = MSerial.read(); 
-                    selectedSerialPort = 1; 
-                    MSerial.write(serial_char); 
-                    numbersRead++; 
-                    selectedSerialPort = 0; 
-                } 
-            } 
-            selectedSerialPort = 1; 
-            MSerial.write('\n'); 
-            /*for (int b = 0; b < 3; b++) { 
-                tone(BEEPER, 110); 
-                delay(50); 
-                noTone(BEEPER); 
-                delay(50); 
-            }*/ 
-        } else { 
-            MYSERIAL.println("Not in farm mode."); 
-        } 
-		
-	} else if(code_seen("Fir")){
-
-      SERIAL_PROTOCOLLN(FW_version);
-
-    } else if(code_seen("Rev")){
-
-      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
-
-    } else if(code_seen("Lang")) {
-      lcd_force_language_selection();
-    } else if(code_seen("Lz")) {
-      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
-      
-    } else if (code_seen("SERIAL LOW")) {
-        MYSERIAL.println("SERIAL LOW");
-        MYSERIAL.begin(BAUDRATE);
-        return;
-    } else if (code_seen("SERIAL HIGH")) {
-        MYSERIAL.println("SERIAL HIGH");
-        MYSERIAL.begin(1152000);
-        return;
-    } else if(code_seen("Beat")) {
-        // Kick farm link timer
-        kicktime = millis();
-
-    } else if(code_seen("FR")) {
-        // Factory full reset
-        factory_reset(0,true);        
-    }
-    //else if (code_seen('Cal')) {
-		//  lcd_calibration();
-	  // }
-
-  }  
-  else if (code_seen('^')) {
-    // nothing, this is a version line
-  } else if(code_seen('G'))
-  {
-    switch((int)code_value())
-    {
-    case 0: // G0 -> G1
-    case 1: // G1
-      if(Stopped == false) {
-
-        #ifdef FILAMENT_RUNOUT_SUPPORT
-            
-            if(READ(FR_SENS)){
-
-                        feedmultiplyBckp=feedmultiply;
-                        float target[4];
-                        float lastpos[4];
-                        target[X_AXIS]=current_position[X_AXIS];
-                        target[Y_AXIS]=current_position[Y_AXIS];
-                        target[Z_AXIS]=current_position[Z_AXIS];
-                        target[E_AXIS]=current_position[E_AXIS];
-                        lastpos[X_AXIS]=current_position[X_AXIS];
-                        lastpos[Y_AXIS]=current_position[Y_AXIS];
-                        lastpos[Z_AXIS]=current_position[Z_AXIS];
-                        lastpos[E_AXIS]=current_position[E_AXIS];
-                        //retract by E
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
-                        
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-
-
-                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
-
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
-
-                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
-                        
-                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
-                         
-                 
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
-
-                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
-                          
-
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
-
-                        //finish moves
-                        st_synchronize();
-                        //disable extruder steppers so filament can be removed
-                        disable_e0();
-                        disable_e1();
-                        disable_e2();
-                        delay(100);
-                        
-                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
-                        uint8_t cnt=0;
-                        int counterBeep = 0;
-                        lcd_wait_interact();
-                        while(!lcd_clicked()){
-                          cnt++;
-                          manage_heater();
-                          manage_inactivity(true);
-                          //lcd_update();
-                          if(cnt==0)
-                          {
-                          #if BEEPER > 0
-                          
-                            if (counterBeep== 500){
-                              counterBeep = 0;
-                              
-                            }
-                          
-                            
-                            SET_OUTPUT(BEEPER);
-                            if (counterBeep== 0){
-                              WRITE(BEEPER,HIGH);
-                            }
-                            
-                            if (counterBeep== 20){
-                              WRITE(BEEPER,LOW);
-                            }
-                            
-                            
-                            
-                          
-                            counterBeep++;
-                          #else
-                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
-                              lcd_buzz(1000/6,100);
-                      #else
-                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
-                      #endif
-                          #endif
-                          }
-                        }
-                        
-                        WRITE(BEEPER,LOW);
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
-                        
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                        
-                 
-                        
-                        
-                        
-                        lcd_change_fil_state = 0;
-                        lcd_loading_filament();
-                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
-                        
-                          lcd_change_fil_state = 0;
-                          lcd_alright();
-                          switch(lcd_change_fil_state){
-                          
-                             case 2:
-                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
-                        
-                        
-                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                                      
-                                     
-                                     lcd_loading_filament();
-                                     break;
-                             case 3:
-                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                                     lcd_loading_color();
-                                     break;
-                                          
-                             default:
-                                     lcd_change_success();
-                                     break;
-                          }
-                          
-                        }
-                        
-
-                        
-                      target[E_AXIS]+= 5;
-                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
-                        
-                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
-                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-                        
-
-                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
-                        //plan_set_e_position(current_position[E_AXIS]);
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
-                        
-                        
-                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-                        
-                      
-                             
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
-                        
-                        
-                        plan_set_e_position(lastpos[E_AXIS]);
-                        
-                        feedmultiply=feedmultiplyBckp;
-                        
-                     
-                        
-                        char cmd[9];
-
-                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
-                        enquecommand(cmd);
-
-            }
-
-
-
-        #endif
-
-
-        get_coordinates(); // For X Y Z E F
-		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
-			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
-		}
-          #ifdef FWRETRACT
-            if(autoretract_enabled)
-            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
-              float echange=destination[E_AXIS]-current_position[E_AXIS];
-
-              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
-                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
-                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
-                  retract(!retracted);
-                  return;
-              }
-
-
-            }
-          #endif //FWRETRACT
-        prepare_move();
-        //ClearToSend();
-      }
-      break;
-    case 2: // G2  - CW ARC
-      if(Stopped == false) {
-        get_arc_coordinates();
-        prepare_arc_move(true);
-      }
-      break;
-    case 3: // G3  - CCW ARC
-      if(Stopped == false) {
-        get_arc_coordinates();
-        prepare_arc_move(false);
-      }
-      break;
-    case 4: // G4 dwell      
-      codenum = 0;
-      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
-      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
-	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
-      st_synchronize();
-      codenum += millis();  // keep track of when we started waiting
-      previous_millis_cmd = millis();
-      while(millis() < codenum) {
-        manage_heater();
-        manage_inactivity();
-        lcd_update();
-      }
-      break;
-      #ifdef FWRETRACT
-      case 10: // G10 retract
-       #if EXTRUDERS > 1
-        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
-        retract(true,retracted_swap[active_extruder]);
-       #else
-        retract(true);
-       #endif
-      break;
-      case 11: // G11 retract_recover
-       #if EXTRUDERS > 1
-        retract(false,retracted_swap[active_extruder]);
-       #else
-        retract(false);
-       #endif 
-      break;
-      #endif //FWRETRACT
-    case 28: //G28 Home all Axis one at a time
-    {
-      st_synchronize();
-
-#if 1
-      SERIAL_ECHOPGM("G28, initial ");  print_world_coordinates();
-      SERIAL_ECHOPGM("G28, initial ");  print_physical_coordinates();
-#endif
-
-      // Flag for the display update routine and to disable the print cancelation during homing.
-		  homing_flag = true;
-      
-      // Which axes should be homed?
-      bool home_x = code_seen(axis_codes[X_AXIS]);
-      bool home_y = code_seen(axis_codes[Y_AXIS]);
-      bool home_z = code_seen(axis_codes[Z_AXIS]);
-      // Either all X,Y,Z codes are present, or none of them.
-      bool home_all_axes = home_x == home_y && home_x == home_z;
-      if (home_all_axes)
-        // No X/Y/Z code provided means to home all axes.
-        home_x = home_y = home_z = true;
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
-#endif //ENABLE_AUTO_BED_LEVELING
-            
-      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-      // the planner will not perform any adjustments in the XY plane. 
-      // Wait for the motors to stop and update the current position with the absolute values.
-      world2machine_revert_to_uncorrected();
-
-      // For mesh bed leveling deactivate the matrix temporarily.
-      // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
-      // in a single axis only.
-      // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
-#ifdef MESH_BED_LEVELING
-      uint8_t mbl_was_active = mbl.active;
-      mbl.active = 0;
-      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
-#endif
-
-      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
-      // consumed during the first movements following this statement.
-      if (home_z)
-        babystep_undo();
-
-      saved_feedrate = feedrate;
-      saved_feedmultiply = feedmultiply;
-      feedmultiply = 100;
-      previous_millis_cmd = millis();
-
-      enable_endstops(true);
-
-      memcpy(destination, current_position, sizeof(destination));
-      feedrate = 0.0;
-
-      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
-      if(home_z)
-        homeaxis(Z_AXIS);
-      #endif
-
-      #ifdef QUICK_HOME
-      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
-      if(home_x && home_y)  //first diagonal move
-      {
-        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
-
-        int x_axis_home_dir = home_dir(X_AXIS);
-
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
-        feedrate = homing_feedrate[X_AXIS];
-        if(homing_feedrate[Y_AXIS]<feedrate)
-          feedrate = homing_feedrate[Y_AXIS];
-        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
-          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
-        } else {
-          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
-        }
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-
-        axis_is_at_home(X_AXIS);
-        axis_is_at_home(Y_AXIS);
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[X_AXIS] = current_position[X_AXIS];
-        destination[Y_AXIS] = current_position[Y_AXIS];
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        feedrate = 0.0;
-        st_synchronize();
-        endstops_hit_on_purpose();
-
-        current_position[X_AXIS] = destination[X_AXIS];
-        current_position[Y_AXIS] = destination[Y_AXIS];
-        current_position[Z_AXIS] = destination[Z_AXIS];
-      }
-      #endif /* QUICK_HOME */
-
-	 
-      if(home_x)
-        homeaxis(X_AXIS);
-
-      if(home_y)
-        homeaxis(Y_AXIS);
-
-      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
-        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
-
-      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
-		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
-
-      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
-        #ifndef Z_SAFE_HOMING
-          if(home_z) {
-            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
-              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-              feedrate = max_feedrate[Z_AXIS];
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
-            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home
-      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
-      			  {
-                homeaxis(X_AXIS);
-                homeaxis(Y_AXIS);
-      			  } 
-              // 1st mesh bed leveling measurement point, corrected.
-              world2machine_initialize();
-              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
-              world2machine_reset();
-              if (destination[Y_AXIS] < Y_MIN_POS)
-                  destination[Y_AXIS] = Y_MIN_POS;
-              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
-              feedrate = homing_feedrate[Z_AXIS]/10;
-              current_position[Z_AXIS] = 0;
-              enable_endstops(false);
-              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-              current_position[X_AXIS] = destination[X_AXIS];
-              current_position[Y_AXIS] = destination[Y_AXIS];
-              enable_endstops(true);
-              endstops_hit_on_purpose();
-              homeaxis(Z_AXIS);
-            #else // MESH_BED_LEVELING
-              homeaxis(Z_AXIS);
-            #endif // MESH_BED_LEVELING
-          }
-        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
-          if(home_all_axes) {
-            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
-            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
-            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-            feedrate = XY_TRAVEL_SPEED/60;
-            current_position[Z_AXIS] = 0;
-
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-            st_synchronize();
-            current_position[X_AXIS] = destination[X_AXIS];
-            current_position[Y_AXIS] = destination[Y_AXIS];
-
-            homeaxis(Z_AXIS);
-          }
-                                                // Let's see if X and Y are homed and probe is inside bed area.
-          if(home_z) {
-            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
-              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
-              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
-              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
-              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
-
-              current_position[Z_AXIS] = 0;
-              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-              feedrate = max_feedrate[Z_AXIS];
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-
-              homeaxis(Z_AXIS);
-            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
-                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
-            } else {
-                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
-            }
-          }
-        #endif // Z_SAFE_HOMING
-      #endif // Z_HOME_DIR < 0
-
-      if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
-        current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
-      #ifdef ENABLE_AUTO_BED_LEVELING
-        if(home_z)
-          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
-      #endif
-      
-      // Set the planner and stepper routine positions.
-      // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
-      // contains the machine coordinates.
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-      #ifdef ENDSTOPS_ONLY_FOR_HOMING
-        enable_endstops(false);
-      #endif
-
-      feedrate = saved_feedrate;
-      feedmultiply = saved_feedmultiply;
-      previous_millis_cmd = millis();
-      endstops_hit_on_purpose();
-#ifndef MESH_BED_LEVELING
-      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
-      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
-      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
-          lcd_adjust_z();
-#endif
-
-    // Load the machine correction matrix
-    world2machine_initialize();
-    // and correct the current_position XY axes to match the transformed coordinate system.
-    world2machine_update_current();
-
-#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
-	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
-		{
-      if (! home_z && mbl_was_active) {
-        // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
-        mbl.active = true;
-        // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
-        current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
-      }
-		}
-	else
-		{
-			st_synchronize();
-			homing_flag = false;
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			// enquecommand_front_P((PSTR("G80")));
-			goto case_G80;
-	  }
-#endif
-
-	  if (farm_mode) { prusa_statistics(20); };
-
-	  homing_flag = false;
-
-      SERIAL_ECHOPGM("G28, final ");  print_world_coordinates();
-      SERIAL_ECHOPGM("G28, final ");  print_physical_coordinates();
-      SERIAL_ECHOPGM("G28, final ");  print_mesh_bed_leveling_table();
-      break;
-    }
-#ifdef ENABLE_AUTO_BED_LEVELING
-    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
-        {
-            #if Z_MIN_PIN == -1
-            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
-            #endif
-
-            // Prevent user from running a G29 without first homing in X and Y
-            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
-            {
-                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
-                break; // abort G29, since we don't know where we are
-            }
-
-            st_synchronize();
-            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
-            //vector_3 corrected_position = plan_get_position_mm();
-            //corrected_position.debug("position before G29");
-            plan_bed_level_matrix.set_to_identity();
-            vector_3 uncorrected_position = plan_get_position();
-            //uncorrected_position.debug("position durring G29");
-            current_position[X_AXIS] = uncorrected_position.x;
-            current_position[Y_AXIS] = uncorrected_position.y;
-            current_position[Z_AXIS] = uncorrected_position.z;
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-#ifdef AUTO_BED_LEVELING_GRID
-            // probe at the points of a lattice grid
-
-            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
-            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
-
-
-            // solve the plane equation ax + by + d = z
-            // A is the matrix with rows [x y 1] for all the probed points
-            // B is the vector of the Z positions
-            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
-            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
-
-            // "A" matrix of the linear system of equations
-            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
-            // "B" vector of Z points
-            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
-
-
-            int probePointCounter = 0;
-            bool zig = true;
-
-            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
-            {
-              int xProbe, xInc;
-              if (zig)
-              {
-                xProbe = LEFT_PROBE_BED_POSITION;
-                //xEnd = RIGHT_PROBE_BED_POSITION;
-                xInc = xGridSpacing;
-                zig = false;
-              } else // zag
-              {
-                xProbe = RIGHT_PROBE_BED_POSITION;
-                //xEnd = LEFT_PROBE_BED_POSITION;
-                xInc = -xGridSpacing;
-                zig = true;
-              }
-
-              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
-              {
-                float z_before;
-                if (probePointCounter == 0)
-                {
-                  // raise before probing
-                  z_before = Z_RAISE_BEFORE_PROBING;
-                } else
-                {
-                  // raise extruder
-                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
-                }
-
-                float measured_z = probe_pt(xProbe, yProbe, z_before);
-
-                eqnBVector[probePointCounter] = measured_z;
-
-                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
-                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
-                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
-                probePointCounter++;
-                xProbe += xInc;
-              }
-            }
-            clean_up_after_endstop_move();
-
-            // solve lsq problem
-            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
-
-            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
-            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
-            SERIAL_PROTOCOLPGM(" b: ");
-            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
-            SERIAL_PROTOCOLPGM(" d: ");
-            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
-
-
-            set_bed_level_equation_lsq(plane_equation_coefficients);
-
-            free(plane_equation_coefficients);
-
-#else // AUTO_BED_LEVELING_GRID not defined
-
-            // Probe at 3 arbitrary points
-            // probe 1
-            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
-
-            // probe 2
-            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
-            // probe 3
-            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
-            clean_up_after_endstop_move();
-
-            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
-
-
-#endif // AUTO_BED_LEVELING_GRID
-            st_synchronize();
-
-            // The following code correct the Z height difference from z-probe position and hotend tip position.
-            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
-            // When the bed is uneven, this height must be corrected.
-            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
-            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
-            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
-            z_tmp = current_position[Z_AXIS];
-
-            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
-            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        }
-        break;
-#ifndef Z_PROBE_SLED
-    case 30: // G30 Single Z Probe
-        {
-            st_synchronize();
-            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-
-            run_z_probe();
-            SERIAL_PROTOCOLPGM(MSG_BED);
-            SERIAL_PROTOCOLPGM(" X: ");
-            SERIAL_PROTOCOL(current_position[X_AXIS]);
-            SERIAL_PROTOCOLPGM(" Y: ");
-            SERIAL_PROTOCOL(current_position[Y_AXIS]);
-            SERIAL_PROTOCOLPGM(" Z: ");
-            SERIAL_PROTOCOL(current_position[Z_AXIS]);
-            SERIAL_PROTOCOLPGM("\n");
-
-            clean_up_after_endstop_move();
-        }
-        break;
-#else
-    case 31: // dock the sled
-        dock_sled(true);
-        break;
-    case 32: // undock the sled
-        dock_sled(false);
-        break;
-#endif // Z_PROBE_SLED
-#endif // ENABLE_AUTO_BED_LEVELING
-            
-#ifdef MESH_BED_LEVELING
-    case 30: // G30 Single Z Probe
-        {
-            st_synchronize();
-            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-
-            find_bed_induction_sensor_point_z(-10.f, 3);
-            SERIAL_PROTOCOLRPGM(MSG_BED);
-            SERIAL_PROTOCOLPGM(" X: ");
-            MYSERIAL.print(current_position[X_AXIS], 5);
-            SERIAL_PROTOCOLPGM(" Y: ");
-            MYSERIAL.print(current_position[Y_AXIS], 5);
-            SERIAL_PROTOCOLPGM(" Z: ");
-            MYSERIAL.print(current_position[Z_AXIS], 5);
-            SERIAL_PROTOCOLPGM("\n");
-            clean_up_after_endstop_move();
-        }
-        break;
-	
-
-	case 75:
-	{
-		for (int i = 40; i <= 110; i++) {
-			MYSERIAL.print(i);
-			MYSERIAL.print("  ");
-			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
-		}
-	}
-	break;
-
-	case 76: //PINDA probe temperature calibration
-	{
-#ifdef PINDA_THERMISTOR
-		if (true)
-		{
-			if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-				// We don't know where we are! HOME!
-				// Push the commands to the front of the message queue in the reverse order!
-				// There shall be always enough space reserved for these commands.
-				repeatcommand_front(); // repeat G76 with all its parameters
-				enquecommand_front_P((PSTR("G28 W0")));
-				break;
-			}
-			SERIAL_ECHOLNPGM("PINDA probe calibration start");
-
-			float zero_z;
-			int z_shift = 0; //unit: steps
-			float start_temp = 5 * (int)(current_temperature_pinda / 5);
-			if (start_temp < 35) start_temp = 35;
-			if (start_temp < current_temperature_pinda) start_temp += 5;
-			SERIAL_ECHOPGM("start temperature: ");
-			MYSERIAL.println(start_temp);
-
-//			setTargetHotend(200, 0);
-			setTargetBed(50 + 10 * (start_temp - 30) / 5);
-
-			custom_message = true;
-			custom_message_type = 4;
-			custom_message_state = 1;
-			custom_message = MSG_TEMP_CALIBRATION;
-			current_position[X_AXIS] = PINDA_PREHEAT_X;
-			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-
-			while (current_temperature_pinda < start_temp)
-			{
-				delay_keep_alive(1000);
-				serialecho_temperatures();
-			}
-
-			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
-
-			current_position[Z_AXIS] = 5;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-
-			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-
-			find_bed_induction_sensor_point_z(-1.f);
-			zero_z = current_position[Z_AXIS];
-
-			//current_position[Z_AXIS]
-			SERIAL_ECHOLNPGM("");
-			SERIAL_ECHOPGM("ZERO: ");
-			MYSERIAL.print(current_position[Z_AXIS]);
-			SERIAL_ECHOLNPGM("");
-
-			int i = -1; for (; i < 5; i++)
-			{
-				float temp = (40 + i * 5);
-				SERIAL_ECHOPGM("Step: ");
-				MYSERIAL.print(i + 2);
-				SERIAL_ECHOLNPGM("/6 (skipped)");
-				SERIAL_ECHOPGM("PINDA temperature: ");
-				MYSERIAL.print((40 + i*5));
-				SERIAL_ECHOPGM(" Z shift (mm):");
-				MYSERIAL.print(0);
-				SERIAL_ECHOLNPGM("");
-				if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
-				if (start_temp <= temp) break;
-			}
-
-			for (i++; i < 5; i++)
-			{
-				float temp = (40 + i * 5);
-				SERIAL_ECHOPGM("Step: ");
-				MYSERIAL.print(i + 2);
-				SERIAL_ECHOLNPGM("/6");
-				custom_message_state = i + 2;
-				setTargetBed(50 + 10 * (temp - 30) / 5);
-//				setTargetHotend(255, 0);
-				current_position[X_AXIS] = PINDA_PREHEAT_X;
-				current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-				current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-				st_synchronize();
-				while (current_temperature_pinda < temp)
-				{
-					delay_keep_alive(1000);
-					serialecho_temperatures();
-				}
-				current_position[Z_AXIS] = 5;
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-				current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-				current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-				st_synchronize();
-				find_bed_induction_sensor_point_z(-1.f);
-				z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
-
-				SERIAL_ECHOLNPGM("");
-				SERIAL_ECHOPGM("PINDA temperature: ");
-				MYSERIAL.print(current_temperature_pinda);
-				SERIAL_ECHOPGM(" Z shift (mm):");
-				MYSERIAL.print(current_position[Z_AXIS] - zero_z);
-				SERIAL_ECHOLNPGM("");
-
-				EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
-
-			}
-			custom_message_type = 0;
-			custom_message = false;
-
-			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
-			SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
-			disable_x();
-			disable_y();
-			disable_z();
-			disable_e0();
-			disable_e1();
-			disable_e2();
-			lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
-			lcd_update_enable(true);
-			lcd_update(2);
-
-			setTargetBed(0); //set bed target temperature back to 0
-//			setTargetHotend(0,0); //set hotend target temperature back to 0
-			break;
-		}
-#endif //PINDA_THERMISTOR
-
-		setTargetBed(PINDA_MIN_T);
-		float zero_z;
-		int z_shift = 0; //unit: steps
-		int t_c; // temperature
-
-		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-			// We don't know where we are! HOME!
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			repeatcommand_front(); // repeat G76 with all its parameters
-			enquecommand_front_P((PSTR("G28 W0")));
-			break;
-		}
-		SERIAL_ECHOLNPGM("PINDA probe calibration start");
-		custom_message = true;
-		custom_message_type = 4;
-		custom_message_state = 1;
-		custom_message = MSG_TEMP_CALIBRATION;
-		current_position[X_AXIS] = PINDA_PREHEAT_X;
-		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		
-		while (abs(degBed() - PINDA_MIN_T) > 1) {
-			delay_keep_alive(1000);
-			serialecho_temperatures();
-		}
-		
-		//enquecommand_P(PSTR("M190 S50"));
-		for (int i = 0; i < PINDA_HEAT_T; i++) {
-			delay_keep_alive(1000);
-			serialecho_temperatures();
-		}
-		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
-
-		current_position[Z_AXIS] = 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-
-		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		
-		find_bed_induction_sensor_point_z(-1.f);
-		zero_z = current_position[Z_AXIS];
-
-		//current_position[Z_AXIS]
-		SERIAL_ECHOLNPGM("");
-		SERIAL_ECHOPGM("ZERO: ");
-		MYSERIAL.print(current_position[Z_AXIS]);
-		SERIAL_ECHOLNPGM("");
-
-		for (int i = 0; i<5; i++) {
-			SERIAL_ECHOPGM("Step: ");
-			MYSERIAL.print(i+2);
-			SERIAL_ECHOLNPGM("/6");
-			custom_message_state = i + 2;
-			t_c = 60 + i * 10;
-
-			setTargetBed(t_c);
-			current_position[X_AXIS] = PINDA_PREHEAT_X;
-			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-			while (degBed() < t_c) {
-				delay_keep_alive(1000);
-				serialecho_temperatures();
-			}
-			for (int i = 0; i < PINDA_HEAT_T; i++) {
-				delay_keep_alive(1000);
-				serialecho_temperatures();
-			}
-			current_position[Z_AXIS] = 5;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-			find_bed_induction_sensor_point_z(-1.f);
-			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
-
-			SERIAL_ECHOLNPGM("");
-			SERIAL_ECHOPGM("Temperature: ");
-			MYSERIAL.print(t_c);
-			SERIAL_ECHOPGM(" Z shift (mm):");
-			MYSERIAL.print(current_position[Z_AXIS] - zero_z);
-			SERIAL_ECHOLNPGM("");
-
-			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
-			
-		
-		}
-		custom_message_type = 0;
-		custom_message = false;
-
-		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
-		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
-			disable_x();
-			disable_y();
-			disable_z();
-			disable_e0();
-			disable_e1();
-			disable_e2();
-			setTargetBed(0); //set bed target temperature back to 0
-		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
-		lcd_update_enable(true);
-		lcd_update(2);		
-
-		
-
-	}
-	break;
-
-#ifdef DIS
-	case 77:
-	{
-		//G77 X200 Y150 XP100 YP15 XO10 Y015
-
-		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
-
-
-		//G77 X232 Y218 XP116 YP109 XO-11 YO0 
-
-		float dimension_x = 40;
-		float dimension_y = 40;
-		int points_x = 40;
-		int points_y = 40;
-		float offset_x = 74;
-		float offset_y = 33;
-
-		if (code_seen('X')) dimension_x = code_value();
-		if (code_seen('Y')) dimension_y = code_value();
-		if (code_seen('XP')) points_x = code_value();
-		if (code_seen('YP')) points_y = code_value();
-		if (code_seen('XO')) offset_x = code_value();
-		if (code_seen('YO')) offset_y = code_value();
-		
-		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
-		
-	} break;
-	
-#endif
-
-	case 79: {
-		for (int i = 255; i > 0; i = i - 5) {
-			fanSpeed = i;
-			//delay_keep_alive(2000);
-			for (int j = 0; j < 100; j++) {
-				delay_keep_alive(100);
-
-			}
-			fan_speed[1];
-			MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
-		}
-	}break;
-
-	/**
-	* G80: Mesh-based Z probe, probes a grid and produces a
-	*      mesh to compensate for variable bed height
-	*
-	* The S0 report the points as below
-	*
-	*  +----> X-axis
-	*  |
-	*  |
-	*  v Y-axis
-	*
-	*/
-
-	case 80:
-#ifdef MK1BP
-		break;
-#endif //MK1BP
-	case_G80:
-	{
-		mesh_bed_leveling_flag = true;
-		int8_t verbosity_level = 0;
-		static bool run = false;
-
-		if (code_seen('V')) {
-			// Just 'V' without a number counts as V1.
-			char c = strchr_pointer[1];
-			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-		}
-		// Firstly check if we know where we are
-		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-			// We don't know where we are! HOME!
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
-				repeatcommand_front(); // repeat G80 with all its parameters
-				enquecommand_front_P((PSTR("G28 W0")));
-			}
-			else {
-				mesh_bed_leveling_flag = false;
-			}
-			break;
-		} 
-		
-		
-		bool temp_comp_start = true;
-#ifdef PINDA_THERMISTOR
-		temp_comp_start = false;
-#endif //PINDA_THERMISTOR
-
-		if (temp_comp_start)
-		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
-			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
-				temp_compensation_start();
-				run = true;
-				repeatcommand_front(); // repeat G80 with all its parameters
-				enquecommand_front_P((PSTR("G28 W0")));
-			}
-			else {
-				mesh_bed_leveling_flag = false;
-			}
-			break;
-		}
-		run = false;
-		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
-			mesh_bed_leveling_flag = false;
-			break;
-		}
-		// Save custom message state, set a new custom message state to display: Calibrating point 9.
-		bool custom_message_old = custom_message;
-		unsigned int custom_message_type_old = custom_message_type;
-		unsigned int custom_message_state_old = custom_message_state;
-		custom_message = true;
-		custom_message_type = 1;
-		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
-		lcd_update(1);
-
-		mbl.reset(); //reset mesh bed leveling
-
-					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
-					 // consumed during the first movements following this statement.
-		babystep_undo();
-
-		// Cycle through all points and probe them
-		// First move up. During this first movement, the babystepping will be reverted.
-		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
-		// The move to the first calibration point.
-		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-
-		if (verbosity_level >= 1) {
-			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
-		}
-		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
-		// Wait until the move is finished.
-		st_synchronize();
-
-		int mesh_point = 0; //index number of calibration point
-
-		int ix = 0;
-		int iy = 0;
-
-		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
-		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
-		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
-		if (verbosity_level >= 1) {
-			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
-		}
-		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
-		const char *kill_message = NULL;
-		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
-			if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
-			// Get coords of a measuring point.
-			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
-			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
-			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
-			float z0 = 0.f;
-			if (has_z && mesh_point > 0) {
-				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
-				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
-				//#if 0
-				if (verbosity_level >= 1) {
-					SERIAL_ECHOPGM("Bed leveling, point: ");
-					MYSERIAL.print(mesh_point);
-					SERIAL_ECHOPGM(", calibration z: ");
-					MYSERIAL.print(z0, 5);
-					SERIAL_ECHOLNPGM("");
-				}
-				//#endif
-			}
-
-			// Move Z up to MESH_HOME_Z_SEARCH.
-			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-			st_synchronize();
-
-			// Move to XY position of the sensor point.
-			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
-			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
-
-
-
-			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-			if (verbosity_level >= 1) {
-
-				SERIAL_PROTOCOL(mesh_point);
-				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
-			}
-
-
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
-			st_synchronize();
-
-			// Go down until endstop is hit
-			const float Z_CALIBRATION_THRESHOLD = 1.f;
-			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
-				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
-				break;
-			}
-			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
-				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
-				break;
-			}
-			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
-				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
-				break;
-			}
-
-			if (verbosity_level >= 10) {
-				SERIAL_ECHOPGM("X: ");
-				MYSERIAL.print(current_position[X_AXIS], 5);
-				SERIAL_ECHOLNPGM("");
-				SERIAL_ECHOPGM("Y: ");
-				MYSERIAL.print(current_position[Y_AXIS], 5);
-				SERIAL_PROTOCOLPGM("\n");
-			}
-
-			float offset_z = 0;
-
-#ifdef PINDA_THERMISTOR
-			offset_z = temp_compensation_pinda_thermistor_offset();
-#endif //PINDA_THERMISTOR
-
-			if (verbosity_level >= 1) {
-				SERIAL_ECHOPGM("mesh bed leveling: ");
-				MYSERIAL.print(current_position[Z_AXIS], 5);
-				SERIAL_ECHOPGM(" offset: ");
-				MYSERIAL.print(offset_z, 5);
-				SERIAL_ECHOLNPGM("");
-			}
-			mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
-
-			custom_message_state--;
-			mesh_point++;
-			lcd_update(1);
-		}
-		if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
-		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-		if (verbosity_level >= 20) {
-			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
-			MYSERIAL.print(current_position[Z_AXIS], 5);
-		}
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-		st_synchronize();
-		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
-			kill(kill_message);
-			SERIAL_ECHOLNPGM("killed");
-		}
-		clean_up_after_endstop_move();
-		SERIAL_ECHOLNPGM("clean up finished ");
-
-		bool apply_temp_comp = true;
-#ifdef PINDA_THERMISTOR
-		apply_temp_comp = false;
-#endif
-		if (apply_temp_comp)
-		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
-		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
-		SERIAL_ECHOLNPGM("babystep applied");
-		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
-
-		if (verbosity_level >= 1) {
-			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
-		}
-
-		for (uint8_t i = 0; i < 4; ++i) {
-			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
-			long correction = 0;
-			if (code_seen(codes[i]))
-				correction = code_value_long();
-			else if (eeprom_bed_correction_valid) {
-				unsigned char *addr = (i < 2) ?
-					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
-					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
-				correction = eeprom_read_int8(addr);
-			}
-			if (correction == 0)
-				continue;
-			float offset = float(correction) * 0.001f;
-			if (fabs(offset) > 0.101f) {
-				SERIAL_ERROR_START;
-				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
-				SERIAL_ECHO(offset);
-				SERIAL_ECHOLNPGM(" microns");
-			}
-			else {
-				switch (i) {
-				case 0:
-					for (uint8_t row = 0; row < 3; ++row) {
-						mbl.z_values[row][1] += 0.5f * offset;
-						mbl.z_values[row][0] += offset;
-					}
-					break;
-				case 1:
-					for (uint8_t row = 0; row < 3; ++row) {
-						mbl.z_values[row][1] += 0.5f * offset;
-						mbl.z_values[row][2] += offset;
-					}
-					break;
-				case 2:
-					for (uint8_t col = 0; col < 3; ++col) {
-						mbl.z_values[1][col] += 0.5f * offset;
-						mbl.z_values[0][col] += offset;
-					}
-					break;
-				case 3:
-					for (uint8_t col = 0; col < 3; ++col) {
-						mbl.z_values[1][col] += 0.5f * offset;
-						mbl.z_values[2][col] += offset;
-					}
-					break;
-				}
-			}
-		}
-		SERIAL_ECHOLNPGM("Bed leveling correction finished");
-		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
-		SERIAL_ECHOLNPGM("Upsample finished");
-		mbl.active = 1; //activate mesh bed leveling
-		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
-		go_home_with_z_lift();
-		SERIAL_ECHOLNPGM("Go home finished");
-		//unretract (after PINDA preheat retraction)
-		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
-			current_position[E_AXIS] += DEFAULT_RETRACTION;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-		}
-		// Restore custom message state
-		custom_message = custom_message_old;
-		custom_message_type = custom_message_type_old;
-		custom_message_state = custom_message_state_old;
-		mesh_bed_leveling_flag = false;
-		mesh_bed_run_from_menu = false;
-		lcd_update(2);
-		
-	}
-	break;
-
-        /**
-         * G81: Print mesh bed leveling status and bed profile if activated
-         */
-        case 81:
-            if (mbl.active) {
-                SERIAL_PROTOCOLPGM("Num X,Y: ");
-                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
-                SERIAL_PROTOCOLPGM(",");
-                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
-                SERIAL_PROTOCOLPGM("\nZ search height: ");
-                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
-                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
-                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
-                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
-                        SERIAL_PROTOCOLPGM("  ");
-                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
-                    }
-                    SERIAL_PROTOCOLPGM("\n");
-                }
-            }
-            else
-                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
-            break;
-            
-#if 0
-        /**
-         * G82: Single Z probe at current location
-         *
-         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
-         *
-         */
-        case 82:
-            SERIAL_PROTOCOLLNPGM("Finding bed ");
-            setup_for_endstop_move();
-            find_bed_induction_sensor_point_z();
-            clean_up_after_endstop_move();
-            SERIAL_PROTOCOLPGM("Bed found at: ");
-            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
-            SERIAL_PROTOCOLPGM("\n");
-            break;
-
-            /**
-             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
-             */
-        case 83:
-        {
-            int babystepz = code_seen('S') ? code_value() : 0;
-            int BabyPosition = code_seen('P') ? code_value() : 0;
-            
-            if (babystepz != 0) {
-                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
-                // Is the axis indexed starting with zero or one?
-                if (BabyPosition > 4) {
-                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
-                }else{
-                    // Save it to the eeprom
-                    babystepLoadZ = babystepz;
-                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
-                    // adjust the Z
-                    babystepsTodoZadd(babystepLoadZ);
-                }
-            
-            }
-            
-        }
-        break;
-            /**
-             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
-             */
-        case 84:
-            babystepsTodoZsubtract(babystepLoadZ);
-            // babystepLoadZ = 0;
-            break;
-            
-            /**
-             * G85: Prusa3D specific: Pick best babystep
-             */
-        case 85:
-            lcd_pick_babystep();
-            break;
-#endif
-            
-            /**
-             * G86: Prusa3D specific: Disable babystep correction after home.
-             * This G-code will be performed at the start of a calibration script.
-             */
-        case 86:
-            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
-            break;
-            /**
-             * G87: Prusa3D specific: Enable babystep correction after home
-             * This G-code will be performed at the end of a calibration script.
-             */
-        case 87:
-			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-            break;
-
-            /**
-             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
-             */
-		    case 88:
-			      break;
-
-
-#endif  // ENABLE_MESH_BED_LEVELING
-            
-            
-    case 90: // G90
-      relative_mode = false;
-      break;
-    case 91: // G91
-      relative_mode = true;
-      break;
-    case 92: // G92
-      if(!code_seen(axis_codes[E_AXIS]))
-        st_synchronize();
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) {
-           if(i == E_AXIS) {
-             current_position[i] = code_value();
-             plan_set_e_position(current_position[E_AXIS]);
-           }
-           else {
-		current_position[i] = code_value()+add_homing[i];
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-           }
-        }
-      }
-      break;
-
-	case 98: //activate farm mode
-		farm_mode = 1;
-		PingTime = millis();
-		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
-		break;
-
-	case 99: //deactivate farm mode
-		farm_mode = 0;
-		lcd_printer_connected();
-		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
-		lcd_update(2);
-		break;
-
-
-
-
-
-
-
-    }
-  } // end if(code_seen('G'))
-
-  else if(code_seen('M'))
-  {
-	  int index;
-	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
-	   
-	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
-	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
-		  SERIAL_ECHOLNPGM("Invalid M code");
-	  } else
-    switch((int)code_value())
-    {
-#ifdef ULTIPANEL
-
-    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
-    case 1: // M1 - Conditional stop - Wait for user button press on LCD
-    {
-      char *src = strchr_pointer + 2;
-
-      codenum = 0;
-
-      bool hasP = false, hasS = false;
-      if (code_seen('P')) {
-        codenum = code_value(); // milliseconds to wait
-        hasP = codenum > 0;
-      }
-      if (code_seen('S')) {
-        codenum = code_value() * 1000; // seconds to wait
-        hasS = codenum > 0;
-      }
-      starpos = strchr(src, '*');
-      if (starpos != NULL) *(starpos) = '\0';
-      while (*src == ' ') ++src;
-      if (!hasP && !hasS && *src != '\0') {
-        lcd_setstatus(src);
-      } else {
-        LCD_MESSAGERPGM(MSG_USERWAIT);
-      }
-
-      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
-      st_synchronize();
-      previous_millis_cmd = millis();
-      if (codenum > 0){
-        codenum += millis();  // keep track of when we started waiting
-        while(millis() < codenum && !lcd_clicked()){
-          manage_heater();
-          manage_inactivity(true);
-          lcd_update();
-        }
-        lcd_ignore_click(false);
-      }else{
-          if (!lcd_detected())
-            break;
-        while(!lcd_clicked()){
-          manage_heater();
-          manage_inactivity(true);
-          lcd_update();
-        }
-      }
-      if (IS_SD_PRINTING)
-        LCD_MESSAGERPGM(MSG_RESUMING);
-      else
-        LCD_MESSAGERPGM(WELCOME_MSG);
-    }
-    break;
-#endif
-    case 17:
-        LCD_MESSAGERPGM(MSG_NO_MOVE);
-        enable_x();
-        enable_y();
-        enable_z();
-        enable_e0();
-        enable_e1();
-        enable_e2();
-      break;
-
-#ifdef SDSUPPORT
-    case 20: // M20 - list SD card
-      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
-      card.ls();
-      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
-      break;
-    case 21: // M21 - init SD card
-
-      card.initsd();
-
-      break;
-    case 22: //M22 - release SD card
-      card.release();
-
-      break;
-    case 23: //M23 - Select file
-      starpos = (strchr(strchr_pointer + 4,'*'));
-      if(starpos!=NULL)
-        *(starpos)='\0';
-      card.openFile(strchr_pointer + 4,true);
-      break;
-    case 24: //M24 - Start SD print
-      card.startFileprint();
-      starttime=millis();
-	  break;
-    case 25: //M25 - Pause SD print
-      card.pauseSDPrint();
-      break;
-    case 26: //M26 - Set SD index
-      if(card.cardOK && code_seen('S')) {
-        card.setIndex(code_value_long());
-      }
-      break;
-    case 27: //M27 - Get SD status
-      card.getStatus();
-      break;
-    case 28: //M28 - Start SD write
-      starpos = (strchr(strchr_pointer + 4,'*'));
-      if(starpos != NULL){
-        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-        strchr_pointer = strchr(npos,' ') + 1;
-        *(starpos) = '\0';
-      }
-      card.openFile(strchr_pointer+4,false);
-      break;
-    case 29: //M29 - Stop SD write
-      //processed in write to file routine above
-      //card,saving = false;
-      break;
-    case 30: //M30 <filename> Delete File
-      if (card.cardOK){
-        card.closefile();
-        starpos = (strchr(strchr_pointer + 4,'*'));
-        if(starpos != NULL){
-          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-          strchr_pointer = strchr(npos,' ') + 1;
-          *(starpos) = '\0';
-        }
-        card.removeFile(strchr_pointer + 4);
-      }
-      break;
-    case 32: //M32 - Select file and start SD print
-    {
-      if(card.sdprinting) {
-        st_synchronize();
-
-      }
-      starpos = (strchr(strchr_pointer + 4,'*'));
-
-      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
-      if(namestartpos==NULL)
-      {
-        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
-      }
-      else
-        namestartpos++; //to skip the '!'
-
-      if(starpos!=NULL)
-        *(starpos)='\0';
-
-      bool call_procedure=(code_seen('P'));
-
-      if(strchr_pointer>namestartpos)
-        call_procedure=false;  //false alert, 'P' found within filename
-
-      if( card.cardOK )
-      {
-        card.openFile(namestartpos,true,!call_procedure);
-        if(code_seen('S'))
-          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
-            card.setIndex(code_value_long());
-        card.startFileprint();
-        if(!call_procedure)
-          starttime=millis(); //procedure calls count as normal print time.
-      }
-    } break;
-    case 928: //M928 - Start SD write
-      starpos = (strchr(strchr_pointer + 5,'*'));
-      if(starpos != NULL){
-        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-        strchr_pointer = strchr(npos,' ') + 1;
-        *(starpos) = '\0';
-      }
-      card.openLogFile(strchr_pointer+5);
-      break;
-
-#endif //SDSUPPORT
-
-    case 31: //M31 take time since the start of the SD print or an M109 command
-      {
-      stoptime=millis();
-      char time[30];
-      unsigned long t=(stoptime-starttime)/1000;
-      int sec,min;
-      min=t/60;
-      sec=t%60;
-      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
-      SERIAL_ECHO_START;
-      SERIAL_ECHOLN(time);
-      lcd_setstatus(time);
-      autotempShutdown();
-      }
-      break;
-    case 42: //M42 -Change pin status via gcode
-      if (code_seen('S'))
-      {
-        int pin_status = code_value();
-        int pin_number = LED_PIN;
-        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
-          pin_number = code_value();
-        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
-        {
-          if (sensitive_pins[i] == pin_number)
-          {
-            pin_number = -1;
-            break;
-          }
-        }
-      #if defined(FAN_PIN) && FAN_PIN > -1
-        if (pin_number == FAN_PIN)
-          fanSpeed = pin_status;
-      #endif
-        if (pin_number > -1)
-        {
-          pinMode(pin_number, OUTPUT);
-          digitalWrite(pin_number, pin_status);
-          analogWrite(pin_number, pin_status);
-        }
-      }
-     break;
-
-    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
-
-		// Reset the baby step value and the baby step applied flag.
-		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
-		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-
-        // Reset the skew and offset in both RAM and EEPROM.
-        reset_bed_offset_and_skew();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        break;
-
-    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
-    {
-		// Only Z calibration?
-		bool onlyZ = code_seen('Z');
-
-		if (!onlyZ) {
-			setTargetBed(0);
-			setTargetHotend(0, 0);
-			setTargetHotend(0, 1);
-			setTargetHotend(0, 2);
-			adjust_bed_reset(); //reset bed level correction
-		}
-
-        // Disable the default update procedure of the display. We will do a modal dialog.
-        lcd_update_enable(false);
-        // Let the planner use the uncorrected coordinates.
-        mbl.reset();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        // Reset the baby step value applied without moving the axes.
-        babystep_reset();
-        // Mark all axes as in a need for homing.
-        memset(axis_known_position, 0, sizeof(axis_known_position));
-
-        // Home in the XY plane.
-        //set_destination_to_current();
-        setup_for_endstop_move();
-		lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
-		home_xy();
-
-        // Let the user move the Z axes up to the end stoppers.
-#ifdef TMC2130
-        if (calibrate_z_auto()) {
-#else //TMC2130
-        if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
-#endif //TMC2130
-            refresh_cmd_timeout();
-			if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
-				lcd_wait_for_cool_down();
-				lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
-				lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
-				lcd_implementation_print_at(0, 2, 1);
-				lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
-			}
-
-            // Move the print head close to the bed.
-            current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-            st_synchronize();
-
-
-//#ifdef TMC2130
-//		tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
-//#endif
-
-            int8_t verbosity_level = 0;
-            if (code_seen('V')) {
-                // Just 'V' without a number counts as V1.
-                char c = strchr_pointer[1];
-                verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-            }
-            
-            if (onlyZ) {
-                clean_up_after_endstop_move();
-                // Z only calibration.
-                // Load the machine correction matrix
-                world2machine_initialize();
-                // and correct the current_position to match the transformed coordinate system.
-                world2machine_update_current();
-                //FIXME
-                bool result = sample_mesh_and_store_reference();
-                if (result) {
-                    if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
-                        // Shipped, the nozzle height has been set already. The user can start printing now.
-                        calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-                    // babystep_apply();
-                }
-            } else {
-                // Reset the baby step value and the baby step applied flag.
-                calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
-                eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-                // Complete XYZ calibration.
-				uint8_t point_too_far_mask = 0;
-                BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
-				clean_up_after_endstop_move();
-                // Print head up.
-                current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-                plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-                st_synchronize();
-                if (result >= 0) {
-					point_too_far_mask = 0;
-                    // Second half: The fine adjustment.
-                    // Let the planner use the uncorrected coordinates.
-                    mbl.reset();
-                    world2machine_reset();
-                    // Home in the XY plane.
-                    setup_for_endstop_move();
-                    home_xy();
-                    result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
-                    clean_up_after_endstop_move();
-                    // Print head up.
-                    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-                    st_synchronize();
-                    // if (result >= 0) babystep_apply();
-                }
-                lcd_bed_calibration_show_result(result, point_too_far_mask);
-                if (result >= 0) {
-                    // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
-                    calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
-                    lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
-                }
-            }
-#ifdef TMC2130
-		tmc2130_home_exit();
-#endif
-        } else {
-            // Timeouted.
-        }
-
-
-        lcd_update_enable(true);
-        break;
-    }
-
-    /*
-    case 46:
-    {
-        // M46: Prusa3D: Show the assigned IP address.
-        uint8_t ip[4];
-        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
-        if (hasIP) {
-            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
-            SERIAL_ECHO(int(ip[0]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[1]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[2]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[3]));
-            SERIAL_ECHOLNPGM("");
-        } else {
-            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
-        }
-        break;
-    }
-    */
-
-    case 47:
-        // M47: Prusa3D: Show end stops dialog on the display.
-        lcd_diag_show_end_stops();
-        break;
-
-#if 0
-    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
-    {
-        // Disable the default update procedure of the display. We will do a modal dialog.
-        lcd_update_enable(false);
-        // Let the planner use the uncorrected coordinates.
-        mbl.reset();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        // Move the print head close to the bed.
-        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-        st_synchronize();
-        // Home in the XY plane.
-        set_destination_to_current();
-        setup_for_endstop_move();
-        home_xy();
-        int8_t verbosity_level = 0;
-        if (code_seen('V')) {
-            // Just 'V' without a number counts as V1.
-            char c = strchr_pointer[1];
-            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-        }
-        bool success = scan_bed_induction_points(verbosity_level);
-        clean_up_after_endstop_move();
-        // Print head up.
-        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-        st_synchronize();
-        lcd_update_enable(true);
-        break;
-    }
-#endif
-
-// M48 Z-Probe repeatability measurement function.
-//
-// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
-//	
-// This function assumes the bed has been homed.  Specificaly, that a G28 command
-// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
-// Any information generated by a prior G29 Bed leveling command will be lost and need to be
-// regenerated.
-//
-// The number of samples will default to 10 if not specified.  You can use upper or lower case
-// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
-// N for its communication protocol and will get horribly confused if you send it a capital N.
-//
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef Z_PROBE_REPEATABILITY_TEST 
-
-    case 48: // M48 Z-Probe repeatability
-        {
-            #if Z_MIN_PIN == -1
-            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
-            #endif
-
-	double sum=0.0; 
-	double mean=0.0; 
-	double sigma=0.0;
-	double sample_set[50];
-	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
-	double X_current, Y_current, Z_current;
-	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
-	
-	if (code_seen('V') || code_seen('v')) {
-        	verbose_level = code_value();
-		if (verbose_level<0 || verbose_level>4 ) {
-			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (verbose_level > 0)   {
-		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
-		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
-	}
-
-	if (code_seen('n')) {
-        	n_samples = code_value();
-		if (n_samples<4 || n_samples>50 ) {
-			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	X_current = X_probe_location = st_get_position_mm(X_AXIS);
-	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
-	Z_current = st_get_position_mm(Z_AXIS);
-	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
-	ext_position	 = st_get_position_mm(E_AXIS);
-
-	if (code_seen('X') || code_seen('x') ) {
-        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
-		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
-			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (code_seen('Y') || code_seen('y') ) {
-        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
-		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
-			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (code_seen('L') || code_seen('l') ) {
-        	n_legs = code_value();
-		if ( n_legs==1 ) 
-			n_legs = 2;
-		if ( n_legs<0 || n_legs>15 ) {
-			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-//
-// Do all the preliminary setup work.   First raise the probe.
-//
-
-        st_synchronize();
-        plan_bed_level_matrix.set_to_identity();
-	plan_buffer_line( X_current, Y_current, Z_start_location,
-			ext_position,
-    			homing_feedrate[Z_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-
-//
-// Now get everything to the specified probe point So we can safely do a probe to
-// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
-// use that as a starting point for each probe.
-//
-	if (verbose_level > 2) 
-		SERIAL_PROTOCOL("Positioning probe for the test.\n");
-
-	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
-			ext_position,
-    			homing_feedrate[X_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-
-	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
-	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
-
-// 
-// OK, do the inital probe to get us close to the bed.
-// Then retrace the right amount and use that in subsequent probes
-//
-
-	setup_for_endstop_move();
-	run_z_probe();
-
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
-
-	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
-			ext_position,
-    			homing_feedrate[X_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-
-        for( n=0; n<n_samples; n++) {
-
-		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
-
-		if ( n_legs)  {
-		double radius=0.0, theta=0.0, x_sweep, y_sweep;
-		int rotational_direction, l;
-
-			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
-			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
-			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
-
-//SERIAL_ECHOPAIR("starting radius: ",radius);
-//SERIAL_ECHOPAIR("   theta: ",theta);
-//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
-//SERIAL_PROTOCOLLNPGM("");
-
-			for( l=0; l<n_legs-1; l++) {
-				if (rotational_direction==1)
-					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
-				else
-					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
-
-				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
-				if ( radius<0.0 )
-					radius = -radius;
-
-				X_current = X_probe_location + cos(theta) * radius;
-				Y_current = Y_probe_location + sin(theta) * radius;
-
-				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
-					 X_current = X_MIN_POS;
-				if ( X_current>X_MAX_POS)
-					 X_current = X_MAX_POS;
-
-				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
-					 Y_current = Y_MIN_POS;
-				if ( Y_current>Y_MAX_POS)
-					 Y_current = Y_MAX_POS;
-
-				if (verbose_level>3 ) {
-					SERIAL_ECHOPAIR("x: ", X_current);
-					SERIAL_ECHOPAIR("y: ", Y_current);
-					SERIAL_PROTOCOLLNPGM("");
-				}
-
-				do_blocking_move_to( X_current, Y_current, Z_current );
-			}
-			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
-		}
-
-		setup_for_endstop_move();
-                run_z_probe();
-
-		sample_set[n] = current_position[Z_AXIS];
-
-//
-// Get the current mean for the data points we have so far
-//
-		sum=0.0; 
-		for( j=0; j<=n; j++) {
-			sum = sum + sample_set[j];
-		}
-		mean = sum / (double (n+1));
-//
-// Now, use that mean to calculate the standard deviation for the
-// data points we have so far
-//
-
-		sum=0.0; 
-		for( j=0; j<=n; j++) {
-			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
-		}
-		sigma = sqrt( sum / (double (n+1)) );
-
-		if (verbose_level > 1) {
-			SERIAL_PROTOCOL(n+1);
-			SERIAL_PROTOCOL(" of ");
-			SERIAL_PROTOCOL(n_samples);
-			SERIAL_PROTOCOLPGM("   z: ");
-			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
-		}
-
-		if (verbose_level > 2) {
-			SERIAL_PROTOCOL(" mean: ");
-			SERIAL_PROTOCOL_F(mean,6);
-
-			SERIAL_PROTOCOL("   sigma: ");
-			SERIAL_PROTOCOL_F(sigma,6);
-		}
-
-		if (verbose_level > 0) 
-			SERIAL_PROTOCOLPGM("\n");
-
-		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
-				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
-        	st_synchronize();
-
-	}
-
-	delay(1000);
-
-        clean_up_after_endstop_move();
-
-//      enable_endstops(true);
-
-	if (verbose_level > 0) {
-		SERIAL_PROTOCOLPGM("Mean: ");
-		SERIAL_PROTOCOL_F(mean, 6);
-		SERIAL_PROTOCOLPGM("\n");
-	}
-
-SERIAL_PROTOCOLPGM("Standard Deviation: ");
-SERIAL_PROTOCOL_F(sigma, 6);
-SERIAL_PROTOCOLPGM("\n\n");
-
-Sigma_Exit:
-        break;
-	}
-#endif		// Z_PROBE_REPEATABILITY_TEST 
-#endif		// ENABLE_AUTO_BED_LEVELING
-
-    case 104: // M104
-      if(setTargetedHotend(104)){
-        break;
-      }
-      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
-      setWatch();
-      break;
-    case 112: //  M112 -Emergency Stop
-      kill("", 3);
-      break;
-    case 140: // M140 set bed temp
-      if (code_seen('S')) setTargetBed(code_value());
-      break;
-    case 105 : // M105
-      if(setTargetedHotend(105)){
-        break;
-        }
-      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
-        SERIAL_PROTOCOLPGM("ok T:");
-        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
-        SERIAL_PROTOCOLPGM(" /");
-        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
-        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-          SERIAL_PROTOCOLPGM(" B:");
-          SERIAL_PROTOCOL_F(degBed(),1);
-          SERIAL_PROTOCOLPGM(" /");
-          SERIAL_PROTOCOL_F(degTargetBed(),1);
-        #endif //TEMP_BED_PIN
-        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-          SERIAL_PROTOCOLPGM(" T");
-          SERIAL_PROTOCOL(cur_extruder);
-          SERIAL_PROTOCOLPGM(":");
-          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
-          SERIAL_PROTOCOLPGM(" /");
-          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
-        }
-      #else
-        SERIAL_ERROR_START;
-        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
-      #endif
-
-        SERIAL_PROTOCOLPGM(" @:");
-      #ifdef EXTRUDER_WATTS
-        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
-        SERIAL_PROTOCOLPGM("W");
-      #else
-        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
-      #endif
-
-        SERIAL_PROTOCOLPGM(" B@:");
-      #ifdef BED_WATTS
-        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
-        SERIAL_PROTOCOLPGM("W");
-      #else
-        SERIAL_PROTOCOL(getHeaterPower(-1));
-      #endif
-
-#ifdef PINDA_THERMISTOR
-		SERIAL_PROTOCOLPGM(" P:");
-		SERIAL_PROTOCOL_F(current_temperature_pinda,1);
-#endif //PINDA_THERMISTOR
-
-#ifdef AMBIENT_THERMISTOR
-		SERIAL_PROTOCOLPGM(" A:");
-		SERIAL_PROTOCOL_F(current_temperature_ambient,1);
-#endif //AMBIENT_THERMISTOR
-
-
-        #ifdef SHOW_TEMP_ADC_VALUES
-          {float raw = 0.0;
-
-          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-            SERIAL_PROTOCOLPGM("    ADC B:");
-            SERIAL_PROTOCOL_F(degBed(),1);
-            SERIAL_PROTOCOLPGM("C->");
-            raw = rawBedTemp();
-            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
-            SERIAL_PROTOCOLPGM(" Rb->");
-            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
-            SERIAL_PROTOCOLPGM(" Rxb->");
-            SERIAL_PROTOCOL_F(raw, 5);
-          #endif
-          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-            SERIAL_PROTOCOLPGM("  T");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM(":");
-            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
-            SERIAL_PROTOCOLPGM("C->");
-            raw = rawHotendTemp(cur_extruder);
-            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
-            SERIAL_PROTOCOLPGM(" Rt");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM("->");
-            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
-            SERIAL_PROTOCOLPGM(" Rx");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM("->");
-            SERIAL_PROTOCOL_F(raw, 5);
-          }}
-        #endif
-		SERIAL_PROTOCOLLN("");
-      return;
-      break;
-    case 109:
-    {// M109 - Wait for extruder heater to reach target.
-      if(setTargetedHotend(109)){
-        break;
-      }
-      LCD_MESSAGERPGM(MSG_HEATING);
-	  heating_status = 1;
-	  if (farm_mode) { prusa_statistics(1); };
-
-#ifdef AUTOTEMP
-        autotemp_enabled=false;
-      #endif
-      if (code_seen('S')) {
-        setTargetHotend(code_value(), tmp_extruder);
-              CooldownNoWait = true;
-            } else if (code_seen('R')) {
-              setTargetHotend(code_value(), tmp_extruder);
-        CooldownNoWait = false;
-      }
-      #ifdef AUTOTEMP
-        if (code_seen('S')) autotemp_min=code_value();
-        if (code_seen('B')) autotemp_max=code_value();
-        if (code_seen('F'))
-        {
-          autotemp_factor=code_value();
-          autotemp_enabled=true;
-        }
-      #endif
-
-      setWatch();
-      codenum = millis();
-
-      /* See if we are heating up or cooling down */
-      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
-
-      cancel_heatup = false;
-
-	  wait_for_heater(codenum); //loops until target temperature is reached
-
-        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
-		heating_status = 2;
-		if (farm_mode) { prusa_statistics(2); };
-        
-        //starttime=millis();
-        previous_millis_cmd = millis();
-      }
-      break;
-    case 190: // M190 - Wait for bed heater to reach target.
-    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-        LCD_MESSAGERPGM(MSG_BED_HEATING);
-		heating_status = 3;
-		if (farm_mode) { prusa_statistics(1); };
-        if (code_seen('S')) 
-		{
-          setTargetBed(code_value());
-          CooldownNoWait = true;
-        } 
-		else if (code_seen('R')) 
-		{
-          setTargetBed(code_value());
-          CooldownNoWait = false;
-        }
-        codenum = millis();
-        
-        cancel_heatup = false;
-        target_direction = isHeatingBed(); // true if heating, false if cooling
-
-        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
-        {
-          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
-          {
-			  if (!farm_mode) {
-				  float tt = degHotend(active_extruder);
-				  SERIAL_PROTOCOLPGM("T:");
-				  SERIAL_PROTOCOL(tt);
-				  SERIAL_PROTOCOLPGM(" E:");
-				  SERIAL_PROTOCOL((int)active_extruder);
-				  SERIAL_PROTOCOLPGM(" B:");
-				  SERIAL_PROTOCOL_F(degBed(), 1);
-				  SERIAL_PROTOCOLLN("");
-			  }
-				  codenum = millis();
-			  
-          }
-          manage_heater();
-          manage_inactivity();
-          lcd_update();
-        }
-        LCD_MESSAGERPGM(MSG_BED_DONE);
-		heating_status = 4;
-
-        previous_millis_cmd = millis();
-    #endif
-        break;
-
-    #if defined(FAN_PIN) && FAN_PIN > -1
-      case 106: //M106 Fan On
-        if (code_seen('S')){
-           fanSpeed=constrain(code_value(),0,255);
-        }
-        else {
-          fanSpeed=255;
-        }
-        break;
-      case 107: //M107 Fan Off
-        fanSpeed = 0;
-        break;
-    #endif //FAN_PIN
-
-    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
-      case 80: // M80 - Turn on Power Supply
-        SET_OUTPUT(PS_ON_PIN); //GND
-        WRITE(PS_ON_PIN, PS_ON_AWAKE);
-
-        // If you have a switch on suicide pin, this is useful
-        // if you want to start another print with suicide feature after
-        // a print without suicide...
-        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
-            SET_OUTPUT(SUICIDE_PIN);
-            WRITE(SUICIDE_PIN, HIGH);
-        #endif
-
-        #ifdef ULTIPANEL
-          powersupply = true;
-          LCD_MESSAGERPGM(WELCOME_MSG);
-          lcd_update();
-        #endif
-        break;
-      #endif
-
-      case 81: // M81 - Turn off Power Supply
-        disable_heater();
-        st_synchronize();
-        disable_e0();
-        disable_e1();
-        disable_e2();
-        finishAndDisableSteppers();
-        fanSpeed = 0;
-        delay(1000); // Wait a little before to switch off
-      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-        st_synchronize();
-        suicide();
-      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
-        SET_OUTPUT(PS_ON_PIN);
-        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
-      #endif
-      #ifdef ULTIPANEL
-        powersupply = false;
-        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
-        
-        /*
-        MACHNAME = "Prusa i3"
-        MSGOFF = "Vypnuto"
-        "Prusai3"" ""vypnuto""."
-        
-        "Prusa i3"" "MSG_ALL[lang_selected][50]"."
-        */
-        lcd_update();
-      #endif
-	  break;
-
-    case 82:
-      axis_relative_modes[3] = false;
-      break;
-    case 83:
-      axis_relative_modes[3] = true;
-      break;
-    case 18: //compatibility
-    case 84: // M84
-      if(code_seen('S')){
-        stepper_inactive_time = code_value() * 1000;
-      }
-      else
-      {
-        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
-        if(all_axis)
-        {
-          st_synchronize();
-          disable_e0();
-          disable_e1();
-          disable_e2();
-          finishAndDisableSteppers();
-        }
-        else
-        {
-          st_synchronize();
-		  if (code_seen('X')) disable_x();
-		  if (code_seen('Y')) disable_y();
-		  if (code_seen('Z')) disable_z();
-#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
-		  if (code_seen('E')) {
-			  disable_e0();
-			  disable_e1();
-			  disable_e2();
-            }
-          #endif
-        }
-      }
-	  snmm_filaments_used = 0;
-      break;
-    case 85: // M85
-      if(code_seen('S')) {
-        max_inactive_time = code_value() * 1000;
-      }
-      break;
-    case 92: // M92
-      for(int8_t i=0; i < NUM_AXIS; i++)
-      {
-        if(code_seen(axis_codes[i]))
-        {
-          if(i == 3) { // E
-            float value = code_value();
-            if(value < 20.0) {
-              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
-              max_jerk[E_AXIS] *= factor;
-              max_feedrate[i] *= factor;
-              axis_steps_per_sqr_second[i] *= factor;
-            }
-            axis_steps_per_unit[i] = value;
-          }
-          else {
-            axis_steps_per_unit[i] = code_value();
-          }
-        }
-      }
-      break;
-    case 115: // M115
-      if (code_seen('V')) {
-          // Report the Prusa version number.
-          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
-      } else if (code_seen('U')) {
-          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
-          // pause the print and ask the user to upgrade the firmware.
-          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
-      } else {
-          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
-      }
-      break;
-/*    case 117: // M117 display message
-      starpos = (strchr(strchr_pointer + 5,'*'));
-      if(starpos!=NULL)
-        *(starpos)='\0';
-      lcd_setstatus(strchr_pointer + 5);
-      break;*/
-    case 114: // M114
-      SERIAL_PROTOCOLPGM("X:");
-      SERIAL_PROTOCOL(current_position[X_AXIS]);
-      SERIAL_PROTOCOLPGM(" Y:");
-      SERIAL_PROTOCOL(current_position[Y_AXIS]);
-      SERIAL_PROTOCOLPGM(" Z:");
-      SERIAL_PROTOCOL(current_position[Z_AXIS]);
-      SERIAL_PROTOCOLPGM(" E:");
-      SERIAL_PROTOCOL(current_position[E_AXIS]);
-
-      SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
-      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
-      SERIAL_PROTOCOLPGM(" Y:");
-      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
-      SERIAL_PROTOCOLPGM(" Z:");
-      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
-      SERIAL_PROTOCOLPGM(" E:");
-      SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
-
-      SERIAL_PROTOCOLLN("");
-      break;
-    case 120: // M120
-      enable_endstops(false) ;
-      break;
-    case 121: // M121
-      enable_endstops(true) ;
-      break;
-    case 119: // M119
-    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
-    SERIAL_PROTOCOLLN("");
-      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_X_MIN);
-        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_X_MAX);
-        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
-        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
-        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
-        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
-        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      break;
-      //TODO: update for all axis, use for loop
-    #ifdef BLINKM
-    case 150: // M150
-      {
-        byte red;
-        byte grn;
-        byte blu;
-
-        if(code_seen('R')) red = code_value();
-        if(code_seen('U')) grn = code_value();
-        if(code_seen('B')) blu = code_value();
-
-        SendColors(red,grn,blu);
-      }
-      break;
-    #endif //BLINKM
-    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
-      {
-
-        tmp_extruder = active_extruder;
-        if(code_seen('T')) {
-          tmp_extruder = code_value();
-		  if(tmp_extruder >= EXTRUDERS) {
-            SERIAL_ECHO_START;
-            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
-            break;
-          }
-        }
-
-        float area = .0;
-        if(code_seen('D')) {
-		  float diameter = (float)code_value();
-		  if (diameter == 0.0) {
-			// setting any extruder filament size disables volumetric on the assumption that
-			// slicers either generate in extruder values as cubic mm or as as filament feeds
-			// for all extruders
-		    volumetric_enabled = false;
-		  } else {
-            filament_size[tmp_extruder] = (float)code_value();
-			// make sure all extruders have some sane value for the filament size
-			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
-            #if EXTRUDERS > 1
-			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
-            #if EXTRUDERS > 2
-			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
-            #endif
-            #endif
-			volumetric_enabled = true;
-		  }
-        } else {
-          //reserved for setting filament diameter via UFID or filament measuring device
-          break;
-        }
-		calculate_volumetric_multipliers();
-      }
-      break;
-    case 201: // M201
-      for(int8_t i=0; i < NUM_AXIS; i++)
-      {
-        if(code_seen(axis_codes[i]))
-        {
-          max_acceleration_units_per_sq_second[i] = code_value();
-        }
-      }
-      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
-      reset_acceleration_rates();
-      break;
-    #if 0 // Not used for Sprinter/grbl gen6
-    case 202: // M202
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
-      }
-      break;
-    #endif
-    case 203: // M203 max feedrate mm/sec
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
-      }
-      break;
-    case 204: // M204 acclereration S normal moves T filmanent only moves
-      {
-        if(code_seen('S')) acceleration = code_value() ;
-        if(code_seen('T')) retract_acceleration = code_value() ;
-      }
-      break;
-    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-    {
-      if(code_seen('S')) minimumfeedrate = code_value();
-      if(code_seen('T')) mintravelfeedrate = code_value();
-      if(code_seen('B')) minsegmenttime = code_value() ;
-      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
-      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
-      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
-      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
-    }
-    break;
-    case 206: // M206 additional homing offset
-      for(int8_t i=0; i < 3; i++)
-      {
-        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
-      }
-      break;
-    #ifdef FWRETRACT
-    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
-    {
-      if(code_seen('S'))
-      {
-        retract_length = code_value() ;
-      }
-      if(code_seen('F'))
-      {
-        retract_feedrate = code_value()/60 ;
-      }
-      if(code_seen('Z'))
-      {
-        retract_zlift = code_value() ;
-      }
-    }break;
-    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
-    {
-      if(code_seen('S'))
-      {
-        retract_recover_length = code_value() ;
-      }
-      if(code_seen('F'))
-      {
-        retract_recover_feedrate = code_value()/60 ;
-      }
-    }break;
-    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
-    {
-      if(code_seen('S'))
-      {
-        int t= code_value() ;
-        switch(t)
-        {
-          case 0: 
-          {
-            autoretract_enabled=false;
-            retracted[0]=false;
-            #if EXTRUDERS > 1
-              retracted[1]=false;
-            #endif
-            #if EXTRUDERS > 2
-              retracted[2]=false;
-            #endif
-          }break;
-          case 1: 
-          {
-            autoretract_enabled=true;
-            retracted[0]=false;
-            #if EXTRUDERS > 1
-              retracted[1]=false;
-            #endif
-            #if EXTRUDERS > 2
-              retracted[2]=false;
-            #endif
-          }break;
-          default:
-            SERIAL_ECHO_START;
-            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
-            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
-            SERIAL_ECHOLNPGM("\"(1)");
-        }
-      }
-
-    }break;
-    #endif // FWRETRACT
-    #if EXTRUDERS > 1
-    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
-    {
-      if(setTargetedHotend(218)){
-        break;
-      }
-      if(code_seen('X'))
-      {
-        extruder_offset[X_AXIS][tmp_extruder] = code_value();
-      }
-      if(code_seen('Y'))
-      {
-        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
-      }
-      SERIAL_ECHO_START;
-      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
-      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
-      {
-         SERIAL_ECHO(" ");
-         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
-         SERIAL_ECHO(",");
-         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
-      }
-      SERIAL_ECHOLN("");
-    }break;
-    #endif
-    case 220: // M220 S<factor in percent>- set speed factor override percentage
-    {
-      if(code_seen('S'))
-      {
-        feedmultiply = code_value() ;
-      }
-    }
-    break;
-    case 221: // M221 S<factor in percent>- set extrude factor override percentage
-    {
-      if(code_seen('S'))
-      {
-        int tmp_code = code_value();
-        if (code_seen('T'))
-        {
-          if(setTargetedHotend(221)){
-            break;
-          }
-          extruder_multiply[tmp_extruder] = tmp_code;
-        }
-        else
-        {
-          extrudemultiply = tmp_code ;
-        }
-      }
-    }
-    break;
-
-	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
-	{
-      if(code_seen('P')){
-        int pin_number = code_value(); // pin number
-        int pin_state = -1; // required pin state - default is inverted
-
-        if(code_seen('S')) pin_state = code_value(); // required pin state
-
-        if(pin_state >= -1 && pin_state <= 1){
-
-          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
-          {
-            if (sensitive_pins[i] == pin_number)
-            {
-              pin_number = -1;
-              break;
-            }
-          }
-
-          if (pin_number > -1)
-          {
-            int target = LOW;
-
-            st_synchronize();
-
-            pinMode(pin_number, INPUT);
-
-            switch(pin_state){
-            case 1:
-              target = HIGH;
-              break;
-
-            case 0:
-              target = LOW;
-              break;
-
-            case -1:
-              target = !digitalRead(pin_number);
-              break;
-            }
-
-            while(digitalRead(pin_number) != target){
-              manage_heater();
-              manage_inactivity();
-              lcd_update();
-            }
-          }
-        }
-      }
-    }
-    break;
-
-    #if NUM_SERVOS > 0
-    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
-      {
-        int servo_index = -1;
-        int servo_position = 0;
-        if (code_seen('P'))
-          servo_index = code_value();
-        if (code_seen('S')) {
-          servo_position = code_value();
-          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
-		      servos[servo_index].attach(0);
-#endif
-            servos[servo_index].write(servo_position);
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
-              delay(PROBE_SERVO_DEACTIVATION_DELAY);
-              servos[servo_index].detach();
-#endif
-          }
-          else {
-            SERIAL_ECHO_START;
-            SERIAL_ECHO("Servo ");
-            SERIAL_ECHO(servo_index);
-            SERIAL_ECHOLN(" out of range");
-          }
-        }
-        else if (servo_index >= 0) {
-          SERIAL_PROTOCOL(MSG_OK);
-          SERIAL_PROTOCOL(" Servo ");
-          SERIAL_PROTOCOL(servo_index);
-          SERIAL_PROTOCOL(": ");
-          SERIAL_PROTOCOL(servos[servo_index].read());
-          SERIAL_PROTOCOLLN("");
-        }
-      }
-      break;
-    #endif // NUM_SERVOS > 0
-
-    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
-    case 300: // M300
-    {
-      int beepS = code_seen('S') ? code_value() : 110;
-      int beepP = code_seen('P') ? code_value() : 1000;
-      if (beepS > 0)
-      {
-        #if BEEPER > 0
-          tone(BEEPER, beepS);
-          delay(beepP);
-          noTone(BEEPER);
-        #elif defined(ULTRALCD)
-		  lcd_buzz(beepS, beepP);
-		#elif defined(LCD_USE_I2C_BUZZER)
-		  lcd_buzz(beepP, beepS);
-        #endif
-      }
-      else
-      {
-        delay(beepP);
-      }
-    }
-    break;
-    #endif // M300
-
-    #ifdef PIDTEMP
-    case 301: // M301
-      {
-        if(code_seen('P')) Kp = code_value();
-        if(code_seen('I')) Ki = scalePID_i(code_value());
-        if(code_seen('D')) Kd = scalePID_d(code_value());
-
-        #ifdef PID_ADD_EXTRUSION_RATE
-        if(code_seen('C')) Kc = code_value();
-        #endif
-
-        updatePID();
-        SERIAL_PROTOCOLRPGM(MSG_OK);
-        SERIAL_PROTOCOL(" p:");
-        SERIAL_PROTOCOL(Kp);
-        SERIAL_PROTOCOL(" i:");
-        SERIAL_PROTOCOL(unscalePID_i(Ki));
-        SERIAL_PROTOCOL(" d:");
-        SERIAL_PROTOCOL(unscalePID_d(Kd));
-        #ifdef PID_ADD_EXTRUSION_RATE
-        SERIAL_PROTOCOL(" c:");
-        //Kc does not have scaling applied above, or in resetting defaults
-        SERIAL_PROTOCOL(Kc);
-        #endif
-        SERIAL_PROTOCOLLN("");
-      }
-      break;
-    #endif //PIDTEMP
-    #ifdef PIDTEMPBED
-    case 304: // M304
-      {
-        if(code_seen('P')) bedKp = code_value();
-        if(code_seen('I')) bedKi = scalePID_i(code_value());
-        if(code_seen('D')) bedKd = scalePID_d(code_value());
-
-        updatePID();
-       	SERIAL_PROTOCOLRPGM(MSG_OK);
-        SERIAL_PROTOCOL(" p:");
-        SERIAL_PROTOCOL(bedKp);
-        SERIAL_PROTOCOL(" i:");
-        SERIAL_PROTOCOL(unscalePID_i(bedKi));
-        SERIAL_PROTOCOL(" d:");
-        SERIAL_PROTOCOL(unscalePID_d(bedKd));
-        SERIAL_PROTOCOLLN("");
-      }
-      break;
-    #endif //PIDTEMP
-    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
-     {
-     	#ifdef CHDK
-       
-         SET_OUTPUT(CHDK);
-         WRITE(CHDK, HIGH);
-         chdkHigh = millis();
-         chdkActive = true;
-       
-       #else
-     	
-      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
-	const uint8_t NUM_PULSES=16;
-	const float PULSE_LENGTH=0.01524;
-	for(int i=0; i < NUM_PULSES; i++) {
-        WRITE(PHOTOGRAPH_PIN, HIGH);
-        _delay_ms(PULSE_LENGTH);
-        WRITE(PHOTOGRAPH_PIN, LOW);
-        _delay_ms(PULSE_LENGTH);
-        }
-        delay(7.33);
-        for(int i=0; i < NUM_PULSES; i++) {
-        WRITE(PHOTOGRAPH_PIN, HIGH);
-        _delay_ms(PULSE_LENGTH);
-        WRITE(PHOTOGRAPH_PIN, LOW);
-        _delay_ms(PULSE_LENGTH);
-        }
-      	#endif
-      #endif //chdk end if
-     }
-    break;
-#ifdef DOGLCD
-    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
-     {
-	  if (code_seen('C')) {
-	   lcd_setcontrast( ((int)code_value())&63 );
-          }
-          SERIAL_PROTOCOLPGM("lcd contrast value: ");
-          SERIAL_PROTOCOL(lcd_contrast);
-          SERIAL_PROTOCOLLN("");
-     }
-    break;
-#endif
-    #ifdef PREVENT_DANGEROUS_EXTRUDE
-    case 302: // allow cold extrudes, or set the minimum extrude temperature
-    {
-	  float temp = .0;
-	  if (code_seen('S')) temp=code_value();
-      set_extrude_min_temp(temp);
-    }
-    break;
-	#endif
-    case 303: // M303 PID autotune
-    {
-      float temp = 150.0;
-      int e=0;
-      int c=5;
-      if (code_seen('E')) e=code_value();
-        if (e<0)
-          temp=70;
-      if (code_seen('S')) temp=code_value();
-      if (code_seen('C')) c=code_value();
-      PID_autotune(temp, e, c);
-    }
-    break;
-    case 400: // M400 finish all moves
-    {
-      st_synchronize();
-    }
-    break;
-
-#ifdef FILAMENT_SENSOR
-case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
-    {
-    #if (FILWIDTH_PIN > -1) 
-    if(code_seen('N')) filament_width_nominal=code_value();
-    else{
-    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
-    SERIAL_PROTOCOLLN(filament_width_nominal); 
-    }
-    #endif
-    }
-    break; 
-    
-    case 405:  //M405 Turn on filament sensor for control 
-    {
-    
-    
-    if(code_seen('D')) meas_delay_cm=code_value();
-       
-       if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
-       	meas_delay_cm = MAX_MEASUREMENT_DELAY;
-    
-       if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
-    	   {
-    	   int temp_ratio = widthFil_to_size_ratio(); 
-       	    
-       	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
-       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
-       	        }
-       	    delay_index1=0;
-       	    delay_index2=0;	
-    	   }
-    
-    filament_sensor = true ; 
-    
-    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
-    //SERIAL_PROTOCOL(filament_width_meas); 
-    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
-    //SERIAL_PROTOCOL(extrudemultiply); 
-    } 
-    break; 
-    
-    case 406:  //M406 Turn off filament sensor for control 
-    {      
-    filament_sensor = false ; 
-    } 
-    break; 
-  
-    case 407:   //M407 Display measured filament diameter 
-    { 
-     
-    
-    
-    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
-    SERIAL_PROTOCOLLN(filament_width_meas);   
-    } 
-    break; 
-    #endif
-    
-
-
-
-
-    case 500: // M500 Store settings in EEPROM
-    {
-        Config_StoreSettings(EEPROM_OFFSET);
-    }
-    break;
-    case 501: // M501 Read settings from EEPROM
-    {
-        Config_RetrieveSettings(EEPROM_OFFSET);
-    }
-    break;
-    case 502: // M502 Revert to default settings
-    {
-        Config_ResetDefault();
-    }
-    break;
-    case 503: // M503 print settings currently in memory
-    {
-        Config_PrintSettings();
-    }
-    break;
-    case 509: //M509 Force language selection
-    {
-        lcd_force_language_selection();
-        SERIAL_ECHO_START;
-        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
-    }
-    break;
-    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
-    case 540:
-    {
-        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
-    }
-    break;
-    #endif
-
-    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
-    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
-    {
-      float value;
-      if (code_seen('Z'))
-      {
-        value = code_value();
-        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
-        {
-          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
-          SERIAL_PROTOCOLLN("");
-        }
-        else
-        {
-          SERIAL_ECHO_START;
-          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
-          SERIAL_ECHORPGM(MSG_Z_MIN);
-          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
-          SERIAL_ECHORPGM(MSG_Z_MAX);
-          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
-          SERIAL_PROTOCOLLN("");
-        }
-      }
-      else
-      {
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
-          SERIAL_ECHO(-zprobe_zoffset);
-          SERIAL_PROTOCOLLN("");
-      }
-      break;
-    }
-    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
-
-    #ifdef FILAMENTCHANGEENABLE
-    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
-    {
-		MYSERIAL.println("!!!!M600!!!!");
-
-		st_synchronize();
-		float target[4];
-		float lastpos[4];
-
-        if (farm_mode)
-            
-        {
-            
-            prusa_statistics(22);
-            
-        }
-        
-        feedmultiplyBckp=feedmultiply;
-        int8_t TooLowZ = 0;
-
-        target[X_AXIS]=current_position[X_AXIS];
-        target[Y_AXIS]=current_position[Y_AXIS];
-        target[Z_AXIS]=current_position[Z_AXIS];
-        target[E_AXIS]=current_position[E_AXIS];
-        lastpos[X_AXIS]=current_position[X_AXIS];
-        lastpos[Y_AXIS]=current_position[Y_AXIS];
-        lastpos[Z_AXIS]=current_position[Z_AXIS];
-        lastpos[E_AXIS]=current_position[E_AXIS];
-
-        //Restract extruder
-        if(code_seen('E'))
-        {
-          target[E_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_FIRSTRETRACT
-            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
-          #endif
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-
-        //Lift Z
-        if(code_seen('Z'))
-        {
-          target[Z_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_ZADD
-            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
-            if(target[Z_AXIS] < 10){
-              target[Z_AXIS]+= 10 ;
-              TooLowZ = 1;
-            }else{
-              TooLowZ = 0;
-            }
-          #endif
-     
-          
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-
-        //Move XY to side
-        if(code_seen('X'))
-        {
-          target[X_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_XPOS
-            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
-          #endif
-        }
-        if(code_seen('Y'))
-        {
-          target[Y_AXIS]= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_YPOS
-            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
-          #endif
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
-		st_synchronize();
-		custom_message = true;
-		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
-
-        // Unload filament
-        if(code_seen('L'))
-        {
-          target[E_AXIS]+= code_value();
-        }
-        else
-        {
-			#ifdef SNMM
-
-			#else
-				#ifdef FILAMENTCHANGE_FINALRETRACT
-							target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
-				#endif
-			#endif // SNMM
-        }
-
-#ifdef SNMM
-		target[E_AXIS] += 12;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
-		target[E_AXIS] += 6;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
-		target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
-		st_synchronize();
-		target[E_AXIS] += (FIL_COOLING);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-		target[E_AXIS] += (FIL_COOLING*-1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-		target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-		st_synchronize();
-
-#else
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-#endif // SNMM
-		     
-
-        //finish moves
-        st_synchronize();
-        //disable extruder steppers so filament can be removed
-        disable_e0();
-        disable_e1();
-        disable_e2();
-        delay(100);
-        
-        //Wait for user to insert filament
-        uint8_t cnt=0;
-        int counterBeep = 0;
-        lcd_wait_interact();
-		load_filament_time = millis();
-        while(!lcd_clicked()){
-
-		  cnt++;
-          manage_heater();
-          manage_inactivity(true);
-
-/*#ifdef SNMM
-		  target[E_AXIS] += 0.002;
-		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-
-#endif // SNMM*/
-
-          if(cnt==0)
-          {
-          #if BEEPER > 0
-            if (counterBeep== 500){
-              counterBeep = 0;  
-            }
-            SET_OUTPUT(BEEPER);
-            if (counterBeep== 0){
-              WRITE(BEEPER,HIGH);
-            }			
-            if (counterBeep== 20){
-              WRITE(BEEPER,LOW);
-            }
-            counterBeep++;
-          #else
-			   #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
-              lcd_buzz(1000/6,100);
-			   #else
-			     lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
-			   #endif
-          #endif
-          }
-
-        }
-#ifdef SNMM
-		display_loading();
-		do {
-			target[E_AXIS] += 0.002;
-			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-			delay_keep_alive(2);
-		} while (!lcd_clicked());		
-		/*if (millis() - load_filament_time > 2) {
-			load_filament_time = millis();
-			target[E_AXIS] += 0.001;
-			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
-		}*/
-#endif
-        //Filament inserted
-        
-        WRITE(BEEPER,LOW);
-
-		//Feed the filament to the end of nozzle quickly        
-#ifdef SNMM
-		
-		st_synchronize();
-		target[E_AXIS] += bowden_length[snmm_extruder];
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
-		target[E_AXIS] += 40;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-		target[E_AXIS] += 10;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-#else
-		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
-#endif // SNMM
-        
-        //Extrude some filament
-        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
-        
- 
-
-        
-        //Wait for user to check the state
-        lcd_change_fil_state = 0;
-        lcd_loading_filament();
-        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
-          lcd_change_fil_state = 0;
-          lcd_alright();
-          switch(lcd_change_fil_state){
-            
-             // Filament failed to load so load it again
-             case 2:
-#ifdef SNMM
-				 display_loading();
-				 do {
-					 target[E_AXIS] += 0.002;
-					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-					 delay_keep_alive(2);
-				 } while (!lcd_clicked());
-
-				 st_synchronize();
-				 target[E_AXIS] += bowden_length[snmm_extruder];
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
-				 target[E_AXIS] += 40;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-				 target[E_AXIS] += 10;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-
-#else
-                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
-#endif                
-                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
-
-                     lcd_loading_filament();
-
-                     break;
-
-             // Filament loaded properly but color is not clear
-             case 3:
-                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                     lcd_loading_color();
-                     break;
-                 
-             // Everything good             
-             default:
-                     lcd_change_success();
-					 lcd_update_enable(true);
-                     break;
-          }
-          
-        }
-        
-
-      //Not let's go back to print
-
-      //Feed a little of filament to stabilize pressure
-      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
-      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
-        
-      //Retract
-      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
-      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-        
-
-        
-      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
-      
-      //Move XY back
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
-      
-      //Move Z back
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-        
-        
-      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-        
-      //Unretract       
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-        
-      //Set E position to original  
-      plan_set_e_position(lastpos[E_AXIS]);
-       
-      //Recover feed rate 
-      feedmultiply=feedmultiplyBckp;
-      char cmd[9];
-      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
-      enquecommand(cmd);
-      
-	  lcd_setstatuspgm(WELCOME_MSG);
-	  custom_message = false;
-	  custom_message_type = 0;
-#ifdef PAT9125
-	  if (fsensor_M600)
-	  {
-		cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
-		st_synchronize();
-		while (!is_buffer_empty())
-		{
-			process_commands();
-		    cmdqueue_pop_front();
-		}
-		fsensor_enable();
-		fsensor_restore_print_and_continue();
-	  }
-#endif //PAT9125
-        
-    }
-    break;
-    #endif //FILAMENTCHANGEENABLE
-	case 601: {
-		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
-	}
-	break;
-
-	case 602: {
-		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
-	}
-	break;
-            
-#ifdef LIN_ADVANCE
-    case 900: // M900: Set LIN_ADVANCE options.
-        gcode_M900();
-    break;
-#endif
-
-    case 907: // M907 Set digital trimpot motor current using axis codes.
-    {
-      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
-        if(code_seen('B')) digipot_current(4,code_value());
-        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_XY_PIN
-        if(code_seen('X')) digipot_current(0, code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_Z_PIN
-        if(code_seen('Z')) digipot_current(1, code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_E_PIN
-        if(code_seen('E')) digipot_current(2, code_value());
-      #endif
-      #ifdef DIGIPOT_I2C
-        // this one uses actual amps in floating point
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
-        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
-        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
-      #endif
-    }
-    break;
-    case 908: // M908 Control digital trimpot directly.
-    {
-      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-        uint8_t channel,current;
-        if(code_seen('P')) channel=code_value();
-        if(code_seen('S')) current=code_value();
-        digitalPotWrite(channel, current);
-      #endif
-    }
-    break;
-
-	case 910: // M910 TMC2130 init
-    {
-		tmc2130_init();
-    }
-    break;
-
-	case 911: // M911 Set TMC2130 holding currents
-    {
-		if (code_seen('X')) tmc2130_set_current_h(0, code_value());
-		if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
-        if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
-        if (code_seen('E')) tmc2130_set_current_h(3, code_value());
-    }
-    break;
-
-	case 912: // M912 Set TMC2130 running currents
-    {
-		if (code_seen('X')) tmc2130_set_current_r(0, code_value());
-		if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
-        if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
-        if (code_seen('E')) tmc2130_set_current_r(3, code_value());
-    }
-    break;
-
-	case 913: // M913 Print TMC2130 currents
-    {
-		tmc2130_print_currents();
-    }
-    break;
-
-	case 914: // M914 Set normal mode
-    {
-		tmc2130_mode = TMC2130_MODE_NORMAL;
-		tmc2130_init();
-    }
-    break;
-
-	case 915: // M915 Set silent mode
-    {
-		tmc2130_mode = TMC2130_MODE_SILENT;
-		tmc2130_init();
-    }
-    break;
-
-	case 916: // M916 Set sg_thrs
-    {
-		if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
-		if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
-		if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
-		if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
-		MYSERIAL.print("tmc2130_sg_thr[X]=");
-		MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
-		MYSERIAL.print("tmc2130_sg_thr[Y]=");
-		MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
-		MYSERIAL.print("tmc2130_sg_thr[Z]=");
-		MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
-		MYSERIAL.print("tmc2130_sg_thr[E]=");
-		MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
-    }
-    break;
-
-	case 917: // M917 Set TMC2130 pwm_ampl
-    {
-		if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
-		if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
-        if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
-        if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
-    }
-    break;
-
-	case 918: // M918 Set TMC2130 pwm_grad
-    {
-		if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
-		if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
-        if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
-        if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
-    }
-    break;
-
-    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
-    {
-      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
-        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
-        if(code_seen('B')) microstep_mode(4,code_value());
-        microstep_readings();
-      #endif
-    }
-    break;
-    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
-    {
-      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
-      if(code_seen('S')) switch((int)code_value())
-      {
-        case 1:
-          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
-          if(code_seen('B')) microstep_ms(4,code_value(),-1);
-          break;
-        case 2:
-          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
-          if(code_seen('B')) microstep_ms(4,-1,code_value());
-          break;
-      }
-      microstep_readings();
-      #endif
-    }
-    break;
-	case 701: //M701: load filament
-	{
-		enable_z();
-		custom_message = true;
-		custom_message_type = 2;
-		
-		lcd_setstatuspgm(MSG_LOADING_FILAMENT);
-		current_position[E_AXIS] += 70;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
-
-		current_position[E_AXIS] += 25;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
-		st_synchronize();
-
-		if (!farm_mode && loading_flag) {
-			bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
-
-			while (!clean) {
-				lcd_update_enable(true);
-				lcd_update(2);
-				current_position[E_AXIS] += 25;
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
-				st_synchronize();
-				clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
-			}
-		}
-		lcd_update_enable(true);
-		lcd_update(2);
-		lcd_setstatuspgm(WELCOME_MSG);
-		disable_z();
-		loading_flag = false;
-		custom_message = false;
-		custom_message_type = 0;
-	}
-	break;
-	case 702:
-	{
-#ifdef SNMM
-		if (code_seen('U')) {
-			extr_unload_used(); //unload all filaments which were used in current print
-		}
-		else if (code_seen('C')) {
-			extr_unload(); //unload just current filament 
-		}
-		else {
-			extr_unload_all(); //unload all filaments
-		}
-#else
-		custom_message = true;
-		custom_message_type = 2;
-		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); 
-		current_position[E_AXIS] -= 80;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
-		st_synchronize();
-		lcd_setstatuspgm(WELCOME_MSG);
-		custom_message = false;
-		custom_message_type = 0;
-#endif	
-	}
-	break;
-
-    case 999: // M999: Restart after being stopped
-      Stopped = false;
-      lcd_reset_alert_level();
-      gcode_LastN = Stopped_gcode_LastN;
-      FlushSerialRequestResend();
-    break;
-	default: SERIAL_ECHOLNPGM("Invalid M code.");
-    }
-	
-  } // end if(code_seen('M')) (end of M codes)
-
-  else if(code_seen('T'))
-  {
-	  int index;
-	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
-	   
-	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
-		  SERIAL_ECHOLNPGM("Invalid T code.");
-	  }
-	  else {
-		  if (*(strchr_pointer + index) == '?') {
-			  tmp_extruder = choose_extruder_menu();
-		  }
-		  else {
-			  tmp_extruder = code_value();
-		  }
-		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
-#ifdef SNMM
-          
-    #ifdef LIN_ADVANCE
-          if (snmm_extruder != tmp_extruder)
-            clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
-    #endif
-          
-		  snmm_extruder = tmp_extruder;
-
-		  st_synchronize();
-		  delay(100);
-
-		  disable_e0();
-		  disable_e1();
-		  disable_e2();
-
-		  pinMode(E_MUX0_PIN, OUTPUT);
-		  pinMode(E_MUX1_PIN, OUTPUT);
-		  pinMode(E_MUX2_PIN, OUTPUT);
-
-		  delay(100);
-		  SERIAL_ECHO_START;
-		  SERIAL_ECHO("T:");
-		  SERIAL_ECHOLN((int)tmp_extruder);
-		  switch (tmp_extruder) {
-		  case 1:
-			  WRITE(E_MUX0_PIN, HIGH);
-			  WRITE(E_MUX1_PIN, LOW);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  case 2:
-			  WRITE(E_MUX0_PIN, LOW);
-			  WRITE(E_MUX1_PIN, HIGH);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  case 3:
-			  WRITE(E_MUX0_PIN, HIGH);
-			  WRITE(E_MUX1_PIN, HIGH);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  default:
-			  WRITE(E_MUX0_PIN, LOW);
-			  WRITE(E_MUX1_PIN, LOW);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  }
-		  delay(100);
-
-#else
-		  if (tmp_extruder >= EXTRUDERS) {
-			  SERIAL_ECHO_START;
-			  SERIAL_ECHOPGM("T");
-			  SERIAL_PROTOCOLLN((int)tmp_extruder);
-			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
-		  }
-		  else {
-			  boolean make_move = false;
-			  if (code_seen('F')) {
-				  make_move = true;
-				  next_feedrate = code_value();
-				  if (next_feedrate > 0.0) {
-					  feedrate = next_feedrate;
-				  }
-			  }
-#if EXTRUDERS > 1
-			  if (tmp_extruder != active_extruder) {
-				  // Save current position to return to after applying extruder offset
-				  memcpy(destination, current_position, sizeof(destination));
-				  // Offset extruder (only by XY)
-				  int i;
-				  for (i = 0; i < 2; i++) {
-					  current_position[i] = current_position[i] -
-						  extruder_offset[i][active_extruder] +
-						  extruder_offset[i][tmp_extruder];
-				  }
-				  // Set the new active extruder and position
-				  active_extruder = tmp_extruder;
-				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-				  // Move to the old position if 'F' was in the parameters
-				  if (make_move && Stopped == false) {
-					  prepare_move();
-				  }
-			  }
-#endif
-			  SERIAL_ECHO_START;
-			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
-			  SERIAL_PROTOCOLLN((int)active_extruder);
-		  }
-
-#endif
-	  }
-  } // end if(code_seen('T')) (end of T codes)
-
-#ifdef DEBUG_DCODES
-  else if (code_seen('D')) // D codes (debug)
-  {
-    switch((int)code_value())
-    {
-	case 0: // D0 - Reset
-		dcode_0(); break;
-	case 1: // D1 - Clear EEPROM
-		dcode_1(); break;
-	case 2: // D2 - Read/Write RAM
-		dcode_2(); break;
-	case 3: // D3 - Read/Write EEPROM
-		dcode_3(); break;
-	case 4: // D4 - Read/Write PIN
-		dcode_4(); break;
-	case 9125: // D9125 - PAT9125
-		dcode_9125(); break;
-	case 5:
-		MYSERIAL.println("D5 - Test");
-		if (code_seen('P'))
-			selectedSerialPort = (int)code_value();
-		MYSERIAL.print("selectedSerialPort = ");
-		MYSERIAL.println(selectedSerialPort, DEC);
-		break;
-	case 10: // D10 - Tell the printer that XYZ calibration went OK
-        calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); 
-        break;
-    
-    case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
-        eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
-        eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
-        eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
-	case 999:
-	{
-		MYSERIAL.println("D999 - crash");
-
-/*		while (!is_buffer_empty())
-		{
-			process_commands();
-		    cmdqueue_pop_front();
-		}*/
-		st_synchronize();
-
-		lcd_update_enable(true);
-		lcd_implementation_clear();
-		lcd_update(2);
-        
-        // Increment crash counter
-        uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
-        crash_count++;
-        eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
-        
-#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
-        bool yesno = true;
-#else
-        bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
-#endif
-		lcd_update_enable(true);
-		lcd_update(2);
-		lcd_setstatuspgm(WELCOME_MSG);
-		if (yesno)
-		{
-			enquecommand_P(PSTR("G28 X"));
-			enquecommand_P(PSTR("G28 Y"));
-			enquecommand_P(PSTR("D1000"));
-		}
-		else
-		{
-			enquecommand_P(PSTR("D1001"));
-		}
-	}
-		break;
-	case 1000:
-		crashdet_restore_print_and_continue();
-		tmc2130_sg_stop_on_crash = true;
-		break;
-	case 1001:
-		card.sdprinting = false;
-		card.closefile();
-		tmc2130_sg_stop_on_crash = true;
-		break;
-/*	case 4:
-		{
-			MYSERIAL.println("D4 - Test");
-			uint8_t data[16];
-			int cnt = parse_hex(strchr_pointer + 2, data, 16);
-			MYSERIAL.println(cnt, DEC);
-			for (int i = 0; i < cnt; i++)
-			{
-				serial_print_hex_byte(data[i]);
-				MYSERIAL.write(' ');
-			}
-			MYSERIAL.write('\n');
-		}
-		break;
-/*	case 3:
-		if (code_seen('L')) // lcd pwm (0-255)
-		{
-			lcdSoftPwm = (int)code_value();
-		}
-		if (code_seen('B')) // lcd blink delay (0-255)
-		{
-			lcdBlinkDelay = (int)code_value();
-		}
-//		calibrate_z_auto();
-/*		MYSERIAL.print("fsensor_enable()");
-#ifdef PAT9125
-		fsensor_enable();
-#endif*/
-		break;
-//	case 4:
-//			lcdBlinkDelay = 10;
-/*		MYSERIAL.print("fsensor_disable()");
-#ifdef PAT9125
-		fsensor_disable();
-#endif            
-		break;*/
-//		break;
-/*	case 5:
-		{
-			MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
-			int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
-			MYSERIAL.println(val);
-			homeaxis(0);
-		}
-		break;*/
-	case 6:
-		{
-/*			MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
-			int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
-			MYSERIAL.println(val);*/
-			homeaxis(1);
-		}
-		break;
-	case 7:
-		{
-			MYSERIAL.print("pat9125_init=");
-			MYSERIAL.println(pat9125_init(200, 200));
-		}
-		break;
-	case 8:
-		{
-			MYSERIAL.print("swi2c_check=");
-			MYSERIAL.println(swi2c_check(0x75));
-		}
-		break;
-	}
-  }
-#endif //DEBUG_DCODES
-
-  else
-  {
-    SERIAL_ECHO_START;
-    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
-    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
-    SERIAL_ECHOLNPGM("\"(2)");
-  }
-
-  ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
-  //char cmdbuffer[bufindr][100]="Resend:";
-  MYSERIAL.flush();
-  SERIAL_PROTOCOLRPGM(MSG_RESEND);
-  SERIAL_PROTOCOLLN(gcode_LastN + 1);
-  ClearToSend();
-}
-
-// Confirm the execution of a command, if sent from a serial line.
-// Execution of a command from a SD card will not be confirmed.
-void ClearToSend()
-{
-    previous_millis_cmd = millis();
-    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
-        SERIAL_PROTOCOLLNRPGM(MSG_OK);
-}
-
-void get_coordinates()
-{
-  bool seen[4]={false,false,false,false};
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    if(code_seen(axis_codes[i]))
-    {
-      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
-      seen[i]=true;
-    }
-    else destination[i] = current_position[i]; //Are these else lines really needed?
-  }
-  if(code_seen('F')) {
-    next_feedrate = code_value();
-#ifdef MAX_SILENT_FEEDRATE
-	if (tmc2130_mode == TMC2130_MODE_SILENT)
-		if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
-#endif //MAX_SILENT_FEEDRATE
-    if(next_feedrate > 0.0) feedrate = next_feedrate;
-  }
-}
-
-void get_arc_coordinates()
-{
-#ifdef SF_ARC_FIX
-   bool relative_mode_backup = relative_mode;
-   relative_mode = true;
-#endif
-   get_coordinates();
-#ifdef SF_ARC_FIX
-   relative_mode=relative_mode_backup;
-#endif
-
-   if(code_seen('I')) {
-     offset[0] = code_value();
-   }
-   else {
-     offset[0] = 0.0;
-   }
-   if(code_seen('J')) {
-     offset[1] = code_value();
-   }
-   else {
-     offset[1] = 0.0;
-   }
-}
-
-void clamp_to_software_endstops(float target[3])
-{
-#ifdef DEBUG_DISABLE_SWLIMITS
-	return;
-#endif //DEBUG_DISABLE_SWLIMITS
-    world2machine_clamp(target[0], target[1]);
-
-    // Clamp the Z coordinate.
-    if (min_software_endstops) {
-        float negative_z_offset = 0;
-        #ifdef ENABLE_AUTO_BED_LEVELING
-            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
-            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
-        #endif
-        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
-    }
-    if (max_software_endstops) {
-        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
-    }
-}
-
-#ifdef MESH_BED_LEVELING
-    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
-        float dx = x - current_position[X_AXIS];
-        float dy = y - current_position[Y_AXIS];
-        float dz = z - current_position[Z_AXIS];
-        int n_segments = 0;
-		
-        if (mbl.active) {
-            float len = abs(dx) + abs(dy);
-            if (len > 0)
-                // Split to 3cm segments or shorter.
-                n_segments = int(ceil(len / 30.f));
-        }
-        
-        if (n_segments > 1) {
-            float de = e - current_position[E_AXIS];
-            for (int i = 1; i < n_segments; ++ i) {
-                float t = float(i) / float(n_segments);
-                plan_buffer_line(
-                                 current_position[X_AXIS] + t * dx,
-                                 current_position[Y_AXIS] + t * dy,
-                                 current_position[Z_AXIS] + t * dz,
-                                 current_position[E_AXIS] + t * de,
-                                 feed_rate, extruder);
-            }
-        }
-        // The rest of the path.
-        plan_buffer_line(x, y, z, e, feed_rate, extruder);
-        current_position[X_AXIS] = x;
-        current_position[Y_AXIS] = y;
-        current_position[Z_AXIS] = z;
-        current_position[E_AXIS] = e;
-    }
-#endif  // MESH_BED_LEVELING
-    
-void prepare_move()
-{
-  clamp_to_software_endstops(destination);
-  previous_millis_cmd = millis();
-
-  // Do not use feedmultiply for E or Z only moves
-  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
-      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-  }
-  else {
-#ifdef MESH_BED_LEVELING
-    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#else
-     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#endif
-  }
-
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    current_position[i] = destination[i];
-  }
-}
-
-void prepare_arc_move(char isclockwise) {
-  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
-
-  // Trace the arc
-  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
-
-  // As far as the parser is concerned, the position is now == target. In reality the
-  // motion control system might still be processing the action and the real tool position
-  // in any intermediate location.
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    current_position[i] = destination[i];
-  }
-  previous_millis_cmd = millis();
-}
-
-#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-
-#if defined(FAN_PIN)
-  #if CONTROLLERFAN_PIN == FAN_PIN
-    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
-  #endif
-#endif
-
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
-unsigned long lastMotorCheck = 0;
-
-void controllerFan()
-{
-  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
-  {
-    lastMotorCheck = millis();
-
-    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
-    #if EXTRUDERS > 2
-       || !READ(E2_ENABLE_PIN)
-    #endif
-    #if EXTRUDER > 1
-      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
-       || !READ(X2_ENABLE_PIN)
-      #endif
-       || !READ(E1_ENABLE_PIN)
-    #endif
-       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
-    {
-      lastMotor = millis(); //... set time to NOW so the fan will turn on
-    }
-
-    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
-    {
-        digitalWrite(CONTROLLERFAN_PIN, 0);
-        analogWrite(CONTROLLERFAN_PIN, 0);
-    }
-    else
-    {
-        // allows digital or PWM fan output to be used (see M42 handling)
-        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
-        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
-    }
-  }
-}
-#endif
-
-#ifdef TEMP_STAT_LEDS
-static bool blue_led = false;
-static bool red_led = false;
-static uint32_t stat_update = 0;
-
-void handle_status_leds(void) {
-  float max_temp = 0.0;
-  if(millis() > stat_update) {
-    stat_update += 500; // Update every 0.5s
-    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-       max_temp = max(max_temp, degHotend(cur_extruder));
-       max_temp = max(max_temp, degTargetHotend(cur_extruder));
-    }
-    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-      max_temp = max(max_temp, degTargetBed());
-      max_temp = max(max_temp, degBed());
-    #endif
-    if((max_temp > 55.0) && (red_led == false)) {
-      digitalWrite(STAT_LED_RED, 1);
-      digitalWrite(STAT_LED_BLUE, 0);
-      red_led = true;
-      blue_led = false;
-    }
-    if((max_temp < 54.0) && (blue_led == false)) {
-      digitalWrite(STAT_LED_RED, 0);
-      digitalWrite(STAT_LED_BLUE, 1);
-      red_led = false;
-      blue_led = true;
-    }
-  }
-}
-#endif
-
-void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
-{
-	
-#if defined(KILL_PIN) && KILL_PIN > -1
-	static int killCount = 0;   // make the inactivity button a bit less responsive
-   const int KILL_DELAY = 10000;
-#endif
-	
-    if(buflen < (BUFSIZE-1)){
-        get_command();
-    }
-
-  if( (millis() - previous_millis_cmd) >  max_inactive_time )
-    if(max_inactive_time)
-      kill("", 4);
-  if(stepper_inactive_time)  {
-    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
-    {
-      if(blocks_queued() == false && ignore_stepper_queue == false) {
-        disable_x();
-//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
-        disable_y();
-        disable_z();
-        disable_e0();
-        disable_e1();
-        disable_e2();
-      }
-    }
-  }
-  
-  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
-    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
-    {
-      chdkActive = false;
-      WRITE(CHDK, LOW);
-    }
-  #endif
-  
-  #if defined(KILL_PIN) && KILL_PIN > -1
-    
-    // Check if the kill button was pressed and wait just in case it was an accidental
-    // key kill key press
-    // -------------------------------------------------------------------------------
-    if( 0 == READ(KILL_PIN) )
-    {
-       killCount++;
-    }
-    else if (killCount > 0)
-    {
-       killCount--;
-    }
-    // Exceeded threshold and we can confirm that it was not accidental
-    // KILL the machine
-    // ----------------------------------------------------------------
-    if ( killCount >= KILL_DELAY)
-    {
-       kill("", 5);
-    }
-  #endif
-    
-  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
-  #endif
-  #ifdef EXTRUDER_RUNOUT_PREVENT
-    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
-    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
-    {
-     bool oldstatus=READ(E0_ENABLE_PIN);
-     enable_e0();
-     float oldepos=current_position[E_AXIS];
-     float oldedes=destination[E_AXIS];
-     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
-                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
-                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
-     current_position[E_AXIS]=oldepos;
-     destination[E_AXIS]=oldedes;
-     plan_set_e_position(oldepos);
-     previous_millis_cmd=millis();
-     st_synchronize();
-     WRITE(E0_ENABLE_PIN,oldstatus);
-    }
-  #endif
-  #ifdef TEMP_STAT_LEDS
-      handle_status_leds();
-  #endif
-  check_axes_activity();
-}
-
-void kill(const char *full_screen_message, unsigned char id)
-{
-	SERIAL_ECHOPGM("KILL: ");
-	MYSERIAL.println(int(id));
-	//return;
-  cli(); // Stop interrupts
-  disable_heater();
-
-  disable_x();
-//  SERIAL_ECHOLNPGM("kill - disable Y");
-  disable_y();
-  disable_z();
-  disable_e0();
-  disable_e1();
-  disable_e2();
-
-#if defined(PS_ON_PIN) && PS_ON_PIN > -1
-  pinMode(PS_ON_PIN,INPUT);
-#endif
-  SERIAL_ERROR_START;
-  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
-  if (full_screen_message != NULL) {
-      SERIAL_ERRORLNRPGM(full_screen_message);
-      lcd_display_message_fullscreen_P(full_screen_message);
-  } else {
-      LCD_ALERTMESSAGERPGM(MSG_KILLED);
-  }
-
-  // FMC small patch to update the LCD before ending
-  sei();   // enable interrupts
-  for ( int i=5; i--; lcd_update())
-  {
-     delay(200);	
-  }
-  cli();   // disable interrupts
-  suicide();
-  while(1) { /* Intentionally left empty */ } // Wait for reset
-}
-
-void Stop()
-{
-  disable_heater();
-  if(Stopped == false) {
-    Stopped = true;
-    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
-    SERIAL_ERROR_START;
-    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
-    LCD_MESSAGERPGM(MSG_STOPPED);
-  }
-}
-
-bool IsStopped() { return Stopped; };
-
-#ifdef FAST_PWM_FAN
-void setPwmFrequency(uint8_t pin, int val)
-{
-  val &= 0x07;
-  switch(digitalPinToTimer(pin))
-  {
-
-    #if defined(TCCR0A)
-    case TIMER0A:
-    case TIMER0B:
-//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
-//         TCCR0B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR1A)
-    case TIMER1A:
-    case TIMER1B:
-//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-//         TCCR1B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR2)
-    case TIMER2:
-    case TIMER2:
-         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-         TCCR2 |= val;
-         break;
-    #endif
-
-    #if defined(TCCR2A)
-    case TIMER2A:
-    case TIMER2B:
-         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
-         TCCR2B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR3A)
-    case TIMER3A:
-    case TIMER3B:
-    case TIMER3C:
-         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
-         TCCR3B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR4A)
-    case TIMER4A:
-    case TIMER4B:
-    case TIMER4C:
-         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
-         TCCR4B |= val;
-         break;
-   #endif
-
-    #if defined(TCCR5A)
-    case TIMER5A:
-    case TIMER5B:
-    case TIMER5C:
-         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
-         TCCR5B |= val;
-         break;
-   #endif
-
-  }
-}
-#endif //FAST_PWM_FAN
-
-bool setTargetedHotend(int code){
-  tmp_extruder = active_extruder;
-  if(code_seen('T')) {
-    tmp_extruder = code_value();
-    if(tmp_extruder >= EXTRUDERS) {
-      SERIAL_ECHO_START;
-      switch(code){
-        case 104:
-          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
-          break;
-        case 105:
-          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
-          break;
-        case 109:
-          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
-          break;
-        case 218:
-          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
-          break;
-        case 221:
-          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
-          break;
-      }
-      SERIAL_PROTOCOLLN((int)tmp_extruder);
-      return true;
-    }
-  }
-  return false;
-}
-
-void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
-{
-	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
-	{
-		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
-		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
-	}
-
-	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
-	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
-
-	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
-	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
-
-	total_filament_used = 0;
-
-}
-
-float calculate_volumetric_multiplier(float diameter) {
-	float area = .0;
-	float radius = .0;
-
-	radius = diameter * .5;
-	if (! volumetric_enabled || radius == 0) {
-		area = 1;
-	}
-	else {
-		area = M_PI * pow(radius, 2);
-	}
-
-	return 1.0 / area;
-}
-
-void calculate_volumetric_multipliers() {
-	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
-#if EXTRUDERS > 1
-	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
-#if EXTRUDERS > 2
-	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
-#endif
-#endif
-}
-
-void delay_keep_alive(unsigned int ms)
-{
-    for (;;) {
-        manage_heater();
-        // Manage inactivity, but don't disable steppers on timeout.
-        manage_inactivity(true);
-        lcd_update();
-        if (ms == 0)
-            break;
-        else if (ms >= 50) {
-            delay(50);
-            ms -= 50;
-        } else {
-            delay(ms);
-            ms = 0;
-        }
-    }
-}
-
-void wait_for_heater(long codenum) {
-
-#ifdef TEMP_RESIDENCY_TIME
-	long residencyStart;
-	residencyStart = -1;
-	/* continue to loop until we have reached the target temp
-	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
-	while ((!cancel_heatup) && ((residencyStart == -1) ||
-		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
-#else
-	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
-#endif //TEMP_RESIDENCY_TIME
-		if ((millis() - codenum) > 1000UL)
-		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
-			if (!farm_mode) {
-				SERIAL_PROTOCOLPGM("T:");
-				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
-				SERIAL_PROTOCOLPGM(" E:");
-				SERIAL_PROTOCOL((int)tmp_extruder);
-
-#ifdef TEMP_RESIDENCY_TIME
-				SERIAL_PROTOCOLPGM(" W:");
-				if (residencyStart > -1)
-				{
-					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
-					SERIAL_PROTOCOLLN(codenum);
-				}
-				else
-				{
-					SERIAL_PROTOCOLLN("?");
-				}
-			}
-#else
-				SERIAL_PROTOCOLLN("");
-#endif
-				codenum = millis();
-		}
-			manage_heater();
-			manage_inactivity();
-			lcd_update();
-#ifdef TEMP_RESIDENCY_TIME
-			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
-			or when current temp falls outside the hysteresis after target temp was reached */
-			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
-				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
-				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
-			{
-				residencyStart = millis();
-			}
-#endif //TEMP_RESIDENCY_TIME
-	}
-}
-
-void check_babystep() {
-	int babystep_z;
-	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
-	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
-		babystep_z = 0; //if babystep value is out of min max range, set it to 0
-		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
-		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
-		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
-		lcd_update_enable(true);		
-	}	
-}
-#ifdef DIS
-void d_setup()
-{	
-	pinMode(D_DATACLOCK, INPUT_PULLUP);
-	pinMode(D_DATA, INPUT_PULLUP);
-	pinMode(D_REQUIRE, OUTPUT);
-	digitalWrite(D_REQUIRE, HIGH);
-}
-
-
-float d_ReadData()
-{
-	int digit[13];
-	String mergeOutput;
-	float output;
-
-	digitalWrite(D_REQUIRE, HIGH);
-	for (int i = 0; i<13; i++)
-	{
-		for (int j = 0; j < 4; j++)
-		{
-			while (digitalRead(D_DATACLOCK) == LOW) {}
-			while (digitalRead(D_DATACLOCK) == HIGH) {}
-			bitWrite(digit[i], j, digitalRead(D_DATA));
-		}
-	}
-
-	digitalWrite(D_REQUIRE, LOW);
-	mergeOutput = "";
-	output = 0;
-	for (int r = 5; r <= 10; r++) //Merge digits
-	{
-		mergeOutput += digit[r];
-	}
-	output = mergeOutput.toFloat();
-
-	if (digit[4] == 8) //Handle sign
-	{
-		output *= -1;
-	}
-
-	for (int i = digit[11]; i > 0; i--) //Handle floating point
-	{
-		output /= 10;
-	}
-
-	return output;
-
-}
-
-void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
-	int t1 = 0;
-	int t_delay = 0;
-	int digit[13];
-	int m;
-	char str[3];
-	//String mergeOutput;
-	char mergeOutput[15];
-	float output;
-
-	int mesh_point = 0; //index number of calibration point
-	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
-	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
-
-	float mesh_home_z_search = 4;
-	float row[x_points_num];
-	int ix = 0;
-	int iy = 0;
-
-	char* filename_wldsd = "wldsd.txt";
-	char data_wldsd[70];
-	char numb_wldsd[10];
-
-	d_setup();
-
-	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-		// We don't know where we are! HOME!
-		// Push the commands to the front of the message queue in the reverse order!
-		// There shall be always enough space reserved for these commands.
-		repeatcommand_front(); // repeat G80 with all its parameters
-		
-		enquecommand_front_P((PSTR("G28 W0")));
-		enquecommand_front_P((PSTR("G1 Z5")));
-		return;
-	}
-	bool custom_message_old = custom_message;
-	unsigned int custom_message_type_old = custom_message_type;
-	unsigned int custom_message_state_old = custom_message_state;
-	custom_message = true;
-	custom_message_type = 1;
-	custom_message_state = (x_points_num * y_points_num) + 10;
-	lcd_update(1);
-
-	mbl.reset();
-	babystep_undo();
-
-	card.openFile(filename_wldsd, false);
-
-	current_position[Z_AXIS] = mesh_home_z_search;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
-
-	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
-	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
-	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-
-	setup_for_endstop_move(false);
-
-	SERIAL_PROTOCOLPGM("Num X,Y: ");
-	SERIAL_PROTOCOL(x_points_num);
-	SERIAL_PROTOCOLPGM(",");
-	SERIAL_PROTOCOL(y_points_num);
-	SERIAL_PROTOCOLPGM("\nZ search height: ");
-	SERIAL_PROTOCOL(mesh_home_z_search);
-	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
-	SERIAL_PROTOCOL(x_dimension);
-	SERIAL_PROTOCOLPGM(",");
-	SERIAL_PROTOCOL(y_dimension);
-	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
-
-	while (mesh_point != x_points_num * y_points_num) {
-		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
-		iy = mesh_point / x_points_num;
-		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
-		float z0 = 0.f;
-		current_position[Z_AXIS] = mesh_home_z_search;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-		st_synchronize();
-
-
-		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
-		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
-
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
-		st_synchronize();
-
-		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
-			break;
-			card.closefile();
-		}
-
-
-		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
-		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
-		//strcat(data_wldsd, numb_wldsd);
-
-
-		
-		//MYSERIAL.println(data_wldsd);
-		//delay(1000);
-		//delay(3000);
-		//t1 = millis();
-		
-		//while (digitalRead(D_DATACLOCK) == LOW) {}
-		//while (digitalRead(D_DATACLOCK) == HIGH) {}
-		memset(digit, 0, sizeof(digit));
-		//cli();
-		digitalWrite(D_REQUIRE, LOW);	
-		
-		for (int i = 0; i<13; i++)
-		{
-			//t1 = millis();
-			for (int j = 0; j < 4; j++)
-			{
-				while (digitalRead(D_DATACLOCK) == LOW) {}				
-				while (digitalRead(D_DATACLOCK) == HIGH) {}
-				bitWrite(digit[i], j, digitalRead(D_DATA));
-			}
-			//t_delay = (millis() - t1);
-			//SERIAL_PROTOCOLPGM(" ");
-			//SERIAL_PROTOCOL_F(t_delay, 5);
-			//SERIAL_PROTOCOLPGM(" ");
-		}
-		//sei();
-		digitalWrite(D_REQUIRE, HIGH);
-		mergeOutput[0] = '\0';
-		output = 0;
-		for (int r = 5; r <= 10; r++) //Merge digits
-		{			
-			sprintf(str, "%d", digit[r]);
-			strcat(mergeOutput, str);
-		}
-		
-		output = atof(mergeOutput);
-
-		if (digit[4] == 8) //Handle sign
-		{
-			output *= -1;
-		}
-
-		for (int i = digit[11]; i > 0; i--) //Handle floating point
-		{
-			output *= 0.1;
-		}
-		
-
-		//output = d_ReadData();
-
-		//row[ix] = current_position[Z_AXIS];
-
-		memset(data_wldsd, 0, sizeof(data_wldsd));
-
-		for (int i = 0; i <3; i++) {
-			memset(numb_wldsd, 0, sizeof(numb_wldsd));
-			dtostrf(current_position[i], 8, 5, numb_wldsd);
-			strcat(data_wldsd, numb_wldsd);
-			strcat(data_wldsd, ";");
-
-		}
-		memset(numb_wldsd, 0, sizeof(numb_wldsd));
-		dtostrf(output, 8, 5, numb_wldsd);
-		strcat(data_wldsd, numb_wldsd);
-		//strcat(data_wldsd, ";");
-		card.write_command(data_wldsd);
-
-		
-		//row[ix] = d_ReadData();
-		
-		row[ix] = output; // current_position[Z_AXIS];
-
-		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
-			for (int i = 0; i < x_points_num; i++) {
-				SERIAL_PROTOCOLPGM(" ");
-				SERIAL_PROTOCOL_F(row[i], 5);
-
-
-			}
-			SERIAL_PROTOCOLPGM("\n");
-		}
-		custom_message_state--;
-		mesh_point++;
-		lcd_update(1);
-
-	}
-	card.closefile();
-
-}
-#endif
-
-void temp_compensation_start() {
-	
-	custom_message = true;
-	custom_message_type = 5;
-	custom_message_state = PINDA_HEAT_T + 1;
-	lcd_update(2);
-	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
-		current_position[E_AXIS] -= DEFAULT_RETRACTION;
-	}
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-	
-	current_position[X_AXIS] = PINDA_PREHEAT_X;
-	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-	st_synchronize();
-	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
-
-	for (int i = 0; i < PINDA_HEAT_T; i++) {
-		delay_keep_alive(1000);
-		custom_message_state = PINDA_HEAT_T - i;
-		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
-		else lcd_update(1);
-	}	
-	custom_message_type = 0;
-	custom_message_state = 0;
-	custom_message = false;
-}
-
-void temp_compensation_apply() {
-	int i_add;
-	int compensation_value;
-	int z_shift = 0;
-	float z_shift_mm;
-
-	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
-		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
-			i_add = (target_temperature_bed - 60) / 10;
-			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
-			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
-		}else {
-			//interpolation
-			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
-		}
-		SERIAL_PROTOCOLPGM("\n");
-		SERIAL_PROTOCOLPGM("Z shift applied:");
-		MYSERIAL.print(z_shift_mm);
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
-		st_synchronize();
-		plan_set_z_position(current_position[Z_AXIS]);
-	}
-	else {		
-		//we have no temp compensation data
-	}
-}
-
-float temp_comp_interpolation(float inp_temperature) {
-
-	//cubic spline interpolation
-
-	int n, i, j, k;
-	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
-	int shift[10];
-	int temp_C[10];
-
-	n = 6; //number of measured points
-
-	shift[0] = 0;
-	for (i = 0; i < n; i++) {
-		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
-		temp_C[i] = 50 + i * 10; //temperature in C
-#ifdef PINDA_THERMISTOR
-		temp_C[i] = 35 + i * 5; //temperature in C
-#else
-		temp_C[i] = 50 + i * 10; //temperature in C
-#endif
-		x[i] = (float)temp_C[i];
-		f[i] = (float)shift[i];
-	}
-	if (inp_temperature < x[0]) return 0;
-
-
-	for (i = n - 1; i>0; i--) {
-		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
-		h[i - 1] = x[i] - x[i - 1];
-	}
-	//*********** formation of h, s , f matrix **************
-	for (i = 1; i<n - 1; i++) {
-		m[i][i] = 2 * (h[i - 1] + h[i]);
-		if (i != 1) {
-			m[i][i - 1] = h[i - 1];
-			m[i - 1][i] = h[i - 1];
-		}
-		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
-	}
-	//*********** forward elimination **************
-	for (i = 1; i<n - 2; i++) {
-		temp = (m[i + 1][i] / m[i][i]);
-		for (j = 1; j <= n - 1; j++)
-			m[i + 1][j] -= temp*m[i][j];
-	}
-	//*********** backward substitution *********
-	for (i = n - 2; i>0; i--) {
-		sum = 0;
-		for (j = i; j <= n - 2; j++)
-			sum += m[i][j] * s[j];
-		s[i] = (m[i][n - 1] - sum) / m[i][i];
-	}
-
-		for (i = 0; i<n - 1; i++)
-			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
-				a = (s[i + 1] - s[i]) / (6 * h[i]);
-				b = s[i] / 2;
-				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
-				d = f[i];
-				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
-			}
-
-		return sum;
-
-}
-
-#ifdef PINDA_THERMISTOR
-float temp_compensation_pinda_thermistor_offset()
-{
-	if (!temp_cal_active) return 0;
-	if (!calibration_status_pinda()) return 0;
-	return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
-}
-#endif //PINDA_THERMISTOR
-
-void long_pause() //long pause print
-{
-	st_synchronize();
-	
-	//save currently set parameters to global variables
-	saved_feedmultiply = feedmultiply; 
-	HotendTempBckp = degTargetHotend(active_extruder);
-	fanSpeedBckp = fanSpeed;
-	start_pause_print = millis();
-		
-
-	//save position
-	pause_lastpos[X_AXIS] = current_position[X_AXIS];
-	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
-	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
-	pause_lastpos[E_AXIS] = current_position[E_AXIS];
-
-	//retract
-	current_position[E_AXIS] -= DEFAULT_RETRACTION;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-
-	//lift z
-	current_position[Z_AXIS] += Z_PAUSE_LIFT;
-	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
-
-	//set nozzle target temperature to 0
-	setTargetHotend(0, 0);
-	setTargetHotend(0, 1);
-	setTargetHotend(0, 2);
-
-	//Move XY to side
-	current_position[X_AXIS] = X_PAUSE_POS;
-	current_position[Y_AXIS] = Y_PAUSE_POS;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
-
-	// Turn off the print fan
-	fanSpeed = 0;
-
-	st_synchronize();
-}
-
-void serialecho_temperatures() {
-	float tt = degHotend(active_extruder);
-	SERIAL_PROTOCOLPGM("T:");
-	SERIAL_PROTOCOL(tt);
-	SERIAL_PROTOCOLPGM(" E:");
-	SERIAL_PROTOCOL((int)active_extruder);
-	SERIAL_PROTOCOLPGM(" B:");
-	SERIAL_PROTOCOL_F(degBed(), 1);
-	SERIAL_PROTOCOLLN("");
-}
-
-extern uint32_t sdpos_atomic;
-
-void uvlo_() 
-{
-    // Conserve power as soon as possible.
-    disable_x();
-    disable_y();
-
-    // Indicate that the interrupt has been triggered.
-		SERIAL_ECHOLNPGM("UVLO");
-
-    // Read out the current Z motor microstep counter. This will be later used
-    // for reaching the zero full step before powering off.
-    uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
-
-    // Calculate the file position, from which to resume this print.
-    long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
-    {
-      uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
-      sd_position -= sdlen_planner;
-      uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
-      sd_position -= sdlen_cmdqueue;
-      if (sd_position < 0) sd_position = 0;
-    }
-
-    // Backup the feedrate in mm/min.
-    int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
-
-    // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
-    // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
-    // are in action.
-    planner_abort_hard();
-
-    // Clean the input command queue.
-    cmdqueue_reset();
-    card.sdprinting = false;
-//    card.closefile();
-
-    // Enable stepper driver interrupt to move Z axis.
-    // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
-    //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
-    // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
-		sei();
-		plan_buffer_line(
-      current_position[X_AXIS], 
-      current_position[Y_AXIS], 
-      current_position[Z_AXIS], 
-      current_position[E_AXIS] - DEFAULT_RETRACTION, 
-      400, active_extruder);
-		plan_buffer_line(
-      current_position[X_AXIS], 
-      current_position[Y_AXIS], 
-      current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], 
-      current_position[E_AXIS] - DEFAULT_RETRACTION,
-      40, active_extruder);
-
-    // Move Z up to the next 0th full step.
-    // Write the file position.
-    eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
-    // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
-    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
-      uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
-      uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
-      // Scale the z value to 1u resolution.
-      int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
-      eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
-    }
-    // Read out the current Z motor microstep counter. This will be later used
-    // for reaching the zero full step before powering off.
-    eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
-    // Store the current position.
-    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
-    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
-    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
-    // Store the current feed rate, temperatures and fan speed.
-    EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
-    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
-    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
-    eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
-    // Finaly store the "power outage" flag.
-    eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
-
-    st_synchronize();
-    SERIAL_ECHOPGM("stps");
-    MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
-#if 0
-    // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
-    current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
-    st_synchronize();
-#endif
-    disable_z();
-    
-    // Increment power failure counter
-    uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
-    power_count++;
-    eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
-    
-		SERIAL_ECHOLNPGM("UVLO - end");
-		cli();
-		while(1);
-}
-
-void setup_fan_interrupt() {
-//INT7
-	DDRE &= ~(1 << 7); //input pin
-	PORTE &= ~(1 << 7); //no internal pull-up
-
-	//start with sensing rising edge
-	EICRB &= ~(1 << 6);
-	EICRB |= (1 << 7);
-
-	//enable INT7 interrupt
-	EIMSK |= (1 << 7);
-}
-
-ISR(INT7_vect) {
-	//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
-
-	if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
-	if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
-		t_fan_rising_edge = millis();
-	}
-	else { //interrupt was triggered by falling edge
-		if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
-			fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
-		}
-	}	
-	EICRB ^= (1 << 6); //change edge
-}
-
-void setup_uvlo_interrupt() {
-	DDRE &= ~(1 << 4); //input pin
-	PORTE &= ~(1 << 4); //no internal pull-up
-
-						//sensing falling edge
-	EICRB |= (1 << 0);
-	EICRB &= ~(1 << 1);
-
-	//enable INT4 interrupt
-	EIMSK |= (1 << 4);
-}
-
-ISR(INT4_vect) {
-	EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once 
-	SERIAL_ECHOLNPGM("INT4");
-	if (IS_SD_PRINTING) uvlo_();
-}
-
-void recover_print(uint8_t automatic) {
-	char cmd[30];
-	lcd_update_enable(true);
-	lcd_update(2);
-	lcd_setstatuspgm(MSG_RECOVERING_PRINT);
-
-  recover_machine_state_after_power_panic();
-
-    // Set the target bed and nozzle temperatures. 
-    sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); 
-    enquecommand(cmd); 
-    sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); 
-    enquecommand(cmd);
-
-  // Lift the print head, so one may remove the excess priming material.
-  if (current_position[Z_AXIS] < 25)
-    enquecommand_P(PSTR("G1 Z25 F800"));
-  // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
-	enquecommand_P(PSTR("G28 X Y"));
-  // Set the target bed and nozzle temperatures and wait.
-	sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
-	enquecommand(cmd);
-	sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
-	enquecommand(cmd);
-	enquecommand_P(PSTR("M83")); //E axis relative mode
-	//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
-    // If not automatically recoreverd (long power loss), extrude extra filament to stabilize 
-    if(automatic == 0){ 
-        enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure 
-    } 
-	enquecommand_P(PSTR("G1 E"  STRINGIFY(-DEFAULT_RETRACTION)" F480"));
-  // Mark the power panic status as inactive.
-	eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
-	/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
-		delay_keep_alive(1000);
-	}*/
-	SERIAL_ECHOPGM("After waiting for temp:");
-	SERIAL_ECHOPGM("Current position X_AXIS:");
-	MYSERIAL.println(current_position[X_AXIS]);
-	SERIAL_ECHOPGM("Current position Y_AXIS:");
-	MYSERIAL.println(current_position[Y_AXIS]);
-
-  // Restart the print.
-	restore_print_from_eeprom();
-
-	SERIAL_ECHOPGM("current_position[Z_AXIS]:");
-	MYSERIAL.print(current_position[Z_AXIS]);
-}
-
-void recover_machine_state_after_power_panic()
-{
-  // 1) Recover the logical cordinates at the time of the power panic.
-  // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
-  current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
-  current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
-  // Recover the logical coordinate of the Z axis at the time of the power panic.
-  // The current position after power panic is moved to the next closest 0th full step.
-  current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + 
-    UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
-  memcpy(destination, current_position, sizeof(destination));
-
-  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
-  print_world_coordinates();
-
-  // 2) Initialize the logical to physical coordinate system transformation.
-  world2machine_initialize();
-
-  // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
-  mbl.active = false;
-  for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
-    uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
-    uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
-    // Scale the z value to 10u resolution.
-    int16_t v;
-    eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
-    if (v != 0)
-      mbl.active = true;
-    mbl.z_values[iy][ix] = float(v) * 0.001f;
-  }
-  if (mbl.active)
-    mbl.upsample_3x3();
-  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
-  print_mesh_bed_leveling_table();
-
-  // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
-  // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
-  babystep_load();
-
-  // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
-  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-  // 6) Power up the motors, mark their positions as known.
-  //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
-  axis_known_position[X_AXIS] = true; enable_x();
-  axis_known_position[Y_AXIS] = true; enable_y();
-  axis_known_position[Z_AXIS] = true; enable_z();
-
-  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
-  print_physical_coordinates();
-
-  // 7) Recover the target temperatures.
-  target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
-  target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
-}
-
-void restore_print_from_eeprom() {
-	float x_rec, y_rec, z_pos;
-	int feedrate_rec;
-	uint8_t fan_speed_rec;
-	char cmd[30];
-	char* c;
-	char filename[13];
-
-	fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
-	EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
-	SERIAL_ECHOPGM("Feedrate:");
-	MYSERIAL.println(feedrate_rec);
-	for (int i = 0; i < 8; i++) {
-		filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
-		
-	}
-	filename[8] = '\0';
-
-	MYSERIAL.print(filename);
-	strcat_P(filename, PSTR(".gco"));
-	sprintf_P(cmd, PSTR("M23 %s"), filename);
-	for (c = &cmd[4]; *c; c++)
-		 *c = tolower(*c);
-	enquecommand(cmd);
-	uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
-	SERIAL_ECHOPGM("Position read from eeprom:");
-	MYSERIAL.println(position);
-
-  // E axis relative mode.
-	enquecommand_P(PSTR("M83"));
-  // Move to the XY print position in logical coordinates, where the print has been killed.
-	strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
-	strcat_P(cmd, PSTR(" Y"));   strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
-	strcat_P(cmd, PSTR(" F2000"));
-	enquecommand(cmd);
-  // Move the Z axis down to the print, in logical coordinates.
-	strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
-	enquecommand(cmd);
-  // Unretract.
-	enquecommand_P(PSTR("G1 E"  STRINGIFY(DEFAULT_RETRACTION)" F480"));
-  // Set the feedrate saved at the power panic.
-	sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
-	enquecommand(cmd);
-  // Set the fan speed saved at the power panic.
-	strcpy_P(cmd, PSTR("M106 S"));
-	strcat(cmd, itostr3(int(fan_speed_rec)));
-	enquecommand(cmd);
-
-  // Set a position in the file.
-  sprintf_P(cmd, PSTR("M26 S%lu"), position);
-  enquecommand(cmd);
-  // Start SD print.
-  enquecommand_P(PSTR("M24")); 
-}
-
-
-////////////////////////////////////////////////////////////////////////////////
-// new save/restore printing
-
-//extern uint32_t sdpos_atomic;
-
-bool saved_printing = false;
-uint32_t saved_sdpos = 0;
-float saved_pos[4] = {0, 0, 0, 0};
-// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
-float saved_feedrate2 = 0;
-uint8_t saved_active_extruder = 0;
-bool saved_extruder_under_pressure = false;
-
-void stop_and_save_print_to_ram(float z_move, float e_move)
-{
-	if (saved_printing) return;
-	cli();
-  unsigned char nplanner_blocks = number_of_blocks();
-	saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
-	uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
-	saved_sdpos -= sdlen_planner;
-	uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
-	saved_sdpos -= sdlen_cmdqueue;
-
-#if 0
-  SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
-  SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
-  SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
-  SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
-  SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
-  SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
-  SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
-
-  {
-    card.setIndex(saved_sdpos);
-    SERIAL_ECHOLNPGM("Content of planner buffer: ");
-    for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
-      MYSERIAL.print(char(card.get()));
-    SERIAL_ECHOLNPGM("Content of command buffer: ");
-    for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
-      MYSERIAL.print(char(card.get()));
-    SERIAL_ECHOLNPGM("End of command buffer");
-  }
-
-  {
-    // Print the content of the planner buffer, line by line:
-    card.setIndex(saved_sdpos);
-    int8_t iline = 0;
-    for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
-      SERIAL_ECHOPGM("Planner line (from file): ");
-      MYSERIAL.print(int(iline), DEC);
-      SERIAL_ECHOPGM(", length: ");
-      MYSERIAL.print(block_buffer[idx].sdlen, DEC);
-      SERIAL_ECHOPGM(", steps: (");
-      MYSERIAL.print(block_buffer[idx].steps_x, DEC);
-      SERIAL_ECHOPGM(",");
-      MYSERIAL.print(block_buffer[idx].steps_y, DEC);
-      SERIAL_ECHOPGM(",");
-      MYSERIAL.print(block_buffer[idx].steps_z, DEC);
-      SERIAL_ECHOPGM(",");
-      MYSERIAL.print(block_buffer[idx].steps_e, DEC);
-      SERIAL_ECHOPGM("), events: ");
-      MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
-      for (int len = block_buffer[idx].sdlen; len > 0; -- len)
-        MYSERIAL.print(char(card.get()));
-    }
-  }
-  {
-    // Print the content of the command buffer, line by line:
-    int8_t iline = 0;
-    union {
-        struct {
-            char lo;
-            char hi;
-        } lohi;
-        uint16_t value;
-    } sdlen_single;
-    int _bufindr = bufindr;
-    for (int _buflen  = buflen; _buflen > 0; ++ iline) {
-        if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
-            sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
-            sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
-        }
-        SERIAL_ECHOPGM("Buffer line (from buffer): ");
-        MYSERIAL.print(int(iline), DEC);
-        SERIAL_ECHOPGM(", type: ");
-        MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
-        SERIAL_ECHOPGM(", len: ");
-        MYSERIAL.println(sdlen_single.value, DEC);
-        // Print the content of the buffer line.
-        MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
-
-        SERIAL_ECHOPGM("Buffer line (from file): ");
-        MYSERIAL.print(int(iline), DEC);
-        MYSERIAL.println(int(iline), DEC);
-        for (; sdlen_single.value > 0; -- sdlen_single.value)
-          MYSERIAL.print(char(card.get()));
-
-        if (-- _buflen == 0)
-          break;
-        // First skip the current command ID and iterate up to the end of the string.
-        for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
-        // Second, skip the end of string null character and iterate until a nonzero command ID is found.
-        for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
-        // If the end of the buffer was empty,
-        if (_bufindr == sizeof(cmdbuffer)) {
-            // skip to the start and find the nonzero command.
-            for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
-        }
-    }
-  }
-#endif
-
-#if 0
-  saved_feedrate2 = feedrate; //save feedrate
-#else
-  // Try to deduce the feedrate from the first block of the planner.
-  // Speed is in mm/min.
-  saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
-#endif
-
-	planner_abort_hard(); //abort printing
-	memcpy(saved_pos, current_position, sizeof(saved_pos));
-	saved_active_extruder = active_extruder; //save active_extruder
-
-	saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
-
-	cmdqueue_reset(); //empty cmdqueue
-	card.sdprinting = false;
-//	card.closefile();
-	saved_printing = true;
-	sei();
-	if ((z_move != 0) || (e_move != 0)) { // extruder or z move
-#if 1
-    // Rather than calling plan_buffer_line directly, push the move into the command queue, 
-    char buf[48];
-    strcpy_P(buf, PSTR("G1 Z"));
-    dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
-    strcat_P(buf, PSTR(" E"));
-    // Relative extrusion
-    dtostrf(e_move, 6, 3, buf + strlen(buf));
-    strcat_P(buf, PSTR(" F"));
-    dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
-    // At this point the command queue is empty.
-    enquecommand(buf, false);
-    // If this call is invoked from the main Arduino loop() function, let the caller know that the command
-    // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
-    repeatcommand_front();
-#else
-		plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
-    st_synchronize(); //wait moving
-    memcpy(current_position, saved_pos, sizeof(saved_pos));
-    memcpy(destination, current_position, sizeof(destination));
-#endif
-  }
-}
-
-void restore_print_from_ram_and_continue(float e_move)
-{
-	if (!saved_printing) return;
-//	for (int axis = X_AXIS; axis <= E_AXIS; axis++)
-//	    current_position[axis] = st_get_position_mm(axis);
-	active_extruder = saved_active_extruder; //restore active_extruder
-	feedrate = saved_feedrate2; //restore feedrate
-	float e = saved_pos[E_AXIS] - e_move;
-	plan_set_e_position(e);
-	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
-    st_synchronize();
-  memcpy(current_position, saved_pos, sizeof(saved_pos));
-  memcpy(destination, current_position, sizeof(destination));
-	card.setIndex(saved_sdpos);
-  sdpos_atomic = saved_sdpos;
-	card.sdprinting = true;
-	saved_printing = false;
-}
-
-void print_world_coordinates()
-{
-  SERIAL_ECHOPGM("world coordinates: (");
-  MYSERIAL.print(current_position[X_AXIS], 3);
-  SERIAL_ECHOPGM(", ");
-  MYSERIAL.print(current_position[Y_AXIS], 3);
-  SERIAL_ECHOPGM(", ");
-  MYSERIAL.print(current_position[Z_AXIS], 3);
-  SERIAL_ECHOLNPGM(")");
-}
-
-void print_physical_coordinates()
-{
-  SERIAL_ECHOPGM("physical coordinates: (");
-  MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
-  SERIAL_ECHOPGM(", ");
-  MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
-  SERIAL_ECHOPGM(", ");
-  MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
-  SERIAL_ECHOLNPGM(")");
-}
-
-void print_mesh_bed_leveling_table()
-{
-  SERIAL_ECHOPGM("mesh bed leveling: ");
-  for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
-    for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
-      MYSERIAL.print(mbl.z_values[y][x], 3);
-      SERIAL_ECHOPGM(" ");
-    }
-  SERIAL_ECHOLNPGM("");
-}
+/* -*- c++ -*- */
+
+/*
+    Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+  (https://github.com/kliment/Sprinter)
+  (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
+#include "Marlin.h"
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#include "vector_3.h"
+  #ifdef AUTO_BED_LEVELING_GRID
+    #include "qr_solve.h"
+  #endif
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+  #include "mesh_bed_leveling.h"
+  #include "mesh_bed_calibration.h"
+#endif
+
+#include "ultralcd.h"
+#include "Configuration_prusa.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+#include "cardreader.h"
+#include "watchdog.h"
+#include "ConfigurationStore.h"
+#include "language.h"
+#include "pins_arduino.h"
+#include "math.h"
+#include "util.h"
+
+#include <avr/wdt.h>
+
+#include "Dcodes.h"
+
+
+#ifdef SWSPI
+#include "swspi.h"
+#endif //SWSPI
+
+#ifdef SWI2C
+#include "swi2c.h"
+#endif //SWI2C
+
+#ifdef PAT9125
+#include "pat9125.h"
+#include "fsensor.h"
+#endif //PAT9125
+
+#ifdef TMC2130
+#include "tmc2130.h"
+#endif //TMC2130
+
+
+#ifdef BLINKM
+#include "BlinkM.h"
+#include "Wire.h"
+#endif
+
+#ifdef ULTRALCD
+#include "ultralcd.h"
+#endif
+
+#if NUM_SERVOS > 0
+#include "Servo.h"
+#endif
+
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include <SPI.h>
+#endif
+
+#define VERSION_STRING  "1.0.2"
+
+
+#include "ultralcd.h"
+
+#include "cmdqueue.h"
+
+// Macros for bit masks
+#define BIT(b) (1<<(b))
+#define TEST(n,b) (((n)&BIT(b))!=0)
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
+
+//Macro for print fan speed
+#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
+
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+
+// PRUSA CODES
+// P F - Returns FW versions
+// P R - Returns revision of printer
+
+// G0  -> G1
+// G1  - Coordinated Movement X Y Z E
+// G2  - CW ARC
+// G3  - CCW ARC
+// G4  - Dwell S<seconds> or P<milliseconds>
+// G10 - retract filament according to settings of M207
+// G11 - retract recover filament according to settings of M208
+// G28 - Home all Axis
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
+// G30 - Single Z Probe, probes bed at current XY location.
+// G31 - Dock sled (Z_PROBE_SLED only)
+// G32 - Undock sled (Z_PROBE_SLED only)
+// G80 - Automatic mesh bed leveling
+// G81 - Print bed profile
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to coordinates given
+
+// M Codes
+// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
+// M1   - Same as M0
+// M17  - Enable/Power all stepper motors
+// M18  - Disable all stepper motors; same as M84
+// M20  - List SD card
+// M21  - Init SD card
+// M22  - Release SD card
+// M23  - Select SD file (M23 filename.g)
+// M24  - Start/resume SD print
+// M25  - Pause SD print
+// M26  - Set SD position in bytes (M26 S12345)
+// M27  - Report SD print status
+// M28  - Start SD write (M28 filename.g)
+// M29  - Stop SD write
+// M30  - Delete file from SD (M30 filename.g)
+// M31  - Output time since last M109 or SD card start to serial
+// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
+//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
+//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
+//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
+// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
+// M80  - Turn on Power Supply
+// M81  - Turn off Power Supply
+// M82  - Set E codes absolute (default)
+// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84  - Disable steppers until next move,
+//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
+// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M92  - Set axis_steps_per_unit - same syntax as G92
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
+//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
+// M112 - Emergency stop
+// M114 - Output current position to serial port
+// M115 - Capabilities string
+// M117 - display message
+// M119 - Output Endstop status to serial port
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M140 - Set bed target temp
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
+// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
+// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
+// M206 - set additional homing offset
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+// M220 S<factor in percent>- set speed factor override percentage
+// M221 S<factor in percent>- set extrude factor override percentage
+// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+// M240 - Trigger a camera to take a photograph
+// M250 - Set LCD contrast C<contrast value> (value 0..63)
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
+// M300 - Play beep sound S<frequency Hz> P<duration ms>
+// M301 - Set PID parameters P I and D
+// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
+// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
+// M304 - Set bed PID parameters P I and D
+// M400 - Finish all moves
+// M401 - Lower z-probe if present
+// M402 - Raise z-probe if present
+// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
+// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
+// M406 - Turn off Filament Sensor extrusion control 
+// M407 - Displays measured filament diameter 
+// M500 - stores parameters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
+// M503 - print the current settings (from memory not from EEPROM)
+// M509 - force language selection on next restart
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
+// M907 - Set digital trimpot motor current using axis codes.
+// M908 - Control digital trimpot directly.
+// M350 - Set microstepping mode.
+// M351 - Toggle MS1 MS2 pins directly.
+
+// M928 - Start SD logging (M928 filename.g) - ended by M29
+// M999 - Restart after being stopped by error
+
+//Stepper Movement Variables
+
+//===========================================================================
+//=============================imported variables============================
+//===========================================================================
+
+
+//===========================================================================
+//=============================public variables=============================
+//===========================================================================
+#ifdef SDSUPPORT
+CardReader card;
+#endif
+
+unsigned long PingTime = millis();
+union Data
+{
+byte b[2];
+int value;
+};
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+// Currently only the extruder axis may be switched to a relative mode.
+// Other axes are always absolute or relative based on the common relative_mode flag.
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+int extrudemultiply=100; //100->1 200->2
+int extruder_multiply[EXTRUDERS] = {100
+  #if EXTRUDERS > 1
+    , 100
+    #if EXTRUDERS > 2
+      , 100
+    #endif
+  #endif
+};
+
+int bowden_length[4];
+
+bool is_usb_printing = false;
+bool homing_flag = false;
+
+bool temp_cal_active = false;
+
+unsigned long kicktime = millis()+100000;
+
+unsigned int  usb_printing_counter;
+
+int lcd_change_fil_state = 0;
+
+int feedmultiplyBckp = 100;
+float HotendTempBckp = 0;
+int fanSpeedBckp = 0;
+float pause_lastpos[4];
+unsigned long pause_time = 0;
+unsigned long start_pause_print = millis();
+unsigned long t_fan_rising_edge = millis();
+
+unsigned long load_filament_time;
+
+bool mesh_bed_leveling_flag = false;
+bool mesh_bed_run_from_menu = false;
+
+unsigned char lang_selected = 0;
+int8_t FarmMode = 0;
+
+bool prusa_sd_card_upload = false;
+
+unsigned int status_number = 0;
+
+unsigned long total_filament_used;
+unsigned int heating_status;
+unsigned int heating_status_counter;
+bool custom_message;
+bool loading_flag = false;
+unsigned int custom_message_type;
+unsigned int custom_message_state;
+char snmm_filaments_used = 0;
+
+float distance_from_min[3];
+float angleDiff;
+
+bool fan_state[2];
+int fan_edge_counter[2];
+int fan_speed[2];
+
+
+bool volumetric_enabled = false;
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
+  #if EXTRUDERS > 1
+      , DEFAULT_NOMINAL_FILAMENT_DIA
+    #if EXTRUDERS > 2
+       , DEFAULT_NOMINAL_FILAMENT_DIA
+    #endif
+  #endif
+};
+float volumetric_multiplier[EXTRUDERS] = {1.0
+  #if EXTRUDERS > 1
+    , 1.0
+    #if EXTRUDERS > 2
+      , 1.0
+    #endif
+  #endif
+};
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
+float add_homing[3]={0,0,0};
+
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
+bool axis_known_position[3] = {false, false, false};
+float zprobe_zoffset;
+
+// Extruder offset
+#if EXTRUDERS > 1
+  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
+  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
+#endif
+};
+#endif
+
+uint8_t active_extruder = 0;
+int fanSpeed=0;
+
+#ifdef FWRETRACT
+  bool autoretract_enabled=false;
+  bool retracted[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+  bool retracted_swap[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+
+  float retract_length = RETRACT_LENGTH;
+  float retract_length_swap = RETRACT_LENGTH_SWAP;
+  float retract_feedrate = RETRACT_FEEDRATE;
+  float retract_zlift = RETRACT_ZLIFT;
+  float retract_recover_length = RETRACT_RECOVER_LENGTH;
+  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
+  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+#endif
+
+#ifdef ULTIPANEL
+  #ifdef PS_DEFAULT_OFF
+    bool powersupply = false;
+  #else
+	  bool powersupply = true;
+  #endif
+#endif
+
+bool cancel_heatup = false ;
+
+#ifdef FILAMENT_SENSOR
+  //Variables for Filament Sensor input 
+  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
+  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
+  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
+  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
+  int delay_index1=0;  //index into ring buffer
+  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
+  float delay_dist=0; //delay distance counter  
+  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
+#endif
+
+const char errormagic[] PROGMEM = "Error:";
+const char echomagic[] PROGMEM = "echo:";
+
+//===========================================================================
+//=============================Private Variables=============================
+//===========================================================================
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
+
+static float delta[3] = {0.0, 0.0, 0.0};
+
+// For tracing an arc
+static float offset[3] = {0.0, 0.0, 0.0};
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+
+// Determines Absolute or Relative Coordinates.
+// Also there is bool axis_relative_modes[] per axis flag.
+static bool relative_mode = false;  
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+//static float tt = 0;
+//static float bt = 0;
+
+//Inactivity shutdown variables
+static unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+unsigned long _usb_timer = 0;
+
+static uint8_t tmp_extruder;
+
+bool extruder_under_pressure = true;
+
+
+bool Stopped=false;
+
+#if NUM_SERVOS > 0
+  Servo servos[NUM_SERVOS];
+#endif
+
+bool CooldownNoWait = true;
+bool target_direction;
+
+//Insert variables if CHDK is defined
+#ifdef CHDK
+unsigned long chdkHigh = 0;
+boolean chdkActive = false;
+#endif
+
+//===========================================================================
+//=============================Routines======================================
+//===========================================================================
+
+void get_arc_coordinates();
+bool setTargetedHotend(int code);
+
+void serial_echopair_P(const char *s_P, float v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, double v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, unsigned long v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+
+#ifdef SDSUPPORT
+  #include "SdFatUtil.h"
+  int freeMemory() { return SdFatUtil::FreeRam(); }
+#else
+  extern "C" {
+    extern unsigned int __bss_end;
+    extern unsigned int __heap_start;
+    extern void *__brkval;
+
+    int freeMemory() {
+      int free_memory;
+
+      if ((int)__brkval == 0)
+        free_memory = ((int)&free_memory) - ((int)&__bss_end);
+      else
+        free_memory = ((int)&free_memory) - ((int)__brkval);
+
+      return free_memory;
+    }
+  }
+#endif //!SDSUPPORT
+
+void setup_killpin()
+{
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    SET_INPUT(KILL_PIN);
+    WRITE(KILL_PIN,HIGH);
+  #endif
+}
+
+// Set home pin
+void setup_homepin(void)
+{
+#if defined(HOME_PIN) && HOME_PIN > -1
+   SET_INPUT(HOME_PIN);
+   WRITE(HOME_PIN,HIGH);
+#endif
+}
+
+void setup_photpin()
+{
+  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+    SET_OUTPUT(PHOTOGRAPH_PIN);
+    WRITE(PHOTOGRAPH_PIN, LOW);
+  #endif
+}
+
+void setup_powerhold()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, HIGH);
+  #endif
+  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+    SET_OUTPUT(PS_ON_PIN);
+	#if defined(PS_DEFAULT_OFF)
+	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+    #else
+	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
+	#endif
+  #endif
+}
+
+void suicide()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, LOW);
+  #endif
+}
+
+void servo_init()
+{
+  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
+    servos[0].attach(SERVO0_PIN);
+  #endif
+  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
+    servos[1].attach(SERVO1_PIN);
+  #endif
+  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
+    servos[2].attach(SERVO2_PIN);
+  #endif
+  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
+    servos[3].attach(SERVO3_PIN);
+  #endif
+  #if (NUM_SERVOS >= 5)
+    #error "TODO: enter initalisation code for more servos"
+  #endif
+}
+
+static void lcd_language_menu();
+
+void stop_and_save_print_to_ram(float z_move, float e_move);
+void restore_print_from_ram_and_continue(float e_move);
+
+extern int8_t CrashDetectMenu;
+
+
+void crashdet_enable()
+{
+	MYSERIAL.println("crashdet_enable"); 
+	tmc2130_sg_stop_on_crash = true;
+	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); 
+	CrashDetectMenu = 1;
+
+}
+
+void crashdet_disable()
+{
+	MYSERIAL.println("crashdet_disable"); 
+	tmc2130_sg_stop_on_crash = false;
+	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); 
+	CrashDetectMenu = 0;
+}
+
+void crashdet_stop_and_save_print()
+{
+	stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
+}
+
+void crashdet_restore_print_and_continue()
+{
+	restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
+//	babystep_apply();
+}
+
+
+void crashdet_stop_and_save_print2()
+{
+	cli();
+	planner_abort_hard(); //abort printing
+	cmdqueue_reset(); //empty cmdqueue
+	card.sdprinting = false;
+	card.closefile();
+	sei();
+}
+
+
+
+#ifdef MESH_BED_LEVELING
+   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
+#endif
+
+
+// Factory reset function
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
+// Level input parameter sets depth of reset
+// Quiet parameter masks all waitings for user interact.
+int  er_progress = 0;
+void factory_reset(char level, bool quiet)
+{	
+	lcd_implementation_clear();
+	int cursor_pos = 0;
+    switch (level) {
+                   
+        // Level 0: Language reset
+        case 0:
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+            
+            lcd_force_language_selection();
+            break;
+         
+		//Level 1: Reset statistics
+		case 1:
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+			lcd_menu_statistics();
+            
+			break;
+
+        // Level 2: Prepare for shipping
+        case 2:
+			//lcd_printPGM(PSTR("Factory RESET"));
+            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
+            
+            // Force language selection at the next boot up.
+            lcd_force_language_selection();
+            // Force the "Follow calibration flow" message at the next boot up.
+            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
+            farm_no = 0;
+			farm_mode == false;
+			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
+            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+                       
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+			//_delay_ms(2000);
+            break;
+
+			// Level 3: erase everything, whole EEPROM will be set to 0xFF
+
+		case 3:
+			lcd_printPGM(PSTR("Factory RESET"));
+			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
+
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+
+			er_progress = 0;
+			lcd_print_at_PGM(3, 3, PSTR("      "));
+			lcd_implementation_print_at(3, 3, er_progress);
+
+			// Erase EEPROM
+			for (int i = 0; i < 4096; i++) {
+				eeprom_write_byte((uint8_t*)i, 0xFF);
+
+				if (i % 41 == 0) {
+					er_progress++;
+					lcd_print_at_PGM(3, 3, PSTR("      "));
+					lcd_implementation_print_at(3, 3, er_progress);
+					lcd_printPGM(PSTR("%"));
+				}
+
+			}
+
+
+			break;
+		case 4:
+			bowden_menu();
+			break;
+        
+        default:
+            break;
+    }
+    
+
+}
+
+
+// "Setup" function is called by the Arduino framework on startup.
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
+// are initialized by the main() routine provided by the Arduino framework.
+void setup()
+{
+    lcd_init();
+    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   "));
+    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));
+	setup_killpin();
+	setup_powerhold();
+	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); 
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+	if (farm_no == 0xFFFF) farm_no = 0;
+	if (farm_mode)
+	{ 
+		prusa_statistics(8);
+		selectedSerialPort = 1;
+	}
+	else
+		selectedSerialPort = 0;
+	MYSERIAL.begin(BAUDRATE);
+	SERIAL_PROTOCOLLNPGM("start");
+	SERIAL_ECHO_START;
+
+#if 0
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
+	for (int i = 0; i < 4096; ++i) {
+		int b = eeprom_read_byte((unsigned char*)i);
+		if (b != 255) {
+			SERIAL_ECHO(i);
+			SERIAL_ECHO(":");
+			SERIAL_ECHO(b);
+			SERIAL_ECHOLN("");
+		}
+	}
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
+#endif
+
+	// Check startup - does nothing if bootloader sets MCUSR to 0
+	byte mcu = MCUSR;
+	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
+	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
+	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
+	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
+	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
+	MCUSR = 0;
+
+	//SERIAL_ECHORPGM(MSG_MARLIN);
+	//SERIAL_ECHOLNRPGM(VERSION_STRING);
+
+#ifdef STRING_VERSION_CONFIG_H
+#ifdef STRING_CONFIG_H_AUTHOR
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
+	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
+	SERIAL_ECHORPGM(MSG_AUTHOR);
+	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
+	SERIAL_ECHOPGM("Compiled: ");
+	SERIAL_ECHOLNPGM(__DATE__);
+#endif
+#endif
+
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(MSG_FREE_MEMORY);
+	SERIAL_ECHO(freeMemory());
+	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
+	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+	//lcd_update_enable(false); // why do we need this?? - andre
+	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
+	Config_RetrieveSettings(EEPROM_OFFSET);
+	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
+	tp_init();    // Initialize temperature loop
+	plan_init();  // Initialize planner;
+	watchdog_init();
+
+#ifdef TMC2130
+	uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+	uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
+	if (crashdet)
+	{
+		crashdet_enable();
+	    MYSERIAL.println("CrashDetect ENABLED!");
+	}
+	else
+	{
+		crashdet_disable();
+	    MYSERIAL.println("CrashDetect DISABLED");
+	}
+
+#endif //TMC2130
+
+#ifdef PAT9125
+    MYSERIAL.print("PAT9125_init:");
+	int pat9125 = pat9125_init(200, 200);
+	MYSERIAL.println(pat9125);
+	uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
+	if (!pat9125) fsensor = 0; //disable sensor
+	if (fsensor)
+	{
+		fsensor_enable();
+	    MYSERIAL.println("Filament Sensor ENABLED!");
+	}
+	else
+	{
+		fsensor_disable();
+	    MYSERIAL.println("Filament Sensor DISABLED");
+	}
+
+#endif //PAT9125
+    
+	st_init();    // Initialize stepper, this enables interrupts!
+    
+	setup_photpin();
+    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   ")); // we need to do this again for some reason, no time to research
+    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    ")); 
+	servo_init();
+	// Reset the machine correction matrix.
+	// It does not make sense to load the correction matrix until the machine is homed.
+	world2machine_reset();
+    
+	if (!READ(BTN_ENC))
+	{
+		_delay_ms(1000);
+		if (!READ(BTN_ENC))
+		{
+			lcd_implementation_clear();
+
+
+			lcd_printPGM(PSTR("Factory RESET"));
+
+
+			SET_OUTPUT(BEEPER);
+			WRITE(BEEPER, HIGH);
+
+			while (!READ(BTN_ENC));
+
+			WRITE(BEEPER, LOW);
+
+
+
+			_delay_ms(2000);
+
+			char level = reset_menu();
+			factory_reset(level, false);
+
+			switch (level) {
+			case 0: _delay_ms(0); break;
+			case 1: _delay_ms(0); break;
+			case 2: _delay_ms(0); break;
+			case 3: _delay_ms(0); break;
+			}
+			// _delay_ms(100);
+  /*
+  #ifdef MESH_BED_LEVELING
+			_delay_ms(2000);
+
+			if (!READ(BTN_ENC))
+			{
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+				_delay_ms(200);
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+
+				int _z = 0;
+				calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+				EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
+				EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
+				EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
+			}
+			else
+			{
+
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+			}
+  #endif // mesh */
+
+		}
+	}
+	else
+	{
+		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
+	}
+    
+
+
+
+#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
+	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+#endif
+
+#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
+	SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
+#endif
+
+#ifdef DIGIPOT_I2C
+	digipot_i2c_init();
+#endif
+	setup_homepin();
+
+  if (1) {
+    SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+    // try to run to zero phase before powering the Z motor.    
+    // Move in negative direction
+    WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+    // Round the current micro-micro steps to micro steps.
+    for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
+      // Until the phase counter is reset to zero.
+      WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+      delay(2);
+      WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+      delay(2);
+    }
+    SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+  }
+
+#if defined(Z_AXIS_ALWAYS_ON)
+	enable_z();
+#endif
+	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
+	if (farm_no == 0xFFFF) farm_no = 0;
+	if (farm_mode)
+	{
+		prusa_statistics(8);
+	}
+
+	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
+	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
+	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
+	// but this times out if a blocking dialog is shown in setup().
+	card.initsd();
+
+	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
+		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
+		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
+		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
+		// where all the EEPROM entries are set to 0x0ff.
+		// Once a firmware boots up, it forces at least a language selection, which changes
+		// EEPROM_LANG to number lower than 0x0ff.
+		// 1) Set a high power mode.
+		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
+	}
+#ifdef SNMM
+	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
+	  int _z = BOWDEN_LENGTH;
+	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
+	}
+#endif
+
+  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
+  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
+  // is being written into the EEPROM, so the update procedure will be triggered only once.
+    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
+    if (lang_selected >= LANG_NUM){
+      lcd_mylang();
+    }
+	
+	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+		temp_cal_active = false;
+	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
+
+	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
+	}
+	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
+	}
+
+	check_babystep(); //checking if Z babystep is in allowed range
+	setup_uvlo_interrupt();
+	setup_fan_interrupt();
+	fsensor_setup_interrupt();
+
+	
+#ifndef DEBUG_DISABLE_STARTMSGS
+
+  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
+      calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
+      // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
+      eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+      // Show the message.
+      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+  } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
+      // Show the message.
+      lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+      lcd_update_enable(true);
+  } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
+	  lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
+	  lcd_update_enable(true);
+  } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
+      // Show the message.
+	  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+  }
+#endif //DEBUG_DISABLE_STARTMSGS
+  for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+  lcd_update_enable(true);
+  lcd_implementation_clear();
+  lcd_update(2);
+  // Store the currently running firmware into an eeprom,
+  // so the next time the firmware gets updated, it will know from which version it has been updated.
+  update_current_firmware_version_to_eeprom();
+  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
+/*
+	  if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false))	recover_print();
+	  else {
+		  eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+		  lcd_update_enable(true);
+		  lcd_update(2);
+		  lcd_setstatuspgm(WELCOME_MSG);
+	  }
+*/
+      manage_heater(); // Update temperatures 
+#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+      MYSERIAL.println("Power panic detected!"); 
+      MYSERIAL.print("Current bed temp:"); 
+      MYSERIAL.println(degBed()); 
+      MYSERIAL.print("Saved bed temp:"); 
+      MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); 
+#endif 
+     if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ 
+          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+        MYSERIAL.println("Automatic recovery!"); 
+          #endif 
+         recover_print(1); 
+      } 
+      else{ 
+          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+        MYSERIAL.println("Normal recovery!"); 
+          #endif 
+          if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); 
+          else { 
+              eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); 
+              lcd_update_enable(true); 
+              lcd_update(2); 
+              lcd_setstatuspgm(WELCOME_MSG); 
+          } 
+           
+      } 
+	   
+  }
+  
+}
+
+void trace();
+
+#define CHUNK_SIZE 64 // bytes
+#define SAFETY_MARGIN 1
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
+int chunkHead = 0;
+
+int serial_read_stream() {
+
+    setTargetHotend(0, 0);
+    setTargetBed(0);
+
+    lcd_implementation_clear();
+    lcd_printPGM(PSTR(" Upload in progress"));
+
+    // first wait for how many bytes we will receive
+    uint32_t bytesToReceive;
+
+    // receive the four bytes
+    char bytesToReceiveBuffer[4];
+    for (int i=0; i<4; i++) {
+        int data;
+        while ((data = MYSERIAL.read()) == -1) {};
+        bytesToReceiveBuffer[i] = data;
+
+    }
+
+    // make it a uint32
+    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
+
+    // we're ready, notify the sender
+    MYSERIAL.write('+');
+
+    // lock in the routine
+    uint32_t receivedBytes = 0;
+    while (prusa_sd_card_upload) {
+        int i;
+        for (i=0; i<CHUNK_SIZE; i++) {
+            int data;
+
+            // check if we're not done
+            if (receivedBytes == bytesToReceive) {
+                break;
+            }
+
+            // read the next byte
+            while ((data = MYSERIAL.read()) == -1) {};
+            receivedBytes++;
+
+            // save it to the chunk
+            chunk[i] = data;
+        }
+
+        // write the chunk to SD
+        card.write_command_no_newline(&chunk[0]);
+
+        // notify the sender we're ready for more data
+        MYSERIAL.write('+');
+
+        // for safety
+        manage_heater();
+
+        // check if we're done
+        if(receivedBytes == bytesToReceive) {
+            trace(); // beep
+            card.closefile();
+            prusa_sd_card_upload = false;
+            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+            return 0;
+        }
+
+    }
+}
+
+// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
+// Before loop(), the setup() function is called by the main() routine.
+void loop()
+{
+	bool stack_integrity = true;
+
+	if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
+	{
+		is_usb_printing = true;
+		usb_printing_counter--;
+		_usb_timer = millis();
+	}
+	if (usb_printing_counter == 0)
+	{
+		is_usb_printing = false;
+	}
+
+    if (prusa_sd_card_upload)
+    {
+        //we read byte-by byte
+        serial_read_stream();
+    } else 
+    {
+
+        get_command();
+
+  #ifdef SDSUPPORT
+  card.checkautostart(false);
+  #endif
+  if(buflen)
+  {
+    cmdbuffer_front_already_processed = false;
+    #ifdef SDSUPPORT
+      if(card.saving)
+      {
+        // Saving a G-code file onto an SD-card is in progress.
+        // Saving starts with M28, saving until M29 is seen.
+        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
+          card.write_command(CMDBUFFER_CURRENT_STRING);
+          if(card.logging)
+            process_commands();
+          else
+           SERIAL_PROTOCOLLNRPGM(MSG_OK);
+        } else {
+          card.closefile();
+          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+        }
+      } else {
+        process_commands();
+      }
+    #else
+      process_commands();
+    #endif //SDSUPPORT
+
+    if (! cmdbuffer_front_already_processed && buflen)
+	  {
+		    cli();
+        union {
+          struct {
+              char lo;
+              char hi;
+          } lohi;
+          uint16_t value;
+        } sdlen;
+        sdlen.value = 0;
+		    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+			      sdlen.lohi.lo = cmdbuffer[bufindr + 1];
+            sdlen.lohi.hi = cmdbuffer[bufindr + 2];
+        }
+	      cmdqueue_pop_front();
+		    planner_add_sd_length(sdlen.value);
+		    sei();
+	  }
+  }
+}
+  //check heater every n milliseconds
+  manage_heater();
+  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
+  checkHitEndstops();
+  lcd_update();
+#ifdef PAT9125
+	fsensor_update();
+#endif //PAT9125
+#ifdef TMC2130
+	tmc2130_check_overtemp();
+	if (tmc2130_sg_crash)
+	{
+		tmc2130_sg_crash = false;
+//		crashdet_stop_and_save_print();
+		enquecommand_P((PSTR("D999")));
+	}
+#endif //TMC2130
+}
+
+#define DEFINE_PGM_READ_ANY(type, reader)       \
+    static inline type pgm_read_any(const type *p)  \
+    { return pgm_read_##reader##_near(p); }
+
+DEFINE_PGM_READ_ANY(float,       float);
+DEFINE_PGM_READ_ANY(signed char, byte);
+
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
+static const PROGMEM type array##_P[3] =        \
+    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
+static inline type array(int axis)              \
+    { return pgm_read_any(&array##_P[axis]); }  \
+type array##_ext(int axis)                      \
+    { return pgm_read_any(&array##_P[axis]); }
+
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
+XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
+
+static void axis_is_at_home(int axis) {
+  current_position[axis] = base_home_pos(axis) + add_homing[axis];
+  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
+  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
+}
+
+
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
+
+
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
+    saved_feedrate = feedrate;
+    saved_feedmultiply = feedmultiply;
+    feedmultiply = 100;
+    previous_millis_cmd = millis();
+    
+    enable_endstops(enable_endstops_now);
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+    enable_endstops(false);
+#endif
+    
+    feedrate = saved_feedrate;
+    feedmultiply = saved_feedmultiply;
+    previous_millis_cmd = millis();
+}
+
+
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
+{
+    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+    planeNormal.debug("planeNormal");
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+    //bedLevel.debug("bedLevel");
+
+    //plan_bed_level_matrix.debug("bed level before");
+    //vector_3 uncorrected_position = plan_get_position_mm();
+    //uncorrected_position.debug("position before");
+
+    vector_3 corrected_position = plan_get_position();
+//    corrected_position.debug("position after");
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+#else // not AUTO_BED_LEVELING_GRID
+
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+
+    plan_bed_level_matrix.set_to_identity();
+
+    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+
+    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
+    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
+    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
+    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
+
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+    vector_3 corrected_position = plan_get_position();
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset;
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+}
+
+#endif // AUTO_BED_LEVELING_GRID
+
+static void run_z_probe() {
+    plan_bed_level_matrix.set_to_identity();
+    feedrate = homing_feedrate[Z_AXIS];
+
+    // move down until you find the bed
+    float zPosition = -10;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+        // we have to let the planner know where we are right now as it is not where we said to go.
+    zPosition = st_get_position_mm(Z_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+
+    // move up the retract distance
+    zPosition += home_retract_mm(Z_AXIS);
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    // move back down slowly to find bed
+    feedrate = homing_feedrate[Z_AXIS]/4;
+    zPosition -= home_retract_mm(Z_AXIS) * 2;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+    // make sure the planner knows where we are as it may be a bit different than we last said to move to
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+static void do_blocking_move_to(float x, float y, float z) {
+    float oldFeedRate = feedrate;
+
+    feedrate = homing_feedrate[Z_AXIS];
+
+    current_position[Z_AXIS] = z;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = XY_TRAVEL_SPEED;
+
+    current_position[X_AXIS] = x;
+    current_position[Y_AXIS] = y;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = oldFeedRate;
+}
+
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
+    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
+}
+
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before) {
+  // move to right place
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+  run_z_probe();
+  float measured_z = current_position[Z_AXIS];
+
+  SERIAL_PROTOCOLRPGM(MSG_BED);
+  SERIAL_PROTOCOLPGM(" x: ");
+  SERIAL_PROTOCOL(x);
+  SERIAL_PROTOCOLPGM(" y: ");
+  SERIAL_PROTOCOL(y);
+  SERIAL_PROTOCOLPGM(" z: ");
+  SERIAL_PROTOCOL(measured_z);
+  SERIAL_PROTOCOLPGM("\n");
+  return measured_z;
+}
+
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
+
+
+#ifdef LIN_ADVANCE
+   /**
+    * M900: Set and/or Get advance K factor and WH/D ratio
+    *
+    *  K<factor>                  Set advance K factor
+    *  R<ratio>                   Set ratio directly (overrides WH/D)
+    *  W<width> H<height> D<diam> Set ratio from WH/D
+    */
+inline void gcode_M900() {
+    st_synchronize();
+    
+    const float newK = code_seen('K') ? code_value_float() : -1;
+    if (newK >= 0) extruder_advance_k = newK;
+    
+    float newR = code_seen('R') ? code_value_float() : -1;
+    if (newR < 0) {
+        const float newD = code_seen('D') ? code_value_float() : -1,
+        newW = code_seen('W') ? code_value_float() : -1,
+        newH = code_seen('H') ? code_value_float() : -1;
+        if (newD >= 0 && newW >= 0 && newH >= 0)
+            newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
+    }
+    if (newR >= 0) advance_ed_ratio = newR;
+    
+    SERIAL_ECHO_START;
+    SERIAL_ECHOPGM("Advance K=");
+    SERIAL_ECHOLN(extruder_advance_k);
+    SERIAL_ECHOPGM(" E/D=");
+    const float ratio = advance_ed_ratio;
+    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
+    }
+#endif // LIN_ADVANCE
+
+#ifdef TMC2130
+bool calibrate_z_auto()
+{
+	lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
+	bool endstops_enabled  = enable_endstops(true);
+	int axis_up_dir = -home_dir(Z_AXIS);
+	tmc2130_home_enter(Z_AXIS_MASK);
+	current_position[Z_AXIS] = 0;
+	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	set_destination_to_current();
+	destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
+	feedrate = homing_feedrate[Z_AXIS];
+	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+	tmc2130_home_restart(Z_AXIS);
+	st_synchronize();
+//	current_position[axis] = 0;
+//	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	tmc2130_home_exit();
+    enable_endstops(false);
+	current_position[Z_AXIS] = 0;
+	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	set_destination_to_current();
+	destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
+	feedrate = homing_feedrate[Z_AXIS] / 2;
+	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+	st_synchronize();
+    enable_endstops(endstops_enabled);
+    current_position[Z_AXIS] = Z_MAX_POS-3.f;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	return true;
+}
+#endif //TMC2130
+
+void homeaxis(int axis)
+{
+	bool endstops_enabled  = enable_endstops(true); //RP: endstops should be allways enabled durring homming
+#define HOMEAXIS_DO(LETTER) \
+((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+    if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
+	{
+        int axis_home_dir = home_dir(axis);
+        feedrate = homing_feedrate[axis];
+
+#ifdef TMC2130
+    		tmc2130_home_enter(X_AXIS_MASK << axis);
+#endif
+
+        // Move right a bit, so that the print head does not touch the left end position,
+        // and the following left movement has a chance to achieve the required velocity
+        // for the stall guard to work.
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+//        destination[axis] = 11.f;
+        destination[axis] = 3.f;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        // Move left away from the possible collision with the collision detection disabled.
+        endstops_hit_on_purpose();
+        enable_endstops(false);
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = - 1.;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        // Now continue to move up to the left end stop with the collision detection enabled.
+        enable_endstops(true);
+        destination[axis] = - 1.1 * max_length(axis);
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
+        endstops_hit_on_purpose();
+        enable_endstops(false);
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = 10.f;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        endstops_hit_on_purpose();
+        // Now move left up to the collision, this time with a repeatable velocity.
+        enable_endstops(true);
+        destination[axis] = - 15.f;
+        feedrate = homing_feedrate[axis]/2;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+
+        axis_is_at_home(axis);
+        axis_known_position[axis] = true;
+
+#ifdef TMC2130
+        tmc2130_home_exit();
+#endif
+        // Move the X carriage away from the collision.
+        // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
+        endstops_hit_on_purpose();
+        enable_endstops(false);
+        {
+          // Two full periods (4 full steps).
+          float gap = 0.32f * 2.f;
+          current_position[axis] -= gap;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          current_position[axis] += gap;
+        }
+        destination[axis] = current_position[axis];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
+        st_synchronize();
+
+    		feedrate = 0.0;
+    }
+    else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
+	{
+        int axis_home_dir = home_dir(axis);
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
+        feedrate = homing_feedrate[axis];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = -home_retract_mm(axis) * axis_home_dir;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
+        feedrate = homing_feedrate[axis]/2 ;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        axis_is_at_home(axis);
+        destination[axis] = current_position[axis];
+        feedrate = 0.0;
+        endstops_hit_on_purpose();
+        axis_known_position[axis] = true;
+    }
+    enable_endstops(endstops_enabled);
+}
+
+/**/
+void home_xy()
+{
+    set_destination_to_current();
+    homeaxis(X_AXIS);
+    homeaxis(Y_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+    endstops_hit_on_purpose();
+}
+
+void refresh_cmd_timeout(void)
+{
+  previous_millis_cmd = millis();
+}
+
+#ifdef FWRETRACT
+  void retract(bool retracting, bool swapretract = false) {
+    if(retracting && !retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      if (swapretract) {
+        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
+      } else {
+        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
+      }
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_feedrate*60;
+      retracted[active_extruder]=true;
+      prepare_move();
+      current_position[Z_AXIS]-=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      prepare_move();
+      feedrate = oldFeedrate;
+    } else if(!retracting && retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      current_position[Z_AXIS]+=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      //prepare_move();
+      if (swapretract) {
+        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
+      } else {
+        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
+      }
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_recover_feedrate*60;
+      retracted[active_extruder]=false;
+      prepare_move();
+      feedrate = oldFeedrate;
+    }
+  } //retract
+#endif //FWRETRACT
+
+void trace() {
+    tone(BEEPER, 440);
+    delay(25);
+    noTone(BEEPER);
+    delay(20);
+}
+/*
+void ramming() {
+//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
+	if (current_temperature[0] < 230) {
+		//PLA
+
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 5.4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+		current_position[E_AXIS] += 3.2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		current_position[E_AXIS] += 3;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+		st_synchronize();
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 82;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 20;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		st_synchronize();
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		st_synchronize();
+	}
+	else {
+		//ABS
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+		current_position[E_AXIS] += 4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		//current_position[X_AXIS] += 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		//current_position[X_AXIS] -= 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		delay(4700);
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 92;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+
+	}
+  }
+*/
+void process_commands()
+{
+  #ifdef FILAMENT_RUNOUT_SUPPORT
+    SET_INPUT(FR_SENS);
+  #endif
+
+#ifdef CMDBUFFER_DEBUG
+  SERIAL_ECHOPGM("Processing a GCODE command: ");
+  SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
+  SERIAL_ECHOLNPGM("");
+  SERIAL_ECHOPGM("In cmdqueue: ");
+  SERIAL_ECHO(buflen);
+  SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+  
+  unsigned long codenum; //throw away variable
+  char *starpos = NULL;
+#ifdef ENABLE_AUTO_BED_LEVELING
+  float x_tmp, y_tmp, z_tmp, real_z;
+#endif
+
+  // PRUSA GCODES
+
+#ifdef SNMM
+  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+  int8_t SilentMode;
+#endif
+  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
+	  starpos = (strchr(strchr_pointer + 5, '*'));
+	  if (starpos != NULL)
+		  *(starpos) = '\0';
+	  lcd_setstatus(strchr_pointer + 5);
+  }
+  else if(code_seen("PRUSA")){
+		if (code_seen("Ping")) {  //PRUSA Ping
+			if (farm_mode) {
+				PingTime = millis();
+				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
+			}	  
+		}
+		else if (code_seen("PRN")) {
+		  MYSERIAL.println(status_number);
+
+		}else if (code_seen("fn")) {
+		  if (farm_mode) {
+			  MYSERIAL.println(farm_no);
+		  }
+		  else {
+			  MYSERIAL.println("Not in farm mode.");
+		  }
+		  
+		}else if (code_seen("fv")) {
+        // get file version
+        #ifdef SDSUPPORT
+        card.openFile(strchr_pointer + 3,true);
+        while (true) {
+            uint16_t readByte = card.get();
+            MYSERIAL.write(readByte);
+            if (readByte=='\n') {
+                break;
+            }
+        }
+        card.closefile();
+
+        #endif // SDSUPPORT
+
+    } else if (code_seen("M28")) {
+        trace();
+        prusa_sd_card_upload = true;
+        card.openFile(strchr_pointer+4,false);
+	} else if (code_seen("SN")) { 
+        if (farm_mode) { 
+            selectedSerialPort = 0; 
+            MSerial.write(";S"); 
+            // S/N is:CZPX0917X003XC13518 
+            int numbersRead = 0; 
+ 
+            while (numbersRead < 19) { 
+                while (MSerial.available() > 0) { 
+                    uint8_t serial_char = MSerial.read(); 
+                    selectedSerialPort = 1; 
+                    MSerial.write(serial_char); 
+                    numbersRead++; 
+                    selectedSerialPort = 0; 
+                } 
+            } 
+            selectedSerialPort = 1; 
+            MSerial.write('\n'); 
+            /*for (int b = 0; b < 3; b++) { 
+                tone(BEEPER, 110); 
+                delay(50); 
+                noTone(BEEPER); 
+                delay(50); 
+            }*/ 
+        } else { 
+            MYSERIAL.println("Not in farm mode."); 
+        } 
+		
+	} else if(code_seen("Fir")){
+
+      SERIAL_PROTOCOLLN(FW_version);
+
+    } else if(code_seen("Rev")){
+
+      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
+
+    } else if(code_seen("Lang")) {
+      lcd_force_language_selection();
+    } else if(code_seen("Lz")) {
+      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
+      
+    } else if (code_seen("SERIAL LOW")) {
+        MYSERIAL.println("SERIAL LOW");
+        MYSERIAL.begin(BAUDRATE);
+        return;
+    } else if (code_seen("SERIAL HIGH")) {
+        MYSERIAL.println("SERIAL HIGH");
+        MYSERIAL.begin(1152000);
+        return;
+    } else if(code_seen("Beat")) {
+        // Kick farm link timer
+        kicktime = millis();
+
+    } else if(code_seen("FR")) {
+        // Factory full reset
+        factory_reset(0,true);        
+    }
+    //else if (code_seen('Cal')) {
+		//  lcd_calibration();
+	  // }
+
+  }  
+  else if (code_seen('^')) {
+    // nothing, this is a version line
+  } else if(code_seen('G'))
+  {
+    switch((int)code_value())
+    {
+    case 0: // G0 -> G1
+    case 1: // G1
+      if(Stopped == false) {
+
+        #ifdef FILAMENT_RUNOUT_SUPPORT
+            
+            if(READ(FR_SENS)){
+
+                        feedmultiplyBckp=feedmultiply;
+                        float target[4];
+                        float lastpos[4];
+                        target[X_AXIS]=current_position[X_AXIS];
+                        target[Y_AXIS]=current_position[Y_AXIS];
+                        target[Z_AXIS]=current_position[Z_AXIS];
+                        target[E_AXIS]=current_position[E_AXIS];
+                        lastpos[X_AXIS]=current_position[X_AXIS];
+                        lastpos[Y_AXIS]=current_position[Y_AXIS];
+                        lastpos[Z_AXIS]=current_position[Z_AXIS];
+                        lastpos[E_AXIS]=current_position[E_AXIS];
+                        //retract by E
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+                        
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
+
+                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+                        
+                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+                         
+                 
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
+
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
+                          
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+                        //finish moves
+                        st_synchronize();
+                        //disable extruder steppers so filament can be removed
+                        disable_e0();
+                        disable_e1();
+                        disable_e2();
+                        delay(100);
+                        
+                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
+                        uint8_t cnt=0;
+                        int counterBeep = 0;
+                        lcd_wait_interact();
+                        while(!lcd_clicked()){
+                          cnt++;
+                          manage_heater();
+                          manage_inactivity(true);
+                          //lcd_update();
+                          if(cnt==0)
+                          {
+                          #if BEEPER > 0
+                          
+                            if (counterBeep== 500){
+                              counterBeep = 0;
+                              
+                            }
+                          
+                            
+                            SET_OUTPUT(BEEPER);
+                            if (counterBeep== 0){
+                              WRITE(BEEPER,HIGH);
+                            }
+                            
+                            if (counterBeep== 20){
+                              WRITE(BEEPER,LOW);
+                            }
+                            
+                            
+                            
+                          
+                            counterBeep++;
+                          #else
+                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+                              lcd_buzz(1000/6,100);
+                      #else
+                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+                      #endif
+                          #endif
+                          }
+                        }
+                        
+                        WRITE(BEEPER,LOW);
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                        
+                 
+                        
+                        
+                        
+                        lcd_change_fil_state = 0;
+                        lcd_loading_filament();
+                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+                        
+                          lcd_change_fil_state = 0;
+                          lcd_alright();
+                          switch(lcd_change_fil_state){
+                          
+                             case 2:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                      
+                                     
+                                     lcd_loading_filament();
+                                     break;
+                             case 3:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                     lcd_loading_color();
+                                     break;
+                                          
+                             default:
+                                     lcd_change_success();
+                                     break;
+                          }
+                          
+                        }
+                        
+
+                        
+                      target[E_AXIS]+= 5;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+                        
+                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+                        
+
+                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
+                        //plan_set_e_position(current_position[E_AXIS]);
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
+                        
+                        
+                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+                        
+                      
+                             
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
+                        
+                        
+                        plan_set_e_position(lastpos[E_AXIS]);
+                        
+                        feedmultiply=feedmultiplyBckp;
+                        
+                     
+                        
+                        char cmd[9];
+
+                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+                        enquecommand(cmd);
+
+            }
+
+
+
+        #endif
+
+
+        get_coordinates(); // For X Y Z E F
+		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
+			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
+		}
+          #ifdef FWRETRACT
+            if(autoretract_enabled)
+            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
+              float echange=destination[E_AXIS]-current_position[E_AXIS];
+
+              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
+                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
+                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
+                  retract(!retracted);
+                  return;
+              }
+
+
+            }
+          #endif //FWRETRACT
+        prepare_move();
+        //ClearToSend();
+      }
+      break;
+    case 2: // G2  - CW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(true);
+      }
+      break;
+    case 3: // G3  - CCW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(false);
+      }
+      break;
+    case 4: // G4 dwell      
+      codenum = 0;
+      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
+      st_synchronize();
+      codenum += millis();  // keep track of when we started waiting
+      previous_millis_cmd = millis();
+      while(millis() < codenum) {
+        manage_heater();
+        manage_inactivity();
+        lcd_update();
+      }
+      break;
+      #ifdef FWRETRACT
+      case 10: // G10 retract
+       #if EXTRUDERS > 1
+        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
+        retract(true,retracted_swap[active_extruder]);
+       #else
+        retract(true);
+       #endif
+      break;
+      case 11: // G11 retract_recover
+       #if EXTRUDERS > 1
+        retract(false,retracted_swap[active_extruder]);
+       #else
+        retract(false);
+       #endif 
+      break;
+      #endif //FWRETRACT
+    case 28: //G28 Home all Axis one at a time
+    {
+      st_synchronize();
+
+#if 1
+      SERIAL_ECHOPGM("G28, initial ");  print_world_coordinates();
+      SERIAL_ECHOPGM("G28, initial ");  print_physical_coordinates();
+#endif
+
+      // Flag for the display update routine and to disable the print cancelation during homing.
+		  homing_flag = true;
+      
+      // Which axes should be homed?
+      bool home_x = code_seen(axis_codes[X_AXIS]);
+      bool home_y = code_seen(axis_codes[Y_AXIS]);
+      bool home_z = code_seen(axis_codes[Z_AXIS]);
+      // Either all X,Y,Z codes are present, or none of them.
+      bool home_all_axes = home_x == home_y && home_x == home_z;
+      if (home_all_axes)
+        // No X/Y/Z code provided means to home all axes.
+        home_x = home_y = home_z = true;
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
+#endif //ENABLE_AUTO_BED_LEVELING
+            
+      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+      // the planner will not perform any adjustments in the XY plane. 
+      // Wait for the motors to stop and update the current position with the absolute values.
+      world2machine_revert_to_uncorrected();
+
+      // For mesh bed leveling deactivate the matrix temporarily.
+      // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
+      // in a single axis only.
+      // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
+#ifdef MESH_BED_LEVELING
+      uint8_t mbl_was_active = mbl.active;
+      mbl.active = 0;
+      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+#endif
+
+      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+      // consumed during the first movements following this statement.
+      if (home_z)
+        babystep_undo();
+
+      saved_feedrate = feedrate;
+      saved_feedmultiply = feedmultiply;
+      feedmultiply = 100;
+      previous_millis_cmd = millis();
+
+      enable_endstops(true);
+
+      memcpy(destination, current_position, sizeof(destination));
+      feedrate = 0.0;
+
+      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
+      if(home_z)
+        homeaxis(Z_AXIS);
+      #endif
+
+      #ifdef QUICK_HOME
+      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
+      if(home_x && home_y)  //first diagonal move
+      {
+        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
+
+        int x_axis_home_dir = home_dir(X_AXIS);
+
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
+        feedrate = homing_feedrate[X_AXIS];
+        if(homing_feedrate[Y_AXIS]<feedrate)
+          feedrate = homing_feedrate[Y_AXIS];
+        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
+          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
+        } else {
+          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
+        }
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+
+        axis_is_at_home(X_AXIS);
+        axis_is_at_home(Y_AXIS);
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = current_position[X_AXIS];
+        destination[Y_AXIS] = current_position[Y_AXIS];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        feedrate = 0.0;
+        st_synchronize();
+        endstops_hit_on_purpose();
+
+        current_position[X_AXIS] = destination[X_AXIS];
+        current_position[Y_AXIS] = destination[Y_AXIS];
+        current_position[Z_AXIS] = destination[Z_AXIS];
+      }
+      #endif /* QUICK_HOME */
+
+	 
+      if(home_x)
+        homeaxis(X_AXIS);
+
+      if(home_y)
+        homeaxis(Y_AXIS);
+
+      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
+        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
+
+      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
+		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
+
+      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
+        #ifndef Z_SAFE_HOMING
+          if(home_z) {
+            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home
+      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
+      			  {
+                homeaxis(X_AXIS);
+                homeaxis(Y_AXIS);
+      			  } 
+              // 1st mesh bed leveling measurement point, corrected.
+              world2machine_initialize();
+              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
+              world2machine_reset();
+              if (destination[Y_AXIS] < Y_MIN_POS)
+                  destination[Y_AXIS] = Y_MIN_POS;
+              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
+              feedrate = homing_feedrate[Z_AXIS]/10;
+              current_position[Z_AXIS] = 0;
+              enable_endstops(false);
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+              current_position[X_AXIS] = destination[X_AXIS];
+              current_position[Y_AXIS] = destination[Y_AXIS];
+              enable_endstops(true);
+              endstops_hit_on_purpose();
+              homeaxis(Z_AXIS);
+            #else // MESH_BED_LEVELING
+              homeaxis(Z_AXIS);
+            #endif // MESH_BED_LEVELING
+          }
+        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
+          if(home_all_axes) {
+            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+            feedrate = XY_TRAVEL_SPEED/60;
+            current_position[Z_AXIS] = 0;
+
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+            st_synchronize();
+            current_position[X_AXIS] = destination[X_AXIS];
+            current_position[Y_AXIS] = destination[Y_AXIS];
+
+            homeaxis(Z_AXIS);
+          }
+                                                // Let's see if X and Y are homed and probe is inside bed area.
+          if(home_z) {
+            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
+
+              current_position[Z_AXIS] = 0;
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+
+              homeaxis(Z_AXIS);
+            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+            } else {
+                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
+            }
+          }
+        #endif // Z_SAFE_HOMING
+      #endif // Z_HOME_DIR < 0
+
+      if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
+        current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
+      #ifdef ENABLE_AUTO_BED_LEVELING
+        if(home_z)
+          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
+      #endif
+      
+      // Set the planner and stepper routine positions.
+      // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
+      // contains the machine coordinates.
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+      #ifdef ENDSTOPS_ONLY_FOR_HOMING
+        enable_endstops(false);
+      #endif
+
+      feedrate = saved_feedrate;
+      feedmultiply = saved_feedmultiply;
+      previous_millis_cmd = millis();
+      endstops_hit_on_purpose();
+#ifndef MESH_BED_LEVELING
+      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
+      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
+      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
+          lcd_adjust_z();
+#endif
+
+    // Load the machine correction matrix
+    world2machine_initialize();
+    // and correct the current_position XY axes to match the transformed coordinate system.
+    world2machine_update_current();
+
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
+	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
+		{
+      if (! home_z && mbl_was_active) {
+        // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
+        mbl.active = true;
+        // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
+        current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
+      }
+		}
+	else
+		{
+			st_synchronize();
+			homing_flag = false;
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			// enquecommand_front_P((PSTR("G80")));
+			goto case_G80;
+	  }
+#endif
+
+	  if (farm_mode) { prusa_statistics(20); };
+
+	  homing_flag = false;
+
+      SERIAL_ECHOPGM("G28, final ");  print_world_coordinates();
+      SERIAL_ECHOPGM("G28, final ");  print_physical_coordinates();
+      SERIAL_ECHOPGM("G28, final ");  print_mesh_bed_leveling_table();
+      break;
+    }
+#ifdef ENABLE_AUTO_BED_LEVELING
+    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
+            #endif
+
+            // Prevent user from running a G29 without first homing in X and Y
+            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
+            {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+                break; // abort G29, since we don't know where we are
+            }
+
+            st_synchronize();
+            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
+            //vector_3 corrected_position = plan_get_position_mm();
+            //corrected_position.debug("position before G29");
+            plan_bed_level_matrix.set_to_identity();
+            vector_3 uncorrected_position = plan_get_position();
+            //uncorrected_position.debug("position durring G29");
+            current_position[X_AXIS] = uncorrected_position.x;
+            current_position[Y_AXIS] = uncorrected_position.y;
+            current_position[Z_AXIS] = uncorrected_position.z;
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+#ifdef AUTO_BED_LEVELING_GRID
+            // probe at the points of a lattice grid
+
+            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+
+
+            // solve the plane equation ax + by + d = z
+            // A is the matrix with rows [x y 1] for all the probed points
+            // B is the vector of the Z positions
+            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+
+            // "A" matrix of the linear system of equations
+            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
+            // "B" vector of Z points
+            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
+
+
+            int probePointCounter = 0;
+            bool zig = true;
+
+            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
+            {
+              int xProbe, xInc;
+              if (zig)
+              {
+                xProbe = LEFT_PROBE_BED_POSITION;
+                //xEnd = RIGHT_PROBE_BED_POSITION;
+                xInc = xGridSpacing;
+                zig = false;
+              } else // zag
+              {
+                xProbe = RIGHT_PROBE_BED_POSITION;
+                //xEnd = LEFT_PROBE_BED_POSITION;
+                xInc = -xGridSpacing;
+                zig = true;
+              }
+
+              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
+              {
+                float z_before;
+                if (probePointCounter == 0)
+                {
+                  // raise before probing
+                  z_before = Z_RAISE_BEFORE_PROBING;
+                } else
+                {
+                  // raise extruder
+                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
+                }
+
+                float measured_z = probe_pt(xProbe, yProbe, z_before);
+
+                eqnBVector[probePointCounter] = measured_z;
+
+                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
+                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
+                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
+                probePointCounter++;
+                xProbe += xInc;
+              }
+            }
+            clean_up_after_endstop_move();
+
+            // solve lsq problem
+            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
+
+            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
+            SERIAL_PROTOCOLPGM(" b: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
+            SERIAL_PROTOCOLPGM(" d: ");
+            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
+
+
+            set_bed_level_equation_lsq(plane_equation_coefficients);
+
+            free(plane_equation_coefficients);
+
+#else // AUTO_BED_LEVELING_GRID not defined
+
+            // Probe at 3 arbitrary points
+            // probe 1
+            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
+
+            // probe 2
+            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            // probe 3
+            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            clean_up_after_endstop_move();
+
+            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
+
+
+#endif // AUTO_BED_LEVELING_GRID
+            st_synchronize();
+
+            // The following code correct the Z height difference from z-probe position and hotend tip position.
+            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+            // When the bed is uneven, this height must be corrected.
+            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
+            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+            z_tmp = current_position[Z_AXIS];
+
+            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
+            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        }
+        break;
+#ifndef Z_PROBE_SLED
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            run_z_probe();
+            SERIAL_PROTOCOLPGM(MSG_BED);
+            SERIAL_PROTOCOLPGM(" X: ");
+            SERIAL_PROTOCOL(current_position[X_AXIS]);
+            SERIAL_PROTOCOLPGM(" Y: ");
+            SERIAL_PROTOCOL(current_position[Y_AXIS]);
+            SERIAL_PROTOCOLPGM(" Z: ");
+            SERIAL_PROTOCOL(current_position[Z_AXIS]);
+            SERIAL_PROTOCOLPGM("\n");
+
+            clean_up_after_endstop_move();
+        }
+        break;
+#else
+    case 31: // dock the sled
+        dock_sled(true);
+        break;
+    case 32: // undock the sled
+        dock_sled(false);
+        break;
+#endif // Z_PROBE_SLED
+#endif // ENABLE_AUTO_BED_LEVELING
+            
+#ifdef MESH_BED_LEVELING
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            find_bed_induction_sensor_point_z(-10.f, 3);
+            SERIAL_PROTOCOLRPGM(MSG_BED);
+            SERIAL_PROTOCOLPGM(" X: ");
+            MYSERIAL.print(current_position[X_AXIS], 5);
+            SERIAL_PROTOCOLPGM(" Y: ");
+            MYSERIAL.print(current_position[Y_AXIS], 5);
+            SERIAL_PROTOCOLPGM(" Z: ");
+            MYSERIAL.print(current_position[Z_AXIS], 5);
+            SERIAL_PROTOCOLPGM("\n");
+            clean_up_after_endstop_move();
+        }
+        break;
+	
+
+	case 75:
+	{
+		for (int i = 40; i <= 110; i++) {
+			MYSERIAL.print(i);
+			MYSERIAL.print("  ");
+			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
+		}
+	}
+	break;
+
+	case 76: //PINDA probe temperature calibration
+	{
+#ifdef PINDA_THERMISTOR
+		if (true)
+		{
+			if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+				// We don't know where we are! HOME!
+				// Push the commands to the front of the message queue in the reverse order!
+				// There shall be always enough space reserved for these commands.
+				repeatcommand_front(); // repeat G76 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+				break;
+			}
+			SERIAL_ECHOLNPGM("PINDA probe calibration start");
+
+			float zero_z;
+			int z_shift = 0; //unit: steps
+			float start_temp = 5 * (int)(current_temperature_pinda / 5);
+			if (start_temp < 35) start_temp = 35;
+			if (start_temp < current_temperature_pinda) start_temp += 5;
+			SERIAL_ECHOPGM("start temperature: ");
+			MYSERIAL.println(start_temp);
+
+//			setTargetHotend(200, 0);
+			setTargetBed(50 + 10 * (start_temp - 30) / 5);
+
+			custom_message = true;
+			custom_message_type = 4;
+			custom_message_state = 1;
+			custom_message = MSG_TEMP_CALIBRATION;
+			current_position[X_AXIS] = PINDA_PREHEAT_X;
+			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+
+			while (current_temperature_pinda < start_temp)
+			{
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+
+			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
+
+			current_position[Z_AXIS] = 5;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+
+			find_bed_induction_sensor_point_z(-1.f);
+			zero_z = current_position[Z_AXIS];
+
+			//current_position[Z_AXIS]
+			SERIAL_ECHOLNPGM("");
+			SERIAL_ECHOPGM("ZERO: ");
+			MYSERIAL.print(current_position[Z_AXIS]);
+			SERIAL_ECHOLNPGM("");
+
+			int i = -1; for (; i < 5; i++)
+			{
+				float temp = (40 + i * 5);
+				SERIAL_ECHOPGM("Step: ");
+				MYSERIAL.print(i + 2);
+				SERIAL_ECHOLNPGM("/6 (skipped)");
+				SERIAL_ECHOPGM("PINDA temperature: ");
+				MYSERIAL.print((40 + i*5));
+				SERIAL_ECHOPGM(" Z shift (mm):");
+				MYSERIAL.print(0);
+				SERIAL_ECHOLNPGM("");
+				if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+				if (start_temp <= temp) break;
+			}
+
+			for (i++; i < 5; i++)
+			{
+				float temp = (40 + i * 5);
+				SERIAL_ECHOPGM("Step: ");
+				MYSERIAL.print(i + 2);
+				SERIAL_ECHOLNPGM("/6");
+				custom_message_state = i + 2;
+				setTargetBed(50 + 10 * (temp - 30) / 5);
+//				setTargetHotend(255, 0);
+				current_position[X_AXIS] = PINDA_PREHEAT_X;
+				current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+				current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				while (current_temperature_pinda < temp)
+				{
+					delay_keep_alive(1000);
+					serialecho_temperatures();
+				}
+				current_position[Z_AXIS] = 5;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+				current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				find_bed_induction_sensor_point_z(-1.f);
+				z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+				SERIAL_ECHOLNPGM("");
+				SERIAL_ECHOPGM("PINDA temperature: ");
+				MYSERIAL.print(current_temperature_pinda);
+				SERIAL_ECHOPGM(" Z shift (mm):");
+				MYSERIAL.print(current_position[Z_AXIS] - zero_z);
+				SERIAL_ECHOLNPGM("");
+
+				EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+
+			}
+			custom_message_type = 0;
+			custom_message = false;
+
+			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+			SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
+			disable_x();
+			disable_y();
+			disable_z();
+			disable_e0();
+			disable_e1();
+			disable_e2();
+			lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
+			lcd_update_enable(true);
+			lcd_update(2);
+
+			setTargetBed(0); //set bed target temperature back to 0
+//			setTargetHotend(0,0); //set hotend target temperature back to 0
+			break;
+		}
+#endif //PINDA_THERMISTOR
+
+		setTargetBed(PINDA_MIN_T);
+		float zero_z;
+		int z_shift = 0; //unit: steps
+		int t_c; // temperature
+
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			repeatcommand_front(); // repeat G76 with all its parameters
+			enquecommand_front_P((PSTR("G28 W0")));
+			break;
+		}
+		SERIAL_ECHOLNPGM("PINDA probe calibration start");
+		custom_message = true;
+		custom_message_type = 4;
+		custom_message_state = 1;
+		custom_message = MSG_TEMP_CALIBRATION;
+		current_position[X_AXIS] = PINDA_PREHEAT_X;
+		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		while (abs(degBed() - PINDA_MIN_T) > 1) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		
+		//enquecommand_P(PSTR("M190 S50"));
+		for (int i = 0; i < PINDA_HEAT_T; i++) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
+
+		current_position[Z_AXIS] = 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		find_bed_induction_sensor_point_z(-1.f);
+		zero_z = current_position[Z_AXIS];
+
+		//current_position[Z_AXIS]
+		SERIAL_ECHOLNPGM("");
+		SERIAL_ECHOPGM("ZERO: ");
+		MYSERIAL.print(current_position[Z_AXIS]);
+		SERIAL_ECHOLNPGM("");
+
+		for (int i = 0; i<5; i++) {
+			SERIAL_ECHOPGM("Step: ");
+			MYSERIAL.print(i+2);
+			SERIAL_ECHOLNPGM("/6");
+			custom_message_state = i + 2;
+			t_c = 60 + i * 10;
+
+			setTargetBed(t_c);
+			current_position[X_AXIS] = PINDA_PREHEAT_X;
+			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			while (degBed() < t_c) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			for (int i = 0; i < PINDA_HEAT_T; i++) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			current_position[Z_AXIS] = 5;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			find_bed_induction_sensor_point_z(-1.f);
+			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+			SERIAL_ECHOLNPGM("");
+			SERIAL_ECHOPGM("Temperature: ");
+			MYSERIAL.print(t_c);
+			SERIAL_ECHOPGM(" Z shift (mm):");
+			MYSERIAL.print(current_position[Z_AXIS] - zero_z);
+			SERIAL_ECHOLNPGM("");
+
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
+			
+		
+		}
+		custom_message_type = 0;
+		custom_message = false;
+
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
+			disable_x();
+			disable_y();
+			disable_z();
+			disable_e0();
+			disable_e1();
+			disable_e2();
+			setTargetBed(0); //set bed target temperature back to 0
+		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
+		lcd_update_enable(true);
+		lcd_update(2);		
+
+		
+
+	}
+	break;
+
+#ifdef DIS
+	case 77:
+	{
+		//G77 X200 Y150 XP100 YP15 XO10 Y015
+
+		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
+
+
+		//G77 X232 Y218 XP116 YP109 XO-11 YO0 
+
+		float dimension_x = 40;
+		float dimension_y = 40;
+		int points_x = 40;
+		int points_y = 40;
+		float offset_x = 74;
+		float offset_y = 33;
+
+		if (code_seen('X')) dimension_x = code_value();
+		if (code_seen('Y')) dimension_y = code_value();
+		if (code_seen('XP')) points_x = code_value();
+		if (code_seen('YP')) points_y = code_value();
+		if (code_seen('XO')) offset_x = code_value();
+		if (code_seen('YO')) offset_y = code_value();
+		
+		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+		
+	} break;
+	
+#endif
+
+	case 79: {
+		for (int i = 255; i > 0; i = i - 5) {
+			fanSpeed = i;
+			//delay_keep_alive(2000);
+			for (int j = 0; j < 100; j++) {
+				delay_keep_alive(100);
+
+			}
+			fan_speed[1];
+			MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
+		}
+	}break;
+
+	/**
+	* G80: Mesh-based Z probe, probes a grid and produces a
+	*      mesh to compensate for variable bed height
+	*
+	* The S0 report the points as below
+	*
+	*  +----> X-axis
+	*  |
+	*  |
+	*  v Y-axis
+	*
+	*/
+
+	case 80:
+#ifdef MK1BP
+		break;
+#endif //MK1BP
+	case_G80:
+	{
+		mesh_bed_leveling_flag = true;
+		int8_t verbosity_level = 0;
+		static bool run = false;
+
+		if (code_seen('V')) {
+			// Just 'V' without a number counts as V1.
+			char c = strchr_pointer[1];
+			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+		}
+		// Firstly check if we know where we are
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		} 
+		
+		
+		bool temp_comp_start = true;
+#ifdef PINDA_THERMISTOR
+		temp_comp_start = false;
+#endif //PINDA_THERMISTOR
+
+		if (temp_comp_start)
+		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				temp_compensation_start();
+				run = true;
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		}
+		run = false;
+		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
+			mesh_bed_leveling_flag = false;
+			break;
+		}
+		// Save custom message state, set a new custom message state to display: Calibrating point 9.
+		bool custom_message_old = custom_message;
+		unsigned int custom_message_type_old = custom_message_type;
+		unsigned int custom_message_state_old = custom_message_state;
+		custom_message = true;
+		custom_message_type = 1;
+		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
+		lcd_update(1);
+
+		mbl.reset(); //reset mesh bed leveling
+
+					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+					 // consumed during the first movements following this statement.
+		babystep_undo();
+
+		// Cycle through all points and probe them
+		// First move up. During this first movement, the babystepping will be reverted.
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+		// The move to the first calibration point.
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+
+		if (verbosity_level >= 1) {
+			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
+		}
+		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
+		// Wait until the move is finished.
+		st_synchronize();
+
+		int mesh_point = 0; //index number of calibration point
+
+		int ix = 0;
+		int iy = 0;
+
+		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+		if (verbosity_level >= 1) {
+			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
+		}
+		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
+		const char *kill_message = NULL;
+		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
+			// Get coords of a measuring point.
+			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
+			float z0 = 0.f;
+			if (has_z && mesh_point > 0) {
+				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
+				//#if 0
+				if (verbosity_level >= 1) {
+					SERIAL_ECHOPGM("Bed leveling, point: ");
+					MYSERIAL.print(mesh_point);
+					SERIAL_ECHOPGM(", calibration z: ");
+					MYSERIAL.print(z0, 5);
+					SERIAL_ECHOLNPGM("");
+				}
+				//#endif
+			}
+
+			// Move Z up to MESH_HOME_Z_SEARCH.
+			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Move to XY position of the sensor point.
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
+
+
+
+			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+			if (verbosity_level >= 1) {
+
+				SERIAL_PROTOCOL(mesh_point);
+				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
+			}
+
+
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Go down until endstop is hit
+			const float Z_CALIBRATION_THRESHOLD = 1.f;
+			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
+				break;
+			}
+			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
+				break;
+			}
+			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
+				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
+				break;
+			}
+
+			if (verbosity_level >= 10) {
+				SERIAL_ECHOPGM("X: ");
+				MYSERIAL.print(current_position[X_AXIS], 5);
+				SERIAL_ECHOLNPGM("");
+				SERIAL_ECHOPGM("Y: ");
+				MYSERIAL.print(current_position[Y_AXIS], 5);
+				SERIAL_PROTOCOLPGM("\n");
+			}
+
+			float offset_z = 0;
+
+#ifdef PINDA_THERMISTOR
+			offset_z = temp_compensation_pinda_thermistor_offset();
+#endif //PINDA_THERMISTOR
+
+			if (verbosity_level >= 1) {
+				SERIAL_ECHOPGM("mesh bed leveling: ");
+				MYSERIAL.print(current_position[Z_AXIS], 5);
+				SERIAL_ECHOPGM(" offset: ");
+				MYSERIAL.print(offset_z, 5);
+				SERIAL_ECHOLNPGM("");
+			}
+			mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
+
+			custom_message_state--;
+			mesh_point++;
+			lcd_update(1);
+		}
+		if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		if (verbosity_level >= 20) {
+			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
+			MYSERIAL.print(current_position[Z_AXIS], 5);
+		}
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			kill(kill_message);
+			SERIAL_ECHOLNPGM("killed");
+		}
+		clean_up_after_endstop_move();
+		SERIAL_ECHOLNPGM("clean up finished ");
+
+		bool apply_temp_comp = true;
+#ifdef PINDA_THERMISTOR
+		apply_temp_comp = false;
+#endif
+		if (apply_temp_comp)
+		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
+		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
+		SERIAL_ECHOLNPGM("babystep applied");
+		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+
+		if (verbosity_level >= 1) {
+			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
+		}
+
+		for (uint8_t i = 0; i < 4; ++i) {
+			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
+			long correction = 0;
+			if (code_seen(codes[i]))
+				correction = code_value_long();
+			else if (eeprom_bed_correction_valid) {
+				unsigned char *addr = (i < 2) ?
+					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
+					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
+				correction = eeprom_read_int8(addr);
+			}
+			if (correction == 0)
+				continue;
+			float offset = float(correction) * 0.001f;
+			if (fabs(offset) > 0.101f) {
+				SERIAL_ERROR_START;
+				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
+				SERIAL_ECHO(offset);
+				SERIAL_ECHOLNPGM(" microns");
+			}
+			else {
+				switch (i) {
+				case 0:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][0] += offset;
+					}
+					break;
+				case 1:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][2] += offset;
+					}
+					break;
+				case 2:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[0][col] += offset;
+					}
+					break;
+				case 3:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[2][col] += offset;
+					}
+					break;
+				}
+			}
+		}
+		SERIAL_ECHOLNPGM("Bed leveling correction finished");
+		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+		SERIAL_ECHOLNPGM("Upsample finished");
+		mbl.active = 1; //activate mesh bed leveling
+		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
+		go_home_with_z_lift();
+		SERIAL_ECHOLNPGM("Go home finished");
+		//unretract (after PINDA preheat retraction)
+		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			current_position[E_AXIS] += DEFAULT_RETRACTION;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+		}
+		// Restore custom message state
+		custom_message = custom_message_old;
+		custom_message_type = custom_message_type_old;
+		custom_message_state = custom_message_state_old;
+		mesh_bed_leveling_flag = false;
+		mesh_bed_run_from_menu = false;
+		lcd_update(2);
+		
+	}
+	break;
+
+        /**
+         * G81: Print mesh bed leveling status and bed profile if activated
+         */
+        case 81:
+            if (mbl.active) {
+                SERIAL_PROTOCOLPGM("Num X,Y: ");
+                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+                SERIAL_PROTOCOLPGM(",");
+                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+                SERIAL_PROTOCOLPGM("\nZ search height: ");
+                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+                        SERIAL_PROTOCOLPGM("  ");
+                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+                    }
+                    SERIAL_PROTOCOLPGM("\n");
+                }
+            }
+            else
+                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
+            break;
+            
+#if 0
+        /**
+         * G82: Single Z probe at current location
+         *
+         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
+         *
+         */
+        case 82:
+            SERIAL_PROTOCOLLNPGM("Finding bed ");
+            setup_for_endstop_move();
+            find_bed_induction_sensor_point_z();
+            clean_up_after_endstop_move();
+            SERIAL_PROTOCOLPGM("Bed found at: ");
+            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
+            SERIAL_PROTOCOLPGM("\n");
+            break;
+
+            /**
+             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
+             */
+        case 83:
+        {
+            int babystepz = code_seen('S') ? code_value() : 0;
+            int BabyPosition = code_seen('P') ? code_value() : 0;
+            
+            if (babystepz != 0) {
+                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
+                // Is the axis indexed starting with zero or one?
+                if (BabyPosition > 4) {
+                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
+                }else{
+                    // Save it to the eeprom
+                    babystepLoadZ = babystepz;
+                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
+                    // adjust the Z
+                    babystepsTodoZadd(babystepLoadZ);
+                }
+            
+            }
+            
+        }
+        break;
+            /**
+             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
+             */
+        case 84:
+            babystepsTodoZsubtract(babystepLoadZ);
+            // babystepLoadZ = 0;
+            break;
+            
+            /**
+             * G85: Prusa3D specific: Pick best babystep
+             */
+        case 85:
+            lcd_pick_babystep();
+            break;
+#endif
+            
+            /**
+             * G86: Prusa3D specific: Disable babystep correction after home.
+             * This G-code will be performed at the start of a calibration script.
+             */
+        case 86:
+            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+            break;
+            /**
+             * G87: Prusa3D specific: Enable babystep correction after home
+             * This G-code will be performed at the end of a calibration script.
+             */
+        case 87:
+			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+            break;
+
+            /**
+             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
+             */
+		    case 88:
+			      break;
+
+
+#endif  // ENABLE_MESH_BED_LEVELING
+            
+            
+    case 90: // G90
+      relative_mode = false;
+      break;
+    case 91: // G91
+      relative_mode = true;
+      break;
+    case 92: // G92
+      if(!code_seen(axis_codes[E_AXIS]))
+        st_synchronize();
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) {
+           if(i == E_AXIS) {
+             current_position[i] = code_value();
+             plan_set_e_position(current_position[E_AXIS]);
+           }
+           else {
+		current_position[i] = code_value()+add_homing[i];
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+           }
+        }
+      }
+      break;
+
+	case 98: //activate farm mode
+		farm_mode = 1;
+		PingTime = millis();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+		break;
+
+	case 99: //deactivate farm mode
+		farm_mode = 0;
+		lcd_printer_connected();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+		lcd_update(2);
+		break;
+
+
+
+
+
+
+
+    }
+  } // end if(code_seen('G'))
+
+  else if(code_seen('M'))
+  {
+	  int index;
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
+	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
+		  SERIAL_ECHOLNPGM("Invalid M code");
+	  } else
+    switch((int)code_value())
+    {
+#ifdef ULTIPANEL
+
+    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
+    case 1: // M1 - Conditional stop - Wait for user button press on LCD
+    {
+      char *src = strchr_pointer + 2;
+
+      codenum = 0;
+
+      bool hasP = false, hasS = false;
+      if (code_seen('P')) {
+        codenum = code_value(); // milliseconds to wait
+        hasP = codenum > 0;
+      }
+      if (code_seen('S')) {
+        codenum = code_value() * 1000; // seconds to wait
+        hasS = codenum > 0;
+      }
+      starpos = strchr(src, '*');
+      if (starpos != NULL) *(starpos) = '\0';
+      while (*src == ' ') ++src;
+      if (!hasP && !hasS && *src != '\0') {
+        lcd_setstatus(src);
+      } else {
+        LCD_MESSAGERPGM(MSG_USERWAIT);
+      }
+
+      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
+      st_synchronize();
+      previous_millis_cmd = millis();
+      if (codenum > 0){
+        codenum += millis();  // keep track of when we started waiting
+        while(millis() < codenum && !lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update();
+        }
+        lcd_ignore_click(false);
+      }else{
+          if (!lcd_detected())
+            break;
+        while(!lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update();
+        }
+      }
+      if (IS_SD_PRINTING)
+        LCD_MESSAGERPGM(MSG_RESUMING);
+      else
+        LCD_MESSAGERPGM(WELCOME_MSG);
+    }
+    break;
+#endif
+    case 17:
+        LCD_MESSAGERPGM(MSG_NO_MOVE);
+        enable_x();
+        enable_y();
+        enable_z();
+        enable_e0();
+        enable_e1();
+        enable_e2();
+      break;
+
+#ifdef SDSUPPORT
+    case 20: // M20 - list SD card
+      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
+      card.ls();
+      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
+      break;
+    case 21: // M21 - init SD card
+
+      card.initsd();
+
+      break;
+    case 22: //M22 - release SD card
+      card.release();
+
+      break;
+    case 23: //M23 - Select file
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      card.openFile(strchr_pointer + 4,true);
+      break;
+    case 24: //M24 - Start SD print
+      card.startFileprint();
+      starttime=millis();
+	  break;
+    case 25: //M25 - Pause SD print
+      card.pauseSDPrint();
+      break;
+    case 26: //M26 - Set SD index
+      if(card.cardOK && code_seen('S')) {
+        card.setIndex(code_value_long());
+      }
+      break;
+    case 27: //M27 - Get SD status
+      card.getStatus();
+      break;
+    case 28: //M28 - Start SD write
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openFile(strchr_pointer+4,false);
+      break;
+    case 29: //M29 - Stop SD write
+      //processed in write to file routine above
+      //card,saving = false;
+      break;
+    case 30: //M30 <filename> Delete File
+      if (card.cardOK){
+        card.closefile();
+        starpos = (strchr(strchr_pointer + 4,'*'));
+        if(starpos != NULL){
+          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+          strchr_pointer = strchr(npos,' ') + 1;
+          *(starpos) = '\0';
+        }
+        card.removeFile(strchr_pointer + 4);
+      }
+      break;
+    case 32: //M32 - Select file and start SD print
+    {
+      if(card.sdprinting) {
+        st_synchronize();
+
+      }
+      starpos = (strchr(strchr_pointer + 4,'*'));
+
+      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
+      if(namestartpos==NULL)
+      {
+        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
+      }
+      else
+        namestartpos++; //to skip the '!'
+
+      if(starpos!=NULL)
+        *(starpos)='\0';
+
+      bool call_procedure=(code_seen('P'));
+
+      if(strchr_pointer>namestartpos)
+        call_procedure=false;  //false alert, 'P' found within filename
+
+      if( card.cardOK )
+      {
+        card.openFile(namestartpos,true,!call_procedure);
+        if(code_seen('S'))
+          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
+            card.setIndex(code_value_long());
+        card.startFileprint();
+        if(!call_procedure)
+          starttime=millis(); //procedure calls count as normal print time.
+      }
+    } break;
+    case 928: //M928 - Start SD write
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openLogFile(strchr_pointer+5);
+      break;
+
+#endif //SDSUPPORT
+
+    case 31: //M31 take time since the start of the SD print or an M109 command
+      {
+      stoptime=millis();
+      char time[30];
+      unsigned long t=(stoptime-starttime)/1000;
+      int sec,min;
+      min=t/60;
+      sec=t%60;
+      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
+      SERIAL_ECHO_START;
+      SERIAL_ECHOLN(time);
+      lcd_setstatus(time);
+      autotempShutdown();
+      }
+      break;
+    case 42: //M42 -Change pin status via gcode
+      if (code_seen('S'))
+      {
+        int pin_status = code_value();
+        int pin_number = LED_PIN;
+        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+          pin_number = code_value();
+        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+        {
+          if (sensitive_pins[i] == pin_number)
+          {
+            pin_number = -1;
+            break;
+          }
+        }
+      #if defined(FAN_PIN) && FAN_PIN > -1
+        if (pin_number == FAN_PIN)
+          fanSpeed = pin_status;
+      #endif
+        if (pin_number > -1)
+        {
+          pinMode(pin_number, OUTPUT);
+          digitalWrite(pin_number, pin_status);
+          analogWrite(pin_number, pin_status);
+        }
+      }
+     break;
+
+    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
+
+		// Reset the baby step value and the baby step applied flag.
+		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+
+        // Reset the skew and offset in both RAM and EEPROM.
+        reset_bed_offset_and_skew();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        break;
+
+    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
+    {
+		// Only Z calibration?
+		bool onlyZ = code_seen('Z');
+
+		if (!onlyZ) {
+			setTargetBed(0);
+			setTargetHotend(0, 0);
+			setTargetHotend(0, 1);
+			setTargetHotend(0, 2);
+			adjust_bed_reset(); //reset bed level correction
+		}
+
+        // Disable the default update procedure of the display. We will do a modal dialog.
+        lcd_update_enable(false);
+        // Let the planner use the uncorrected coordinates.
+        mbl.reset();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        // Reset the baby step value applied without moving the axes.
+        babystep_reset();
+        // Mark all axes as in a need for homing.
+        memset(axis_known_position, 0, sizeof(axis_known_position));
+
+        // Home in the XY plane.
+        //set_destination_to_current();
+        setup_for_endstop_move();
+		lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
+		home_xy();
+
+        // Let the user move the Z axes up to the end stoppers.
+#ifdef TMC2130
+        if (calibrate_z_auto()) {
+#else //TMC2130
+        if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
+#endif //TMC2130
+            refresh_cmd_timeout();
+			if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
+				lcd_wait_for_cool_down();
+				lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
+				lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
+				lcd_implementation_print_at(0, 2, 1);
+				lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
+			}
+
+            // Move the print head close to the bed.
+            current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+            st_synchronize();
+
+
+//#ifdef TMC2130
+//		tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
+//#endif
+
+            int8_t verbosity_level = 0;
+            if (code_seen('V')) {
+                // Just 'V' without a number counts as V1.
+                char c = strchr_pointer[1];
+                verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+            }
+            
+            if (onlyZ) {
+                clean_up_after_endstop_move();
+                // Z only calibration.
+                // Load the machine correction matrix
+                world2machine_initialize();
+                // and correct the current_position to match the transformed coordinate system.
+                world2machine_update_current();
+                //FIXME
+                bool result = sample_mesh_and_store_reference();
+                if (result) {
+                    if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
+                        // Shipped, the nozzle height has been set already. The user can start printing now.
+                        calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+                    // babystep_apply();
+                }
+            } else {
+                // Reset the baby step value and the baby step applied flag.
+                calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+                eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+                // Complete XYZ calibration.
+				uint8_t point_too_far_mask = 0;
+                BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
+				clean_up_after_endstop_move();
+                // Print head up.
+                current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+                plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+                st_synchronize();
+                if (result >= 0) {
+					point_too_far_mask = 0;
+                    // Second half: The fine adjustment.
+                    // Let the planner use the uncorrected coordinates.
+                    mbl.reset();
+                    world2machine_reset();
+                    // Home in the XY plane.
+                    setup_for_endstop_move();
+                    home_xy();
+                    result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
+                    clean_up_after_endstop_move();
+                    // Print head up.
+                    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+                    st_synchronize();
+                    // if (result >= 0) babystep_apply();
+                }
+                lcd_bed_calibration_show_result(result, point_too_far_mask);
+                if (result >= 0) {
+                    // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
+                    calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+                    lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+                }
+            }
+#ifdef TMC2130
+		tmc2130_home_exit();
+#endif
+        } else {
+            // Timeouted.
+        }
+
+
+        lcd_update_enable(true);
+        break;
+    }
+
+    /*
+    case 46:
+    {
+        // M46: Prusa3D: Show the assigned IP address.
+        uint8_t ip[4];
+        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
+        if (hasIP) {
+            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
+            SERIAL_ECHO(int(ip[0]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[1]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[2]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[3]));
+            SERIAL_ECHOLNPGM("");
+        } else {
+            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
+        }
+        break;
+    }
+    */
+
+    case 47:
+        // M47: Prusa3D: Show end stops dialog on the display.
+        lcd_diag_show_end_stops();
+        break;
+
+#if 0
+    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
+    {
+        // Disable the default update procedure of the display. We will do a modal dialog.
+        lcd_update_enable(false);
+        // Let the planner use the uncorrected coordinates.
+        mbl.reset();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        // Move the print head close to the bed.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        // Home in the XY plane.
+        set_destination_to_current();
+        setup_for_endstop_move();
+        home_xy();
+        int8_t verbosity_level = 0;
+        if (code_seen('V')) {
+            // Just 'V' without a number counts as V1.
+            char c = strchr_pointer[1];
+            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+        }
+        bool success = scan_bed_induction_points(verbosity_level);
+        clean_up_after_endstop_move();
+        // Print head up.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        lcd_update_enable(true);
+        break;
+    }
+#endif
+
+// M48 Z-Probe repeatability measurement function.
+//
+// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
+//	
+// This function assumes the bed has been homed.  Specificaly, that a G28 command
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
+// regenerated.
+//
+// The number of samples will default to 10 if not specified.  You can use upper or lower case
+// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
+// N for its communication protocol and will get horribly confused if you send it a capital N.
+//
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef Z_PROBE_REPEATABILITY_TEST 
+
+    case 48: // M48 Z-Probe repeatability
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
+            #endif
+
+	double sum=0.0; 
+	double mean=0.0; 
+	double sigma=0.0;
+	double sample_set[50];
+	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
+	double X_current, Y_current, Z_current;
+	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
+	
+	if (code_seen('V') || code_seen('v')) {
+        	verbose_level = code_value();
+		if (verbose_level<0 || verbose_level>4 ) {
+			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (verbose_level > 0)   {
+		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
+		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
+	}
+
+	if (code_seen('n')) {
+        	n_samples = code_value();
+		if (n_samples<4 || n_samples>50 ) {
+			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	X_current = X_probe_location = st_get_position_mm(X_AXIS);
+	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
+	Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+	ext_position	 = st_get_position_mm(E_AXIS);
+
+	if (code_seen('X') || code_seen('x') ) {
+        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
+		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('Y') || code_seen('y') ) {
+        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
+		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('L') || code_seen('l') ) {
+        	n_legs = code_value();
+		if ( n_legs==1 ) 
+			n_legs = 2;
+		if ( n_legs<0 || n_legs>15 ) {
+			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+//
+// Do all the preliminary setup work.   First raise the probe.
+//
+
+        st_synchronize();
+        plan_bed_level_matrix.set_to_identity();
+	plan_buffer_line( X_current, Y_current, Z_start_location,
+			ext_position,
+    			homing_feedrate[Z_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+//
+// Now get everything to the specified probe point So we can safely do a probe to
+// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
+// use that as a starting point for each probe.
+//
+	if (verbose_level > 2) 
+		SERIAL_PROTOCOL("Positioning probe for the test.\n");
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
+	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
+
+// 
+// OK, do the inital probe to get us close to the bed.
+// Then retrace the right amount and use that in subsequent probes
+//
+
+	setup_for_endstop_move();
+	run_z_probe();
+
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+
+        for( n=0; n<n_samples; n++) {
+
+		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
+
+		if ( n_legs)  {
+		double radius=0.0, theta=0.0, x_sweep, y_sweep;
+		int rotational_direction, l;
+
+			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
+			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
+			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
+
+//SERIAL_ECHOPAIR("starting radius: ",radius);
+//SERIAL_ECHOPAIR("   theta: ",theta);
+//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
+//SERIAL_PROTOCOLLNPGM("");
+
+			for( l=0; l<n_legs-1; l++) {
+				if (rotational_direction==1)
+					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+				else
+					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+
+				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
+				if ( radius<0.0 )
+					radius = -radius;
+
+				X_current = X_probe_location + cos(theta) * radius;
+				Y_current = Y_probe_location + sin(theta) * radius;
+
+				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
+					 X_current = X_MIN_POS;
+				if ( X_current>X_MAX_POS)
+					 X_current = X_MAX_POS;
+
+				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
+					 Y_current = Y_MIN_POS;
+				if ( Y_current>Y_MAX_POS)
+					 Y_current = Y_MAX_POS;
+
+				if (verbose_level>3 ) {
+					SERIAL_ECHOPAIR("x: ", X_current);
+					SERIAL_ECHOPAIR("y: ", Y_current);
+					SERIAL_PROTOCOLLNPGM("");
+				}
+
+				do_blocking_move_to( X_current, Y_current, Z_current );
+			}
+			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
+		}
+
+		setup_for_endstop_move();
+                run_z_probe();
+
+		sample_set[n] = current_position[Z_AXIS];
+
+//
+// Get the current mean for the data points we have so far
+//
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + sample_set[j];
+		}
+		mean = sum / (double (n+1));
+//
+// Now, use that mean to calculate the standard deviation for the
+// data points we have so far
+//
+
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
+		}
+		sigma = sqrt( sum / (double (n+1)) );
+
+		if (verbose_level > 1) {
+			SERIAL_PROTOCOL(n+1);
+			SERIAL_PROTOCOL(" of ");
+			SERIAL_PROTOCOL(n_samples);
+			SERIAL_PROTOCOLPGM("   z: ");
+			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+		}
+
+		if (verbose_level > 2) {
+			SERIAL_PROTOCOL(" mean: ");
+			SERIAL_PROTOCOL_F(mean,6);
+
+			SERIAL_PROTOCOL("   sigma: ");
+			SERIAL_PROTOCOL_F(sigma,6);
+		}
+
+		if (verbose_level > 0) 
+			SERIAL_PROTOCOLPGM("\n");
+
+		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
+				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
+        	st_synchronize();
+
+	}
+
+	delay(1000);
+
+        clean_up_after_endstop_move();
+
+//      enable_endstops(true);
+
+	if (verbose_level > 0) {
+		SERIAL_PROTOCOLPGM("Mean: ");
+		SERIAL_PROTOCOL_F(mean, 6);
+		SERIAL_PROTOCOLPGM("\n");
+	}
+
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
+SERIAL_PROTOCOL_F(sigma, 6);
+SERIAL_PROTOCOLPGM("\n\n");
+
+Sigma_Exit:
+        break;
+	}
+#endif		// Z_PROBE_REPEATABILITY_TEST 
+#endif		// ENABLE_AUTO_BED_LEVELING
+
+    case 104: // M104
+      if(setTargetedHotend(104)){
+        break;
+      }
+      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
+      setWatch();
+      break;
+    case 112: //  M112 -Emergency Stop
+      kill("", 3);
+      break;
+    case 140: // M140 set bed temp
+      if (code_seen('S')) setTargetBed(code_value());
+      break;
+    case 105 : // M105
+      if(setTargetedHotend(105)){
+        break;
+        }
+      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
+        SERIAL_PROTOCOLPGM("ok T:");
+        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+        SERIAL_PROTOCOLPGM(" /");
+        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
+        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+          SERIAL_PROTOCOLPGM(" B:");
+          SERIAL_PROTOCOL_F(degBed(),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetBed(),1);
+        #endif //TEMP_BED_PIN
+        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+          SERIAL_PROTOCOLPGM(" T");
+          SERIAL_PROTOCOL(cur_extruder);
+          SERIAL_PROTOCOLPGM(":");
+          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
+        }
+      #else
+        SERIAL_ERROR_START;
+        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
+      #endif
+
+        SERIAL_PROTOCOLPGM(" @:");
+      #ifdef EXTRUDER_WATTS
+        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
+      #endif
+
+        SERIAL_PROTOCOLPGM(" B@:");
+      #ifdef BED_WATTS
+        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(-1));
+      #endif
+
+#ifdef PINDA_THERMISTOR
+		SERIAL_PROTOCOLPGM(" P:");
+		SERIAL_PROTOCOL_F(current_temperature_pinda,1);
+#endif //PINDA_THERMISTOR
+
+#ifdef AMBIENT_THERMISTOR
+		SERIAL_PROTOCOLPGM(" A:");
+		SERIAL_PROTOCOL_F(current_temperature_ambient,1);
+#endif //AMBIENT_THERMISTOR
+
+
+        #ifdef SHOW_TEMP_ADC_VALUES
+          {float raw = 0.0;
+
+          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+            SERIAL_PROTOCOLPGM("    ADC B:");
+            SERIAL_PROTOCOL_F(degBed(),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawBedTemp();
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rb->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rxb->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          #endif
+          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+            SERIAL_PROTOCOLPGM("  T");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM(":");
+            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawHotendTemp(cur_extruder);
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rt");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rx");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          }}
+        #endif
+		SERIAL_PROTOCOLLN("");
+      return;
+      break;
+    case 109:
+    {// M109 - Wait for extruder heater to reach target.
+      if(setTargetedHotend(109)){
+        break;
+      }
+      LCD_MESSAGERPGM(MSG_HEATING);
+	  heating_status = 1;
+	  if (farm_mode) { prusa_statistics(1); };
+
+#ifdef AUTOTEMP
+        autotemp_enabled=false;
+      #endif
+      if (code_seen('S')) {
+        setTargetHotend(code_value(), tmp_extruder);
+              CooldownNoWait = true;
+            } else if (code_seen('R')) {
+              setTargetHotend(code_value(), tmp_extruder);
+        CooldownNoWait = false;
+      }
+      #ifdef AUTOTEMP
+        if (code_seen('S')) autotemp_min=code_value();
+        if (code_seen('B')) autotemp_max=code_value();
+        if (code_seen('F'))
+        {
+          autotemp_factor=code_value();
+          autotemp_enabled=true;
+        }
+      #endif
+
+      setWatch();
+      codenum = millis();
+
+      /* See if we are heating up or cooling down */
+      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
+
+      cancel_heatup = false;
+
+	  wait_for_heater(codenum); //loops until target temperature is reached
+
+        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
+		heating_status = 2;
+		if (farm_mode) { prusa_statistics(2); };
+        
+        //starttime=millis();
+        previous_millis_cmd = millis();
+      }
+      break;
+    case 190: // M190 - Wait for bed heater to reach target.
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+        LCD_MESSAGERPGM(MSG_BED_HEATING);
+		heating_status = 3;
+		if (farm_mode) { prusa_statistics(1); };
+        if (code_seen('S')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = true;
+        } 
+		else if (code_seen('R')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = false;
+        }
+        codenum = millis();
+        
+        cancel_heatup = false;
+        target_direction = isHeatingBed(); // true if heating, false if cooling
+
+        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
+        {
+          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+          {
+			  if (!farm_mode) {
+				  float tt = degHotend(active_extruder);
+				  SERIAL_PROTOCOLPGM("T:");
+				  SERIAL_PROTOCOL(tt);
+				  SERIAL_PROTOCOLPGM(" E:");
+				  SERIAL_PROTOCOL((int)active_extruder);
+				  SERIAL_PROTOCOLPGM(" B:");
+				  SERIAL_PROTOCOL_F(degBed(), 1);
+				  SERIAL_PROTOCOLLN("");
+			  }
+				  codenum = millis();
+			  
+          }
+          manage_heater();
+          manage_inactivity();
+          lcd_update();
+        }
+        LCD_MESSAGERPGM(MSG_BED_DONE);
+		heating_status = 4;
+
+        previous_millis_cmd = millis();
+    #endif
+        break;
+
+    #if defined(FAN_PIN) && FAN_PIN > -1
+      case 106: //M106 Fan On
+        if (code_seen('S')){
+           fanSpeed=constrain(code_value(),0,255);
+        }
+        else {
+          fanSpeed=255;
+        }
+        break;
+      case 107: //M107 Fan Off
+        fanSpeed = 0;
+        break;
+    #endif //FAN_PIN
+
+    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+      case 80: // M80 - Turn on Power Supply
+        SET_OUTPUT(PS_ON_PIN); //GND
+        WRITE(PS_ON_PIN, PS_ON_AWAKE);
+
+        // If you have a switch on suicide pin, this is useful
+        // if you want to start another print with suicide feature after
+        // a print without suicide...
+        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
+            SET_OUTPUT(SUICIDE_PIN);
+            WRITE(SUICIDE_PIN, HIGH);
+        #endif
+
+        #ifdef ULTIPANEL
+          powersupply = true;
+          LCD_MESSAGERPGM(WELCOME_MSG);
+          lcd_update();
+        #endif
+        break;
+      #endif
+
+      case 81: // M81 - Turn off Power Supply
+        disable_heater();
+        st_synchronize();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+        finishAndDisableSteppers();
+        fanSpeed = 0;
+        delay(1000); // Wait a little before to switch off
+      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+        st_synchronize();
+        suicide();
+      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
+        SET_OUTPUT(PS_ON_PIN);
+        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+      #endif
+      #ifdef ULTIPANEL
+        powersupply = false;
+        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
+        
+        /*
+        MACHNAME = "Prusa i3"
+        MSGOFF = "Vypnuto"
+        "Prusai3"" ""vypnuto""."
+        
+        "Prusa i3"" "MSG_ALL[lang_selected][50]"."
+        */
+        lcd_update();
+      #endif
+	  break;
+
+    case 82:
+      axis_relative_modes[3] = false;
+      break;
+    case 83:
+      axis_relative_modes[3] = true;
+      break;
+    case 18: //compatibility
+    case 84: // M84
+      if(code_seen('S')){
+        stepper_inactive_time = code_value() * 1000;
+      }
+      else
+      {
+        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
+        if(all_axis)
+        {
+          st_synchronize();
+          disable_e0();
+          disable_e1();
+          disable_e2();
+          finishAndDisableSteppers();
+        }
+        else
+        {
+          st_synchronize();
+		  if (code_seen('X')) disable_x();
+		  if (code_seen('Y')) disable_y();
+		  if (code_seen('Z')) disable_z();
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
+		  if (code_seen('E')) {
+			  disable_e0();
+			  disable_e1();
+			  disable_e2();
+            }
+          #endif
+        }
+      }
+	  snmm_filaments_used = 0;
+      break;
+    case 85: // M85
+      if(code_seen('S')) {
+        max_inactive_time = code_value() * 1000;
+      }
+      break;
+    case 92: // M92
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          if(i == 3) { // E
+            float value = code_value();
+            if(value < 20.0) {
+              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+              max_jerk[E_AXIS] *= factor;
+              max_feedrate[i] *= factor;
+              axis_steps_per_sqr_second[i] *= factor;
+            }
+            axis_steps_per_unit[i] = value;
+          }
+          else {
+            axis_steps_per_unit[i] = code_value();
+          }
+        }
+      }
+      break;
+    case 115: // M115
+      if (code_seen('V')) {
+          // Report the Prusa version number.
+          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
+      } else if (code_seen('U')) {
+          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
+          // pause the print and ask the user to upgrade the firmware.
+          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
+      } else {
+          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
+      }
+      break;
+/*    case 117: // M117 display message
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      lcd_setstatus(strchr_pointer + 5);
+      break;*/
+    case 114: // M114
+      SERIAL_PROTOCOLPGM("X:");
+      SERIAL_PROTOCOL(current_position[X_AXIS]);
+      SERIAL_PROTOCOLPGM(" Y:");
+      SERIAL_PROTOCOL(current_position[Y_AXIS]);
+      SERIAL_PROTOCOLPGM(" Z:");
+      SERIAL_PROTOCOL(current_position[Z_AXIS]);
+      SERIAL_PROTOCOLPGM(" E:");
+      SERIAL_PROTOCOL(current_position[E_AXIS]);
+
+      SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
+      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
+      SERIAL_PROTOCOLPGM(" Y:");
+      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
+      SERIAL_PROTOCOLPGM(" Z:");
+      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
+      SERIAL_PROTOCOLPGM(" E:");
+      SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
+
+      SERIAL_PROTOCOLLN("");
+      break;
+    case 120: // M120
+      enable_endstops(false) ;
+      break;
+    case 121: // M121
+      enable_endstops(true) ;
+      break;
+    case 119: // M119
+    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
+    SERIAL_PROTOCOLLN("");
+      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_X_MIN);
+        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_X_MAX);
+        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
+        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
+        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
+        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
+        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      break;
+      //TODO: update for all axis, use for loop
+    #ifdef BLINKM
+    case 150: // M150
+      {
+        byte red;
+        byte grn;
+        byte blu;
+
+        if(code_seen('R')) red = code_value();
+        if(code_seen('U')) grn = code_value();
+        if(code_seen('B')) blu = code_value();
+
+        SendColors(red,grn,blu);
+      }
+      break;
+    #endif //BLINKM
+    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+      {
+
+        tmp_extruder = active_extruder;
+        if(code_seen('T')) {
+          tmp_extruder = code_value();
+		  if(tmp_extruder >= EXTRUDERS) {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
+            break;
+          }
+        }
+
+        float area = .0;
+        if(code_seen('D')) {
+		  float diameter = (float)code_value();
+		  if (diameter == 0.0) {
+			// setting any extruder filament size disables volumetric on the assumption that
+			// slicers either generate in extruder values as cubic mm or as as filament feeds
+			// for all extruders
+		    volumetric_enabled = false;
+		  } else {
+            filament_size[tmp_extruder] = (float)code_value();
+			// make sure all extruders have some sane value for the filament size
+			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
+            #if EXTRUDERS > 1
+			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
+            #if EXTRUDERS > 2
+			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
+            #endif
+            #endif
+			volumetric_enabled = true;
+		  }
+        } else {
+          //reserved for setting filament diameter via UFID or filament measuring device
+          break;
+        }
+		calculate_volumetric_multipliers();
+      }
+      break;
+    case 201: // M201
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          max_acceleration_units_per_sq_second[i] = code_value();
+        }
+      }
+      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
+      reset_acceleration_rates();
+      break;
+    #if 0 // Not used for Sprinter/grbl gen6
+    case 202: // M202
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+      }
+      break;
+    #endif
+    case 203: // M203 max feedrate mm/sec
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+      }
+      break;
+    case 204: // M204 acclereration S normal moves T filmanent only moves
+      {
+        if(code_seen('S')) acceleration = code_value() ;
+        if(code_seen('T')) retract_acceleration = code_value() ;
+      }
+      break;
+    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+    {
+      if(code_seen('S')) minimumfeedrate = code_value();
+      if(code_seen('T')) mintravelfeedrate = code_value();
+      if(code_seen('B')) minsegmenttime = code_value() ;
+      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
+      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
+    }
+    break;
+    case 206: // M206 additional homing offset
+      for(int8_t i=0; i < 3; i++)
+      {
+        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
+      }
+      break;
+    #ifdef FWRETRACT
+    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
+    {
+      if(code_seen('S'))
+      {
+        retract_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_feedrate = code_value()/60 ;
+      }
+      if(code_seen('Z'))
+      {
+        retract_zlift = code_value() ;
+      }
+    }break;
+    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
+    {
+      if(code_seen('S'))
+      {
+        retract_recover_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_recover_feedrate = code_value()/60 ;
+      }
+    }break;
+    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+    {
+      if(code_seen('S'))
+      {
+        int t= code_value() ;
+        switch(t)
+        {
+          case 0: 
+          {
+            autoretract_enabled=false;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          case 1: 
+          {
+            autoretract_enabled=true;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          default:
+            SERIAL_ECHO_START;
+            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+            SERIAL_ECHOLNPGM("\"(1)");
+        }
+      }
+
+    }break;
+    #endif // FWRETRACT
+    #if EXTRUDERS > 1
+    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+    {
+      if(setTargetedHotend(218)){
+        break;
+      }
+      if(code_seen('X'))
+      {
+        extruder_offset[X_AXIS][tmp_extruder] = code_value();
+      }
+      if(code_seen('Y'))
+      {
+        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
+      }
+      SERIAL_ECHO_START;
+      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
+      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
+      {
+         SERIAL_ECHO(" ");
+         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
+         SERIAL_ECHO(",");
+         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
+      }
+      SERIAL_ECHOLN("");
+    }break;
+    #endif
+    case 220: // M220 S<factor in percent>- set speed factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        feedmultiply = code_value() ;
+      }
+    }
+    break;
+    case 221: // M221 S<factor in percent>- set extrude factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        int tmp_code = code_value();
+        if (code_seen('T'))
+        {
+          if(setTargetedHotend(221)){
+            break;
+          }
+          extruder_multiply[tmp_extruder] = tmp_code;
+        }
+        else
+        {
+          extrudemultiply = tmp_code ;
+        }
+      }
+    }
+    break;
+
+	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+	{
+      if(code_seen('P')){
+        int pin_number = code_value(); // pin number
+        int pin_state = -1; // required pin state - default is inverted
+
+        if(code_seen('S')) pin_state = code_value(); // required pin state
+
+        if(pin_state >= -1 && pin_state <= 1){
+
+          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+          {
+            if (sensitive_pins[i] == pin_number)
+            {
+              pin_number = -1;
+              break;
+            }
+          }
+
+          if (pin_number > -1)
+          {
+            int target = LOW;
+
+            st_synchronize();
+
+            pinMode(pin_number, INPUT);
+
+            switch(pin_state){
+            case 1:
+              target = HIGH;
+              break;
+
+            case 0:
+              target = LOW;
+              break;
+
+            case -1:
+              target = !digitalRead(pin_number);
+              break;
+            }
+
+            while(digitalRead(pin_number) != target){
+              manage_heater();
+              manage_inactivity();
+              lcd_update();
+            }
+          }
+        }
+      }
+    }
+    break;
+
+    #if NUM_SERVOS > 0
+    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
+      {
+        int servo_index = -1;
+        int servo_position = 0;
+        if (code_seen('P'))
+          servo_index = code_value();
+        if (code_seen('S')) {
+          servo_position = code_value();
+          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+		      servos[servo_index].attach(0);
+#endif
+            servos[servo_index].write(servo_position);
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+              delay(PROBE_SERVO_DEACTIVATION_DELAY);
+              servos[servo_index].detach();
+#endif
+          }
+          else {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO("Servo ");
+            SERIAL_ECHO(servo_index);
+            SERIAL_ECHOLN(" out of range");
+          }
+        }
+        else if (servo_index >= 0) {
+          SERIAL_PROTOCOL(MSG_OK);
+          SERIAL_PROTOCOL(" Servo ");
+          SERIAL_PROTOCOL(servo_index);
+          SERIAL_PROTOCOL(": ");
+          SERIAL_PROTOCOL(servos[servo_index].read());
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      break;
+    #endif // NUM_SERVOS > 0
+
+    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
+    case 300: // M300
+    {
+      int beepS = code_seen('S') ? code_value() : 110;
+      int beepP = code_seen('P') ? code_value() : 1000;
+      if (beepS > 0)
+      {
+        #if BEEPER > 0
+          tone(BEEPER, beepS);
+          delay(beepP);
+          noTone(BEEPER);
+        #elif defined(ULTRALCD)
+		  lcd_buzz(beepS, beepP);
+		#elif defined(LCD_USE_I2C_BUZZER)
+		  lcd_buzz(beepP, beepS);
+        #endif
+      }
+      else
+      {
+        delay(beepP);
+      }
+    }
+    break;
+    #endif // M300
+
+    #ifdef PIDTEMP
+    case 301: // M301
+      {
+        if(code_seen('P')) Kp = code_value();
+        if(code_seen('I')) Ki = scalePID_i(code_value());
+        if(code_seen('D')) Kd = scalePID_d(code_value());
+
+        #ifdef PID_ADD_EXTRUSION_RATE
+        if(code_seen('C')) Kc = code_value();
+        #endif
+
+        updatePID();
+        SERIAL_PROTOCOLRPGM(MSG_OK);
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(Kp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(Ki));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(Kd));
+        #ifdef PID_ADD_EXTRUSION_RATE
+        SERIAL_PROTOCOL(" c:");
+        //Kc does not have scaling applied above, or in resetting defaults
+        SERIAL_PROTOCOL(Kc);
+        #endif
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    #ifdef PIDTEMPBED
+    case 304: // M304
+      {
+        if(code_seen('P')) bedKp = code_value();
+        if(code_seen('I')) bedKi = scalePID_i(code_value());
+        if(code_seen('D')) bedKd = scalePID_d(code_value());
+
+        updatePID();
+       	SERIAL_PROTOCOLRPGM(MSG_OK);
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(bedKp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(bedKi));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(bedKd));
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
+     {
+     	#ifdef CHDK
+       
+         SET_OUTPUT(CHDK);
+         WRITE(CHDK, HIGH);
+         chdkHigh = millis();
+         chdkActive = true;
+       
+       #else
+     	
+      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+	const uint8_t NUM_PULSES=16;
+	const float PULSE_LENGTH=0.01524;
+	for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+        delay(7.33);
+        for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+      	#endif
+      #endif //chdk end if
+     }
+    break;
+#ifdef DOGLCD
+    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
+     {
+	  if (code_seen('C')) {
+	   lcd_setcontrast( ((int)code_value())&63 );
+          }
+          SERIAL_PROTOCOLPGM("lcd contrast value: ");
+          SERIAL_PROTOCOL(lcd_contrast);
+          SERIAL_PROTOCOLLN("");
+     }
+    break;
+#endif
+    #ifdef PREVENT_DANGEROUS_EXTRUDE
+    case 302: // allow cold extrudes, or set the minimum extrude temperature
+    {
+	  float temp = .0;
+	  if (code_seen('S')) temp=code_value();
+      set_extrude_min_temp(temp);
+    }
+    break;
+	#endif
+    case 303: // M303 PID autotune
+    {
+      float temp = 150.0;
+      int e=0;
+      int c=5;
+      if (code_seen('E')) e=code_value();
+        if (e<0)
+          temp=70;
+      if (code_seen('S')) temp=code_value();
+      if (code_seen('C')) c=code_value();
+      PID_autotune(temp, e, c);
+    }
+    break;
+    case 400: // M400 finish all moves
+    {
+      st_synchronize();
+    }
+    break;
+
+#ifdef FILAMENT_SENSOR
+case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
+    {
+    #if (FILWIDTH_PIN > -1) 
+    if(code_seen('N')) filament_width_nominal=code_value();
+    else{
+    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
+    SERIAL_PROTOCOLLN(filament_width_nominal); 
+    }
+    #endif
+    }
+    break; 
+    
+    case 405:  //M405 Turn on filament sensor for control 
+    {
+    
+    
+    if(code_seen('D')) meas_delay_cm=code_value();
+       
+       if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
+       	meas_delay_cm = MAX_MEASUREMENT_DELAY;
+    
+       if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
+    	   {
+    	   int temp_ratio = widthFil_to_size_ratio(); 
+       	    
+       	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
+       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
+       	        }
+       	    delay_index1=0;
+       	    delay_index2=0;	
+    	   }
+    
+    filament_sensor = true ; 
+    
+    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
+    //SERIAL_PROTOCOL(filament_width_meas); 
+    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
+    //SERIAL_PROTOCOL(extrudemultiply); 
+    } 
+    break; 
+    
+    case 406:  //M406 Turn off filament sensor for control 
+    {      
+    filament_sensor = false ; 
+    } 
+    break; 
+  
+    case 407:   //M407 Display measured filament diameter 
+    { 
+     
+    
+    
+    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
+    SERIAL_PROTOCOLLN(filament_width_meas);   
+    } 
+    break; 
+    #endif
+    
+
+
+
+
+    case 500: // M500 Store settings in EEPROM
+    {
+        Config_StoreSettings(EEPROM_OFFSET);
+    }
+    break;
+    case 501: // M501 Read settings from EEPROM
+    {
+        Config_RetrieveSettings(EEPROM_OFFSET);
+    }
+    break;
+    case 502: // M502 Revert to default settings
+    {
+        Config_ResetDefault();
+    }
+    break;
+    case 503: // M503 print settings currently in memory
+    {
+        Config_PrintSettings();
+    }
+    break;
+    case 509: //M509 Force language selection
+    {
+        lcd_force_language_selection();
+        SERIAL_ECHO_START;
+        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
+    }
+    break;
+    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+    case 540:
+    {
+        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
+    }
+    break;
+    #endif
+
+    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
+    {
+      float value;
+      if (code_seen('Z'))
+      {
+        value = code_value();
+        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
+        {
+          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
+          SERIAL_PROTOCOLLN("");
+        }
+        else
+        {
+          SERIAL_ECHO_START;
+          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
+          SERIAL_ECHORPGM(MSG_Z_MIN);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
+          SERIAL_ECHORPGM(MSG_Z_MAX);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      else
+      {
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
+          SERIAL_ECHO(-zprobe_zoffset);
+          SERIAL_PROTOCOLLN("");
+      }
+      break;
+    }
+    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+
+    #ifdef FILAMENTCHANGEENABLE
+    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+    {
+		MYSERIAL.println("!!!!M600!!!!");
+
+		st_synchronize();
+		float target[4];
+		float lastpos[4];
+
+        if (farm_mode)
+            
+        {
+            
+            prusa_statistics(22);
+            
+        }
+        
+        feedmultiplyBckp=feedmultiply;
+        int8_t TooLowZ = 0;
+
+        target[X_AXIS]=current_position[X_AXIS];
+        target[Y_AXIS]=current_position[Y_AXIS];
+        target[Z_AXIS]=current_position[Z_AXIS];
+        target[E_AXIS]=current_position[E_AXIS];
+        lastpos[X_AXIS]=current_position[X_AXIS];
+        lastpos[Y_AXIS]=current_position[Y_AXIS];
+        lastpos[Z_AXIS]=current_position[Z_AXIS];
+        lastpos[E_AXIS]=current_position[E_AXIS];
+
+        //Restract extruder
+        if(code_seen('E'))
+        {
+          target[E_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_FIRSTRETRACT
+            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+        //Lift Z
+        if(code_seen('Z'))
+        {
+          target[Z_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_ZADD
+            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+            if(target[Z_AXIS] < 10){
+              target[Z_AXIS]+= 10 ;
+              TooLowZ = 1;
+            }else{
+              TooLowZ = 0;
+            }
+          #endif
+     
+          
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+        //Move XY to side
+        if(code_seen('X'))
+        {
+          target[X_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_XPOS
+            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+          #endif
+        }
+        if(code_seen('Y'))
+        {
+          target[Y_AXIS]= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_YPOS
+            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+		st_synchronize();
+		custom_message = true;
+		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
+
+        // Unload filament
+        if(code_seen('L'))
+        {
+          target[E_AXIS]+= code_value();
+        }
+        else
+        {
+			#ifdef SNMM
+
+			#else
+				#ifdef FILAMENTCHANGE_FINALRETRACT
+							target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
+				#endif
+			#endif // SNMM
+        }
+
+#ifdef SNMM
+		target[E_AXIS] += 12;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
+		target[E_AXIS] += 6;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+		target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+		st_synchronize();
+		target[E_AXIS] += (FIL_COOLING);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+		target[E_AXIS] += (FIL_COOLING*-1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+		target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+		st_synchronize();
+
+#else
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+#endif // SNMM
+		     
+
+        //finish moves
+        st_synchronize();
+        //disable extruder steppers so filament can be removed
+        disable_e0();
+        disable_e1();
+        disable_e2();
+        delay(100);
+        
+        //Wait for user to insert filament
+        uint8_t cnt=0;
+        int counterBeep = 0;
+        lcd_wait_interact();
+		load_filament_time = millis();
+        while(!lcd_clicked()){
+
+		  cnt++;
+          manage_heater();
+          manage_inactivity(true);
+
+/*#ifdef SNMM
+		  target[E_AXIS] += 0.002;
+		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+#endif // SNMM*/
+
+          if(cnt==0)
+          {
+          #if BEEPER > 0
+            if (counterBeep== 500){
+              counterBeep = 0;  
+            }
+            SET_OUTPUT(BEEPER);
+            if (counterBeep== 0){
+              WRITE(BEEPER,HIGH);
+            }			
+            if (counterBeep== 20){
+              WRITE(BEEPER,LOW);
+            }
+            counterBeep++;
+          #else
+			   #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+              lcd_buzz(1000/6,100);
+			   #else
+			     lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+			   #endif
+          #endif
+          }
+
+        }
+#ifdef SNMM
+		display_loading();
+		do {
+			target[E_AXIS] += 0.002;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+			delay_keep_alive(2);
+		} while (!lcd_clicked());		
+		/*if (millis() - load_filament_time > 2) {
+			load_filament_time = millis();
+			target[E_AXIS] += 0.001;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
+		}*/
+#endif
+        //Filament inserted
+        
+        WRITE(BEEPER,LOW);
+
+		//Feed the filament to the end of nozzle quickly        
+#ifdef SNMM
+		
+		st_synchronize();
+		target[E_AXIS] += bowden_length[snmm_extruder];
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+		target[E_AXIS] += 40;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+		target[E_AXIS] += 10;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+#else
+		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif // SNMM
+        
+        //Extrude some filament
+        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+        
+ 
+
+        
+        //Wait for user to check the state
+        lcd_change_fil_state = 0;
+        lcd_loading_filament();
+        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+          lcd_change_fil_state = 0;
+          lcd_alright();
+          switch(lcd_change_fil_state){
+            
+             // Filament failed to load so load it again
+             case 2:
+#ifdef SNMM
+				 display_loading();
+				 do {
+					 target[E_AXIS] += 0.002;
+					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+					 delay_keep_alive(2);
+				 } while (!lcd_clicked());
+
+				 st_synchronize();
+				 target[E_AXIS] += bowden_length[snmm_extruder];
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+				 target[E_AXIS] += 40;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+				 target[E_AXIS] += 10;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+
+#else
+                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
+#endif                
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+
+                     lcd_loading_filament();
+
+                     break;
+
+             // Filament loaded properly but color is not clear
+             case 3:
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                     lcd_loading_color();
+                     break;
+                 
+             // Everything good             
+             default:
+                     lcd_change_success();
+					 lcd_update_enable(true);
+                     break;
+          }
+          
+        }
+        
+
+      //Not let's go back to print
+
+      //Feed a little of filament to stabilize pressure
+      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+        
+      //Retract
+      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+
+        
+      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+      
+      //Move XY back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+      
+      //Move Z back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+        
+        
+      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+        
+      //Unretract       
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+      //Set E position to original  
+      plan_set_e_position(lastpos[E_AXIS]);
+       
+      //Recover feed rate 
+      feedmultiply=feedmultiplyBckp;
+      char cmd[9];
+      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+      enquecommand(cmd);
+      
+	  lcd_setstatuspgm(WELCOME_MSG);
+	  custom_message = false;
+	  custom_message_type = 0;
+#ifdef PAT9125
+	  if (fsensor_M600)
+	  {
+		cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
+		st_synchronize();
+		while (!is_buffer_empty())
+		{
+			process_commands();
+		    cmdqueue_pop_front();
+		}
+		fsensor_enable();
+		fsensor_restore_print_and_continue();
+	  }
+#endif //PAT9125
+        
+    }
+    break;
+    #endif //FILAMENTCHANGEENABLE
+	case 601: {
+		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+	}
+	break;
+
+	case 602: {
+		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+	}
+	break;
+            
+#ifdef LIN_ADVANCE
+    case 900: // M900: Set LIN_ADVANCE options.
+        gcode_M900();
+    break;
+#endif
+
+    case 907: // M907 Set digital trimpot motor current using axis codes.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
+        if(code_seen('B')) digipot_current(4,code_value());
+        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_XY_PIN
+        if(code_seen('X')) digipot_current(0, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_Z_PIN
+        if(code_seen('Z')) digipot_current(1, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_E_PIN
+        if(code_seen('E')) digipot_current(2, code_value());
+      #endif
+      #ifdef DIGIPOT_I2C
+        // this one uses actual amps in floating point
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
+        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
+        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
+      #endif
+    }
+    break;
+    case 908: // M908 Control digital trimpot directly.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        uint8_t channel,current;
+        if(code_seen('P')) channel=code_value();
+        if(code_seen('S')) current=code_value();
+        digitalPotWrite(channel, current);
+      #endif
+    }
+    break;
+
+	case 910: // M910 TMC2130 init
+    {
+		tmc2130_init();
+    }
+    break;
+
+	case 911: // M911 Set TMC2130 holding currents
+    {
+		if (code_seen('X')) tmc2130_set_current_h(0, code_value());
+		if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
+        if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
+        if (code_seen('E')) tmc2130_set_current_h(3, code_value());
+    }
+    break;
+
+	case 912: // M912 Set TMC2130 running currents
+    {
+		if (code_seen('X')) tmc2130_set_current_r(0, code_value());
+		if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
+        if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
+        if (code_seen('E')) tmc2130_set_current_r(3, code_value());
+    }
+    break;
+
+	case 913: // M913 Print TMC2130 currents
+    {
+		tmc2130_print_currents();
+    }
+    break;
+
+	case 914: // M914 Set normal mode
+    {
+		tmc2130_mode = TMC2130_MODE_NORMAL;
+		tmc2130_init();
+    }
+    break;
+
+	case 915: // M915 Set silent mode
+    {
+		tmc2130_mode = TMC2130_MODE_SILENT;
+		tmc2130_init();
+    }
+    break;
+
+	case 916: // M916 Set sg_thrs
+    {
+		if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
+		if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
+		if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
+		if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
+		MYSERIAL.print("tmc2130_sg_thr[X]=");
+		MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
+		MYSERIAL.print("tmc2130_sg_thr[Y]=");
+		MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
+		MYSERIAL.print("tmc2130_sg_thr[Z]=");
+		MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
+		MYSERIAL.print("tmc2130_sg_thr[E]=");
+		MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
+    }
+    break;
+
+	case 917: // M917 Set TMC2130 pwm_ampl
+    {
+		if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
+		if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
+        if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
+        if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
+    }
+    break;
+
+	case 918: // M918 Set TMC2130 pwm_grad
+    {
+		if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
+		if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
+        if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
+        if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
+    }
+    break;
+
+    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
+    {
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
+        if(code_seen('B')) microstep_mode(4,code_value());
+        microstep_readings();
+      #endif
+    }
+    break;
+    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
+    {
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+      if(code_seen('S')) switch((int)code_value())
+      {
+        case 1:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
+          if(code_seen('B')) microstep_ms(4,code_value(),-1);
+          break;
+        case 2:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
+          if(code_seen('B')) microstep_ms(4,-1,code_value());
+          break;
+      }
+      microstep_readings();
+      #endif
+    }
+    break;
+	case 701: //M701: load filament
+	{
+		enable_z();
+		custom_message = true;
+		custom_message_type = 2;
+		
+		lcd_setstatuspgm(MSG_LOADING_FILAMENT);
+		current_position[E_AXIS] += 70;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+
+		current_position[E_AXIS] += 25;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+		st_synchronize();
+
+		if (!farm_mode && loading_flag) {
+			bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
+
+			while (!clean) {
+				lcd_update_enable(true);
+				lcd_update(2);
+				current_position[E_AXIS] += 25;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+				st_synchronize();
+				clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
+			}
+		}
+		lcd_update_enable(true);
+		lcd_update(2);
+		lcd_setstatuspgm(WELCOME_MSG);
+		disable_z();
+		loading_flag = false;
+		custom_message = false;
+		custom_message_type = 0;
+	}
+	break;
+	case 702:
+	{
+#ifdef SNMM
+		if (code_seen('U')) {
+			extr_unload_used(); //unload all filaments which were used in current print
+		}
+		else if (code_seen('C')) {
+			extr_unload(); //unload just current filament 
+		}
+		else {
+			extr_unload_all(); //unload all filaments
+		}
+#else
+		custom_message = true;
+		custom_message_type = 2;
+		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); 
+		current_position[E_AXIS] -= 80;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
+		st_synchronize();
+		lcd_setstatuspgm(WELCOME_MSG);
+		custom_message = false;
+		custom_message_type = 0;
+#endif	
+	}
+	break;
+
+    case 999: // M999: Restart after being stopped
+      Stopped = false;
+      lcd_reset_alert_level();
+      gcode_LastN = Stopped_gcode_LastN;
+      FlushSerialRequestResend();
+    break;
+	default: SERIAL_ECHOLNPGM("Invalid M code.");
+    }
+	
+  } // end if(code_seen('M')) (end of M codes)
+
+  else if(code_seen('T'))
+  {
+	  int index;
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
+		  SERIAL_ECHOLNPGM("Invalid T code.");
+	  }
+	  else {
+		  if (*(strchr_pointer + index) == '?') {
+			  tmp_extruder = choose_extruder_menu();
+		  }
+		  else {
+			  tmp_extruder = code_value();
+		  }
+		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
+#ifdef SNMM
+          
+    #ifdef LIN_ADVANCE
+          if (snmm_extruder != tmp_extruder)
+            clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
+    #endif
+          
+		  snmm_extruder = tmp_extruder;
+
+		  st_synchronize();
+		  delay(100);
+
+		  disable_e0();
+		  disable_e1();
+		  disable_e2();
+
+		  pinMode(E_MUX0_PIN, OUTPUT);
+		  pinMode(E_MUX1_PIN, OUTPUT);
+		  pinMode(E_MUX2_PIN, OUTPUT);
+
+		  delay(100);
+		  SERIAL_ECHO_START;
+		  SERIAL_ECHO("T:");
+		  SERIAL_ECHOLN((int)tmp_extruder);
+		  switch (tmp_extruder) {
+		  case 1:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, LOW);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  case 2:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, HIGH);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  case 3:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, HIGH);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  default:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, LOW);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  }
+		  delay(100);
+
+#else
+		  if (tmp_extruder >= EXTRUDERS) {
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHOPGM("T");
+			  SERIAL_PROTOCOLLN((int)tmp_extruder);
+			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
+		  }
+		  else {
+			  boolean make_move = false;
+			  if (code_seen('F')) {
+				  make_move = true;
+				  next_feedrate = code_value();
+				  if (next_feedrate > 0.0) {
+					  feedrate = next_feedrate;
+				  }
+			  }
+#if EXTRUDERS > 1
+			  if (tmp_extruder != active_extruder) {
+				  // Save current position to return to after applying extruder offset
+				  memcpy(destination, current_position, sizeof(destination));
+				  // Offset extruder (only by XY)
+				  int i;
+				  for (i = 0; i < 2; i++) {
+					  current_position[i] = current_position[i] -
+						  extruder_offset[i][active_extruder] +
+						  extruder_offset[i][tmp_extruder];
+				  }
+				  // Set the new active extruder and position
+				  active_extruder = tmp_extruder;
+				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+				  // Move to the old position if 'F' was in the parameters
+				  if (make_move && Stopped == false) {
+					  prepare_move();
+				  }
+			  }
+#endif
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
+			  SERIAL_PROTOCOLLN((int)active_extruder);
+		  }
+
+#endif
+	  }
+  } // end if(code_seen('T')) (end of T codes)
+
+#ifdef DEBUG_DCODES
+  else if (code_seen('D')) // D codes (debug)
+  {
+    switch((int)code_value())
+    {
+	case 0: // D0 - Reset
+		dcode_0(); break;
+	case 1: // D1 - Clear EEPROM
+		dcode_1(); break;
+	case 2: // D2 - Read/Write RAM
+		dcode_2(); break;
+	case 3: // D3 - Read/Write EEPROM
+		dcode_3(); break;
+	case 4: // D4 - Read/Write PIN
+		dcode_4(); break;
+	case 9125: // D9125 - PAT9125
+		dcode_9125(); break;
+	case 5:
+		MYSERIAL.println("D5 - Test");
+		if (code_seen('P'))
+			selectedSerialPort = (int)code_value();
+		MYSERIAL.print("selectedSerialPort = ");
+		MYSERIAL.println(selectedSerialPort, DEC);
+		break;
+	case 10: // D10 - Tell the printer that XYZ calibration went OK
+        calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); 
+        break;
+    
+    case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
+        eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
+        eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
+        eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
+	case 999:
+	{
+		MYSERIAL.println("D999 - crash");
+
+/*		while (!is_buffer_empty())
+		{
+			process_commands();
+		    cmdqueue_pop_front();
+		}*/
+		st_synchronize();
+
+		lcd_update_enable(true);
+		lcd_implementation_clear();
+		lcd_update(2);
+        
+        // Increment crash counter
+        uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
+        crash_count++;
+        eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
+        
+#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
+        bool yesno = true;
+#else
+        bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
+#endif
+		lcd_update_enable(true);
+		lcd_update(2);
+		lcd_setstatuspgm(WELCOME_MSG);
+		if (yesno)
+		{
+			enquecommand_P(PSTR("G28 X"));
+			enquecommand_P(PSTR("G28 Y"));
+			enquecommand_P(PSTR("D1000"));
+		}
+		else
+		{
+			enquecommand_P(PSTR("D1001"));
+		}
+	}
+		break;
+	case 1000:
+		crashdet_restore_print_and_continue();
+		tmc2130_sg_stop_on_crash = true;
+		break;
+	case 1001:
+		card.sdprinting = false;
+		card.closefile();
+		tmc2130_sg_stop_on_crash = true;
+		break;
+/*	case 4:
+		{
+			MYSERIAL.println("D4 - Test");
+			uint8_t data[16];
+			int cnt = parse_hex(strchr_pointer + 2, data, 16);
+			MYSERIAL.println(cnt, DEC);
+			for (int i = 0; i < cnt; i++)
+			{
+				serial_print_hex_byte(data[i]);
+				MYSERIAL.write(' ');
+			}
+			MYSERIAL.write('\n');
+		}
+		break;
+/*	case 3:
+		if (code_seen('L')) // lcd pwm (0-255)
+		{
+			lcdSoftPwm = (int)code_value();
+		}
+		if (code_seen('B')) // lcd blink delay (0-255)
+		{
+			lcdBlinkDelay = (int)code_value();
+		}
+//		calibrate_z_auto();
+/*		MYSERIAL.print("fsensor_enable()");
+#ifdef PAT9125
+		fsensor_enable();
+#endif*/
+		break;
+//	case 4:
+//			lcdBlinkDelay = 10;
+/*		MYSERIAL.print("fsensor_disable()");
+#ifdef PAT9125
+		fsensor_disable();
+#endif            
+		break;*/
+//		break;
+/*	case 5:
+		{
+			MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
+			int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
+			MYSERIAL.println(val);
+			homeaxis(0);
+		}
+		break;*/
+	case 6:
+		{
+/*			MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
+			int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
+			MYSERIAL.println(val);*/
+			homeaxis(1);
+		}
+		break;
+	case 7:
+		{
+			MYSERIAL.print("pat9125_init=");
+			MYSERIAL.println(pat9125_init(200, 200));
+		}
+		break;
+	case 8:
+		{
+			MYSERIAL.print("swi2c_check=");
+			MYSERIAL.println(swi2c_check(0x75));
+		}
+		break;
+	}
+  }
+#endif //DEBUG_DCODES
+
+  else
+  {
+    SERIAL_ECHO_START;
+    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+    SERIAL_ECHOLNPGM("\"(2)");
+  }
+
+  ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+  //char cmdbuffer[bufindr][100]="Resend:";
+  MYSERIAL.flush();
+  SERIAL_PROTOCOLRPGM(MSG_RESEND);
+  SERIAL_PROTOCOLLN(gcode_LastN + 1);
+  ClearToSend();
+}
+
+// Confirm the execution of a command, if sent from a serial line.
+// Execution of a command from a SD card will not be confirmed.
+void ClearToSend()
+{
+    previous_millis_cmd = millis();
+    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
+        SERIAL_PROTOCOLLNRPGM(MSG_OK);
+}
+
+void get_coordinates()
+{
+  bool seen[4]={false,false,false,false};
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    if(code_seen(axis_codes[i]))
+    {
+      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+      seen[i]=true;
+    }
+    else destination[i] = current_position[i]; //Are these else lines really needed?
+  }
+  if(code_seen('F')) {
+    next_feedrate = code_value();
+#ifdef MAX_SILENT_FEEDRATE
+	if (tmc2130_mode == TMC2130_MODE_SILENT)
+		if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
+#endif //MAX_SILENT_FEEDRATE
+    if(next_feedrate > 0.0) feedrate = next_feedrate;
+  }
+}
+
+void get_arc_coordinates()
+{
+#ifdef SF_ARC_FIX
+   bool relative_mode_backup = relative_mode;
+   relative_mode = true;
+#endif
+   get_coordinates();
+#ifdef SF_ARC_FIX
+   relative_mode=relative_mode_backup;
+#endif
+
+   if(code_seen('I')) {
+     offset[0] = code_value();
+   }
+   else {
+     offset[0] = 0.0;
+   }
+   if(code_seen('J')) {
+     offset[1] = code_value();
+   }
+   else {
+     offset[1] = 0.0;
+   }
+}
+
+void clamp_to_software_endstops(float target[3])
+{
+#ifdef DEBUG_DISABLE_SWLIMITS
+	return;
+#endif //DEBUG_DISABLE_SWLIMITS
+    world2machine_clamp(target[0], target[1]);
+
+    // Clamp the Z coordinate.
+    if (min_software_endstops) {
+        float negative_z_offset = 0;
+        #ifdef ENABLE_AUTO_BED_LEVELING
+            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
+            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
+        #endif
+        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
+    }
+    if (max_software_endstops) {
+        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
+    }
+}
+
+#ifdef MESH_BED_LEVELING
+    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
+        float dx = x - current_position[X_AXIS];
+        float dy = y - current_position[Y_AXIS];
+        float dz = z - current_position[Z_AXIS];
+        int n_segments = 0;
+		
+        if (mbl.active) {
+            float len = abs(dx) + abs(dy);
+            if (len > 0)
+                // Split to 3cm segments or shorter.
+                n_segments = int(ceil(len / 30.f));
+        }
+        
+        if (n_segments > 1) {
+            float de = e - current_position[E_AXIS];
+            for (int i = 1; i < n_segments; ++ i) {
+                float t = float(i) / float(n_segments);
+                plan_buffer_line(
+                                 current_position[X_AXIS] + t * dx,
+                                 current_position[Y_AXIS] + t * dy,
+                                 current_position[Z_AXIS] + t * dz,
+                                 current_position[E_AXIS] + t * de,
+                                 feed_rate, extruder);
+            }
+        }
+        // The rest of the path.
+        plan_buffer_line(x, y, z, e, feed_rate, extruder);
+        current_position[X_AXIS] = x;
+        current_position[Y_AXIS] = y;
+        current_position[Z_AXIS] = z;
+        current_position[E_AXIS] = e;
+    }
+#endif  // MESH_BED_LEVELING
+    
+void prepare_move()
+{
+  clamp_to_software_endstops(destination);
+  previous_millis_cmd = millis();
+
+  // Do not use feedmultiply for E or Z only moves
+  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
+      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+  }
+  else {
+#ifdef MESH_BED_LEVELING
+    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#else
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#endif
+  }
+
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+}
+
+void prepare_arc_move(char isclockwise) {
+  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+  // Trace the arc
+  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
+
+  // As far as the parser is concerned, the position is now == target. In reality the
+  // motion control system might still be processing the action and the real tool position
+  // in any intermediate location.
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+  previous_millis_cmd = millis();
+}
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+
+#if defined(FAN_PIN)
+  #if CONTROLLERFAN_PIN == FAN_PIN
+    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
+  #endif
+#endif
+
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+  {
+    lastMotorCheck = millis();
+
+    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
+    #if EXTRUDERS > 2
+       || !READ(E2_ENABLE_PIN)
+    #endif
+    #if EXTRUDER > 1
+      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+       || !READ(X2_ENABLE_PIN)
+      #endif
+       || !READ(E1_ENABLE_PIN)
+    #endif
+       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
+    {
+      lastMotor = millis(); //... set time to NOW so the fan will turn on
+    }
+
+    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+    {
+        digitalWrite(CONTROLLERFAN_PIN, 0);
+        analogWrite(CONTROLLERFAN_PIN, 0);
+    }
+    else
+    {
+        // allows digital or PWM fan output to be used (see M42 handling)
+        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+    }
+  }
+}
+#endif
+
+#ifdef TEMP_STAT_LEDS
+static bool blue_led = false;
+static bool red_led = false;
+static uint32_t stat_update = 0;
+
+void handle_status_leds(void) {
+  float max_temp = 0.0;
+  if(millis() > stat_update) {
+    stat_update += 500; // Update every 0.5s
+    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+       max_temp = max(max_temp, degHotend(cur_extruder));
+       max_temp = max(max_temp, degTargetHotend(cur_extruder));
+    }
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+      max_temp = max(max_temp, degTargetBed());
+      max_temp = max(max_temp, degBed());
+    #endif
+    if((max_temp > 55.0) && (red_led == false)) {
+      digitalWrite(STAT_LED_RED, 1);
+      digitalWrite(STAT_LED_BLUE, 0);
+      red_led = true;
+      blue_led = false;
+    }
+    if((max_temp < 54.0) && (blue_led == false)) {
+      digitalWrite(STAT_LED_RED, 0);
+      digitalWrite(STAT_LED_BLUE, 1);
+      red_led = false;
+      blue_led = true;
+    }
+  }
+}
+#endif
+
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
+{
+	
+#if defined(KILL_PIN) && KILL_PIN > -1
+	static int killCount = 0;   // make the inactivity button a bit less responsive
+   const int KILL_DELAY = 10000;
+#endif
+	
+    if(buflen < (BUFSIZE-1)){
+        get_command();
+    }
+
+  if( (millis() - previous_millis_cmd) >  max_inactive_time )
+    if(max_inactive_time)
+      kill("", 4);
+  if(stepper_inactive_time)  {
+    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
+    {
+      if(blocks_queued() == false && ignore_stepper_queue == false) {
+        disable_x();
+//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
+        disable_y();
+        disable_z();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+      }
+    }
+  }
+  
+  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
+    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
+    {
+      chdkActive = false;
+      WRITE(CHDK, LOW);
+    }
+  #endif
+  
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    
+    // Check if the kill button was pressed and wait just in case it was an accidental
+    // key kill key press
+    // -------------------------------------------------------------------------------
+    if( 0 == READ(KILL_PIN) )
+    {
+       killCount++;
+    }
+    else if (killCount > 0)
+    {
+       killCount--;
+    }
+    // Exceeded threshold and we can confirm that it was not accidental
+    // KILL the machine
+    // ----------------------------------------------------------------
+    if ( killCount >= KILL_DELAY)
+    {
+       kill("", 5);
+    }
+  #endif
+    
+  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+  #endif
+  #ifdef EXTRUDER_RUNOUT_PREVENT
+    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
+    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
+    {
+     bool oldstatus=READ(E0_ENABLE_PIN);
+     enable_e0();
+     float oldepos=current_position[E_AXIS];
+     float oldedes=destination[E_AXIS];
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
+                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
+                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
+     current_position[E_AXIS]=oldepos;
+     destination[E_AXIS]=oldedes;
+     plan_set_e_position(oldepos);
+     previous_millis_cmd=millis();
+     st_synchronize();
+     WRITE(E0_ENABLE_PIN,oldstatus);
+    }
+  #endif
+  #ifdef TEMP_STAT_LEDS
+      handle_status_leds();
+  #endif
+  check_axes_activity();
+}
+
+void kill(const char *full_screen_message, unsigned char id)
+{
+	SERIAL_ECHOPGM("KILL: ");
+	MYSERIAL.println(int(id));
+	//return;
+  cli(); // Stop interrupts
+  disable_heater();
+
+  disable_x();
+//  SERIAL_ECHOLNPGM("kill - disable Y");
+  disable_y();
+  disable_z();
+  disable_e0();
+  disable_e1();
+  disable_e2();
+
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
+  pinMode(PS_ON_PIN,INPUT);
+#endif
+  SERIAL_ERROR_START;
+  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
+  if (full_screen_message != NULL) {
+      SERIAL_ERRORLNRPGM(full_screen_message);
+      lcd_display_message_fullscreen_P(full_screen_message);
+  } else {
+      LCD_ALERTMESSAGERPGM(MSG_KILLED);
+  }
+
+  // FMC small patch to update the LCD before ending
+  sei();   // enable interrupts
+  for ( int i=5; i--; lcd_update())
+  {
+     delay(200);	
+  }
+  cli();   // disable interrupts
+  suicide();
+  while(1) { /* Intentionally left empty */ } // Wait for reset
+}
+
+void Stop()
+{
+  disable_heater();
+  if(Stopped == false) {
+    Stopped = true;
+    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
+    SERIAL_ERROR_START;
+    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
+    LCD_MESSAGERPGM(MSG_STOPPED);
+  }
+}
+
+bool IsStopped() { return Stopped; };
+
+#ifdef FAST_PWM_FAN
+void setPwmFrequency(uint8_t pin, int val)
+{
+  val &= 0x07;
+  switch(digitalPinToTimer(pin))
+  {
+
+    #if defined(TCCR0A)
+    case TIMER0A:
+    case TIMER0B:
+//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+//         TCCR0B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR1A)
+    case TIMER1A:
+    case TIMER1B:
+//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+//         TCCR1B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2)
+    case TIMER2:
+    case TIMER2:
+         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+         TCCR2 |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2A)
+    case TIMER2A:
+    case TIMER2B:
+         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+         TCCR2B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR3A)
+    case TIMER3A:
+    case TIMER3B:
+    case TIMER3C:
+         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+         TCCR3B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR4A)
+    case TIMER4A:
+    case TIMER4B:
+    case TIMER4C:
+         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+         TCCR4B |= val;
+         break;
+   #endif
+
+    #if defined(TCCR5A)
+    case TIMER5A:
+    case TIMER5B:
+    case TIMER5C:
+         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+         TCCR5B |= val;
+         break;
+   #endif
+
+  }
+}
+#endif //FAST_PWM_FAN
+
+bool setTargetedHotend(int code){
+  tmp_extruder = active_extruder;
+  if(code_seen('T')) {
+    tmp_extruder = code_value();
+    if(tmp_extruder >= EXTRUDERS) {
+      SERIAL_ECHO_START;
+      switch(code){
+        case 104:
+          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
+          break;
+        case 105:
+          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
+          break;
+        case 109:
+          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
+          break;
+        case 218:
+          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
+          break;
+        case 221:
+          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
+          break;
+      }
+      SERIAL_PROTOCOLLN((int)tmp_extruder);
+      return true;
+    }
+  }
+  return false;
+}
+
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
+{
+	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+	{
+		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+	}
+
+	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
+	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
+
+	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
+	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
+
+	total_filament_used = 0;
+
+}
+
+float calculate_volumetric_multiplier(float diameter) {
+	float area = .0;
+	float radius = .0;
+
+	radius = diameter * .5;
+	if (! volumetric_enabled || radius == 0) {
+		area = 1;
+	}
+	else {
+		area = M_PI * pow(radius, 2);
+	}
+
+	return 1.0 / area;
+}
+
+void calculate_volumetric_multipliers() {
+	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
+#if EXTRUDERS > 1
+	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
+#if EXTRUDERS > 2
+	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
+#endif
+#endif
+}
+
+void delay_keep_alive(unsigned int ms)
+{
+    for (;;) {
+        manage_heater();
+        // Manage inactivity, but don't disable steppers on timeout.
+        manage_inactivity(true);
+        lcd_update();
+        if (ms == 0)
+            break;
+        else if (ms >= 50) {
+            delay(50);
+            ms -= 50;
+        } else {
+            delay(ms);
+            ms = 0;
+        }
+    }
+}
+
+void wait_for_heater(long codenum) {
+
+#ifdef TEMP_RESIDENCY_TIME
+	long residencyStart;
+	residencyStart = -1;
+	/* continue to loop until we have reached the target temp
+	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+	while ((!cancel_heatup) && ((residencyStart == -1) ||
+		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
+#else
+	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
+#endif //TEMP_RESIDENCY_TIME
+		if ((millis() - codenum) > 1000UL)
+		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
+			if (!farm_mode) {
+				SERIAL_PROTOCOLPGM("T:");
+				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
+				SERIAL_PROTOCOLPGM(" E:");
+				SERIAL_PROTOCOL((int)tmp_extruder);
+
+#ifdef TEMP_RESIDENCY_TIME
+				SERIAL_PROTOCOLPGM(" W:");
+				if (residencyStart > -1)
+				{
+					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
+					SERIAL_PROTOCOLLN(codenum);
+				}
+				else
+				{
+					SERIAL_PROTOCOLLN("?");
+				}
+			}
+#else
+				SERIAL_PROTOCOLLN("");
+#endif
+				codenum = millis();
+		}
+			manage_heater();
+			manage_inactivity();
+			lcd_update();
+#ifdef TEMP_RESIDENCY_TIME
+			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+			or when current temp falls outside the hysteresis after target temp was reached */
+			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
+				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
+				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
+			{
+				residencyStart = millis();
+			}
+#endif //TEMP_RESIDENCY_TIME
+	}
+}
+
+void check_babystep() {
+	int babystep_z;
+	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
+	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
+		babystep_z = 0; //if babystep value is out of min max range, set it to 0
+		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
+		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
+		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
+		lcd_update_enable(true);		
+	}	
+}
+#ifdef DIS
+void d_setup()
+{	
+	pinMode(D_DATACLOCK, INPUT_PULLUP);
+	pinMode(D_DATA, INPUT_PULLUP);
+	pinMode(D_REQUIRE, OUTPUT);
+	digitalWrite(D_REQUIRE, HIGH);
+}
+
+
+float d_ReadData()
+{
+	int digit[13];
+	String mergeOutput;
+	float output;
+
+	digitalWrite(D_REQUIRE, HIGH);
+	for (int i = 0; i<13; i++)
+	{
+		for (int j = 0; j < 4; j++)
+		{
+			while (digitalRead(D_DATACLOCK) == LOW) {}
+			while (digitalRead(D_DATACLOCK) == HIGH) {}
+			bitWrite(digit[i], j, digitalRead(D_DATA));
+		}
+	}
+
+	digitalWrite(D_REQUIRE, LOW);
+	mergeOutput = "";
+	output = 0;
+	for (int r = 5; r <= 10; r++) //Merge digits
+	{
+		mergeOutput += digit[r];
+	}
+	output = mergeOutput.toFloat();
+
+	if (digit[4] == 8) //Handle sign
+	{
+		output *= -1;
+	}
+
+	for (int i = digit[11]; i > 0; i--) //Handle floating point
+	{
+		output /= 10;
+	}
+
+	return output;
+
+}
+
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+	int t1 = 0;
+	int t_delay = 0;
+	int digit[13];
+	int m;
+	char str[3];
+	//String mergeOutput;
+	char mergeOutput[15];
+	float output;
+
+	int mesh_point = 0; //index number of calibration point
+	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+	float mesh_home_z_search = 4;
+	float row[x_points_num];
+	int ix = 0;
+	int iy = 0;
+
+	char* filename_wldsd = "wldsd.txt";
+	char data_wldsd[70];
+	char numb_wldsd[10];
+
+	d_setup();
+
+	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+		// We don't know where we are! HOME!
+		// Push the commands to the front of the message queue in the reverse order!
+		// There shall be always enough space reserved for these commands.
+		repeatcommand_front(); // repeat G80 with all its parameters
+		
+		enquecommand_front_P((PSTR("G28 W0")));
+		enquecommand_front_P((PSTR("G1 Z5")));
+		return;
+	}
+	bool custom_message_old = custom_message;
+	unsigned int custom_message_type_old = custom_message_type;
+	unsigned int custom_message_state_old = custom_message_state;
+	custom_message = true;
+	custom_message_type = 1;
+	custom_message_state = (x_points_num * y_points_num) + 10;
+	lcd_update(1);
+
+	mbl.reset();
+	babystep_undo();
+
+	card.openFile(filename_wldsd, false);
+
+	current_position[Z_AXIS] = mesh_home_z_search;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+
+	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+	setup_for_endstop_move(false);
+
+	SERIAL_PROTOCOLPGM("Num X,Y: ");
+	SERIAL_PROTOCOL(x_points_num);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_points_num);
+	SERIAL_PROTOCOLPGM("\nZ search height: ");
+	SERIAL_PROTOCOL(mesh_home_z_search);
+	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+	SERIAL_PROTOCOL(x_dimension);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_dimension);
+	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+	while (mesh_point != x_points_num * y_points_num) {
+		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+		iy = mesh_point / x_points_num;
+		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+		float z0 = 0.f;
+		current_position[Z_AXIS] = mesh_home_z_search;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+
+
+		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+		st_synchronize();
+
+		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+			break;
+			card.closefile();
+		}
+
+
+		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+		//strcat(data_wldsd, numb_wldsd);
+
+
+		
+		//MYSERIAL.println(data_wldsd);
+		//delay(1000);
+		//delay(3000);
+		//t1 = millis();
+		
+		//while (digitalRead(D_DATACLOCK) == LOW) {}
+		//while (digitalRead(D_DATACLOCK) == HIGH) {}
+		memset(digit, 0, sizeof(digit));
+		//cli();
+		digitalWrite(D_REQUIRE, LOW);	
+		
+		for (int i = 0; i<13; i++)
+		{
+			//t1 = millis();
+			for (int j = 0; j < 4; j++)
+			{
+				while (digitalRead(D_DATACLOCK) == LOW) {}				
+				while (digitalRead(D_DATACLOCK) == HIGH) {}
+				bitWrite(digit[i], j, digitalRead(D_DATA));
+			}
+			//t_delay = (millis() - t1);
+			//SERIAL_PROTOCOLPGM(" ");
+			//SERIAL_PROTOCOL_F(t_delay, 5);
+			//SERIAL_PROTOCOLPGM(" ");
+		}
+		//sei();
+		digitalWrite(D_REQUIRE, HIGH);
+		mergeOutput[0] = '\0';
+		output = 0;
+		for (int r = 5; r <= 10; r++) //Merge digits
+		{			
+			sprintf(str, "%d", digit[r]);
+			strcat(mergeOutput, str);
+		}
+		
+		output = atof(mergeOutput);
+
+		if (digit[4] == 8) //Handle sign
+		{
+			output *= -1;
+		}
+
+		for (int i = digit[11]; i > 0; i--) //Handle floating point
+		{
+			output *= 0.1;
+		}
+		
+
+		//output = d_ReadData();
+
+		//row[ix] = current_position[Z_AXIS];
+
+		memset(data_wldsd, 0, sizeof(data_wldsd));
+
+		for (int i = 0; i <3; i++) {
+			memset(numb_wldsd, 0, sizeof(numb_wldsd));
+			dtostrf(current_position[i], 8, 5, numb_wldsd);
+			strcat(data_wldsd, numb_wldsd);
+			strcat(data_wldsd, ";");
+
+		}
+		memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		dtostrf(output, 8, 5, numb_wldsd);
+		strcat(data_wldsd, numb_wldsd);
+		//strcat(data_wldsd, ";");
+		card.write_command(data_wldsd);
+
+		
+		//row[ix] = d_ReadData();
+		
+		row[ix] = output; // current_position[Z_AXIS];
+
+		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+			for (int i = 0; i < x_points_num; i++) {
+				SERIAL_PROTOCOLPGM(" ");
+				SERIAL_PROTOCOL_F(row[i], 5);
+
+
+			}
+			SERIAL_PROTOCOLPGM("\n");
+		}
+		custom_message_state--;
+		mesh_point++;
+		lcd_update(1);
+
+	}
+	card.closefile();
+
+}
+#endif
+
+void temp_compensation_start() {
+	
+	custom_message = true;
+	custom_message_type = 5;
+	custom_message_state = PINDA_HEAT_T + 1;
+	lcd_update(2);
+	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
+		current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	}
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+	
+	current_position[X_AXIS] = PINDA_PREHEAT_X;
+	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+	st_synchronize();
+	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
+
+	for (int i = 0; i < PINDA_HEAT_T; i++) {
+		delay_keep_alive(1000);
+		custom_message_state = PINDA_HEAT_T - i;
+		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
+		else lcd_update(1);
+	}	
+	custom_message_type = 0;
+	custom_message_state = 0;
+	custom_message = false;
+}
+
+void temp_compensation_apply() {
+	int i_add;
+	int compensation_value;
+	int z_shift = 0;
+	float z_shift_mm;
+
+	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
+		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
+			i_add = (target_temperature_bed - 60) / 10;
+			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
+			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
+		}else {
+			//interpolation
+			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
+		}
+		SERIAL_PROTOCOLPGM("\n");
+		SERIAL_PROTOCOLPGM("Z shift applied:");
+		MYSERIAL.print(z_shift_mm);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+		st_synchronize();
+		plan_set_z_position(current_position[Z_AXIS]);
+	}
+	else {		
+		//we have no temp compensation data
+	}
+}
+
+float temp_comp_interpolation(float inp_temperature) {
+
+	//cubic spline interpolation
+
+	int n, i, j, k;
+	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
+	int shift[10];
+	int temp_C[10];
+
+	n = 6; //number of measured points
+
+	shift[0] = 0;
+	for (i = 0; i < n; i++) {
+		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
+		temp_C[i] = 50 + i * 10; //temperature in C
+#ifdef PINDA_THERMISTOR
+		temp_C[i] = 35 + i * 5; //temperature in C
+#else
+		temp_C[i] = 50 + i * 10; //temperature in C
+#endif
+		x[i] = (float)temp_C[i];
+		f[i] = (float)shift[i];
+	}
+	if (inp_temperature < x[0]) return 0;
+
+
+	for (i = n - 1; i>0; i--) {
+		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
+		h[i - 1] = x[i] - x[i - 1];
+	}
+	//*********** formation of h, s , f matrix **************
+	for (i = 1; i<n - 1; i++) {
+		m[i][i] = 2 * (h[i - 1] + h[i]);
+		if (i != 1) {
+			m[i][i - 1] = h[i - 1];
+			m[i - 1][i] = h[i - 1];
+		}
+		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
+	}
+	//*********** forward elimination **************
+	for (i = 1; i<n - 2; i++) {
+		temp = (m[i + 1][i] / m[i][i]);
+		for (j = 1; j <= n - 1; j++)
+			m[i + 1][j] -= temp*m[i][j];
+	}
+	//*********** backward substitution *********
+	for (i = n - 2; i>0; i--) {
+		sum = 0;
+		for (j = i; j <= n - 2; j++)
+			sum += m[i][j] * s[j];
+		s[i] = (m[i][n - 1] - sum) / m[i][i];
+	}
+
+		for (i = 0; i<n - 1; i++)
+			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
+				a = (s[i + 1] - s[i]) / (6 * h[i]);
+				b = s[i] / 2;
+				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
+				d = f[i];
+				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
+			}
+
+		return sum;
+
+}
+
+#ifdef PINDA_THERMISTOR
+float temp_compensation_pinda_thermistor_offset()
+{
+	if (!temp_cal_active) return 0;
+	if (!calibration_status_pinda()) return 0;
+	return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
+}
+#endif //PINDA_THERMISTOR
+
+void long_pause() //long pause print
+{
+	st_synchronize();
+	
+	//save currently set parameters to global variables
+	saved_feedmultiply = feedmultiply; 
+	HotendTempBckp = degTargetHotend(active_extruder);
+	fanSpeedBckp = fanSpeed;
+	start_pause_print = millis();
+		
+
+	//save position
+	pause_lastpos[X_AXIS] = current_position[X_AXIS];
+	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
+	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
+	pause_lastpos[E_AXIS] = current_position[E_AXIS];
+
+	//retract
+	current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+	//lift z
+	current_position[Z_AXIS] += Z_PAUSE_LIFT;
+	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
+
+	//set nozzle target temperature to 0
+	setTargetHotend(0, 0);
+	setTargetHotend(0, 1);
+	setTargetHotend(0, 2);
+
+	//Move XY to side
+	current_position[X_AXIS] = X_PAUSE_POS;
+	current_position[Y_AXIS] = Y_PAUSE_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
+
+	// Turn off the print fan
+	fanSpeed = 0;
+
+	st_synchronize();
+}
+
+void serialecho_temperatures() {
+	float tt = degHotend(active_extruder);
+	SERIAL_PROTOCOLPGM("T:");
+	SERIAL_PROTOCOL(tt);
+	SERIAL_PROTOCOLPGM(" E:");
+	SERIAL_PROTOCOL((int)active_extruder);
+	SERIAL_PROTOCOLPGM(" B:");
+	SERIAL_PROTOCOL_F(degBed(), 1);
+	SERIAL_PROTOCOLLN("");
+}
+
+extern uint32_t sdpos_atomic;
+
+void uvlo_() 
+{
+    // Conserve power as soon as possible.
+    disable_x();
+    disable_y();
+
+    // Indicate that the interrupt has been triggered.
+		SERIAL_ECHOLNPGM("UVLO");
+
+    // Read out the current Z motor microstep counter. This will be later used
+    // for reaching the zero full step before powering off.
+    uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
+
+    // Calculate the file position, from which to resume this print.
+    long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
+    {
+      uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+      sd_position -= sdlen_planner;
+      uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+      sd_position -= sdlen_cmdqueue;
+      if (sd_position < 0) sd_position = 0;
+    }
+
+    // Backup the feedrate in mm/min.
+    int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+
+    // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
+    // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
+    // are in action.
+    planner_abort_hard();
+
+    // Clean the input command queue.
+    cmdqueue_reset();
+    card.sdprinting = false;
+//    card.closefile();
+
+    // Enable stepper driver interrupt to move Z axis.
+    // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
+    //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
+    // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
+		sei();
+		plan_buffer_line(
+      current_position[X_AXIS], 
+      current_position[Y_AXIS], 
+      current_position[Z_AXIS], 
+      current_position[E_AXIS] - DEFAULT_RETRACTION, 
+      400, active_extruder);
+		plan_buffer_line(
+      current_position[X_AXIS], 
+      current_position[Y_AXIS], 
+      current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], 
+      current_position[E_AXIS] - DEFAULT_RETRACTION,
+      40, active_extruder);
+
+    // Move Z up to the next 0th full step.
+    // Write the file position.
+    eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
+    // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+      uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+      uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+      // Scale the z value to 1u resolution.
+      int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
+      eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
+    }
+    // Read out the current Z motor microstep counter. This will be later used
+    // for reaching the zero full step before powering off.
+    eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
+    // Store the current position.
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
+    // Store the current feed rate, temperatures and fan speed.
+    EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
+    // Finaly store the "power outage" flag.
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
+
+    st_synchronize();
+    SERIAL_ECHOPGM("stps");
+    MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
+#if 0
+    // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
+    current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+    st_synchronize();
+#endif
+    disable_z();
+    
+    // Increment power failure counter
+    uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
+    power_count++;
+    eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
+    
+		SERIAL_ECHOLNPGM("UVLO - end");
+		cli();
+		while(1);
+}
+
+void setup_fan_interrupt() {
+//INT7
+	DDRE &= ~(1 << 7); //input pin
+	PORTE &= ~(1 << 7); //no internal pull-up
+
+	//start with sensing rising edge
+	EICRB &= ~(1 << 6);
+	EICRB |= (1 << 7);
+
+	//enable INT7 interrupt
+	EIMSK |= (1 << 7);
+}
+
+ISR(INT7_vect) {
+	//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
+
+	if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
+	if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
+		t_fan_rising_edge = millis();
+	}
+	else { //interrupt was triggered by falling edge
+		if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
+			fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
+		}
+	}	
+	EICRB ^= (1 << 6); //change edge
+}
+
+void setup_uvlo_interrupt() {
+	DDRE &= ~(1 << 4); //input pin
+	PORTE &= ~(1 << 4); //no internal pull-up
+
+						//sensing falling edge
+	EICRB |= (1 << 0);
+	EICRB &= ~(1 << 1);
+
+	//enable INT4 interrupt
+	EIMSK |= (1 << 4);
+}
+
+ISR(INT4_vect) {
+	EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once 
+	SERIAL_ECHOLNPGM("INT4");
+	if (IS_SD_PRINTING) uvlo_();
+}
+
+void recover_print(uint8_t automatic) {
+	char cmd[30];
+	lcd_update_enable(true);
+	lcd_update(2);
+	lcd_setstatuspgm(MSG_RECOVERING_PRINT);
+
+  recover_machine_state_after_power_panic();
+
+    // Set the target bed and nozzle temperatures. 
+    sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); 
+    enquecommand(cmd); 
+    sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); 
+    enquecommand(cmd);
+
+  // Lift the print head, so one may remove the excess priming material.
+  if (current_position[Z_AXIS] < 25)
+    enquecommand_P(PSTR("G1 Z25 F800"));
+  // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
+	enquecommand_P(PSTR("G28 X Y"));
+  // Set the target bed and nozzle temperatures and wait.
+	sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
+	enquecommand(cmd);
+	sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
+	enquecommand(cmd);
+	enquecommand_P(PSTR("M83")); //E axis relative mode
+	//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+    // If not automatically recoreverd (long power loss), extrude extra filament to stabilize 
+    if(automatic == 0){ 
+        enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure 
+    } 
+	enquecommand_P(PSTR("G1 E"  STRINGIFY(-DEFAULT_RETRACTION)" F480"));
+  // Mark the power panic status as inactive.
+	eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+	/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
+		delay_keep_alive(1000);
+	}*/
+	SERIAL_ECHOPGM("After waiting for temp:");
+	SERIAL_ECHOPGM("Current position X_AXIS:");
+	MYSERIAL.println(current_position[X_AXIS]);
+	SERIAL_ECHOPGM("Current position Y_AXIS:");
+	MYSERIAL.println(current_position[Y_AXIS]);
+
+  // Restart the print.
+	restore_print_from_eeprom();
+
+	SERIAL_ECHOPGM("current_position[Z_AXIS]:");
+	MYSERIAL.print(current_position[Z_AXIS]);
+}
+
+void recover_machine_state_after_power_panic()
+{
+  // 1) Recover the logical cordinates at the time of the power panic.
+  // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
+  current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
+  current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
+  // Recover the logical coordinate of the Z axis at the time of the power panic.
+  // The current position after power panic is moved to the next closest 0th full step.
+  current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + 
+    UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
+  memcpy(destination, current_position, sizeof(destination));
+
+  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+  print_world_coordinates();
+
+  // 2) Initialize the logical to physical coordinate system transformation.
+  world2machine_initialize();
+
+  // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+  mbl.active = false;
+  for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+    uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+    uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+    // Scale the z value to 10u resolution.
+    int16_t v;
+    eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
+    if (v != 0)
+      mbl.active = true;
+    mbl.z_values[iy][ix] = float(v) * 0.001f;
+  }
+  if (mbl.active)
+    mbl.upsample_3x3();
+  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+  print_mesh_bed_leveling_table();
+
+  // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
+  // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
+  babystep_load();
+
+  // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
+  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+  // 6) Power up the motors, mark their positions as known.
+  //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
+  axis_known_position[X_AXIS] = true; enable_x();
+  axis_known_position[Y_AXIS] = true; enable_y();
+  axis_known_position[Z_AXIS] = true; enable_z();
+
+  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+  print_physical_coordinates();
+
+  // 7) Recover the target temperatures.
+  target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
+  target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
+}
+
+void restore_print_from_eeprom() {
+	float x_rec, y_rec, z_pos;
+	int feedrate_rec;
+	uint8_t fan_speed_rec;
+	char cmd[30];
+	char* c;
+	char filename[13];
+
+	fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
+	EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
+	SERIAL_ECHOPGM("Feedrate:");
+	MYSERIAL.println(feedrate_rec);
+	for (int i = 0; i < 8; i++) {
+		filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
+		
+	}
+	filename[8] = '\0';
+
+	MYSERIAL.print(filename);
+	strcat_P(filename, PSTR(".gco"));
+	sprintf_P(cmd, PSTR("M23 %s"), filename);
+	for (c = &cmd[4]; *c; c++)
+		 *c = tolower(*c);
+	enquecommand(cmd);
+	uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
+	SERIAL_ECHOPGM("Position read from eeprom:");
+	MYSERIAL.println(position);
+
+  // E axis relative mode.
+	enquecommand_P(PSTR("M83"));
+  // Move to the XY print position in logical coordinates, where the print has been killed.
+	strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
+	strcat_P(cmd, PSTR(" Y"));   strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
+	strcat_P(cmd, PSTR(" F2000"));
+	enquecommand(cmd);
+  // Move the Z axis down to the print, in logical coordinates.
+	strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
+	enquecommand(cmd);
+  // Unretract.
+	enquecommand_P(PSTR("G1 E"  STRINGIFY(DEFAULT_RETRACTION)" F480"));
+  // Set the feedrate saved at the power panic.
+	sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
+	enquecommand(cmd);
+  // Set the fan speed saved at the power panic.
+	strcpy_P(cmd, PSTR("M106 S"));
+	strcat(cmd, itostr3(int(fan_speed_rec)));
+	enquecommand(cmd);
+
+  // Set a position in the file.
+  sprintf_P(cmd, PSTR("M26 S%lu"), position);
+  enquecommand(cmd);
+  // Start SD print.
+  enquecommand_P(PSTR("M24")); 
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// new save/restore printing
+
+//extern uint32_t sdpos_atomic;
+
+bool saved_printing = false;
+uint32_t saved_sdpos = 0;
+float saved_pos[4] = {0, 0, 0, 0};
+// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
+float saved_feedrate2 = 0;
+uint8_t saved_active_extruder = 0;
+bool saved_extruder_under_pressure = false;
+
+void stop_and_save_print_to_ram(float z_move, float e_move)
+{
+	if (saved_printing) return;
+	cli();
+  unsigned char nplanner_blocks = number_of_blocks();
+	saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
+	uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+	saved_sdpos -= sdlen_planner;
+	uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+	saved_sdpos -= sdlen_cmdqueue;
+
+#if 0
+  SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
+  SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
+  SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
+  SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
+  SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
+  SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
+  SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
+
+  {
+    card.setIndex(saved_sdpos);
+    SERIAL_ECHOLNPGM("Content of planner buffer: ");
+    for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
+      MYSERIAL.print(char(card.get()));
+    SERIAL_ECHOLNPGM("Content of command buffer: ");
+    for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
+      MYSERIAL.print(char(card.get()));
+    SERIAL_ECHOLNPGM("End of command buffer");
+  }
+
+  {
+    // Print the content of the planner buffer, line by line:
+    card.setIndex(saved_sdpos);
+    int8_t iline = 0;
+    for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
+      SERIAL_ECHOPGM("Planner line (from file): ");
+      MYSERIAL.print(int(iline), DEC);
+      SERIAL_ECHOPGM(", length: ");
+      MYSERIAL.print(block_buffer[idx].sdlen, DEC);
+      SERIAL_ECHOPGM(", steps: (");
+      MYSERIAL.print(block_buffer[idx].steps_x, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_y, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_z, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_e, DEC);
+      SERIAL_ECHOPGM("), events: ");
+      MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
+      for (int len = block_buffer[idx].sdlen; len > 0; -- len)
+        MYSERIAL.print(char(card.get()));
+    }
+  }
+  {
+    // Print the content of the command buffer, line by line:
+    int8_t iline = 0;
+    union {
+        struct {
+            char lo;
+            char hi;
+        } lohi;
+        uint16_t value;
+    } sdlen_single;
+    int _bufindr = bufindr;
+    for (int _buflen  = buflen; _buflen > 0; ++ iline) {
+        if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+            sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
+            sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
+        }
+        SERIAL_ECHOPGM("Buffer line (from buffer): ");
+        MYSERIAL.print(int(iline), DEC);
+        SERIAL_ECHOPGM(", type: ");
+        MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
+        SERIAL_ECHOPGM(", len: ");
+        MYSERIAL.println(sdlen_single.value, DEC);
+        // Print the content of the buffer line.
+        MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
+
+        SERIAL_ECHOPGM("Buffer line (from file): ");
+        MYSERIAL.print(int(iline), DEC);
+        MYSERIAL.println(int(iline), DEC);
+        for (; sdlen_single.value > 0; -- sdlen_single.value)
+          MYSERIAL.print(char(card.get()));
+
+        if (-- _buflen == 0)
+          break;
+        // First skip the current command ID and iterate up to the end of the string.
+        for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
+        // Second, skip the end of string null character and iterate until a nonzero command ID is found.
+        for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+        // If the end of the buffer was empty,
+        if (_bufindr == sizeof(cmdbuffer)) {
+            // skip to the start and find the nonzero command.
+            for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+        }
+    }
+  }
+#endif
+
+#if 0
+  saved_feedrate2 = feedrate; //save feedrate
+#else
+  // Try to deduce the feedrate from the first block of the planner.
+  // Speed is in mm/min.
+  saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+#endif
+
+	planner_abort_hard(); //abort printing
+	memcpy(saved_pos, current_position, sizeof(saved_pos));
+	saved_active_extruder = active_extruder; //save active_extruder
+
+	saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
+
+	cmdqueue_reset(); //empty cmdqueue
+	card.sdprinting = false;
+//	card.closefile();
+	saved_printing = true;
+	sei();
+	if ((z_move != 0) || (e_move != 0)) { // extruder or z move
+#if 1
+    // Rather than calling plan_buffer_line directly, push the move into the command queue, 
+    char buf[48];
+    strcpy_P(buf, PSTR("G1 Z"));
+    dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
+    strcat_P(buf, PSTR(" E"));
+    // Relative extrusion
+    dtostrf(e_move, 6, 3, buf + strlen(buf));
+    strcat_P(buf, PSTR(" F"));
+    dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
+    // At this point the command queue is empty.
+    enquecommand(buf, false);
+    // If this call is invoked from the main Arduino loop() function, let the caller know that the command
+    // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
+    repeatcommand_front();
+#else
+		plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
+    st_synchronize(); //wait moving
+    memcpy(current_position, saved_pos, sizeof(saved_pos));
+    memcpy(destination, current_position, sizeof(destination));
+#endif
+  }
+}
+
+void restore_print_from_ram_and_continue(float e_move)
+{
+	if (!saved_printing) return;
+//	for (int axis = X_AXIS; axis <= E_AXIS; axis++)
+//	    current_position[axis] = st_get_position_mm(axis);
+	active_extruder = saved_active_extruder; //restore active_extruder
+	feedrate = saved_feedrate2; //restore feedrate
+	float e = saved_pos[E_AXIS] - e_move;
+	plan_set_e_position(e);
+	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
+    st_synchronize();
+  memcpy(current_position, saved_pos, sizeof(saved_pos));
+  memcpy(destination, current_position, sizeof(destination));
+	card.setIndex(saved_sdpos);
+  sdpos_atomic = saved_sdpos;
+	card.sdprinting = true;
+	saved_printing = false;
+}
+
+void print_world_coordinates()
+{
+  SERIAL_ECHOPGM("world coordinates: (");
+  MYSERIAL.print(current_position[X_AXIS], 3);
+  SERIAL_ECHOPGM(", ");
+  MYSERIAL.print(current_position[Y_AXIS], 3);
+  SERIAL_ECHOPGM(", ");
+  MYSERIAL.print(current_position[Z_AXIS], 3);
+  SERIAL_ECHOLNPGM(")");
+}
+
+void print_physical_coordinates()
+{
+  SERIAL_ECHOPGM("physical coordinates: (");
+  MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
+  SERIAL_ECHOPGM(", ");
+  MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
+  SERIAL_ECHOPGM(", ");
+  MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
+  SERIAL_ECHOLNPGM(")");
+}
+
+void print_mesh_bed_leveling_table()
+{
+  SERIAL_ECHOPGM("mesh bed leveling: ");
+  for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
+    for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
+      MYSERIAL.print(mbl.z_values[y][x], 3);
+      SERIAL_ECHOPGM(" ");
+    }
+  SERIAL_ECHOLNPGM("");
+}