|
@@ -14,6 +14,7 @@
|
|
|
#include "eeprom.h"
|
|
|
#include "pins.h"
|
|
|
#include "fastio.h"
|
|
|
+#include "adc.h"
|
|
|
|
|
|
class Filament_sensor {
|
|
|
public:
|
|
@@ -152,7 +153,38 @@ public:
|
|
|
bool event = IR_sensor::update();
|
|
|
if (voltReady) {
|
|
|
voltReady = false;
|
|
|
- printf_P(PSTR("newVoltRaw:%u\n"), getVoltRaw() / OVERSAMPLENR);
|
|
|
+ uint16_t volt = getVoltRaw();
|
|
|
+ printf_P(PSTR("newVoltRaw:%u\n"), volt / OVERSAMPLENR);
|
|
|
+
|
|
|
+ // detect min-max, some long term sliding window for filtration may be added
|
|
|
+ // avoiding floating point operations, thus computing in raw
|
|
|
+ if(volt > maxVolt) {
|
|
|
+ maxVolt = volt;
|
|
|
+ }
|
|
|
+ else if(volt < minVolt) {
|
|
|
+ minVolt = volt;
|
|
|
+ }
|
|
|
+ //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
|
|
|
+ //! to be detected as the new fsensor
|
|
|
+ //! We can either fake it by extending the detection window to a looooong time
|
|
|
+ //! or do some other countermeasures
|
|
|
+
|
|
|
+ //! what we want to detect:
|
|
|
+ //! if minvolt gets below ~0.3V, it means there is an old fsensor
|
|
|
+ //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
|
|
|
+ //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
|
|
|
+ //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
|
|
|
+ if(minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD) {
|
|
|
+ IR_ANALOG_Check(SensorRevision::_Old, SensorRevision::_Rev04, _i("FS v0.4 or newer") ); ////MSG_FS_V_04_OR_NEWER c=18
|
|
|
+ }
|
|
|
+ //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
|
|
|
+ //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
|
|
|
+ //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
|
|
|
+ else if( minVolt < IRsensor_Ldiode_TRESHOLD && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD) {
|
|
|
+ IR_ANALOG_Check(SensorRevision::_Rev04, sensorRevision=SensorRevision::_Old, _i("FS v0.3 or older")); ////MSG_FS_V_03_OR_OLDER c=18
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
;//
|
|
|
}
|
|
|
|
|
@@ -184,10 +216,110 @@ public:
|
|
|
_Rev04 = 1,
|
|
|
_Undef = EEPROM_EMPTY_VALUE
|
|
|
};
|
|
|
+
|
|
|
+ SensorRevision getSensorRevision() {
|
|
|
+ return sensorRevision;
|
|
|
+ }
|
|
|
+
|
|
|
+ const char* getIRVersionText() {
|
|
|
+ switch(sensorRevision) {
|
|
|
+ case SensorRevision::_Old:
|
|
|
+ return _T(MSG_IR_03_OR_OLDER);
|
|
|
+ case SensorRevision::_Rev04:
|
|
|
+ return _T(MSG_IR_04_OR_NEWER);
|
|
|
+ default:
|
|
|
+ return _T(MSG_IR_UNKNOWN);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void setSensorRevision(SensorRevision rev, bool updateEEPROM = false) {
|
|
|
+ sensorRevision = rev;
|
|
|
+ if (updateEEPROM) {
|
|
|
+ eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)rev);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ uint16_t Voltage2Raw(float V) {
|
|
|
+ return (V * 1023 * OVERSAMPLENR / VOLT_DIV_REF ) + 0.5F;
|
|
|
+ }
|
|
|
+ float Raw2Voltage(uint16_t raw) {
|
|
|
+ return VOLT_DIV_REF * (raw / (1023.F * OVERSAMPLENR));
|
|
|
+ }
|
|
|
+
|
|
|
+ /// This is called only upon start of the printer or when switching the fsensor ON in the menu
|
|
|
+ /// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
|
|
|
+ bool checkVoltage(uint16_t raw){
|
|
|
+ if(IRsensor_Lmax_TRESHOLD <= raw && raw <= IRsensor_Hmin_TRESHOLD) {
|
|
|
+ /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
|
|
|
+ /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
|
|
|
+ /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
|
|
|
+ /// and would have been considered more like a sabotage than normal printer operation
|
|
|
+ puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(sensorRevision == SensorRevision::_Rev04) {
|
|
|
+ /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
|
|
|
+ if(IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD) {
|
|
|
+ puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure
|
|
|
+ #if 0 //Disabled as it has to be decided if we gonna use this or not.
|
|
|
+ if(IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD) {
|
|
|
+ puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false
|
|
|
+ #if 0
|
|
|
+ if((sensorRevision == SensorRevision::_Undef) && (raw > IRsensor_Lmax_TRESHOLD)) {
|
|
|
+ puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ // otherwise the IR fsensor is considered working correctly
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Voltage2Raw is not constexpr :/
|
|
|
+ const uint16_t IRsensor_Ldiode_TRESHOLD = Voltage2Raw(0.3f); // ~0.3V, raw value=982
|
|
|
+ const uint16_t IRsensor_Lmax_TRESHOLD = Voltage2Raw(1.5f); // ~1.5V (0.3*Vcc), raw value=4910
|
|
|
+ const uint16_t IRsensor_Hmin_TRESHOLD = Voltage2Raw(3.0f); // ~3.0V (0.6*Vcc), raw value=9821
|
|
|
+ const uint16_t IRsensor_Hopen_TRESHOLD = Voltage2Raw(4.6f); // ~4.6V (N.C. @ Ru~20-50k, Rd'=56k, Ru'=10k), raw value=15059
|
|
|
+ const uint16_t IRsensor_VMax_TRESHOLD = Voltage2Raw(5.f); // ~5V, raw value=16368
|
|
|
+
|
|
|
private:
|
|
|
SensorRevision sensorRevision;
|
|
|
volatile bool voltReady; //this gets set by the adc ISR
|
|
|
volatile uint16_t voltRaw;
|
|
|
+ uint16_t minVolt = Voltage2Raw(6.f);
|
|
|
+ uint16_t maxVolt = 0;
|
|
|
+ uint16_t nFSCheckCount;
|
|
|
+
|
|
|
+ static constexpr uint16_t FS_CHECK_COUNT = 4;
|
|
|
+ /// Switching mechanism of the fsensor type.
|
|
|
+ /// Called from 2 spots which have a very similar behavior
|
|
|
+ /// 1: SensorRevision::_Old -> SensorRevision::_Rev04 and print _i("FS v0.4 or newer")
|
|
|
+ /// 2: SensorRevision::_Rev04 -> sensorRevision=SensorRevision::_Old and print _i("FS v0.3 or older")
|
|
|
+ void IR_ANALOG_Check(SensorRevision isVersion, SensorRevision switchTo, const char *statusLineTxt_P) {
|
|
|
+ bool bTemp = (!CHECK_ALL_HEATERS);
|
|
|
+ bTemp = bTemp && (menu_menu == lcd_status_screen);
|
|
|
+ bTemp = bTemp && ((sensorRevision == isVersion) || (sensorRevision == SensorRevision::_Undef));
|
|
|
+ bTemp = bTemp && ready;
|
|
|
+ if (bTemp) {
|
|
|
+ nFSCheckCount++;
|
|
|
+ if (nFSCheckCount > FS_CHECK_COUNT) {
|
|
|
+ nFSCheckCount = 0; // not necessary
|
|
|
+ setSensorRevision(switchTo, true);
|
|
|
+ printf_IRSensorAnalogBoardChange();
|
|
|
+ lcd_setstatuspgm(statusLineTxt_P);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ nFSCheckCount = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
};
|
|
|
|
|
|
extern IR_sensor_analog fsensor;
|