| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562 | #include "mmu2_protocol_logic.h"#include "mmu2_log.h"#include "mmu2_fsensor.h"#include "system_timer.h"#include <string.h>namespace MMU2 {StepStatus ProtocolLogicPartBase::ProcessFINDAReqSent(StepStatus finishedRV, State nextState){    auto expmsg = logic->ExpectingMessage(linkLayerTimeout);    if (expmsg != MessageReady)        return expmsg;    logic->findaPressed = logic->rsp.paramValue;    state = nextState;    return finishedRV;}void ProtocolLogicPartBase::CheckAndReportAsyncEvents(){    // even when waiting for a query period, we need to report a change in filament sensor's state    // - it is vital for a precise synchronization of moves of the printer and the MMU    uint8_t fs = (uint8_t)WhereIsFilament();    if( fs != logic->lastFSensor ){        SendAndUpdateFilamentSensor();    }}void ProtocolLogicPartBase::SendQuery(){    logic->SendMsg(RequestMsg(RequestMsgCodes::Query, 0));    state = State::QuerySent;}void ProtocolLogicPartBase::SendFINDAQuery(){    logic->SendMsg(RequestMsg(RequestMsgCodes::Finda, 0 ) );    state = State::FINDAReqSent;}void ProtocolLogicPartBase::SendAndUpdateFilamentSensor(){    logic->SendMsg(RequestMsg(RequestMsgCodes::FilamentSensor, logic->lastFSensor = (uint8_t)WhereIsFilament() ) );    state = State::FilamentSensorStateSent;}void ProtocolLogicPartBase::SendButton(uint8_t btn){    logic->SendMsg(RequestMsg(RequestMsgCodes::Button, btn));    state = State::ButtonSent;}StepStatus ProtocolLogic::ProcessUARTByte(uint8_t c) {    switch (protocol.DecodeResponse(c)) {    case DecodeStatus::MessageCompleted:        return MessageReady;    case DecodeStatus::NeedMoreData:        return Processing;    case DecodeStatus::Error:    default:        return ProtocolError;    }}StepStatus ProtocolLogic::ExpectingMessage(uint32_t timeout) {    int bytesConsumed = 0;    int c = -1;        // try to consume as many rx bytes as possible (until a message has been completed)    while((c = uart->read()) >= 0){        ++bytesConsumed;        RecordReceivedByte(c);        switch (protocol.DecodeResponse(c)) {        case DecodeStatus::MessageCompleted:            rsp = protocol.GetResponseMsg();            LogResponse();            RecordUARTActivity(); // something has happened on the UART, update the timeout record            return MessageReady;        case DecodeStatus::NeedMoreData:            break;        case DecodeStatus::Error:        default:            RecordUARTActivity(); // something has happened on the UART, update the timeout record            return ProtocolError;        }    }    if( bytesConsumed != 0 ){        RecordUARTActivity(); // something has happened on the UART, update the timeout record        return Processing; // consumed some bytes, but message still not ready    } else if (Elapsed(timeout)) {        return CommunicationTimeout;    }    return Processing;}void ProtocolLogic::SendMsg(RequestMsg rq) {    uint8_t txbuff[Protocol::MaxRequestSize()];    uint8_t len = Protocol::EncodeRequest(rq, txbuff);    uart->write(txbuff, len);    LogRequestMsg(txbuff, len);    RecordUARTActivity();}void StartSeq::Restart() {    state = State::S0Sent;    logic->SendMsg(RequestMsg(RequestMsgCodes::Version, 0));}StepStatus StartSeq::Step() {    auto expmsg = logic->ExpectingMessage(linkLayerTimeout);    if (expmsg != MessageReady)        return expmsg;    // solve initial handshake    switch (state) {    case State::S0Sent: // received response to S0 - major        if (logic->rsp.paramValue != 2) {            return VersionMismatch;        }        logic->dataTO.Reset(); // got meaningful response from the MMU, stop data layer timeout tracking        logic->SendMsg(RequestMsg(RequestMsgCodes::Version, 1));        state = State::S1Sent;        break;    case State::S1Sent: // received response to S1 - minor        if (logic->rsp.paramValue != 0) {            return VersionMismatch;        }        logic->SendMsg(RequestMsg(RequestMsgCodes::Version, 2));        state = State::S2Sent;        break;    case State::S2Sent: // received response to S2 - revision        if (logic->rsp.paramValue != 0) {            return VersionMismatch;        }        // Start General Interrogation after line up.        // For now we just send the state of the filament sensor, but we may request        // data point states from the MMU as well. TBD in the future, especially with another protocol        SendAndUpdateFilamentSensor();        break;    case State::FilamentSensorStateSent:        state = State::Ready;        return Finished;        break;    default:        return VersionMismatch;    }    return Processing;}void Command::Restart() {    state = State::CommandSent;    logic->SendMsg(logic->command.rq);}StepStatus Command::Step() {    switch (state) {    case State::CommandSent: {        auto expmsg = logic->ExpectingMessage(linkLayerTimeout);        if (expmsg != MessageReady)            return expmsg;        switch (logic->rsp.paramCode) { // the response should be either accepted or rejected        case ResponseMsgParamCodes::Accepted:            logic->progressCode = ProgressCode::OK;            logic->errorCode = ErrorCode::RUNNING;            state = State::Wait;            break;        case ResponseMsgParamCodes::Rejected:            // rejected - should normally not happen, but report the error up            logic->progressCode = ProgressCode::OK;            logic->errorCode = ErrorCode::PROTOCOL_ERROR;            return CommandRejected;        default:            return ProtocolError;        }        } break;    case State::Wait:        if (logic->Elapsed(heartBeatPeriod)) {            SendQuery();        } else {             // even when waiting for a query period, we need to report a change in filament sensor's state            // - it is vital for a precise synchronization of moves of the printer and the MMU            CheckAndReportAsyncEvents();        }        break;    case State::QuerySent: {        auto expmsg = logic->ExpectingMessage(linkLayerTimeout);        if (expmsg != MessageReady)            return expmsg;        }        // [[fallthrough]];    case State::ContinueFromIdle:        switch (logic->rsp.paramCode) {        case ResponseMsgParamCodes::Processing:            logic->progressCode = static_cast<ProgressCode>(logic->rsp.paramValue);            logic->errorCode = ErrorCode::OK;            SendAndUpdateFilamentSensor(); // keep on reporting the state of fsensor regularly            break;        case ResponseMsgParamCodes::Error:            // in case of an error the progress code remains as it has been before            logic->errorCode = static_cast<ErrorCode>(logic->rsp.paramValue);            // keep on reporting the state of fsensor regularly even in command error state            // - the MMU checks FINDA and fsensor even while recovering from errors            SendAndUpdateFilamentSensor();            return CommandError;        case ResponseMsgParamCodes::Finished:            logic->progressCode = ProgressCode::OK;            state = State::Ready;            return Finished;        default:            return ProtocolError;        }        break;    case State::FilamentSensorStateSent:{        auto expmsg = logic->ExpectingMessage(linkLayerTimeout);        if (expmsg != MessageReady)            return expmsg;        SendFINDAQuery();        } break;    case State::FINDAReqSent:        return ProcessFINDAReqSent(Processing, State::Wait);    case State::ButtonSent:{        // button is never confirmed ... may be it should be        // auto expmsg = logic->ExpectingMessage(linkLayerTimeout);        // if (expmsg != MessageReady)        //     return expmsg;        SendQuery();        } break;    default:        return ProtocolError;    }    return Processing;}void Idle::Restart() {    state = State::Ready;}StepStatus Idle::Step() {    switch (state) {    case State::Ready: // check timeout        if (logic->Elapsed(heartBeatPeriod)) {            logic->SendMsg(RequestMsg(RequestMsgCodes::Query, 0));            state = State::QuerySent;            return Processing;        }        break;    case State::QuerySent: { // check UART        auto expmsg = logic->ExpectingMessage(linkLayerTimeout);        if (expmsg != MessageReady)            return expmsg;        // If we are accidentally in Idle and we receive something like "T0 P1" - that means the communication dropped out while a command was in progress.        // That causes no issues here, we just need to switch to Command processing and continue there from now on.        // The usual response in this case should be some command and "F" - finished - that confirms we are in an Idle state even on the MMU side.        switch( logic->rsp.request.code ){        case RequestMsgCodes::Cut:        case RequestMsgCodes::Eject:        case RequestMsgCodes::Load:        case RequestMsgCodes::Mode:        case RequestMsgCodes::Tool:        case RequestMsgCodes::Unload:            if( logic->rsp.paramCode != ResponseMsgParamCodes::Finished ){                logic->SwitchFromIdleToCommand();                return Processing;            }        default:            break;        }        SendFINDAQuery();        return Processing;    } break;    case State::FINDAReqSent:        return ProcessFINDAReqSent(Finished, State::Ready);    default:        return ProtocolError;    }    // The "return Finished" in this state machine requires a bit of explanation:    // The Idle state either did nothing (still waiting for the heartbeat timeout)    // or just successfully received the answer to Q0, whatever that was.    // In both cases, it is ready to hand over work to a command or something else,    // therefore we are returning Finished (also to exit mmu_loop() and unblock Marlin's loop!).    // If there is no work, we'll end up in the Idle state again    // and we'll send the heartbeat message after the specified timeout.    return Finished;}ProtocolLogic::ProtocolLogic(MMU2Serial *uart)    : stopped(this)    , startSeq(this)    , idle(this)    , command(this)    , currentState(&stopped)    , plannedRq(RequestMsgCodes::unknown, 0)    , lastUARTActivityMs(0)    , rsp(RequestMsg(RequestMsgCodes::unknown, 0), ResponseMsgParamCodes::unknown, 0)    , state(State::Stopped)    , lrb(0)    , uart(uart)    , lastFSensor((uint8_t)WhereIsFilament()){}void ProtocolLogic::Start() {    state = State::InitSequence;    currentState = &startSeq;    startSeq.Restart();}void ProtocolLogic::Stop() {    state = State::Stopped;    currentState = &stopped;}void ProtocolLogic::ToolChange(uint8_t slot) {    PlanGenericRequest(RequestMsg(RequestMsgCodes::Tool, slot));}void ProtocolLogic::UnloadFilament() {    PlanGenericRequest(RequestMsg(RequestMsgCodes::Unload, 0));}void ProtocolLogic::LoadFilament(uint8_t slot) {    PlanGenericRequest(RequestMsg(RequestMsgCodes::Load, slot));}void ProtocolLogic::EjectFilament(uint8_t slot) {    PlanGenericRequest(RequestMsg(RequestMsgCodes::Eject, slot));}void ProtocolLogic::CutFilament(uint8_t slot){    PlanGenericRequest(RequestMsg(RequestMsgCodes::Cut, slot));}void ProtocolLogic::ResetMMU() {    PlanGenericRequest(RequestMsg(RequestMsgCodes::Reset, 0));}void ProtocolLogic::Button(uint8_t index){    PlanGenericRequest(RequestMsg(RequestMsgCodes::Button, index));}void ProtocolLogic::Home(uint8_t mode){    PlanGenericRequest(RequestMsg(RequestMsgCodes::Home, mode));}void ProtocolLogic::PlanGenericRequest(RequestMsg rq) {    plannedRq = rq;    if( ! currentState->ExpectsResponse() ){        ActivatePlannedRequest();    } // otherwise wait for an empty window to activate the request}bool MMU2::ProtocolLogic::ActivatePlannedRequest(){    if( plannedRq.code == RequestMsgCodes::Button ){        // only issue the button to the MMU and do not restart the state machines        command.SendButton(plannedRq.value);        plannedRq = RequestMsg(RequestMsgCodes::unknown, 0);        return true;    } else if( plannedRq.code != RequestMsgCodes::unknown ){        currentState = &command;        command.SetRequestMsg(plannedRq);        plannedRq = RequestMsg(RequestMsgCodes::unknown, 0);        command.Restart();        return true;    }    return false;}void ProtocolLogic::SwitchFromIdleToCommand(){    currentState = &command;    command.SetRequestMsg(rsp.request);    // we are recovering from a communication drop out, the command is already running    // and we have just received a response to a Q0 message about a command progress    command.ContinueFromIdle();}void ProtocolLogic::SwitchToIdle() {    state = State::Running;    currentState = &idle;    idle.Restart();}void ProtocolLogic::HandleCommunicationTimeout() {    uart->flush(); // clear the output buffer    currentState = &startSeq;    state = State::InitSequence;    startSeq.Restart();}bool ProtocolLogic::Elapsed(uint32_t timeout) const {    return _millis() >= (lastUARTActivityMs + timeout);}void ProtocolLogic::RecordUARTActivity() {    lastUARTActivityMs = _millis();}void ProtocolLogic::RecordReceivedByte(uint8_t c){    lastReceivedBytes[lrb] = c;    lrb = (lrb+1) % lastReceivedBytes.size();}char NibbleToChar(uint8_t c){    switch (c) {    case 0:    case 1:    case 2:    case 3:    case 4:    case 5:    case 6:    case 7:    case 8:    case 9:        return c + '0';    case 10:    case 11:    case 12:    case 13:    case 14:    case 15:        return (c - 10) + 'a';    default:        return 0;    }}void ProtocolLogic::FormatLastReceivedBytes(char *dst){    for(uint8_t i = 0; i < lastReceivedBytes.size(); ++i){        uint8_t b = lastReceivedBytes[ (lrb-i-1) % lastReceivedBytes.size() ];        dst[i*3] = NibbleToChar(b >> 4);        dst[i*3+1] = NibbleToChar(b & 0xf);        dst[i*3+2] = ' ';    }    dst[ (lastReceivedBytes.size() - 1) * 3 + 2] = 0; // terminate properly}void ProtocolLogic::FormatLastResponseMsgAndClearLRB(char *dst){    *dst++ = '<';    for(uint8_t i = 0; i < lrb; ++i){        uint8_t b = lastReceivedBytes[ i ];        if( b < 32 )b = '.';        if( b > 127 )b = '.';        *dst++ = b;    }    *dst = 0; // terminate properly    lrb = 0; // reset the input buffer index in case of a clean message}void ProtocolLogic::LogRequestMsg(const uint8_t *txbuff, uint8_t size){    constexpr uint_fast8_t rqs = modules::protocol::Protocol::MaxRequestSize() + 2;    char tmp[rqs] = ">";    static char lastMsg[rqs] = "";    for(uint8_t i = 0; i < size; ++i){        uint8_t b = txbuff[i];        if( b < 32 )b = '.';        if( b > 127 )b = '.';        tmp[i+1] = b;    }    tmp[size+1] = '\n';    tmp[size+2] = 0;    if( !strncmp(tmp, ">S0.\n", rqs) && !strncmp(lastMsg, tmp, rqs) ){        // @@TODO we skip the repeated request msgs for now         // to avoid spoiling the whole log just with ">S0" messages        // especially when the MMU is not connected.        // We'll lose the ability to see if the printer is actually        // trying to find the MMU, but since it has been reliable in the past        // we can live without it for now.    } else {        MMU2_ECHO_MSG(tmp);    }    memcpy(lastMsg, tmp, rqs);}void MMU2::ProtocolLogic::LogError(const char *reason){    char lrb[lastReceivedBytes.size() * 3];    FormatLastReceivedBytes(lrb);        MMU2_ERROR_MSG(reason);    SERIAL_ECHO(", last bytes: ");    SERIAL_ECHOLN(lrb);}void ProtocolLogic::LogResponse(){    char lrb[lastReceivedBytes.size()];    FormatLastResponseMsgAndClearLRB(lrb);    MMU2_ECHO_MSG(lrb);    SERIAL_ECHOLN();}StepStatus MMU2::ProtocolLogic::HandleCommError(const char *msg, StepStatus ss){    protocol.ResetResponseDecoder();    HandleCommunicationTimeout();    if( dataTO.Record(ss) ){        LogError(msg);        return dataTO.InitialCause();    } else {        return Processing; // suppress short drop outs of communication    }}StepStatus ProtocolLogic::Step() {    if( ! currentState->ExpectsResponse() ){ // if not waiting for a response, activate a planned request immediately        ActivatePlannedRequest();    }    auto currentStatus = currentState->Step();    switch (currentStatus) {    case Processing:        // we are ok, the state machine continues correctly        break;    case Finished: {        // We are ok, switching to Idle if there is no potential next request planned.        // But the trouble is we must report a finished command if the previous command has just been finished        // i.e. only try to find some planned command if we just finished the Idle cycle        bool previousCommandFinished = currentState == &command; // @@TODO this is a nasty hack :(         if( ! ActivatePlannedRequest() ){ // if nothing is planned, switch to Idle            SwitchToIdle();        } else {            // if the previous cycle was Idle and now we have planned a new command -> avoid returning Finished            if( ! previousCommandFinished && currentState == &command){                currentStatus = Processing;            }        }        }        break;    case CommandRejected:        // we have to repeat it - that's the only thing we can do        // no change in state        // @@TODO wait until Q0 returns command in progress finished, then we can send this one        LogError("Command rejected");        command.Restart();        break;    case CommandError:        LogError("Command Error");        // we shall probably transfer into the Idle state and await further instructions from the upper layer        // Idle state may solve the problem of keeping up the heart beat running        break;    case VersionMismatch:        LogError("Version mismatch");        Stop(); // cannot continue        break;    case ProtocolError:        currentStatus = HandleCommError("Protocol error", ProtocolError);        break;    case CommunicationTimeout:        currentStatus = HandleCommError("Communication timeout", CommunicationTimeout);        break;    default:        break;    }    return currentStatus;}uint8_t ProtocolLogic::CommandInProgress() const {    if( currentState != &command )        return 0;    return (uint8_t)command.ReqMsg().code; }bool DropOutFilter::Record(StepStatus ss){    if( occurrences == maxOccurrences ){        cause = ss;    }    --occurrences;    return occurrences == 0;}} // namespace MMU2
 |