temperature.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "planner.h"
  20. #ifdef PID_ADD_EXTRUSION_RATE
  21. #include "stepper.h"
  22. #endif
  23. // public functions
  24. void tp_init(); //initialize the heating
  25. void manage_heater(); //it is critical that this is called periodically.
  26. #ifdef FILAMENT_SENSOR
  27. // For converting raw Filament Width to milimeters
  28. float analog2widthFil();
  29. // For converting raw Filament Width to an extrusion ratio
  30. int widthFil_to_size_ratio();
  31. #endif
  32. // low level conversion routines
  33. // do not use these routines and variables outside of temperature.cpp
  34. extern int target_temperature[EXTRUDERS];
  35. extern float current_temperature[EXTRUDERS];
  36. #ifdef SHOW_TEMP_ADC_VALUES
  37. extern int current_temperature_raw[EXTRUDERS];
  38. extern int current_temperature_bed_raw;
  39. #endif
  40. extern int target_temperature_bed;
  41. extern float current_temperature_bed;
  42. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  43. extern float redundant_temperature;
  44. #endif
  45. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  46. extern unsigned char soft_pwm_bed;
  47. #endif
  48. #ifdef PIDTEMP
  49. extern int pid_cycle, pid_number_of_cycles;
  50. extern float Kp,Ki,Kd,Kc,_Kp,_Ki,_Kd;
  51. extern bool pid_tuning_finished;
  52. float scalePID_i(float i);
  53. float scalePID_d(float d);
  54. float unscalePID_i(float i);
  55. float unscalePID_d(float d);
  56. #endif
  57. #ifdef PIDTEMPBED
  58. extern float bedKp,bedKi,bedKd;
  59. #endif
  60. #ifdef BABYSTEPPING
  61. extern volatile int babystepsTodo[3];
  62. #endif
  63. inline void babystepsTodoZadd(int n)
  64. {
  65. if (n != 0) {
  66. CRITICAL_SECTION_START
  67. babystepsTodo[Z_AXIS] += n;
  68. CRITICAL_SECTION_END
  69. }
  70. }
  71. inline void babystepsTodoZsubtract(int n)
  72. {
  73. if (n != 0) {
  74. CRITICAL_SECTION_START
  75. babystepsTodo[Z_AXIS] -= n;
  76. CRITICAL_SECTION_END
  77. }
  78. }
  79. //high level conversion routines, for use outside of temperature.cpp
  80. //inline so that there is no performance decrease.
  81. //deg=degreeCelsius
  82. FORCE_INLINE float degHotend(uint8_t extruder) {
  83. return current_temperature[extruder];
  84. };
  85. #ifdef SHOW_TEMP_ADC_VALUES
  86. FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
  87. return current_temperature_raw[extruder];
  88. };
  89. FORCE_INLINE float rawBedTemp() {
  90. return current_temperature_bed_raw;
  91. };
  92. #endif
  93. FORCE_INLINE float degBed() {
  94. return current_temperature_bed;
  95. };
  96. FORCE_INLINE float degTargetHotend(uint8_t extruder) {
  97. return target_temperature[extruder];
  98. };
  99. FORCE_INLINE float degTargetBed() {
  100. return target_temperature_bed;
  101. };
  102. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
  103. target_temperature[extruder] = celsius;
  104. };
  105. FORCE_INLINE void setTargetBed(const float &celsius) {
  106. target_temperature_bed = celsius;
  107. };
  108. FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
  109. return target_temperature[extruder] > current_temperature[extruder];
  110. };
  111. FORCE_INLINE bool isHeatingBed() {
  112. return target_temperature_bed > current_temperature_bed;
  113. };
  114. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
  115. return target_temperature[extruder] < current_temperature[extruder];
  116. };
  117. FORCE_INLINE bool isCoolingBed() {
  118. return target_temperature_bed < current_temperature_bed;
  119. };
  120. #define degHotend0() degHotend(0)
  121. #define degTargetHotend0() degTargetHotend(0)
  122. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  123. #define isHeatingHotend0() isHeatingHotend(0)
  124. #define isCoolingHotend0() isCoolingHotend(0)
  125. #if EXTRUDERS > 1
  126. #define degHotend1() degHotend(1)
  127. #define degTargetHotend1() degTargetHotend(1)
  128. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  129. #define isHeatingHotend1() isHeatingHotend(1)
  130. #define isCoolingHotend1() isCoolingHotend(1)
  131. #else
  132. #define setTargetHotend1(_celsius) do{}while(0)
  133. #endif
  134. #if EXTRUDERS > 2
  135. #define degHotend2() degHotend(2)
  136. #define degTargetHotend2() degTargetHotend(2)
  137. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  138. #define isHeatingHotend2() isHeatingHotend(2)
  139. #define isCoolingHotend2() isCoolingHotend(2)
  140. #else
  141. #define setTargetHotend2(_celsius) do{}while(0)
  142. #endif
  143. #if EXTRUDERS > 3
  144. #error Invalid number of extruders
  145. #endif
  146. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  147. static float temp_runaway_status[4];
  148. static float temp_runaway_target[4];
  149. static float temp_runaway_timer[4];
  150. static int temp_runaway_error_counter[4];
  151. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  152. void temp_runaway_stop(bool isPreheat, bool isBed);
  153. #endif
  154. int getHeaterPower(int heater);
  155. void disable_heater();
  156. void setWatch();
  157. void updatePID();
  158. FORCE_INLINE void autotempShutdown(){
  159. #ifdef AUTOTEMP
  160. if(autotemp_enabled)
  161. {
  162. autotemp_enabled=false;
  163. if(degTargetHotend(active_extruder)>autotemp_min)
  164. setTargetHotend(0,active_extruder);
  165. }
  166. #endif
  167. }
  168. void PID_autotune(float temp, int extruder, int ncycles);
  169. void setExtruderAutoFanState(int pin, bool state);
  170. void checkExtruderAutoFans();
  171. void countFanSpeed();
  172. void checkFanSpeed();
  173. void fanSpeedError(unsigned char _fan);
  174. #endif