| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498 | #include "Marlin.h"#include "Configuration.h"#include "ConfigurationStore.h"#include "language_all.h"#include "mesh_bed_calibration.h"#include "mesh_bed_leveling.h"#include "stepper.h"#include "ultralcd.h"uint8_t world2machine_correction_mode;float   world2machine_rotation_and_skew[2][2];float   world2machine_rotation_and_skew_inv[2][2];float   world2machine_shift[2];// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.// Only used for the first row of the points, which may not befully in reach of the sensor.#define WEIGHT_FIRST_ROW_X_HIGH (1.f)#define WEIGHT_FIRST_ROW_X_LOW  (0.35f)#define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)#define WEIGHT_FIRST_ROW_Y_LOW  (0.0f)#define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1#define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER) // -0.6 + 9 = 8.4// Scaling of the real machine axes against the programmed dimensions in the firmware.// The correction is tiny, here around 0.5mm on 250mm length.//#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)//#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)#define MACHINE_AXIS_SCALE_X 1.f#define MACHINE_AXIS_SCALE_Y 1.f#define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN  (0.8f)#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X  (0.8f)#define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y  (1.5f)#define MIN_BED_SENSOR_POINT_RESPONSE_DMR           (2.0f)//#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)#define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)// Distances toward the print bed edge may not be accurate.#define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)// When the measured point center is out of reach of the sensor, Y coordinate will be ignored// by the Least Squares fitting and the X coordinate will be weighted low.#define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)// 0.12 degrees equals to an offset of 0.5mm on 250mm length.const float bed_skew_angle_mild = (0.12f * M_PI / 180.f);// 0.25 degrees equals to an offset of 1.1mm on 250mm length.const float bed_skew_angle_extreme = (0.25f * M_PI / 180.f);// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.// The points are ordered in a zig-zag fashion to speed up the calibration.#ifdef HEATBED_V2// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.// The points are the following: center front, center right, center rear, center left.const float bed_ref_points_4[] PROGMEM = {	115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,	13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y};const float bed_ref_points[] PROGMEM = {	13.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	13.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X, 200.4f - BED_ZERO_REF_Y};#else// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.// The points are the following: center front, center right, center rear, center left.const float bed_ref_points_4[] PROGMEM = {	115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,	216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,	115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,	13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y};const float bed_ref_points[] PROGMEM = {    13.f  - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,    115.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,    216.f - BED_ZERO_REF_X,   8.4f - BED_ZERO_REF_Y,        216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,    115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,    13.f  - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,    13.f  - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,    115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,    216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y};#endif //not HEATBED_V2static inline float sqr(float x) { return x * x; }static inline bool point_on_1st_row(const uint8_t i, const uint8_t npts){	if (npts == 4) return (i == 0);	else return (i < 3);}// Weight of a point coordinate in a least squares optimization.// The first row of points may not be fully reachable// and the y values may be shortened a bit by the bed carriage// pulling the belt up.static inline float point_weight_x(const uint8_t i, const uint8_t npts, const float &y){    float w = 1.f;    if (point_on_1st_row(i, npts)) {		if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {            w = WEIGHT_FIRST_ROW_X_HIGH;        } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {            // If the point is fully outside, give it some weight.            w = WEIGHT_FIRST_ROW_X_LOW;        } else {            // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.            float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);            w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;        }    }    return w;}// Weight of a point coordinate in a least squares optimization.// The first row of points may not be fully reachable// and the y values may be shortened a bit by the bed carriage// pulling the belt up.static inline float point_weight_y(const uint8_t i, const uint8_t npts, const float &y){    float w = 1.f;    if (point_on_1st_row(i, npts)) {        if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {            w = WEIGHT_FIRST_ROW_Y_HIGH;        } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {            // If the point is fully outside, give it some weight.            w = WEIGHT_FIRST_ROW_Y_LOW;        } else {            // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.            float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);            w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;        }    }    return w;}// Non-Linear Least Squares fitting of the bed to the measured induction points// using the Gauss-Newton method.// This method will maintain a unity length of the machine axes,// which is the correct approach if the sensor points are not measured precisely.BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(    // Matrix of maximum 9 2D points (18 floats)    const float  *measured_pts,    uint8_t       npts,    const float  *true_pts,    // Resulting correction matrix.    float        *vec_x,    float        *vec_y,    float        *cntr,    // Temporary values, 49-18-(2*3)=25 floats    //    , float *temp    int8_t        verbosity_level    ){    if (verbosity_level >= 10) {		SERIAL_ECHOLNPGM("calculate machine skew and offset LS");        // Show the initial state, before the fitting.        SERIAL_ECHOPGM("X vector, initial: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector, initial: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center, initial: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        for (uint8_t i = 0; i < npts; ++i) {            SERIAL_ECHOPGM("point #");            MYSERIAL.print(int(i));            SERIAL_ECHOPGM(" measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);            SERIAL_ECHOPGM("), error: ");            MYSERIAL.print(sqrt(                sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +                sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);            SERIAL_ECHOLNPGM("");        }        delay_keep_alive(100);    }    // Run some iterations of the Gauss-Newton method of non-linear least squares.    // Initial set of parameters:    // X,Y offset    cntr[0] = 0.f;    cntr[1] = 0.f;    // Rotation of the machine X axis from the bed X axis.    float a1 = 0;    // Rotation of the machine Y axis from the bed Y axis.    float a2 = 0;    for (int8_t iter = 0; iter < 100; ++iter) {        float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;        float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;        float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;        float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;        // Prepare the Normal equation for the Gauss-Newton method.        float A[4][4] = { 0.f };        float b[4] = { 0.f };        float acc;        for (uint8_t r = 0; r < 4; ++r) {            for (uint8_t c = 0; c < 4; ++c) {                acc = 0;                // J^T times J                for (uint8_t i = 0; i < npts; ++i) {                    // First for the residuum in the x axis:                    if (r != 1 && c != 1) {                        float a =                              (r == 0) ? 1.f :                            ((r == 2) ? (-s1 * measured_pts[2 * i]) :                                        (-c2 * measured_pts[2 * i + 1]));                        float b =                              (c == 0) ? 1.f :                            ((c == 2) ? (-s1 * measured_pts[2 * i]) :                                        (-c2 * measured_pts[2 * i + 1]));                        float w = point_weight_x(i, npts, measured_pts[2 * i + 1]);                        acc += a * b * w;                    }                    // Second for the residuum in the y axis.                     // The first row of the points have a low weight, because their position may not be known                    // with a sufficient accuracy.                    if (r != 0 && c != 0) {                        float a =                              (r == 1) ? 1.f :                            ((r == 2) ? ( c1 * measured_pts[2 * i]) :                                        (-s2 * measured_pts[2 * i + 1]));                        float b =                              (c == 1) ? 1.f :                            ((c == 2) ? ( c1 * measured_pts[2 * i]) :                                        (-s2 * measured_pts[2 * i + 1]));                        float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);                        acc += a * b * w;                    }                }                A[r][c] = acc;            }            // J^T times f(x)            acc = 0.f;            for (uint8_t i = 0; i < npts; ++i) {                {                    float j =                          (r == 0) ? 1.f :                        ((r == 1) ? 0.f :                        ((r == 2) ? (-s1 * measured_pts[2 * i]) :                                    (-c2 * measured_pts[2 * i + 1])));                    float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);                    float w = point_weight_x(i, npts, measured_pts[2 * i + 1]);                    acc += j * fx * w;                }                {                    float j =                          (r == 0) ? 0.f :                        ((r == 1) ? 1.f :                        ((r == 2) ? ( c1 * measured_pts[2 * i]) :                                    (-s2 * measured_pts[2 * i + 1])));                    float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);                    float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);                    acc += j * fy * w;                }            }            b[r] = -acc;        }        // Solve for h by a Gauss iteration method.        float h[4] = { 0.f };        for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {            h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];            h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];            h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];            h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];        }        // and update the current position with h.        // It may be better to use the Levenberg-Marquart method here,        // but because we are very close to the solution alread,        // the simple Gauss-Newton non-linear Least Squares method works well enough.        cntr[0] += h[0];        cntr[1] += h[1];        a1 += h[2];        a2 += h[3];        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("iteration: ");            MYSERIAL.print(int(iter));			SERIAL_ECHOPGM("; correction vector: ");            MYSERIAL.print(h[0], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[1], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(h[3], 5);            SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("corrected x/y: ");            MYSERIAL.print(cntr[0], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(cntr[0], 5);            SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("corrected angles: ");            MYSERIAL.print(180.f * a1 / M_PI, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(180.f * a2 / M_PI, 5);            SERIAL_ECHOLNPGM("");        }    }    vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;    vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;    vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;    vec_y[1] =  cos(a2) * MACHINE_AXIS_SCALE_Y;    BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;    {        angleDiff = fabs(a2 - a1);        if (angleDiff > bed_skew_angle_mild)            result = (angleDiff > bed_skew_angle_extreme) ?                BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :                BED_SKEW_OFFSET_DETECTION_SKEW_MILD;        if (fabs(a1) > bed_skew_angle_extreme ||            fabs(a2) > bed_skew_angle_extreme)            result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;    }    if (verbosity_level >= 1) {        SERIAL_ECHOPGM("correction angles: ");        MYSERIAL.print(180.f * a1 / M_PI, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(180.f * a2 / M_PI, 5);        SERIAL_ECHOLNPGM("");    }    if (verbosity_level >= 10) {        // Show the adjusted state, before the fitting.        SERIAL_ECHOPGM("X vector new, inverted: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector new, inverted: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center new, inverted: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        delay_keep_alive(100);        SERIAL_ECHOLNPGM("Error after correction: ");    }    // Measure the error after correction.    for (uint8_t i = 0; i < npts; ++i) {        float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];        float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];        float errX = sqr(pgm_read_float(true_pts + i * 2) - x);        float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);        float err = sqrt(errX + errY);		if (verbosity_level >= 10) {			SERIAL_ECHOPGM("point #");			MYSERIAL.print(int(i));			SERIAL_ECHOLNPGM(":");		}		if (point_on_1st_row(i, npts)) {				if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");				float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);				if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||					(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {					result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;					if (verbosity_level >= 20) {						SERIAL_ECHOPGM(", weigth Y: ");						MYSERIAL.print(w);						if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");						if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");					}				}		}		else {			if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");			if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {				result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;				if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian"); 			}        }        if (verbosity_level >= 10) {			SERIAL_ECHOLNPGM("");            SERIAL_ECHOPGM("measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); corrected: (");            MYSERIAL.print(x, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(y, 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);			SERIAL_ECHOLNPGM(")");			SERIAL_ECHOPGM("error: ");            MYSERIAL.print(err);			SERIAL_ECHOPGM(", error X: ");			MYSERIAL.print(sqrt(errX));			SERIAL_ECHOPGM(", error Y: ");			MYSERIAL.print(sqrt(errY));			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("");        }    }	if (verbosity_level >= 20) {		SERIAL_ECHOLNPGM("Max. errors:");		SERIAL_ECHOPGM("Max. error X:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X);		SERIAL_ECHOPGM("Max. error Y:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y);		SERIAL_ECHOPGM("Max. error euclidian:");		MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);		SERIAL_ECHOLNPGM("");	}    #if 0    if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {        if (verbosity_level > 0)            SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");        // Just disable the skew correction.        vec_x[0] = MACHINE_AXIS_SCALE_X;        vec_x[1] = 0.f;        vec_y[0] = 0.f;        vec_y[1] = MACHINE_AXIS_SCALE_Y;    }    #else    if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {        if (verbosity_level > 0)            SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");        // Orthogonalize the axes.        a1 = 0.5f * (a1 + a2);        vec_x[0] =  cos(a1) * MACHINE_AXIS_SCALE_X;        vec_x[1] =  sin(a1) * MACHINE_AXIS_SCALE_X;        vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;        vec_y[1] =  cos(a1) * MACHINE_AXIS_SCALE_Y;        // Refresh the offset.        cntr[0] = 0.f;        cntr[1] = 0.f;        float wx = 0.f;        float wy = 0.f;        for (int8_t i = 0; i < npts; ++ i) {            float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];            float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];            float w = point_weight_x(i, npts, y);			cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);			wx += w;			if (verbosity_level >= 20) {				MYSERIAL.print(i);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("Weight_x:");				MYSERIAL.print(w);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("cntr[0]:");				MYSERIAL.print(cntr[0]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("wx:");				MYSERIAL.print(wx);			}            w = point_weight_y(i, npts, y);			cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);			wy += w;			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("Weight_y:");				MYSERIAL.print(w);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("cntr[1]:");				MYSERIAL.print(cntr[1]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("wy:");				MYSERIAL.print(wy);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOLNPGM("");			}		}        cntr[0] /= wx;        cntr[1] /= wy;		if (verbosity_level >= 20) {			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("Final cntr values:");			SERIAL_ECHOLNPGM("cntr[0]:");			MYSERIAL.print(cntr[0]);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("cntr[1]:");			MYSERIAL.print(cntr[1]);			SERIAL_ECHOLNPGM("");		}    }    #endif    // Invert the transformation matrix made of vec_x, vec_y and cntr.    {        float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];        float Ainv[2][2] = {            { vec_y[1] / d, -vec_y[0] / d },            { -vec_x[1] / d, vec_x[0] / d }        };        float cntrInv[2] = {            -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],            -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]        };        vec_x[0] = Ainv[0][0];        vec_x[1] = Ainv[1][0];        vec_y[0] = Ainv[0][1];        vec_y[1] = Ainv[1][1];        cntr[0] = cntrInv[0];        cntr[1] = cntrInv[1];    }    if (verbosity_level >= 1) {        // Show the adjusted state, before the fitting.        SERIAL_ECHOPGM("X vector, adjusted: ");        MYSERIAL.print(vec_x[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_x[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Y vector, adjusted: ");        MYSERIAL.print(vec_y[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(vec_y[1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("center, adjusted: ");        MYSERIAL.print(cntr[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(cntr[1], 5);        SERIAL_ECHOLNPGM("");        delay_keep_alive(100);    }    if (verbosity_level >= 2) {        SERIAL_ECHOLNPGM("Difference after correction: ");        for (uint8_t i = 0; i < npts; ++i) {            float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];            float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];            SERIAL_ECHOPGM("point #");            MYSERIAL.print(int(i));            SERIAL_ECHOPGM("measured: (");            MYSERIAL.print(measured_pts[i * 2], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(measured_pts[i * 2 + 1], 5);            SERIAL_ECHOPGM("); measured-corrected: (");            MYSERIAL.print(x, 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(y, 5);            SERIAL_ECHOPGM("); target: (");            MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);            SERIAL_ECHOPGM("), error: ");            MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));            SERIAL_ECHOLNPGM("");        }		if (verbosity_level >= 20) {			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("Calculate offset and skew returning result:");			MYSERIAL.print(int(result));			SERIAL_ECHOLNPGM("");			SERIAL_ECHOLNPGM("");		}        delay_keep_alive(100);    }    return result;}void reset_bed_offset_and_skew(){    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);    eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);    // Reset the 8 16bit offsets.    for (int8_t i = 0; i < 4; ++ i)        eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);}bool is_bed_z_jitter_data_valid()// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns{    for (int8_t i = 0; i < 8; ++ i)        if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)            return false;    return true;}static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2]){    world2machine_rotation_and_skew[0][0] = vec_x[0];    world2machine_rotation_and_skew[1][0] = vec_x[1];    world2machine_rotation_and_skew[0][1] = vec_y[0];    world2machine_rotation_and_skew[1][1] = vec_y[1];    world2machine_shift[0] = cntr[0];    world2machine_shift[1] = cntr[1];    // No correction.    world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;    if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)        // Shift correction.        world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;    if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||        world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {        // Rotation & skew correction.        world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;        // Invert the world2machine matrix.        float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];        world2machine_rotation_and_skew_inv[0][0] =  world2machine_rotation_and_skew[1][1] / d;        world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;        world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;        world2machine_rotation_and_skew_inv[1][1] =  world2machine_rotation_and_skew[0][0] / d;    } else {        world2machine_rotation_and_skew_inv[0][0] = 1.f;        world2machine_rotation_and_skew_inv[0][1] = 0.f;        world2machine_rotation_and_skew_inv[1][0] = 0.f;        world2machine_rotation_and_skew_inv[1][1] = 1.f;    }}void world2machine_reset(){    const float vx[] = { 1.f, 0.f };    const float vy[] = { 0.f, 1.f };    const float cntr[] = { 0.f, 0.f };    world2machine_update(vx, vy, cntr);}void world2machine_revert_to_uncorrected(){    if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {        // Reset the machine correction matrix.        const float vx[] = { 1.f, 0.f };        const float vy[] = { 0.f, 1.f };        const float cntr[] = { 0.f, 0.f };        world2machine_update(vx, vy, cntr);        // Wait for the motors to stop and update the current position with the absolute values.        st_synchronize();        current_position[X_AXIS] = st_get_position_mm(X_AXIS);        current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);    }}static inline bool vec_undef(const float v[2]){    const uint32_t *vx = (const uint32_t*)v;    return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;}void world2machine_initialize(){    //SERIAL_ECHOLNPGM("world2machine_initialize");    float cntr[2] = {        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))    };    float vec_x[2] = {        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))    };    float vec_y[2] = {        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),        eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))    };    bool reset = false;    if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {        SERIAL_ECHOLNPGM("Undefined bed correction matrix.");        reset = true;    }    else {        // Length of the vec_x shall be close to unity.        float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);        if (l < 0.9 || l > 1.1) {			SERIAL_ECHOLNPGM("X vector length:");			MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");            reset = true;        }        // Length of the vec_y shall be close to unity.        l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);        if (l < 0.9 || l > 1.1) {			SERIAL_ECHOLNPGM("Y vector length:");			MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");            reset = true;        }        // Correction of the zero point shall be reasonably small.        l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);        if (l > 15.f) {			SERIAL_ECHOLNPGM("Zero point correction:");			MYSERIAL.println(l);            SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");            reset = true;        }        // vec_x and vec_y shall be nearly perpendicular.        l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];        if (fabs(l) > 0.1f) {            SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");            reset = true;        }    }    if (reset) {        SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");        reset_bed_offset_and_skew();        world2machine_reset();    } else {        world2machine_update(vec_x, vec_y, cntr);        /*        SERIAL_ECHOPGM("world2machine_initialize() loaded: ");        MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);        SERIAL_ECHOPGM(", offset ");        MYSERIAL.print(world2machine_shift[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_shift[1], 5);        SERIAL_ECHOLNPGM("");        */    }}// When switching from absolute to corrected coordinates,// this will get the absolute coordinates from the servos,// applies the inverse world2machine transformation// and stores the result into current_position[x,y].void world2machine_update_current(){    float x = current_position[X_AXIS] - world2machine_shift[0];    float y = current_position[Y_AXIS] - world2machine_shift[1];    current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;    current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;}static inline void go_xyz(float x, float y, float z, float fr){    plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void go_xy(float x, float y, float fr){    plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void go_to_current(float fr){    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);    st_synchronize();}static inline void update_current_position_xyz(){      current_position[X_AXIS] = st_get_position_mm(X_AXIS);      current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);}static inline void update_current_position_z(){      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);      plan_set_z_position(current_position[Z_AXIS]);}// At the current position, find the Z stop.inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int verbosity_level){    if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");    bool endstops_enabled  = enable_endstops(true);    bool endstop_z_enabled = enable_z_endstop(false);    float z = 0.f;    endstop_z_hit_on_purpose();    // move down until you find the bed    current_position[Z_AXIS] = minimum_z;    go_to_current(homing_feedrate[Z_AXIS]/60);    // we have to let the planner know where we are right now as it is not where we said to go.    update_current_position_z();    if (! endstop_z_hit_on_purpose())        goto error;    for (uint8_t i = 0; i < n_iter; ++ i) {        // Move up the retract distance.        current_position[Z_AXIS] += .5f;        go_to_current(homing_feedrate[Z_AXIS]/60);        // Move back down slowly to find bed.        current_position[Z_AXIS] = minimum_z;        go_to_current(homing_feedrate[Z_AXIS]/(4*60));        // we have to let the planner know where we are right now as it is not where we said to go.        update_current_position_z();        if (! endstop_z_hit_on_purpose())            goto error;//        SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");//        MYSERIAL.print(current_position[Z_AXIS], 5);//        SERIAL_ECHOLNPGM("");        z += current_position[Z_AXIS];    }    current_position[Z_AXIS] = z;    if (n_iter > 1)        current_position[Z_AXIS] /= float(n_iter);    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);//    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");    return true;error://    SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return false;}// Search around the current_position[X,Y],// look for the induction sensor response.// Adjust the  current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.#define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)#define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)#define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP  (1.f)#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP   (0.2f)inline bool find_bed_induction_sensor_point_xy(int verbosity_level){	if(verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");    float feedrate = homing_feedrate[X_AXIS] / 60.f;    bool found = false;    {        float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;        float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;        float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;        float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;        uint8_t nsteps_y;        uint8_t i;		if (x0 < X_MIN_POS) {			x0 = X_MIN_POS;			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");		}		if (x1 > X_MAX_POS) {			x1 = X_MAX_POS;			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");		}		if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {			y0 = Y_MIN_POS_FOR_BED_CALIBRATION;			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");		}		if (y1 > Y_MAX_POS) {			y1 = Y_MAX_POS;			if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");		}        nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));        enable_endstops(false);        bool  dir_positive = true;//        go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);        go_xyz(x0, y0, current_position[Z_AXIS], feedrate);        // Continously lower the Z axis.        endstops_hit_on_purpose();        enable_z_endstop(true);        while (current_position[Z_AXIS] > -10.f) {            // Do nsteps_y zig-zag movements.            current_position[Y_AXIS] = y0;            for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {                // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.                current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);                go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);                dir_positive = ! dir_positive;                if (endstop_z_hit_on_purpose())                    goto endloop;            }            for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {                // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.                current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);                go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);                dir_positive = ! dir_positive;                if (endstop_z_hit_on_purpose())                    goto endloop;            }        }        endloop://        SERIAL_ECHOLN("First hit");        // we have to let the planner know where we are right now as it is not where we said to go.        update_current_position_xyz();        // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.        for (int8_t iter = 0; iter < 3; ++ iter) {            if (iter > 0) {                // Slightly lower the Z axis to get a reliable trigger.                current_position[Z_AXIS] -= 0.02f;                go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);            }            // Do nsteps_y zig-zag movements.            float a, b;            enable_endstops(false);            enable_z_endstop(false);            current_position[Y_AXIS] = y0;            go_xy(x0, current_position[Y_AXIS], feedrate);            enable_z_endstop(true);            found = false;            for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {                go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);                if (endstop_z_hit_on_purpose()) {                    found = true;                    break;                }            }            update_current_position_xyz();            if (! found) {//                SERIAL_ECHOLN("Search in Y - not found");                continue;            }//            SERIAL_ECHOLN("Search in Y - found");            a = current_position[Y_AXIS];            enable_z_endstop(false);            current_position[Y_AXIS] = y1;            go_xy(x0, current_position[Y_AXIS], feedrate);            enable_z_endstop(true);            found = false;            for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {                go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);                if (endstop_z_hit_on_purpose()) {                    found = true;                    break;                }            }            update_current_position_xyz();            if (! found) {//                SERIAL_ECHOLN("Search in Y2 - not found");                continue;            }//            SERIAL_ECHOLN("Search in Y2 - found");            b = current_position[Y_AXIS];            current_position[Y_AXIS] = 0.5f * (a + b);            // Search in the X direction along a cross.            found = false;            enable_z_endstop(false);            go_xy(x0, current_position[Y_AXIS], feedrate);            enable_z_endstop(true);            go_xy(x1, current_position[Y_AXIS], feedrate);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {//                SERIAL_ECHOLN("Search X span 0 - not found");                continue;            }//            SERIAL_ECHOLN("Search X span 0 - found");            a = current_position[X_AXIS];            enable_z_endstop(false);            go_xy(x1, current_position[Y_AXIS], feedrate);            enable_z_endstop(true);            go_xy(x0, current_position[Y_AXIS], feedrate);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {//                SERIAL_ECHOLN("Search X span 1 - not found");                continue;            }//            SERIAL_ECHOLN("Search X span 1 - found");            b = current_position[X_AXIS];            // Go to the center.            enable_z_endstop(false);            current_position[X_AXIS] = 0.5f * (a + b);            go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);            found = true;#if 1            // Search in the Y direction along a cross.            found = false;            enable_z_endstop(false);            go_xy(current_position[X_AXIS], y0, feedrate);            enable_z_endstop(true);            go_xy(current_position[X_AXIS], y1, feedrate);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {//                SERIAL_ECHOLN("Search Y2 span 0 - not found");                continue;            }//            SERIAL_ECHOLN("Search Y2 span 0 - found");            a = current_position[Y_AXIS];            enable_z_endstop(false);            go_xy(current_position[X_AXIS], y1, feedrate);            enable_z_endstop(true);            go_xy(current_position[X_AXIS], y0, feedrate);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {//                SERIAL_ECHOLN("Search Y2 span 1 - not found");                continue;            }//            SERIAL_ECHOLN("Search Y2 span 1 - found");            b = current_position[Y_AXIS];            // Go to the center.            enable_z_endstop(false);            current_position[Y_AXIS] = 0.5f * (a + b);            go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);            found = true;#endif            break;        }    }    enable_z_endstop(false);    return found;}// Search around the current_position[X,Y,Z].// It is expected, that the induction sensor is switched on at the current position.// Look around this center point by painting a star around the point.inline bool improve_bed_induction_sensor_point(){    static const float search_radius = 8.f;    bool  endstops_enabled  = enable_endstops(false);    bool  endstop_z_enabled = enable_z_endstop(false);    bool  found = false;    float feedrate = homing_feedrate[X_AXIS] / 60.f;    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float center_x = 0.f;    float center_y = 0.f;    for (uint8_t iter = 0; iter < 4; ++ iter) {        switch (iter) {        case 0:            destination[X_AXIS] = center_old_x - search_radius * 0.707;            destination[Y_AXIS] = center_old_y - search_radius * 0.707;            break;        case 1:            destination[X_AXIS] = center_old_x + search_radius * 0.707;            destination[Y_AXIS] = center_old_y + search_radius * 0.707;            break;        case 2:            destination[X_AXIS] = center_old_x + search_radius * 0.707;            destination[Y_AXIS] = center_old_y - search_radius * 0.707;            break;        case 3:        default:            destination[X_AXIS] = center_old_x - search_radius * 0.707;            destination[Y_AXIS] = center_old_y + search_radius * 0.707;            break;        }        // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.        float vx = destination[X_AXIS] - center_old_x;        float vy = destination[Y_AXIS] - center_old_y;        float l  = sqrt(vx*vx+vy*vy);        float t;        if (destination[X_AXIS] < X_MIN_POS) {            // Exiting the bed at xmin.            t = (center_x - X_MIN_POS) / l;            destination[X_AXIS] = X_MIN_POS;            destination[Y_AXIS] = center_old_y + t * vy;        } else if (destination[X_AXIS] > X_MAX_POS) {            // Exiting the bed at xmax.            t = (X_MAX_POS - center_x) / l;            destination[X_AXIS] = X_MAX_POS;            destination[Y_AXIS] = center_old_y + t * vy;        }        if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {            // Exiting the bed at ymin.            t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;            destination[X_AXIS] = center_old_x + t * vx;            destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;        } else if (destination[Y_AXIS] > Y_MAX_POS) {            // Exiting the bed at xmax.            t = (Y_MAX_POS - center_y) / l;            destination[X_AXIS] = center_old_x + t * vx;            destination[Y_AXIS] = Y_MAX_POS;        }        // Move away from the measurement point.        enable_endstops(false);        go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);        // Move towards the measurement point, until the induction sensor triggers.        enable_endstops(true);        go_xy(center_old_x, center_old_y, feedrate);        update_current_position_xyz();//        if (! endstop_z_hit_on_purpose()) return false;        center_x += current_position[X_AXIS];        center_y += current_position[Y_AXIS];    }    // Calculate the new center, move to the new center.    center_x /= 4.f;    center_y /= 4.f;    current_position[X_AXIS] = center_x;    current_position[Y_AXIS] = center_y;    enable_endstops(false);    go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return found;}static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z){    SERIAL_ECHOPGM("Measured ");    SERIAL_ECHORPGM(type);    SERIAL_ECHOPGM(" ");    MYSERIAL.print(x, 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(y, 5);    SERIAL_ECHOPGM(", ");    MYSERIAL.print(z, 5);    SERIAL_ECHOLNPGM("");}// Search around the current_position[X,Y,Z].// It is expected, that the induction sensor is switched on at the current position.// Look around this center point by painting a star around the point.#define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level){    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float a, b;    bool  point_small = false;    enable_endstops(false);    {        float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        if (x0 < X_MIN_POS)            x0 = X_MIN_POS;        if (x1 > X_MAX_POS)            x1 = X_MAX_POS;        // Search in the X direction along a cross.        enable_z_endstop(false);        go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[X_AXIS] = center_old_x;            goto canceled;        }        a = current_position[X_AXIS];        enable_z_endstop(false);        go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[X_AXIS] = center_old_x;            goto canceled;        }        b = current_position[X_AXIS];        if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {            if (verbosity_level >= 5) {                SERIAL_ECHOPGM("Point width too small: ");                SERIAL_ECHO(b - a);                SERIAL_ECHOLNPGM("");            }            // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.            if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                // Don't use the new X value.                current_position[X_AXIS] = center_old_x;                goto canceled;            } else {                // Use the new value, but force the Z axis to go a bit lower.                point_small = true;            }        }        if (verbosity_level >= 5) {            debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);            debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);        }        // Go to the center.        enable_z_endstop(false);        current_position[X_AXIS] = 0.5f * (a + b);        go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    }    {        float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;        if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)            y0 = Y_MIN_POS_FOR_BED_CALIBRATION;        if (y1 > Y_MAX_POS)            y1 = Y_MAX_POS;        // Search in the Y direction along a cross.        enable_z_endstop(false);        go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);        if (lift_z_on_min_y) {            // The first row of points are very close to the end stop.            // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.            go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);            // and go back.            go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);        }        if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {            // Already triggering before we started the move.            // Shift the trigger point slightly outwards.            // a = current_position[Y_AXIS] - 1.5f;            a = current_position[Y_AXIS];        } else {            enable_z_endstop(true);            go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }            a = current_position[Y_AXIS];        }        enable_z_endstop(false);        go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (! endstop_z_hit_on_purpose()) {            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        b = current_position[Y_AXIS];        if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {            // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.            if (verbosity_level >= 5) {                SERIAL_ECHOPGM("Point height too small: ");                SERIAL_ECHO(b - a);                SERIAL_ECHOLNPGM("");            }            if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                // Don't use the new Y value.                current_position[Y_AXIS] = center_old_y;                goto canceled;            } else {                // Use the new value, but force the Z axis to go a bit lower.                point_small = true;            }        }        if (verbosity_level >= 5) {            debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);            debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);        }        // Go to the center.        enable_z_endstop(false);        current_position[Y_AXIS] = 0.5f * (a + b);        go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    }    // If point is small but not too small, then force the Z axis to be lowered a bit,    // but use the new value. This is important when the initial position was off in one axis,    // for example if the initial calibration was shifted in the Y axis systematically.    // Then this first step will center.    return ! point_small;canceled:    // Go back to the center.    enable_z_endstop(false);    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    return false;}// Searching the front points, where one cannot move the sensor head in front of the sensor point.// Searching in a zig-zag movement in a plane for the maximum width of the response.// This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.// If this function failed, the Y coordinate will never be outside the working space.#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)#define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)inline bool improve_bed_induction_sensor_point3(int verbosity_level){	    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float a, b;    bool  result = true;	if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");    // Was the sensor point detected too far in the minus Y axis?    // If yes, the center of the induction point cannot be reached by the machine.    {        float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;        float y = y0;        if (x0 < X_MIN_POS)            x0 = X_MIN_POS;        if (x1 > X_MAX_POS)            x1 = X_MAX_POS;        if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)            y0 = Y_MIN_POS_FOR_BED_CALIBRATION;        if (y1 > Y_MAX_POS)            y1 = Y_MAX_POS;        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("Initial position: ");            SERIAL_ECHO(center_old_x);            SERIAL_ECHOPGM(", ");            SERIAL_ECHO(center_old_y);            SERIAL_ECHOLNPGM("");        }        // Search in the positive Y direction, until a maximum diameter is found.        // (the next diameter is smaller than the current one.)        float dmax = 0.f;        float xmax1 = 0.f;        float xmax2 = 0.f;        for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {            enable_z_endstop(false);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                // SERIAL_PROTOCOLPGM("Failed 1\n");                // current_position[X_AXIS] = center_old_x;                // goto canceled;            }            a = current_position[X_AXIS];            enable_z_endstop(false);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                // SERIAL_PROTOCOLPGM("Failed 2\n");                // current_position[X_AXIS] = center_old_x;                // goto canceled;            }            b = current_position[X_AXIS];            if (verbosity_level >= 5) {                debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);            }            float d = b - a;            if (d > dmax) {                xmax1 = 0.5f * (a + b);                dmax = d;            } else if (dmax > 0.) {                y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;                break;            }        }        if (dmax == 0.) {            if (verbosity_level > 0)                SERIAL_PROTOCOLPGM("failed - not found\n");            current_position[X_AXIS] = center_old_x;            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        {            // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.            enable_z_endstop(false);            go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }            if (verbosity_level >= 5)                debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);            y1 = current_position[Y_AXIS];        }        if (y1 <= y0) {            // Either the induction sensor is too high, or the induction sensor target is out of reach.            current_position[Y_AXIS] = center_old_y;            goto canceled;        }        // Search in the negative Y direction, until a maximum diameter is found.        dmax = 0.f;        // if (y0 + 1.f < y1)        //    y1 = y0 + 1.f;        for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {            enable_z_endstop(false);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                /*                current_position[X_AXIS] = center_old_x;                SERIAL_PROTOCOLPGM("Failed 3\n");                goto canceled;                */            }            a = current_position[X_AXIS];            enable_z_endstop(false);            go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                continue;                /*                current_position[X_AXIS] = center_old_x;                SERIAL_PROTOCOLPGM("Failed 4\n");                goto canceled;                */            }            b = current_position[X_AXIS];            if (verbosity_level >= 5) {                debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);            }            float d = b - a;            if (d > dmax) {                xmax2 = 0.5f * (a + b);                dmax = d;            } else if (dmax > 0.) {                y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;                break;            }        }        float xmax, ymax;        if (dmax == 0.f) {            // Only the hit in the positive direction found.            xmax = xmax1;            ymax = y0;        } else {            // Both positive and negative directions found.            xmax = xmax2;            ymax = 0.5f * (y0 + y1);            for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {                enable_z_endstop(false);                go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);                enable_z_endstop(true);                go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);                update_current_position_xyz();                if (! endstop_z_hit_on_purpose()) {                    continue;                    /*                    current_position[X_AXIS] = center_old_x;                    SERIAL_PROTOCOLPGM("Failed 3\n");                    goto canceled;                    */                }                a = current_position[X_AXIS];                enable_z_endstop(false);                go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);                enable_z_endstop(true);                go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);                update_current_position_xyz();                if (! endstop_z_hit_on_purpose()) {                    continue;                    /*                    current_position[X_AXIS] = center_old_x;                    SERIAL_PROTOCOLPGM("Failed 4\n");                    goto canceled;                    */                }                b = current_position[X_AXIS];                if (verbosity_level >= 5) {                    debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);                    debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);                }                float d = b - a;                if (d > dmax) {                    xmax = 0.5f * (a + b);                    ymax = y;                    dmax = d;                }            }        }        {            // Compare the distance in the Y+ direction with the diameter in the X direction.            // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.            enable_z_endstop(false);            go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);            enable_z_endstop(true);            go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);            update_current_position_xyz();            if (! endstop_z_hit_on_purpose()) {                current_position[Y_AXIS] = center_old_y;                goto canceled;            }            if (verbosity_level >= 5)                debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);            if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {                // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.                // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.                if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                    if (verbosity_level >= 5) {                        SERIAL_ECHOPGM("Partial point diameter too small: ");                        SERIAL_ECHO(dmax);                        SERIAL_ECHOLNPGM("");                    }                    result = false;                } else {                    // Estimate the circle radius from the maximum diameter and height:                    float h = current_position[Y_AXIS] - ymax;                    float r = dmax * dmax / (8.f * h) + 0.5f * h;                    if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {                        if (verbosity_level >= 5) {                            SERIAL_ECHOPGM("Partial point estimated radius too small: ");                            SERIAL_ECHO(r);                            SERIAL_ECHOPGM(", dmax:");                            SERIAL_ECHO(dmax);                            SERIAL_ECHOPGM(", h:");                            SERIAL_ECHO(h);                            SERIAL_ECHOLNPGM("");                        }                        result = false;                    } else {                        // The point may end up outside of the machine working space.                        // That is all right as it helps to improve the accuracy of the measurement point                        // due to averaging.                        // For the y correction, use an average of dmax/2 and the estimated radius.                        r = 0.5f * (0.5f * dmax + r);                        ymax = current_position[Y_AXIS] - r;                    }                }            } else {                // If the diameter of the detected spot was smaller than a minimum allowed,                // the induction sensor is probably too high. Returning false will force                // the sensor to be lowered a tiny bit.                result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;                if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)                    // Only in case both left and right y tangents are known, use them.                    // If y0 is close to the bed edge, it may not be symmetric to the right tangent.                    ymax = 0.5f * ymax + 0.25f * (y0 + y1);            }        }        // Go to the center.        enable_z_endstop(false);        current_position[X_AXIS] = xmax;        current_position[Y_AXIS] = ymax;        if (verbosity_level >= 20) {            SERIAL_ECHOPGM("Adjusted position: ");            SERIAL_ECHO(current_position[X_AXIS]);            SERIAL_ECHOPGM(", ");            SERIAL_ECHO(current_position[Y_AXIS]);            SERIAL_ECHOLNPGM("");        }        // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.        // Only clamp the coordinate to go.        go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);        // delay_keep_alive(3000);    }    if (result)        return true;    // otherwise clamp the Y coordinatecanceled:    // Go back to the center.    enable_z_endstop(false);    if (current_position[Y_AXIS] < Y_MIN_POS)        current_position[Y_AXIS] = Y_MIN_POS;    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);    return false;}// Scan the mesh bed induction points one by one by a left-right zig-zag movement,// write the trigger coordinates to the serial line.// Useful for visualizing the behavior of the bed induction detector.inline void scan_bed_induction_sensor_point(){    float center_old_x = current_position[X_AXIS];    float center_old_y = current_position[Y_AXIS];    float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;    float y = y0;    if (x0 < X_MIN_POS)        x0 = X_MIN_POS;    if (x1 > X_MAX_POS)        x1 = X_MAX_POS;    if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)        y0 = Y_MIN_POS_FOR_BED_CALIBRATION;    if (y1 > Y_MAX_POS)        y1 = Y_MAX_POS;    for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {        enable_z_endstop(false);        go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (endstop_z_hit_on_purpose())            debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);        enable_z_endstop(false);        go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);        enable_z_endstop(true);        go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);        update_current_position_xyz();        if (endstop_z_hit_on_purpose())            debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);    }    enable_z_endstop(false);    current_position[X_AXIS] = center_old_x;    current_position[Y_AXIS] = center_old_y;    go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);}#define MESH_BED_CALIBRATION_SHOW_LCDBedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level, uint8_t &too_far_mask){	    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 4;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);	uint8_t iteration = 0; 	BedSkewOffsetDetectionResultType result;//    SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");//    SERIAL_ECHO(int(verbosity_level));//    SERIAL_ECHOPGM("");		while (iteration < 3) {		SERIAL_ECHOPGM("Iteration: ");		MYSERIAL.println(int(iteration + 1));		if (verbosity_level >= 20) {		SERIAL_ECHOLNPGM("Vectors: ");					SERIAL_ECHOPGM("vec_x[0]:");			MYSERIAL.print(vec_x[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_x[1]:");			MYSERIAL.print(vec_x[1], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_y[0]:");			MYSERIAL.print(vec_y[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("vec_y[1]:");			MYSERIAL.print(vec_y[1], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("cntr[0]:");			MYSERIAL.print(cntr[0], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("cntr[1]:");			MYSERIAL.print(cntr[1], 5);			SERIAL_ECHOLNPGM("");		}#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);    if (next_line > 3)        next_line = 3;#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Collect the rear 2x3 points.	current_position[Z_AXIS] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;	for (int k = 0; k < 4; ++k) {		// Don't let the manage_inactivity() function remove power from the motors.		refresh_cmd_timeout();#ifdef MESH_BED_CALIBRATION_SHOW_LCD		lcd_implementation_print_at(0, next_line, k + 1);		lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);		if (iteration > 0) {			lcd_print_at_PGM(0, next_line + 1, MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION);			lcd_implementation_print(int(iteration + 1));		}#endif /* MESH_BED_CALIBRATION_SHOW_LCD */		float *pt = pts + k * 2;		// Go up to z_initial.		go_to_current(homing_feedrate[Z_AXIS] / 60.f);		if (verbosity_level >= 20) {			// Go to Y0, wait, then go to Y-4.			current_position[Y_AXIS] = 0.f;			go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y0");			delay_keep_alive(5000);			current_position[Y_AXIS] = Y_MIN_POS;			go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y-4");			delay_keep_alive(5000);		}		// Go to the measurement point position.		//if (iteration == 0) {			current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);			current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);		/*}		else {			// if first iteration failed, count corrected point coordinates as initial			// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().						current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];			current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];			// The calibration points are very close to the min Y.			if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)				current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;		}*/		if (verbosity_level >= 20) {			SERIAL_ECHOPGM("current_position[X_AXIS]:");			MYSERIAL.print(current_position[X_AXIS], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("current_position[Y_AXIS]:");			MYSERIAL.print(current_position[Y_AXIS], 5);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("current_position[Z_AXIS]:");			MYSERIAL.print(current_position[Z_AXIS], 5);			SERIAL_ECHOLNPGM("");		}		go_to_current(homing_feedrate[X_AXIS] / 60.f);		if (verbosity_level >= 10)			delay_keep_alive(3000);		if (!find_bed_induction_sensor_point_xy(verbosity_level))			return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;#if 1					if (k == 0) {				// Improve the position of the 1st row sensor points by a zig-zag movement.				find_bed_induction_sensor_point_z();				int8_t i = 4;				for (;;) {					if (improve_bed_induction_sensor_point3(verbosity_level))						break;					if (--i == 0)						return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;					// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.					current_position[Z_AXIS] -= 0.025f;					enable_endstops(false);					enable_z_endstop(false);					go_to_current(homing_feedrate[Z_AXIS]);				}				if (i == 0)					// not found					return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;			}#endif			if (verbosity_level >= 10)				delay_keep_alive(3000);			// Save the detected point position and then clamp the Y coordinate, which may have been estimated			// to lie outside the machine working space.			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("Measured:");				MYSERIAL.println(current_position[X_AXIS]);				MYSERIAL.println(current_position[Y_AXIS]);			}			pt[0] = (pt[0] * iteration) / (iteration + 1);			pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average			pt[1] = (pt[1] * iteration) / (iteration + 1);			pt[1] += (current_position[Y_AXIS] / (iteration + 1));									//pt[0] += current_position[X_AXIS];			//if(iteration > 0) pt[0] = pt[0] / 2;									//pt[1] += current_position[Y_AXIS];			//if (iteration > 0) pt[1] = pt[1] / 2;			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("pt[0]:");				MYSERIAL.println(pt[0]);				SERIAL_ECHOPGM("pt[1]:");				MYSERIAL.println(pt[1]);			}			if (current_position[Y_AXIS] < Y_MIN_POS)				current_position[Y_AXIS] = Y_MIN_POS;			// Start searching for the other points at 3mm above the last point.			current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;			//cntr[0] += pt[0];			//cntr[1] += pt[1];			if (verbosity_level >= 10 && k == 0) {				// Show the zero. Test, whether the Y motor skipped steps.				current_position[Y_AXIS] = MANUAL_Y_HOME_POS;				go_to_current(homing_feedrate[X_AXIS] / 60.f);				delay_keep_alive(3000);			}		}		if (verbosity_level >= 20) {			// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.			delay_keep_alive(3000);			for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {				// Don't let the manage_inactivity() function remove power from the motors.				refresh_cmd_timeout();				// Go to the measurement point.				// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().				current_position[X_AXIS] = pts[mesh_point * 2];				current_position[Y_AXIS] = pts[mesh_point * 2 + 1];				go_to_current(homing_feedrate[X_AXIS] / 60);				delay_keep_alive(3000);			}		}		if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {			too_far_mask |= 1 << 1; //front center point is out of reach				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("WARNING: Front point not reachable. Y coordinate:");				MYSERIAL.print(pts[1]);				SERIAL_ECHOPGM(" < ");				MYSERIAL.println(Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);		}		result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);		if (result >= 0) {			world2machine_update(vec_x, vec_y, cntr);#if 1			// Fearlessly store the calibration values into the eeprom.			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);			eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);#endif			if (verbosity_level >= 10) {				// Length of the vec_x				float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);				SERIAL_ECHOLNPGM("X vector length:");				MYSERIAL.println(l);				// Length of the vec_y				l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);				SERIAL_ECHOLNPGM("Y vector length:");				MYSERIAL.println(l);				// Zero point correction				l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);				SERIAL_ECHOLNPGM("Zero point correction:");				MYSERIAL.println(l);				// vec_x and vec_y shall be nearly perpendicular.				l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];				SERIAL_ECHOLNPGM("Perpendicularity");				MYSERIAL.println(fabs(l));				SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");			}			// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.			world2machine_update_current();						if (verbosity_level >= 20) {				// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.				delay_keep_alive(3000);				for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {					// Don't let the manage_inactivity() function remove power from the motors.					refresh_cmd_timeout();					// Go to the measurement point.					// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().					current_position[X_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2);					current_position[Y_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2 + 1);					go_to_current(homing_feedrate[X_AXIS] / 60);					delay_keep_alive(3000);				}			}			return result;		}				if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user		iteration++;	}	return result;    }BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Mask of the first three points. Are they too far?    too_far_mask = 0;    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 9;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);	if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");    // Cache the current correction matrix.    world2machine_initialize();    vec_x[0] = world2machine_rotation_and_skew[0][0];    vec_x[1] = world2machine_rotation_and_skew[1][0];    vec_y[0] = world2machine_rotation_and_skew[0][1];    vec_y[1] = world2machine_rotation_and_skew[1][1];    cntr[0] = world2machine_shift[0];    cntr[1] = world2machine_shift[1];    // and reset the correction matrix, so the planner will not do anything.    world2machine_reset();    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1, next_line);    if (next_line > 3)        next_line = 3;#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Collect a matrix of 9x9 points.    BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Print the decrasing ID of the measurement point.#ifdef MESH_BED_CALIBRATION_SHOW_LCD        lcd_implementation_print_at(0, next_line, mesh_point+1);        lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);#endif /* MESH_BED_CALIBRATION_SHOW_LCD */        // Move up.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        enable_endstops(false);        enable_z_endstop(false);        go_to_current(homing_feedrate[Z_AXIS]/60);        if (verbosity_level >= 20) {            // Go to Y0, wait, then go to Y-4.            current_position[Y_AXIS] = 0.f;            go_to_current(homing_feedrate[X_AXIS] / 60.f);            SERIAL_ECHOLNPGM("At Y0");            delay_keep_alive(5000);            current_position[Y_AXIS] = Y_MIN_POS;            go_to_current(homing_feedrate[X_AXIS] / 60.f);			SERIAL_ECHOLNPGM("At Y_MIN_POS");            delay_keep_alive(5000);        }        // Go to the measurement point.        // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().        current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];        current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];        // The calibration points are very close to the min Y.        if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){            current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;			if (verbosity_level >= 20) {				SERIAL_ECHOPGM("Calibration point ");				SERIAL_ECHO(mesh_point);				SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");				SERIAL_ECHOLNPGM("");			}					}        go_to_current(homing_feedrate[X_AXIS]/60);        // Find its Z position by running the normal vertical search.        if (verbosity_level >= 10)            delay_keep_alive(3000);        find_bed_induction_sensor_point_z();        if (verbosity_level >= 10)            delay_keep_alive(3000);        // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.        current_position[Z_AXIS] -= 0.025f;        // Improve the point position by searching its center in a current plane.        int8_t n_errors = 3;        for (int8_t iter = 0; iter < 8; ) {            if (verbosity_level > 20) {                SERIAL_ECHOPGM("Improving bed point ");                SERIAL_ECHO(mesh_point);                SERIAL_ECHOPGM(", iteration ");                SERIAL_ECHO(iter);                SERIAL_ECHOPGM(", z");                MYSERIAL.print(current_position[Z_AXIS], 5);                SERIAL_ECHOLNPGM("");            }            bool found = false;            if (mesh_point < 3) {                // Because the sensor cannot move in front of the first row                // of the sensor points, the y position cannot be measured                // by a cross center method.                // Use a zig-zag search for the first row of the points.                found = improve_bed_induction_sensor_point3(verbosity_level);            } else {                switch (method) {                    case 0: found = improve_bed_induction_sensor_point(); break;                    case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;                    default: break;                }            }            if (found) {                if (iter > 3) {                    // Average the last 4 measurements.                    pts[mesh_point*2  ] += current_position[X_AXIS];                    pts[mesh_point*2+1] += current_position[Y_AXIS];                }                if (current_position[Y_AXIS] < Y_MIN_POS)                    current_position[Y_AXIS] = Y_MIN_POS;                ++ iter;            } else if (n_errors -- == 0) {                // Give up.                result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;                goto canceled;            } else {                // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.                current_position[Z_AXIS] -= 0.05f;                enable_endstops(false);                enable_z_endstop(false);                go_to_current(homing_feedrate[Z_AXIS]);                if (verbosity_level >= 5) {                    SERIAL_ECHOPGM("Improving bed point ");                    SERIAL_ECHO(mesh_point);                    SERIAL_ECHOPGM(", iteration ");                    SERIAL_ECHO(iter);                    SERIAL_ECHOPGM(" failed. Lowering z to ");                    MYSERIAL.print(current_position[Z_AXIS], 5);                    SERIAL_ECHOLNPGM("");                }            }        }        if (verbosity_level >= 10)            delay_keep_alive(3000);    }    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Average the last 4 measurements.    for (int8_t i = 0; i < 18; ++ i)        pts[i] *= (1.f/4.f);    enable_endstops(false);    enable_z_endstop(false);    if (verbosity_level >= 5) {        // Test the positions. Are the positions reproducible?		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {            // Don't let the manage_inactivity() function remove power from the motors.            refresh_cmd_timeout();            // Go to the measurement point.            // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().            current_position[X_AXIS] = pts[mesh_point*2];            current_position[Y_AXIS] = pts[mesh_point*2+1];            if (verbosity_level >= 10) {                go_to_current(homing_feedrate[X_AXIS]/60);                delay_keep_alive(3000);            }            SERIAL_ECHOPGM("Final measured bed point ");            SERIAL_ECHO(mesh_point);            SERIAL_ECHOPGM(": ");            MYSERIAL.print(current_position[X_AXIS], 5);            SERIAL_ECHOPGM(", ");            MYSERIAL.print(current_position[Y_AXIS], 5);            SERIAL_ECHOLNPGM("");        }    }    {        // First fill in the too_far_mask from the measured points.        for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)            if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)                too_far_mask |= 1 << mesh_point;        result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);        if (result < 0) {            SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");            goto canceled;        }        // In case of success, update the too_far_mask from the calculated points.        for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {            float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];			distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);			if (verbosity_level >= 20) {				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("Distance from min:");				MYSERIAL.print(distance_from_min[mesh_point]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("y:");				MYSERIAL.print(y);				SERIAL_ECHOLNPGM("");			}			if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)                too_far_mask |= 1 << mesh_point;        }    }    world2machine_update(vec_x, vec_y, cntr);#if 1    // Fearlessly store the calibration values into the eeprom.    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);    eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);#endif    // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.    world2machine_update_current();    enable_endstops(false);    enable_z_endstop(false);    if (verbosity_level >= 5) {        // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.        delay_keep_alive(3000);		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {            // Don't let the manage_inactivity() function remove power from the motors.            refresh_cmd_timeout();            // Go to the measurement point.            // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().            current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);            current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);            if (verbosity_level >= 10) {                go_to_current(homing_feedrate[X_AXIS]/60);                delay_keep_alive(3000);            }            {                float x, y;                world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);                SERIAL_ECHOPGM("Final calculated bed point ");                SERIAL_ECHO(mesh_point);                SERIAL_ECHOPGM(": ");                MYSERIAL.print(x, 5);                SERIAL_ECHOPGM(", ");                MYSERIAL.print(y, 5);                SERIAL_ECHOLNPGM("");            }        }    }    // Sample Z heights for the mesh bed leveling.    // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.    if (! sample_mesh_and_store_reference())        goto canceled;    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    return result;canceled:    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Print head up.    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;    go_to_current(homing_feedrate[Z_AXIS]/60);    // Store the identity matrix to EEPROM.    reset_bed_offset_and_skew();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return result;}void go_home_with_z_lift(){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Go home.    // First move up to a safe height.    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;    go_to_current(homing_feedrate[Z_AXIS]/60);    // Second move to XY [0, 0].    current_position[X_AXIS] = X_MIN_POS+0.2;    current_position[Y_AXIS] = Y_MIN_POS+0.2;    // Clamp to the physical coordinates.    world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);    go_to_current(homing_feedrate[X_AXIS]/60);    // Third move up to a safe height.    current_position[Z_AXIS] = Z_MIN_POS;    go_to_current(homing_feedrate[Z_AXIS]/60);    }// Sample the 9 points of the bed and store them into the EEPROM as a reference.// When calling this function, the X, Y, Z axes should be already homed,// and the world2machine correction matrix should be active.// Returns false if the reference values are more than 3mm far away.bool sample_mesh_and_store_reference(){    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();#ifdef MESH_BED_CALIBRATION_SHOW_LCD    uint8_t next_line;    lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1, next_line);    if (next_line > 3)        next_line = 3;    // display "point xx of yy"    lcd_implementation_print_at(0, next_line, 1);    lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);#endif /* MESH_BED_CALIBRATION_SHOW_LCD */    // Sample Z heights for the mesh bed leveling.    // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.    {        // The first point defines the reference.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        go_to_current(homing_feedrate[Z_AXIS]/60);        current_position[X_AXIS] = pgm_read_float(bed_ref_points);        current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);        world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);        go_to_current(homing_feedrate[X_AXIS]/60);        memcpy(destination, current_position, sizeof(destination));        enable_endstops(true);        homeaxis(Z_AXIS);        enable_endstops(false);        find_bed_induction_sensor_point_z();        mbl.set_z(0, 0, current_position[Z_AXIS]);    }    for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Print the decrasing ID of the measurement point.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        go_to_current(homing_feedrate[Z_AXIS]/60);        current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);        current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);        world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);        go_to_current(homing_feedrate[X_AXIS]/60);#ifdef MESH_BED_CALIBRATION_SHOW_LCD        // display "point xx of yy"        lcd_implementation_print_at(0, next_line, mesh_point+1);        lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);#endif /* MESH_BED_CALIBRATION_SHOW_LCD */        find_bed_induction_sensor_point_z();        // Get cords of measuring point        int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;        int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;        if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag        mbl.set_z(ix, iy, current_position[Z_AXIS]);    }    {        // Verify the span of the Z values.        float zmin = mbl.z_values[0][0];        float zmax = zmax;        for (int8_t j = 0; j < 3; ++ j)           for (int8_t i = 0; i < 3; ++ i) {                zmin = min(zmin, mbl.z_values[j][i]);                zmax = min(zmax, mbl.z_values[j][i]);           }        if (zmax - zmin > 3.f) {            // The span of the Z offsets is extreme. Give up.            // Homing failed on some of the points.            SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");            return false;        }    }    // Store the correction values to EEPROM.    // Offsets of the Z heiths of the calibration points from the first point.    // The offsets are saved as 16bit signed int, scaled to tenths of microns.    {        uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;        for (int8_t j = 0; j < 3; ++ j)            for (int8_t i = 0; i < 3; ++ i) {                if (i == 0 && j == 0)                    continue;                float dif = mbl.z_values[j][i] - mbl.z_values[0][0];                int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));                eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));                #if 0                {                    uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);                    float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;                    SERIAL_ECHOPGM("Bed point ");                    SERIAL_ECHO(i);                    SERIAL_ECHOPGM(",");                    SERIAL_ECHO(j);                    SERIAL_ECHOPGM(", differences: written ");                    MYSERIAL.print(dif, 5);                    SERIAL_ECHOPGM(", read: ");                    MYSERIAL.print(dif2, 5);                    SERIAL_ECHOLNPGM("");                }                #endif                addr += 2;            }    }    mbl.upsample_3x3();    mbl.active = true;    go_home_with_z_lift();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return true;}bool scan_bed_induction_points(int8_t verbosity_level){    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    // Reusing the z_values memory for the measurement cache.    // 7x7=49 floats, good for 16 (x,y,z) vectors.    float *pts = &mbl.z_values[0][0];    float *vec_x = pts + 2 * 9;    float *vec_y = vec_x + 2;    float *cntr  = vec_y + 2;    memset(pts, 0, sizeof(float) * 7 * 7);    // Cache the current correction matrix.    world2machine_initialize();    vec_x[0] = world2machine_rotation_and_skew[0][0];    vec_x[1] = world2machine_rotation_and_skew[1][0];    vec_y[0] = world2machine_rotation_and_skew[0][1];    vec_y[1] = world2machine_rotation_and_skew[1][1];    cntr[0] = world2machine_shift[0];    cntr[1] = world2machine_shift[1];    // and reset the correction matrix, so the planner will not do anything.    world2machine_reset();    bool endstops_enabled  = enable_endstops(false);    bool endstop_z_enabled = enable_z_endstop(false);    // Collect a matrix of 9x9 points.    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {        // Don't let the manage_inactivity() function remove power from the motors.        refresh_cmd_timeout();        // Move up.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        enable_endstops(false);        enable_z_endstop(false);        go_to_current(homing_feedrate[Z_AXIS]/60);        // Go to the measurement point.        // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().        current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];        current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];        // The calibration points are very close to the min Y.        if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)            current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;        go_to_current(homing_feedrate[X_AXIS]/60);        find_bed_induction_sensor_point_z();        scan_bed_induction_sensor_point();    }    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    enable_endstops(false);    enable_z_endstop(false);    // Don't let the manage_inactivity() function remove power from the motors.    refresh_cmd_timeout();    enable_endstops(endstops_enabled);    enable_z_endstop(endstop_z_enabled);    return true;}// Shift a Z axis by a given delta.// To replace loading of the babystep correction.static void shift_z(float delta){    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);    st_synchronize();    plan_set_z_position(current_position[Z_AXIS]);}#define BABYSTEP_LOADZ_BY_PLANNER// Number of baby steps appliedstatic int babystepLoadZ = 0;void babystep_load(){    // Apply Z height correction aka baby stepping before mesh bed leveling gets activated.    if(calibration_status() < CALIBRATION_STATUS_LIVE_ADJUST)    {        check_babystep(); //checking if babystep is in allowed range, otherwise setting babystep to 0                // End of G80: Apply the baby stepping value.        EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);                                #if 0        SERIAL_ECHO("Z baby step: ");        SERIAL_ECHO(babystepLoadZ);        SERIAL_ECHO(", current Z: ");        SERIAL_ECHO(current_position[Z_AXIS]);        SERIAL_ECHO("correction: ");        SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));        SERIAL_ECHOLN("");    #endif    }}void babystep_apply(){    babystep_load();#ifdef BABYSTEP_LOADZ_BY_PLANNER    shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));#else    babystepsTodoZadd(babystepLoadZ);#endif /* BABYSTEP_LOADZ_BY_PLANNER */}void babystep_undo(){#ifdef BABYSTEP_LOADZ_BY_PLANNER      shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));#else      babystepsTodoZsubtract(babystepLoadZ);#endif /* BABYSTEP_LOADZ_BY_PLANNER */      babystepLoadZ = 0;}void babystep_reset(){      babystepLoadZ = 0;    }void count_xyz_details() {	float a1, a2;	float cntr[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4))	};	float vec_x[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4))	};	float vec_y[2] = {		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0)),		eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4))	};	a2 = -1 * asin(vec_y[0] / MACHINE_AXIS_SCALE_Y);	a1 = asin(vec_x[1] / MACHINE_AXIS_SCALE_X);	angleDiff = fabs(a2 - a1);	for (uint8_t mesh_point = 0; mesh_point < 3; ++mesh_point) {		float y = vec_x[1] * pgm_read_float(bed_ref_points + mesh_point * 2) + vec_y[1] * pgm_read_float(bed_ref_points + mesh_point * 2 + 1) + cntr[1];		distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);	}}/*countDistanceFromMin() {}*/
 |