stepper.cpp 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  33. #include "fsensor.h"
  34. int fsensor_counter; //counter for e-steps
  35. #endif //FILAMENT_SENSOR
  36. #include "mmu.h"
  37. #include "ConfigurationStore.h"
  38. #ifdef DEBUG_STACK_MONITOR
  39. uint16_t SP_min = 0x21FF;
  40. #endif //DEBUG_STACK_MONITOR
  41. /*
  42. * Stepping macros
  43. */
  44. #define _STEP_PIN_X_AXIS X_STEP_PIN
  45. #define _STEP_PIN_Y_AXIS Y_STEP_PIN
  46. #define _STEP_PIN_Z_AXIS Z_STEP_PIN
  47. #define _STEP_PIN_E_AXIS E0_STEP_PIN
  48. #ifdef DEBUG_XSTEP_DUP_PIN
  49. #define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN
  50. #endif
  51. #ifdef DEBUG_YSTEP_DUP_PIN
  52. #define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN
  53. #endif
  54. #ifdef Y_DUAL_STEPPER_DRIVERS
  55. #error Y_DUAL_STEPPER_DRIVERS not fully implemented
  56. #define _STEP_PIN_Y2_AXIS Y2_STEP_PIN
  57. #endif
  58. #ifdef Z_DUAL_STEPPER_DRIVERS
  59. #error Z_DUAL_STEPPER_DRIVERS not fully implemented
  60. #define _STEP_PIN_Z2_AXIS Z2_STEP_PIN
  61. #endif
  62. #ifdef TMC2130
  63. #define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE
  64. #define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY
  65. #define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY
  66. #else
  67. #define STEPPER_MINIMUM_PULSE 2
  68. #define STEPPER_SET_DIR_DELAY 100
  69. #define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE)
  70. #endif
  71. #ifdef TMC2130_DEDGE_STEPPING
  72. static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty
  73. "DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY");
  74. #define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis)
  75. #define STEP_NC_LO(axis) //NOP
  76. #else
  77. #define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN
  78. #define _STEP_LO_X_AXIS INVERT_X_STEP_PIN
  79. #define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN
  80. #define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN
  81. #define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN
  82. #define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN
  83. #define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN
  84. #define _STEP_LO_E_AXIS INVERT_E_STEP_PIN
  85. #define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis)
  86. #define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis)
  87. #endif //TMC2130_DEDGE_STEPPING
  88. //===========================================================================
  89. //=============================public variables ============================
  90. //===========================================================================
  91. block_t *current_block; // A pointer to the block currently being traced
  92. bool x_min_endstop = false;
  93. bool x_max_endstop = false;
  94. bool y_min_endstop = false;
  95. bool y_max_endstop = false;
  96. bool z_min_endstop = false;
  97. bool z_max_endstop = false;
  98. //===========================================================================
  99. //=============================private variables ============================
  100. //===========================================================================
  101. //static makes it inpossible to be called from outside of this file by extern.!
  102. // Variables used by The Stepper Driver Interrupt
  103. static unsigned char out_bits; // The next stepping-bits to be output
  104. static dda_isteps_t
  105. counter_x, // Counter variables for the bresenham line tracer
  106. counter_y,
  107. counter_z,
  108. counter_e;
  109. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  110. static uint32_t acceleration_time, deceleration_time;
  111. static uint16_t acc_step_rate; // needed for deccelaration start point
  112. static uint8_t step_loops;
  113. static uint16_t OCR1A_nominal;
  114. static uint8_t step_loops_nominal;
  115. volatile long endstops_trigsteps[3]={0,0,0};
  116. volatile long endstops_stepsTotal,endstops_stepsDone;
  117. static volatile bool endstop_x_hit=false;
  118. static volatile bool endstop_y_hit=false;
  119. static volatile bool endstop_z_hit=false;
  120. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  121. bool abort_on_endstop_hit = false;
  122. #endif
  123. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  124. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  125. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  126. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  127. #endif
  128. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  129. static bool old_x_max_endstop=false;
  130. #endif
  131. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  132. static bool old_y_max_endstop=false;
  133. #endif
  134. static bool old_x_min_endstop=false;
  135. static bool old_y_min_endstop=false;
  136. static bool old_z_min_endstop=false;
  137. static bool old_z_max_endstop=false;
  138. static bool check_endstops = true;
  139. static bool check_z_endstop = false;
  140. static bool z_endstop_invert = false;
  141. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  142. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  143. #ifdef LIN_ADVANCE
  144. void advance_isr_scheduler();
  145. void advance_isr();
  146. static const uint16_t ADV_NEVER = 0xFFFF;
  147. static const uint8_t ADV_INIT = 0b01; // initialize LA
  148. static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase
  149. static uint16_t nextMainISR;
  150. static uint16_t nextAdvanceISR;
  151. static uint16_t main_Rate;
  152. static uint16_t eISR_Rate;
  153. static uint32_t eISR_Err;
  154. static uint16_t current_adv_steps;
  155. static uint16_t target_adv_steps;
  156. static int8_t e_steps; // scheduled e-steps during each isr loop
  157. static uint8_t e_step_loops; // e-steps to execute at most in each isr loop
  158. static uint8_t e_extruding; // current move is an extrusion move
  159. static int8_t LA_phase; // LA compensation phase
  160. #define _NEXT_ISR(T) main_Rate = nextMainISR = T
  161. #else
  162. #define _NEXT_ISR(T) OCR1A = T
  163. #endif
  164. #ifdef DEBUG_STEPPER_TIMER_MISSED
  165. extern bool stepper_timer_overflow_state;
  166. extern uint16_t stepper_timer_overflow_last;
  167. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  168. //===========================================================================
  169. //=============================functions ============================
  170. //===========================================================================
  171. void checkHitEndstops()
  172. {
  173. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  174. SERIAL_ECHO_START;
  175. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  176. if(endstop_x_hit) {
  177. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
  178. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
  179. }
  180. if(endstop_y_hit) {
  181. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
  182. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
  183. }
  184. if(endstop_z_hit) {
  185. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
  186. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
  187. }
  188. SERIAL_ECHOLN("");
  189. endstop_x_hit=false;
  190. endstop_y_hit=false;
  191. endstop_z_hit=false;
  192. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  193. if (abort_on_endstop_hit)
  194. {
  195. card.sdprinting = false;
  196. card.closefile();
  197. quickStop();
  198. setTargetHotend0(0);
  199. setTargetHotend1(0);
  200. setTargetHotend2(0);
  201. }
  202. #endif
  203. }
  204. }
  205. bool endstops_hit_on_purpose()
  206. {
  207. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  208. endstop_x_hit=false;
  209. endstop_y_hit=false;
  210. endstop_z_hit=false;
  211. return hit;
  212. }
  213. bool endstop_z_hit_on_purpose()
  214. {
  215. bool hit = endstop_z_hit;
  216. endstop_z_hit=false;
  217. return hit;
  218. }
  219. bool enable_endstops(bool check)
  220. {
  221. bool old = check_endstops;
  222. check_endstops = check;
  223. return old;
  224. }
  225. bool enable_z_endstop(bool check)
  226. {
  227. bool old = check_z_endstop;
  228. check_z_endstop = check;
  229. endstop_z_hit = false;
  230. return old;
  231. }
  232. void invert_z_endstop(bool endstop_invert)
  233. {
  234. z_endstop_invert = endstop_invert;
  235. }
  236. // __________________________
  237. // /| |\ _________________ ^
  238. // / | | \ /| |\ |
  239. // / | | \ / | | \ s
  240. // / | | | | | \ p
  241. // / | | | | | \ e
  242. // +-----+------------------------+---+--+---------------+----+ e
  243. // | BLOCK 1 | BLOCK 2 | d
  244. //
  245. // time ----->
  246. //
  247. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  248. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  249. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  250. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  251. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  252. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  253. ISR(TIMER1_COMPA_vect) {
  254. #ifdef DEBUG_STACK_MONITOR
  255. uint16_t sp = SPL + 256 * SPH;
  256. if (sp < SP_min) SP_min = sp;
  257. #endif //DEBUG_STACK_MONITOR
  258. #ifdef LIN_ADVANCE
  259. advance_isr_scheduler();
  260. #else
  261. isr();
  262. #endif
  263. // Don't run the ISR faster than possible
  264. // Is there a 8us time left before the next interrupt triggers?
  265. if (OCR1A < TCNT1 + 16) {
  266. #ifdef DEBUG_STEPPER_TIMER_MISSED
  267. // Verify whether the next planned timer interrupt has not been missed already.
  268. // This debugging test takes < 1.125us
  269. // This skews the profiling slightly as the fastest stepper timer
  270. // interrupt repeats at a 100us rate (10kHz).
  271. if (OCR1A + 40 < TCNT1) {
  272. // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
  273. // Give a warning.
  274. stepper_timer_overflow_state = true;
  275. stepper_timer_overflow_last = TCNT1 - OCR1A;
  276. // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
  277. WRITE(BEEPER, HIGH);
  278. }
  279. #endif
  280. // Fix the next interrupt to be executed after 8us from now.
  281. OCR1A = TCNT1 + 16;
  282. }
  283. }
  284. uint8_t last_dir_bits = 0;
  285. #ifdef BACKLASH_X
  286. uint8_t st_backlash_x = 0;
  287. #endif //BACKLASH_X
  288. #ifdef BACKLASH_Y
  289. uint8_t st_backlash_y = 0;
  290. #endif //BACKLASH_Y
  291. FORCE_INLINE void stepper_next_block()
  292. {
  293. // Anything in the buffer?
  294. //WRITE_NC(LOGIC_ANALYZER_CH2, true);
  295. current_block = plan_get_current_block();
  296. if (current_block != NULL) {
  297. #ifdef BACKLASH_X
  298. if (current_block->steps_x.wide)
  299. { //X-axis movement
  300. if ((current_block->direction_bits ^ last_dir_bits) & 1)
  301. {
  302. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
  303. if (current_block->direction_bits & 1)
  304. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  305. else
  306. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  307. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  308. for (uint8_t i = 0; i < st_backlash_x; i++)
  309. {
  310. STEP_NC_HI(X_AXIS);
  311. STEPPER_MINIMUM_DELAY;
  312. STEP_NC_LO(X_AXIS);
  313. _delay_us(900); // hard-coded jerk! *bad*
  314. }
  315. }
  316. last_dir_bits &= ~1;
  317. last_dir_bits |= current_block->direction_bits & 1;
  318. }
  319. #endif
  320. #ifdef BACKLASH_Y
  321. if (current_block->steps_y.wide)
  322. { //Y-axis movement
  323. if ((current_block->direction_bits ^ last_dir_bits) & 2)
  324. {
  325. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
  326. if (current_block->direction_bits & 2)
  327. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  328. else
  329. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  330. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  331. for (uint8_t i = 0; i < st_backlash_y; i++)
  332. {
  333. STEP_NC_HI(Y_AXIS);
  334. STEPPER_MINIMUM_DELAY;
  335. STEP_NC_LO(Y_AXIS);
  336. _delay_us(900); // hard-coded jerk! *bad*
  337. }
  338. }
  339. last_dir_bits &= ~2;
  340. last_dir_bits |= current_block->direction_bits & 2;
  341. }
  342. #endif
  343. // The busy flag is set by the plan_get_current_block() call.
  344. // current_block->busy = true;
  345. // Initializes the trapezoid generator from the current block. Called whenever a new
  346. // block begins.
  347. deceleration_time = 0;
  348. // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
  349. // That means, delay the initialization of nominal step rate and step loops until the steady
  350. // state is reached.
  351. step_loops_nominal = 0;
  352. acc_step_rate = uint16_t(current_block->initial_rate);
  353. acceleration_time = calc_timer(acc_step_rate, step_loops);
  354. #ifdef LIN_ADVANCE
  355. if (current_block->use_advance_lead) {
  356. target_adv_steps = current_block->max_adv_steps;
  357. }
  358. e_steps = 0;
  359. nextAdvanceISR = ADV_NEVER;
  360. LA_phase = -1;
  361. #endif
  362. if (current_block->flag & BLOCK_FLAG_E_RESET) {
  363. count_position[E_AXIS] = 0;
  364. }
  365. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  366. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  367. counter_y.lo = counter_x.lo;
  368. counter_z.lo = counter_x.lo;
  369. counter_e.lo = counter_x.lo;
  370. #ifdef LIN_ADVANCE
  371. e_extruding = current_block->steps_e.lo != 0;
  372. #endif
  373. } else {
  374. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  375. counter_y.wide = counter_x.wide;
  376. counter_z.wide = counter_x.wide;
  377. counter_e.wide = counter_x.wide;
  378. #ifdef LIN_ADVANCE
  379. e_extruding = current_block->steps_e.wide != 0;
  380. #endif
  381. }
  382. step_events_completed.wide = 0;
  383. // Set directions.
  384. out_bits = current_block->direction_bits;
  385. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  386. if((out_bits & (1<<X_AXIS))!=0){
  387. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  388. count_direction[X_AXIS]=-1;
  389. } else {
  390. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  391. count_direction[X_AXIS]=1;
  392. }
  393. if((out_bits & (1<<Y_AXIS))!=0){
  394. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  395. count_direction[Y_AXIS]=-1;
  396. } else {
  397. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  398. count_direction[Y_AXIS]=1;
  399. }
  400. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  401. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  402. count_direction[Z_AXIS]=-1;
  403. } else { // +direction
  404. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  405. count_direction[Z_AXIS]=1;
  406. }
  407. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  408. #ifndef LIN_ADVANCE
  409. WRITE(E0_DIR_PIN,
  410. #ifdef SNMM
  411. (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
  412. #endif // SNMM
  413. INVERT_E0_DIR);
  414. #endif /* LIN_ADVANCE */
  415. count_direction[E_AXIS] = -1;
  416. } else { // +direction
  417. #ifndef LIN_ADVANCE
  418. WRITE(E0_DIR_PIN,
  419. #ifdef SNMM
  420. (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
  421. #endif // SNMM
  422. !INVERT_E0_DIR);
  423. #endif /* LIN_ADVANCE */
  424. count_direction[E_AXIS] = 1;
  425. }
  426. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  427. fsensor_st_block_begin(count_direction[E_AXIS] < 0);
  428. #endif //FILAMENT_SENSOR
  429. }
  430. else {
  431. _NEXT_ISR(2000); // 1kHz.
  432. #ifdef LIN_ADVANCE
  433. // reset LA state when there's no block
  434. nextAdvanceISR = ADV_NEVER;
  435. e_steps = 0;
  436. // incrementally lose pressure to give a chance for
  437. // a new LA block to be scheduled and recover
  438. if(current_adv_steps)
  439. --current_adv_steps;
  440. #endif
  441. }
  442. //WRITE_NC(LOGIC_ANALYZER_CH2, false);
  443. }
  444. // Check limit switches.
  445. FORCE_INLINE void stepper_check_endstops()
  446. {
  447. if(check_endstops)
  448. {
  449. #ifndef COREXY
  450. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  451. #else
  452. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  453. #endif
  454. {
  455. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  456. #ifdef TMC2130_SG_HOMING
  457. // Stall guard homing turned on
  458. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  459. #else
  460. // Normal homing
  461. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  462. #endif
  463. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
  464. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  465. endstop_x_hit=true;
  466. step_events_completed.wide = current_block->step_event_count.wide;
  467. }
  468. old_x_min_endstop = x_min_endstop;
  469. #endif
  470. } else { // +direction
  471. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  472. #ifdef TMC2130_SG_HOMING
  473. // Stall guard homing turned on
  474. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  475. #else
  476. // Normal homing
  477. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  478. #endif
  479. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
  480. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  481. endstop_x_hit=true;
  482. step_events_completed.wide = current_block->step_event_count.wide;
  483. }
  484. old_x_max_endstop = x_max_endstop;
  485. #endif
  486. }
  487. #ifndef COREXY
  488. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  489. #else
  490. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  491. #endif
  492. {
  493. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  494. #ifdef TMC2130_SG_HOMING
  495. // Stall guard homing turned on
  496. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  497. #else
  498. // Normal homing
  499. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  500. #endif
  501. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
  502. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  503. endstop_y_hit=true;
  504. step_events_completed.wide = current_block->step_event_count.wide;
  505. }
  506. old_y_min_endstop = y_min_endstop;
  507. #endif
  508. } else { // +direction
  509. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  510. #ifdef TMC2130_SG_HOMING
  511. // Stall guard homing turned on
  512. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  513. #else
  514. // Normal homing
  515. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  516. #endif
  517. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
  518. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  519. endstop_y_hit=true;
  520. step_events_completed.wide = current_block->step_event_count.wide;
  521. }
  522. old_y_max_endstop = y_max_endstop;
  523. #endif
  524. }
  525. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  526. {
  527. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  528. if (! check_z_endstop) {
  529. #ifdef TMC2130_SG_HOMING
  530. // Stall guard homing turned on
  531. #ifdef TMC2130_STEALTH_Z
  532. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  533. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  534. else
  535. #endif //TMC2130_STEALTH_Z
  536. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  537. #else
  538. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  539. #endif //TMC2130_SG_HOMING
  540. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
  541. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  542. endstop_z_hit=true;
  543. step_events_completed.wide = current_block->step_event_count.wide;
  544. }
  545. old_z_min_endstop = z_min_endstop;
  546. }
  547. #endif
  548. } else { // +direction
  549. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  550. #ifdef TMC2130_SG_HOMING
  551. // Stall guard homing turned on
  552. #ifdef TMC2130_STEALTH_Z
  553. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  554. z_max_endstop = false;
  555. else
  556. #endif //TMC2130_STEALTH_Z
  557. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  558. #else
  559. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  560. #endif //TMC2130_SG_HOMING
  561. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
  562. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  563. endstop_z_hit=true;
  564. step_events_completed.wide = current_block->step_event_count.wide;
  565. }
  566. old_z_max_endstop = z_max_endstop;
  567. #endif
  568. }
  569. }
  570. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  571. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  572. if (check_z_endstop) {
  573. // Check the Z min end-stop no matter what.
  574. // Good for searching for the center of an induction target.
  575. #ifdef TMC2130_SG_HOMING
  576. // Stall guard homing turned on
  577. #ifdef TMC2130_STEALTH_Z
  578. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  579. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  580. else
  581. #endif //TMC2130_STEALTH_Z
  582. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  583. #else
  584. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  585. #endif //TMC2130_SG_HOMING
  586. if(z_min_endstop && old_z_min_endstop) {
  587. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  588. endstop_z_hit=true;
  589. step_events_completed.wide = current_block->step_event_count.wide;
  590. }
  591. old_z_min_endstop = z_min_endstop;
  592. }
  593. #endif
  594. }
  595. FORCE_INLINE void stepper_tick_lowres()
  596. {
  597. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  598. MSerial.checkRx(); // Check for serial chars.
  599. // Step in X axis
  600. counter_x.lo += current_block->steps_x.lo;
  601. if (counter_x.lo > 0) {
  602. STEP_NC_HI(X_AXIS);
  603. #ifdef DEBUG_XSTEP_DUP_PIN
  604. STEP_NC_HI(X_DUP_AXIS);
  605. #endif //DEBUG_XSTEP_DUP_PIN
  606. counter_x.lo -= current_block->step_event_count.lo;
  607. count_position[X_AXIS]+=count_direction[X_AXIS];
  608. STEP_NC_LO(X_AXIS);
  609. #ifdef DEBUG_XSTEP_DUP_PIN
  610. STEP_NC_LO(X_DUP_AXIS);
  611. #endif //DEBUG_XSTEP_DUP_PIN
  612. }
  613. // Step in Y axis
  614. counter_y.lo += current_block->steps_y.lo;
  615. if (counter_y.lo > 0) {
  616. STEP_NC_HI(Y_AXIS);
  617. #ifdef DEBUG_YSTEP_DUP_PIN
  618. STEP_NC_HI(Y_DUP_AXIS);
  619. #endif //DEBUG_YSTEP_DUP_PIN
  620. counter_y.lo -= current_block->step_event_count.lo;
  621. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  622. STEP_NC_LO(Y_AXIS);
  623. #ifdef DEBUG_YSTEP_DUP_PIN
  624. STEP_NC_LO(Y_DUP_AXIS);
  625. #endif //DEBUG_YSTEP_DUP_PIN
  626. }
  627. // Step in Z axis
  628. counter_z.lo += current_block->steps_z.lo;
  629. if (counter_z.lo > 0) {
  630. STEP_NC_HI(Z_AXIS);
  631. counter_z.lo -= current_block->step_event_count.lo;
  632. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  633. STEP_NC_LO(Z_AXIS);
  634. }
  635. // Step in E axis
  636. counter_e.lo += current_block->steps_e.lo;
  637. if (counter_e.lo > 0) {
  638. #ifndef LIN_ADVANCE
  639. STEP_NC_HI(E_AXIS);
  640. #endif /* LIN_ADVANCE */
  641. counter_e.lo -= current_block->step_event_count.lo;
  642. count_position[E_AXIS] += count_direction[E_AXIS];
  643. #ifdef LIN_ADVANCE
  644. e_steps += count_direction[E_AXIS];
  645. #else
  646. #ifdef FILAMENT_SENSOR
  647. fsensor_counter += count_direction[E_AXIS];
  648. #endif //FILAMENT_SENSOR
  649. STEP_NC_LO(E_AXIS);
  650. #endif
  651. }
  652. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  653. break;
  654. }
  655. }
  656. FORCE_INLINE void stepper_tick_highres()
  657. {
  658. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  659. MSerial.checkRx(); // Check for serial chars.
  660. // Step in X axis
  661. counter_x.wide += current_block->steps_x.wide;
  662. if (counter_x.wide > 0) {
  663. STEP_NC_HI(X_AXIS);
  664. #ifdef DEBUG_XSTEP_DUP_PIN
  665. STEP_NC_HI(X_DUP_AXIS);
  666. #endif //DEBUG_XSTEP_DUP_PIN
  667. counter_x.wide -= current_block->step_event_count.wide;
  668. count_position[X_AXIS]+=count_direction[X_AXIS];
  669. STEP_NC_LO(X_AXIS);
  670. #ifdef DEBUG_XSTEP_DUP_PIN
  671. STEP_NC_LO(X_DUP_AXIS);
  672. #endif //DEBUG_XSTEP_DUP_PIN
  673. }
  674. // Step in Y axis
  675. counter_y.wide += current_block->steps_y.wide;
  676. if (counter_y.wide > 0) {
  677. STEP_NC_HI(Y_AXIS);
  678. #ifdef DEBUG_YSTEP_DUP_PIN
  679. STEP_NC_HI(Y_DUP_AXIS);
  680. #endif //DEBUG_YSTEP_DUP_PIN
  681. counter_y.wide -= current_block->step_event_count.wide;
  682. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  683. STEP_NC_LO(Y_AXIS);
  684. #ifdef DEBUG_YSTEP_DUP_PIN
  685. STEP_NC_LO(Y_DUP_AXIS);
  686. #endif //DEBUG_YSTEP_DUP_PIN
  687. }
  688. // Step in Z axis
  689. counter_z.wide += current_block->steps_z.wide;
  690. if (counter_z.wide > 0) {
  691. STEP_NC_HI(Z_AXIS);
  692. counter_z.wide -= current_block->step_event_count.wide;
  693. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  694. STEP_NC_LO(Z_AXIS);
  695. }
  696. // Step in E axis
  697. counter_e.wide += current_block->steps_e.wide;
  698. if (counter_e.wide > 0) {
  699. #ifndef LIN_ADVANCE
  700. STEP_NC_HI(E_AXIS);
  701. #endif /* LIN_ADVANCE */
  702. counter_e.wide -= current_block->step_event_count.wide;
  703. count_position[E_AXIS]+=count_direction[E_AXIS];
  704. #ifdef LIN_ADVANCE
  705. e_steps += count_direction[E_AXIS];
  706. #else
  707. #ifdef FILAMENT_SENSOR
  708. fsensor_counter += count_direction[E_AXIS];
  709. #endif //FILAMENT_SENSOR
  710. STEP_NC_LO(E_AXIS);
  711. #endif
  712. }
  713. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  714. break;
  715. }
  716. }
  717. #ifdef LIN_ADVANCE
  718. // @wavexx: fast uint16_t division for small dividends<5
  719. // q/3 based on "Hacker's delight" formula
  720. FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
  721. {
  722. if(d != 3) return q >> (d / 2);
  723. else return ((uint32_t)0xAAAB * q) >> 17;
  724. }
  725. FORCE_INLINE void advance_spread(uint16_t timer)
  726. {
  727. eISR_Err += timer;
  728. uint8_t ticks = 0;
  729. while(eISR_Err >= current_block->advance_rate)
  730. {
  731. ++ticks;
  732. eISR_Err -= current_block->advance_rate;
  733. }
  734. if(!ticks)
  735. {
  736. eISR_Rate = timer;
  737. nextAdvanceISR = timer;
  738. return;
  739. }
  740. if (ticks <= 3)
  741. eISR_Rate = fastdiv(timer, ticks + 1);
  742. else
  743. {
  744. // >4 ticks are still possible on slow moves
  745. eISR_Rate = timer / (ticks + 1);
  746. }
  747. nextAdvanceISR = eISR_Rate;
  748. }
  749. #endif
  750. FORCE_INLINE void isr() {
  751. //WRITE_NC(LOGIC_ANALYZER_CH0, true);
  752. //if (UVLO) uvlo();
  753. // If there is no current block, attempt to pop one from the buffer
  754. if (current_block == NULL)
  755. stepper_next_block();
  756. if (current_block != NULL)
  757. {
  758. stepper_check_endstops();
  759. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  760. stepper_tick_lowres();
  761. else
  762. stepper_tick_highres();
  763. #ifdef LIN_ADVANCE
  764. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  765. uint8_t la_state = 0;
  766. #endif
  767. // Calculate new timer value
  768. // 13.38-14.63us for steady state,
  769. // 25.12us for acceleration / deceleration.
  770. {
  771. //WRITE_NC(LOGIC_ANALYZER_CH1, true);
  772. if (step_events_completed.wide <= current_block->accelerate_until) {
  773. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  774. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  775. acc_step_rate += uint16_t(current_block->initial_rate);
  776. // upper limit
  777. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  778. acc_step_rate = current_block->nominal_rate;
  779. // step_rate to timer interval
  780. uint16_t timer = calc_timer(acc_step_rate, step_loops);
  781. _NEXT_ISR(timer);
  782. acceleration_time += timer;
  783. #ifdef LIN_ADVANCE
  784. if (current_block->use_advance_lead) {
  785. if (step_events_completed.wide <= (unsigned long int)step_loops) {
  786. la_state = ADV_INIT | ADV_ACC_VARY;
  787. if (e_extruding && current_adv_steps > target_adv_steps)
  788. target_adv_steps = current_adv_steps;
  789. }
  790. }
  791. #endif
  792. }
  793. else if (step_events_completed.wide > current_block->decelerate_after) {
  794. uint16_t step_rate;
  795. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  796. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  797. step_rate = uint16_t(current_block->final_rate);
  798. }
  799. else {
  800. step_rate = acc_step_rate - step_rate; // Decelerate from acceleration end point.
  801. // lower limit
  802. if (step_rate < current_block->final_rate)
  803. step_rate = uint16_t(current_block->final_rate);
  804. }
  805. // Step_rate to timer interval.
  806. uint16_t timer = calc_timer(step_rate, step_loops);
  807. _NEXT_ISR(timer);
  808. deceleration_time += timer;
  809. #ifdef LIN_ADVANCE
  810. if (current_block->use_advance_lead) {
  811. if (step_events_completed.wide <= current_block->decelerate_after + step_loops) {
  812. target_adv_steps = current_block->final_adv_steps;
  813. la_state = ADV_INIT | ADV_ACC_VARY;
  814. if (e_extruding && current_adv_steps < target_adv_steps)
  815. target_adv_steps = current_adv_steps;
  816. }
  817. }
  818. #endif
  819. }
  820. else {
  821. if (! step_loops_nominal) {
  822. // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
  823. // the initial interrupt blocking.
  824. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
  825. step_loops_nominal = step_loops;
  826. #ifdef LIN_ADVANCE
  827. if(current_block->use_advance_lead) {
  828. // Due to E-jerk, there can be discontinuities in pressure state where an
  829. // acceleration or deceleration can be skipped or joined with the previous block.
  830. // If LA was not previously active, re-check the pressure level
  831. la_state = ADV_INIT;
  832. if (e_extruding)
  833. target_adv_steps = current_adv_steps;
  834. }
  835. #endif
  836. }
  837. _NEXT_ISR(OCR1A_nominal);
  838. }
  839. //WRITE_NC(LOGIC_ANALYZER_CH1, false);
  840. }
  841. #ifdef LIN_ADVANCE
  842. // avoid multiple instances or function calls to advance_spread
  843. if (la_state & ADV_INIT) {
  844. LA_phase = -1;
  845. if (current_adv_steps == target_adv_steps) {
  846. // nothing to be done in this phase, cancel any pending eisr
  847. la_state = 0;
  848. nextAdvanceISR = ADV_NEVER;
  849. }
  850. else {
  851. // reset error and iterations per loop for this phase
  852. eISR_Err = current_block->advance_rate;
  853. e_step_loops = current_block->advance_step_loops;
  854. if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) {
  855. // LA could reverse the direction of extrusion in this phase
  856. eISR_Err += current_block->advance_rate;
  857. LA_phase = 0;
  858. }
  859. }
  860. }
  861. if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
  862. // update timers & phase for the next iteration
  863. advance_spread(main_Rate);
  864. if (LA_phase >= 0) {
  865. if (step_loops == e_step_loops)
  866. LA_phase = (current_block->advance_rate < main_Rate);
  867. else {
  868. // avoid overflow through division. warning: we need to _guarantee_ step_loops
  869. // and e_step_loops are <= 4 due to fastdiv's limit
  870. auto adv_rate_n = fastdiv(current_block->advance_rate, step_loops);
  871. auto main_rate_n = fastdiv(main_Rate, e_step_loops);
  872. LA_phase = (adv_rate_n < main_rate_n);
  873. }
  874. }
  875. }
  876. // Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
  877. // entire isr, making this spot a much better choice than checking during esteps
  878. MSerial.checkRx();
  879. #endif
  880. // If current block is finished, reset pointer
  881. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  882. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  883. fsensor_st_block_chunk(fsensor_counter);
  884. fsensor_counter = 0;
  885. #endif //FILAMENT_SENSOR
  886. current_block = NULL;
  887. plan_discard_current_block();
  888. }
  889. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  890. else if ((abs(fsensor_counter) >= fsensor_chunk_len))
  891. {
  892. fsensor_st_block_chunk(fsensor_counter);
  893. fsensor_counter = 0;
  894. }
  895. #endif //FILAMENT_SENSOR
  896. }
  897. #ifdef TMC2130
  898. tmc2130_st_isr();
  899. #endif //TMC2130
  900. //WRITE_NC(LOGIC_ANALYZER_CH0, false);
  901. }
  902. #ifdef LIN_ADVANCE
  903. // Timer interrupt for E. e_steps is set in the main routine.
  904. FORCE_INLINE void advance_isr() {
  905. if (current_adv_steps > target_adv_steps) {
  906. // decompression
  907. if (e_step_loops != 1) {
  908. uint16_t d_steps = current_adv_steps - target_adv_steps;
  909. if (d_steps < e_step_loops)
  910. e_step_loops = d_steps;
  911. }
  912. e_steps -= e_step_loops;
  913. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  914. current_adv_steps -= e_step_loops;
  915. }
  916. else if (current_adv_steps < target_adv_steps) {
  917. // compression
  918. if (e_step_loops != 1) {
  919. uint16_t d_steps = target_adv_steps - current_adv_steps;
  920. if (d_steps < e_step_loops)
  921. e_step_loops = d_steps;
  922. }
  923. e_steps += e_step_loops;
  924. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  925. current_adv_steps += e_step_loops;
  926. }
  927. if (current_adv_steps == target_adv_steps) {
  928. // advance steps completed
  929. nextAdvanceISR = ADV_NEVER;
  930. }
  931. else {
  932. // schedule another tick
  933. nextAdvanceISR = eISR_Rate;
  934. }
  935. }
  936. FORCE_INLINE void advance_isr_scheduler() {
  937. // Integrate the final timer value, accounting for scheduling adjustments
  938. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  939. {
  940. if(nextAdvanceISR > OCR1A)
  941. nextAdvanceISR -= OCR1A;
  942. else
  943. nextAdvanceISR = 0;
  944. }
  945. if(nextMainISR > OCR1A)
  946. nextMainISR -= OCR1A;
  947. else
  948. nextMainISR = 0;
  949. // Run main stepping ISR if flagged
  950. if (!nextMainISR)
  951. {
  952. #ifdef LA_DEBUG_LOGIC
  953. WRITE_NC(LOGIC_ANALYZER_CH0, true);
  954. #endif
  955. isr();
  956. #ifdef LA_DEBUG_LOGIC
  957. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  958. #endif
  959. }
  960. // Run the next advance isr if triggered
  961. bool eisr = !nextAdvanceISR;
  962. if (eisr)
  963. {
  964. #ifdef LA_DEBUG_LOGIC
  965. WRITE_NC(LOGIC_ANALYZER_CH1, true);
  966. #endif
  967. advance_isr();
  968. #ifdef LA_DEBUG_LOGIC
  969. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  970. #endif
  971. }
  972. // Tick E steps if any
  973. if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
  974. uint8_t max_ticks = (eisr? e_step_loops: step_loops);
  975. max_ticks = min(abs(e_steps), max_ticks);
  976. bool rev = (e_steps < 0);
  977. do
  978. {
  979. STEP_NC_HI(E_AXIS);
  980. e_steps += (rev? 1: -1);
  981. STEP_NC_LO(E_AXIS);
  982. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  983. fsensor_counter += (rev? -1: 1);
  984. #endif
  985. }
  986. while(--max_ticks);
  987. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  988. if (abs(fsensor_counter) >= fsensor_chunk_len)
  989. {
  990. fsensor_st_block_chunk(fsensor_counter);
  991. fsensor_counter = 0;
  992. }
  993. #endif
  994. }
  995. // Schedule the next closest tick, ignoring advance if scheduled too
  996. // soon in order to avoid skewing the regular stepper acceleration
  997. if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + 40) < nextMainISR)
  998. OCR1A = nextAdvanceISR;
  999. else
  1000. OCR1A = nextMainISR;
  1001. }
  1002. #endif // LIN_ADVANCE
  1003. void st_init()
  1004. {
  1005. #ifdef TMC2130
  1006. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  1007. #endif //TMC2130
  1008. st_current_init(); //Initialize Digipot Motor Current
  1009. microstep_init(); //Initialize Microstepping Pins
  1010. //Initialize Dir Pins
  1011. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  1012. SET_OUTPUT(X_DIR_PIN);
  1013. #endif
  1014. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  1015. SET_OUTPUT(X2_DIR_PIN);
  1016. #endif
  1017. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  1018. SET_OUTPUT(Y_DIR_PIN);
  1019. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  1020. SET_OUTPUT(Y2_DIR_PIN);
  1021. #endif
  1022. #endif
  1023. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  1024. SET_OUTPUT(Z_DIR_PIN);
  1025. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  1026. SET_OUTPUT(Z2_DIR_PIN);
  1027. #endif
  1028. #endif
  1029. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  1030. SET_OUTPUT(E0_DIR_PIN);
  1031. #endif
  1032. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  1033. SET_OUTPUT(E1_DIR_PIN);
  1034. #endif
  1035. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  1036. SET_OUTPUT(E2_DIR_PIN);
  1037. #endif
  1038. //Initialize Enable Pins - steppers default to disabled.
  1039. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  1040. SET_OUTPUT(X_ENABLE_PIN);
  1041. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  1042. #endif
  1043. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  1044. SET_OUTPUT(X2_ENABLE_PIN);
  1045. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  1046. #endif
  1047. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  1048. SET_OUTPUT(Y_ENABLE_PIN);
  1049. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  1050. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  1051. SET_OUTPUT(Y2_ENABLE_PIN);
  1052. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  1053. #endif
  1054. #endif
  1055. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  1056. SET_OUTPUT(Z_ENABLE_PIN);
  1057. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  1058. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  1059. SET_OUTPUT(Z2_ENABLE_PIN);
  1060. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  1061. #endif
  1062. #endif
  1063. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  1064. SET_OUTPUT(E0_ENABLE_PIN);
  1065. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  1066. #endif
  1067. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  1068. SET_OUTPUT(E1_ENABLE_PIN);
  1069. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  1070. #endif
  1071. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  1072. SET_OUTPUT(E2_ENABLE_PIN);
  1073. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  1074. #endif
  1075. //endstops and pullups
  1076. #ifdef TMC2130_SG_HOMING
  1077. SET_INPUT(X_TMC2130_DIAG);
  1078. WRITE(X_TMC2130_DIAG,HIGH);
  1079. SET_INPUT(Y_TMC2130_DIAG);
  1080. WRITE(Y_TMC2130_DIAG,HIGH);
  1081. SET_INPUT(Z_TMC2130_DIAG);
  1082. WRITE(Z_TMC2130_DIAG,HIGH);
  1083. SET_INPUT(E0_TMC2130_DIAG);
  1084. WRITE(E0_TMC2130_DIAG,HIGH);
  1085. #endif
  1086. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1087. SET_INPUT(X_MIN_PIN);
  1088. #ifdef ENDSTOPPULLUP_XMIN
  1089. WRITE(X_MIN_PIN,HIGH);
  1090. #endif
  1091. #endif
  1092. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1093. SET_INPUT(Y_MIN_PIN);
  1094. #ifdef ENDSTOPPULLUP_YMIN
  1095. WRITE(Y_MIN_PIN,HIGH);
  1096. #endif
  1097. #endif
  1098. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1099. SET_INPUT(Z_MIN_PIN);
  1100. #ifdef ENDSTOPPULLUP_ZMIN
  1101. WRITE(Z_MIN_PIN,HIGH);
  1102. #endif
  1103. #endif
  1104. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1105. SET_INPUT(X_MAX_PIN);
  1106. #ifdef ENDSTOPPULLUP_XMAX
  1107. WRITE(X_MAX_PIN,HIGH);
  1108. #endif
  1109. #endif
  1110. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1111. SET_INPUT(Y_MAX_PIN);
  1112. #ifdef ENDSTOPPULLUP_YMAX
  1113. WRITE(Y_MAX_PIN,HIGH);
  1114. #endif
  1115. #endif
  1116. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1117. SET_INPUT(Z_MAX_PIN);
  1118. #ifdef ENDSTOPPULLUP_ZMAX
  1119. WRITE(Z_MAX_PIN,HIGH);
  1120. #endif
  1121. #endif
  1122. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1123. SET_INPUT(TACH_0);
  1124. #ifdef TACH0PULLUP
  1125. WRITE(TACH_0, HIGH);
  1126. #endif
  1127. #endif
  1128. //Initialize Step Pins
  1129. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  1130. SET_OUTPUT(X_STEP_PIN);
  1131. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  1132. #ifdef DEBUG_XSTEP_DUP_PIN
  1133. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  1134. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1135. #endif //DEBUG_XSTEP_DUP_PIN
  1136. disable_x();
  1137. #endif
  1138. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  1139. SET_OUTPUT(X2_STEP_PIN);
  1140. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  1141. disable_x();
  1142. #endif
  1143. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  1144. SET_OUTPUT(Y_STEP_PIN);
  1145. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  1146. #ifdef DEBUG_YSTEP_DUP_PIN
  1147. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  1148. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1149. #endif //DEBUG_YSTEP_DUP_PIN
  1150. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  1151. SET_OUTPUT(Y2_STEP_PIN);
  1152. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  1153. #endif
  1154. disable_y();
  1155. #endif
  1156. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  1157. SET_OUTPUT(Z_STEP_PIN);
  1158. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  1159. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  1160. SET_OUTPUT(Z2_STEP_PIN);
  1161. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  1162. #endif
  1163. #ifdef PSU_Delta
  1164. init_force_z();
  1165. #endif // PSU_Delta
  1166. disable_z();
  1167. #endif
  1168. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  1169. SET_OUTPUT(E0_STEP_PIN);
  1170. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  1171. disable_e0();
  1172. #endif
  1173. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1174. SET_OUTPUT(E1_STEP_PIN);
  1175. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1176. disable_e1();
  1177. #endif
  1178. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1179. SET_OUTPUT(E2_STEP_PIN);
  1180. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1181. disable_e2();
  1182. #endif
  1183. // waveform generation = 0100 = CTC
  1184. TCCR1B &= ~(1<<WGM13);
  1185. TCCR1B |= (1<<WGM12);
  1186. TCCR1A &= ~(1<<WGM11);
  1187. TCCR1A &= ~(1<<WGM10);
  1188. // output mode = 00 (disconnected)
  1189. TCCR1A &= ~(3<<COM1A0);
  1190. TCCR1A &= ~(3<<COM1B0);
  1191. // Set the timer pre-scaler
  1192. // Generally we use a divider of 8, resulting in a 2MHz timer
  1193. // frequency on a 16MHz MCU. If you are going to change this, be
  1194. // sure to regenerate speed_lookuptable.h with
  1195. // create_speed_lookuptable.py
  1196. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1197. // Plan the first interrupt after 8ms from now.
  1198. OCR1A = 0x4000;
  1199. TCNT1 = 0;
  1200. #ifdef LIN_ADVANCE
  1201. #ifdef LA_DEBUG_LOGIC
  1202. LOGIC_ANALYZER_CH0_ENABLE;
  1203. LOGIC_ANALYZER_CH1_ENABLE;
  1204. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  1205. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  1206. #endif
  1207. // Initialize state for the linear advance scheduler
  1208. nextMainISR = 0;
  1209. nextAdvanceISR = ADV_NEVER;
  1210. main_Rate = ADV_NEVER;
  1211. current_adv_steps = 0;
  1212. #endif
  1213. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1214. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1215. sei();
  1216. }
  1217. void st_reset_timer()
  1218. {
  1219. // Clear a possible pending interrupt on OCR1A overflow.
  1220. TIFR1 |= 1 << OCF1A;
  1221. // Reset the counter.
  1222. TCNT1 = 0;
  1223. // Wake up after 1ms from now.
  1224. OCR1A = 2000;
  1225. #ifdef LIN_ADVANCE
  1226. nextMainISR = 0;
  1227. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  1228. nextAdvanceISR = 0;
  1229. #endif
  1230. }
  1231. // Block until all buffered steps are executed
  1232. void st_synchronize()
  1233. {
  1234. while(blocks_queued())
  1235. {
  1236. #ifdef TMC2130
  1237. manage_heater();
  1238. // Vojtech: Don't disable motors inside the planner!
  1239. if (!tmc2130_update_sg())
  1240. {
  1241. manage_inactivity(true);
  1242. lcd_update(0);
  1243. }
  1244. #else //TMC2130
  1245. manage_heater();
  1246. // Vojtech: Don't disable motors inside the planner!
  1247. manage_inactivity(true);
  1248. lcd_update(0);
  1249. #endif //TMC2130
  1250. }
  1251. }
  1252. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1253. {
  1254. CRITICAL_SECTION_START;
  1255. // Copy 4x4B.
  1256. // This block locks the interrupts globally for 4.56 us,
  1257. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1258. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1259. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1260. count_position[X_AXIS] = x;
  1261. count_position[Y_AXIS] = y;
  1262. count_position[Z_AXIS] = z;
  1263. count_position[E_AXIS] = e;
  1264. CRITICAL_SECTION_END;
  1265. }
  1266. void st_set_e_position(const long &e)
  1267. {
  1268. CRITICAL_SECTION_START;
  1269. count_position[E_AXIS] = e;
  1270. CRITICAL_SECTION_END;
  1271. }
  1272. long st_get_position(uint8_t axis)
  1273. {
  1274. long count_pos;
  1275. CRITICAL_SECTION_START;
  1276. count_pos = count_position[axis];
  1277. CRITICAL_SECTION_END;
  1278. return count_pos;
  1279. }
  1280. void st_get_position_xy(long &x, long &y)
  1281. {
  1282. CRITICAL_SECTION_START;
  1283. x = count_position[X_AXIS];
  1284. y = count_position[Y_AXIS];
  1285. CRITICAL_SECTION_END;
  1286. }
  1287. float st_get_position_mm(uint8_t axis)
  1288. {
  1289. float steper_position_in_steps = st_get_position(axis);
  1290. return steper_position_in_steps / cs.axis_steps_per_unit[axis];
  1291. }
  1292. void quickStop()
  1293. {
  1294. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1295. while (blocks_queued()) plan_discard_current_block();
  1296. current_block = NULL;
  1297. #ifdef LIN_ADVANCE
  1298. nextAdvanceISR = ADV_NEVER;
  1299. current_adv_steps = 0;
  1300. #endif
  1301. st_reset_timer();
  1302. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1303. }
  1304. #ifdef BABYSTEPPING
  1305. void babystep(const uint8_t axis,const bool direction)
  1306. {
  1307. // MUST ONLY BE CALLED BY A ISR as stepper pins are manipulated directly.
  1308. // note: when switching direction no delay is inserted at the end when the
  1309. // original is restored. We assume enough time passes as the function
  1310. // returns and the stepper is manipulated again (to avoid dead times)
  1311. switch(axis)
  1312. {
  1313. case X_AXIS:
  1314. {
  1315. enable_x();
  1316. uint8_t old_x_dir_pin = READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1317. uint8_t new_x_dir_pin = (INVERT_X_DIR)^direction;
  1318. //setup new step
  1319. if (new_x_dir_pin != old_x_dir_pin) {
  1320. WRITE_NC(X_DIR_PIN, new_x_dir_pin);
  1321. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1322. }
  1323. //perform step
  1324. STEP_NC_HI(X_AXIS);
  1325. #ifdef DEBUG_XSTEP_DUP_PIN
  1326. STEP_NC_HI(X_DUP_AXIS);
  1327. #endif
  1328. STEPPER_MINIMUM_DELAY;
  1329. STEP_NC_LO(X_AXIS);
  1330. #ifdef DEBUG_XSTEP_DUP_PIN
  1331. STEP_NC_LO(X_DUP_AXIS);
  1332. #endif
  1333. //get old pin state back.
  1334. WRITE_NC(X_DIR_PIN, old_x_dir_pin);
  1335. }
  1336. break;
  1337. case Y_AXIS:
  1338. {
  1339. enable_y();
  1340. uint8_t old_y_dir_pin = READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1341. uint8_t new_y_dir_pin = (INVERT_Y_DIR)^direction;
  1342. //setup new step
  1343. if (new_y_dir_pin != old_y_dir_pin) {
  1344. WRITE_NC(Y_DIR_PIN, new_y_dir_pin);
  1345. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1346. }
  1347. //perform step
  1348. STEP_NC_HI(Y_AXIS);
  1349. #ifdef DEBUG_YSTEP_DUP_PIN
  1350. STEP_NC_HI(Y_DUP_AXIS);
  1351. #endif
  1352. STEPPER_MINIMUM_DELAY;
  1353. STEP_NC_LO(Y_AXIS);
  1354. #ifdef DEBUG_YSTEP_DUP_PIN
  1355. STEP_NC_LO(Y_DUP_AXIS);
  1356. #endif
  1357. //get old pin state back.
  1358. WRITE_NC(Y_DIR_PIN, old_y_dir_pin);
  1359. }
  1360. break;
  1361. case Z_AXIS:
  1362. {
  1363. enable_z();
  1364. uint8_t old_z_dir_pin = READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1365. uint8_t new_z_dir_pin = (INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z;
  1366. //setup new step
  1367. if (new_z_dir_pin != old_z_dir_pin) {
  1368. WRITE_NC(Z_DIR_PIN, new_z_dir_pin);
  1369. #ifdef Z_DUAL_STEPPER_DRIVERS
  1370. WRITE_NC(Z2_DIR_PIN, new_z_dir_pin);
  1371. #endif
  1372. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1373. }
  1374. //perform step
  1375. STEP_NC_HI(Z_AXIS);
  1376. #ifdef Z_DUAL_STEPPER_DRIVERS
  1377. STEP_NC_HI(Z2_AXIS);
  1378. #endif
  1379. STEPPER_MINIMUM_DELAY;
  1380. STEP_NC_LO(Z_AXIS);
  1381. #ifdef Z_DUAL_STEPPER_DRIVERS
  1382. STEP_NC_LO(Z2_AXIS);
  1383. #endif
  1384. //get old pin state back.
  1385. if (new_z_dir_pin != old_z_dir_pin) {
  1386. WRITE_NC(Z_DIR_PIN, old_z_dir_pin);
  1387. #ifdef Z_DUAL_STEPPER_DRIVERS
  1388. WRITE_NC(Z2_DIR_PIN, old_z_dir_pin);
  1389. #endif
  1390. }
  1391. }
  1392. break;
  1393. default: break;
  1394. }
  1395. }
  1396. #endif //BABYSTEPPING
  1397. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1398. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1399. {
  1400. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1401. SPI.transfer(address); // send in the address and value via SPI:
  1402. SPI.transfer(value);
  1403. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1404. //_delay(10);
  1405. }
  1406. #endif
  1407. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1408. {
  1409. do
  1410. {
  1411. *value = eeprom_read_byte((unsigned char*)pos);
  1412. pos++;
  1413. value++;
  1414. }while(--size);
  1415. }
  1416. void st_current_init() //Initialize Digipot Motor Current
  1417. {
  1418. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1419. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1420. SilentModeMenu = SilentMode;
  1421. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1422. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1423. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1424. if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
  1425. motor_current_setting[0] = motor_current_setting_loud[0];
  1426. motor_current_setting[1] = motor_current_setting_loud[1];
  1427. motor_current_setting[2] = motor_current_setting_loud[2];
  1428. }else{
  1429. motor_current_setting[0] = motor_current_setting_silent[0];
  1430. motor_current_setting[1] = motor_current_setting_silent[1];
  1431. motor_current_setting[2] = motor_current_setting_silent[2];
  1432. }
  1433. st_current_set(0, motor_current_setting[0]);
  1434. st_current_set(1, motor_current_setting[1]);
  1435. st_current_set(2, motor_current_setting[2]);
  1436. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1437. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1438. #endif
  1439. }
  1440. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1441. void st_current_set(uint8_t driver, int current)
  1442. {
  1443. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1444. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1445. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1446. }
  1447. #else //MOTOR_CURRENT_PWM_XY_PIN
  1448. void st_current_set(uint8_t, int ){}
  1449. #endif //MOTOR_CURRENT_PWM_XY_PIN
  1450. void microstep_init()
  1451. {
  1452. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1453. pinMode(E1_MS1_PIN,OUTPUT);
  1454. pinMode(E1_MS2_PIN,OUTPUT);
  1455. #endif
  1456. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1457. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1458. pinMode(X_MS1_PIN,OUTPUT);
  1459. pinMode(X_MS2_PIN,OUTPUT);
  1460. pinMode(Y_MS1_PIN,OUTPUT);
  1461. pinMode(Y_MS2_PIN,OUTPUT);
  1462. pinMode(Z_MS1_PIN,OUTPUT);
  1463. pinMode(Z_MS2_PIN,OUTPUT);
  1464. pinMode(E0_MS1_PIN,OUTPUT);
  1465. pinMode(E0_MS2_PIN,OUTPUT);
  1466. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1467. #endif
  1468. }
  1469. #ifndef TMC2130
  1470. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1471. {
  1472. if(ms1 > -1) switch(driver)
  1473. {
  1474. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1475. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1476. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1477. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1478. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1479. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1480. #endif
  1481. }
  1482. if(ms2 > -1) switch(driver)
  1483. {
  1484. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1485. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1486. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1487. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1488. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1489. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1490. #endif
  1491. }
  1492. }
  1493. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1494. {
  1495. switch(stepping_mode)
  1496. {
  1497. case 1: microstep_ms(driver,MICROSTEP1); break;
  1498. case 2: microstep_ms(driver,MICROSTEP2); break;
  1499. case 4: microstep_ms(driver,MICROSTEP4); break;
  1500. case 8: microstep_ms(driver,MICROSTEP8); break;
  1501. case 16: microstep_ms(driver,MICROSTEP16); break;
  1502. }
  1503. }
  1504. void microstep_readings()
  1505. {
  1506. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1507. SERIAL_PROTOCOLPGM("X: ");
  1508. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1509. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1510. SERIAL_PROTOCOLPGM("Y: ");
  1511. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1512. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1513. SERIAL_PROTOCOLPGM("Z: ");
  1514. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1515. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1516. SERIAL_PROTOCOLPGM("E0: ");
  1517. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1518. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1519. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1520. SERIAL_PROTOCOLPGM("E1: ");
  1521. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1522. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1523. #endif
  1524. }
  1525. #endif //TMC2130
  1526. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  1527. void st_reset_fsensor()
  1528. {
  1529. CRITICAL_SECTION_START;
  1530. fsensor_counter = 0;
  1531. CRITICAL_SECTION_END;
  1532. }
  1533. #endif //FILAMENT_SENSOR