mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  18. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  19. #define MMU_HWRESET
  20. #define MMU_RST_PIN 76
  21. #define MMU_REQUIRED_FW_BUILDNR 81
  22. bool mmu_enabled = false;
  23. bool mmu_ready = false;
  24. int8_t mmu_state = 0;
  25. uint8_t mmu_cmd = 0;
  26. uint8_t mmu_extruder = 0;
  27. uint8_t tmp_extruder = 0;
  28. int8_t mmu_finda = -1;
  29. int16_t mmu_version = -1;
  30. int16_t mmu_buildnr = -1;
  31. uint32_t mmu_last_request = 0;
  32. uint32_t mmu_last_response = 0;
  33. //clear rx buffer
  34. void mmu_clr_rx_buf(void)
  35. {
  36. while (fgetc(uart2io) >= 0);
  37. }
  38. //send command - puts
  39. int mmu_puts_P(const char* str)
  40. {
  41. mmu_clr_rx_buf(); //clear rx buffer
  42. int r = fputs_P(str, uart2io); //send command
  43. mmu_last_request = millis();
  44. return r;
  45. }
  46. //send command - printf
  47. int mmu_printf_P(const char* format, ...)
  48. {
  49. va_list args;
  50. va_start(args, format);
  51. mmu_clr_rx_buf(); //clear rx buffer
  52. int r = vfprintf_P(uart2io, format, args); //send command
  53. va_end(args);
  54. mmu_last_request = millis();
  55. return r;
  56. }
  57. //check 'ok' response
  58. int8_t mmu_rx_ok(void)
  59. {
  60. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  61. if (res == 1) mmu_last_response = millis();
  62. return res;
  63. }
  64. //check 'start' response
  65. int8_t mmu_rx_start(void)
  66. {
  67. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  68. if (res == 1) mmu_last_response = millis();
  69. return res;
  70. }
  71. //initialize mmu2 unit - first part - should be done at begining of startup process
  72. void mmu_init(void)
  73. {
  74. digitalWrite(MMU_RST_PIN, HIGH);
  75. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  76. uart2_init(); //init uart2
  77. _delay_ms(10); //wait 10ms for sure
  78. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  79. mmu_state = -1;
  80. }
  81. //mmu main loop - state machine processing
  82. void mmu_loop(void)
  83. {
  84. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  85. switch (mmu_state)
  86. {
  87. case 0:
  88. return;
  89. case -1:
  90. if (mmu_rx_start() > 0)
  91. {
  92. puts_P(PSTR("MMU => 'start'"));
  93. puts_P(PSTR("MMU <= 'S1'"));
  94. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  95. mmu_state = -2;
  96. }
  97. else if (millis() > 30000) //30sec after reset disable mmu
  98. {
  99. puts_P(PSTR("MMU not responding - DISABLED"));
  100. mmu_state = 0;
  101. }
  102. return;
  103. case -2:
  104. if (mmu_rx_ok() > 0)
  105. {
  106. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  107. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  108. puts_P(PSTR("MMU <= 'S2'"));
  109. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  110. mmu_state = -3;
  111. }
  112. return;
  113. case -3:
  114. if (mmu_rx_ok() > 0)
  115. {
  116. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  117. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  118. bool version_valid = mmu_check_version();
  119. if (!version_valid) mmu_show_warning();
  120. else puts_P(PSTR("MMU version valid"));
  121. puts_P(PSTR("MMU <= 'P0'"));
  122. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  123. mmu_state = -4;
  124. }
  125. return;
  126. case -4:
  127. if (mmu_rx_ok() > 0)
  128. {
  129. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  130. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  131. puts_P(PSTR("MMU - ENABLED"));
  132. mmu_enabled = true;
  133. mmu_state = 1;
  134. }
  135. return;
  136. case 1:
  137. if (mmu_cmd) //command request ?
  138. {
  139. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  140. {
  141. int extruder = mmu_cmd - MMU_CMD_T0;
  142. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  143. mmu_printf_P(PSTR("T%d\n"), extruder);
  144. mmu_state = 3; // wait for response
  145. }
  146. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  147. {
  148. int filament = mmu_cmd - MMU_CMD_L0;
  149. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  150. mmu_printf_P(PSTR("L%d\n"), filament);
  151. mmu_state = 3; // wait for response
  152. }
  153. else if (mmu_cmd == MMU_CMD_C0)
  154. {
  155. printf_P(PSTR("MMU <= 'C0'\n"));
  156. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  157. mmu_state = 3;
  158. }
  159. else if (mmu_cmd == MMU_CMD_U0)
  160. {
  161. printf_P(PSTR("MMU <= 'U0'\n"));
  162. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  163. mmu_state = 3;
  164. }
  165. mmu_cmd = 0;
  166. }
  167. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  168. {
  169. puts_P(PSTR("MMU <= 'P0'"));
  170. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  171. mmu_state = 2;
  172. }
  173. return;
  174. case 2: //response to command P0
  175. if (mmu_rx_ok() > 0)
  176. {
  177. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  178. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  179. mmu_state = 1;
  180. if (mmu_cmd == 0)
  181. mmu_ready = true;
  182. }
  183. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  184. { //resend request after timeout (30s)
  185. mmu_state = 1;
  186. }
  187. return;
  188. case 3: //response to commands T0-T4
  189. if (mmu_rx_ok() > 0)
  190. {
  191. printf_P(PSTR("MMU => 'ok'\n"));
  192. mmu_ready = true;
  193. mmu_state = 1;
  194. }
  195. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  196. { //resend request after timeout (5 min)
  197. mmu_state = 1;
  198. }
  199. return;
  200. }
  201. }
  202. void mmu_reset(void)
  203. {
  204. #ifdef MMU_HWRESET //HW - pulse reset pin
  205. digitalWrite(MMU_RST_PIN, LOW);
  206. _delay_us(100);
  207. digitalWrite(MMU_RST_PIN, HIGH);
  208. #else //SW - send X0 command
  209. mmu_puts_P(PSTR("X0\n"));
  210. #endif
  211. }
  212. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  213. {
  214. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  215. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  216. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  217. while ((mmu_rx_ok() <= 0) && (--timeout))
  218. delay_keep_alive(MMU_TODELAY);
  219. return timeout?1:0;
  220. }
  221. void mmu_command(uint8_t cmd)
  222. {
  223. mmu_cmd = cmd;
  224. mmu_ready = false;
  225. }
  226. bool mmu_get_response(void)
  227. {
  228. // printf_P(PSTR("mmu_get_response - begin\n"));
  229. KEEPALIVE_STATE(IN_PROCESS);
  230. while (mmu_cmd != 0)
  231. {
  232. // mmu_loop();
  233. delay_keep_alive(100);
  234. }
  235. while (!mmu_ready)
  236. {
  237. // mmu_loop();
  238. if (mmu_state != 3)
  239. break;
  240. delay_keep_alive(100);
  241. }
  242. bool ret = mmu_ready;
  243. mmu_ready = false;
  244. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  245. return ret;
  246. /* //waits for "ok" from mmu
  247. //function returns true if "ok" was received
  248. //if timeout is set to true function return false if there is no "ok" received before timeout
  249. bool response = true;
  250. LongTimer mmu_get_reponse_timeout;
  251. KEEPALIVE_STATE(IN_PROCESS);
  252. mmu_get_reponse_timeout.start();
  253. while (mmu_rx_ok() <= 0)
  254. {
  255. delay_keep_alive(100);
  256. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  257. { //5 minutes timeout
  258. response = false;
  259. break;
  260. }
  261. }
  262. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  263. return response;*/
  264. }
  265. void manage_response(bool move_axes, bool turn_off_nozzle)
  266. {
  267. bool response = false;
  268. mmu_print_saved = false;
  269. bool lcd_update_was_enabled = false;
  270. float hotend_temp_bckp = degTargetHotend(active_extruder);
  271. float z_position_bckp = current_position[Z_AXIS];
  272. float x_position_bckp = current_position[X_AXIS];
  273. float y_position_bckp = current_position[Y_AXIS];
  274. while(!response)
  275. {
  276. response = mmu_get_response(); //wait for "ok" from mmu
  277. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  278. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  279. if (lcd_update_enabled) {
  280. lcd_update_was_enabled = true;
  281. lcd_update_enable(false);
  282. }
  283. st_synchronize();
  284. mmu_print_saved = true;
  285. printf_P(PSTR("MMU not responding\n"));
  286. hotend_temp_bckp = degTargetHotend(active_extruder);
  287. if (move_axes) {
  288. z_position_bckp = current_position[Z_AXIS];
  289. x_position_bckp = current_position[X_AXIS];
  290. y_position_bckp = current_position[Y_AXIS];
  291. //lift z
  292. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  293. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  295. st_synchronize();
  296. //Move XY to side
  297. current_position[X_AXIS] = X_PAUSE_POS;
  298. current_position[Y_AXIS] = Y_PAUSE_POS;
  299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  300. st_synchronize();
  301. }
  302. if (turn_off_nozzle) {
  303. //set nozzle target temperature to 0
  304. setAllTargetHotends(0);
  305. }
  306. }
  307. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  308. delay_keep_alive(1000);
  309. }
  310. else if (mmu_print_saved) {
  311. printf_P(PSTR("MMU starts responding\n"));
  312. if (turn_off_nozzle)
  313. {
  314. lcd_clear();
  315. setTargetHotend(hotend_temp_bckp, active_extruder);
  316. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  317. delay_keep_alive(3000);
  318. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  319. {
  320. delay_keep_alive(1000);
  321. lcd_wait_for_heater();
  322. }
  323. }
  324. if (move_axes) {
  325. lcd_clear();
  326. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  327. current_position[X_AXIS] = x_position_bckp;
  328. current_position[Y_AXIS] = y_position_bckp;
  329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  330. st_synchronize();
  331. current_position[Z_AXIS] = z_position_bckp;
  332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  333. st_synchronize();
  334. }
  335. else {
  336. lcd_clear();
  337. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  338. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  339. }
  340. }
  341. }
  342. if (lcd_update_was_enabled) lcd_update_enable(true);
  343. }
  344. void mmu_load_to_nozzle()
  345. {
  346. st_synchronize();
  347. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  348. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  349. current_position[E_AXIS] += 7.2f;
  350. float feedrate = 562;
  351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  352. st_synchronize();
  353. current_position[E_AXIS] += 14.4f;
  354. feedrate = 871;
  355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  356. st_synchronize();
  357. current_position[E_AXIS] += 36.0f;
  358. feedrate = 1393;
  359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  360. st_synchronize();
  361. current_position[E_AXIS] += 14.4f;
  362. feedrate = 871;
  363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  364. st_synchronize();
  365. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  366. }
  367. void mmu_M600_load_filament(bool automatic)
  368. {
  369. //load filament for mmu v2
  370. bool response = false;
  371. bool yes = false;
  372. if (!automatic) {
  373. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  374. if(yes) tmp_extruder = choose_extruder_menu();
  375. else tmp_extruder = mmu_extruder;
  376. }
  377. else {
  378. tmp_extruder = (tmp_extruder+1)%5;
  379. }
  380. lcd_update_enable(false);
  381. lcd_clear();
  382. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  383. lcd_print(" ");
  384. lcd_print(tmp_extruder + 1);
  385. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  386. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  387. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  388. mmu_command(MMU_CMD_T0 + tmp_extruder);
  389. manage_response(false, true);
  390. mmu_command(MMU_CMD_C0);
  391. mmu_extruder = tmp_extruder; //filament change is finished
  392. mmu_load_to_nozzle();
  393. st_synchronize();
  394. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  396. }
  397. void extr_mov(float shift, float feed_rate)
  398. { //move extruder no matter what the current heater temperature is
  399. set_extrude_min_temp(.0);
  400. current_position[E_AXIS] += shift;
  401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  402. set_extrude_min_temp(EXTRUDE_MINTEMP);
  403. }
  404. void change_extr(int extr) { //switches multiplexer for extruders
  405. #ifdef SNMM
  406. st_synchronize();
  407. delay(100);
  408. disable_e0();
  409. disable_e1();
  410. disable_e2();
  411. mmu_extruder = extr;
  412. pinMode(E_MUX0_PIN, OUTPUT);
  413. pinMode(E_MUX1_PIN, OUTPUT);
  414. switch (extr) {
  415. case 1:
  416. WRITE(E_MUX0_PIN, HIGH);
  417. WRITE(E_MUX1_PIN, LOW);
  418. break;
  419. case 2:
  420. WRITE(E_MUX0_PIN, LOW);
  421. WRITE(E_MUX1_PIN, HIGH);
  422. break;
  423. case 3:
  424. WRITE(E_MUX0_PIN, HIGH);
  425. WRITE(E_MUX1_PIN, HIGH);
  426. break;
  427. default:
  428. WRITE(E_MUX0_PIN, LOW);
  429. WRITE(E_MUX1_PIN, LOW);
  430. break;
  431. }
  432. delay(100);
  433. #endif
  434. }
  435. int get_ext_nr()
  436. { //reads multiplexer input pins and return current extruder number (counted from 0)
  437. #ifndef SNMM
  438. return(mmu_extruder); //update needed
  439. #else
  440. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  441. #endif
  442. }
  443. void display_loading()
  444. {
  445. switch (mmu_extruder)
  446. {
  447. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  448. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  449. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  450. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  451. }
  452. }
  453. void extr_adj(int extruder) //loading filament for SNMM
  454. {
  455. #ifndef SNMM
  456. uint8_t cmd = MMU_CMD_L0 + extruder;
  457. if (cmd > MMU_CMD_L4)
  458. {
  459. printf_P(PSTR("Filament out of range %d \n"),extruder);
  460. return;
  461. }
  462. mmu_command(cmd);
  463. //show which filament is currently loaded
  464. lcd_update_enable(false);
  465. lcd_clear();
  466. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  467. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  468. //else lcd.print(" ");
  469. lcd_print(" ");
  470. lcd_print(extruder + 1);
  471. // get response
  472. manage_response(false, false);
  473. lcd_update_enable(true);
  474. //lcd_return_to_status();
  475. #else
  476. bool correct;
  477. max_feedrate[E_AXIS] =80;
  478. //max_feedrate[E_AXIS] = 50;
  479. START:
  480. lcd_clear();
  481. lcd_set_cursor(0, 0);
  482. switch (extruder) {
  483. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  484. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  485. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  486. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  487. }
  488. KEEPALIVE_STATE(PAUSED_FOR_USER);
  489. do{
  490. extr_mov(0.001,1000);
  491. delay_keep_alive(2);
  492. } while (!lcd_clicked());
  493. //delay_keep_alive(500);
  494. KEEPALIVE_STATE(IN_HANDLER);
  495. st_synchronize();
  496. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  497. //if (!correct) goto START;
  498. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  499. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  500. extr_mov(bowden_length[extruder], 500);
  501. lcd_clear();
  502. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  503. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  504. else lcd_print(" ");
  505. lcd_print(mmu_extruder + 1);
  506. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  507. st_synchronize();
  508. max_feedrate[E_AXIS] = 50;
  509. lcd_update_enable(true);
  510. lcd_return_to_status();
  511. lcdDrawUpdate = 2;
  512. #endif
  513. }
  514. void extr_unload()
  515. { //unload just current filament for multimaterial printers
  516. #ifdef SNMM
  517. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  518. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  519. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  520. #endif
  521. if (degHotend0() > EXTRUDE_MINTEMP)
  522. {
  523. #ifndef SNMM
  524. st_synchronize();
  525. //show which filament is currently unloaded
  526. lcd_update_enable(false);
  527. lcd_clear();
  528. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  529. lcd_print(" ");
  530. lcd_print(mmu_extruder + 1);
  531. current_position[E_AXIS] -= 80;
  532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  533. st_synchronize();
  534. mmu_command(MMU_CMD_U0);
  535. // get response
  536. manage_response(false, true);
  537. lcd_update_enable(true);
  538. #else //SNMM
  539. lcd_clear();
  540. lcd_display_message_fullscreen_P(PSTR(""));
  541. max_feedrate[E_AXIS] = 50;
  542. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  543. lcd_print(" ");
  544. lcd_print(mmu_extruder + 1);
  545. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  546. if (current_position[Z_AXIS] < 15) {
  547. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  549. }
  550. current_position[E_AXIS] += 10; //extrusion
  551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  552. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  553. if (current_temperature[0] < 230) { //PLA & all other filaments
  554. current_position[E_AXIS] += 5.4;
  555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  556. current_position[E_AXIS] += 3.2;
  557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  558. current_position[E_AXIS] += 3;
  559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  560. }
  561. else { //ABS
  562. current_position[E_AXIS] += 3.1;
  563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  564. current_position[E_AXIS] += 3.1;
  565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  566. current_position[E_AXIS] += 4;
  567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  568. /*current_position[X_AXIS] += 23; //delay
  569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  570. current_position[X_AXIS] -= 23; //delay
  571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  572. delay_keep_alive(4700);
  573. }
  574. max_feedrate[E_AXIS] = 80;
  575. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  577. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  579. st_synchronize();
  580. //st_current_init();
  581. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  582. else st_current_set(2, tmp_motor_loud[2]);
  583. lcd_update_enable(true);
  584. lcd_return_to_status();
  585. max_feedrate[E_AXIS] = 50;
  586. #endif //SNMM
  587. }
  588. else
  589. {
  590. lcd_clear();
  591. lcd_set_cursor(0, 0);
  592. lcd_puts_P(_T(MSG_ERROR));
  593. lcd_set_cursor(0, 2);
  594. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  595. delay(2000);
  596. lcd_clear();
  597. }
  598. //lcd_return_to_status();
  599. }
  600. //wrapper functions for loading filament
  601. void extr_adj_0()
  602. {
  603. #ifndef SNMM
  604. enquecommand_P(PSTR("M701 E0"));
  605. #else
  606. change_extr(0);
  607. extr_adj(0);
  608. #endif
  609. }
  610. void extr_adj_1()
  611. {
  612. #ifndef SNMM
  613. enquecommand_P(PSTR("M701 E1"));
  614. #else
  615. change_extr(1);
  616. extr_adj(1);
  617. #endif
  618. }
  619. void extr_adj_2()
  620. {
  621. #ifndef SNMM
  622. enquecommand_P(PSTR("M701 E2"));
  623. #else
  624. change_extr(2);
  625. extr_adj(2);
  626. #endif
  627. }
  628. void extr_adj_3()
  629. {
  630. #ifndef SNMM
  631. enquecommand_P(PSTR("M701 E3"));
  632. #else
  633. change_extr(3);
  634. extr_adj(3);
  635. #endif
  636. }
  637. void extr_adj_4()
  638. {
  639. #ifndef SNMM
  640. enquecommand_P(PSTR("M701 E4"));
  641. #else
  642. change_extr(4);
  643. extr_adj(4);
  644. #endif
  645. }
  646. void load_all()
  647. {
  648. #ifndef SNMM
  649. enquecommand_P(PSTR("M701 E0"));
  650. enquecommand_P(PSTR("M701 E1"));
  651. enquecommand_P(PSTR("M701 E2"));
  652. enquecommand_P(PSTR("M701 E3"));
  653. enquecommand_P(PSTR("M701 E4"));
  654. #else
  655. for (int i = 0; i < 4; i++)
  656. {
  657. change_extr(i);
  658. extr_adj(i);
  659. }
  660. #endif
  661. }
  662. //wrapper functions for changing extruders
  663. void extr_change_0()
  664. {
  665. change_extr(0);
  666. lcd_return_to_status();
  667. }
  668. void extr_change_1()
  669. {
  670. change_extr(1);
  671. lcd_return_to_status();
  672. }
  673. void extr_change_2()
  674. {
  675. change_extr(2);
  676. lcd_return_to_status();
  677. }
  678. void extr_change_3()
  679. {
  680. change_extr(3);
  681. lcd_return_to_status();
  682. }
  683. //wrapper functions for unloading filament
  684. void extr_unload_all()
  685. {
  686. if (degHotend0() > EXTRUDE_MINTEMP)
  687. {
  688. for (int i = 0; i < 4; i++)
  689. {
  690. change_extr(i);
  691. extr_unload();
  692. }
  693. }
  694. else
  695. {
  696. lcd_clear();
  697. lcd_set_cursor(0, 0);
  698. lcd_puts_P(_T(MSG_ERROR));
  699. lcd_set_cursor(0, 2);
  700. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  701. delay(2000);
  702. lcd_clear();
  703. lcd_return_to_status();
  704. }
  705. }
  706. //unloading just used filament (for snmm)
  707. void extr_unload_used()
  708. {
  709. if (degHotend0() > EXTRUDE_MINTEMP) {
  710. for (int i = 0; i < 4; i++) {
  711. if (snmm_filaments_used & (1 << i)) {
  712. change_extr(i);
  713. extr_unload();
  714. }
  715. }
  716. snmm_filaments_used = 0;
  717. }
  718. else {
  719. lcd_clear();
  720. lcd_set_cursor(0, 0);
  721. lcd_puts_P(_T(MSG_ERROR));
  722. lcd_set_cursor(0, 2);
  723. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  724. delay(2000);
  725. lcd_clear();
  726. lcd_return_to_status();
  727. }
  728. }
  729. void extr_unload_0()
  730. {
  731. change_extr(0);
  732. extr_unload();
  733. }
  734. void extr_unload_1()
  735. {
  736. change_extr(1);
  737. extr_unload();
  738. }
  739. void extr_unload_2()
  740. {
  741. change_extr(2);
  742. extr_unload();
  743. }
  744. void extr_unload_3()
  745. {
  746. change_extr(3);
  747. extr_unload();
  748. }
  749. void extr_unload_4()
  750. {
  751. change_extr(4);
  752. extr_unload();
  753. }
  754. bool mmu_check_version()
  755. {
  756. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  757. }
  758. void mmu_show_warning()
  759. {
  760. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  761. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  762. }