mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_CMD_TIMEOUT 300000ul //milliseconds (5min timeout)
  18. #define MMU_HWRESET
  19. #define MMU_RST_PIN 76
  20. #define MMU_REQUIRED_FW_BUILDNR 81
  21. bool mmu_enabled = false;
  22. bool mmu_ready = false;
  23. int8_t mmu_state = 0;
  24. uint8_t mmu_cmd = 0;
  25. uint8_t mmu_extruder = 0;
  26. uint8_t tmp_extruder = 0;
  27. int8_t mmu_finda = -1;
  28. int16_t mmu_version = -1;
  29. int16_t mmu_buildnr = -1;
  30. uint32_t mmu_last_request = 0;
  31. uint32_t mmu_last_response = 0;
  32. //clear rx buffer
  33. void mmu_clr_rx_buf(void)
  34. {
  35. while (fgetc(uart2io) >= 0);
  36. }
  37. //send command - puts
  38. int mmu_puts_P(const char* str)
  39. {
  40. mmu_clr_rx_buf(); //clear rx buffer
  41. int r = fputs_P(str, uart2io); //send command
  42. mmu_last_request = millis();
  43. return r;
  44. }
  45. //send command - printf
  46. int mmu_printf_P(const char* format, ...)
  47. {
  48. va_list args;
  49. va_start(args, format);
  50. mmu_clr_rx_buf(); //clear rx buffer
  51. int r = vfprintf_P(uart2io, format, args); //send command
  52. va_end(args);
  53. mmu_last_request = millis();
  54. return r;
  55. }
  56. //check 'ok' response
  57. int8_t mmu_rx_ok(void)
  58. {
  59. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  60. if (res == 1) mmu_last_response = millis();
  61. return res;
  62. }
  63. //check 'start' response
  64. int8_t mmu_rx_start(void)
  65. {
  66. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  67. if (res == 1) mmu_last_response = millis();
  68. return res;
  69. }
  70. //initialize mmu2 unit - first part - should be done at begining of startup process
  71. void mmu_init(void)
  72. {
  73. digitalWrite(MMU_RST_PIN, HIGH);
  74. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  75. uart2_init(); //init uart2
  76. _delay_ms(10); //wait 10ms for sure
  77. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  78. mmu_state = -1;
  79. }
  80. //mmu main loop - state machine processing
  81. void mmu_loop(void)
  82. {
  83. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  84. switch (mmu_state)
  85. {
  86. case 0:
  87. return;
  88. case -1:
  89. if (mmu_rx_start() > 0)
  90. {
  91. puts_P(PSTR("MMU => 'start'"));
  92. puts_P(PSTR("MMU <= 'S1'"));
  93. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  94. mmu_state = -2;
  95. }
  96. else if (millis() > 30000) //30sec after reset disable mmu
  97. {
  98. puts_P(PSTR("MMU not responding - DISABLED"));
  99. mmu_state = 0;
  100. }
  101. return;
  102. case -2:
  103. if (mmu_rx_ok() > 0)
  104. {
  105. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  106. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  107. puts_P(PSTR("MMU <= 'S2'"));
  108. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  109. mmu_state = -3;
  110. }
  111. return;
  112. case -3:
  113. if (mmu_rx_ok() > 0)
  114. {
  115. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  116. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  117. bool version_valid = mmu_check_version();
  118. if (!version_valid) mmu_show_warning();
  119. else puts_P(PSTR("MMU version valid"));
  120. puts_P(PSTR("MMU <= 'P0'"));
  121. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  122. mmu_state = -4;
  123. }
  124. return;
  125. case -4:
  126. if (mmu_rx_ok() > 0)
  127. {
  128. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  129. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  130. puts_P(PSTR("MMU - ENABLED"));
  131. mmu_enabled = true;
  132. mmu_state = 1;
  133. }
  134. return;
  135. case 1:
  136. if (mmu_cmd) //command request ?
  137. {
  138. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  139. {
  140. int extruder = mmu_cmd - MMU_CMD_T0;
  141. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  142. mmu_printf_P(PSTR("T%d\n"), extruder);
  143. mmu_state = 3; // wait for response
  144. }
  145. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  146. {
  147. int filament = mmu_cmd - MMU_CMD_L0;
  148. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  149. mmu_printf_P(PSTR("L%d\n"), filament);
  150. mmu_state = 3; // wait for response
  151. }
  152. else if (mmu_cmd == MMU_CMD_C0)
  153. {
  154. printf_P(PSTR("MMU <= 'C0'\n"));
  155. mmu_puts_P(PSTR("C0\n")); //send continue loading
  156. mmu_state = 3;
  157. }
  158. else if (mmu_cmd == MMU_CMD_U0)
  159. {
  160. printf_P(PSTR("MMU <= 'U0'\n"));
  161. mmu_puts_P(PSTR("U0\n")); //send continue loading
  162. mmu_state = 3;
  163. }
  164. mmu_cmd = 0;
  165. }
  166. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  167. {
  168. puts_P(PSTR("MMU <= 'P0'"));
  169. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  170. mmu_state = 2;
  171. }
  172. return;
  173. case 2: //response to command P0
  174. if (mmu_rx_ok() > 0)
  175. {
  176. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  177. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  178. mmu_state = 1;
  179. if (mmu_cmd == 0)
  180. mmu_ready = true;
  181. }
  182. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  183. { //resend request after timeout (30s)
  184. mmu_state = 1;
  185. }
  186. return;
  187. case 3: //response to commands T0-T4
  188. if (mmu_rx_ok() > 0)
  189. {
  190. printf_P(PSTR("MMU => 'ok'\n"));
  191. mmu_ready = true;
  192. mmu_state = 1;
  193. }
  194. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  195. { //resend request after timeout (30s)
  196. mmu_state = 1;
  197. }
  198. return;
  199. }
  200. }
  201. void mmu_reset(void)
  202. {
  203. #ifdef MMU_HWRESET //HW - pulse reset pin
  204. digitalWrite(MMU_RST_PIN, LOW);
  205. _delay_us(100);
  206. digitalWrite(MMU_RST_PIN, HIGH);
  207. #else //SW - send X0 command
  208. mmu_puts_P(PSTR("X0\n"));
  209. #endif
  210. }
  211. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  212. {
  213. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  214. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  215. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  216. while ((mmu_rx_ok() <= 0) && (--timeout))
  217. delay_keep_alive(MMU_TODELAY);
  218. return timeout?1:0;
  219. }
  220. void mmu_command(uint8_t cmd)
  221. {
  222. mmu_cmd = cmd;
  223. mmu_ready = false;
  224. }
  225. bool mmu_get_response(void)
  226. {
  227. // printf_P(PSTR("mmu_get_response - begin\n"));
  228. KEEPALIVE_STATE(IN_PROCESS);
  229. while (mmu_cmd != 0)
  230. {
  231. // mmu_loop();
  232. delay_keep_alive(100);
  233. }
  234. while (!mmu_ready)
  235. {
  236. // mmu_loop();
  237. if (mmu_state != 3)
  238. break;
  239. delay_keep_alive(100);
  240. }
  241. bool ret = mmu_ready;
  242. mmu_ready = false;
  243. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  244. return ret;
  245. /* //waits for "ok" from mmu
  246. //function returns true if "ok" was received
  247. //if timeout is set to true function return false if there is no "ok" received before timeout
  248. bool response = true;
  249. LongTimer mmu_get_reponse_timeout;
  250. KEEPALIVE_STATE(IN_PROCESS);
  251. mmu_get_reponse_timeout.start();
  252. while (mmu_rx_ok() <= 0)
  253. {
  254. delay_keep_alive(100);
  255. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  256. { //5 minutes timeout
  257. response = false;
  258. break;
  259. }
  260. }
  261. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  262. return response;*/
  263. }
  264. void manage_response(bool move_axes, bool turn_off_nozzle)
  265. {
  266. bool response = false;
  267. mmu_print_saved = false;
  268. bool lcd_update_was_enabled = false;
  269. float hotend_temp_bckp = degTargetHotend(active_extruder);
  270. float z_position_bckp = current_position[Z_AXIS];
  271. float x_position_bckp = current_position[X_AXIS];
  272. float y_position_bckp = current_position[Y_AXIS];
  273. while(!response)
  274. {
  275. response = mmu_get_response(); //wait for "ok" from mmu
  276. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  277. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  278. if (lcd_update_enabled) {
  279. lcd_update_was_enabled = true;
  280. lcd_update_enable(false);
  281. }
  282. st_synchronize();
  283. mmu_print_saved = true;
  284. hotend_temp_bckp = degTargetHotend(active_extruder);
  285. if (move_axes) {
  286. z_position_bckp = current_position[Z_AXIS];
  287. x_position_bckp = current_position[X_AXIS];
  288. y_position_bckp = current_position[Y_AXIS];
  289. //lift z
  290. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  291. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  293. st_synchronize();
  294. //Move XY to side
  295. current_position[X_AXIS] = X_PAUSE_POS;
  296. current_position[Y_AXIS] = Y_PAUSE_POS;
  297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  298. st_synchronize();
  299. }
  300. if (turn_off_nozzle) {
  301. //set nozzle target temperature to 0
  302. setAllTargetHotends(0);
  303. printf_P(PSTR("MMU not responding\n"));
  304. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  305. setTargetHotend(hotend_temp_bckp, active_extruder);
  306. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  307. delay_keep_alive(1000);
  308. lcd_wait_for_heater();
  309. }
  310. }
  311. }
  312. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  313. delay_keep_alive(1000);
  314. }
  315. else if (mmu_print_saved) {
  316. printf_P(PSTR("MMU start responding\n"));
  317. lcd_clear();
  318. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  319. if (move_axes) {
  320. current_position[X_AXIS] = x_position_bckp;
  321. current_position[Y_AXIS] = y_position_bckp;
  322. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  323. st_synchronize();
  324. current_position[Z_AXIS] = z_position_bckp;
  325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  326. st_synchronize();
  327. }
  328. else {
  329. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  330. }
  331. }
  332. }
  333. if (lcd_update_was_enabled) lcd_update_enable(true);
  334. }
  335. void mmu_load_to_nozzle()
  336. {
  337. st_synchronize();
  338. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  339. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  340. current_position[E_AXIS] += 7.2f;
  341. float feedrate = 562;
  342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  343. st_synchronize();
  344. current_position[E_AXIS] += 14.4f;
  345. feedrate = 871;
  346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  347. st_synchronize();
  348. current_position[E_AXIS] += 36.0f;
  349. feedrate = 1393;
  350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  351. st_synchronize();
  352. current_position[E_AXIS] += 14.4f;
  353. feedrate = 871;
  354. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  355. st_synchronize();
  356. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  357. }
  358. void mmu_M600_load_filament(bool automatic)
  359. {
  360. //load filament for mmu v2
  361. bool response = false;
  362. bool yes = false;
  363. if (!automatic) {
  364. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  365. if(yes) tmp_extruder = choose_extruder_menu();
  366. else tmp_extruder = mmu_extruder;
  367. }
  368. else {
  369. tmp_extruder = (tmp_extruder+1)%5;
  370. }
  371. lcd_update_enable(false);
  372. lcd_clear();
  373. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  374. lcd_print(" ");
  375. lcd_print(tmp_extruder + 1);
  376. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  377. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  378. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  379. mmu_command(MMU_CMD_T0 + tmp_extruder);
  380. manage_response(false, true);
  381. mmu_command(MMU_CMD_C0);
  382. mmu_extruder = tmp_extruder; //filament change is finished
  383. mmu_load_to_nozzle();
  384. st_synchronize();
  385. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  387. }
  388. void extr_mov(float shift, float feed_rate)
  389. { //move extruder no matter what the current heater temperature is
  390. set_extrude_min_temp(.0);
  391. current_position[E_AXIS] += shift;
  392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  393. set_extrude_min_temp(EXTRUDE_MINTEMP);
  394. }
  395. void change_extr(int extr) { //switches multiplexer for extruders
  396. #ifdef SNMM
  397. st_synchronize();
  398. delay(100);
  399. disable_e0();
  400. disable_e1();
  401. disable_e2();
  402. mmu_extruder = extr;
  403. pinMode(E_MUX0_PIN, OUTPUT);
  404. pinMode(E_MUX1_PIN, OUTPUT);
  405. switch (extr) {
  406. case 1:
  407. WRITE(E_MUX0_PIN, HIGH);
  408. WRITE(E_MUX1_PIN, LOW);
  409. break;
  410. case 2:
  411. WRITE(E_MUX0_PIN, LOW);
  412. WRITE(E_MUX1_PIN, HIGH);
  413. break;
  414. case 3:
  415. WRITE(E_MUX0_PIN, HIGH);
  416. WRITE(E_MUX1_PIN, HIGH);
  417. break;
  418. default:
  419. WRITE(E_MUX0_PIN, LOW);
  420. WRITE(E_MUX1_PIN, LOW);
  421. break;
  422. }
  423. delay(100);
  424. #endif
  425. }
  426. int get_ext_nr()
  427. { //reads multiplexer input pins and return current extruder number (counted from 0)
  428. #ifndef SNMM
  429. return(mmu_extruder); //update needed
  430. #else
  431. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  432. #endif
  433. }
  434. void display_loading()
  435. {
  436. switch (mmu_extruder)
  437. {
  438. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  439. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  440. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  441. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  442. }
  443. }
  444. void extr_adj(int extruder) //loading filament for SNMM
  445. {
  446. #ifndef SNMM
  447. uint8_t cmd = MMU_CMD_L0 + extruder;
  448. if (cmd > MMU_CMD_L4)
  449. {
  450. printf_P(PSTR("Filament out of range %d \n"),extruder);
  451. return;
  452. }
  453. mmu_command(cmd);
  454. //show which filament is currently loaded
  455. lcd_update_enable(false);
  456. lcd_clear();
  457. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  458. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  459. //else lcd.print(" ");
  460. lcd_print(" ");
  461. lcd_print(extruder + 1);
  462. // get response
  463. manage_response(false, false);
  464. lcd_update_enable(true);
  465. //lcd_return_to_status();
  466. #else
  467. bool correct;
  468. max_feedrate[E_AXIS] =80;
  469. //max_feedrate[E_AXIS] = 50;
  470. START:
  471. lcd_clear();
  472. lcd_set_cursor(0, 0);
  473. switch (extruder) {
  474. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  475. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  476. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  477. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  478. }
  479. KEEPALIVE_STATE(PAUSED_FOR_USER);
  480. do{
  481. extr_mov(0.001,1000);
  482. delay_keep_alive(2);
  483. } while (!lcd_clicked());
  484. //delay_keep_alive(500);
  485. KEEPALIVE_STATE(IN_HANDLER);
  486. st_synchronize();
  487. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  488. //if (!correct) goto START;
  489. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  490. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  491. extr_mov(bowden_length[extruder], 500);
  492. lcd_clear();
  493. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  494. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  495. else lcd_print(" ");
  496. lcd_print(mmu_extruder + 1);
  497. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  498. st_synchronize();
  499. max_feedrate[E_AXIS] = 50;
  500. lcd_update_enable(true);
  501. lcd_return_to_status();
  502. lcdDrawUpdate = 2;
  503. #endif
  504. }
  505. void extr_unload()
  506. { //unload just current filament for multimaterial printers
  507. #ifdef SNMM
  508. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  509. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  510. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  511. #endif
  512. if (degHotend0() > EXTRUDE_MINTEMP)
  513. {
  514. #ifndef SNMM
  515. st_synchronize();
  516. //show which filament is currently unloaded
  517. lcd_update_enable(false);
  518. lcd_clear();
  519. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  520. lcd_print(" ");
  521. lcd_print(mmu_extruder + 1);
  522. current_position[E_AXIS] -= 80;
  523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  524. st_synchronize();
  525. mmu_command(MMU_CMD_U0);
  526. // get response
  527. manage_response(false, true);
  528. lcd_update_enable(true);
  529. #else //SNMM
  530. lcd_clear();
  531. lcd_display_message_fullscreen_P(PSTR(""));
  532. max_feedrate[E_AXIS] = 50;
  533. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  534. lcd_print(" ");
  535. lcd_print(mmu_extruder + 1);
  536. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  537. if (current_position[Z_AXIS] < 15) {
  538. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  540. }
  541. current_position[E_AXIS] += 10; //extrusion
  542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  543. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  544. if (current_temperature[0] < 230) { //PLA & all other filaments
  545. current_position[E_AXIS] += 5.4;
  546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  547. current_position[E_AXIS] += 3.2;
  548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  549. current_position[E_AXIS] += 3;
  550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  551. }
  552. else { //ABS
  553. current_position[E_AXIS] += 3.1;
  554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  555. current_position[E_AXIS] += 3.1;
  556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  557. current_position[E_AXIS] += 4;
  558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  559. /*current_position[X_AXIS] += 23; //delay
  560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  561. current_position[X_AXIS] -= 23; //delay
  562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  563. delay_keep_alive(4700);
  564. }
  565. max_feedrate[E_AXIS] = 80;
  566. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  568. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  570. st_synchronize();
  571. //st_current_init();
  572. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  573. else st_current_set(2, tmp_motor_loud[2]);
  574. lcd_update_enable(true);
  575. lcd_return_to_status();
  576. max_feedrate[E_AXIS] = 50;
  577. #endif //SNMM
  578. }
  579. else
  580. {
  581. lcd_clear();
  582. lcd_set_cursor(0, 0);
  583. lcd_puts_P(_T(MSG_ERROR));
  584. lcd_set_cursor(0, 2);
  585. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  586. delay(2000);
  587. lcd_clear();
  588. }
  589. //lcd_return_to_status();
  590. }
  591. //wrapper functions for loading filament
  592. void extr_adj_0()
  593. {
  594. #ifndef SNMM
  595. enquecommand_P(PSTR("M701 E0"));
  596. #else
  597. change_extr(0);
  598. extr_adj(0);
  599. #endif
  600. }
  601. void extr_adj_1()
  602. {
  603. #ifndef SNMM
  604. enquecommand_P(PSTR("M701 E1"));
  605. #else
  606. change_extr(1);
  607. extr_adj(1);
  608. #endif
  609. }
  610. void extr_adj_2()
  611. {
  612. #ifndef SNMM
  613. enquecommand_P(PSTR("M701 E2"));
  614. #else
  615. change_extr(2);
  616. extr_adj(2);
  617. #endif
  618. }
  619. void extr_adj_3()
  620. {
  621. #ifndef SNMM
  622. enquecommand_P(PSTR("M701 E3"));
  623. #else
  624. change_extr(3);
  625. extr_adj(3);
  626. #endif
  627. }
  628. void extr_adj_4()
  629. {
  630. #ifndef SNMM
  631. enquecommand_P(PSTR("M701 E4"));
  632. #else
  633. change_extr(4);
  634. extr_adj(4);
  635. #endif
  636. }
  637. void load_all()
  638. {
  639. #ifndef SNMM
  640. enquecommand_P(PSTR("M701 E0"));
  641. enquecommand_P(PSTR("M701 E1"));
  642. enquecommand_P(PSTR("M701 E2"));
  643. enquecommand_P(PSTR("M701 E3"));
  644. enquecommand_P(PSTR("M701 E4"));
  645. #else
  646. for (int i = 0; i < 4; i++)
  647. {
  648. change_extr(i);
  649. extr_adj(i);
  650. }
  651. #endif
  652. }
  653. //wrapper functions for changing extruders
  654. void extr_change_0()
  655. {
  656. change_extr(0);
  657. lcd_return_to_status();
  658. }
  659. void extr_change_1()
  660. {
  661. change_extr(1);
  662. lcd_return_to_status();
  663. }
  664. void extr_change_2()
  665. {
  666. change_extr(2);
  667. lcd_return_to_status();
  668. }
  669. void extr_change_3()
  670. {
  671. change_extr(3);
  672. lcd_return_to_status();
  673. }
  674. //wrapper functions for unloading filament
  675. void extr_unload_all()
  676. {
  677. if (degHotend0() > EXTRUDE_MINTEMP)
  678. {
  679. for (int i = 0; i < 4; i++)
  680. {
  681. change_extr(i);
  682. extr_unload();
  683. }
  684. }
  685. else
  686. {
  687. lcd_clear();
  688. lcd_set_cursor(0, 0);
  689. lcd_puts_P(_T(MSG_ERROR));
  690. lcd_set_cursor(0, 2);
  691. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  692. delay(2000);
  693. lcd_clear();
  694. lcd_return_to_status();
  695. }
  696. }
  697. //unloading just used filament (for snmm)
  698. void extr_unload_used()
  699. {
  700. if (degHotend0() > EXTRUDE_MINTEMP) {
  701. for (int i = 0; i < 4; i++) {
  702. if (snmm_filaments_used & (1 << i)) {
  703. change_extr(i);
  704. extr_unload();
  705. }
  706. }
  707. snmm_filaments_used = 0;
  708. }
  709. else {
  710. lcd_clear();
  711. lcd_set_cursor(0, 0);
  712. lcd_puts_P(_T(MSG_ERROR));
  713. lcd_set_cursor(0, 2);
  714. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  715. delay(2000);
  716. lcd_clear();
  717. lcd_return_to_status();
  718. }
  719. }
  720. void extr_unload_0()
  721. {
  722. change_extr(0);
  723. extr_unload();
  724. }
  725. void extr_unload_1()
  726. {
  727. change_extr(1);
  728. extr_unload();
  729. }
  730. void extr_unload_2()
  731. {
  732. change_extr(2);
  733. extr_unload();
  734. }
  735. void extr_unload_3()
  736. {
  737. change_extr(3);
  738. extr_unload();
  739. }
  740. void extr_unload_4()
  741. {
  742. change_extr(4);
  743. extr_unload();
  744. }
  745. bool mmu_check_version()
  746. {
  747. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  748. }
  749. void mmu_show_warning()
  750. {
  751. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  752. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  753. }