Marlin_main.cpp 215 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. //#include "spline.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // P Y - Starts filament allignment process for multicolor
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. unsigned char lang_selected = 0;
  225. bool prusa_sd_card_upload = false;
  226. unsigned long total_filament_used;
  227. unsigned int heating_status;
  228. unsigned int heating_status_counter;
  229. bool custom_message;
  230. bool loading_flag = false;
  231. unsigned int custom_message_type;
  232. unsigned int custom_message_state;
  233. bool volumetric_enabled = false;
  234. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  235. #if EXTRUDERS > 1
  236. , DEFAULT_NOMINAL_FILAMENT_DIA
  237. #if EXTRUDERS > 2
  238. , DEFAULT_NOMINAL_FILAMENT_DIA
  239. #endif
  240. #endif
  241. };
  242. float volumetric_multiplier[EXTRUDERS] = {1.0
  243. #if EXTRUDERS > 1
  244. , 1.0
  245. #if EXTRUDERS > 2
  246. , 1.0
  247. #endif
  248. #endif
  249. };
  250. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  251. float add_homing[3]={0,0,0};
  252. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  253. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  254. bool axis_known_position[3] = {false, false, false};
  255. float zprobe_zoffset;
  256. // Extruder offset
  257. #if EXTRUDERS > 1
  258. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  259. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  260. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  261. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  262. #endif
  263. };
  264. #endif
  265. uint8_t active_extruder = 0;
  266. int fanSpeed=0;
  267. #ifdef FWRETRACT
  268. bool autoretract_enabled=false;
  269. bool retracted[EXTRUDERS]={false
  270. #if EXTRUDERS > 1
  271. , false
  272. #if EXTRUDERS > 2
  273. , false
  274. #endif
  275. #endif
  276. };
  277. bool retracted_swap[EXTRUDERS]={false
  278. #if EXTRUDERS > 1
  279. , false
  280. #if EXTRUDERS > 2
  281. , false
  282. #endif
  283. #endif
  284. };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif
  293. #ifdef ULTIPANEL
  294. #ifdef PS_DEFAULT_OFF
  295. bool powersupply = false;
  296. #else
  297. bool powersupply = true;
  298. #endif
  299. #endif
  300. bool cancel_heatup = false ;
  301. #ifdef FILAMENT_SENSOR
  302. //Variables for Filament Sensor input
  303. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  304. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  305. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  306. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  307. int delay_index1=0; //index into ring buffer
  308. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  309. float delay_dist=0; //delay distance counter
  310. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  311. #endif
  312. const char errormagic[] PROGMEM = "Error:";
  313. const char echomagic[] PROGMEM = "echo:";
  314. //===========================================================================
  315. //=============================Private Variables=============================
  316. //===========================================================================
  317. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  318. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  319. static float delta[3] = {0.0, 0.0, 0.0};
  320. // For tracing an arc
  321. static float offset[3] = {0.0, 0.0, 0.0};
  322. static bool home_all_axis = true;
  323. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. // Determines Absolute or Relative Coordinates.
  326. // Also there is bool axis_relative_modes[] per axis flag.
  327. static bool relative_mode = false;
  328. // String circular buffer. Commands may be pushed to the buffer from both sides:
  329. // Chained commands will be pushed to the front, interactive (from LCD menu)
  330. // and printing commands (from serial line or from SD card) are pushed to the tail.
  331. // First character of each entry indicates the type of the entry:
  332. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  333. // Command in cmdbuffer was sent over USB.
  334. #define CMDBUFFER_CURRENT_TYPE_USB 1
  335. // Command in cmdbuffer was read from SDCARD.
  336. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  337. // Command in cmdbuffer was generated by the UI.
  338. #define CMDBUFFER_CURRENT_TYPE_UI 3
  339. // Command in cmdbuffer was generated by another G-code.
  340. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  341. // How much space to reserve for the chained commands
  342. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  343. // which are pushed to the front of the queue?
  344. // Maximum 5 commands of max length 20 + null terminator.
  345. #define CMDBUFFER_RESERVE_FRONT (5*21)
  346. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  347. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  348. // Head of the circular buffer, where to read.
  349. static int bufindr = 0;
  350. // Tail of the buffer, where to write.
  351. static int bufindw = 0;
  352. // Number of lines in cmdbuffer.
  353. static int buflen = 0;
  354. // Flag for processing the current command inside the main Arduino loop().
  355. // If a new command was pushed to the front of a command buffer while
  356. // processing another command, this replaces the command on the top.
  357. // Therefore don't remove the command from the queue in the loop() function.
  358. static bool cmdbuffer_front_already_processed = false;
  359. // Type of a command, which is to be executed right now.
  360. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  361. // String of a command, which is to be executed right now.
  362. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  363. // Enable debugging of the command buffer.
  364. // Debugging information will be sent to serial line.
  365. // #define CMDBUFFER_DEBUG
  366. static int serial_count = 0;
  367. static boolean comment_mode = false;
  368. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  369. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  370. //static float tt = 0;
  371. //static float bt = 0;
  372. //Inactivity shutdown variables
  373. static unsigned long previous_millis_cmd = 0;
  374. unsigned long max_inactive_time = 0;
  375. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  376. unsigned long starttime=0;
  377. unsigned long stoptime=0;
  378. unsigned long _usb_timer = 0;
  379. static uint8_t tmp_extruder;
  380. bool Stopped=false;
  381. #if NUM_SERVOS > 0
  382. Servo servos[NUM_SERVOS];
  383. #endif
  384. bool CooldownNoWait = true;
  385. bool target_direction;
  386. //Insert variables if CHDK is defined
  387. #ifdef CHDK
  388. unsigned long chdkHigh = 0;
  389. boolean chdkActive = false;
  390. #endif
  391. //===========================================================================
  392. //=============================Routines======================================
  393. //===========================================================================
  394. void get_arc_coordinates();
  395. bool setTargetedHotend(int code);
  396. void serial_echopair_P(const char *s_P, float v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, double v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, unsigned long v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. #ifdef SDSUPPORT
  403. #include "SdFatUtil.h"
  404. int freeMemory() { return SdFatUtil::FreeRam(); }
  405. #else
  406. extern "C" {
  407. extern unsigned int __bss_end;
  408. extern unsigned int __heap_start;
  409. extern void *__brkval;
  410. int freeMemory() {
  411. int free_memory;
  412. if ((int)__brkval == 0)
  413. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  414. else
  415. free_memory = ((int)&free_memory) - ((int)__brkval);
  416. return free_memory;
  417. }
  418. }
  419. #endif //!SDSUPPORT
  420. // Pop the currently processed command from the queue.
  421. // It is expected, that there is at least one command in the queue.
  422. bool cmdqueue_pop_front()
  423. {
  424. if (buflen > 0) {
  425. #ifdef CMDBUFFER_DEBUG
  426. SERIAL_ECHOPGM("Dequeing ");
  427. SERIAL_ECHO(cmdbuffer+bufindr+1);
  428. SERIAL_ECHOLNPGM("");
  429. SERIAL_ECHOPGM("Old indices: buflen ");
  430. SERIAL_ECHO(buflen);
  431. SERIAL_ECHOPGM(", bufindr ");
  432. SERIAL_ECHO(bufindr);
  433. SERIAL_ECHOPGM(", bufindw ");
  434. SERIAL_ECHO(bufindw);
  435. SERIAL_ECHOPGM(", serial_count ");
  436. SERIAL_ECHO(serial_count);
  437. SERIAL_ECHOPGM(", bufsize ");
  438. SERIAL_ECHO(sizeof(cmdbuffer));
  439. SERIAL_ECHOLNPGM("");
  440. #endif /* CMDBUFFER_DEBUG */
  441. if (-- buflen == 0) {
  442. // Empty buffer.
  443. if (serial_count == 0)
  444. // No serial communication is pending. Reset both pointers to zero.
  445. bufindw = 0;
  446. bufindr = bufindw;
  447. } else {
  448. // There is at least one ready line in the buffer.
  449. // First skip the current command ID and iterate up to the end of the string.
  450. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  451. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  452. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  453. // If the end of the buffer was empty,
  454. if (bufindr == sizeof(cmdbuffer)) {
  455. // skip to the start and find the nonzero command.
  456. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  457. }
  458. #ifdef CMDBUFFER_DEBUG
  459. SERIAL_ECHOPGM("New indices: buflen ");
  460. SERIAL_ECHO(buflen);
  461. SERIAL_ECHOPGM(", bufindr ");
  462. SERIAL_ECHO(bufindr);
  463. SERIAL_ECHOPGM(", bufindw ");
  464. SERIAL_ECHO(bufindw);
  465. SERIAL_ECHOPGM(", serial_count ");
  466. SERIAL_ECHO(serial_count);
  467. SERIAL_ECHOPGM(" new command on the top: ");
  468. SERIAL_ECHO(cmdbuffer+bufindr+1);
  469. SERIAL_ECHOLNPGM("");
  470. #endif /* CMDBUFFER_DEBUG */
  471. }
  472. return true;
  473. }
  474. return false;
  475. }
  476. void cmdqueue_reset()
  477. {
  478. while (cmdqueue_pop_front()) ;
  479. }
  480. // How long a string could be pushed to the front of the command queue?
  481. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  482. // len_asked does not contain the zero terminator size.
  483. bool cmdqueue_could_enqueue_front(int len_asked)
  484. {
  485. // MAX_CMD_SIZE has to accommodate the zero terminator.
  486. if (len_asked >= MAX_CMD_SIZE)
  487. return false;
  488. // Remove the currently processed command from the queue.
  489. if (! cmdbuffer_front_already_processed) {
  490. cmdqueue_pop_front();
  491. cmdbuffer_front_already_processed = true;
  492. }
  493. if (bufindr == bufindw && buflen > 0)
  494. // Full buffer.
  495. return false;
  496. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  497. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  498. if (bufindw < bufindr) {
  499. int bufindr_new = bufindr - len_asked - 2;
  500. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  501. if (endw <= bufindr_new) {
  502. bufindr = bufindr_new;
  503. return true;
  504. }
  505. } else {
  506. // Otherwise the free space is split between the start and end.
  507. if (len_asked + 2 <= bufindr) {
  508. // Could fit at the start.
  509. bufindr -= len_asked + 2;
  510. return true;
  511. }
  512. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  513. if (endw <= bufindr_new) {
  514. memset(cmdbuffer, 0, bufindr);
  515. bufindr = bufindr_new;
  516. return true;
  517. }
  518. }
  519. return false;
  520. }
  521. // Could one enqueue a command of lenthg len_asked into the buffer,
  522. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  523. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  524. // len_asked does not contain the zero terminator size.
  525. bool cmdqueue_could_enqueue_back(int len_asked)
  526. {
  527. // MAX_CMD_SIZE has to accommodate the zero terminator.
  528. if (len_asked >= MAX_CMD_SIZE)
  529. return false;
  530. if (bufindr == bufindw && buflen > 0)
  531. // Full buffer.
  532. return false;
  533. if (serial_count > 0) {
  534. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  535. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  536. // serial data.
  537. // How much memory to reserve for the commands pushed to the front?
  538. // End of the queue, when pushing to the end.
  539. int endw = bufindw + len_asked + 2;
  540. if (bufindw < bufindr)
  541. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  542. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  543. // Otherwise the free space is split between the start and end.
  544. if (// Could one fit to the end, including the reserve?
  545. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  546. // Could one fit to the end, and the reserve to the start?
  547. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  548. return true;
  549. // Could one fit both to the start?
  550. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  551. // Mark the rest of the buffer as used.
  552. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  553. // and point to the start.
  554. bufindw = 0;
  555. return true;
  556. }
  557. } else {
  558. // How much memory to reserve for the commands pushed to the front?
  559. // End of the queue, when pushing to the end.
  560. int endw = bufindw + len_asked + 2;
  561. if (bufindw < bufindr)
  562. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  563. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  564. // Otherwise the free space is split between the start and end.
  565. if (// Could one fit to the end, including the reserve?
  566. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  567. // Could one fit to the end, and the reserve to the start?
  568. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  569. return true;
  570. // Could one fit both to the start?
  571. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  572. // Mark the rest of the buffer as used.
  573. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  574. // and point to the start.
  575. bufindw = 0;
  576. return true;
  577. }
  578. }
  579. return false;
  580. }
  581. #ifdef CMDBUFFER_DEBUG
  582. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  583. {
  584. SERIAL_ECHOPGM("Entry nr: ");
  585. SERIAL_ECHO(nr);
  586. SERIAL_ECHOPGM(", type: ");
  587. SERIAL_ECHO(int(*p));
  588. SERIAL_ECHOPGM(", cmd: ");
  589. SERIAL_ECHO(p+1);
  590. SERIAL_ECHOLNPGM("");
  591. }
  592. static void cmdqueue_dump_to_serial()
  593. {
  594. if (buflen == 0) {
  595. SERIAL_ECHOLNPGM("The command buffer is empty.");
  596. } else {
  597. SERIAL_ECHOPGM("Content of the buffer: entries ");
  598. SERIAL_ECHO(buflen);
  599. SERIAL_ECHOPGM(", indr ");
  600. SERIAL_ECHO(bufindr);
  601. SERIAL_ECHOPGM(", indw ");
  602. SERIAL_ECHO(bufindw);
  603. SERIAL_ECHOLNPGM("");
  604. int nr = 0;
  605. if (bufindr < bufindw) {
  606. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  607. cmdqueue_dump_to_serial_single_line(nr, p);
  608. // Skip the command.
  609. for (++p; *p != 0; ++ p);
  610. // Skip the gaps.
  611. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  612. }
  613. } else {
  614. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  620. }
  621. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  622. cmdqueue_dump_to_serial_single_line(nr, p);
  623. // Skip the command.
  624. for (++p; *p != 0; ++ p);
  625. // Skip the gaps.
  626. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  627. }
  628. }
  629. SERIAL_ECHOLNPGM("End of the buffer.");
  630. }
  631. }
  632. #endif /* CMDBUFFER_DEBUG */
  633. //adds an command to the main command buffer
  634. //thats really done in a non-safe way.
  635. //needs overworking someday
  636. // Currently the maximum length of a command piped through this function is around 20 characters
  637. void enquecommand(const char *cmd, bool from_progmem)
  638. {
  639. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  640. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  641. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  642. if (cmdqueue_could_enqueue_back(len)) {
  643. // This is dangerous if a mixing of serial and this happens
  644. // This may easily be tested: If serial_count > 0, we have a problem.
  645. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  646. if (from_progmem)
  647. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  648. else
  649. strcpy(cmdbuffer + bufindw + 1, cmd);
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHORPGM(MSG_Enqueing);
  652. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  653. SERIAL_ECHOLNPGM("\"");
  654. bufindw += len + 2;
  655. if (bufindw == sizeof(cmdbuffer))
  656. bufindw = 0;
  657. ++ buflen;
  658. #ifdef CMDBUFFER_DEBUG
  659. cmdqueue_dump_to_serial();
  660. #endif /* CMDBUFFER_DEBUG */
  661. } else {
  662. SERIAL_ERROR_START;
  663. SERIAL_ECHORPGM(MSG_Enqueing);
  664. if (from_progmem)
  665. SERIAL_PROTOCOLRPGM(cmd);
  666. else
  667. SERIAL_ECHO(cmd);
  668. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  669. #ifdef CMDBUFFER_DEBUG
  670. cmdqueue_dump_to_serial();
  671. #endif /* CMDBUFFER_DEBUG */
  672. }
  673. }
  674. void enquecommand_front(const char *cmd, bool from_progmem)
  675. {
  676. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  677. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  678. if (cmdqueue_could_enqueue_front(len)) {
  679. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  680. if (from_progmem)
  681. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  682. else
  683. strcpy(cmdbuffer + bufindr + 1, cmd);
  684. ++ buflen;
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHOPGM("Enqueing to the front: \"");
  687. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  688. SERIAL_ECHOLNPGM("\"");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. } else {
  693. SERIAL_ERROR_START;
  694. SERIAL_ECHOPGM("Enqueing to the front: \"");
  695. if (from_progmem)
  696. SERIAL_PROTOCOLRPGM(cmd);
  697. else
  698. SERIAL_ECHO(cmd);
  699. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  700. #ifdef CMDBUFFER_DEBUG
  701. cmdqueue_dump_to_serial();
  702. #endif /* CMDBUFFER_DEBUG */
  703. }
  704. }
  705. // Mark the command at the top of the command queue as new.
  706. // Therefore it will not be removed from the queue.
  707. void repeatcommand_front()
  708. {
  709. cmdbuffer_front_already_processed = true;
  710. }
  711. void setup_killpin()
  712. {
  713. #if defined(KILL_PIN) && KILL_PIN > -1
  714. SET_INPUT(KILL_PIN);
  715. WRITE(KILL_PIN,HIGH);
  716. #endif
  717. }
  718. // Set home pin
  719. void setup_homepin(void)
  720. {
  721. #if defined(HOME_PIN) && HOME_PIN > -1
  722. SET_INPUT(HOME_PIN);
  723. WRITE(HOME_PIN,HIGH);
  724. #endif
  725. }
  726. void setup_photpin()
  727. {
  728. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  729. SET_OUTPUT(PHOTOGRAPH_PIN);
  730. WRITE(PHOTOGRAPH_PIN, LOW);
  731. #endif
  732. }
  733. void setup_powerhold()
  734. {
  735. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  736. SET_OUTPUT(SUICIDE_PIN);
  737. WRITE(SUICIDE_PIN, HIGH);
  738. #endif
  739. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  740. SET_OUTPUT(PS_ON_PIN);
  741. #if defined(PS_DEFAULT_OFF)
  742. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  743. #else
  744. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  745. #endif
  746. #endif
  747. }
  748. void suicide()
  749. {
  750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  751. SET_OUTPUT(SUICIDE_PIN);
  752. WRITE(SUICIDE_PIN, LOW);
  753. #endif
  754. }
  755. void servo_init()
  756. {
  757. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  758. servos[0].attach(SERVO0_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  761. servos[1].attach(SERVO1_PIN);
  762. #endif
  763. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  764. servos[2].attach(SERVO2_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  767. servos[3].attach(SERVO3_PIN);
  768. #endif
  769. #if (NUM_SERVOS >= 5)
  770. #error "TODO: enter initalisation code for more servos"
  771. #endif
  772. }
  773. static void lcd_language_menu();
  774. #ifdef MESH_BED_LEVELING
  775. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  776. #endif
  777. // Factory reset function
  778. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  779. // Level input parameter sets depth of reset
  780. // Quiet parameter masks all waitings for user interact.
  781. int er_progress = 0;
  782. void factory_reset(char level, bool quiet)
  783. {
  784. lcd_implementation_clear();
  785. switch (level) {
  786. // Level 0: Language reset
  787. case 0:
  788. WRITE(BEEPER, HIGH);
  789. _delay_ms(100);
  790. WRITE(BEEPER, LOW);
  791. lcd_force_language_selection();
  792. break;
  793. //Level 1: Reset statistics
  794. case 1:
  795. WRITE(BEEPER, HIGH);
  796. _delay_ms(100);
  797. WRITE(BEEPER, LOW);
  798. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  799. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  800. lcd_menu_statistics();
  801. break;
  802. // Level 2: Prepare for shipping
  803. case 2:
  804. //lcd_printPGM(PSTR("Factory RESET"));
  805. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  806. // Force language selection at the next boot up.
  807. lcd_force_language_selection();
  808. // Force the "Follow calibration flow" message at the next boot up.
  809. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  810. farm_no = 0;
  811. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  812. farm_mode = false;
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. //_delay_ms(2000);
  817. break;
  818. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  819. case 3:
  820. lcd_printPGM(PSTR("Factory RESET"));
  821. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  822. WRITE(BEEPER, HIGH);
  823. _delay_ms(100);
  824. WRITE(BEEPER, LOW);
  825. er_progress = 0;
  826. lcd_print_at_PGM(3, 3, PSTR(" "));
  827. lcd_implementation_print_at(3, 3, er_progress);
  828. // Erase EEPROM
  829. for (int i = 0; i < 4096; i++) {
  830. eeprom_write_byte((uint8_t*)i, 0xFF);
  831. if (i % 41 == 0) {
  832. er_progress++;
  833. lcd_print_at_PGM(3, 3, PSTR(" "));
  834. lcd_implementation_print_at(3, 3, er_progress);
  835. lcd_printPGM(PSTR("%"));
  836. }
  837. }
  838. break;
  839. default:
  840. break;
  841. }
  842. }
  843. // "Setup" function is called by the Arduino framework on startup.
  844. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  845. // are initialized by the main() routine provided by the Arduino framework.
  846. void setup()
  847. {
  848. setup_killpin();
  849. setup_powerhold();
  850. MYSERIAL.begin(BAUDRATE);
  851. SERIAL_PROTOCOLLNPGM("start");
  852. SERIAL_ECHO_START;
  853. #if 0
  854. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  855. for (int i = 0; i < 4096; ++ i) {
  856. int b = eeprom_read_byte((unsigned char*)i);
  857. if (b != 255) {
  858. SERIAL_ECHO(i);
  859. SERIAL_ECHO(":");
  860. SERIAL_ECHO(b);
  861. SERIAL_ECHOLN("");
  862. }
  863. }
  864. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  865. #endif
  866. // Check startup - does nothing if bootloader sets MCUSR to 0
  867. byte mcu = MCUSR;
  868. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  869. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  870. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  871. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  872. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  873. MCUSR=0;
  874. //SERIAL_ECHORPGM(MSG_MARLIN);
  875. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  876. #ifdef STRING_VERSION_CONFIG_H
  877. #ifdef STRING_CONFIG_H_AUTHOR
  878. SERIAL_ECHO_START;
  879. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  880. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  881. SERIAL_ECHORPGM(MSG_AUTHOR);
  882. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  883. SERIAL_ECHOPGM("Compiled: ");
  884. SERIAL_ECHOLNPGM(__DATE__);
  885. #endif
  886. #endif
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  889. SERIAL_ECHO(freeMemory());
  890. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  891. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  892. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  893. Config_RetrieveSettings();
  894. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  895. tp_init(); // Initialize temperature loop
  896. plan_init(); // Initialize planner;
  897. watchdog_init();
  898. st_init(); // Initialize stepper, this enables interrupts!
  899. setup_photpin();
  900. servo_init();
  901. // Reset the machine correction matrix.
  902. // It does not make sense to load the correction matrix until the machine is homed.
  903. world2machine_reset();
  904. lcd_init();
  905. if (!READ(BTN_ENC))
  906. {
  907. _delay_ms(1000);
  908. if (!READ(BTN_ENC))
  909. {
  910. lcd_implementation_clear();
  911. lcd_printPGM(PSTR("Factory RESET"));
  912. SET_OUTPUT(BEEPER);
  913. WRITE(BEEPER, HIGH);
  914. while (!READ(BTN_ENC));
  915. WRITE(BEEPER, LOW);
  916. _delay_ms(2000);
  917. char level = reset_menu();
  918. factory_reset(level, false);
  919. switch (level) {
  920. case 0: _delay_ms(0); break;
  921. case 1: _delay_ms(0); break;
  922. case 2: _delay_ms(0); break;
  923. case 3: _delay_ms(0); break;
  924. }
  925. // _delay_ms(100);
  926. /*
  927. #ifdef MESH_BED_LEVELING
  928. _delay_ms(2000);
  929. if (!READ(BTN_ENC))
  930. {
  931. WRITE(BEEPER, HIGH);
  932. _delay_ms(100);
  933. WRITE(BEEPER, LOW);
  934. _delay_ms(200);
  935. WRITE(BEEPER, HIGH);
  936. _delay_ms(100);
  937. WRITE(BEEPER, LOW);
  938. int _z = 0;
  939. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  940. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  941. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  942. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  943. }
  944. else
  945. {
  946. WRITE(BEEPER, HIGH);
  947. _delay_ms(100);
  948. WRITE(BEEPER, LOW);
  949. }
  950. #endif // mesh */
  951. }
  952. }
  953. else
  954. {
  955. _delay_ms(1000); // wait 1sec to display the splash screen
  956. }
  957. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  958. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  959. #endif
  960. #ifdef DIGIPOT_I2C
  961. digipot_i2c_init();
  962. #endif
  963. setup_homepin();
  964. #if defined(Z_AXIS_ALWAYS_ON)
  965. enable_z();
  966. #endif
  967. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  968. if (farm_no > 0)
  969. {
  970. farm_mode = true;
  971. farm_no = farm_no;
  972. prusa_statistics(8);
  973. }
  974. else
  975. {
  976. farm_mode = false;
  977. farm_no = 0;
  978. }
  979. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  980. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  981. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  982. // but this times out if a blocking dialog is shown in setup().
  983. card.initsd();
  984. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  985. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  986. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  987. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  988. // where all the EEPROM entries are set to 0x0ff.
  989. // Once a firmware boots up, it forces at least a language selection, which changes
  990. // EEPROM_LANG to number lower than 0x0ff.
  991. // 1) Set a high power mode.
  992. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  993. }
  994. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  995. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  996. // is being written into the EEPROM, so the update procedure will be triggered only once.
  997. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  998. if (lang_selected >= LANG_NUM){
  999. lcd_mylang();
  1000. }
  1001. check_babystep(); //checking if Z babystep is in allowed range
  1002. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1003. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1004. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1005. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1006. // Show the message.
  1007. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1008. lcd_update_enable(true);
  1009. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1010. // Show the message.
  1011. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1012. lcd_update_enable(true);
  1013. } else if (calibration_status() == CALIBRATION_STATUS_PINDA && temp_cal_active == true) {
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1015. lcd_update_enable(true);
  1016. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1017. // Show the message.
  1018. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1019. lcd_update_enable(true);
  1020. }
  1021. // Store the currently running firmware into an eeprom,
  1022. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1023. update_current_firmware_version_to_eeprom();
  1024. }
  1025. void trace();
  1026. #define CHUNK_SIZE 64 // bytes
  1027. #define SAFETY_MARGIN 1
  1028. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1029. int chunkHead = 0;
  1030. int serial_read_stream() {
  1031. setTargetHotend(0, 0);
  1032. setTargetBed(0);
  1033. lcd_implementation_clear();
  1034. lcd_printPGM(PSTR(" Upload in progress"));
  1035. // first wait for how many bytes we will receive
  1036. uint32_t bytesToReceive;
  1037. // receive the four bytes
  1038. char bytesToReceiveBuffer[4];
  1039. for (int i=0; i<4; i++) {
  1040. int data;
  1041. while ((data = MYSERIAL.read()) == -1) {};
  1042. bytesToReceiveBuffer[i] = data;
  1043. }
  1044. // make it a uint32
  1045. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1046. // we're ready, notify the sender
  1047. MYSERIAL.write('+');
  1048. // lock in the routine
  1049. uint32_t receivedBytes = 0;
  1050. while (prusa_sd_card_upload) {
  1051. int i;
  1052. for (i=0; i<CHUNK_SIZE; i++) {
  1053. int data;
  1054. // check if we're not done
  1055. if (receivedBytes == bytesToReceive) {
  1056. break;
  1057. }
  1058. // read the next byte
  1059. while ((data = MYSERIAL.read()) == -1) {};
  1060. receivedBytes++;
  1061. // save it to the chunk
  1062. chunk[i] = data;
  1063. }
  1064. // write the chunk to SD
  1065. card.write_command_no_newline(&chunk[0]);
  1066. // notify the sender we're ready for more data
  1067. MYSERIAL.write('+');
  1068. // for safety
  1069. manage_heater();
  1070. // check if we're done
  1071. if(receivedBytes == bytesToReceive) {
  1072. trace(); // beep
  1073. card.closefile();
  1074. prusa_sd_card_upload = false;
  1075. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1076. return 0;
  1077. }
  1078. }
  1079. }
  1080. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1081. // Before loop(), the setup() function is called by the main() routine.
  1082. void loop()
  1083. {
  1084. bool stack_integrity = true;
  1085. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1086. {
  1087. is_usb_printing = true;
  1088. usb_printing_counter--;
  1089. _usb_timer = millis();
  1090. }
  1091. if (usb_printing_counter == 0)
  1092. {
  1093. is_usb_printing = false;
  1094. }
  1095. if (prusa_sd_card_upload)
  1096. {
  1097. //we read byte-by byte
  1098. serial_read_stream();
  1099. } else
  1100. {
  1101. get_command();
  1102. #ifdef SDSUPPORT
  1103. card.checkautostart(false);
  1104. #endif
  1105. if(buflen)
  1106. {
  1107. #ifdef SDSUPPORT
  1108. if(card.saving)
  1109. {
  1110. // Saving a G-code file onto an SD-card is in progress.
  1111. // Saving starts with M28, saving until M29 is seen.
  1112. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1113. card.write_command(CMDBUFFER_CURRENT_STRING);
  1114. if(card.logging)
  1115. process_commands();
  1116. else
  1117. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1118. } else {
  1119. card.closefile();
  1120. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1121. }
  1122. } else {
  1123. process_commands();
  1124. }
  1125. #else
  1126. process_commands();
  1127. #endif //SDSUPPORT
  1128. if (! cmdbuffer_front_already_processed)
  1129. cmdqueue_pop_front();
  1130. cmdbuffer_front_already_processed = false;
  1131. }
  1132. }
  1133. //check heater every n milliseconds
  1134. manage_heater();
  1135. manage_inactivity();
  1136. checkHitEndstops();
  1137. lcd_update();
  1138. }
  1139. void get_command()
  1140. {
  1141. // Test and reserve space for the new command string.
  1142. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1143. return;
  1144. while (MYSERIAL.available() > 0) {
  1145. char serial_char = MYSERIAL.read();
  1146. TimeSent = millis();
  1147. TimeNow = millis();
  1148. if (serial_char < 0)
  1149. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1150. // and Marlin does not support such file names anyway.
  1151. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1152. // to a hang-up of the print process from an SD card.
  1153. continue;
  1154. if(serial_char == '\n' ||
  1155. serial_char == '\r' ||
  1156. (serial_char == ':' && comment_mode == false) ||
  1157. serial_count >= (MAX_CMD_SIZE - 1) )
  1158. {
  1159. if(!serial_count) { //if empty line
  1160. comment_mode = false; //for new command
  1161. return;
  1162. }
  1163. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1164. if(!comment_mode){
  1165. comment_mode = false; //for new command
  1166. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1167. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1168. {
  1169. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1170. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1171. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1172. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1173. // M110 - set current line number.
  1174. // Line numbers not sent in succession.
  1175. SERIAL_ERROR_START;
  1176. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1177. SERIAL_ERRORLN(gcode_LastN);
  1178. //Serial.println(gcode_N);
  1179. FlushSerialRequestResend();
  1180. serial_count = 0;
  1181. return;
  1182. }
  1183. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1184. {
  1185. byte checksum = 0;
  1186. char *p = cmdbuffer+bufindw+1;
  1187. while (p != strchr_pointer)
  1188. checksum = checksum^(*p++);
  1189. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1190. SERIAL_ERROR_START;
  1191. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1192. SERIAL_ERRORLN(gcode_LastN);
  1193. FlushSerialRequestResend();
  1194. serial_count = 0;
  1195. return;
  1196. }
  1197. // If no errors, remove the checksum and continue parsing.
  1198. *strchr_pointer = 0;
  1199. }
  1200. else
  1201. {
  1202. SERIAL_ERROR_START;
  1203. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1204. SERIAL_ERRORLN(gcode_LastN);
  1205. FlushSerialRequestResend();
  1206. serial_count = 0;
  1207. return;
  1208. }
  1209. gcode_LastN = gcode_N;
  1210. //if no errors, continue parsing
  1211. } // end of 'N' command
  1212. }
  1213. else // if we don't receive 'N' but still see '*'
  1214. {
  1215. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1216. {
  1217. SERIAL_ERROR_START;
  1218. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1219. SERIAL_ERRORLN(gcode_LastN);
  1220. serial_count = 0;
  1221. return;
  1222. }
  1223. } // end of '*' command
  1224. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1225. if (! IS_SD_PRINTING) {
  1226. usb_printing_counter = 10;
  1227. is_usb_printing = true;
  1228. }
  1229. if (Stopped == true) {
  1230. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1231. if (gcode >= 0 && gcode <= 3) {
  1232. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1233. LCD_MESSAGERPGM(MSG_STOPPED);
  1234. }
  1235. }
  1236. } // end of 'G' command
  1237. //If command was e-stop process now
  1238. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1239. kill();
  1240. // Store the current line into buffer, move to the next line.
  1241. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1242. #ifdef CMDBUFFER_DEBUG
  1243. SERIAL_ECHO_START;
  1244. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1245. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1246. SERIAL_ECHOLNPGM("");
  1247. #endif /* CMDBUFFER_DEBUG */
  1248. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1249. if (bufindw == sizeof(cmdbuffer))
  1250. bufindw = 0;
  1251. ++ buflen;
  1252. #ifdef CMDBUFFER_DEBUG
  1253. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1254. SERIAL_ECHO(buflen);
  1255. SERIAL_ECHOLNPGM("");
  1256. #endif /* CMDBUFFER_DEBUG */
  1257. } // end of 'not comment mode'
  1258. serial_count = 0; //clear buffer
  1259. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1260. // in the queue, as this function will reserve the memory.
  1261. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1262. return;
  1263. } // end of "end of line" processing
  1264. else {
  1265. // Not an "end of line" symbol. Store the new character into a buffer.
  1266. if(serial_char == ';') comment_mode = true;
  1267. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1268. }
  1269. } // end of serial line processing loop
  1270. if(farm_mode){
  1271. TimeNow = millis();
  1272. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1273. cmdbuffer[bufindw+serial_count+1] = 0;
  1274. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1275. if (bufindw == sizeof(cmdbuffer))
  1276. bufindw = 0;
  1277. ++ buflen;
  1278. serial_count = 0;
  1279. SERIAL_ECHOPGM("TIMEOUT:");
  1280. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1281. return;
  1282. }
  1283. }
  1284. #ifdef SDSUPPORT
  1285. if(!card.sdprinting || serial_count!=0){
  1286. // If there is a half filled buffer from serial line, wait until return before
  1287. // continuing with the serial line.
  1288. return;
  1289. }
  1290. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1291. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1292. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1293. static bool stop_buffering=false;
  1294. if(buflen==0) stop_buffering=false;
  1295. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1296. while( !card.eof() && !stop_buffering) {
  1297. int16_t n=card.get();
  1298. char serial_char = (char)n;
  1299. if(serial_char == '\n' ||
  1300. serial_char == '\r' ||
  1301. (serial_char == '#' && comment_mode == false) ||
  1302. (serial_char == ':' && comment_mode == false) ||
  1303. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1304. {
  1305. if(card.eof()){
  1306. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1307. stoptime=millis();
  1308. char time[30];
  1309. unsigned long t=(stoptime-starttime)/1000;
  1310. int hours, minutes;
  1311. minutes=(t/60)%60;
  1312. hours=t/60/60;
  1313. save_statistics(total_filament_used, t);
  1314. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1315. SERIAL_ECHO_START;
  1316. SERIAL_ECHOLN(time);
  1317. lcd_setstatus(time);
  1318. card.printingHasFinished();
  1319. card.checkautostart(true);
  1320. if (farm_mode)
  1321. {
  1322. prusa_statistics(6);
  1323. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1324. }
  1325. }
  1326. if(serial_char=='#')
  1327. stop_buffering=true;
  1328. if(!serial_count)
  1329. {
  1330. comment_mode = false; //for new command
  1331. return; //if empty line
  1332. }
  1333. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1334. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1335. ++ buflen;
  1336. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1337. if (bufindw == sizeof(cmdbuffer))
  1338. bufindw = 0;
  1339. comment_mode = false; //for new command
  1340. serial_count = 0; //clear buffer
  1341. // The following line will reserve buffer space if available.
  1342. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1343. return;
  1344. }
  1345. else
  1346. {
  1347. if(serial_char == ';') comment_mode = true;
  1348. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1349. }
  1350. }
  1351. #endif //SDSUPPORT
  1352. }
  1353. // Return True if a character was found
  1354. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1355. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1356. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1357. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1358. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1359. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1360. #define DEFINE_PGM_READ_ANY(type, reader) \
  1361. static inline type pgm_read_any(const type *p) \
  1362. { return pgm_read_##reader##_near(p); }
  1363. DEFINE_PGM_READ_ANY(float, float);
  1364. DEFINE_PGM_READ_ANY(signed char, byte);
  1365. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1366. static const PROGMEM type array##_P[3] = \
  1367. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1368. static inline type array(int axis) \
  1369. { return pgm_read_any(&array##_P[axis]); } \
  1370. type array##_ext(int axis) \
  1371. { return pgm_read_any(&array##_P[axis]); }
  1372. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1373. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1374. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1375. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1376. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1377. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1378. static void axis_is_at_home(int axis) {
  1379. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1380. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1381. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1382. }
  1383. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1384. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1385. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1386. saved_feedrate = feedrate;
  1387. saved_feedmultiply = feedmultiply;
  1388. feedmultiply = 100;
  1389. previous_millis_cmd = millis();
  1390. enable_endstops(enable_endstops_now);
  1391. }
  1392. static void clean_up_after_endstop_move() {
  1393. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1394. enable_endstops(false);
  1395. #endif
  1396. feedrate = saved_feedrate;
  1397. feedmultiply = saved_feedmultiply;
  1398. previous_millis_cmd = millis();
  1399. }
  1400. #ifdef ENABLE_AUTO_BED_LEVELING
  1401. #ifdef AUTO_BED_LEVELING_GRID
  1402. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1403. {
  1404. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1405. planeNormal.debug("planeNormal");
  1406. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1407. //bedLevel.debug("bedLevel");
  1408. //plan_bed_level_matrix.debug("bed level before");
  1409. //vector_3 uncorrected_position = plan_get_position_mm();
  1410. //uncorrected_position.debug("position before");
  1411. vector_3 corrected_position = plan_get_position();
  1412. // corrected_position.debug("position after");
  1413. current_position[X_AXIS] = corrected_position.x;
  1414. current_position[Y_AXIS] = corrected_position.y;
  1415. current_position[Z_AXIS] = corrected_position.z;
  1416. // put the bed at 0 so we don't go below it.
  1417. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. }
  1420. #else // not AUTO_BED_LEVELING_GRID
  1421. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1422. plan_bed_level_matrix.set_to_identity();
  1423. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1424. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1425. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1426. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1427. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1428. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1429. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1430. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1431. vector_3 corrected_position = plan_get_position();
  1432. current_position[X_AXIS] = corrected_position.x;
  1433. current_position[Y_AXIS] = corrected_position.y;
  1434. current_position[Z_AXIS] = corrected_position.z;
  1435. // put the bed at 0 so we don't go below it.
  1436. current_position[Z_AXIS] = zprobe_zoffset;
  1437. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1438. }
  1439. #endif // AUTO_BED_LEVELING_GRID
  1440. static void run_z_probe() {
  1441. plan_bed_level_matrix.set_to_identity();
  1442. feedrate = homing_feedrate[Z_AXIS];
  1443. // move down until you find the bed
  1444. float zPosition = -10;
  1445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. // we have to let the planner know where we are right now as it is not where we said to go.
  1448. zPosition = st_get_position_mm(Z_AXIS);
  1449. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1450. // move up the retract distance
  1451. zPosition += home_retract_mm(Z_AXIS);
  1452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1453. st_synchronize();
  1454. // move back down slowly to find bed
  1455. feedrate = homing_feedrate[Z_AXIS]/4;
  1456. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1458. st_synchronize();
  1459. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1460. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1461. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1462. }
  1463. static void do_blocking_move_to(float x, float y, float z) {
  1464. float oldFeedRate = feedrate;
  1465. feedrate = homing_feedrate[Z_AXIS];
  1466. current_position[Z_AXIS] = z;
  1467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. feedrate = XY_TRAVEL_SPEED;
  1470. current_position[X_AXIS] = x;
  1471. current_position[Y_AXIS] = y;
  1472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1473. st_synchronize();
  1474. feedrate = oldFeedRate;
  1475. }
  1476. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1477. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1478. }
  1479. /// Probe bed height at position (x,y), returns the measured z value
  1480. static float probe_pt(float x, float y, float z_before) {
  1481. // move to right place
  1482. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1483. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1484. run_z_probe();
  1485. float measured_z = current_position[Z_AXIS];
  1486. SERIAL_PROTOCOLRPGM(MSG_BED);
  1487. SERIAL_PROTOCOLPGM(" x: ");
  1488. SERIAL_PROTOCOL(x);
  1489. SERIAL_PROTOCOLPGM(" y: ");
  1490. SERIAL_PROTOCOL(y);
  1491. SERIAL_PROTOCOLPGM(" z: ");
  1492. SERIAL_PROTOCOL(measured_z);
  1493. SERIAL_PROTOCOLPGM("\n");
  1494. return measured_z;
  1495. }
  1496. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1497. void homeaxis(int axis) {
  1498. #define HOMEAXIS_DO(LETTER) \
  1499. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1500. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1501. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1502. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1503. 0) {
  1504. int axis_home_dir = home_dir(axis);
  1505. current_position[axis] = 0;
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1508. feedrate = homing_feedrate[axis];
  1509. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. current_position[axis] = 0;
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1514. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1515. st_synchronize();
  1516. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1517. feedrate = homing_feedrate[axis]/2 ;
  1518. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1519. st_synchronize();
  1520. axis_is_at_home(axis);
  1521. destination[axis] = current_position[axis];
  1522. feedrate = 0.0;
  1523. endstops_hit_on_purpose();
  1524. axis_known_position[axis] = true;
  1525. }
  1526. }
  1527. void home_xy()
  1528. {
  1529. set_destination_to_current();
  1530. homeaxis(X_AXIS);
  1531. homeaxis(Y_AXIS);
  1532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1533. endstops_hit_on_purpose();
  1534. }
  1535. void refresh_cmd_timeout(void)
  1536. {
  1537. previous_millis_cmd = millis();
  1538. }
  1539. #ifdef FWRETRACT
  1540. void retract(bool retracting, bool swapretract = false) {
  1541. if(retracting && !retracted[active_extruder]) {
  1542. destination[X_AXIS]=current_position[X_AXIS];
  1543. destination[Y_AXIS]=current_position[Y_AXIS];
  1544. destination[Z_AXIS]=current_position[Z_AXIS];
  1545. destination[E_AXIS]=current_position[E_AXIS];
  1546. if (swapretract) {
  1547. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1548. } else {
  1549. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1550. }
  1551. plan_set_e_position(current_position[E_AXIS]);
  1552. float oldFeedrate = feedrate;
  1553. feedrate=retract_feedrate*60;
  1554. retracted[active_extruder]=true;
  1555. prepare_move();
  1556. current_position[Z_AXIS]-=retract_zlift;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. prepare_move();
  1559. feedrate = oldFeedrate;
  1560. } else if(!retracting && retracted[active_extruder]) {
  1561. destination[X_AXIS]=current_position[X_AXIS];
  1562. destination[Y_AXIS]=current_position[Y_AXIS];
  1563. destination[Z_AXIS]=current_position[Z_AXIS];
  1564. destination[E_AXIS]=current_position[E_AXIS];
  1565. current_position[Z_AXIS]+=retract_zlift;
  1566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1567. //prepare_move();
  1568. if (swapretract) {
  1569. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1570. } else {
  1571. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1572. }
  1573. plan_set_e_position(current_position[E_AXIS]);
  1574. float oldFeedrate = feedrate;
  1575. feedrate=retract_recover_feedrate*60;
  1576. retracted[active_extruder]=false;
  1577. prepare_move();
  1578. feedrate = oldFeedrate;
  1579. }
  1580. } //retract
  1581. #endif //FWRETRACT
  1582. void trace() {
  1583. tone(BEEPER, 440);
  1584. delay(25);
  1585. noTone(BEEPER);
  1586. delay(20);
  1587. }
  1588. void ramming() {
  1589. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1590. if (current_temperature[0] < 230) {
  1591. //PLA
  1592. max_feedrate[E_AXIS] = 50;
  1593. //current_position[E_AXIS] -= 8;
  1594. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1595. //current_position[E_AXIS] += 8;
  1596. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1597. current_position[E_AXIS] += 5.4;
  1598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1599. current_position[E_AXIS] += 3.2;
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1601. current_position[E_AXIS] += 3;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1603. st_synchronize();
  1604. max_feedrate[E_AXIS] = 80;
  1605. current_position[E_AXIS] -= 82;
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1607. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1608. current_position[E_AXIS] -= 20;
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1610. current_position[E_AXIS] += 5;
  1611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1612. current_position[E_AXIS] += 5;
  1613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1614. current_position[E_AXIS] -= 10;
  1615. st_synchronize();
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1617. current_position[E_AXIS] += 10;
  1618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1619. current_position[E_AXIS] -= 10;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1621. current_position[E_AXIS] += 10;
  1622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1623. current_position[E_AXIS] -= 10;
  1624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1625. st_synchronize();
  1626. }
  1627. else {
  1628. //ABS
  1629. max_feedrate[E_AXIS] = 50;
  1630. //current_position[E_AXIS] -= 8;
  1631. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1632. //current_position[E_AXIS] += 8;
  1633. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1634. current_position[E_AXIS] += 3.1;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1636. current_position[E_AXIS] += 3.1;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1638. current_position[E_AXIS] += 4;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1640. st_synchronize();
  1641. /*current_position[X_AXIS] += 23; //delay
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1643. current_position[X_AXIS] -= 23; //delay
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1645. delay(4700);
  1646. max_feedrate[E_AXIS] = 80;
  1647. current_position[E_AXIS] -= 92;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1649. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1650. current_position[E_AXIS] -= 5;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1652. current_position[E_AXIS] += 5;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1654. current_position[E_AXIS] -= 5;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1656. st_synchronize();
  1657. current_position[E_AXIS] += 5;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1659. current_position[E_AXIS] -= 5;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1661. current_position[E_AXIS] += 5;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1663. current_position[E_AXIS] -= 5;
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1665. st_synchronize();
  1666. }
  1667. }
  1668. void process_commands()
  1669. {
  1670. #ifdef FILAMENT_RUNOUT_SUPPORT
  1671. SET_INPUT(FR_SENS);
  1672. #endif
  1673. #ifdef CMDBUFFER_DEBUG
  1674. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1675. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1676. SERIAL_ECHOLNPGM("");
  1677. SERIAL_ECHOPGM("In cmdqueue: ");
  1678. SERIAL_ECHO(buflen);
  1679. SERIAL_ECHOLNPGM("");
  1680. #endif /* CMDBUFFER_DEBUG */
  1681. unsigned long codenum; //throw away variable
  1682. char *starpos = NULL;
  1683. #ifdef ENABLE_AUTO_BED_LEVELING
  1684. float x_tmp, y_tmp, z_tmp, real_z;
  1685. #endif
  1686. // PRUSA GCODES
  1687. #ifdef SNMM
  1688. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1689. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1690. int8_t SilentMode;
  1691. #endif
  1692. if(code_seen("PRUSA")){
  1693. if (code_seen("fn")) {
  1694. if (farm_mode) {
  1695. MYSERIAL.println(farm_no);
  1696. }
  1697. else {
  1698. MYSERIAL.println("Not in farm mode.");
  1699. }
  1700. }else if (code_seen("fv")) {
  1701. // get file version
  1702. #ifdef SDSUPPORT
  1703. card.openFile(strchr_pointer + 3,true);
  1704. while (true) {
  1705. uint16_t readByte = card.get();
  1706. MYSERIAL.write(readByte);
  1707. if (readByte=='\n') {
  1708. break;
  1709. }
  1710. }
  1711. card.closefile();
  1712. #endif // SDSUPPORT
  1713. } else if (code_seen("M28")) {
  1714. trace();
  1715. prusa_sd_card_upload = true;
  1716. card.openFile(strchr_pointer+4,false);
  1717. } else if(code_seen("Fir")){
  1718. SERIAL_PROTOCOLLN(FW_version);
  1719. } else if(code_seen("Rev")){
  1720. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1721. } else if(code_seen("Lang")) {
  1722. lcd_force_language_selection();
  1723. } else if(code_seen("Lz")) {
  1724. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1725. } else if (code_seen("SERIAL LOW")) {
  1726. MYSERIAL.println("SERIAL LOW");
  1727. MYSERIAL.begin(BAUDRATE);
  1728. return;
  1729. } else if (code_seen("SERIAL HIGH")) {
  1730. MYSERIAL.println("SERIAL HIGH");
  1731. MYSERIAL.begin(1152000);
  1732. return;
  1733. } else if(code_seen("Beat")) {
  1734. // Kick farm link timer
  1735. kicktime = millis();
  1736. } else if(code_seen("FR")) {
  1737. // Factory full reset
  1738. factory_reset(0,true);
  1739. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1740. #ifdef SNMM
  1741. int extr;
  1742. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1743. lcd_implementation_clear();
  1744. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1745. current_position[Z_AXIS] = 100;
  1746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1747. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1748. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1749. change_extr(extr);
  1750. ramming();
  1751. }
  1752. change_extr(0);
  1753. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1755. st_synchronize();
  1756. for (extr = 1; extr < 4; extr++) {
  1757. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1758. change_extr(extr);
  1759. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1761. st_synchronize();
  1762. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1763. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1765. st_synchronize();
  1766. }
  1767. change_extr(0);
  1768. current_position[E_AXIS] += 25;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1770. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1771. ramming();
  1772. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1773. else digipot_current(2, tmp_motor_loud[2]);
  1774. st_synchronize();
  1775. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1776. lcd_implementation_clear();
  1777. lcd_printPGM(MSG_PLEASE_WAIT);
  1778. current_position[Z_AXIS] = 0;
  1779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1780. st_synchronize();
  1781. lcd_update_enable(true);
  1782. #endif
  1783. }
  1784. else if (code_seen("SetF")) {
  1785. #ifdef SNMM
  1786. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1787. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1788. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1789. #endif
  1790. }
  1791. else if (code_seen("ResF")) {
  1792. #ifdef SNMM
  1793. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1794. #endif
  1795. }
  1796. //else if (code_seen('Cal')) {
  1797. // lcd_calibration();
  1798. // }
  1799. }
  1800. else if (code_seen('^')) {
  1801. // nothing, this is a version line
  1802. } else if(code_seen('G'))
  1803. {
  1804. switch((int)code_value())
  1805. {
  1806. case 0: // G0 -> G1
  1807. case 1: // G1
  1808. if(Stopped == false) {
  1809. #ifdef FILAMENT_RUNOUT_SUPPORT
  1810. if(READ(FR_SENS)){
  1811. feedmultiplyBckp=feedmultiply;
  1812. float target[4];
  1813. float lastpos[4];
  1814. target[X_AXIS]=current_position[X_AXIS];
  1815. target[Y_AXIS]=current_position[Y_AXIS];
  1816. target[Z_AXIS]=current_position[Z_AXIS];
  1817. target[E_AXIS]=current_position[E_AXIS];
  1818. lastpos[X_AXIS]=current_position[X_AXIS];
  1819. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1820. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1821. lastpos[E_AXIS]=current_position[E_AXIS];
  1822. //retract by E
  1823. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1825. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1827. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1828. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1830. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1832. //finish moves
  1833. st_synchronize();
  1834. //disable extruder steppers so filament can be removed
  1835. disable_e0();
  1836. disable_e1();
  1837. disable_e2();
  1838. delay(100);
  1839. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1840. uint8_t cnt=0;
  1841. int counterBeep = 0;
  1842. lcd_wait_interact();
  1843. while(!lcd_clicked()){
  1844. cnt++;
  1845. manage_heater();
  1846. manage_inactivity(true);
  1847. //lcd_update();
  1848. if(cnt==0)
  1849. {
  1850. #if BEEPER > 0
  1851. if (counterBeep== 500){
  1852. counterBeep = 0;
  1853. }
  1854. SET_OUTPUT(BEEPER);
  1855. if (counterBeep== 0){
  1856. WRITE(BEEPER,HIGH);
  1857. }
  1858. if (counterBeep== 20){
  1859. WRITE(BEEPER,LOW);
  1860. }
  1861. counterBeep++;
  1862. #else
  1863. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1864. lcd_buzz(1000/6,100);
  1865. #else
  1866. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1867. #endif
  1868. #endif
  1869. }
  1870. }
  1871. WRITE(BEEPER,LOW);
  1872. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1873. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1874. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1876. lcd_change_fil_state = 0;
  1877. lcd_loading_filament();
  1878. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1879. lcd_change_fil_state = 0;
  1880. lcd_alright();
  1881. switch(lcd_change_fil_state){
  1882. case 2:
  1883. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1885. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1887. lcd_loading_filament();
  1888. break;
  1889. case 3:
  1890. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1892. lcd_loading_color();
  1893. break;
  1894. default:
  1895. lcd_change_success();
  1896. break;
  1897. }
  1898. }
  1899. target[E_AXIS]+= 5;
  1900. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1901. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1902. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1903. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1904. //plan_set_e_position(current_position[E_AXIS]);
  1905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1906. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1907. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1908. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1909. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1910. plan_set_e_position(lastpos[E_AXIS]);
  1911. feedmultiply=feedmultiplyBckp;
  1912. char cmd[9];
  1913. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1914. enquecommand(cmd);
  1915. }
  1916. #endif
  1917. get_coordinates(); // For X Y Z E F
  1918. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1919. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1920. }
  1921. #ifdef FWRETRACT
  1922. if(autoretract_enabled)
  1923. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1924. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1925. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1926. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1927. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1928. retract(!retracted);
  1929. return;
  1930. }
  1931. }
  1932. #endif //FWRETRACT
  1933. prepare_move();
  1934. //ClearToSend();
  1935. }
  1936. break;
  1937. case 2: // G2 - CW ARC
  1938. if(Stopped == false) {
  1939. get_arc_coordinates();
  1940. prepare_arc_move(true);
  1941. }
  1942. break;
  1943. case 3: // G3 - CCW ARC
  1944. if(Stopped == false) {
  1945. get_arc_coordinates();
  1946. prepare_arc_move(false);
  1947. }
  1948. break;
  1949. case 4: // G4 dwell
  1950. LCD_MESSAGERPGM(MSG_DWELL);
  1951. codenum = 0;
  1952. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1953. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1954. st_synchronize();
  1955. codenum += millis(); // keep track of when we started waiting
  1956. previous_millis_cmd = millis();
  1957. while(millis() < codenum) {
  1958. manage_heater();
  1959. manage_inactivity();
  1960. lcd_update();
  1961. }
  1962. break;
  1963. #ifdef FWRETRACT
  1964. case 10: // G10 retract
  1965. #if EXTRUDERS > 1
  1966. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1967. retract(true,retracted_swap[active_extruder]);
  1968. #else
  1969. retract(true);
  1970. #endif
  1971. break;
  1972. case 11: // G11 retract_recover
  1973. #if EXTRUDERS > 1
  1974. retract(false,retracted_swap[active_extruder]);
  1975. #else
  1976. retract(false);
  1977. #endif
  1978. break;
  1979. #endif //FWRETRACT
  1980. case 28: //G28 Home all Axis one at a time
  1981. homing_flag = true;
  1982. #ifdef ENABLE_AUTO_BED_LEVELING
  1983. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1984. #endif //ENABLE_AUTO_BED_LEVELING
  1985. // For mesh bed leveling deactivate the matrix temporarily
  1986. #ifdef MESH_BED_LEVELING
  1987. mbl.active = 0;
  1988. #endif
  1989. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1990. // the planner will not perform any adjustments in the XY plane.
  1991. // Wait for the motors to stop and update the current position with the absolute values.
  1992. world2machine_revert_to_uncorrected();
  1993. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1994. // consumed during the first movements following this statement.
  1995. babystep_undo();
  1996. saved_feedrate = feedrate;
  1997. saved_feedmultiply = feedmultiply;
  1998. feedmultiply = 100;
  1999. previous_millis_cmd = millis();
  2000. enable_endstops(true);
  2001. for(int8_t i=0; i < NUM_AXIS; i++)
  2002. destination[i] = current_position[i];
  2003. feedrate = 0.0;
  2004. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2005. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2006. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2007. homeaxis(Z_AXIS);
  2008. }
  2009. #endif
  2010. #ifdef QUICK_HOME
  2011. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2012. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2013. {
  2014. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2015. int x_axis_home_dir = home_dir(X_AXIS);
  2016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2017. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2018. feedrate = homing_feedrate[X_AXIS];
  2019. if(homing_feedrate[Y_AXIS]<feedrate)
  2020. feedrate = homing_feedrate[Y_AXIS];
  2021. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2022. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2023. } else {
  2024. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2025. }
  2026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2027. st_synchronize();
  2028. axis_is_at_home(X_AXIS);
  2029. axis_is_at_home(Y_AXIS);
  2030. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2031. destination[X_AXIS] = current_position[X_AXIS];
  2032. destination[Y_AXIS] = current_position[Y_AXIS];
  2033. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2034. feedrate = 0.0;
  2035. st_synchronize();
  2036. endstops_hit_on_purpose();
  2037. current_position[X_AXIS] = destination[X_AXIS];
  2038. current_position[Y_AXIS] = destination[Y_AXIS];
  2039. current_position[Z_AXIS] = destination[Z_AXIS];
  2040. }
  2041. #endif /* QUICK_HOME */
  2042. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2043. homeaxis(X_AXIS);
  2044. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2045. homeaxis(Y_AXIS);
  2046. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2047. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2048. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2049. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2050. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2051. #ifndef Z_SAFE_HOMING
  2052. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2053. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2054. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2055. feedrate = max_feedrate[Z_AXIS];
  2056. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2057. st_synchronize();
  2058. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2059. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2060. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2061. {
  2062. homeaxis(X_AXIS);
  2063. homeaxis(Y_AXIS);
  2064. }
  2065. // 1st mesh bed leveling measurement point, corrected.
  2066. world2machine_initialize();
  2067. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2068. world2machine_reset();
  2069. if (destination[Y_AXIS] < Y_MIN_POS)
  2070. destination[Y_AXIS] = Y_MIN_POS;
  2071. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2072. feedrate = homing_feedrate[Z_AXIS]/10;
  2073. current_position[Z_AXIS] = 0;
  2074. enable_endstops(false);
  2075. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2077. st_synchronize();
  2078. current_position[X_AXIS] = destination[X_AXIS];
  2079. current_position[Y_AXIS] = destination[Y_AXIS];
  2080. enable_endstops(true);
  2081. endstops_hit_on_purpose();
  2082. homeaxis(Z_AXIS);
  2083. #else // MESH_BED_LEVELING
  2084. homeaxis(Z_AXIS);
  2085. #endif // MESH_BED_LEVELING
  2086. }
  2087. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2088. if(home_all_axis) {
  2089. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2090. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2091. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2092. feedrate = XY_TRAVEL_SPEED/60;
  2093. current_position[Z_AXIS] = 0;
  2094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2095. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2096. st_synchronize();
  2097. current_position[X_AXIS] = destination[X_AXIS];
  2098. current_position[Y_AXIS] = destination[Y_AXIS];
  2099. homeaxis(Z_AXIS);
  2100. }
  2101. // Let's see if X and Y are homed and probe is inside bed area.
  2102. if(code_seen(axis_codes[Z_AXIS])) {
  2103. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2104. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2105. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2106. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2107. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2108. current_position[Z_AXIS] = 0;
  2109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2110. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2111. feedrate = max_feedrate[Z_AXIS];
  2112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2113. st_synchronize();
  2114. homeaxis(Z_AXIS);
  2115. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2116. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2119. } else {
  2120. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2121. SERIAL_ECHO_START;
  2122. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2123. }
  2124. }
  2125. #endif // Z_SAFE_HOMING
  2126. #endif // Z_HOME_DIR < 0
  2127. if(code_seen(axis_codes[Z_AXIS])) {
  2128. if(code_value_long() != 0) {
  2129. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2130. }
  2131. }
  2132. #ifdef ENABLE_AUTO_BED_LEVELING
  2133. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2134. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2135. }
  2136. #endif
  2137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2138. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2139. enable_endstops(false);
  2140. #endif
  2141. feedrate = saved_feedrate;
  2142. feedmultiply = saved_feedmultiply;
  2143. previous_millis_cmd = millis();
  2144. endstops_hit_on_purpose();
  2145. #ifndef MESH_BED_LEVELING
  2146. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2147. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2148. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2149. lcd_adjust_z();
  2150. #endif
  2151. // Load the machine correction matrix
  2152. world2machine_initialize();
  2153. // and correct the current_position to match the transformed coordinate system.
  2154. world2machine_update_current();
  2155. #ifdef MESH_BED_LEVELING
  2156. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2157. {
  2158. }
  2159. else
  2160. {
  2161. st_synchronize();
  2162. homing_flag = false;
  2163. // Push the commands to the front of the message queue in the reverse order!
  2164. // There shall be always enough space reserved for these commands.
  2165. // enquecommand_front_P((PSTR("G80")));
  2166. goto case_G80;
  2167. }
  2168. #endif
  2169. if (farm_mode) { prusa_statistics(20); };
  2170. homing_flag = false;
  2171. break;
  2172. #ifdef ENABLE_AUTO_BED_LEVELING
  2173. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2174. {
  2175. #if Z_MIN_PIN == -1
  2176. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2177. #endif
  2178. // Prevent user from running a G29 without first homing in X and Y
  2179. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2180. {
  2181. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2182. SERIAL_ECHO_START;
  2183. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2184. break; // abort G29, since we don't know where we are
  2185. }
  2186. st_synchronize();
  2187. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2188. //vector_3 corrected_position = plan_get_position_mm();
  2189. //corrected_position.debug("position before G29");
  2190. plan_bed_level_matrix.set_to_identity();
  2191. vector_3 uncorrected_position = plan_get_position();
  2192. //uncorrected_position.debug("position durring G29");
  2193. current_position[X_AXIS] = uncorrected_position.x;
  2194. current_position[Y_AXIS] = uncorrected_position.y;
  2195. current_position[Z_AXIS] = uncorrected_position.z;
  2196. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2197. setup_for_endstop_move();
  2198. feedrate = homing_feedrate[Z_AXIS];
  2199. #ifdef AUTO_BED_LEVELING_GRID
  2200. // probe at the points of a lattice grid
  2201. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2202. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2203. // solve the plane equation ax + by + d = z
  2204. // A is the matrix with rows [x y 1] for all the probed points
  2205. // B is the vector of the Z positions
  2206. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2207. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2208. // "A" matrix of the linear system of equations
  2209. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2210. // "B" vector of Z points
  2211. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2212. int probePointCounter = 0;
  2213. bool zig = true;
  2214. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2215. {
  2216. int xProbe, xInc;
  2217. if (zig)
  2218. {
  2219. xProbe = LEFT_PROBE_BED_POSITION;
  2220. //xEnd = RIGHT_PROBE_BED_POSITION;
  2221. xInc = xGridSpacing;
  2222. zig = false;
  2223. } else // zag
  2224. {
  2225. xProbe = RIGHT_PROBE_BED_POSITION;
  2226. //xEnd = LEFT_PROBE_BED_POSITION;
  2227. xInc = -xGridSpacing;
  2228. zig = true;
  2229. }
  2230. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2231. {
  2232. float z_before;
  2233. if (probePointCounter == 0)
  2234. {
  2235. // raise before probing
  2236. z_before = Z_RAISE_BEFORE_PROBING;
  2237. } else
  2238. {
  2239. // raise extruder
  2240. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2241. }
  2242. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2243. eqnBVector[probePointCounter] = measured_z;
  2244. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2245. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2246. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2247. probePointCounter++;
  2248. xProbe += xInc;
  2249. }
  2250. }
  2251. clean_up_after_endstop_move();
  2252. // solve lsq problem
  2253. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2254. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2255. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2256. SERIAL_PROTOCOLPGM(" b: ");
  2257. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2258. SERIAL_PROTOCOLPGM(" d: ");
  2259. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2260. set_bed_level_equation_lsq(plane_equation_coefficients);
  2261. free(plane_equation_coefficients);
  2262. #else // AUTO_BED_LEVELING_GRID not defined
  2263. // Probe at 3 arbitrary points
  2264. // probe 1
  2265. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2266. // probe 2
  2267. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2268. // probe 3
  2269. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2270. clean_up_after_endstop_move();
  2271. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2272. #endif // AUTO_BED_LEVELING_GRID
  2273. st_synchronize();
  2274. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2275. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2276. // When the bed is uneven, this height must be corrected.
  2277. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2278. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2279. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2280. z_tmp = current_position[Z_AXIS];
  2281. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2282. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2284. }
  2285. break;
  2286. #ifndef Z_PROBE_SLED
  2287. case 30: // G30 Single Z Probe
  2288. {
  2289. st_synchronize();
  2290. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2291. setup_for_endstop_move();
  2292. feedrate = homing_feedrate[Z_AXIS];
  2293. run_z_probe();
  2294. SERIAL_PROTOCOLPGM(MSG_BED);
  2295. SERIAL_PROTOCOLPGM(" X: ");
  2296. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2297. SERIAL_PROTOCOLPGM(" Y: ");
  2298. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2299. SERIAL_PROTOCOLPGM(" Z: ");
  2300. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2301. SERIAL_PROTOCOLPGM("\n");
  2302. clean_up_after_endstop_move();
  2303. }
  2304. break;
  2305. #else
  2306. case 31: // dock the sled
  2307. dock_sled(true);
  2308. break;
  2309. case 32: // undock the sled
  2310. dock_sled(false);
  2311. break;
  2312. #endif // Z_PROBE_SLED
  2313. #endif // ENABLE_AUTO_BED_LEVELING
  2314. #ifdef MESH_BED_LEVELING
  2315. case 30: // G30 Single Z Probe
  2316. {
  2317. st_synchronize();
  2318. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2319. setup_for_endstop_move();
  2320. feedrate = homing_feedrate[Z_AXIS];
  2321. find_bed_induction_sensor_point_z(-10.f, 3);
  2322. SERIAL_PROTOCOLRPGM(MSG_BED);
  2323. SERIAL_PROTOCOLPGM(" X: ");
  2324. MYSERIAL.print(current_position[X_AXIS], 5);
  2325. SERIAL_PROTOCOLPGM(" Y: ");
  2326. MYSERIAL.print(current_position[Y_AXIS], 5);
  2327. SERIAL_PROTOCOLPGM(" Z: ");
  2328. MYSERIAL.print(current_position[Z_AXIS], 5);
  2329. SERIAL_PROTOCOLPGM("\n");
  2330. clean_up_after_endstop_move();
  2331. }
  2332. break;
  2333. case 76: //PINDA probe temperature calibration
  2334. {
  2335. setTargetBed(PINDA_MIN_T);
  2336. float zero_z;
  2337. int z_shift = 0; //unit: steps
  2338. int t_c; // temperature
  2339. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2340. // We don't know where we are! HOME!
  2341. // Push the commands to the front of the message queue in the reverse order!
  2342. // There shall be always enough space reserved for these commands.
  2343. repeatcommand_front(); // repeat G76 with all its parameters
  2344. enquecommand_front_P((PSTR("G28 W0")));
  2345. break;
  2346. }
  2347. custom_message = true;
  2348. custom_message_type = 4;
  2349. custom_message_state = 1;
  2350. custom_message = MSG_TEMP_CALIBRATION;
  2351. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2352. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2353. current_position[Z_AXIS] = 0;
  2354. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2355. st_synchronize();
  2356. while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
  2357. //enquecommand_P(PSTR("M190 S50"));
  2358. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2359. current_position[Z_AXIS] = 5;
  2360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2361. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2362. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2364. st_synchronize();
  2365. find_bed_induction_sensor_point_z(-1.f);
  2366. zero_z = current_position[Z_AXIS];
  2367. //current_position[Z_AXIS]
  2368. SERIAL_ECHOLNPGM("");
  2369. SERIAL_ECHOPGM("ZERO: ");
  2370. MYSERIAL.print(current_position[Z_AXIS]);
  2371. SERIAL_ECHOLNPGM("");
  2372. for (int i = 0; i<5; i++) {
  2373. custom_message_state = i + 2;
  2374. t_c = 60 + i * 10;
  2375. setTargetBed(t_c);
  2376. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2377. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2378. current_position[Z_AXIS] = 0;
  2379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2380. st_synchronize();
  2381. while (degBed() < t_c) delay_keep_alive(1000);
  2382. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2383. current_position[Z_AXIS] = 5;
  2384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2385. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2386. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2387. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2388. st_synchronize();
  2389. find_bed_induction_sensor_point_z(-1.f);
  2390. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2391. SERIAL_ECHOLNPGM("");
  2392. SERIAL_ECHOPGM("Temperature: ");
  2393. MYSERIAL.print(t_c);
  2394. SERIAL_ECHOPGM(" Z shift (mm):");
  2395. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2396. SERIAL_ECHOLNPGM("");
  2397. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2398. }
  2399. custom_message_type = 0;
  2400. custom_message = false;
  2401. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2402. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2403. lcd_update_enable(true);
  2404. lcd_update(2);
  2405. setTargetBed(0); //set bed target temperature back to 0
  2406. }
  2407. break;
  2408. #ifdef DIS
  2409. case 77:
  2410. {
  2411. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2412. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2413. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2414. float dimension_x = 40;
  2415. float dimension_y = 40;
  2416. int points_x = 40;
  2417. int points_y = 40;
  2418. float offset_x = 74;
  2419. float offset_y = 33;
  2420. if (code_seen('X')) dimension_x = code_value();
  2421. if (code_seen('Y')) dimension_y = code_value();
  2422. if (code_seen('XP')) points_x = code_value();
  2423. if (code_seen('YP')) points_y = code_value();
  2424. if (code_seen('XO')) offset_x = code_value();
  2425. if (code_seen('YO')) offset_y = code_value();
  2426. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2427. } break;
  2428. #endif
  2429. /**
  2430. * G80: Mesh-based Z probe, probes a grid and produces a
  2431. * mesh to compensate for variable bed height
  2432. *
  2433. * The S0 report the points as below
  2434. *
  2435. * +----> X-axis
  2436. * |
  2437. * |
  2438. * v Y-axis
  2439. *
  2440. */
  2441. case 80:
  2442. case_G80:
  2443. {
  2444. int8_t verbosity_level = 0;
  2445. static bool run = false;
  2446. if (code_seen('V')) {
  2447. // Just 'V' without a number counts as V1.
  2448. char c = strchr_pointer[1];
  2449. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2450. }
  2451. // Firstly check if we know where we are
  2452. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2453. // We don't know where we are! HOME!
  2454. // Push the commands to the front of the message queue in the reverse order!
  2455. // There shall be always enough space reserved for these commands.
  2456. repeatcommand_front(); // repeat G80 with all its parameters
  2457. enquecommand_front_P((PSTR("G28 W0")));
  2458. break;
  2459. }
  2460. if (run == false && card.sdprinting == true && temp_cal_active == true) {
  2461. temp_compensation_start();
  2462. run = true;
  2463. repeatcommand_front(); // repeat G80 with all its parameters
  2464. enquecommand_front_P((PSTR("G28 W0")));
  2465. break;
  2466. }
  2467. run = false;
  2468. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2469. bool custom_message_old = custom_message;
  2470. unsigned int custom_message_type_old = custom_message_type;
  2471. unsigned int custom_message_state_old = custom_message_state;
  2472. custom_message = true;
  2473. custom_message_type = 1;
  2474. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2475. lcd_update(1);
  2476. mbl.reset(); //reset mesh bed leveling
  2477. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2478. // consumed during the first movements following this statement.
  2479. babystep_undo();
  2480. // Cycle through all points and probe them
  2481. // First move up. During this first movement, the babystepping will be reverted.
  2482. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2484. // The move to the first calibration point.
  2485. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2486. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2487. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2488. if (verbosity_level >= 1) {
  2489. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2490. }
  2491. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2493. // Wait until the move is finished.
  2494. st_synchronize();
  2495. int mesh_point = 0; //index number of calibration point
  2496. int ix = 0;
  2497. int iy = 0;
  2498. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2499. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2500. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2501. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2502. if (verbosity_level >= 1) {
  2503. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2504. }
  2505. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2506. const char *kill_message = NULL;
  2507. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2508. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2509. // Get coords of a measuring point.
  2510. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2511. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2512. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2513. float z0 = 0.f;
  2514. if (has_z && mesh_point > 0) {
  2515. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2516. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2517. //#if 0
  2518. if (verbosity_level >= 1) {
  2519. SERIAL_ECHOPGM("Bed leveling, point: ");
  2520. MYSERIAL.print(mesh_point);
  2521. SERIAL_ECHOPGM(", calibration z: ");
  2522. MYSERIAL.print(z0, 5);
  2523. SERIAL_ECHOLNPGM("");
  2524. }
  2525. //#endif
  2526. }
  2527. // Move Z up to MESH_HOME_Z_SEARCH.
  2528. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2530. st_synchronize();
  2531. // Move to XY position of the sensor point.
  2532. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2533. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2534. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2535. if (verbosity_level >= 1) {
  2536. SERIAL_PROTOCOL(mesh_point);
  2537. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2538. }
  2539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2540. st_synchronize();
  2541. // Go down until endstop is hit
  2542. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2543. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2544. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2545. break;
  2546. }
  2547. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2548. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2549. break;
  2550. }
  2551. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2552. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2553. break;
  2554. }
  2555. if (verbosity_level >= 10) {
  2556. SERIAL_ECHOPGM("X: ");
  2557. MYSERIAL.print(current_position[X_AXIS], 5);
  2558. SERIAL_ECHOLNPGM("");
  2559. SERIAL_ECHOPGM("Y: ");
  2560. MYSERIAL.print(current_position[Y_AXIS], 5);
  2561. SERIAL_PROTOCOLPGM("\n");
  2562. }
  2563. if (verbosity_level >= 1) {
  2564. SERIAL_ECHOPGM("mesh bed leveling: ");
  2565. MYSERIAL.print(current_position[Z_AXIS], 5);
  2566. SERIAL_ECHOLNPGM("");
  2567. }
  2568. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2569. custom_message_state--;
  2570. mesh_point++;
  2571. lcd_update(1);
  2572. }
  2573. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2574. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2575. if (verbosity_level >= 20) {
  2576. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2577. MYSERIAL.print(current_position[Z_AXIS], 5);
  2578. }
  2579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2580. st_synchronize();
  2581. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2582. kill(kill_message);
  2583. SERIAL_ECHOLNPGM("killed");
  2584. }
  2585. clean_up_after_endstop_move();
  2586. SERIAL_ECHOLNPGM("clean up finished ");
  2587. if(temp_cal_active == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2588. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2589. SERIAL_ECHOLNPGM("babystep applied");
  2590. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2591. if (verbosity_level >= 1) {
  2592. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2593. }
  2594. for (uint8_t i = 0; i < 4; ++i) {
  2595. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2596. long correction = 0;
  2597. if (code_seen(codes[i]))
  2598. correction = code_value_long();
  2599. else if (eeprom_bed_correction_valid) {
  2600. unsigned char *addr = (i < 2) ?
  2601. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2602. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2603. correction = eeprom_read_int8(addr);
  2604. }
  2605. if (correction == 0)
  2606. continue;
  2607. float offset = float(correction) * 0.001f;
  2608. if (fabs(offset) > 0.101f) {
  2609. SERIAL_ERROR_START;
  2610. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2611. SERIAL_ECHO(offset);
  2612. SERIAL_ECHOLNPGM(" microns");
  2613. }
  2614. else {
  2615. switch (i) {
  2616. case 0:
  2617. for (uint8_t row = 0; row < 3; ++row) {
  2618. mbl.z_values[row][1] += 0.5f * offset;
  2619. mbl.z_values[row][0] += offset;
  2620. }
  2621. break;
  2622. case 1:
  2623. for (uint8_t row = 0; row < 3; ++row) {
  2624. mbl.z_values[row][1] += 0.5f * offset;
  2625. mbl.z_values[row][2] += offset;
  2626. }
  2627. break;
  2628. case 2:
  2629. for (uint8_t col = 0; col < 3; ++col) {
  2630. mbl.z_values[1][col] += 0.5f * offset;
  2631. mbl.z_values[0][col] += offset;
  2632. }
  2633. break;
  2634. case 3:
  2635. for (uint8_t col = 0; col < 3; ++col) {
  2636. mbl.z_values[1][col] += 0.5f * offset;
  2637. mbl.z_values[2][col] += offset;
  2638. }
  2639. break;
  2640. }
  2641. }
  2642. }
  2643. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2644. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2645. SERIAL_ECHOLNPGM("Upsample finished");
  2646. mbl.active = 1; //activate mesh bed leveling
  2647. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2648. go_home_with_z_lift();
  2649. SERIAL_ECHOLNPGM("Go home finished");
  2650. //unretract (after PINDA preheat retraction)
  2651. if (card.sdprinting == true && degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true) {
  2652. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2654. }
  2655. // Restore custom message state
  2656. custom_message = custom_message_old;
  2657. custom_message_type = custom_message_type_old;
  2658. custom_message_state = custom_message_state_old;
  2659. lcd_update(1);
  2660. }
  2661. break;
  2662. /**
  2663. * G81: Print mesh bed leveling status and bed profile if activated
  2664. */
  2665. case 81:
  2666. if (mbl.active) {
  2667. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2668. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2669. SERIAL_PROTOCOLPGM(",");
  2670. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2671. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2672. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2673. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2674. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2675. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2676. SERIAL_PROTOCOLPGM(" ");
  2677. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2678. }
  2679. SERIAL_PROTOCOLPGM("\n");
  2680. }
  2681. }
  2682. else
  2683. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2684. break;
  2685. #if 0
  2686. /**
  2687. * G82: Single Z probe at current location
  2688. *
  2689. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2690. *
  2691. */
  2692. case 82:
  2693. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2694. setup_for_endstop_move();
  2695. find_bed_induction_sensor_point_z();
  2696. clean_up_after_endstop_move();
  2697. SERIAL_PROTOCOLPGM("Bed found at: ");
  2698. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2699. SERIAL_PROTOCOLPGM("\n");
  2700. break;
  2701. /**
  2702. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2703. */
  2704. case 83:
  2705. {
  2706. int babystepz = code_seen('S') ? code_value() : 0;
  2707. int BabyPosition = code_seen('P') ? code_value() : 0;
  2708. if (babystepz != 0) {
  2709. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2710. // Is the axis indexed starting with zero or one?
  2711. if (BabyPosition > 4) {
  2712. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2713. }else{
  2714. // Save it to the eeprom
  2715. babystepLoadZ = babystepz;
  2716. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2717. // adjust the Z
  2718. babystepsTodoZadd(babystepLoadZ);
  2719. }
  2720. }
  2721. }
  2722. break;
  2723. /**
  2724. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2725. */
  2726. case 84:
  2727. babystepsTodoZsubtract(babystepLoadZ);
  2728. // babystepLoadZ = 0;
  2729. break;
  2730. /**
  2731. * G85: Prusa3D specific: Pick best babystep
  2732. */
  2733. case 85:
  2734. lcd_pick_babystep();
  2735. break;
  2736. #endif
  2737. /**
  2738. * G86: Prusa3D specific: Disable babystep correction after home.
  2739. * This G-code will be performed at the start of a calibration script.
  2740. */
  2741. case 86:
  2742. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2743. break;
  2744. /**
  2745. * G87: Prusa3D specific: Enable babystep correction after home
  2746. * This G-code will be performed at the end of a calibration script.
  2747. */
  2748. case 87:
  2749. calibration_status_store(CALIBRATION_STATUS_PINDA);
  2750. break;
  2751. /**
  2752. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2753. */
  2754. case 88:
  2755. break;
  2756. #endif // ENABLE_MESH_BED_LEVELING
  2757. case 90: // G90
  2758. relative_mode = false;
  2759. break;
  2760. case 91: // G91
  2761. relative_mode = true;
  2762. break;
  2763. case 92: // G92
  2764. if(!code_seen(axis_codes[E_AXIS]))
  2765. st_synchronize();
  2766. for(int8_t i=0; i < NUM_AXIS; i++) {
  2767. if(code_seen(axis_codes[i])) {
  2768. if(i == E_AXIS) {
  2769. current_position[i] = code_value();
  2770. plan_set_e_position(current_position[E_AXIS]);
  2771. }
  2772. else {
  2773. current_position[i] = code_value()+add_homing[i];
  2774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2775. }
  2776. }
  2777. }
  2778. break;
  2779. case 98:
  2780. farm_no = 21;
  2781. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2782. farm_mode = true;
  2783. break;
  2784. case 99:
  2785. farm_no = 0;
  2786. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2787. farm_mode = false;
  2788. break;
  2789. }
  2790. } // end if(code_seen('G'))
  2791. else if(code_seen('M'))
  2792. {
  2793. int index;
  2794. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2795. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2796. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2797. SERIAL_ECHOLNPGM("Invalid M code");
  2798. } else
  2799. switch((int)code_value())
  2800. {
  2801. #ifdef ULTIPANEL
  2802. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2803. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2804. {
  2805. char *src = strchr_pointer + 2;
  2806. codenum = 0;
  2807. bool hasP = false, hasS = false;
  2808. if (code_seen('P')) {
  2809. codenum = code_value(); // milliseconds to wait
  2810. hasP = codenum > 0;
  2811. }
  2812. if (code_seen('S')) {
  2813. codenum = code_value() * 1000; // seconds to wait
  2814. hasS = codenum > 0;
  2815. }
  2816. starpos = strchr(src, '*');
  2817. if (starpos != NULL) *(starpos) = '\0';
  2818. while (*src == ' ') ++src;
  2819. if (!hasP && !hasS && *src != '\0') {
  2820. lcd_setstatus(src);
  2821. } else {
  2822. LCD_MESSAGERPGM(MSG_USERWAIT);
  2823. }
  2824. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2825. st_synchronize();
  2826. previous_millis_cmd = millis();
  2827. if (codenum > 0){
  2828. codenum += millis(); // keep track of when we started waiting
  2829. while(millis() < codenum && !lcd_clicked()){
  2830. manage_heater();
  2831. manage_inactivity(true);
  2832. lcd_update();
  2833. }
  2834. lcd_ignore_click(false);
  2835. }else{
  2836. if (!lcd_detected())
  2837. break;
  2838. while(!lcd_clicked()){
  2839. manage_heater();
  2840. manage_inactivity(true);
  2841. lcd_update();
  2842. }
  2843. }
  2844. if (IS_SD_PRINTING)
  2845. LCD_MESSAGERPGM(MSG_RESUMING);
  2846. else
  2847. LCD_MESSAGERPGM(WELCOME_MSG);
  2848. }
  2849. break;
  2850. #endif
  2851. case 17:
  2852. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2853. enable_x();
  2854. enable_y();
  2855. enable_z();
  2856. enable_e0();
  2857. enable_e1();
  2858. enable_e2();
  2859. break;
  2860. #ifdef SDSUPPORT
  2861. case 20: // M20 - list SD card
  2862. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2863. card.ls();
  2864. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2865. break;
  2866. case 21: // M21 - init SD card
  2867. card.initsd();
  2868. break;
  2869. case 22: //M22 - release SD card
  2870. card.release();
  2871. break;
  2872. case 23: //M23 - Select file
  2873. starpos = (strchr(strchr_pointer + 4,'*'));
  2874. if(starpos!=NULL)
  2875. *(starpos)='\0';
  2876. card.openFile(strchr_pointer + 4,true);
  2877. break;
  2878. case 24: //M24 - Start SD print
  2879. card.startFileprint();
  2880. starttime=millis();
  2881. break;
  2882. case 25: //M25 - Pause SD print
  2883. card.pauseSDPrint();
  2884. break;
  2885. case 26: //M26 - Set SD index
  2886. if(card.cardOK && code_seen('S')) {
  2887. card.setIndex(code_value_long());
  2888. }
  2889. break;
  2890. case 27: //M27 - Get SD status
  2891. card.getStatus();
  2892. break;
  2893. case 28: //M28 - Start SD write
  2894. starpos = (strchr(strchr_pointer + 4,'*'));
  2895. if(starpos != NULL){
  2896. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2897. strchr_pointer = strchr(npos,' ') + 1;
  2898. *(starpos) = '\0';
  2899. }
  2900. card.openFile(strchr_pointer+4,false);
  2901. break;
  2902. case 29: //M29 - Stop SD write
  2903. //processed in write to file routine above
  2904. //card,saving = false;
  2905. break;
  2906. case 30: //M30 <filename> Delete File
  2907. if (card.cardOK){
  2908. card.closefile();
  2909. starpos = (strchr(strchr_pointer + 4,'*'));
  2910. if(starpos != NULL){
  2911. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2912. strchr_pointer = strchr(npos,' ') + 1;
  2913. *(starpos) = '\0';
  2914. }
  2915. card.removeFile(strchr_pointer + 4);
  2916. }
  2917. break;
  2918. case 32: //M32 - Select file and start SD print
  2919. {
  2920. if(card.sdprinting) {
  2921. st_synchronize();
  2922. }
  2923. starpos = (strchr(strchr_pointer + 4,'*'));
  2924. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2925. if(namestartpos==NULL)
  2926. {
  2927. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2928. }
  2929. else
  2930. namestartpos++; //to skip the '!'
  2931. if(starpos!=NULL)
  2932. *(starpos)='\0';
  2933. bool call_procedure=(code_seen('P'));
  2934. if(strchr_pointer>namestartpos)
  2935. call_procedure=false; //false alert, 'P' found within filename
  2936. if( card.cardOK )
  2937. {
  2938. card.openFile(namestartpos,true,!call_procedure);
  2939. if(code_seen('S'))
  2940. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2941. card.setIndex(code_value_long());
  2942. card.startFileprint();
  2943. if(!call_procedure)
  2944. starttime=millis(); //procedure calls count as normal print time.
  2945. }
  2946. } break;
  2947. case 928: //M928 - Start SD write
  2948. starpos = (strchr(strchr_pointer + 5,'*'));
  2949. if(starpos != NULL){
  2950. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2951. strchr_pointer = strchr(npos,' ') + 1;
  2952. *(starpos) = '\0';
  2953. }
  2954. card.openLogFile(strchr_pointer+5);
  2955. break;
  2956. #endif //SDSUPPORT
  2957. case 31: //M31 take time since the start of the SD print or an M109 command
  2958. {
  2959. stoptime=millis();
  2960. char time[30];
  2961. unsigned long t=(stoptime-starttime)/1000;
  2962. int sec,min;
  2963. min=t/60;
  2964. sec=t%60;
  2965. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2966. SERIAL_ECHO_START;
  2967. SERIAL_ECHOLN(time);
  2968. lcd_setstatus(time);
  2969. autotempShutdown();
  2970. }
  2971. break;
  2972. case 42: //M42 -Change pin status via gcode
  2973. if (code_seen('S'))
  2974. {
  2975. int pin_status = code_value();
  2976. int pin_number = LED_PIN;
  2977. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2978. pin_number = code_value();
  2979. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2980. {
  2981. if (sensitive_pins[i] == pin_number)
  2982. {
  2983. pin_number = -1;
  2984. break;
  2985. }
  2986. }
  2987. #if defined(FAN_PIN) && FAN_PIN > -1
  2988. if (pin_number == FAN_PIN)
  2989. fanSpeed = pin_status;
  2990. #endif
  2991. if (pin_number > -1)
  2992. {
  2993. pinMode(pin_number, OUTPUT);
  2994. digitalWrite(pin_number, pin_status);
  2995. analogWrite(pin_number, pin_status);
  2996. }
  2997. }
  2998. break;
  2999. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3000. // Reset the baby step value and the baby step applied flag.
  3001. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3002. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3003. // Reset the skew and offset in both RAM and EEPROM.
  3004. reset_bed_offset_and_skew();
  3005. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3006. // the planner will not perform any adjustments in the XY plane.
  3007. // Wait for the motors to stop and update the current position with the absolute values.
  3008. world2machine_revert_to_uncorrected();
  3009. break;
  3010. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3011. {
  3012. // Only Z calibration?
  3013. bool onlyZ = code_seen('Z');
  3014. if (!onlyZ) {
  3015. setTargetBed(0);
  3016. setTargetHotend(0, 0);
  3017. setTargetHotend(0, 1);
  3018. setTargetHotend(0, 2);
  3019. adjust_bed_reset(); //reset bed level correction
  3020. }
  3021. // Disable the default update procedure of the display. We will do a modal dialog.
  3022. lcd_update_enable(false);
  3023. // Let the planner use the uncorrected coordinates.
  3024. mbl.reset();
  3025. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3026. // the planner will not perform any adjustments in the XY plane.
  3027. // Wait for the motors to stop and update the current position with the absolute values.
  3028. world2machine_revert_to_uncorrected();
  3029. // Reset the baby step value applied without moving the axes.
  3030. babystep_reset();
  3031. // Mark all axes as in a need for homing.
  3032. memset(axis_known_position, 0, sizeof(axis_known_position));
  3033. // Let the user move the Z axes up to the end stoppers.
  3034. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3035. refresh_cmd_timeout();
  3036. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  3037. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  3038. lcd_implementation_print_at(0, 3, 1);
  3039. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  3040. // Move the print head close to the bed.
  3041. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3043. st_synchronize();
  3044. // Home in the XY plane.
  3045. set_destination_to_current();
  3046. setup_for_endstop_move();
  3047. home_xy();
  3048. int8_t verbosity_level = 0;
  3049. if (code_seen('V')) {
  3050. // Just 'V' without a number counts as V1.
  3051. char c = strchr_pointer[1];
  3052. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3053. }
  3054. if (onlyZ) {
  3055. clean_up_after_endstop_move();
  3056. // Z only calibration.
  3057. // Load the machine correction matrix
  3058. world2machine_initialize();
  3059. // and correct the current_position to match the transformed coordinate system.
  3060. world2machine_update_current();
  3061. //FIXME
  3062. bool result = sample_mesh_and_store_reference();
  3063. if (result) {
  3064. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3065. // Shipped, the nozzle height has been set already. The user can start printing now.
  3066. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3067. // babystep_apply();
  3068. }
  3069. } else {
  3070. // Reset the baby step value and the baby step applied flag.
  3071. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3072. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3073. // Complete XYZ calibration.
  3074. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3075. uint8_t point_too_far_mask = 0;
  3076. clean_up_after_endstop_move();
  3077. // Print head up.
  3078. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3080. st_synchronize();
  3081. if (result >= 0) {
  3082. // Second half: The fine adjustment.
  3083. // Let the planner use the uncorrected coordinates.
  3084. mbl.reset();
  3085. world2machine_reset();
  3086. // Home in the XY plane.
  3087. setup_for_endstop_move();
  3088. home_xy();
  3089. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3090. clean_up_after_endstop_move();
  3091. // Print head up.
  3092. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3094. st_synchronize();
  3095. // if (result >= 0) babystep_apply();
  3096. }
  3097. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3098. if (result >= 0) {
  3099. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3100. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3101. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3102. }
  3103. }
  3104. } else {
  3105. // Timeouted.
  3106. }
  3107. lcd_update_enable(true);
  3108. break;
  3109. }
  3110. /*
  3111. case 46:
  3112. {
  3113. // M46: Prusa3D: Show the assigned IP address.
  3114. uint8_t ip[4];
  3115. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3116. if (hasIP) {
  3117. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3118. SERIAL_ECHO(int(ip[0]));
  3119. SERIAL_ECHOPGM(".");
  3120. SERIAL_ECHO(int(ip[1]));
  3121. SERIAL_ECHOPGM(".");
  3122. SERIAL_ECHO(int(ip[2]));
  3123. SERIAL_ECHOPGM(".");
  3124. SERIAL_ECHO(int(ip[3]));
  3125. SERIAL_ECHOLNPGM("");
  3126. } else {
  3127. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3128. }
  3129. break;
  3130. }
  3131. */
  3132. case 47:
  3133. // M47: Prusa3D: Show end stops dialog on the display.
  3134. lcd_diag_show_end_stops();
  3135. break;
  3136. #if 0
  3137. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3138. {
  3139. // Disable the default update procedure of the display. We will do a modal dialog.
  3140. lcd_update_enable(false);
  3141. // Let the planner use the uncorrected coordinates.
  3142. mbl.reset();
  3143. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3144. // the planner will not perform any adjustments in the XY plane.
  3145. // Wait for the motors to stop and update the current position with the absolute values.
  3146. world2machine_revert_to_uncorrected();
  3147. // Move the print head close to the bed.
  3148. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3150. st_synchronize();
  3151. // Home in the XY plane.
  3152. set_destination_to_current();
  3153. setup_for_endstop_move();
  3154. home_xy();
  3155. int8_t verbosity_level = 0;
  3156. if (code_seen('V')) {
  3157. // Just 'V' without a number counts as V1.
  3158. char c = strchr_pointer[1];
  3159. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3160. }
  3161. bool success = scan_bed_induction_points(verbosity_level);
  3162. clean_up_after_endstop_move();
  3163. // Print head up.
  3164. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3166. st_synchronize();
  3167. lcd_update_enable(true);
  3168. break;
  3169. }
  3170. #endif
  3171. // M48 Z-Probe repeatability measurement function.
  3172. //
  3173. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3174. //
  3175. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3176. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3177. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3178. // regenerated.
  3179. //
  3180. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3181. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3182. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3183. //
  3184. #ifdef ENABLE_AUTO_BED_LEVELING
  3185. #ifdef Z_PROBE_REPEATABILITY_TEST
  3186. case 48: // M48 Z-Probe repeatability
  3187. {
  3188. #if Z_MIN_PIN == -1
  3189. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3190. #endif
  3191. double sum=0.0;
  3192. double mean=0.0;
  3193. double sigma=0.0;
  3194. double sample_set[50];
  3195. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3196. double X_current, Y_current, Z_current;
  3197. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3198. if (code_seen('V') || code_seen('v')) {
  3199. verbose_level = code_value();
  3200. if (verbose_level<0 || verbose_level>4 ) {
  3201. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3202. goto Sigma_Exit;
  3203. }
  3204. }
  3205. if (verbose_level > 0) {
  3206. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3207. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3208. }
  3209. if (code_seen('n')) {
  3210. n_samples = code_value();
  3211. if (n_samples<4 || n_samples>50 ) {
  3212. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3213. goto Sigma_Exit;
  3214. }
  3215. }
  3216. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3217. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3218. Z_current = st_get_position_mm(Z_AXIS);
  3219. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3220. ext_position = st_get_position_mm(E_AXIS);
  3221. if (code_seen('X') || code_seen('x') ) {
  3222. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3223. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3224. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3225. goto Sigma_Exit;
  3226. }
  3227. }
  3228. if (code_seen('Y') || code_seen('y') ) {
  3229. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3230. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3231. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3232. goto Sigma_Exit;
  3233. }
  3234. }
  3235. if (code_seen('L') || code_seen('l') ) {
  3236. n_legs = code_value();
  3237. if ( n_legs==1 )
  3238. n_legs = 2;
  3239. if ( n_legs<0 || n_legs>15 ) {
  3240. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3241. goto Sigma_Exit;
  3242. }
  3243. }
  3244. //
  3245. // Do all the preliminary setup work. First raise the probe.
  3246. //
  3247. st_synchronize();
  3248. plan_bed_level_matrix.set_to_identity();
  3249. plan_buffer_line( X_current, Y_current, Z_start_location,
  3250. ext_position,
  3251. homing_feedrate[Z_AXIS]/60,
  3252. active_extruder);
  3253. st_synchronize();
  3254. //
  3255. // Now get everything to the specified probe point So we can safely do a probe to
  3256. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3257. // use that as a starting point for each probe.
  3258. //
  3259. if (verbose_level > 2)
  3260. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3261. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3262. ext_position,
  3263. homing_feedrate[X_AXIS]/60,
  3264. active_extruder);
  3265. st_synchronize();
  3266. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3267. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3268. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3269. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3270. //
  3271. // OK, do the inital probe to get us close to the bed.
  3272. // Then retrace the right amount and use that in subsequent probes
  3273. //
  3274. setup_for_endstop_move();
  3275. run_z_probe();
  3276. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3277. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3278. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3279. ext_position,
  3280. homing_feedrate[X_AXIS]/60,
  3281. active_extruder);
  3282. st_synchronize();
  3283. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3284. for( n=0; n<n_samples; n++) {
  3285. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3286. if ( n_legs) {
  3287. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3288. int rotational_direction, l;
  3289. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3290. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3291. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3292. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3293. //SERIAL_ECHOPAIR(" theta: ",theta);
  3294. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3295. //SERIAL_PROTOCOLLNPGM("");
  3296. for( l=0; l<n_legs-1; l++) {
  3297. if (rotational_direction==1)
  3298. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3299. else
  3300. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3301. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3302. if ( radius<0.0 )
  3303. radius = -radius;
  3304. X_current = X_probe_location + cos(theta) * radius;
  3305. Y_current = Y_probe_location + sin(theta) * radius;
  3306. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3307. X_current = X_MIN_POS;
  3308. if ( X_current>X_MAX_POS)
  3309. X_current = X_MAX_POS;
  3310. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3311. Y_current = Y_MIN_POS;
  3312. if ( Y_current>Y_MAX_POS)
  3313. Y_current = Y_MAX_POS;
  3314. if (verbose_level>3 ) {
  3315. SERIAL_ECHOPAIR("x: ", X_current);
  3316. SERIAL_ECHOPAIR("y: ", Y_current);
  3317. SERIAL_PROTOCOLLNPGM("");
  3318. }
  3319. do_blocking_move_to( X_current, Y_current, Z_current );
  3320. }
  3321. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3322. }
  3323. setup_for_endstop_move();
  3324. run_z_probe();
  3325. sample_set[n] = current_position[Z_AXIS];
  3326. //
  3327. // Get the current mean for the data points we have so far
  3328. //
  3329. sum=0.0;
  3330. for( j=0; j<=n; j++) {
  3331. sum = sum + sample_set[j];
  3332. }
  3333. mean = sum / (double (n+1));
  3334. //
  3335. // Now, use that mean to calculate the standard deviation for the
  3336. // data points we have so far
  3337. //
  3338. sum=0.0;
  3339. for( j=0; j<=n; j++) {
  3340. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3341. }
  3342. sigma = sqrt( sum / (double (n+1)) );
  3343. if (verbose_level > 1) {
  3344. SERIAL_PROTOCOL(n+1);
  3345. SERIAL_PROTOCOL(" of ");
  3346. SERIAL_PROTOCOL(n_samples);
  3347. SERIAL_PROTOCOLPGM(" z: ");
  3348. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3349. }
  3350. if (verbose_level > 2) {
  3351. SERIAL_PROTOCOL(" mean: ");
  3352. SERIAL_PROTOCOL_F(mean,6);
  3353. SERIAL_PROTOCOL(" sigma: ");
  3354. SERIAL_PROTOCOL_F(sigma,6);
  3355. }
  3356. if (verbose_level > 0)
  3357. SERIAL_PROTOCOLPGM("\n");
  3358. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3359. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3360. st_synchronize();
  3361. }
  3362. delay(1000);
  3363. clean_up_after_endstop_move();
  3364. // enable_endstops(true);
  3365. if (verbose_level > 0) {
  3366. SERIAL_PROTOCOLPGM("Mean: ");
  3367. SERIAL_PROTOCOL_F(mean, 6);
  3368. SERIAL_PROTOCOLPGM("\n");
  3369. }
  3370. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3371. SERIAL_PROTOCOL_F(sigma, 6);
  3372. SERIAL_PROTOCOLPGM("\n\n");
  3373. Sigma_Exit:
  3374. break;
  3375. }
  3376. #endif // Z_PROBE_REPEATABILITY_TEST
  3377. #endif // ENABLE_AUTO_BED_LEVELING
  3378. case 104: // M104
  3379. if(setTargetedHotend(104)){
  3380. break;
  3381. }
  3382. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3383. setWatch();
  3384. break;
  3385. case 112: // M112 -Emergency Stop
  3386. kill();
  3387. break;
  3388. case 140: // M140 set bed temp
  3389. if (code_seen('S')) setTargetBed(code_value());
  3390. break;
  3391. case 105 : // M105
  3392. if(setTargetedHotend(105)){
  3393. break;
  3394. }
  3395. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3396. SERIAL_PROTOCOLPGM("ok T:");
  3397. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3398. SERIAL_PROTOCOLPGM(" /");
  3399. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3400. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3401. SERIAL_PROTOCOLPGM(" B:");
  3402. SERIAL_PROTOCOL_F(degBed(),1);
  3403. SERIAL_PROTOCOLPGM(" /");
  3404. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3405. #endif //TEMP_BED_PIN
  3406. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3407. SERIAL_PROTOCOLPGM(" T");
  3408. SERIAL_PROTOCOL(cur_extruder);
  3409. SERIAL_PROTOCOLPGM(":");
  3410. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3411. SERIAL_PROTOCOLPGM(" /");
  3412. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3413. }
  3414. #else
  3415. SERIAL_ERROR_START;
  3416. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3417. #endif
  3418. SERIAL_PROTOCOLPGM(" @:");
  3419. #ifdef EXTRUDER_WATTS
  3420. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3421. SERIAL_PROTOCOLPGM("W");
  3422. #else
  3423. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3424. #endif
  3425. SERIAL_PROTOCOLPGM(" B@:");
  3426. #ifdef BED_WATTS
  3427. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3428. SERIAL_PROTOCOLPGM("W");
  3429. #else
  3430. SERIAL_PROTOCOL(getHeaterPower(-1));
  3431. #endif
  3432. #ifdef SHOW_TEMP_ADC_VALUES
  3433. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3434. SERIAL_PROTOCOLPGM(" ADC B:");
  3435. SERIAL_PROTOCOL_F(degBed(),1);
  3436. SERIAL_PROTOCOLPGM("C->");
  3437. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3438. #endif
  3439. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3440. SERIAL_PROTOCOLPGM(" T");
  3441. SERIAL_PROTOCOL(cur_extruder);
  3442. SERIAL_PROTOCOLPGM(":");
  3443. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3444. SERIAL_PROTOCOLPGM("C->");
  3445. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3446. }
  3447. #endif
  3448. SERIAL_PROTOCOLLN("");
  3449. return;
  3450. break;
  3451. case 109:
  3452. {// M109 - Wait for extruder heater to reach target.
  3453. if(setTargetedHotend(109)){
  3454. break;
  3455. }
  3456. LCD_MESSAGERPGM(MSG_HEATING);
  3457. heating_status = 1;
  3458. if (farm_mode) { prusa_statistics(1); };
  3459. #ifdef AUTOTEMP
  3460. autotemp_enabled=false;
  3461. #endif
  3462. if (code_seen('S')) {
  3463. setTargetHotend(code_value(), tmp_extruder);
  3464. CooldownNoWait = true;
  3465. } else if (code_seen('R')) {
  3466. setTargetHotend(code_value(), tmp_extruder);
  3467. CooldownNoWait = false;
  3468. }
  3469. #ifdef AUTOTEMP
  3470. if (code_seen('S')) autotemp_min=code_value();
  3471. if (code_seen('B')) autotemp_max=code_value();
  3472. if (code_seen('F'))
  3473. {
  3474. autotemp_factor=code_value();
  3475. autotemp_enabled=true;
  3476. }
  3477. #endif
  3478. setWatch();
  3479. codenum = millis();
  3480. /* See if we are heating up or cooling down */
  3481. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3482. cancel_heatup = false;
  3483. #ifdef TEMP_RESIDENCY_TIME
  3484. long residencyStart;
  3485. residencyStart = -1;
  3486. /* continue to loop until we have reached the target temp
  3487. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3488. while((!cancel_heatup)&&((residencyStart == -1) ||
  3489. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3490. #else
  3491. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3492. #endif //TEMP_RESIDENCY_TIME
  3493. if( (millis() - codenum) > 1000UL )
  3494. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3495. SERIAL_PROTOCOLPGM("T:");
  3496. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3497. SERIAL_PROTOCOLPGM(" E:");
  3498. SERIAL_PROTOCOL((int)tmp_extruder);
  3499. #ifdef TEMP_RESIDENCY_TIME
  3500. SERIAL_PROTOCOLPGM(" W:");
  3501. if(residencyStart > -1)
  3502. {
  3503. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3504. SERIAL_PROTOCOLLN( codenum );
  3505. }
  3506. else
  3507. {
  3508. SERIAL_PROTOCOLLN( "?" );
  3509. }
  3510. #else
  3511. SERIAL_PROTOCOLLN("");
  3512. #endif
  3513. codenum = millis();
  3514. }
  3515. manage_heater();
  3516. manage_inactivity();
  3517. lcd_update();
  3518. #ifdef TEMP_RESIDENCY_TIME
  3519. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3520. or when current temp falls outside the hysteresis after target temp was reached */
  3521. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3522. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3523. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3524. {
  3525. residencyStart = millis();
  3526. }
  3527. #endif //TEMP_RESIDENCY_TIME
  3528. }
  3529. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3530. heating_status = 2;
  3531. if (farm_mode) { prusa_statistics(2); };
  3532. starttime=millis();
  3533. previous_millis_cmd = millis();
  3534. }
  3535. break;
  3536. case 190: // M190 - Wait for bed heater to reach target.
  3537. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3538. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3539. heating_status = 3;
  3540. if (farm_mode) { prusa_statistics(1); };
  3541. if (code_seen('S'))
  3542. {
  3543. setTargetBed(code_value());
  3544. CooldownNoWait = true;
  3545. }
  3546. else if (code_seen('R'))
  3547. {
  3548. setTargetBed(code_value());
  3549. CooldownNoWait = false;
  3550. }
  3551. codenum = millis();
  3552. cancel_heatup = false;
  3553. target_direction = isHeatingBed(); // true if heating, false if cooling
  3554. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3555. {
  3556. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3557. {
  3558. float tt=degHotend(active_extruder);
  3559. SERIAL_PROTOCOLPGM("T:");
  3560. SERIAL_PROTOCOL(tt);
  3561. SERIAL_PROTOCOLPGM(" E:");
  3562. SERIAL_PROTOCOL((int)active_extruder);
  3563. SERIAL_PROTOCOLPGM(" B:");
  3564. SERIAL_PROTOCOL_F(degBed(),1);
  3565. SERIAL_PROTOCOLLN("");
  3566. codenum = millis();
  3567. }
  3568. manage_heater();
  3569. manage_inactivity();
  3570. lcd_update();
  3571. }
  3572. LCD_MESSAGERPGM(MSG_BED_DONE);
  3573. heating_status = 4;
  3574. previous_millis_cmd = millis();
  3575. #endif
  3576. break;
  3577. #if defined(FAN_PIN) && FAN_PIN > -1
  3578. case 106: //M106 Fan On
  3579. if (code_seen('S')){
  3580. fanSpeed=constrain(code_value(),0,255);
  3581. }
  3582. else {
  3583. fanSpeed=255;
  3584. }
  3585. break;
  3586. case 107: //M107 Fan Off
  3587. fanSpeed = 0;
  3588. break;
  3589. #endif //FAN_PIN
  3590. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3591. case 80: // M80 - Turn on Power Supply
  3592. SET_OUTPUT(PS_ON_PIN); //GND
  3593. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3594. // If you have a switch on suicide pin, this is useful
  3595. // if you want to start another print with suicide feature after
  3596. // a print without suicide...
  3597. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3598. SET_OUTPUT(SUICIDE_PIN);
  3599. WRITE(SUICIDE_PIN, HIGH);
  3600. #endif
  3601. #ifdef ULTIPANEL
  3602. powersupply = true;
  3603. LCD_MESSAGERPGM(WELCOME_MSG);
  3604. lcd_update();
  3605. #endif
  3606. break;
  3607. #endif
  3608. case 81: // M81 - Turn off Power Supply
  3609. disable_heater();
  3610. st_synchronize();
  3611. disable_e0();
  3612. disable_e1();
  3613. disable_e2();
  3614. finishAndDisableSteppers();
  3615. fanSpeed = 0;
  3616. delay(1000); // Wait a little before to switch off
  3617. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3618. st_synchronize();
  3619. suicide();
  3620. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3621. SET_OUTPUT(PS_ON_PIN);
  3622. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3623. #endif
  3624. #ifdef ULTIPANEL
  3625. powersupply = false;
  3626. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3627. /*
  3628. MACHNAME = "Prusa i3"
  3629. MSGOFF = "Vypnuto"
  3630. "Prusai3"" ""vypnuto""."
  3631. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3632. */
  3633. lcd_update();
  3634. #endif
  3635. break;
  3636. case 82:
  3637. axis_relative_modes[3] = false;
  3638. break;
  3639. case 83:
  3640. axis_relative_modes[3] = true;
  3641. break;
  3642. case 18: //compatibility
  3643. case 84: // M84
  3644. if(code_seen('S')){
  3645. stepper_inactive_time = code_value() * 1000;
  3646. }
  3647. else
  3648. {
  3649. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3650. if(all_axis)
  3651. {
  3652. st_synchronize();
  3653. disable_e0();
  3654. disable_e1();
  3655. disable_e2();
  3656. finishAndDisableSteppers();
  3657. }
  3658. else
  3659. {
  3660. st_synchronize();
  3661. if(code_seen('X')) disable_x();
  3662. if(code_seen('Y')) disable_y();
  3663. if(code_seen('Z')) disable_z();
  3664. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3665. if(code_seen('E')) {
  3666. disable_e0();
  3667. disable_e1();
  3668. disable_e2();
  3669. }
  3670. #endif
  3671. }
  3672. }
  3673. break;
  3674. case 85: // M85
  3675. if(code_seen('S')) {
  3676. max_inactive_time = code_value() * 1000;
  3677. }
  3678. break;
  3679. case 92: // M92
  3680. for(int8_t i=0; i < NUM_AXIS; i++)
  3681. {
  3682. if(code_seen(axis_codes[i]))
  3683. {
  3684. if(i == 3) { // E
  3685. float value = code_value();
  3686. if(value < 20.0) {
  3687. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3688. max_jerk[E_AXIS] *= factor;
  3689. max_feedrate[i] *= factor;
  3690. axis_steps_per_sqr_second[i] *= factor;
  3691. }
  3692. axis_steps_per_unit[i] = value;
  3693. }
  3694. else {
  3695. axis_steps_per_unit[i] = code_value();
  3696. }
  3697. }
  3698. }
  3699. break;
  3700. case 115: // M115
  3701. if (code_seen('V')) {
  3702. // Report the Prusa version number.
  3703. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3704. } else if (code_seen('U')) {
  3705. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3706. // pause the print and ask the user to upgrade the firmware.
  3707. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3708. } else {
  3709. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3710. }
  3711. break;
  3712. case 117: // M117 display message
  3713. starpos = (strchr(strchr_pointer + 5,'*'));
  3714. if(starpos!=NULL)
  3715. *(starpos)='\0';
  3716. lcd_setstatus(strchr_pointer + 5);
  3717. break;
  3718. case 114: // M114
  3719. SERIAL_PROTOCOLPGM("X:");
  3720. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3721. SERIAL_PROTOCOLPGM(" Y:");
  3722. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3723. SERIAL_PROTOCOLPGM(" Z:");
  3724. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3725. SERIAL_PROTOCOLPGM(" E:");
  3726. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3727. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3728. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3729. SERIAL_PROTOCOLPGM(" Y:");
  3730. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3731. SERIAL_PROTOCOLPGM(" Z:");
  3732. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3733. SERIAL_PROTOCOLLN("");
  3734. break;
  3735. case 120: // M120
  3736. enable_endstops(false) ;
  3737. break;
  3738. case 121: // M121
  3739. enable_endstops(true) ;
  3740. break;
  3741. case 119: // M119
  3742. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3743. SERIAL_PROTOCOLLN("");
  3744. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3745. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3746. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3747. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3748. }else{
  3749. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3750. }
  3751. SERIAL_PROTOCOLLN("");
  3752. #endif
  3753. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3754. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3755. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3756. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3757. }else{
  3758. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3759. }
  3760. SERIAL_PROTOCOLLN("");
  3761. #endif
  3762. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3763. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3764. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3765. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3766. }else{
  3767. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3768. }
  3769. SERIAL_PROTOCOLLN("");
  3770. #endif
  3771. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3772. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3773. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3774. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3775. }else{
  3776. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3777. }
  3778. SERIAL_PROTOCOLLN("");
  3779. #endif
  3780. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3781. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3782. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3783. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3784. }else{
  3785. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3786. }
  3787. SERIAL_PROTOCOLLN("");
  3788. #endif
  3789. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3790. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3791. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3792. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3793. }else{
  3794. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3795. }
  3796. SERIAL_PROTOCOLLN("");
  3797. #endif
  3798. break;
  3799. //TODO: update for all axis, use for loop
  3800. #ifdef BLINKM
  3801. case 150: // M150
  3802. {
  3803. byte red;
  3804. byte grn;
  3805. byte blu;
  3806. if(code_seen('R')) red = code_value();
  3807. if(code_seen('U')) grn = code_value();
  3808. if(code_seen('B')) blu = code_value();
  3809. SendColors(red,grn,blu);
  3810. }
  3811. break;
  3812. #endif //BLINKM
  3813. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3814. {
  3815. tmp_extruder = active_extruder;
  3816. if(code_seen('T')) {
  3817. tmp_extruder = code_value();
  3818. if(tmp_extruder >= EXTRUDERS) {
  3819. SERIAL_ECHO_START;
  3820. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3821. break;
  3822. }
  3823. }
  3824. float area = .0;
  3825. if(code_seen('D')) {
  3826. float diameter = (float)code_value();
  3827. if (diameter == 0.0) {
  3828. // setting any extruder filament size disables volumetric on the assumption that
  3829. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3830. // for all extruders
  3831. volumetric_enabled = false;
  3832. } else {
  3833. filament_size[tmp_extruder] = (float)code_value();
  3834. // make sure all extruders have some sane value for the filament size
  3835. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3836. #if EXTRUDERS > 1
  3837. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3838. #if EXTRUDERS > 2
  3839. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3840. #endif
  3841. #endif
  3842. volumetric_enabled = true;
  3843. }
  3844. } else {
  3845. //reserved for setting filament diameter via UFID or filament measuring device
  3846. break;
  3847. }
  3848. calculate_volumetric_multipliers();
  3849. }
  3850. break;
  3851. case 201: // M201
  3852. for(int8_t i=0; i < NUM_AXIS; i++)
  3853. {
  3854. if(code_seen(axis_codes[i]))
  3855. {
  3856. max_acceleration_units_per_sq_second[i] = code_value();
  3857. }
  3858. }
  3859. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3860. reset_acceleration_rates();
  3861. break;
  3862. #if 0 // Not used for Sprinter/grbl gen6
  3863. case 202: // M202
  3864. for(int8_t i=0; i < NUM_AXIS; i++) {
  3865. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3866. }
  3867. break;
  3868. #endif
  3869. case 203: // M203 max feedrate mm/sec
  3870. for(int8_t i=0; i < NUM_AXIS; i++) {
  3871. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3872. }
  3873. break;
  3874. case 204: // M204 acclereration S normal moves T filmanent only moves
  3875. {
  3876. if(code_seen('S')) acceleration = code_value() ;
  3877. if(code_seen('T')) retract_acceleration = code_value() ;
  3878. }
  3879. break;
  3880. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3881. {
  3882. if(code_seen('S')) minimumfeedrate = code_value();
  3883. if(code_seen('T')) mintravelfeedrate = code_value();
  3884. if(code_seen('B')) minsegmenttime = code_value() ;
  3885. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3886. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3887. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3888. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3889. }
  3890. break;
  3891. case 206: // M206 additional homing offset
  3892. for(int8_t i=0; i < 3; i++)
  3893. {
  3894. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3895. }
  3896. break;
  3897. #ifdef FWRETRACT
  3898. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3899. {
  3900. if(code_seen('S'))
  3901. {
  3902. retract_length = code_value() ;
  3903. }
  3904. if(code_seen('F'))
  3905. {
  3906. retract_feedrate = code_value()/60 ;
  3907. }
  3908. if(code_seen('Z'))
  3909. {
  3910. retract_zlift = code_value() ;
  3911. }
  3912. }break;
  3913. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3914. {
  3915. if(code_seen('S'))
  3916. {
  3917. retract_recover_length = code_value() ;
  3918. }
  3919. if(code_seen('F'))
  3920. {
  3921. retract_recover_feedrate = code_value()/60 ;
  3922. }
  3923. }break;
  3924. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3925. {
  3926. if(code_seen('S'))
  3927. {
  3928. int t= code_value() ;
  3929. switch(t)
  3930. {
  3931. case 0:
  3932. {
  3933. autoretract_enabled=false;
  3934. retracted[0]=false;
  3935. #if EXTRUDERS > 1
  3936. retracted[1]=false;
  3937. #endif
  3938. #if EXTRUDERS > 2
  3939. retracted[2]=false;
  3940. #endif
  3941. }break;
  3942. case 1:
  3943. {
  3944. autoretract_enabled=true;
  3945. retracted[0]=false;
  3946. #if EXTRUDERS > 1
  3947. retracted[1]=false;
  3948. #endif
  3949. #if EXTRUDERS > 2
  3950. retracted[2]=false;
  3951. #endif
  3952. }break;
  3953. default:
  3954. SERIAL_ECHO_START;
  3955. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3956. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3957. SERIAL_ECHOLNPGM("\"");
  3958. }
  3959. }
  3960. }break;
  3961. #endif // FWRETRACT
  3962. #if EXTRUDERS > 1
  3963. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3964. {
  3965. if(setTargetedHotend(218)){
  3966. break;
  3967. }
  3968. if(code_seen('X'))
  3969. {
  3970. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3971. }
  3972. if(code_seen('Y'))
  3973. {
  3974. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3975. }
  3976. SERIAL_ECHO_START;
  3977. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3978. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3979. {
  3980. SERIAL_ECHO(" ");
  3981. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3982. SERIAL_ECHO(",");
  3983. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3984. }
  3985. SERIAL_ECHOLN("");
  3986. }break;
  3987. #endif
  3988. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3989. {
  3990. if(code_seen('S'))
  3991. {
  3992. feedmultiply = code_value() ;
  3993. }
  3994. }
  3995. break;
  3996. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3997. {
  3998. if(code_seen('S'))
  3999. {
  4000. int tmp_code = code_value();
  4001. if (code_seen('T'))
  4002. {
  4003. if(setTargetedHotend(221)){
  4004. break;
  4005. }
  4006. extruder_multiply[tmp_extruder] = tmp_code;
  4007. }
  4008. else
  4009. {
  4010. extrudemultiply = tmp_code ;
  4011. }
  4012. }
  4013. }
  4014. break;
  4015. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4016. {
  4017. if(code_seen('P')){
  4018. int pin_number = code_value(); // pin number
  4019. int pin_state = -1; // required pin state - default is inverted
  4020. if(code_seen('S')) pin_state = code_value(); // required pin state
  4021. if(pin_state >= -1 && pin_state <= 1){
  4022. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4023. {
  4024. if (sensitive_pins[i] == pin_number)
  4025. {
  4026. pin_number = -1;
  4027. break;
  4028. }
  4029. }
  4030. if (pin_number > -1)
  4031. {
  4032. int target = LOW;
  4033. st_synchronize();
  4034. pinMode(pin_number, INPUT);
  4035. switch(pin_state){
  4036. case 1:
  4037. target = HIGH;
  4038. break;
  4039. case 0:
  4040. target = LOW;
  4041. break;
  4042. case -1:
  4043. target = !digitalRead(pin_number);
  4044. break;
  4045. }
  4046. while(digitalRead(pin_number) != target){
  4047. manage_heater();
  4048. manage_inactivity();
  4049. lcd_update();
  4050. }
  4051. }
  4052. }
  4053. }
  4054. }
  4055. break;
  4056. #if NUM_SERVOS > 0
  4057. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4058. {
  4059. int servo_index = -1;
  4060. int servo_position = 0;
  4061. if (code_seen('P'))
  4062. servo_index = code_value();
  4063. if (code_seen('S')) {
  4064. servo_position = code_value();
  4065. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4066. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4067. servos[servo_index].attach(0);
  4068. #endif
  4069. servos[servo_index].write(servo_position);
  4070. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4071. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4072. servos[servo_index].detach();
  4073. #endif
  4074. }
  4075. else {
  4076. SERIAL_ECHO_START;
  4077. SERIAL_ECHO("Servo ");
  4078. SERIAL_ECHO(servo_index);
  4079. SERIAL_ECHOLN(" out of range");
  4080. }
  4081. }
  4082. else if (servo_index >= 0) {
  4083. SERIAL_PROTOCOL(MSG_OK);
  4084. SERIAL_PROTOCOL(" Servo ");
  4085. SERIAL_PROTOCOL(servo_index);
  4086. SERIAL_PROTOCOL(": ");
  4087. SERIAL_PROTOCOL(servos[servo_index].read());
  4088. SERIAL_PROTOCOLLN("");
  4089. }
  4090. }
  4091. break;
  4092. #endif // NUM_SERVOS > 0
  4093. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4094. case 300: // M300
  4095. {
  4096. int beepS = code_seen('S') ? code_value() : 110;
  4097. int beepP = code_seen('P') ? code_value() : 1000;
  4098. if (beepS > 0)
  4099. {
  4100. #if BEEPER > 0
  4101. tone(BEEPER, beepS);
  4102. delay(beepP);
  4103. noTone(BEEPER);
  4104. #elif defined(ULTRALCD)
  4105. lcd_buzz(beepS, beepP);
  4106. #elif defined(LCD_USE_I2C_BUZZER)
  4107. lcd_buzz(beepP, beepS);
  4108. #endif
  4109. }
  4110. else
  4111. {
  4112. delay(beepP);
  4113. }
  4114. }
  4115. break;
  4116. #endif // M300
  4117. #ifdef PIDTEMP
  4118. case 301: // M301
  4119. {
  4120. if(code_seen('P')) Kp = code_value();
  4121. if(code_seen('I')) Ki = scalePID_i(code_value());
  4122. if(code_seen('D')) Kd = scalePID_d(code_value());
  4123. #ifdef PID_ADD_EXTRUSION_RATE
  4124. if(code_seen('C')) Kc = code_value();
  4125. #endif
  4126. updatePID();
  4127. SERIAL_PROTOCOLRPGM(MSG_OK);
  4128. SERIAL_PROTOCOL(" p:");
  4129. SERIAL_PROTOCOL(Kp);
  4130. SERIAL_PROTOCOL(" i:");
  4131. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4132. SERIAL_PROTOCOL(" d:");
  4133. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4134. #ifdef PID_ADD_EXTRUSION_RATE
  4135. SERIAL_PROTOCOL(" c:");
  4136. //Kc does not have scaling applied above, or in resetting defaults
  4137. SERIAL_PROTOCOL(Kc);
  4138. #endif
  4139. SERIAL_PROTOCOLLN("");
  4140. }
  4141. break;
  4142. #endif //PIDTEMP
  4143. #ifdef PIDTEMPBED
  4144. case 304: // M304
  4145. {
  4146. if(code_seen('P')) bedKp = code_value();
  4147. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4148. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4149. updatePID();
  4150. SERIAL_PROTOCOLRPGM(MSG_OK);
  4151. SERIAL_PROTOCOL(" p:");
  4152. SERIAL_PROTOCOL(bedKp);
  4153. SERIAL_PROTOCOL(" i:");
  4154. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4155. SERIAL_PROTOCOL(" d:");
  4156. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4157. SERIAL_PROTOCOLLN("");
  4158. }
  4159. break;
  4160. #endif //PIDTEMP
  4161. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4162. {
  4163. #ifdef CHDK
  4164. SET_OUTPUT(CHDK);
  4165. WRITE(CHDK, HIGH);
  4166. chdkHigh = millis();
  4167. chdkActive = true;
  4168. #else
  4169. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4170. const uint8_t NUM_PULSES=16;
  4171. const float PULSE_LENGTH=0.01524;
  4172. for(int i=0; i < NUM_PULSES; i++) {
  4173. WRITE(PHOTOGRAPH_PIN, HIGH);
  4174. _delay_ms(PULSE_LENGTH);
  4175. WRITE(PHOTOGRAPH_PIN, LOW);
  4176. _delay_ms(PULSE_LENGTH);
  4177. }
  4178. delay(7.33);
  4179. for(int i=0; i < NUM_PULSES; i++) {
  4180. WRITE(PHOTOGRAPH_PIN, HIGH);
  4181. _delay_ms(PULSE_LENGTH);
  4182. WRITE(PHOTOGRAPH_PIN, LOW);
  4183. _delay_ms(PULSE_LENGTH);
  4184. }
  4185. #endif
  4186. #endif //chdk end if
  4187. }
  4188. break;
  4189. #ifdef DOGLCD
  4190. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4191. {
  4192. if (code_seen('C')) {
  4193. lcd_setcontrast( ((int)code_value())&63 );
  4194. }
  4195. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4196. SERIAL_PROTOCOL(lcd_contrast);
  4197. SERIAL_PROTOCOLLN("");
  4198. }
  4199. break;
  4200. #endif
  4201. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4202. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4203. {
  4204. float temp = .0;
  4205. if (code_seen('S')) temp=code_value();
  4206. set_extrude_min_temp(temp);
  4207. }
  4208. break;
  4209. #endif
  4210. case 303: // M303 PID autotune
  4211. {
  4212. float temp = 150.0;
  4213. int e=0;
  4214. int c=5;
  4215. if (code_seen('E')) e=code_value();
  4216. if (e<0)
  4217. temp=70;
  4218. if (code_seen('S')) temp=code_value();
  4219. if (code_seen('C')) c=code_value();
  4220. PID_autotune(temp, e, c);
  4221. }
  4222. break;
  4223. case 400: // M400 finish all moves
  4224. {
  4225. st_synchronize();
  4226. }
  4227. break;
  4228. #ifdef FILAMENT_SENSOR
  4229. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4230. {
  4231. #if (FILWIDTH_PIN > -1)
  4232. if(code_seen('N')) filament_width_nominal=code_value();
  4233. else{
  4234. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4235. SERIAL_PROTOCOLLN(filament_width_nominal);
  4236. }
  4237. #endif
  4238. }
  4239. break;
  4240. case 405: //M405 Turn on filament sensor for control
  4241. {
  4242. if(code_seen('D')) meas_delay_cm=code_value();
  4243. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4244. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4245. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4246. {
  4247. int temp_ratio = widthFil_to_size_ratio();
  4248. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4249. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4250. }
  4251. delay_index1=0;
  4252. delay_index2=0;
  4253. }
  4254. filament_sensor = true ;
  4255. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4256. //SERIAL_PROTOCOL(filament_width_meas);
  4257. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4258. //SERIAL_PROTOCOL(extrudemultiply);
  4259. }
  4260. break;
  4261. case 406: //M406 Turn off filament sensor for control
  4262. {
  4263. filament_sensor = false ;
  4264. }
  4265. break;
  4266. case 407: //M407 Display measured filament diameter
  4267. {
  4268. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4269. SERIAL_PROTOCOLLN(filament_width_meas);
  4270. }
  4271. break;
  4272. #endif
  4273. case 500: // M500 Store settings in EEPROM
  4274. {
  4275. Config_StoreSettings();
  4276. }
  4277. break;
  4278. case 501: // M501 Read settings from EEPROM
  4279. {
  4280. Config_RetrieveSettings();
  4281. }
  4282. break;
  4283. case 502: // M502 Revert to default settings
  4284. {
  4285. Config_ResetDefault();
  4286. }
  4287. break;
  4288. case 503: // M503 print settings currently in memory
  4289. {
  4290. Config_PrintSettings();
  4291. }
  4292. break;
  4293. case 509: //M509 Force language selection
  4294. {
  4295. lcd_force_language_selection();
  4296. SERIAL_ECHO_START;
  4297. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4298. }
  4299. break;
  4300. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4301. case 540:
  4302. {
  4303. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4304. }
  4305. break;
  4306. #endif
  4307. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4308. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4309. {
  4310. float value;
  4311. if (code_seen('Z'))
  4312. {
  4313. value = code_value();
  4314. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4315. {
  4316. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4317. SERIAL_ECHO_START;
  4318. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4319. SERIAL_PROTOCOLLN("");
  4320. }
  4321. else
  4322. {
  4323. SERIAL_ECHO_START;
  4324. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4325. SERIAL_ECHORPGM(MSG_Z_MIN);
  4326. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4327. SERIAL_ECHORPGM(MSG_Z_MAX);
  4328. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4329. SERIAL_PROTOCOLLN("");
  4330. }
  4331. }
  4332. else
  4333. {
  4334. SERIAL_ECHO_START;
  4335. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4336. SERIAL_ECHO(-zprobe_zoffset);
  4337. SERIAL_PROTOCOLLN("");
  4338. }
  4339. break;
  4340. }
  4341. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4342. #ifdef FILAMENTCHANGEENABLE
  4343. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4344. {
  4345. st_synchronize();
  4346. if (farm_mode)
  4347. {
  4348. prusa_statistics(22);
  4349. }
  4350. feedmultiplyBckp=feedmultiply;
  4351. int8_t TooLowZ = 0;
  4352. float target[4];
  4353. float lastpos[4];
  4354. target[X_AXIS]=current_position[X_AXIS];
  4355. target[Y_AXIS]=current_position[Y_AXIS];
  4356. target[Z_AXIS]=current_position[Z_AXIS];
  4357. target[E_AXIS]=current_position[E_AXIS];
  4358. lastpos[X_AXIS]=current_position[X_AXIS];
  4359. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4360. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4361. lastpos[E_AXIS]=current_position[E_AXIS];
  4362. //Restract extruder
  4363. if(code_seen('E'))
  4364. {
  4365. target[E_AXIS]+= code_value();
  4366. }
  4367. else
  4368. {
  4369. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4370. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4371. #endif
  4372. }
  4373. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4374. //Lift Z
  4375. if(code_seen('Z'))
  4376. {
  4377. target[Z_AXIS]+= code_value();
  4378. }
  4379. else
  4380. {
  4381. #ifdef FILAMENTCHANGE_ZADD
  4382. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4383. if(target[Z_AXIS] < 10){
  4384. target[Z_AXIS]+= 10 ;
  4385. TooLowZ = 1;
  4386. }else{
  4387. TooLowZ = 0;
  4388. }
  4389. #endif
  4390. }
  4391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4392. //Move XY to side
  4393. if(code_seen('X'))
  4394. {
  4395. target[X_AXIS]+= code_value();
  4396. }
  4397. else
  4398. {
  4399. #ifdef FILAMENTCHANGE_XPOS
  4400. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4401. #endif
  4402. }
  4403. if(code_seen('Y'))
  4404. {
  4405. target[Y_AXIS]= code_value();
  4406. }
  4407. else
  4408. {
  4409. #ifdef FILAMENTCHANGE_YPOS
  4410. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4411. #endif
  4412. }
  4413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4414. // Unload filament
  4415. if(code_seen('L'))
  4416. {
  4417. target[E_AXIS]+= code_value();
  4418. }
  4419. else
  4420. {
  4421. #ifdef FILAMENTCHANGE_FINALRETRACT
  4422. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4423. #endif
  4424. }
  4425. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4426. //finish moves
  4427. st_synchronize();
  4428. //disable extruder steppers so filament can be removed
  4429. disable_e0();
  4430. disable_e1();
  4431. disable_e2();
  4432. delay(100);
  4433. //Wait for user to insert filament
  4434. uint8_t cnt=0;
  4435. int counterBeep = 0;
  4436. lcd_wait_interact();
  4437. while(!lcd_clicked()){
  4438. cnt++;
  4439. manage_heater();
  4440. manage_inactivity(true);
  4441. if(cnt==0)
  4442. {
  4443. #if BEEPER > 0
  4444. if (counterBeep== 500){
  4445. counterBeep = 0;
  4446. }
  4447. SET_OUTPUT(BEEPER);
  4448. if (counterBeep== 0){
  4449. WRITE(BEEPER,HIGH);
  4450. }
  4451. if (counterBeep== 20){
  4452. WRITE(BEEPER,LOW);
  4453. }
  4454. counterBeep++;
  4455. #else
  4456. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4457. lcd_buzz(1000/6,100);
  4458. #else
  4459. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4460. #endif
  4461. #endif
  4462. }
  4463. }
  4464. //Filament inserted
  4465. WRITE(BEEPER,LOW);
  4466. //Feed the filament to the end of nozzle quickly
  4467. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4469. //Extrude some filament
  4470. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4472. //Wait for user to check the state
  4473. lcd_change_fil_state = 0;
  4474. lcd_loading_filament();
  4475. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4476. lcd_change_fil_state = 0;
  4477. lcd_alright();
  4478. switch(lcd_change_fil_state){
  4479. // Filament failed to load so load it again
  4480. case 2:
  4481. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4483. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4485. lcd_loading_filament();
  4486. break;
  4487. // Filament loaded properly but color is not clear
  4488. case 3:
  4489. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4491. lcd_loading_color();
  4492. break;
  4493. // Everything good
  4494. default:
  4495. lcd_change_success();
  4496. break;
  4497. }
  4498. }
  4499. //Not let's go back to print
  4500. //Feed a little of filament to stabilize pressure
  4501. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4502. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4503. //Retract
  4504. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4506. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4507. //Move XY back
  4508. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4509. //Move Z back
  4510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4511. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4512. //Unretract
  4513. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4514. //Set E position to original
  4515. plan_set_e_position(lastpos[E_AXIS]);
  4516. //Recover feed rate
  4517. feedmultiply=feedmultiplyBckp;
  4518. char cmd[9];
  4519. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4520. enquecommand(cmd);
  4521. }
  4522. break;
  4523. #endif //FILAMENTCHANGEENABLE
  4524. case 907: // M907 Set digital trimpot motor current using axis codes.
  4525. {
  4526. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4527. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4528. if(code_seen('B')) digipot_current(4,code_value());
  4529. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4530. #endif
  4531. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4532. if(code_seen('X')) digipot_current(0, code_value());
  4533. #endif
  4534. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4535. if(code_seen('Z')) digipot_current(1, code_value());
  4536. #endif
  4537. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4538. if(code_seen('E')) digipot_current(2, code_value());
  4539. #endif
  4540. #ifdef DIGIPOT_I2C
  4541. // this one uses actual amps in floating point
  4542. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4543. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4544. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4545. #endif
  4546. }
  4547. break;
  4548. case 908: // M908 Control digital trimpot directly.
  4549. {
  4550. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4551. uint8_t channel,current;
  4552. if(code_seen('P')) channel=code_value();
  4553. if(code_seen('S')) current=code_value();
  4554. digitalPotWrite(channel, current);
  4555. #endif
  4556. }
  4557. break;
  4558. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4559. {
  4560. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4561. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4562. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4563. if(code_seen('B')) microstep_mode(4,code_value());
  4564. microstep_readings();
  4565. #endif
  4566. }
  4567. break;
  4568. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4569. {
  4570. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4571. if(code_seen('S')) switch((int)code_value())
  4572. {
  4573. case 1:
  4574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4575. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4576. break;
  4577. case 2:
  4578. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4579. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4580. break;
  4581. }
  4582. microstep_readings();
  4583. #endif
  4584. }
  4585. break;
  4586. case 701: //M701: load filament
  4587. {
  4588. enable_z();
  4589. custom_message = true;
  4590. custom_message_type = 2;
  4591. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4592. current_position[E_AXIS] += 65;
  4593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4594. current_position[E_AXIS] += 40;
  4595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4596. st_synchronize();
  4597. if (!farm_mode && loading_flag) {
  4598. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4599. while (!clean) {
  4600. lcd_update_enable(true);
  4601. lcd_update(2);
  4602. current_position[E_AXIS] += 40;
  4603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4604. st_synchronize();
  4605. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4606. }
  4607. }
  4608. lcd_update_enable(true);
  4609. lcd_update(2);
  4610. lcd_setstatuspgm(WELCOME_MSG);
  4611. disable_z();
  4612. loading_flag = false;
  4613. custom_message = false;
  4614. custom_message_type = 0;
  4615. }
  4616. break;
  4617. case 702:
  4618. {
  4619. custom_message = true;
  4620. custom_message_type = 2;
  4621. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4622. current_position[E_AXIS] -= 80;
  4623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4624. st_synchronize();
  4625. lcd_setstatuspgm(WELCOME_MSG);
  4626. custom_message = false;
  4627. custom_message_type = 0;
  4628. }
  4629. break;
  4630. case 999: // M999: Restart after being stopped
  4631. Stopped = false;
  4632. lcd_reset_alert_level();
  4633. gcode_LastN = Stopped_gcode_LastN;
  4634. FlushSerialRequestResend();
  4635. break;
  4636. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4637. }
  4638. } // end if(code_seen('M')) (end of M codes)
  4639. else if(code_seen('T'))
  4640. {
  4641. int index;
  4642. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4643. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4644. SERIAL_ECHOLNPGM("Invalid T code.");
  4645. }
  4646. else {
  4647. tmp_extruder = code_value();
  4648. #ifdef SNMM
  4649. st_synchronize();
  4650. delay(100);
  4651. disable_e0();
  4652. disable_e1();
  4653. disable_e2();
  4654. pinMode(E_MUX0_PIN, OUTPUT);
  4655. pinMode(E_MUX1_PIN, OUTPUT);
  4656. pinMode(E_MUX2_PIN, OUTPUT);
  4657. delay(100);
  4658. SERIAL_ECHO_START;
  4659. SERIAL_ECHO("T:");
  4660. SERIAL_ECHOLN((int)tmp_extruder);
  4661. switch (tmp_extruder) {
  4662. case 1:
  4663. WRITE(E_MUX0_PIN, HIGH);
  4664. WRITE(E_MUX1_PIN, LOW);
  4665. WRITE(E_MUX2_PIN, LOW);
  4666. break;
  4667. case 2:
  4668. WRITE(E_MUX0_PIN, LOW);
  4669. WRITE(E_MUX1_PIN, HIGH);
  4670. WRITE(E_MUX2_PIN, LOW);
  4671. break;
  4672. case 3:
  4673. WRITE(E_MUX0_PIN, HIGH);
  4674. WRITE(E_MUX1_PIN, HIGH);
  4675. WRITE(E_MUX2_PIN, LOW);
  4676. break;
  4677. default:
  4678. WRITE(E_MUX0_PIN, LOW);
  4679. WRITE(E_MUX1_PIN, LOW);
  4680. WRITE(E_MUX2_PIN, LOW);
  4681. break;
  4682. }
  4683. delay(100);
  4684. #else
  4685. if (tmp_extruder >= EXTRUDERS) {
  4686. SERIAL_ECHO_START;
  4687. SERIAL_ECHOPGM("T");
  4688. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4689. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4690. }
  4691. else {
  4692. boolean make_move = false;
  4693. if (code_seen('F')) {
  4694. make_move = true;
  4695. next_feedrate = code_value();
  4696. if (next_feedrate > 0.0) {
  4697. feedrate = next_feedrate;
  4698. }
  4699. }
  4700. #if EXTRUDERS > 1
  4701. if (tmp_extruder != active_extruder) {
  4702. // Save current position to return to after applying extruder offset
  4703. memcpy(destination, current_position, sizeof(destination));
  4704. // Offset extruder (only by XY)
  4705. int i;
  4706. for (i = 0; i < 2; i++) {
  4707. current_position[i] = current_position[i] -
  4708. extruder_offset[i][active_extruder] +
  4709. extruder_offset[i][tmp_extruder];
  4710. }
  4711. // Set the new active extruder and position
  4712. active_extruder = tmp_extruder;
  4713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4714. // Move to the old position if 'F' was in the parameters
  4715. if (make_move && Stopped == false) {
  4716. prepare_move();
  4717. }
  4718. }
  4719. #endif
  4720. SERIAL_ECHO_START;
  4721. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4722. SERIAL_PROTOCOLLN((int)active_extruder);
  4723. }
  4724. #endif
  4725. }
  4726. } // end if(code_seen('T')) (end of T codes)
  4727. else
  4728. {
  4729. SERIAL_ECHO_START;
  4730. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4731. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4732. SERIAL_ECHOLNPGM("\"");
  4733. }
  4734. ClearToSend();
  4735. }
  4736. void FlushSerialRequestResend()
  4737. {
  4738. //char cmdbuffer[bufindr][100]="Resend:";
  4739. MYSERIAL.flush();
  4740. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4741. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4742. ClearToSend();
  4743. }
  4744. // Confirm the execution of a command, if sent from a serial line.
  4745. // Execution of a command from a SD card will not be confirmed.
  4746. void ClearToSend()
  4747. {
  4748. previous_millis_cmd = millis();
  4749. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4750. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4751. }
  4752. void get_coordinates()
  4753. {
  4754. bool seen[4]={false,false,false,false};
  4755. for(int8_t i=0; i < NUM_AXIS; i++) {
  4756. if(code_seen(axis_codes[i]))
  4757. {
  4758. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4759. seen[i]=true;
  4760. }
  4761. else destination[i] = current_position[i]; //Are these else lines really needed?
  4762. }
  4763. if(code_seen('F')) {
  4764. next_feedrate = code_value();
  4765. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4766. }
  4767. }
  4768. void get_arc_coordinates()
  4769. {
  4770. #ifdef SF_ARC_FIX
  4771. bool relative_mode_backup = relative_mode;
  4772. relative_mode = true;
  4773. #endif
  4774. get_coordinates();
  4775. #ifdef SF_ARC_FIX
  4776. relative_mode=relative_mode_backup;
  4777. #endif
  4778. if(code_seen('I')) {
  4779. offset[0] = code_value();
  4780. }
  4781. else {
  4782. offset[0] = 0.0;
  4783. }
  4784. if(code_seen('J')) {
  4785. offset[1] = code_value();
  4786. }
  4787. else {
  4788. offset[1] = 0.0;
  4789. }
  4790. }
  4791. void clamp_to_software_endstops(float target[3])
  4792. {
  4793. world2machine_clamp(target[0], target[1]);
  4794. // Clamp the Z coordinate.
  4795. if (min_software_endstops) {
  4796. float negative_z_offset = 0;
  4797. #ifdef ENABLE_AUTO_BED_LEVELING
  4798. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4799. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4800. #endif
  4801. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4802. }
  4803. if (max_software_endstops) {
  4804. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4805. }
  4806. }
  4807. #ifdef MESH_BED_LEVELING
  4808. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4809. float dx = x - current_position[X_AXIS];
  4810. float dy = y - current_position[Y_AXIS];
  4811. float dz = z - current_position[Z_AXIS];
  4812. int n_segments = 0;
  4813. if (mbl.active) {
  4814. float len = abs(dx) + abs(dy);
  4815. if (len > 0)
  4816. // Split to 3cm segments or shorter.
  4817. n_segments = int(ceil(len / 30.f));
  4818. }
  4819. if (n_segments > 1) {
  4820. float de = e - current_position[E_AXIS];
  4821. for (int i = 1; i < n_segments; ++ i) {
  4822. float t = float(i) / float(n_segments);
  4823. plan_buffer_line(
  4824. current_position[X_AXIS] + t * dx,
  4825. current_position[Y_AXIS] + t * dy,
  4826. current_position[Z_AXIS] + t * dz,
  4827. current_position[E_AXIS] + t * de,
  4828. feed_rate, extruder);
  4829. }
  4830. }
  4831. // The rest of the path.
  4832. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4833. current_position[X_AXIS] = x;
  4834. current_position[Y_AXIS] = y;
  4835. current_position[Z_AXIS] = z;
  4836. current_position[E_AXIS] = e;
  4837. }
  4838. #endif // MESH_BED_LEVELING
  4839. void prepare_move()
  4840. {
  4841. clamp_to_software_endstops(destination);
  4842. previous_millis_cmd = millis();
  4843. // Do not use feedmultiply for E or Z only moves
  4844. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4846. }
  4847. else {
  4848. #ifdef MESH_BED_LEVELING
  4849. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4850. #else
  4851. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4852. #endif
  4853. }
  4854. for(int8_t i=0; i < NUM_AXIS; i++) {
  4855. current_position[i] = destination[i];
  4856. }
  4857. }
  4858. void prepare_arc_move(char isclockwise) {
  4859. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4860. // Trace the arc
  4861. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4862. // As far as the parser is concerned, the position is now == target. In reality the
  4863. // motion control system might still be processing the action and the real tool position
  4864. // in any intermediate location.
  4865. for(int8_t i=0; i < NUM_AXIS; i++) {
  4866. current_position[i] = destination[i];
  4867. }
  4868. previous_millis_cmd = millis();
  4869. }
  4870. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4871. #if defined(FAN_PIN)
  4872. #if CONTROLLERFAN_PIN == FAN_PIN
  4873. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4874. #endif
  4875. #endif
  4876. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4877. unsigned long lastMotorCheck = 0;
  4878. void controllerFan()
  4879. {
  4880. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4881. {
  4882. lastMotorCheck = millis();
  4883. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4884. #if EXTRUDERS > 2
  4885. || !READ(E2_ENABLE_PIN)
  4886. #endif
  4887. #if EXTRUDER > 1
  4888. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4889. || !READ(X2_ENABLE_PIN)
  4890. #endif
  4891. || !READ(E1_ENABLE_PIN)
  4892. #endif
  4893. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4894. {
  4895. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4896. }
  4897. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4898. {
  4899. digitalWrite(CONTROLLERFAN_PIN, 0);
  4900. analogWrite(CONTROLLERFAN_PIN, 0);
  4901. }
  4902. else
  4903. {
  4904. // allows digital or PWM fan output to be used (see M42 handling)
  4905. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4906. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4907. }
  4908. }
  4909. }
  4910. #endif
  4911. #ifdef TEMP_STAT_LEDS
  4912. static bool blue_led = false;
  4913. static bool red_led = false;
  4914. static uint32_t stat_update = 0;
  4915. void handle_status_leds(void) {
  4916. float max_temp = 0.0;
  4917. if(millis() > stat_update) {
  4918. stat_update += 500; // Update every 0.5s
  4919. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4920. max_temp = max(max_temp, degHotend(cur_extruder));
  4921. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4922. }
  4923. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4924. max_temp = max(max_temp, degTargetBed());
  4925. max_temp = max(max_temp, degBed());
  4926. #endif
  4927. if((max_temp > 55.0) && (red_led == false)) {
  4928. digitalWrite(STAT_LED_RED, 1);
  4929. digitalWrite(STAT_LED_BLUE, 0);
  4930. red_led = true;
  4931. blue_led = false;
  4932. }
  4933. if((max_temp < 54.0) && (blue_led == false)) {
  4934. digitalWrite(STAT_LED_RED, 0);
  4935. digitalWrite(STAT_LED_BLUE, 1);
  4936. red_led = false;
  4937. blue_led = true;
  4938. }
  4939. }
  4940. }
  4941. #endif
  4942. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4943. {
  4944. #if defined(KILL_PIN) && KILL_PIN > -1
  4945. static int killCount = 0; // make the inactivity button a bit less responsive
  4946. const int KILL_DELAY = 10000;
  4947. #endif
  4948. if(buflen < (BUFSIZE-1)){
  4949. get_command();
  4950. }
  4951. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4952. if(max_inactive_time)
  4953. kill();
  4954. if(stepper_inactive_time) {
  4955. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4956. {
  4957. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4958. disable_x();
  4959. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4960. disable_y();
  4961. disable_z();
  4962. disable_e0();
  4963. disable_e1();
  4964. disable_e2();
  4965. }
  4966. }
  4967. }
  4968. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4969. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4970. {
  4971. chdkActive = false;
  4972. WRITE(CHDK, LOW);
  4973. }
  4974. #endif
  4975. #if defined(KILL_PIN) && KILL_PIN > -1
  4976. // Check if the kill button was pressed and wait just in case it was an accidental
  4977. // key kill key press
  4978. // -------------------------------------------------------------------------------
  4979. if( 0 == READ(KILL_PIN) )
  4980. {
  4981. killCount++;
  4982. }
  4983. else if (killCount > 0)
  4984. {
  4985. killCount--;
  4986. }
  4987. // Exceeded threshold and we can confirm that it was not accidental
  4988. // KILL the machine
  4989. // ----------------------------------------------------------------
  4990. if ( killCount >= KILL_DELAY)
  4991. {
  4992. kill();
  4993. }
  4994. #endif
  4995. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4996. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4997. #endif
  4998. #ifdef EXTRUDER_RUNOUT_PREVENT
  4999. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5000. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5001. {
  5002. bool oldstatus=READ(E0_ENABLE_PIN);
  5003. enable_e0();
  5004. float oldepos=current_position[E_AXIS];
  5005. float oldedes=destination[E_AXIS];
  5006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5007. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5008. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5009. current_position[E_AXIS]=oldepos;
  5010. destination[E_AXIS]=oldedes;
  5011. plan_set_e_position(oldepos);
  5012. previous_millis_cmd=millis();
  5013. st_synchronize();
  5014. WRITE(E0_ENABLE_PIN,oldstatus);
  5015. }
  5016. #endif
  5017. #ifdef TEMP_STAT_LEDS
  5018. handle_status_leds();
  5019. #endif
  5020. check_axes_activity();
  5021. }
  5022. void kill(const char *full_screen_message)
  5023. {
  5024. cli(); // Stop interrupts
  5025. disable_heater();
  5026. disable_x();
  5027. // SERIAL_ECHOLNPGM("kill - disable Y");
  5028. disable_y();
  5029. disable_z();
  5030. disable_e0();
  5031. disable_e1();
  5032. disable_e2();
  5033. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5034. pinMode(PS_ON_PIN,INPUT);
  5035. #endif
  5036. SERIAL_ERROR_START;
  5037. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5038. if (full_screen_message != NULL) {
  5039. SERIAL_ERRORLNRPGM(full_screen_message);
  5040. lcd_display_message_fullscreen_P(full_screen_message);
  5041. } else {
  5042. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5043. }
  5044. // FMC small patch to update the LCD before ending
  5045. sei(); // enable interrupts
  5046. for ( int i=5; i--; lcd_update())
  5047. {
  5048. delay(200);
  5049. }
  5050. cli(); // disable interrupts
  5051. suicide();
  5052. while(1) { /* Intentionally left empty */ } // Wait for reset
  5053. }
  5054. void Stop()
  5055. {
  5056. disable_heater();
  5057. if(Stopped == false) {
  5058. Stopped = true;
  5059. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5060. SERIAL_ERROR_START;
  5061. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5062. LCD_MESSAGERPGM(MSG_STOPPED);
  5063. }
  5064. }
  5065. bool IsStopped() { return Stopped; };
  5066. #ifdef FAST_PWM_FAN
  5067. void setPwmFrequency(uint8_t pin, int val)
  5068. {
  5069. val &= 0x07;
  5070. switch(digitalPinToTimer(pin))
  5071. {
  5072. #if defined(TCCR0A)
  5073. case TIMER0A:
  5074. case TIMER0B:
  5075. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5076. // TCCR0B |= val;
  5077. break;
  5078. #endif
  5079. #if defined(TCCR1A)
  5080. case TIMER1A:
  5081. case TIMER1B:
  5082. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5083. // TCCR1B |= val;
  5084. break;
  5085. #endif
  5086. #if defined(TCCR2)
  5087. case TIMER2:
  5088. case TIMER2:
  5089. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5090. TCCR2 |= val;
  5091. break;
  5092. #endif
  5093. #if defined(TCCR2A)
  5094. case TIMER2A:
  5095. case TIMER2B:
  5096. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5097. TCCR2B |= val;
  5098. break;
  5099. #endif
  5100. #if defined(TCCR3A)
  5101. case TIMER3A:
  5102. case TIMER3B:
  5103. case TIMER3C:
  5104. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5105. TCCR3B |= val;
  5106. break;
  5107. #endif
  5108. #if defined(TCCR4A)
  5109. case TIMER4A:
  5110. case TIMER4B:
  5111. case TIMER4C:
  5112. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5113. TCCR4B |= val;
  5114. break;
  5115. #endif
  5116. #if defined(TCCR5A)
  5117. case TIMER5A:
  5118. case TIMER5B:
  5119. case TIMER5C:
  5120. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5121. TCCR5B |= val;
  5122. break;
  5123. #endif
  5124. }
  5125. }
  5126. #endif //FAST_PWM_FAN
  5127. bool setTargetedHotend(int code){
  5128. tmp_extruder = active_extruder;
  5129. if(code_seen('T')) {
  5130. tmp_extruder = code_value();
  5131. if(tmp_extruder >= EXTRUDERS) {
  5132. SERIAL_ECHO_START;
  5133. switch(code){
  5134. case 104:
  5135. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5136. break;
  5137. case 105:
  5138. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5139. break;
  5140. case 109:
  5141. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5142. break;
  5143. case 218:
  5144. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5145. break;
  5146. case 221:
  5147. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5148. break;
  5149. }
  5150. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5151. return true;
  5152. }
  5153. }
  5154. return false;
  5155. }
  5156. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5157. {
  5158. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5159. {
  5160. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5161. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5162. }
  5163. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5164. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5165. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5166. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5167. total_filament_used = 0;
  5168. }
  5169. float calculate_volumetric_multiplier(float diameter) {
  5170. float area = .0;
  5171. float radius = .0;
  5172. radius = diameter * .5;
  5173. if (! volumetric_enabled || radius == 0) {
  5174. area = 1;
  5175. }
  5176. else {
  5177. area = M_PI * pow(radius, 2);
  5178. }
  5179. return 1.0 / area;
  5180. }
  5181. void calculate_volumetric_multipliers() {
  5182. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5183. #if EXTRUDERS > 1
  5184. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5185. #if EXTRUDERS > 2
  5186. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5187. #endif
  5188. #endif
  5189. }
  5190. void delay_keep_alive(unsigned int ms)
  5191. {
  5192. for (;;) {
  5193. manage_heater();
  5194. // Manage inactivity, but don't disable steppers on timeout.
  5195. manage_inactivity(true);
  5196. lcd_update();
  5197. if (ms == 0)
  5198. break;
  5199. else if (ms >= 50) {
  5200. delay(50);
  5201. ms -= 50;
  5202. } else {
  5203. delay(ms);
  5204. ms = 0;
  5205. }
  5206. }
  5207. }
  5208. void check_babystep() {
  5209. int babystep_z;
  5210. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5211. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5212. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5213. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5214. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5215. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5216. lcd_update_enable(true);
  5217. }
  5218. }
  5219. #ifdef DIS
  5220. void d_setup()
  5221. {
  5222. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5223. pinMode(D_DATA, INPUT_PULLUP);
  5224. pinMode(D_REQUIRE, OUTPUT);
  5225. digitalWrite(D_REQUIRE, HIGH);
  5226. }
  5227. float d_ReadData()
  5228. {
  5229. int digit[13];
  5230. String mergeOutput;
  5231. float output;
  5232. digitalWrite(D_REQUIRE, HIGH);
  5233. for (int i = 0; i<13; i++)
  5234. {
  5235. for (int j = 0; j < 4; j++)
  5236. {
  5237. while (digitalRead(D_DATACLOCK) == LOW) {}
  5238. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5239. bitWrite(digit[i], j, digitalRead(D_DATA));
  5240. }
  5241. }
  5242. digitalWrite(D_REQUIRE, LOW);
  5243. mergeOutput = "";
  5244. output = 0;
  5245. for (int r = 5; r <= 10; r++) //Merge digits
  5246. {
  5247. mergeOutput += digit[r];
  5248. }
  5249. output = mergeOutput.toFloat();
  5250. if (digit[4] == 8) //Handle sign
  5251. {
  5252. output *= -1;
  5253. }
  5254. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5255. {
  5256. output /= 10;
  5257. }
  5258. return output;
  5259. }
  5260. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5261. int t1 = 0;
  5262. int t_delay = 0;
  5263. int digit[13];
  5264. int m;
  5265. char str[3];
  5266. //String mergeOutput;
  5267. char mergeOutput[15];
  5268. float output;
  5269. int mesh_point = 0; //index number of calibration point
  5270. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5271. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5272. float mesh_home_z_search = 4;
  5273. float row[x_points_num];
  5274. int ix = 0;
  5275. int iy = 0;
  5276. char* filename_wldsd = "wldsd.txt";
  5277. char data_wldsd[70];
  5278. char numb_wldsd[10];
  5279. d_setup();
  5280. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5281. // We don't know where we are! HOME!
  5282. // Push the commands to the front of the message queue in the reverse order!
  5283. // There shall be always enough space reserved for these commands.
  5284. repeatcommand_front(); // repeat G80 with all its parameters
  5285. enquecommand_front_P((PSTR("G28 W0")));
  5286. enquecommand_front_P((PSTR("G1 Z5")));
  5287. return;
  5288. }
  5289. bool custom_message_old = custom_message;
  5290. unsigned int custom_message_type_old = custom_message_type;
  5291. unsigned int custom_message_state_old = custom_message_state;
  5292. custom_message = true;
  5293. custom_message_type = 1;
  5294. custom_message_state = (x_points_num * y_points_num) + 10;
  5295. lcd_update(1);
  5296. mbl.reset();
  5297. babystep_undo();
  5298. card.openFile(filename_wldsd, false);
  5299. current_position[Z_AXIS] = mesh_home_z_search;
  5300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5301. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5302. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5303. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5304. setup_for_endstop_move(false);
  5305. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5306. SERIAL_PROTOCOL(x_points_num);
  5307. SERIAL_PROTOCOLPGM(",");
  5308. SERIAL_PROTOCOL(y_points_num);
  5309. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5310. SERIAL_PROTOCOL(mesh_home_z_search);
  5311. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5312. SERIAL_PROTOCOL(x_dimension);
  5313. SERIAL_PROTOCOLPGM(",");
  5314. SERIAL_PROTOCOL(y_dimension);
  5315. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5316. while (mesh_point != x_points_num * y_points_num) {
  5317. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5318. iy = mesh_point / x_points_num;
  5319. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5320. float z0 = 0.f;
  5321. current_position[Z_AXIS] = mesh_home_z_search;
  5322. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5323. st_synchronize();
  5324. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5325. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5327. st_synchronize();
  5328. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5329. break;
  5330. card.closefile();
  5331. }
  5332. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5333. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5334. //strcat(data_wldsd, numb_wldsd);
  5335. //MYSERIAL.println(data_wldsd);
  5336. //delay(1000);
  5337. //delay(3000);
  5338. //t1 = millis();
  5339. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5340. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5341. memset(digit, 0, sizeof(digit));
  5342. //cli();
  5343. digitalWrite(D_REQUIRE, LOW);
  5344. for (int i = 0; i<13; i++)
  5345. {
  5346. //t1 = millis();
  5347. for (int j = 0; j < 4; j++)
  5348. {
  5349. while (digitalRead(D_DATACLOCK) == LOW) {}
  5350. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5351. bitWrite(digit[i], j, digitalRead(D_DATA));
  5352. }
  5353. //t_delay = (millis() - t1);
  5354. //SERIAL_PROTOCOLPGM(" ");
  5355. //SERIAL_PROTOCOL_F(t_delay, 5);
  5356. //SERIAL_PROTOCOLPGM(" ");
  5357. }
  5358. //sei();
  5359. digitalWrite(D_REQUIRE, HIGH);
  5360. mergeOutput[0] = '\0';
  5361. output = 0;
  5362. for (int r = 5; r <= 10; r++) //Merge digits
  5363. {
  5364. sprintf(str, "%d", digit[r]);
  5365. strcat(mergeOutput, str);
  5366. }
  5367. output = atof(mergeOutput);
  5368. if (digit[4] == 8) //Handle sign
  5369. {
  5370. output *= -1;
  5371. }
  5372. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5373. {
  5374. output *= 0.1;
  5375. }
  5376. //output = d_ReadData();
  5377. //row[ix] = current_position[Z_AXIS];
  5378. memset(data_wldsd, 0, sizeof(data_wldsd));
  5379. for (int i = 0; i <3; i++) {
  5380. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5381. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5382. strcat(data_wldsd, numb_wldsd);
  5383. strcat(data_wldsd, ";");
  5384. }
  5385. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5386. dtostrf(output, 8, 5, numb_wldsd);
  5387. strcat(data_wldsd, numb_wldsd);
  5388. //strcat(data_wldsd, ";");
  5389. card.write_command(data_wldsd);
  5390. //row[ix] = d_ReadData();
  5391. row[ix] = output; // current_position[Z_AXIS];
  5392. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5393. for (int i = 0; i < x_points_num; i++) {
  5394. SERIAL_PROTOCOLPGM(" ");
  5395. SERIAL_PROTOCOL_F(row[i], 5);
  5396. }
  5397. SERIAL_PROTOCOLPGM("\n");
  5398. }
  5399. custom_message_state--;
  5400. mesh_point++;
  5401. lcd_update(1);
  5402. }
  5403. card.closefile();
  5404. }
  5405. #endif
  5406. void temp_compensation_start() {
  5407. custom_message = true;
  5408. custom_message_type = 5;
  5409. if (degHotend(active_extruder)>EXTRUDE_MINTEMP) current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5411. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5412. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5413. current_position[Z_AXIS] = 0;
  5414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5415. st_synchronize();
  5416. while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
  5417. for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  5418. custom_message_type = 0;
  5419. custom_message = false;
  5420. }
  5421. void temp_compensation_apply() {
  5422. int i_add;
  5423. int compensation_value;
  5424. int z_shift = 0;
  5425. float z_shift_mm;
  5426. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5427. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 50 && target_temperature_bed <= 100) {
  5428. i_add = (target_temperature_bed - 60) / 10;
  5429. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5430. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5431. }
  5432. else {
  5433. //interpolation
  5434. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5435. }
  5436. SERIAL_PROTOCOLPGM("\n");
  5437. SERIAL_PROTOCOLPGM("Z shift applied:");
  5438. MYSERIAL.print(z_shift_mm);
  5439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5440. st_synchronize();
  5441. plan_set_z_position(current_position[Z_AXIS]);
  5442. }
  5443. else {
  5444. //message that we have no temp compensation data ?
  5445. }
  5446. }
  5447. float temp_comp_interpolation(float inp_temperature) {
  5448. //cubic spline interpolation
  5449. int n, i, j, k;
  5450. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
  5451. int shift[10];
  5452. int temp_C[10];
  5453. p = inp_temperature;
  5454. n = 6; //number of measured points
  5455. shift[0] = 0;
  5456. for (i = 0; i < n; i++) {
  5457. //scanf_s("%f%f", &x[i], &f[i]);
  5458. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5459. temp_C[i] = 50 + i * 10; //temperature in C
  5460. x[i] = (float)temp_C[i];
  5461. f[i] = (float)shift[i];
  5462. }
  5463. for (i = n - 1; i>0; i--) {
  5464. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5465. h[i - 1] = x[i] - x[i - 1];
  5466. }
  5467. //*********** formation of h, s , f matrix **************
  5468. for (i = 1; i<n - 1; i++) {
  5469. m[i][i] = 2 * (h[i - 1] + h[i]);
  5470. if (i != 1) {
  5471. m[i][i - 1] = h[i - 1];
  5472. m[i - 1][i] = h[i - 1];
  5473. }
  5474. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5475. }
  5476. //*********** forward elimination **************
  5477. for (i = 1; i<n - 2; i++) {
  5478. temp = (m[i + 1][i] / m[i][i]);
  5479. for (j = 1; j <= n - 1; j++)
  5480. m[i + 1][j] -= temp*m[i][j];
  5481. }
  5482. //*********** backward substitution *********
  5483. for (i = n - 2; i>0; i--) {
  5484. sum = 0;
  5485. for (j = i; j <= n - 2; j++)
  5486. sum += m[i][j] * s[j];
  5487. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5488. }
  5489. for (i = 0; i<n - 1; i++)
  5490. if (x[i] <= p&&p <= x[i + 1]) {
  5491. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5492. b = s[i] / 2;
  5493. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5494. d = f[i];
  5495. sum = a*pow((p - x[i]), 3) + b*pow((p - x[i]), 2) + c*(p - x[i]) + d;
  5496. }
  5497. return sum;
  5498. }